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Abstract. The recent speedy development of COVID-19 mRNA vac-
cines has underlined the importance of cross-border patent collabora-
tion. This paper uses the latest edition of the REGPAT database from
the OECD and constructs the co-applicant patent networks for the fields
of biotechnology and pharmaceuticals. We identify the cross-border col-
laborative regional centres in these patent networks at NUTS3 level using
a clustering comparison approach based on adjusted mutual information
(AMI). In particular, we measure and compare the AMI scores of the
clustering before and after arbitrarily removing cross-border links of a
focal node against the default clustering defined by national borders.
The region with the largest difference in AMI scores is identified as the
most cross-border collaborative centre, hence the name of our measure,
AMI gain. We find that our measure both correlates with and has advan-
tages over the traditional measure betweenness centrality and a simple
measure of foreign share.

Keywords: patent networks, clustering comparison, adjusted mutual
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1 Introduction

Globalisation and knowledge-based economy have stimulated the process of
knowledge diffusion in the form of research and development (R&D) collabora-
tion. Knowledge spillovers have been found to be geographically localised [1] and
easier within firms than between [2]. R&D collaboration between organisations
in different countries (across national borders or simply cross-border thereafter)
could expose the participating parties to more heterogeneous resources, knowl-
edge and skill sets. The data from the European Regional Innovation Survey
from 1995 to 1997 has already shown that manufacturing firms with an external
innovation network are more successful [3]. Conducting research on cross-border
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knowledge diffusion is especially meaningful as R&D cooperation and dissemi-
nation of innovation have been identified as key indicators in the National Inno-
vation System (NIS) studies [4, 5]. More recently, the development of COVID-19
mRNA vaccines on an unprecedented timescale has showcased the importance
of cross-border patent collaborations [6]. In this paper, we focus on identifying
regional centres in the cross-border collaborative networks as such centrality is
associated with higher level of innovation intensity and quality. Our proposed
identification method is based on the adjusted mutual information (AMI) gain
by comparing each pair of elective partitions.

In quantitative innovation studies, patent information has been a widely used
data source [7–12]. In the literature of R&D collaboration, researchers have been
building linkages based on patent co-invention and co-application. In particu-
lar, the location information of patent inventors and applicants allows for accu-
rate studies on cross-regional, co-inventionship and talent mobility. For example,
Chessa et. al. constructed five networks using the OECD REGPAT database [13]
to explore the R&D integration in the European Union. These include the patent
co-inventor and publication co-author networks, the patent co-applicant network,
the patent citation network and the patent inventor mobility network. Singh’s
analysis of patents filed to the U.S. Patent and Trademark Office (USPTO) uses
patent citation data to measure the knowledge flow and builds interpersonal
networks between inventors. In line with the previous literature like Kogut and
Zander [2], this analysis shows intra-regional and intra-firm knowledge flows are
stronger than those across regional or firm boundaries [14]. On the temporal
dimension, a study based on patents originated from OECD countries and filed
through the European Patent Office (EPO) found that the negative impact of
geographical distance and institutional borders on R&D collaboration decreased
from the end of 1980s till mid-1990s before it started to grow [15]. Further anal-
ysis looks into the how the quality of inter-regional knowledge networks (also
based on the REGPAT patent database) impacts the regional research produc-
tivity [16]. REGPAT is also used in combination with the Eurostat database
with a focus on the innovation-lagging-behind European regions to suggest that
having wider inter-regional co-patenting networks with closer collaboration with
knowledge-intensive regions could help the less innovative regions to close the
gap [17].

As we have seen in the aforementioned literature, a rising number of literature
have come to recognise the importance of knowledge spillovers. The earlier works
look into various knowledge transmission channels (e.g., citation, collaboration,
inventor mobility, etc), and the more recent studies began to leverage the power
of network methods. But still, a relatively smaller body of literature have come up
with a method to measure the regional R&D network centrality. So far the most
common approaches derive from the conventional social network analysis (SNA),
such as degree centrality or betweenness centrality [18, 19]. Berge et. al. argued
that such studies could miss the conceptual problems at the aggregated regional
level and lose the information regarding the structure of network relations [20].
They propose a new method based on the concept of inter-regional bridging
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paths defined as the indirect connections between two regions via a third region
as the bridge.

Our analysis conducts network construction based on the co-applicant link-
ages as they represent the collaboration between institutions. In terms of network
centres identification, we take a different approach from the existing literature.
Clustering comparison measures traditionally have been used for external vali-
dation as well as clustering solutions search [21]. In this paper, we propose an-
other application of clustering comparison as a way of identifying central nodes
in networks. In particular, we measure and compare the similarity scores of the
clustering before and after arbitrarily removing cross-border links of a focal node
against the default clustering defined by national borders. The widely used ad-
justed mutual information (AMI) is chosen here as the clustering comparison
measure, hence the name of our measure, AMI gain. Using the examples of co-
applicant patent networks in the fields of biotechnology and pharmaceuticals,
we find that our measure, AMI gain, both correlates with and has advantages
over the traditional measure of betweenness centrality and a simple measure of
foreign share.

The rest of the paper is organised as follows: Section 2 introduces the database
and our measure. Section 3 presents the results and statistically compares our
measure with betweenness centrality and a simple measure of foreign share. Fi-
nally, Section 4 concludes the paper with further discussions.

2 Data and Methods

2.1 REGPAT Database

In this study, we use the latest edition of the OECD REGPAT database (re-
leased in January, 2021) which has been widely used in the relevant prior works.
This database enables researchers to link patent data to regions based on the
addresses of the patent applicants and inventors at NUTS3 level, covering more
than 5,500 regions across OECD countries, EU 28 countries, Brazil, China, In-
dia, the Russian Federation and South Africa [13]. The patent data component
in this database comes from the EPO Worldwide Statistical Patent Database
(PATSTAT Global, Autumn 2020), which covers patent applications filed to the
EPO and patent applications filed under the Patent Co-operation Treaty (PCT)
at international phase, both from 1977 (priority date).

We focus the analysis on 30 countries in Europe, i.e., the EU28 countries
except for Cyprus before the Brexit plus Iceland, Norway and Switzerland. As
a result, we have 1389 NUTS3 level regions, i.e., the nodes in the networks.
And a cross-border link occurs when it connects two regions belonging to two
different countries. We construct two co-applicant patent networks for the two
fields of biotechnology and pharmaceuticals according to the IPC concordance
table published by the WIPO [22], where the nodes are the NUTS3 regions in
these 30 countries and the links are weighted by the accumulated number of
co-applicant collaboration instances between regions over time (i.e., from 1977
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onward). Note that a patent may have one (i.e., contributing no links), two
(i.e., contributing one link), or more (i.e., contributing more than one links)
applicants. Also note that self-loops are considered and weighted. We further
restrict our attention to the largest components of the two networks, with 765
nodes for biotechnology and 608 nodes for pharmaceuticals respectively.

2.2 Methods

We denote a network as G = (V,E) where V is the set of nodes (or vertices)
and E is the set of links (or edges). To describe our measure, we further denote
vi ∈ V as node i in the network and evi,vj ∈ E as the edge between node i
and node j. The weight of evi,vj is denoted as wvi,vj and wvi,vj = wvj ,vi for an
undirected network. The set of node i’s neighbouring (directly connected) nodes
is denoted as N(vi). The largest component of the network is denoted as C1. A
partition i of the network is denoted as Pi. Finally, the partition after removing
node i is denoted as P−vi . Regarding clustering comparison, we use adjusted
mutual information (AMI), which calculates the similarity score between two
partitions (or clusterings), say Pi and Pj , as follows:

AMI(Pi, Pj) =
MI(Pi, Pj)− E{MI(Pi, Pj)}

max(H(Pi), H(Pj))− E{MI(Pi, Pj)}

where E{·} calculates the expected value, H(·) calculates the entropy and MI(·)
calculates the (unadjusted) mutual information [21]. The value of AMI ranges
from 0 to 1 and 0 implies the most dissimilar whereas 1 implies the most similar
between partitions.

Algorithm 1 shows the pseudocode of calculating the AMI gain for each node.
Note that for each node we conduct a counterfactual exercise by arbitrarily re-
moving its cross-border links. The rationale behind our measure is that such
a counterfactual exercise will produce a partition more similar to the default
partition defined by national borders, for which we denote as Pd. Therefore, the
difference between the AMI scores when compared with the default partition will
more than often be positive after the node removal and we call the difference
as the AMI gain. As a result, the cross-border collaborative centres are identi-
fied with the largest AMI gains. Note that we use the Louvain method [23] at
the default resolution level 1.0 for community detection, which also takes into
account link weights.
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Algorithm 1 Calculating AMI gain

P0 ← Louvain(C1) . Get P0 by applying Louvain to the largest component C1

AMI0 ← AMI(P0, Pd) . AMI between P0 and the default partition Pd

for vi ← v1, vn do . Loop through the nodes of C1

for N(vi)j ← N(vi)1, N(vi)m do . Loop through the neighbours of vi
if N(vi)j is cross-border then

remove evi,N(vi)j . Drop cross-border neighbours of vi
end if

end for
P−vi ← Louvain(C−vi)
AMI−vi ← AMI(P−vi , Pd)
∆AMIvi = AMI−vi −AMI0 . AMI gain for node vi

end for

For comparison, we also consider the traditional measure of betweenness
centrality (which also takes into account link weights) and a simple measure of
foreign share. Algorithm 2 shows the pseudocode of calculating the foreign share
for each node.

Algorithm 2 Calculating foreign share

for vi ← v1, vn do . Loop through the nodes of C1

sumvi ← 0
sumf

vi ← 0
for N(vi)j ← N(vi)1, N(vi)m do . Loop through the neighbours of vi

if N(vi)j is cross-border then
sumf

vi ← sumf
vi + wvi,N(vi)j . Add up foreign neighbour edge weights

sumvi ← sumvi + wvi,N(vi)j . Add up total neighbour edge weights
else

sumvi ← sumvi + wvi,N(vi)j . Add up total neighbour edge weights
end if

end for

FSvi =
sum

f
vi

sumvi
. Compute foreign share for node vi

end for

3 Results

As a concrete example, Figure 1 and Figure 2 show the community detection
results before and after we arbitrarily remove the cross-border links of the region
BE234 (Arr. Gent) from the biotechnology patent network. Each color represents
a different community detected. Note that mostly the communities are still char-
acterised by national borders, even though cross-border links sometimes break
certain regions from their default national communities (e.g., different colors
within France and Germany). Also note that a significant difference between the
two figures is that most regions in Netherlands share the community with the
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UK (Figure 1) before the counterfactual removal but are separated from the UK
(Figure 2) after the removal, which helps BE234 (Arr. Gent) attain a high AMI
gain score.

Table 1 shows the top 10 regions identified by our measure, AMI gain, as
well as by betweenness centrality in the field of biotechnology. Although not
shown in the table, foreign share has identified 32 regions all with 100% cross-
border connections in the field of biotechnology, including, for example, Kelheim
in Germany and Malta. Similarly, Table 2 shows the top 10 regions identified
by our measure, AMI gain, versus by betweenness centrality, in the field of
pharmaceuticals. Again not shown in the table, foreign share has identified 37
regions in tie in the field of pharmaceuticals, including, for example, Plymouth
in the UK and Malta.

There is some overlapping between the results by AMI gain and by between-
ness centrality. For example, Vienna and Copenhagen in Table 1, and Stockholm,
Milan and Paris in Table 2. On the other hand, the local measure of foreign share
cannot differentiate the regions very well on the top as many regions are in tie.
Moreover, foreign share does not take into account structural and global prop-
erties of the network. A small region, such as Malta, simply with all its links
cross-border would top the table by foreign share.

Fig. 1. Biotechnology patent network community detection result
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Fig. 2. Biotechnology patent network community detection result (cross-border links
removed for BE234)

Table 1. Top 10 regions in biotechnology

AMI gain Betweenness centrality

# NUTS3 code Region name NUTS3 code Region name

1 BE234 Arr. Gent FR101 Paris
2 DE126 Mannheim Stadtkreis CH031 Basel-Stadt
3 UKD31 Greater Manchester South DE212 München Kreisfreie Stadt
4 DEE02 Halle (Saale) Kreisfreie Stadt UKI11 Inner London - West
5 AT130 Vienna ITI43 Rome
6 DK011 City of Copenhagen ES300 Madrid
7 SE110 Stockholm County SE110 Stockholm County
8 UKF22 Leicestershire CC and Rutland UKJ14 Oxfordshire
9 DE125 Heidelberg Stadtkreis DE300 Berlin

10 AT323 Salzburg und Umgebung AT130 Vienna

Table 2. Top 10 regions in pharmaceuticals

AMI gain Betweenness centrality

# NUTS3 code Region name NUTS3 code Region name

1 UKJ33 Hampshire CC FR101 Paris
2 SE110 Stockholm County UKH12 Cambridgeshire CC
3 DK011 City of Copenhagen CH031 Basel-Stadt
4 DEA22 Bonn Kreisfreie Stadt SE110 Stockholm County
5 DEA2B Rheinisch-Bergischer Kreis CH011 Vaud
6 ITC4C Milan ES300 Madrid
7 FR101 Paris DE300 Berlin
8 DE926 Holzminden ITC4C Milan
9 ITC33 Genoa AT130 Vienna

10 ITG2C Carbonia-Iglesias DE125 Heidelberg Stadtkreis
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More systematically, Figure 3 shows the scatter plots between our measure,
AMI gain, and betweenness centrality or foreign share for biotechnology and
pharmaceuticals respectively. The Pearson correlation coefficient (denoted by r)
as well as the Spearman correlation coefficient (denoted by ρ) between AMI gain
and either of the two alternative measures are positive. Note that the Spearman
correlations are stronger than the Pearson ones as the former only considers
the ranking of the values. Therefore, our measure, AMI gain, captures certain
similar information as either betweenness centrality or foreign share does but
also differs from either of them in a nontrivial way.

Furthermore, Figure 4 shows the empirical cumulative distribution functions
(ECDFs) of our measure, AMI gain, betweenness centrality and foreign share
for biotechnology and pharmaceuticals respectively. For both fields, betweenness
centrality results are dominated by a few regions (as its ECDF curve is bent to-
wards the top left corner). AMI gain and foreign share have, relatively speaking,
more uniform distributions of values (i.e., closer to the 45 degree line). As a
result, AMI gain helps identify and differentiate the central cross-border collab-
orative regions on the top (better than foreign share) and for a large percentile
range (better than betweenness centrality).

Fig. 4. Empirical cumulative distribution functions of the three measures

4 Conclusions

R&D collaborations beyond national borders are critical for knowledge spillovers
at large scale, which is well demonstrated by the recent development of COVID-
19 mRNA vaccines at an unprecedented timescale. This paper uses the latest edi-
tion of the REGPAT database from the OECD and constructs the co-applicant
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Fig. 3. Correlations between the three measures

patent networks in Europe at NUTS3 level for the fields of biotechnology and
pharmaceuticals.

We contribute to the literature of finding cross-border collaborative centres
in patent networks by proposing a clustering comparison approach based on
adjusted mutual information. The rationale behind our approach is that a coun-
terfactual exercise of removing cross-border links from a focal node will produce
a partition more similar to the default partition defined by national borders.
Therefore, the difference between the AMI scores when compared with the de-
fault partition will more than often be positive after the node removal. The
results based on our measure, AMI gain, are positively correlated with those
by betweenness centrality or by a simple measure of foreign share. Neverthe-
less, when compared with betweenness centrality, AMI gain better differentiates
cross-border centres from local ones and offers a more uniform distribution of
values. On the other hand, when compared with foreign share, AMI gain is more
of a global and structural measure and better differentiates the nodes on the
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top. Our future research will further explore the robustness of our measure with
more variations of the parameters and across contexts.
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