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Abstract: Daily operations and planning in a smart grid require a day-ahead load forecasting of its
customers. The accuracy of day-ahead load-forecasting models has a significant impact on many
decisions such as scheduling of fuel purchases, system security assessment, economic scheduling of
generating capacity, and planning for energy transactions. However, day-ahead load forecasting is a
challenging task due to its dependence on external factors such as meteorological and exogenous
variables. Furthermore, the existing day-ahead load-forecasting models enhance forecast accuracy
by paying the cost of increased execution time. Aiming at improving the forecast accuracy while
not paying the increased executions time cost, a hybrid artificial neural network-based day-ahead
load-forecasting model for smart grids is proposed in this paper. The proposed forecasting model
comprises three modules: (i) a pre-processing module; (ii) a forecast module; and (iii) an optimization
module. In the first module, correlated lagged load data along with influential meteorological and
exogenous variables are fed as inputs to a feature selection technique which removes irrelevant
and/or redundant samples from the inputs. In the second module, a sigmoid function (activation)
and a multivariate auto regressive algorithm (training) in the artificial neural network are used.
The third module uses a heuristics-based optimization technique to minimize the forecast error. In
the third module, our modified version of an enhanced differential evolution algorithm is used.
The proposed method is validated via simulations where it is tested on the datasets of DAYTOWN
(Ohio, USA) and EKPC (Kentucky, USA). In comparison to two existing day-ahead load-forecasting
models, results show improved performance of the proposed model in terms of accuracy, execution
time, and scalability.

Keywords: artificial neural network; load prediction; smart grid; heuristic optimization; energy trade;
accuracy

1. Introduction

An existing/traditional grid system needs renovation to bridge the ever-increasing gap between
demand and supply and also to meet essential challenges such as grid reliability, grid robustness,
customer electricity cost minimization, etc. [1]. In this regard, recent integration of advanced
communication technologies and infrastructures into traditional grids have led to the formation
of so called smart grids (SGs) [2]. The national national institute of standards and technology (NIST) [3]
conceptual diagram of smart grid (SG) is shown in Figure 1. This conceptual diagram can be used as a
reference model for standardization works in seven SG domains: generation, transmission, distribution,
end users, markets, operations, and service providers. Each domain involves one or more SG actors
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(e.g., devices, systems, programs, etc.) to make decisions for realizing an application based on exchange
of information. Further details on each domain, its involved actors, and respective applications can be
found in [3]. One of the advantages of this integration is customer engagement, which plays a key role
in the economies of energy trade. In other words, the old concept of uni-directional energy flow is
replaced by the new and smart concept of bi-directional energy flow—transformation from traditional
consumer to a smart prosumer [4].

Figure 1. Conceptual diagram of SG.

The resulting/new grid, integrated with advanced metering infrastructure, faces many challenges
such as [5]: (i) designing new techniques to meet the load while not increasing the generation capacity;
and (ii) devising new ways/policies to ensure customer engagement with utility. When installing
new technologies, utilities aim for a maximum possible return on an investment. However, this
maximization would require that the daily operations of an SG utility (such as strategic decisions
to bridge the gap between demand and supply, and fuel resource planning) are properly conveyed.
All these decisions are highly influenced by load forecast strategy(ies) [6]. Accurate load forecast
means that both utility and prosumer can maximize their electricity price savings due to spot
price establishment—one of the major reasons that utilities show growing interest towards SG
implementation. The concerned utility forecasts the future price/load signal which is based on
the past activities of users’ energy consumption patterns. In response to the forecast price/load signal,
the users adjust their energy consumption schedules subject to minimization of electricity cost and/or
their comfort level [7]. In reference [8], Hippert et al. classify load forecast based on time to be predicted
(Figure 2): short-term, medium-term and long-term. Short-term load forecasting is further categorized
into two types: (i) very short-term; and (ii) short-term forecasting. The first one has a prediction
duration from seconds/minutes to hours and model applications in flow control. The second one has
prediction horizon from hours to weeks and model applications in adjusting generation and demand,
therefore, used to launch offers to the electrical market. The short-term forecasting models are vital
in day-to-day operations, evaluation of net interchange, unit commitment and scheduling functions,
and system security analysis. In medium term forecasting, the prediction horizon is typically between
months. These models are used by utilities for fuel scheduling, maintenance planning, and hydro
reservoir management. In long-term forecasting, the prediction horizon is for years. Utilities use these
types of models for planning capacity of the grid and maintenance scheduling. Since accurate load
forecast is needed by utilities to properly plan the ongoing grid operations for efficient management
of their resources, this paper aims at an accurate load-forecasting model. However, the scope of
this paper is limited to short-term load forecasting with a day-ahead prediction horizon only. In
the literature, two types of day-ahead load forecasting (DALF) models have been presented: linear
and non-linear [9]. Also, [10] has highlighted the relative limitation(s) of linear models as compared
to non-linear models. In reference [9], the non-linear models are investigated in five classes: (i)
support vector machine-based models; (ii) Markov chain-based models; (iii) artificial neural network
(ANN)-based models; (iv) fuzzy ANN-based models; and (v) stochastic distribution-based models.
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The support vector machine-based models [11–13] achieve relatively moderate accuracy, but at the
cost of high execution time (slow convergence rate) due to high complexity. Whereas, the Markov
chain-based models [14–16] have low execution time, but at the cost of reduced forecast accuracy.
Furthermore, the stochastic distribution-based models [17–20] need improvement in terms of both
accuracy and execution time. The fuzzy ANN-based models [21–26] achieve moderate accuracy,
but at the cost of high execution time. Finally, hybrid ANN-based models improve the accuracy of
ANN-based models to an extent, but at the cost of high execution time. Among the hybrid ANN-based
models, reference [27] selects features via MI technique and ANN-based prediction to forecast the
day-ahead load (DAL) of SGs. To improve the accuracy of [27], the authors in [28] add a heuristic
optimization-based technique with [27]. Similarly, another hybrid strategy is presented in [29] subject
to DALF of SGs. However, reference [27,29] achieve relatively high forecast accuracy while taking high
time to execute the algorithm. Furthermore, the forecast error of the existing works [28,29] significantly
increases due to meteorological variables (such as dew point temperature, dry bulb temperature, etc.),
and exogenous variables (such as cultural and social events, human impact, etc.). Thus, we aim at
improving the forecast accuracy of DALF models without increasing their execution time, and in the
presence of meteorological and exogenous variables.

In our proposed work, a hybrid ANN-based DALF model for SGs is presented which is a
multi-model forecasting ANN with a supervised architecture and MARA for training. The proposed
model follows a modular structure (it has three functional modules): a pre-processor, a forecaster,
and an optimizer. Given the correlated lagged load data along with influential meteorological and
exogenous variables as inputs, the first module removes two types of features from it: (i) redundant;
and (ii) irrelevant. Given the selected features, the second module employs ANN to predict future
values of load. The AN is activated by sigmoid function and the ANN is trained by MARA. We further
minimize the forecast/prediction error by using an optimization module in which a a heuristics-based
optimization technique is implemented. The proposed DALF strategy for SGs is validated via
simulations which show that our proposed strategy forecasts the future load of SGs with approximately
98.76% accuracy. To sum up, this paper has the following contributions/advantages:

• The proposed model takes into account external DALF influencing factors such as meteorological
and exogenous variables.

• Due to better accuracy and less execution time, we have used MARA for training which none of
the existing forecast models has used for training.

• To improve the forecast accuracy and minimize the execution of the forecast model, we have
performed local training which none of the existing forecast models has used.

• We have used our modified version of the EDE in the error minimization module. The existing
Bi-level strategy [28] has used EDE algorithm in the error minimization module.

• We have tested our proposed model on the datasets of two USA grids: DAYTOWN and
EKPC. For evaluation and validation purposes, we have compared our proposed model with
two existing forecast models (bi-level forecast and MI+ANN forecast) and provided extensive
simulation results.

Please note that this work is continuation of our previous work in [30,31], where in both [30,31]
we have not considered exogenous and meteorological variables. The rest of the paper is organized
as follows. Section 2 discusses recent/relevant DALF works, Section 3 briefly describes the newly
proposed ANN and modified evolutionary algorithm-based DALF model for SGs, simulation results
are discussed in Section 4, and Section 5 states the concluding points drawn from this work along with
future work.

2. Related Work

For the sake of better understanding, the existing techniques are discussed in two classes (linear
and non-linear) according to the type of model used [9]. The model to be used is totally the choice of
researcher due to specific design considerations.
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2.1. Linear Models

Linear models give continuous response which is a function or linear combination of one or more
prediction variables. These models depend on the synthesis of all features of a problem that is more or
less solved by complex equations. Examples of these models include spectral decomposition-based
models, ordinary least square-based models, ARMA, etc. Since the prediction of demand is complex
due non-linearities, the linear forecast models predict with high relative errors due to their inability to
map the complex relationship between input and output. Thus, development of linear models is highly
challenging. Furthermore, Hagan et al. [10] highlighted the relative limitation(s) of linear models as
compared to non-linear models. Therefore, this research work is focused towards the discussion of
non-linear models only.

2.2. Non-Linear Models

When the observational data is modeled by non-linear combination of one or more prediction
variables, the model is said to be non-linear. To describe the relation between residual and periodical
components, Bunn and Farmer [32] realize/conclude the ability of non-linear models to overcome the
limitation(s) of linear models. In reference [9], the non-linear models are further categorized into five
classes: (i) support vector machine-based models; (ii) Markov chain-based models; (iii) ANN-based
models; (iv) fuzzy neural network-based models; and (v) stochastic distribution-based models. These
models are discussed as follows.

(i) Support vector machine-based models: In reference [11], Niu et al. propose support vector machine
and ant colony optimization-based load-forecasting technique for an SG. The authors use ant colony
optimization technique for preprocessing of the input data. In this paper, system mining technique is
used for feature selection. The selected features are fed into the forecaster which is a support vector
machine-based predictor. Another important work has been presented by Li et al. in [12]. This varied
version of the authors is least squares-based support vector machine. Similarly, reference [13] models
the cyclic nature of demand by support vector machine-based linear regression. In conclusion, the
support vector machine-based works are better in terms of accuracy; however, development of these
models is highly challenging due to high complexity.

(ii) Markov chain-based models: Subject to robustness of DALF forecast strategy, authors in [14]
propose a Markov chain-based strategy. This stochastic strategy aims to tackle load-time series
fluctuations associated with energy consumption of users in a heterogeneous environment. The Markov
chains are used to predict the future duty cycles of appliances. The technique is robust due to
their memoryless nature (predicted pattern only depends on the current states; past states are not
considered). In reference [15], Markov chain Monte Carlo method is used to model the switching
pattern of household appliances. In simulations, they consider 100 households for one weak. However,
this model limited in scope as it applies to situations in the Netherlands only. Another work in [16]
proposes explicit duration hidden Markov model along with differential observation-based model to
predict individual load of appliances. The authors collect the aggregated power signals by ordinary
smart meters. The memoryless nature of Markov chains not only makes the DALF strategy robust but
also relatively less complex in comparison to the aforementioned techniques. However, the memory
less nature of Markov chains also has a drawback; less accuracy.

(iii) ANN-based models: ANNs learn from experience/training to predict future values while
being fed with relevant input information. The advantages of these networks include but are not
limited to self-organization, adaptive learning, fault tolerance, ease of integration with existing
network/technology, and real time operation. The abilities to generalize and to capture non-linearity
in complex environments make ANNs very attractive in problems of load forecasting. There are two
basic architectures of ANN; feed forward and feedback. The former one carries information from input to
output via hidden layer in forward direction only, i.e., the information of each layer is independent
from that of the others. Feed forward ANNs are widely used for pattern recognition and forecasting
problems. The later one carries information in both directions, forward and feedback, such that the
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information of each layer is dependent on that of the others. Feedback ANNs are appropriate for
complex and time varying problems [33–35]. On the other hand, the learning modes of ANNs fall under
three categories: supervised [36], unsupervised [37], and re-enforced [38]. In the first category, the ANN
attempts to minimize minimum square error (MSE) for known target vector (i.e., the input/output
vectors are specified). For a given input/output, error is calculated between output and the target
values. This error is used to update the weights and biases of the ANN to minimize the MSE to a certain
threshold. In the second category, the ANN does not need explicit target data. The system adjusts
its output based on self-learning from different input patterns. In the third category, the connections
between ANs are reinforced every time these are activated. Since this research work is limited in scope
to supervised learning only, we discuss some of these latest/relevant works as follows.

In reference [27], authors present a hybrid technique subject to short-term price forecasting of
SGs. This hybrid technique comprises two steps; feature selection and prediction. In the first step,
a mutual information-based technique is implemented to remove redundancy and irrelevancy from
the input load-time series. In the second step, ANN along with evolutionary algorithm is used to
forecast the time series of the future load. In this process, the authors assume sigmoid activation
function for artificial neurons (ANs) , and Levenburg-Marquardt algorithm for training. In addition,
the authors fine-tune some adjustable parameters during the first and second steps via an iterative
search procedure which is part of their work. Subject to forecast accuracy, this technique is efficient
as it embeds various techniques; however, the cost paid is high execution time. In reference [28],
the authors investigate stochastic characteristics of SG’s load. More importantly, the authors present
a bi-level DALF technique for SGs. In the first/lower level, ANN and evolutionary algorithm are
implemented to forecast the future load/price curve. In the second/upper level, an EDE algorithm
is implemented to further minimize the prediction errors. Effectiveness of this work is reflected via
MATLAB simulations which demonstrate that the proposed strategy performs DALF in SGs with
a reasonable accuracy by paying the cost of high execution time. The hybrid methodology in [39]
completes the DALF task in four steps: (i) data selection; (ii) transformation; (iii) forecast; and (iv) error
correction. In step one, some well-known techniques of data selection are used to minimize the high
dimensionality curse of input load-time series characteristics. Step two deals wavelet transformation
of the selected characteristics of input load-time series to enable redundancy and irrelevancy filter
implementation. Followed by step three, which uses ANN and a training algorithm subject to DALF in
SGs. More importantly, they choose sigmoid activation function for ANs due non-linear capturability.
Finally, error correcting functions are used in step four to improve the proposed DALF methodology
in terms of accuracy. In simulations, this methodology is tested against practical household load which
demonstrates that this methodology is very good for improving the accuracy by paying the cost of
high complexity. Another novel strategy is presented in [40] to predict the occurrence of price spikes
in SGs. The proposed strategy uses wavelet transformation for input feature selection. An ANN is
then used to predict future price spikes based on the training of the selected inputs.

(iv) Fuzzy neural network-based models: Doveh et al. [21] present fuzzy ANN-based model for load
forecasting. In their work, the input variables are heterogeneous. They also model the seasonal effect
via a fuzzy indicator. In reference [22], the authors present a self-adaptive load-forecasting model
for SGs. To correlate demand profile information and the operational conditions, a knowledge-based
feedback fuzzy system is proposed. For optimization of error, a multilayered perceptron ANN structure
is used where training is done via back propagation method. Some other hybrid strategies such
as [23,24] focus on fuzzy ANN as well. Wang [23] presents electric demand forecasting model using
fuzzy ANN model, whereas, Che et al. [24] present an adaptive fuzzy combination model. Che et al.
iteratively combine different subgroups while calculating fuzzy functions for all the subgroups. A
few more works combining fuzzy ANN with other schemes are presented in [25,26]. Subject to fuzzy
neural network controller design for improving prediction accuracy, membership functions to express
the inference rules by linguistic terms need proper definitions. As fuzzy systems lack such formal
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definitions, optimization of these functions is thus a potential research area. However, the integration
of optimization technique further complicates the overall methodology.

(v) Stochastic distribution-based models: The model in [17] predicts the power usage time series by
using a probability-based approach. The model also configures household appliances between holidays
and working days. A major assumption in this work is the gaussian distribution-based on-off cycles of
household appliances, number of appliances, and power consumption pattern of appliances. In this
work, not only a wide range of appliances is considered but also high flexibility degree of appliances is
considered. However, absence of closed form solution makes the gaussian-based forecast strategy very
complex. Moreover, these assumptions cannot be always true, thus, accuracy of the predicted load-time
series is highly questionable. An improvement over [17] is presented in [18]. This research work uses
1
2 regulizer to overcome the computational complexity of gaussian distribution-based DALF strategy
in [17]. Moreover, the proposed DALF strategy can capture heteroscedasticity of load in a more efficient
way as compared [17]. Simulations are conducted to prove that the proposed DALF strategy performs
better than the existing one. To sum up, we conclude that [18] has overcome the complexity of [17] to
some extent; however, the basic assumptions (gaussian distribution-based on-off cycles of household
appliances, number of appliances, and power consumption pattern of appliances) still hold the bases
and thus make the proposal highly questionable in terms of accuracy. A semi-parametric additive
forecast model is presented in [19]. This work is based on point forecast and calculates the prediction
intervals via a modified bootstrap algorithm. Similarly, another semi-parametric generalized additive
load forecast model is presented in [20]. In terms of forecast horizon, the generalized additive forecast
model is better than the non-generalized one due to its dual forecast capability; short-term and middle
term. However, both the forecast models are not sufficient in terms of accuracy when compared to the
ANN-based models. The overall classification hierarchy of forecast techniques is shown in Figure 2,
and their summary is given in Table 1.

Forecast techniques

According to forecast 
horizon

According to the 
model used

Short term

Medium term

Long term
Linear

Non-linear

Support vector 
machine

Markov chain

ANN

Re-inforced

Stochastic distribution

Supervised Un-supervised

Fuzzy Neural network

Time series Dynamic
 programming

ARMAState space

Figure 2. Classification of existing forecast techniques.
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Table 1. Performance analyses of the selected forecast classes.

Forecast Class Accuracy Execution Time Convergence Rate Remarks

Support vector machine-based models [11–13] Moderate High Slow
These models achieve relatively moderate accuracy,
however, at the cost of high execution time
(slow convergence rate) due to high complexity.

Markov chain-based models [14–16] Low Low Fast Forecast accuracy of these models needs improvement.

ANN-based models [27,28,39,40] Low to moderate Low to high Fast to slow
Hybrid ANN-based models improve the forecast accuracy
of ANN-based models, but at the cost of high
execution time (slow convergence rate).

Fuzzy ANN-based models [21–26] Low to moderate High Slow Execution time (convergence rate) need improvement.

Stochastic distribution-based models [17–20] Low High Slow
Both forecast accuracy, and execution time
(convergence rate) need improvement.
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3. The Proposed Forecast Strategy

ANNs are widely used as forecasters because these networks can predict the non-linearities
of SGs’ load with low convergence time. However, sometimes the achieved prediction accuracy is
not up to the mark. Thus, leading to the adoption of optimization techniques that can significantly
enhance the prediction accuracy of ANNs. However, the cost paid to achieve high accuracy is increased
convergence time. Therefore, we aim towards the development of a new DALF strategy using the
concept of hybrid integration subject to: (i) improvement of prediction accuracy; and (ii) reduction of
convergence time.

Our proposed DALF strategy is implemented in three interconnected modules: (i) a pre-processing
module; (ii) a forecast module; and (iii) an optimization module. Given the input data, the
pre-processing module removes redundant and irrelevant samples from the input data. Using sigmoid
activation function and MARA, the hybrid ANN-based forecast module predicts the DAL of an SG.
Finally, the optimization module minimizes prediction errors to improve accuracy of the overall DALF
strategy. Block diagram of the proposed model is shown in Figure 3. Detailed description of each
module is as follows.

Figure 3. Block diagram of the proposed modular approach for an hour.

3.1. Pre-Processing Module

Since the ANN-based forecaster predicts load of the next day, the input data must be pre-processed
subject to removal of redundant and irrelevant samples due to two reasons: (i) redundant features do
not provide more information and thus unnecessarily increase the execution time during the training
process (will be later discussed in the forecast module); and (ii) irrelevant features do not provide
useful information and act as outliers. Detailed description of the pre-processor module is as follows.

As mentioned earlier, the data preparation module receives the input load-time series (historical).
Suppose, following is the input load data:

P =



p(h1, d1) p(h2, d1) p(h3, d1) . . . p(hm, d1)

p(h1, d2) p(h2, d2) p(h3, d2) . . . p(hm, d2)

p(h1, d3) p(h2, d3) p(h3, d3) . . . p(hm, d3)

p(h1, d4) p(h2, d4) p(h3, d4) . . . p(hm, d4)

p(h1, d5) p(h2, d5) p(h3, d5) . . . p(hm, d5)
...

...
...

. . .
...

p(h1, dn) p(h2, dn) p(h3, dn) . . . p(hm, dn)


(1)

where, dn is the nth day, hm is the mth hour of the day, and p(hm, dn) is power usage value of the of the
nth day at the mth hour. Similarly, we have input dew point temperature data in a matrix TDP, input
dry bulb temperature data in a matrix TDB, and the input type of day (working day or holiday) data
in a matrix DT . Choosing n is totally dependent on the choice of designer. Greater value of n means
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that more historical lagged samples are available (fine tuning). This fine tuning however results in
greater time during execution of the algorithm. Thus, there is a trade-off between convergence rate
and accuracy. Before feeding the forecast/prediction module with P, the values of P are normalized.
In this process, a local maximum value ‘pci

max’ is computed in each column of P:

pci
max = max(p(hi, d1), p(hi, d2), p(hi, d3), . . .

, p(hi, dn)), ∀ i ∈ {1, 2, 3, . . . , m} (2)

By local normalization we mean normalization of each P’s column by local maxima (one maximum
in each column); results are saved in Pnrm (range of Pnrm ∈ [0, . . . , 1]). Similarly, the matrices TDP,nrm,
TDB,nrm and DT,nrm are normalized forms of TDP, TDB and DT , respectively.

These input matrices Pnrm, TDP,nrm, TDB,nrm and DT,nrm not only contain irrelevant features but
also contain redundant features. To remove these two types of features, we use mutual information
technique that is proposed in [27] and later used in [28] as well. According to this technique, the
relative amount of mutual information between two quantities; input K and target G, is as follows:

MI(K, G) = ∑
i

∑
j

p(Ki, Gj)log2

( p(Ki, Gj)

p(Ki)p(Ki)

)
(3)

In reference (3), MI(K, G) = 0 reflects that the input and target variables and independent, high
value of MI(K, G) reflects that there is a strong relation between K and G two and low value of
MI(K, G) reflects that there is loose relation between K and G.

By using (3), we calculate MI(K, G) with the help of which two types of samples (redundant
plus irrelevant) are discarded from the given input data matrices Pnrm, TDP,nrm, TDB,nrm and DT,nrm.
According to [27,28], this MI technique achieves acceptable accuracy while not taking high time for
execution.

Remark 1. The data set used for training is historical, i.e., for tomorrow’s load forecast we need measured load
values of previous days. Yes! The historical data was time dependent however with respect to the current day
these values do not undergo any change. In other words, we deal with previously recorded data which means that
the stationary assumption is not violated. Thus, the computation of MI is applicable here.

Remark 2. The power consumption/demand of a user is different for days such as holidays or working days. It
even shows variation for different hours such as on-peak and off-peak hours. To better explain our choice, let us
consider the following example:

Considering matrix P in Equation (1), let p(h1, d1) be the prediction variable. Then there are two possible
cases for training:

(a) The ANN is trained by all elements of the matrix P except the first row.
(b) The ANN is trained only by the 1st column of the matrix P except p(h1, d1).

The training samples in case (a) lead to greater prediction error due to the presence of outliers. Whereas, the
training samples in case (b) lead to smaller prediction error because the outliers are removed.

Remark 3. To improve accuracy of a forecast/prediction model, the samples used for training must be a-priori
made relevant. Also, minimized number of samples will decrease algorithm’s execution time. Due to these two
reasons, we prefer/chose local training for each hour. In our approach, the historical load values are locally
normalized by local maxima. Then the normalized values are binary encoded with respect to local median.
This encoding represents two classes of values: high and low. The classes are used for selecting features only,
i.e., the mutual information is easily calculated for binary variables. This selection reduces the computational
complexity of the mutual information-based feature selection strategy. Once we get rid of redundant and
irrelevant samples are removed from the data set, the actual values against the binary encoded values are used
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for training and optimization in the rest of the modules to prevent information loss. Thus, we have used a
compromising approach between computational complexity and information loss.

Remark 4. Feature selection is done at beginning, and the selected features are then used for training during
the operational life of the technique. From simulations, we conclude the following:

(i) If the data set size is small (≤1 month), feature selection has no significant impact on the computational
complexity of the overall strategy.

(ii) If the data set size is moderate (≥1 month and ≤3 months), feature selection somehow affects the
computational complexity of the overall strategy.

(iii) If the data set size is large (≥3 months), feature selection has a significant impact on the computational
complexity of the overall strategy.

3.2. Forecast Module

From the works discussed in Section 2, it is concluded that any DALF strategy must ensure
non-linear prediction capability. Therefore, we choose ANNs because these can capture the highly
volatile characteristics of load-time series with reasonable accuracy.

For DALF, two strategies are used; direct forecasting and iterative forecasting [28]. However, it
is discussed in [41] that the first strategy may introduce significant round off errors and the second
one introduces large forecast errors. To overcome these imperfections, reference [28] has introduced
the idea of cascaded strategy. Thus, our proposed forecast module implements the cascaded strategy.
Our forecast module consists of an ANN; 24 consecutive cascaded forecasters such that each one of the
24 forecasters has an output for forecasting an hour’s load of the upcoming day. It is worth mentioning
that the 24 h’ forecasters/predictors are modeled explicitly instead of a single implicit/complex one.
These 24 one hour ahead forecasters allow improvement in terms of accuracy [28]. The cascaded ANN
forecast structure is a combination of direct and iterative structures such that load of each hour of the
next day is directly predicted and each forecaster yields exactly one output.

In the forecast module, each forecaster is an AN that implements sigmoid function for activation.
We have chosen sigmoid activation function because for enabling ANs in terms of capturing
the highly volatile (non-linear) SG’s time variant load characteristics. To update the weights
during training process of the ANN, different algorithms have been used previously. For example,
reference [42] include Gradient Descent Back Propagation algorithm. Similarly, references [27,28]
suggest Levenberg-Marquardt algorithm as it can train the ANN 1–100 times faster than the Gradient
Descent Back Propagation algorithm. We use multivariate auto regressive algorithm (MARA) [43]
because it can train the ANN faster than Levenberg-Marquardt algorithm and Gradient Descent Back
Propagation algorithm [42]. According to Kolmogrov theorem, if the ANN is provided with proper
number of ANs then it can solve a problem by adopting one hidden layer. Thus, we have considered
one hidden layer in the cascaded ANN structure of all 24 ANs. From the selected features S f (.) of the
pre-processing module, the forecast module constructs training and validation samples, ST = S f (i, j)
and SV = S f (1, j), respectively (where i ∈ [2, m] and j ∈ [1, n]). These samples illustrate that the
training of ANN by all the candidate inputs except the last/final one. The set of last samples of
historical load-time series is used for validation purpose. In fact, the validation set is a part of the
training load set constructed from it the training. Thus, the validation set becomes unseen for ANN.
To make the validation error as a true representative of the forecast error, validation set needs to be
as close to the forecast horizon as possible. While forecasting tomorrow’s load we choose one day
backward samples due to two reasons: (i) daily periodicity; and (ii) short-run trend [44]. Thus, each of
the 24 ANs is trained as per multi-variate MARA using the aforementioned training and validation
sets. Further details of the training process to update the weights can be found in [43] and pictorial
view of the learning process is shown in Figure 4.
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Figure 4. Supervised learning of the ANN.

For a set of finite input-target pairs, once the weights are adaptively adjusted as per MARA [43],
the forecast module returns the forecast error signal; mean absolute percentage error‘MAPE(i) =
1
m ∑m

j=1
|pa(i,j)−p f (i,j)|

pa(i,j) ’, to the optimization module. Where pa(i, j) is the actual load value and p f (i, j) is
the forecasted load value. Stepwise operations of the proposed forecast module are shown in Figure 5a.

Pre-condition:

 MAPE(i) is the output of ith 
AN, for a maximum of 24 

ANs.    

Receive selected features 
from the pre-processing

Compute MAPE(i)

  Maximum number
 of iterations 
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optimization module

No
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ite
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+
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=

is less than 
or equal to 

module

(a) Forecast module
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Evaluate all individuals in 
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 For each individual do

1.Obtain MAPE from the forecast   
module
2. Compute mutant vector
3. Obtain MAPE of mutant vector 
from the forecast module
4. Compute fitness function of each 
individual using Eq. (3) in [19]
5. Compute fitness of each mutant 
using Eq. (4) in [19]
6. Generate trial vector using Eq. (7)
7. Select next generation's offspring
using Eq. (6)

  Maximum 
number of generations 

reached?

Return best individuals

No

ge
ne

ra
tio

n+
+

Yes

(b) Optimization module

Figure 5. Flow charts of our modular approach.

3.3. Optimization Module

Based on the nature of the overall forecast strategy, the basic objective of optimization module is
to minimize the forecast error, EF(.),

minimize
Ith ,Rth

MAPE(i) (4)

where i ∈ [1, m], Ith and Rth represent thresholds for irrelevancy and redundancy, respectively.
Optimization module gives Ith’s and Rth’s optimized values to the MI-based feature selection module
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which uses these threshold values for feature selection. For this purpose, various choices are available
such as linear programming, non-linear programming, quadratic programming, convex optimization,
heuristic optimization, etc. However, the first one is not applicable here because the problem is
highly non-linear. The non-linear problem can be converted into a linear one; however, the overall
process would become very complex. The second one is applicable here and gives accurate results
by paying execution time’s cost. Similarly, the third and fourth ones suffer from slow convergence
time. It is worth mentioning here that optimization does not imply exact reachability to optimum
set of solutions, rather, near optimal solution(s) is(are) obtained. To sum up, heuristic optimization
techniques are preferred in these situations because these provide near optimal solution(s) in relatively
less execution time.

DE is one of the heuristic optimization techniques proposed in [45] and its enhanced version is
used for forecast error minimization in [28]. In this paper, we modify the EDE algorithm for the sake
accuracy improvement. Thus, in the upcoming paragraphs, detailed discussion is presented.

According to [28], in generation t, the jth trial vector y for ith individual is given as:

y
′t
i,j =

{
ut

i,j if rnd(j) ≤ FFN(Ut
i )

xt
i,j if rnd(j) > FFN(Ut

i )
(5)

where, xt
i,j and ut

i,j are the corresponding parent and mutant vectors, respectively. In (5), FFN(.)
denotes the fitness function (0 < FFN(.) < 1) and Rand(j) ∈ [0, 1] is a random number complying to
uniform distribution. Between Xt

i and Yt
i , the corresponding offspring of the next generation X(t+1)

i is
selected as follows:

yt
i,j =

{
y
′t
i,j if MAPE(y

′t
i ) ≤ EF(xt

i )

xt
i,j otherwise

(6)

where, MAPE(.) is the objective function. From (5) and (6), it is clear that offspring selection depends
on the trial vector which in turn depends on the random number and the fitness function. From this
discussion, we conclude that the selected offspring is not the fittest. To make the fittest one, our
approach eliminates the chances of offspring selection under the influence of random number, i.e., we
modify (5) as follows:

y
′t
i,j =


ut

i,j if Xt
i

Xt
imax

< FFN(Ut
i )

xt
i,j if Xt

i
Xt

imax
≥ FFN(Ut

i )
(7)

From (7), it is clear that the trial vector no longer depends on the random number instead its
dependence in now totally on the mutant vector which in turn depends on the parent vector. Offspring
selection by this method will ensure selection of the fittest ones subject to accuracy improvement.
Stepwise operations of the optimization module are shown in Figure 5b.

4. Simulation Results

For evaluation of our proposed model, we conduct simulations. For simulations, we have used
MATLAB installed on Intel(R) Core(TM) i3-2370M CPU @ 2.4GHz and 2GB RAM with Windows 7.
The proposed MI+ANN+mEDE-based forecast model is compared with two existing DALF models:
MI+ANN forecast [27], and bi-level forecast [28]. For simulation purpose, traces of real time data
for DAYTOWN and EKPC (the two USA grids) are taken from PJM electricity market. This data is
freely available at [46]. We have used January–December 2014 load values for training the ANN, and
January–December 2015 data for testing the ANN. Following are the simulation parameters that are
used in our experiments (refer to Table 2). Justification of these parameters can be found in [27,28,42,43].
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The newly proposed MI+ANN+mEDE model is tested against the two existing models in terms of
three performance metrics: (i) accuracy; and (ii) execution time or convergence rate.

• Accuracy: Accuracy(.) = 100−MAPE(.). We have measured this metric in %.
• Variance: Var(i) = 1

m ∑m
j=1 |p f (i, j)− pa(i, j)|. Where pa(i, j) is the mean value of pa(i, j).

Monthly variance is calculated by using the same formula while considering the calculated
daily variances.

• Execution time: During simulations, the time taken by the system to completely execute a given
forecast strategy. The strategy for which execution time is small converges more quickly and vice
versa. In simulations, we have measured execution time in seconds.

Table 2. Parameters used in simulations.

Parameter Value

Forecasters 24
Hidden layers 1

Maximum iterations 100
Neurons (in the hidden layer) 5

Bias 0
Initial weights 0.1

Momentum 0
Load data (historical) 1 year

Maximum generations 100

Referring to Figure 6a–f and Tables 3–6, which are graphical/tabular illustrations/representations
of the proposed MI+ANN+mEDE-based forecast model versus the two existing DALF models:
MI+ANN and bi-level. From Figure 6a,b, it is clear that the proposed MI+ANN+mEDE model
effectively predicts/forecasts the future load of the two selected SGs. The ANN-based forecaster
captures the non-linearities in the history load-time series. This non-linear prediction capability is
not only due to sigmoid activation function but also due to the selected training algorithm; MARA.
When we look at the hourly forecast results in Figure 6c,d, the % error of the MI+ANN-based forecast
model is 3.8% and 3.81% for DAYTOWN and EKPC, respectively. The % error of the bi-level forecast
model is 2.2% and 2.23% for DAYTOWN and EKPC, respectively. The % error of the proposed
MI+ANN+mEDE-based forecast model is 1.24% for both DAYTOWN and EKPC, respectively. Similarly,
the daily forecast results of the two simulated models for January 2015 are shown in Tables 3 and 5 for
the two selected USA grids, respectively. From these results, it is clear that the existing MI+ANN-based
forecast model predicts the future load with the highest % error and the highest variance. Also, the
monthly forecast results of the three simulated models for January–December 2015 are shown in
Tables 4 and 6 for EKPC and DAYTOWN, respectively. From Tables 4 and 6, it is evident that the
proposed MI+ANN+mEDE model forecasts the future load with the least prediction error and the
least variance as compared to the other two existing models. This result is obvious due to absence of
optimization module in MI+ANN-based forecast model. To minimize this forecast error, the bi-level
forecast model uses EDE algorithm. Subject to further minimization of the forecast error, we have
integrated an mEDE optimization technique. Please note that mEDE is our modified version of existing
EDE algorithm for down scaling forecast error. Results show that integration of mEDE algorithm
yields fruitful results; the MI+ANN+mEDE-based DALF model is relatively more accurate than the
other two existing DALF models. These figures show the positive impact of optimization module on
the forecast error minimization between target curve and the forecast curve. It is obvious that the error
curve decreases as the number of generations of the mEDE algorithm are increased. As the proposed
MI+ANN+mEDE forecast model compares the forecast curve’s error (next generation) with the existing
one (existing generation) and updates the weights if the forecast curve’s error is less than the existing
one (survival of the fittest). Thus, as expected, the forecast error is significantly minimized as the
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forecast strategy is subjected to step ahead generations. However, during simulations, we observed that
from 89th to 100th generation, the forecast error does not exhibit significant improvement. Therefore,
the proposed and the existing forecast models are not subjected to further generations. There exists a
possible trade-off between accuracy of a forecast strategy and its convergence rate (refer to Sections 1–3).
This trade-off is shown in Figure 6c–f. From these figures, it is clear that the bi-level forecast model
improves the accuracy of MI+ANN forecast model while paying cost in terms of relatively slow
convergence rate. On the other hand, the newly proposed MI+ANN+mEDE model modifies the
EDE algorithm to further improve the accuracy of the bi-level forecast model. More importantly, the
MI+ANN+mEDE model improves the prediction accuracy by not paying surplus cost in terms of
execution time. However, the execution time of our proposed forecast model is still greater than the
MI+ANN forecast model due to integration of optimization module.

Figure 7 shows the impact of dataset size (number of training data samples) on error performance
(see Figure 7a) and execution time (see Figure 7b) of the three selected models. By observing Figure 7a,
an improvement of error performance for all the compared STLF models is evident when the number
of lagged input samples increase from 30 to 120. This result follows Equation (1), i.e., the ANN is more
finely tuned by increasing the value of n (30 to 120) which improves the forecast error performance.
However, this improvement is not significant at much higher tuning when the number of training
samples are increased from 60 to 120 (stability can be seen in the curves). On the other hand, Figure 7b
shows the cost of high execution time paid by the fine tuning to achieve relative improvement in
forecast accuracy. This is obvious because training of the ANN takes additional time when the number
of training samples are increase. From Figure 7a,b, it is clear that the proposed modular model is more
scalable (relatively higher degree of stability can be seen for MI+ANN+mEDE forecast) as compared
to the other two models. The reasons for this higher scalability are: usage of selected features for
training of the ANN, training the ANN via MARA algorithm with local normalization, and usage
mEDE algorithm for error minimization.

Table 7 shows the relationship between MAPE and the number of iterations of the three compared
STLF models when tested on DAYTOWN and EKPC datasets. The convergence characteristics (i.e.,
the number of iterations) indicate that the proposed MI+ANN+mEDE model and the bi-level model
converge at an optimal value in almost the same number of iterations. On the other hand, the MI+ANN
model takes only 20–23 iterations for converging into an optimal target value. This result is obvious
due to the added computational burden in the bi-level and the MI+ANN+mEDE models (i.e., these
models use the optimization module) which is not the case in MI+ANN model (i.e., this model does not
use the optimization model). In other words, the MI+ANN model achieves its target of the required
training, testing, and validation with the least number of iterations. However, this least computational
burden is achieved by paying the high cost of forecast accuracy. In this regard, a regression analysis
of the network was performed to evaluate confidence interval of the training, testing and validation
performance of the compared forecast models, and the results are shown in Table 7. Clearly, the
proposed MI+ANN+mEDE model achieves the highest confidence interval (i.e., 98%) as compared
to bi-level (i.e., 97%) and MI+ANN (i.e., 96%) models. This means that only 2% of the estimated
data is not statistically significant for the network in case of the proposed MI+ANN+mEDE model.
As a result, the forecasted load demand of the proposed MI+ANN+mEDE model is rather closer to its
actual value as compared to the other two models (see Figure 6a,b).
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(a) DAYTOWN grid: actual vs. forecast load curves (b) EKPC grid: actual vs. forecast load curves

(c) DAYTOWN grid: forecast error (d) EKPC grid: forecast error

(e) DAYTOWN grid: convergence rate or execution time
behavior

(f) EKPC grid: Convergence rate or execution time behavior

Figure 6. Relative performance of the proposed intelligent modular approach tested on historical data
of DAYTOWN and EKPC grid: STLF results for 27 January 2015.
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Figure 7. Relative scalability analysis of the proposed intelligent modular approach.

Table 3. EKPC: Results for January 2015.

Day

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

1 3.99 1.89 2.40 1.50 1.04 1.12
2 3.42 1.78 1.97 1.46 1.32 0.97
3 4.10 2.08 2.61 1.26 1.15 1.09
4 3.67 1.91 2.13 1.41 1.44 0.96
5 3.79 1.70 1.97 1.37 1.16 1.05
6 3.62 1.88 2.43 1.48 1.29 0.97
7 3.93 1.73 2.62 1.39 1.40 1.11
8 3.97 1.94 1.92 1.28 1.19 1.03
9 3.54 2.04 2.18 1.42 1.39 0.90

10 3.46 1.79 2.21 1.36 1.10 1.03
11 4.05 1.72 1.85 1.39 1.25 1.05
12 4.21 1.84 1.97 1.29 1.29 0.90
13 3.89 2.00 1.94 1.33 1.07 1.03
14 3.62 1.75 1.84 1.46 1.36 1.10
15 3.79 1.99 2.11 1.26 1.14 0.93
16 3.47 1.81 2.44 1.38 1.36 1.07
17 4.24 2.10 2.26 1.26 1.20 1.04
18 4.20 1.74 2.61 1.41 1.23 1.08
19 3.86 1.97 2.44 1.46 1.07 0.96
20 3.61 1.80 2.52 1.42 1.18 0.98
21 3.82 1.95 2.29 1.48 1.36 1.12
22 3.77 2.03 2.62 1.45 1.42 0.99
23 4.23 1.86 2.53 1.51 1.34 1.01
24 3.94 1.77 2.38 1.29 1.11 0.92
25 3.44 1.73 2.20 1.47 1.32 1.14
26 3.56 1.94 2.23 1.34 1.10 0.97
27 3.81 1.78 2.29 1.40 1.24 1.11
28 3.39 1.82 1.94 1.29 1.39 1.03
29 4.19 2.05 2.43 1.32 1.08 0.98
30 3.52 1.77 1.98 1.42 1.12 1.06
31 4.01 1.99 1.82 1.42 1.33 0.99

Average 3.81 1.84 2.23 1.38 1.24 1.03
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Table 4. EKPC: Results for 2015.

Month

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

January 3.81 1.84 2.23 1.38 1.24 1.03
February 3.85 1.75 2.15 1.44 1.20 0.99

March 4.76 1.90 2.26 1.39 1.26 1.05
April 3.84 1.76 2.19 1.41 1.29 1.00
May 3.80 1.71 1.20 1.47 1.23 1.02
June 3.73 1.73 2.16 1.35 1.21 1.01
July 3.72 1.81 2.29 1.40 1.24 1.07

August 3.84 1.70 1.28 1.40 1.25 1.03
September 3.82 2.90 2.22 1.33 1.20 0.99

October 3.82 1.88 2.15 1.36 1.30 1.01
November 4.77 1.75 1.17 1.48 1.22 1.06
December 4.80 1.82 1.27 1.32 1.27 1.02

Average 3.79 1.80 2.13 1.39 1.24 1.01

Table 5. DAYTOWN: Results for January 2015.

Day

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

1 3.72 1.70 2.59 1.36 1.20 1.02
2 3.60 1.86 2.38 1.30 1.31 1.10
3 3.54 1.90 2.20 1.51 1.35 0.97
4 3.81 1.88 1.77 1.27 1.25 0.95
5 3.78 1.92 2.57 1.41 1.32 1.07
6 4.07 1.83 2.65 1.33 1.21 0.96
7 3.88 1.79 2.58 1.43 1.35 1.11
8 3.62 1.81 2.25 1.28 1.22 1.01
9 4.30 1.88 2.25 1.50 1.15 0.90

10 3.71 1.93 2.43 1.44 1.27 1.03
11 3.59 1.77 2.27 1.30 1.34 1.12
12 3.82 1.74 2.34 1.37 1.24 0.95
13 3.77 1.84 2.50 1.25 1.29 1.06
14 4.15 1.83 2.64 1.31 1.16 1.13
15 3.69 1.91 1.88 1.40 1.28 0.93
16 3.87 1.89 2.47 1.52 1.30 1.12
17 4.27 2.76 2.60 1.33 1.29 1.10
18 3.64 1.78 2.15 1.42 1.31 1.00
19 4.18 1.84 1.86 1.40 1.21 1.12
20 3.75 1.99 2.31 1.28 1.19 0.99
21 3.58 1.97 2.05 1.39 1.18 1.05
22 3.83 2.72 2.70 1.30 1.32 0.98
23 4.88 1.99 2.60 1.38 1.37 1.09
24 3.73 1.88 2.44 1.29 1.18 1.12
25 4.21 2.01 1.91 1.47 1.33 0.92
26 3.59 1.76 1.79 1.32 1.21 1.04
27 3.80 1.96 2.20 1.37 1.24 1.10
28 3.66 1.89 1.97 1.27 1.22 1.03
29 4.25 1.81 2.33 1.49 1.15 0.98
30 3.51 1.92 1.90 1.24 1.36 1.03
31 4.03 1.95 1.88 1.43 1.20 1.06

Average 3.86 1.92 2.27 1.36 1.25 1.03
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Table 6. DAYTOWN: Results for 2015.

Month

Forecast Model

MI+ANN Bi-Level MI+ANN+mEDE

MAPE Variance MAPE Variance MAPE Variance

January 3.86 1.92 3.27 1.36 1.25 1.03
February 3.85 1.71 2.30 1.47 1.20 0.99

March 3.80 1.75 2.20 1.44 1.22 1.05
April 3.71 1.79 2.24 1.38 1.27 1.06
May 3.79 1.87 2.28 1.40 1.22 1.02
June 3.72 1.85 2.13 1.30 1.24 1.07
July 3.76 1.76 2.22 1.36 1.28 0.99

August 3.87 1.76 2.18 1.43 1.26 1.08
September 3.70 2.70 2.29 1.38 1.23 1.02

October 3.77 1.88 2.17 1.36 1.21 1.09
November 3.83 1.83 2.27 1.50 1.27 1.00
December 3.80 1.81 2.25 1.33 1.21 1.01

Average 3.78 1.88 2.31 1.39 1.23 1.03

Table 7. Comparison of training iterations (convergence) and regression analysis (accuracy).

Dataset Forecast Model Iterations Training Testing Validation

MI+ANN 20 0.9626 0.9619 0.9556
DAYTOWN Bi-Level 94 0.9787 0.9799 0.9776

MI+ANN+mEDE 95 0.9876 0.9890 0.9872

MI+ANN 23 0.9622 0.9617 0.9551
EKPC Bi-Level 95 0.9769 0.9783 0.9766

MI+ANN+mEDE 96 0.9877 0.9892 0.9878

5. Conclusions and Future Work

In SGs, DALF is an essential task because its accuracy has a direct impact on the planning
schedules of utilities that strongly affects the energy trade market. Moreover, high volatility in the
history load curves makes DALF in SGs relatively more challenging when compared to load forecast
for longer duration. Taking into account DALF influencing factors such as exogenous variables and
meteorological variables, we have presented a hybrid ANN-based DALF model for SGs which is a
multi-model forecasting ANN with a supervised architecture and MARA for training. The proposed
model significantly reduced the execution time and enhanced the forecast accuracy by distinctly
carrying local normalization and local training. Moreover, sigmoid activation function and MARA
enable the forecast strategy to capture non-linearities in load-time series. Integration of optimization
module (based on our proposed modifications) with the forecast strategy also improved the forecast
accuracy. Tests are conducted on three USA grids: DAYTOWN, EKPC and FE. Results show that the
proposed model achieves relatively better forecast accuracy (98.76%) in comparison to an existing
bi-level technique and an MI+ANN technique. Moreover, improvement in forecast accuracy is achieved
while not paying the cost of slow convergence rate. Thus, the trade-off between convergence rate
and forecast is not created. Finally, from application perspective, the proposed model can be used by
utilities to launch better offers in the electricity market. This means that the utilities can save significant
amount of money due to better adjustment of their generation and demand schedules simply because
of high accuracy of the proposed model.

In future, we are interested in advanced signal processing techniques for feature selection and
extraction purposes. Moreover, exploration of particle swarm optimization-based techniques and a
complete forecast plus scheduling-based technique is also under consideration.



Energies 2019, 12, 164 19 of 21

Author Contributions: Conceptualization, A.A.; Formal analysis, A.M. and M.A.; Investigation, A.A.;
Methodology, A.A. and N.J.; Software, A.A.; Supervision, N.J.; Validation, N.J., A.M. and M.A.; Writing—original
draft, A.A.; Writing—review & editing, N.J. and Z.A.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

SG Smart grid
DAL Day-ahead load
DALF Day-ahead load forecast(ing)
AN Artificial neuron
ANN Artificial neural network
MARA Multivariate auto regressive algorithm
ARMA Auto regressive and moving average
EDE Enhanced differential evolution algorithm
mEDE Modified version of EDE algorithm
NIST National institute of standards and technology
MSE Minimum square error
P Historical load data matrix
TDP Historical dew point temperature data matrix
TDB Historical boiling point temperature data matrix
DTYP Historical dew point temperature data matrix
phm ,dn Load value at mth hour of the nth day
pci

max Local maxima for each column of P
Pnrm Locally normalized P
TDP,nrm Locally normalized TDP
TDB,nrm Locally normalized TDB
MI(K, G) Relative mutual information between input K and target G
pr(K, G) Joint probability between K and G
pr(K) Individual probability of K
S f Selected features
ST Training samples
SV Validation samples
MAPE Mean absolute percentage error
pa Actual load
p f Forecasted load
Ith Irrelevancy threshold value
Rth Redundancy threshold value
y
′t
i,j jth trial vector y

′
for ith individual in generation t

xt
i,j jth parent vector x for ith individual in generation t

ut
i,j jth mutant vector u for ith individual in generation t

yt
i,j jth offspring vector y for ith individual in generation t

rnd Random number
FFN(.) Fitness function
EF Forecast error
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