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Abstract: Electricity is widely used around 80% of the world. Electricity theft has dangerous effects
on utilities in terms of power efficiency and costs billions of dollars per annum. The enhancement of
the traditional grids gave rise to smart grids that enable one to resolve the dilemma of electricity theft
detection (ETD) using an extensive amount of data formulated by smart meters. This data are used
by power utilities to examine the consumption behaviors of consumers and to decide whether the
consumer is an electricity thief or benign. However, the traditional data-driven methods for ETD
have poor detection performances due to the high-dimensional imbalanced data and their limited
ETD capability. In this paper, we present a new class balancing mechanism based on the interquartile
minority oversampling technique and a combined ETD model to overcome the shortcomings of
conventional approaches. The combined ETD model is composed of long short-term memory
(LSTM), UNet and adaptive boosting (Adaboost), and termed LSTM–UNet–Adaboost. In this regard,
LSTM–UNet–Adaboost combines the advantages of deep learning (LSTM-UNet) along with ensemble
learning (Adaboost) for ETD. Moreover, the performance of the proposed LSTM–UNet–Adaboost
scheme was simulated and evaluated over the real-time smart meter dataset given by the State Grid
Corporation of China. The simulations were conducted using the most appropriate performance
indicators, such as area under the curve, precision, recall and F1 measure. The proposed solution
obtained the highest results as compared to the existing benchmark schemes in terms of selected
performance measures. More specifically, it achieved the detection rate of 0.92, which was the highest
among existing benchmark schemes, such as logistic regression, support vector machine and random
under-sampling boosting technique. Therefore, the simulation outcomes validate that the proposed
LSTM–UNet–Adaboost model surpasses other traditional methods in terms of ETD and is more
acceptable for real-time practices.

Keywords: electricity theft detection; smart grids; electricity consumption; electricity thefts;
smart meter; imbalanced data

1. Introduction

The secure and efficient use of electricity represents a major aspect of the social and economic
development of a country. Electricity losses happen during power generation, transmission and
delivery to consumers. Essentially, power transmission and delivery have a couple of losses,
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namely, technical losses (TL) and nontechnical losses (NTL) [1]. TL occur due to the line losses,
transformer losses and other power system elements. NTL occur due to the electricity stealing,
defective meters, overdue bills and billing mistakes [1]. More generally, NTL are the difference
between total losses and TL. Besides, NTL raise electricity prices, increase load-shedding, decrease
revenue and decrease energy efficiency. Thus, NTL badly affect both the utilities and a country’s
financial state [2,3].

Electricity fraud is one of the chief reasons for the NTL, which accounts for 10–40% of
cumulative electricity losses worldwide [4]. Electricity theft comprises of bypassing electricity meters,
tampering with meter readings, tampering with meters themselves and cyber-attacks [5,6]. Therefore,
the reduction of electricity fraud is a principal concern of the power distribution companies to secure
significant amounts of the total electricity losses and revenue [7].

Electricity theft is spreading widely in many developing countries—e.g., India loses 20% of its total
electricity due to electricity theft [8], and developed countries. For instance, in the U.S., the revenue
loss as a result of electricity fraud is about $6 billion, while in the UK, it costs up to £175 million per
annum [9,10]. Moreover, it is stated in [11] that electricity theft accounts for approximately a hundred
million Canadian dollars annually. Globally, the utilities lose more than $20 billion per annum through
electricity fraud [12].

The introduction of advanced metering infrastructure (AMI) in the smart grid environment
provides a massive amount of power consumption users’ records, which makes it easier for
utilities to monitor the electricity theft [13,14]. AMI enables price and load forecasting [15,16],
energy management [17,18] and consumer behavior characterization [19]. As electricity theft continues
to increase, smart meters enable utilities to provide new and innovative solutions to perform electricity
theft detection (ETD). Generally, electricity thieves can alter the smart meters’ information physically or
through cyber-attacks. Consequently, the primary way of ETD is manually examining the consumers’
electricity meters and comparing the abnormal consumption readings with the previous normal ones,
known as the audit and on-site inspection process. However, these methods are costly, inefficient and
time-consuming.

In contrast to the manual methods, supervised machine learning solutions have gained the
interest of utilities and academia for performing ETD. Studies based on the supervised learning
techniques [20–25] focus on ETD using the large and imbalanced datasets obtained through the
smart meters. However, the performances of these techniques are still not sufficient for the practical
applications in utilities. that implies that the techniques raise misclassification scores that lead to the
costly procedure of on-site inspections for the final verifications. Therefore, that exhibits the need
for a new solution to solve the ETD problem using a large imbalanced dataset to determine the real
assessment of the model’s performance.

In ETD literature, the proposed methods are categorized into two major groups: ETD
through technical methods and ETD through nontechnical methods. Nontechnical methods cover:
the auditing and inspection of illegal electricity consumers, giving awareness to the electricity
consumers about electricity theft as a crime and punishment, installing the smart meters that can not
be easily tampered with by consumers and reducing electricity theft through the psychosocial methods,
such as social support [26]. Technical methods are also broadly classified into three types: state-based
solutions (also known as hardware-based solutions), game-theory-based solutions and data-driven
solutions (also known as machine learning-based solutions) [12].

In hardware-based solutions, the major focus is on designing specific hardware devices and
infrastructures to detect electricity theft. Hardware-based solutions consist of: smart meters with
radio-frequency identification tags (RFID), anti-tampering sensors, wireless sensors and distribution
transformers [5,27–29]. These solutions get high detection efficiency through specific devices,
for instance, RFID. The major limitations of the state-based solutions are the high cost of design,
the high operational and maintenance costs and the vulnerability to weather conditions. Particularly,
due to the inefficiency and high cost of hardware-based solutions, data-driven solutions have gained
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the interest of researchers. In game-theory-based solutions [30,31], ETD is considered as a contest
between the power distribution company and electricity fraudsters, known as the players. Both players
want to maximize their utility functions. These solutions are low cost and provide reasonable ways to
find the electricity theft. Hence, one of the complicated issues in the game-theory-based procedures is
how to form the utility function for each player, which is a challenging and time-consuming problem.

Recently, machine learning approaches have achieved significant importance in ETD. The main
purpose of these solutions is to analyze the electricity usage behavior of the consumers based on
smart meters’ data. These methods require no additional information about the network topology or
hardware devices. Thus, machine learning solutions are further categorized into the supervised and
unsupervised learning methods. Unsupervised learning methods have proposed clustering-based
solutions to group the similar instances into one cluster [32,33], members of which each have a
high false positive rate (FPR). In this paper, a unique supervised learning-based solution, namely,
the LSTM–UNet–Adaboost, is proposed to perform the binary classification using the data from
on-site inspections. Thus, we describe some recent advances made in this area.

Buzau et al. [34] presented a solution that is based on an extreme gradient boosted tree (XGBoost)
for the detection of NTL in smart grids. Their main objective was to rank the list of consumers
applying the smart meters’ data and extract features from auxiliary databases. Punmiya et al. [35]
introduced a gradient boosting theft detector (GBTD) model, which is composed of three variants
of a gradient boosting classifier to perform the ETD. A theft detector is also used for feature
engineering-based preprocessing through the GBTD’s feature importance function. Another solution
based on the ensemble bagged tree is presented in [21] for the NTL detection, in which an ensemble of
individual decision trees is applied to improve the theft detection by aggregating their performances.
Buzau et al. [23] submit a hybrid of LSTM and multilayer perceptron (MLP), termed LSTM-MLP, for the
NTL detection in the smart grid. LSTM is employed to automate the feature extraction from sequential
information, while MLP is used to deal with non-sequential information. Likewise, the authors [36]
used a deep neural network for the feature extraction and meta-heuristic technique enabled XGBoost
for ETD.

Nelson et al. [24] combined the maximal overlap discrete wavelet packet transform (MODWPT)
with the random under-sampling boosting (RUSBoost) technique to obtain the most suitable features
for the identification of NTL. Li et al. [37] used a semi-supervised technique to perform the
detection of NTL. Tianyu et al. [38] made a semi-supervised deep learning model, known as the
multitask feature extracting fraud detector (MFEFD), for ETD: both the supervised and unsupervised
learning procedures are combined to capture important features from the labeled and unlabeled data.
Maamar et al. [32] offered a hybrid model that utilizes the k-means clustering procedure and deep
neural networks (DNN) for ETD in the AMI system, where k-means is utilized to gather consumers
having the same electricity consumption behaviors, and DNN is used to detect anomalies in the
electricity consumption behaviors of the consumers. Ghasemi et al. [26] proposed a solution comprising
of a probabilistic neural network and mathematical model, named the PNN–Levenberg–Marquardt,
for the identification of two types of illegal consumers using the observer’s meters. PNN is applied
to detect the suspicious consumers, and the Levenberg–Marquardt is practiced for classifying the
fraud consumers. In [9], a theft detector is presented, which implements the support vector machine
(SVM) for the detection of normal and abnormal consumers using their consumption patterns.
Another work [39] proposed a combined data sampling mechanism and performs ETD through
the bi-directional gated recurrent unit (GRU).

In recent years, the convolutional neural network (CNN) has achieved success in ETD because it
is a deep learning technique that catches high-level features from the electricity consumption dataset.
Authors in [20] presented a hybrid wide and deep convolutional neural network (WD-CNN) for ETD.
The wide part is used to extract the global features from 1-D data, while the deep component is applied
to derive periodicity and non-periodicity from 2-D data. Li et al. [40] introduce a hybrid of CNN and
random forest (RF), known as the CNN-RF model, for ETD in smart grids, where the RF is used as
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the final layer to perform ETD on the extracted features. Hasan et al. [22] made a solution consisting
of the hybrid of CNN and LSTM for ETD. LSTM is used to solve the binary classification problem
using CNN’s output. In another study [41], the authors introduced a hybrid of CNN and GRU for the
detection of abnormal consumers. However, CNN only looks for “what” information is available in
the data through down-sampling while ignoring “where” this information is present, which degrades
the ETD’s performance. Moreover, in the traditional CNN, final classification is performed through
either softmax classifier or sigmoid function that leads to the degradation of generalization ability plus
subjecting the model to the local optima.

The aforementioned techniques for ETD are innovative and efficient; however, their performances
are inadequate for real practices. Generally, these techniques have several limitations that must be
addressed as follows: a model’s bias towards the majority class due to the class imbalance; a model’s
performance evaluated on synthetic data does not provide a realistic assessment of the theft detection;
models require artificial feature extraction and have poor detection performances, such as low detection
scores and high misclassification scores. Hence, this detection score is costly for the utilities, e.g.,
on-site inspections needed for the confirmation. Thus, the problem of ETD is not fixed completely,
which implies a new solution that provides a more accurate theft detection score.

To overcome the limitations of previous studies, we propose a new combined
LSTM–UNet–Adaboost solution for ETD in this paper. The prime intention behind the proposed
solution is to perform the binary classification over the electricity consumption data to characterize the
consumers as either benign or thieves. As compared to the above-mentioned studies, our proposed
scheme distinguishes itself: by presenting a new class balancing technique IQMOT to overcome the
limitations of class imbalance by implementing a UNet technique to automate the feature extraction
that captures both “what” and “where” from the 2-D data rather than only “what”, and by performing
the joint training and classification through Adaboost using the features extracted from UNet
and LSTM. In this regard, the proposed model gets the advantages of two powerful approaches known
as deep learning and ensemble learning. Deep learning is applied to automate the feature extraction,
while ensemble learning is used to perform the joint training and classification.

To address the above-mentioned problems, this paper proposes a new and practical solution for
ETD utilizing long short-term memory (LSTM), UNet and adaptive boosting (Adaboost), named
LSTM–UNet–Adaboost. Moreover, a novel class balancing technique, namely, the interquartile
minority oversampling technique (IQMOT), is introduced to address the class imbalance issues.
In the proposed methodology, real-world electricity theft cases are initially generated using the IQMOT.
Then, it solves the ETD problem using the LSTM–UNet–Adaboost model. Essentially, LSTM is used
to capture the daily temporal correlations, while a UNet model is applied to capture the abstract
features from 2-D electricity consumption data. Finally, the Adaboost model is used to perform
the joint training and classification over the extracted features through LSTM and UNet modules.
The proposed methodology automates the concept of feature engineering, known as self-learning.
Hence, the underlying intuition of this paper is to generate real-world theft cases through a novel
sampling technique and to combine a deep learning technique with ensemble learning to improve
the theft detection performance. Therefore, the proposed solution is more efficient and reliable as
compared to the conventional approaches.

Thus, the chief contributions of this work are described as follows.

• IQMOT: A novel class balancing technique, named IQMOT, is presented in this paper to overcome
the problems of imbalanced data. It generates more practical theft cases as compared to the
traditional class balancing techniques.

• LSTM–UNet–Adaboost: We propose a new combined LSTM–UNet–Adaboost model for ETD.
The proposed model leverages the advantages of the most recent deep learning technique, i.e.,
UNet, which is applied for very first time in ETD along with the ensemble learning technique,
i.e., Adaboost.
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• Comprehensive simulations: We conducted extensive simulations on the real electricity consumption
dataset and analyzed our proposed solution with standard techniques. Simulation results
demonstrated the superiority and effectiveness of our proposed model over existing benchmarks
previously used for ETD.

The remainder of this paper is arranged as follows. Section 2 presents our proposed approach
comprising of IQMOT and LSTM–UNet–Adaboost for ETD. Section 3 illustrates and examines the
simulation results before concluding the paper in Section 4. Lastly, the future directions are described
in Section 5.

2. Proposed Methodology

The proposed system model is shown in Figure 1; it has three major stages: (1) data preprocessing,
(2) data balancing through IQMOT and (3) data analysis using the UNet-LSTM-Adaboost.
The proposed hybrid model practices LSTM, UNet and Adaboost, which solves the limitations of
the state-of-the-art techniques for ETD, as mentioned in Section 1. Moreover, we designed a new
class balancing mechanism to handle the data imbalance issues faced by the conventional supervised
learning techniques. The proposed methodology has the potential to integrate both 1-D and 2-D
information obtained from the electricity consumption data. More generally, the LSTM module is used
to derive the long-term dependencies from 1-D data, known as the sequential information. The UNet
module acquires global features from 2-D electricity consumption data, i.e., non-sequential information.
Furthermore, the Adaboost module performs the final joint training and binary classification over
the outputs of LSTM and UNet modules, as shown in Figure 1. We validated the proposed model
using the real electricity theft data in terms of selected performance indicators for ETD. The proposed
LSTM–UNet–Adaboost model is efficient because it performs joint training on both types of inputs,
known as the sequential and non-sequential information, provided by LSTM and UNet. In the
following sub-sections, a detailed description of each module is given.

Predicted
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Figure 1. Overview of the proposed system model for electricity theft detection (ETD).

2.1. Data

In this paper, a real-time power consumption dataset of users is employed, which was given
to us by the State Grid Corporation of China (SGCC) [42]. The metadata information of the SGCC
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dataset is presented in Table 1. The dataset contains the daily electricity consumption histories of
residential consumers. The SGCC conducts real in-the-field inspections to verify the normal and
abnormal consumers. Therefore, SGCC explicitly declares that the given dataset holds 3615 instances
of electricity theft, which shows the importance of ETD in China. Additionally, it also contains the
missing and erroneous values that require preprocessing, as explained in Section 2.2.

Table 1. SGCC dataset information.

Description Numeric

Total time duration January-2014–October-2016
Total electricity consumers 42,372

Total electricity thieves 3615
Total electricity normal consumers 38,757

2.2. Data Preprocessing

The real dataset often contains the missing and erroneous values demanded to be resolved
by employing the data preprocessing techniques [43]. Thus, the electricity consumption dataset
of SGCC contains the missing and erroneous values due to several reasons, such as failure of any
smart meter equipment, storage issue and measurement error or unreliable transmission. Moreover,
analyzing and cleansing the dataset assists one in finding and eliminating these erroneous and missing
values. In this study, the concept of linear interpolation was employed to find and retrieve the missing
values found in the dataset [20]. Hence, the missing values were recovered as using the Equation (1):

f(xi) =


z
2

, xi ∈ NaN, xi(t−1), xi(t+1) /∈ NaN,

0, xi ∈ NaN, xi(t−1) or xi(t+1) ∈ NaN,

xi xi /∈ NaN,

(1)

where z = xi(t−1) + xi(t+1). xi is the current electricity consumption at a certain time t of an ith day.
Likewise, xi(t−1) and xi(t+1) are the previous and next values of the current electricity consumption,
respectively. Likewise, in the SGCC dataset, we have identified outliers, which skew the data,
making the training process complex and have a negative impact on the final ETD performance
because of overfitting. In this paper, the “three-sigma rule of thumb” [44] is practiced for detecting
and recovering the outliers according to the following equation:

O(xi,t) =

{
w, i f xi(t) > w,

xi(t), otherwise,
(2)

where w = avg(xi(t)) + 2σ(xi(t)). After the detection and removal of the missing and outlier values,
the dataset needs to be normalized, as the deep neural networks are sensitive to the diverse data
that increases the training time. Hence, the data normalization improves the training process of deep
learning models by assigning the same scale to all values present in the dataset and bringing them in
the range of 0 and 1. Therefore, a min-max normalization concept was applied to scale the dataset as
per the following equation [40]:

N(xi(t)) =
xi(t) −min(x)

max(x)−min(x)
, (3)

where xi(t) is the electricity consumption at a current time t, min(x) is the least electricity consumption
and max(x) is the highest electricity consumption.
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2.3. Data Balancing

In this paper, a new data balancing technique, named IQMOT, is introduced to balance the
majority and minority classes. In a real-life scenario, the number of benign consumers is always
extensive as compared to the electricity thieves. Similarly, in the SGCC dataset, the benign electricity
consumers are higher in number than the electricity thieves, as shown in Table 1. This imbalanced
nature of the dataset adversely affects the performances of the supervised learning techniques because
of the biasn towards the majority class. Hence, to reduce the class inequality problem, there are two
major types of techniques, known as the cost function-based and sampling-based techniques [22].

In the sampling-based techniques, there are three major approaches, including random
under-sampling (RUS), random over-sampling (ROS) and oversampling based on synthetic theft
instance generation, such as the synthetic minority over-sampling technique (SMOTE). In RUS,
it unintelligently discards the samples from the majority class, which contains normal consumers.
This method decreases the computationally beneficial dataset size. The unintelligent removal of
samples from the majority class creates a loss of potentially important information, while the remainder
does not provide a realistic assessment. ROS replicates the minority class instances to balance the
majority and minority classes. There is no loss of potentially useful data; however, due to the
unintelligent replication of minority instances, the model leads to an overfitting problem. In this regard,
SMOTE is an effective synthetic instance generation technique that generates the new minority
instances based on the nearest neighbors [45].

Synthetic generation of minority instances avoids the overfitting problem, which occurs due to the
ROS technique, although the synthetic forms of theft instances do not reflect the real-world electricity
theft cases. Moreover, a synthetic formulation replicates the minority class instances based on the
nearest neighbors, which further leads to the overfitting problem. In the light of the above-mentioned
limitations, we propose a novel class balancing technique in ETD, named IQMOT, to balance the
majority and minority class instances. Moreover, IQMOT-based generated instances reflect the
real-word theft cases and improve the model’s performance. Besides, simulation results indicate
that the proposed IQMOT is superior over the existing SMOTE technique. The pseudo-code of the
proposed IQMOT is described in Algorithm 1.

Algorithm 1 IQMOT algorithm.

1: Given: An imbalanced dataset X with majority class yi = 0 and
minority class zi = 1,

2: X = {(x1(t), y1), (x2(t), y2), (x3(t), z1), (x4(t), y2), ..., (xn(t), yn),
(xn(t), zn)}
where xi(t) ∈ <, yi ∈ {0} and zi ∈ {1},

3: Output: Balanced dataset X
′
,

4: Initialize: Theft consumers x
′
, normal consumers x, difference

between thieves and normal consumers D, 25th percentile p1,
50th percentile p2 and 75th percentile p3,

5: Get the total number of thieves and normal consumers,
6: Calculate p1, p2, p3 of theft consumers,
7: Calculate percentage of values falling in each percentile,
8: Get numbers: a, b, c to represent the values fall in each group,
9: For n = 1,2,. . . ,D do
10: Create x

′
by selecting values from each group with respect

to a, b, c
where x

′ ∈ X
′
,

11: End for

In the real dataset comprising of electricity theft consumers, not all theft cases fall in the median of
the Gaussian distribution. The electricity theft cases exhibit irregular electricity consumption behaviors,
whose consumption values fall outside the median of a normal distribution; they are usually treated as
outliers. Therefore, interquartile range is a good statistical tool to indicate such non-normal instances.
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In this paper, we got inspiration from the outlier detection method, named interquartile range
(IQR) [46], to devise the new class balancing technique that generates the NTL instances closer
to the realistic theft cases. We refer to the percentiles where the theft cases are distributed into 25th,
50th and 75th percentiles. In the proposed IQMOT technique, we first get these percentiles that tell us
the range and type of theft values falling into each of the percentile groups. Likewise, the median or
50th percentile contains the middle or average energy consumption values of electricity thieves.

In the proposed IQMOT, percentiles are used to define the limit over the theft values and gives
us the representation of electricity theft cases. After getting the percentiles, the percentage of values
coming in each percentile is obtained. Based on the computed percentage, we get a number showing
the values of theft consumers lying in each group of percentiles. Similarly, values from each of the
percentiles are obtained and a new theft case is produced, which is quite similar to the real theft cases.
This process iterates until the minority class (electricity thefts) becomes equal to the majority class
(normal consumers). Hence, the newly created minority instances reflect electricity consumption that
is similar to the available theft instances in the dataset. In Figures 2 and 3, we observe the resemblance
between original theft cases in the dataset and IQMOT-generated theft cases in a month. Moreover,
it is evident that the IQMOT-generated theft cases are more realistic regarding the real theft cases.
In this way, the proposed IQMOT overcomes the limitations of the above-mentioned traditional class
balancing techniques and generates more realistic theft cases.

Figure 2. Example of IQMOT0based sample generation of October 2016.

Figure 3. Example of IQMOT0based sample generation of October 2015.
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2.4. Data Analysis

In the data analysis stage, we extract features from the preprocessed dataset and perform ETD.
In particular, LSTM and UNet are applied to extract features from the preprocessed dataset and perform
joint training through the Adaboost classifier for final classification. The following sub-sections explain
the comprehensive description of each module of the LSTM–UNet–Adaboost.

2.4.1. LSTM Module

In this paper, LSTM is applied to capture the long-term associations from electricity
consumption data, i.e., temporal correlations from electricity consumption time series at each time
step. Therefore, 1-D daily data of electricity consumption is used as input to the LSTM. The electricity
consumption data recorded by the smart meters are increasing day by day, which creates a large dataset
history of a single user. A simple neural network or recurrent neural network (RNN) is not sufficient
to obtain and maintain the long-term dependencies in their memory to forecast the future information.
These models are difficult to train over a large historical dataset while trying to extract the long-term
temporal correlations, which leads to the gradient vanishing and exploding problem [47]. For this
reason, in this paper, the LSTM model is employed to memorize the long-term temporal associations
from the extensive historical data.

LSTM is a special class of RNN, which has the capability to retain and propagate information
from the initial stage towards the final stage of the model [48]. Figure 4 displays the general structure
of the LSTM model. It has three important gates, known as input gate it, output gate ot and forget
gate ft. Its main component is the cell state, which maintains the long-term dependencies along
the chain. Thus, the dependencies in the cell state are managed by the aforementioned gates. In
Figure 4, Ct and Ct−1 show the current and previous cell state, respectively. ht and ht−1 show the
outputs of the current and previous LSTM units, respectively. Furthermore, σ(x) = 1/1 + e−(x) and
tanh(x) = e(2x) + 1/e(2x) − 1 represent the sigmoid and hyperbolic tangent functions, respectively.
Both functions are non-linear activations in the LSTM model. W f , Wi, WC, Wo and b f , bi, bC, bo are the
weights and biases of the LSTM model, respectively. LSTM is based on daily electricity consumption
data to produce a single output, known as ht, which is also recognized as the hidden state at the last
time step. Hence, LSTM achieves its purpose by processing the following Equations (4)–(9) [48]:

ft = σ(W f [Ct−1, ht−1, xt] + b f ), (4)

it = σ(Wi[Ct−1, ht−1, xt] + bi), (5)

C̃t = tanh(Wc[ht−1, xt] + bc), (6)

Ct = ft.Ct−1 + it.C̃t, (7)

ot = σ(Wo[Ct−1, ht−1, xt] + bo), (8)

ht = ot.tanh(Ct). (9)
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× + CCt-1

ht-1

tanh

xt

tanh

Ct

ht

[ht-1,xt]

ft it ot× ×

Figure 4. Architecture of the LSTM model.

In this paper, the deep LSTM model is used with a stack of recurrent LSTM layers, since a single
layer LSTM model often fails to capture the complete dependencies. The output from each LSTM
unit serves as an input to the batch normalization layer, which normalizes the previous layer output
at runtime and forwards it to the next layers, where the batch normalization enhances the model
convergence, extends the model stability and reduces both the overfitting and training time [49].
After that, the dropout layer is employed with a 0.5% probability that drops 50% of neurons randomly
to inhibit the model from overfitting. Moreover, it improves the model’s convergence by preventing the
model from being over-dependent on a few neurons, which allows each neuron to work individually.
In particular, the LSTM model comprises of three layers with batch normalization and dropout layers.
It utilizes 1-D electricity consumption data using the Adam optimizer with the batch-size of 32 and
binary cross-entropy as the cost function. Furthermore, a Keras callbacks concept is used during the
model’s training to practice the learning rate decay over five epochs and early stopping procedure
over 10 epochs. Consequently, these procedures will improve the model’s convergence and effectively
mitigate the overfitting problem.

2.4.2. UNet Module

UNet is used in this paper to learn and derive potentially important information from 2-D
electricity consumption data. As in [20], the authors explain the effect of the periodicity to illustrate how
weekly data can better obtain the periodicity from consumption patterns. For this reason, the energy
consumption data are transformed into 2-D weekly data and serve as an input to the UNet model.
Furthermore, the authors in [20,22,40] have used a traditional CNN technique to derive high-level
features from electricity consumption data. However, if we use the regular convolution network with
the pooling and dense operations, the model will only extract high-level features of "what," but not
their localization information, "where." As a result, in this paper, UNet is used, which derives both the
high-level features and their localization information through the down-sampling and up-sampling
strategies, respectively.

The UNet model was originally proposed for biomedical image segmentation [50]. The chief
concept behind the semantic image segmentation is to attach the corresponding label of each pixel of
the image [51]. In this way, the model predicts each pixel within the image, also known as the dense
prediction. Therefore, semantic segmentation problems are considered as classification problems where
each feature of a time-series is labeled with its corresponding class. In this paper, we get inspiration
from such a semantic segmentation approach where the UNet model extracts the high-level features
from the 2-D electricity consumption data and then labels them to their corresponding classes.

The name UNet is used because of its symmetric U-shape architecture, as shown in Figure 5.
Its architecture mainly consists of two paths: the contraction path (also called down-sampling or
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encoder) and the expansion path (also called up-sampling or decoder) [50]. The contraction path
performs down-sampling by the convolution and pooling operations, which are used to extract global
features from 2-D data. On the other hand, the expansion path does up-sampling over these extracted
features through the inverse or transpose convolution operation. Since transposed convolution is
the inverse of convolution operation used to perform up-sampling. It tells us the whereabouts of
information. We refer to down-sampling because both convolution and pooling operations reduce
the size of input features or parameters. Consequently, the model determines parameters through the
backpropagation procedure.

Electricity The  Detec on

Figure 5. Overview of the proposed LSTM–UNet–Adaboost model.

UNet has both the long and short skipping connections. The short skipping connections are
present in each of the major down or up-sampling blocks, while the long skipping connections are
available within the contraction and expansion paths to concatenate the extracted features with their
corresponding labels. In this work, the contraction path involves four major blocks where each
block contains:

• Two 3× 3 convolution layers plus LeakyReLU with batch normalization;
• 2× 2 max pooling.

The feature maps are multiplied at each pooling layer, i.e., beginning from 16 feature maps in
the first major block, 32 feature maps in the second block and so on. This procedure is also termed as
increasing the size of depth and reducing the size of the input. Moreover, the expansion path consists
of four major blocks where each block contains:

• Transpose-convolution with a stride of 2;
• Linking with regular convolution features;
• Two 3× 3 convolution layers plus LeakyReLU with batch normalization.

The center of the contraction and expansion path is determined as the bottleneck; it employs
a single convolution layer with batch normalization and dropout. In this paper, the UNet model is
trained using an Adam optimizer with batch-size of 32 and binary cross-entropy as the cost function.
Furthermore, Keras callbacks are used during the UNet training, as already described in Section 2.4.1.
Simulation results validate that UNet appears to be very effective and efficient for ETD based on
electricity consumption patterns.

2.4.3. Joint Training and Classification Module

For the joint training and classification mechanism, the ensemble learning boosting technique
is applied where different weak classifiers are combined to build a powerful classifier, as shown
in Figure 5. This is more accurate than the final joint training and classification through a single
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hidden layer based feed-forward neural network (FFNN)—for instance, a fully connected layer with
either sigmoid activation or softmax classifier. To improve the ETD performance, we use Adaboost
as a final classifier, which acts as a final layer of the LSTM-UNet to replace the single hidden layer
based FFNN used in traditional models [20,22,23]. Therefore, Adaboost simply takes the outputs of
LSTM-UNet modules and concatenates them to make a new input for the Adaboost model. Now,
the long-term dependencies and high-level features are the inputs of the Adaboost model for the final
theft detection. In this context, the proposed model derives the benefits of two powerful procedures of
machine learning, known as deep learning and ensemble learning.

Adaboost is formerly designed to solve highly non-linear tasks [24]. The main focus of Adaboost
is to learn from the mistakes of previous models and boost the performance of the next model. Thus,
the most accurate classifier will be selected to perform the classification task. This process iterates
until the training data becomes error-free or the model reaches the specified number of learners.
Adaboost has several important hyperparameters, which influentially affect the model’s theft detection
performance. Therefore, the grid-search mechanism is applied in this paper to find the most appropriate
hyperparameters of Adaboost, as described in Section 2.5.

2.5. Simulation Setting

The proposed model for ETD was implemented in python using the open-source deep
learning libraries, known as Keras and Tensorflow. The proposed model was developed and simulated
using the SGCC dataset, which contains a total of 42,372 consumers with 1035 days of electricity
consumption history, as given in Table 1. For simulations, the dataset was first preprocessed through
linear interpolation, three-sigma rule and min-max normalization. After that, the dataset was balanced
through the proposed IQMOT technique. In the training procedure, the dataset was partitioned into
training, validation and testing sets with a training proportion of 80%, and validation and testing
proportions of 10% for each, respectively. LSTM model’s configuration consisted of three layers
with batch normalization and dropout layers; each LSTM layer had 60 neurons. Besides, the UNet
model’s configuration was the same as already defined in Section 2.4.2. For the training of LSTM,
30 iterations were run initially with a batch-size of 32 using Adam optimizer, while the training of
UNet was initially performed by running 15 training iterations with the batch-size of 32. Finally, the
Adaboost was executed by utilizing the outputs of LSTM and UNet modules as an input. Furthermore,
to select the optimal hyperparameters of the Adaboost and other models, a grid-search algorithm was
implemented. Table 2 shows the important hyperparameters selected for the Adaboost model using
grid-search.

Table 2. Adaboost hyperparameter selected through grid-search.

Hyperparameter Range of Values Selected Value

Estimators 100, 200, 300, 400 400
Learning rate 0.1, 0.01, 0.001 0.001

2.6. Loss Function

The most widely used loss function for the classification problem is cross-entropy, to classify only
two classes. In this paper, the binary cross-entropy loss function, also known as the logarithmic loss,
is used to deal with the binary classification task. The predictions become more accurate as the loss
function converges to zero. The binary cross-entropy loss function is calculated using the following
formula [23]:

log_loss =
1
N

M

∑
i=1
−(yilog(p(yi)) + (1− yi)log(1− p(yi)), (10)

where N shows the accumulative consumer instances. yi represents the actual label and p(yi) is the
likelihood of the electricity theft measured by the proposed model for the ith consumer.
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2.7. Performance Evaluation Metrics

In this paper, seven class imbalance metrics are employed to evaluate the performance of the
proposed model, which includes area under the curve (AUC), precision, recall, Mathews correlation
coefficient (MCC), F1-score, area under the precision-recall curve (PR-AUC) and accuracy.
These performance evaluation metrics are determined from the confusion matrix, i.e., a matrix that
describes different results in classification problems. Specifically, for the binary classification problem,
the confusion matrix returns two rows and two columns, i.e., four possible outcomes. These four
possible outcomes are described as follows:

• The true positive (TP) score demonstrates the number of dishonest consumers accurately predicted
by the classifier;

• The true negative (TN) score shows the number of honest consumers accurately predicted by
the classifier;

• The false positive (FP) score describes the number of honest consumers predicted by the model
as thieves;

• The false negative (FN) score highlights the number of dishonest consumers predicted by the
model as honest consumers.

The following are the performance metrics given in Equations (11)–(16), as defined in [20,21,24]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

Recall =
TP

TP + FN
, (12)

Precision =
TP

TP + FP
, (13)

F1 = 2× Precison× Recall
Precison + Recall

, (14)

AUC =
∑i∈positiveclass RANKi − P(1+P)

2

P× N
, (15)

MCC =
(TP× TN − FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (16)

where P represents the number of positive samples, N represents the number of negative samples and
RANKi shows the rank value of sample i.

The accuracy of a classifier is a metric used to indicate the percentage of correct predictions.
Besides, a recall is another class imbalance metric, which is also termed the detection rate (DR),
sensitivity or the true positive rate (TPR) in the literature. It shows the capability of a scheme to detect
electricity theft consumers. Likewise, precision is the ability of the classifier to accurately classify
normal consumers. However, accuracy, precision and recall metrics using the imbalanced dataset
cannot provide a realistic assessment of the model’s ETD performance [7]. Hence, F1-score is another
useful class imbalance measure as compared to the metrics described above for ETD’s performance
examination. In F1-score, we get the balance of both precision and recall, which shows its usefulness
as compared to the other metrics.

Furthermore, a performance index that is more reliable and accurate for an imbalanced dataset is
the AUC. It provides a more realistic assessment of the model’s detection performance in terms of ETD
over the imbalanced dataset. Essentially, it is the likelihood that the model ranks a positive sample
higher than the negative sample. AUC is also identified as the area under the receiver operating
characteristic curve (ROC-AUC). ROC-AUC is used to evaluate the model’s capability to make the
separation between the classes. Thus, it is a graphical representation to evaluate the ETD performance
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of a model by plotting the TPR against the FPR. Moreover, the area under the ROC curve is estimated
between the threshold of 0 and 1. If the classifier has a ROC-AUC score higher than 0.5, then it
produces a better DR against any random predictions. If the classifier has less than 0.5 ROC-AUC,
then it implies that the classifier has limited classification capability.

PR-AUC is another useful class imbalance measure employed to assess the model’s performance.
Therefore, in this paper, we use PR-AUC, which considers the precision of the classifier and highlights
the cost of on-site inspections for the utilities. PR-AUC is examined only when positive samples are
on the top rather than the negative samples where the score is improved only when positive samples
are on the top and negatives samples are on the bottom. Likewise, MCC is a binary classification
metric used to evaluate the model’s performance using the imbalanced data. Moreover, MCC is a more
accurate class imbalance metric than the AUC and F1-score because MCC captures the correlation
between all four possible outcomes of the confusion matrix and suggests essential evaluation metrics.
The MCC score ranges from −1 to 1, where a value near to 1 shows an accurate classification. Likewise,
0 shows the result of random predictions where the model has no class separation capability and −1
dictates incorrect classification. Accordingly, a classifier is good if it achieves ETD objective effectively,
i.e., a classifier with a high DR performance and low FPR. The cost of FN is pretty high and important
because it shows the cost of energy stolen and not given by the theft consumers. The cost of FP is much
lower than FN because it shows the cost of inspection rather than the cost of stolen energy. Hence,
in ETD, more importance is given to recall than precision.

2.8. Benchmark Models

In this section, we illustrate the state-of-the-art benchmark models and basic classification
techniques used for comparison with our proposed model. For a fair comparison, we implemented a
grid-search algorithm to determine the most suitable hyperparameters of the benchmark models.

2.8.1. Logistic Regression (LR)

LR is the primary model for the binary classification task in ETD, which applies the notion of
probability and uses the principle of neural networks. For instance, LR for binary classification is
similar to the single hidden layer based neural network using the sigmoid activation function. Thus,
the sigmoid score ranges between 0 and 1, where a value near to 1 is labeled as theft and near to 0 is
classified as honest. Table 3 shows the hyperparameters selected for LR through grid-search.

Table 3. LR hyperparameters selected through grid-search.

Hyperparameter Range of Values Selected Value

C 0.1, 0.01, 0.001 0.001
R l1 norm, l2 norm l2 norm

2.8.2. SVM

SVM is a famous technique used to solve the ETD problem. Many previous studies, such as [52,53],
have used SVM to detect the presence of electricity thieves. Moreover, SVM has important
hyperparameters obtained by employing the grid-search algorithm, as shown in Table 4.

Table 4. SVM hyperparameters selected through grid-search.

Hyperparameter Range of Values Selected Value

C 0.1, 0.01, 0.001 0.1
γ 1, 1.5, 6, 10 10
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2.8.3. RUSBoost

The RUSBoost technique is the combination of RUS and Adaboost. In [24,25], the authors used
RUSBoost to perform ETD. Table 5 demonstrates the selection of the RUSBoost’s hyperparameters
using the grid-search technique.

Table 5. RUSBoost hyperparameters selected through grid-search.

Hyperparameter Range of Values Selected Value

Learning rate 1.0, 0.1, 0.01 0.1
Estimators 20, 30, 100 30

2.8.4. Bagged Tree

The authors in [21] use a bagged tree for NTL detection. A bagged tree is an ensemble
learning technique, in which a number of training subsets are generated with replacements and
different classifiers are trained on these subsets. Finally, a single model is selected based on the
majority of votes from each model. Table 6 shows the optimal hyperparameter selection for bagged
tree using grid-search.

Table 6. Bagged tree hyperparameters selected through grid-search.

Hyperparameter Range of Values Selected Value

Estimators 20, 30, 100 30

2.8.5. WD-CNN

The authors in [20] proposed WD-CNN to detect electricity thieves. The authors trained a wide
component using 1-D data and the deep component on 2-D data. Therefore, in this paper, we practice
the same WD-CNN setting as formerly proposed by the authors [20].

2.8.6. CNN-LSTM

CNN-LSTM is a hybrid deep learning model for NTL detection [22]. It consists of CNN for feature
extraction and the derived features further serve as inputs to the LSTM model for classification. Hence,
a similar arrangement of CNN-LSTM is used in this paper for comparison.

2.8.7. CNN-RF

CNN-RF is a composite of CNN and RF used for ETD [40]. CNN is applied to derive global
features from data. After that, the derived features are delivered to RF for ETD where RF acts
as a final layer of CNN. Therefore, the same model arrangement is considered in this paper as a
benchmark scheme.

2.8.8. LSTM-MLP

The authors proposed a hybrid LSTM-MLP model using sequential and non-sequential data for
NTL detection [23]. For a fair comparison, the same model configuration is used in this paper as
that already proposed by the authors [23].

3. Simulation Results and Discussion

In this section, we describe the simulation results of our proposed model together
with the performance comparison with state-of-the-art models. Moreover, to validate the
LSTM–UNet–Adaboost model’s performance and robustness, seven performance evaluation metrics
are used to show the superiority of our proposed model over benchmark schemes for theft detection.
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3.1. Performance Comparison with Benchmark Models

This section assesses the performance of our proposed LSTM–UNet–Adaboost model for ETD
in the context of smart grids. To estimate the effectiveness of the proposed model, its results were
analyzed against other models using the previously mentioned seven performance metrics. Table 7
presents the results of our proposed model and other existing benchmark models. It is seen that our
proposed model achieved 0.94, 0.90, 0.95, 0.99, 0.92, 0.95 and 0.97 for AUC, MCC, F1-score, precision,
recall, PR-AUC and accuracy, respectively. Thus, the proposed model outperformed all existing
benchmark models in terms of these evaluation metrics. Likewise, CNN-RF was the second-best
classifier; however, it had a low DR, i.e., 0.803, in comparison to other models. LSTM-MLP had the
second-best DR, i.e., 0.889.

The principal objective of ETD is to improve theft DR and reduce FPR. Particularly, the proposed
model presents the best results for each of the class imbalance metrics, as it achieved a DR of 0.92, which
is the highest value among all existing benchmark models. Moreover, Table 7 also demonstrates the
importance of our proposed IQMOT technique. Despite the performances of other models, such as LR,
SVM, CNN-RF, WD-CNN, RUSBoost, bagged tree, LSTM-MLP and CNN-LSTM on the IQMOT-based
processed data, our proposed model still outperformed existing models.

Figure 6 shows the ROC-AUC of our proposed LSTM–UNet–Adaboost model; the proposed model
has achieved better ROC-AUC than other random predictions in terms of training and validation sets.
Similarly to the ROC-AUC, our proposed model has also covered more PR-AUC than any random
predictions using IQMOT, as shown in Figure 7. It is worth noting that our proposed scheme has
covered more areas over the training and validation sets in terms of ROC-AUC and PR-AUC, which
shows the superiority of our proposed scheme. Furthermore, Figure 8 shows the ROC-AUC comparison
with existing benchmark models. It is evident that the proposed model has the highest ROC-AUC
score and covers more area under the ROC curve. As mentioned earlier, the main goal is to maximize
the DR and minimize the FPR in ETD, which has been achieved by our model as compared to the
existing models.

Table 7. Proposed model’s performance comparison with conventional schemes for ETD.

Model AUC MCC F1-Score Precision Recall PR-AUC Accuracy

LR 0.835 0.670 0.835 0.836 0.834 0.785 0.835
SVM 0.575 0.256 0.698 0.542 0.878 0.548 0.576

CNN-RF 0.889 0.815 0.869 0.965 0.803 0.883 0.900
Bagged Tree 0.883 0.812 0.862 0.956 0.821 0.876 0.882
RUSBoost 0.881 0.689 0.848 0.825 0.824 0.787 0.844
WD-CNN 0.884 0.773 0.878 0.927 0.834 0.864 0.884

LSTM-MLP 0.866 0.732 0.869 0.849 0.889 0.818 0.866
CNN-LSTM 0.889 0.785 0.882 0.946 0.826 0.879 0.889

Proposed model 0.948 0.902 0.954 0.998 0.929 0.958 0.972



Energies 2020, 13, 5599 17 of 24

V.3

Figure 6. Proposed model’s ROC-AUC-based analysis with IQMOT.

V.3

Figure 7. Proposed model’s PR-AUC-based analysis with IQMOT.

V.3

Figure 8. ROC-AUC-based performance comparison with existing benchmarks.

Similarly to ROC-AUC, the proposed model has also reported better results in terms of PR-AUC
in comparison to other models, as shown in Figure 9. As we have already highlighted in Table 7,
our proposed model achieved the highest PR-AUC score, higher than those of other benchmark
models.
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V.3

Figure 9. PR-AUC-based performance comparison with existing benchmarks.

3.2. Comparison Based on Proposed IQMOT

This section investigates the effects of imbalanced data on supervised learning techniques and
the effectiveness of the novel IQMOT technique. Table 8 presents the results of the proposed model
with IQMOT, SMOTE and without any class balancing technique to explain the importance of using the
proposed IQMOT over the existing benchmark SMOTE technique. It is clear that the proposed IQMOT
is more effective as compared to the existing SMOTE. Essentially, based on IQMOT, the proposed
model achieved 0.94, 0.90, 0.95, 0.99, 0.92, 0.95 and 0.97 for the AUC, MCC, F1-score, precision, recall,
PR-AUC and accuracy, respectively. Based on SMOTE, the proposed model achieved 0.90, 0.81, 0.90,
0.87, 0.90, 0.85 and 0.90 for AUC, MCC, F1, precision, recall, PR-AUC and accuracy, respectively.
Consequently, this confirms the advantage of novel IQMOT over existing class balancing techniques.

Moreover, we have examined the effects of highly imbalanced data on the performance of
supervised learning methods. In the third column (No Balancing) of Table 8, we express that the
performance of the supervised learning model without applying any class balancing technique is worst,
where the precision value of 1.00 indicates that the model misclassifies electricity theft consumers as
honest consumers. In particular, this shows the significance of the class balancing mechanism and the
adverse effect on the performance of supervised learning methods. Moreover, Figures 10 and 11 show
that the proposed model covers less area under the PR and ROC curve as no class balancing mechanism
is applied. It can be seen that without applying any class balancing technique, the model only achieves
0.63 PR-AUC and 0.60 ROC-AUC over the training and validation sets. This shows the need for a
more accurate and useful class balancing technique. Furthermore, Figure 12 shows the performance
analysis of the proposed model with benchmark schemes based on four important and useful class
imbalance metrics, known as F1-score, MCC, PR-AUC score and ROC-AUC. It is visible that the
proposed model shows excellent results compared to existing benchmark models, including LR, SVM,
RUSBoost, bagged tree, WD-CNN, CNN-LSTM, CNN-RF and LSTM-MLP. This shows the superiority
of the proposed methodology in terms of highly imbalanced ETD problem, which makes it acceptable
of real use. Bagged tree and CNN-RF performances are quite similar to each other. Particularly,
this paper focuses on raising the ETD performance without taking into account the computational cost
of the proposed mechanism.
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V.1

Figure 10. Proposed model’s PR-AUC-based analysis without using IQMOT.

V.1

Figure 11. Proposed model’s ROC-AUC-based analysis without using IQMOT.

Figure 12. Performance comparison based on F1, MCC, PR-AUC and ROC-AUC.
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Table 8. IQMOT-based performance comparison.

Metrics IQMOT No Balancing SMOTE

AUC 0.948 0.602 0.906
MCC 0.902 0.753 0.817

F1-score 0.954 0.753 0.901
Precision 0.998 1.00 0.870

Recall 0.929 0.604 0.905
PR-AUC 0.95 0.63 0.85
Accuracy 0.972 0.745 0.906

3.3. Convergence Analysis

The simulations were done on the preprocessed data with a batch-size of 32. Epoch is a parameter
that controls the model training. Figures 13 and 14 illustrate the learning process of LSTM and UNet
based on the training and validation loss to select the best configuration of a particular model. Figure 13
highlights the learning curve of LSTM in terms of logarithmic loss. In the first attempt, thirty training
iterations were passed to the LSTM model; it shows the smooth learning process of the LSTM model
and no overfitting happened until the 28th epoch. As we can see that at 28th iteration, the LSTM model
performed best and reduced the training and validation loss to 0.67. It shows the gradual convergence
of training and validation loss. Finally, the best model was selected at the 28th iteration, as shown in
Figure 13, to train the LSTM model.

This process explains that when we pick a small number of epochs, then the LSTM model
is not well trained to capture all the temporal correlations from the electricity consumption data.
On the other hand, if we choose a considerable amount of training epochs, then the model leads to
the overfitting problem. Therefore, it is necessary to select the optimal number of epochs to avoid
underfitting and overfitting problems. Figure 14 expresses the learning process of the UNet model
based on logarithmic loss; a stable learning process of UNet is presented. For UNet training, 15 epochs
were used to get the best fit model. The learning process of the UNet was also very smooth, as both
the training and validation losses increasingly converged, which shows that the model gave the best
fitting value at the 14th epoch. Finally, the best fit model was selected at the 14th iteration with a
validation loss of 0.03 to train the UNet. Consequently, we can see the effects of smooth learning in
Table 7; our proposed model outperformed all other benchmark models.

Figure 13. LSTM-based convergence analysis during training.
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Figure 14. UNet-based convergence analysis during training.

Table 9 presents the mapping between limitations addressed, proposed solution and validation.
The proposed solution addresses the limitations of traditional ETD models. It solves the problem of data
imbalance through the novel IQMOT technique that generates more efficient theft samples, as depicted
in Figures 2 and 3. Moreover, Figures 10 and 11 validate the significance of the proposed IQMOT in
terms of no class balancing technique. Afterwards, the proposed solution utilizes the UNet and LSTM
to efficiently derive the long-term dependencies and high-level features from high-dimensional data.
Figures 13 and 14 show that the LSTM and UNet efficiently capture important information from
high-dimensional imbalanced data. Moreover, UNet also catches features’ localizations that are
lost by the conventional CNN based approaches, which significantly improves the ETD results,
as depicted in Figure 14. Furthermore, to make better predictions, we utilize Adaboost as a classification
mechanism that utilizes the features derived by LSTM and UNet. This mechanism avoids the
limitation of traditional models, which face the overfitting problem, as validated in Figures 6–9. Hence,
the proposed methodology performs more better than the conventional schemes for the identification
of electricity frauds.

Table 9. Mapping between the identified problems, proposed solution and validation.

Problem Identified Proposed Solution Validation

L.1 Model’s biasness due to
imbalanced data

S.1 IQMOT V.1 The proposed IQMOT
generates more realistic samples,
as shown in Figures 2, 3, 10 and 11

L.2 High-dimensional data and
artificial feature extraction

S.2 Deep LSTM and UNet V.2 The deep LSTM and UNet
efficiently extracts the potential
features, as given in Figures 13
and 14

L.3 Final ETD through sigmoid or
softmax activation based hidden
layer

S.3 Adaboost based LSTM-UNet V.3 Adaboost acts as final layer of
LSTM and UNet that gives better
results, as depicted in Figures 6–9

L.4 Poor ETD performance due
to loss of features’ localization
information

S.4 UNet captures both what and
whereabout of data

V.4 UNet brings significant
improvement in ETD results, as
shown in Figure 14

4. Conclusions

• In this work, a combined LSTM–UNet–Adaboost model and a novel class balancing mechanism
IQMOT are proposed for ETD in the smart grid environment. IQMOT is introduced to solve the
data imbalance concerns faced by the traditional models.

• To increase the model’s theft detection performance and stability, deep learning LSTM and UNet
are combined with an ensemble learning Adaboost. Deep learning automates feature extraction
from 1-D and 2-D electricity consumption data, whereas ensemble learning is used for joint
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training and classification. In this way, the LSTM–UNet–Adaboost model gains the benefits of
most recent and powerful techniques of deep learning and ensemble learning.

• Extensive simulations were conducted using realistic electricity consumption data of SGCC.
During performance evaluation, we employed the grid-search algorithm to obtain the most
appropriate values for the hyperparameters of different models for a fair comparison.
The proposed model, LSTM–UNet–Adaboost, achieved 0.94, 0.90, 0.95, 0.99, 0.92, 0.95 and 0.97
for AUC, MCC, F1-score, precision, recall, PR-AUC and accuracy on the test dataset, respectively.
Thus, the simulation results show the superiority of the combined LSTM–UNet–Adaboost model
over existing state-of-the-art methods, including LR, SVM, CNN-RF, WD-CNN, RUSBoost,
bagged tree, LSTM-MLP and CNN-LSTM. Moreover, the newly proposed IQMOT was far
better than the existing SMOTE by generating more real electricity theft cases. Consequently,
the proposed model shows brilliance for practical terms in the smart grid and can be used in
many other scenarios, for instance, anomaly detection applications.

5. Future Work

This work solely focused on enhancing the ETD performance against conventional schemes
without considering the computational cost. Therefore, we did not take into account the computational
time comparison, which is part of our future work. Moreover, in future, we intend to incorporate
other features, such as number of appliances, geographical location and temperature, along with the
electricity consumption, to improve the ETD performance.
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