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Abstract

If a camera were to capture colour like a human observer, fundamentally, it should
sense the light information as the way the human visual system does. It is necessary to
either replicate the human visual sensitivity responses or reproduce the three-number
colour representations - e.g. CIE XYZ tristimulus values - to obtain an accurate colour
measurement. In practice, however, the camera sensors generally deviate from the ideal
sensitivities of the human visual system. Consequently, the colour triplets a camera
records are device-dependent, which generally differ from the standard observer tristim-
ulus values. The colorimetric performance can be improved by either correcting camera
responses to the reference ground-truth values using sophisticated mathematical trans-
formations or using more imaging sensors/filters to capture more information about the
incident light. These methods have their disadvantages: the former increases the com-
putational complexity and the latter increases the system complexity and the overall
cost.

In this thesis, we aim to make the digital camera capture colours more like the human
visual perception by placing a colour filter in front of the camera so as to alter its spectral
sensitivity functions as desired. The central contribution of this study is to carefully
design a colour filter for a given camera so that the ‘filter+camera’ setting having the
new sensitivities becomes almost colorimetric, i.e. recording the colour triplets that can
be linearly transformed to the ground-truth XYZ tristimulus values.

The starting point for this thesis is to design the filter that makes the filtered camera
best achieve the Luther condition, i.e. the new effective camera sensitivity functions
after filtering are a linear combination of the colour matching function of the human
visual system. Under this condition, the camera can capture any incoming colour signal
accurately in the sense that the captured RGBs are almost a linear transform from the
XYZ tristimuli.

Next, we reformulate the problem formulation for finding the optimal filter that targets
the more generalised Vora-Value goodness measure. The Vora-Value, by definition,
measures the similarity between the vector spaces spanned by the spectral sensitivities
of a camera and the XYZ colour matching functions underpinning the human visual
system. The Vora-Value has the advantage that the best filter is related to the target
human visual space and not fixed coordinates (e.g. the XYZ and RGB colour matching
functions have different coordinate values but are in the same vector space).

As well as developing a method that finding a filter maximises the Vora-Value (makes
the vector spaces most similar), we examine the relationship between the Vora-Value
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and Luther condition optimisations. We show that the Luther-condition optimisation
also maximises the Vora-Value if we find the filter that makes a linear combination of
the camera sensitivities most similar to a linear transform of XYZ (that is orthonormal).
This is an important result as the Luther optimisation is much simpler to implement and
faster to execute. So we can use the simpler Luther-condition formulation to maximise
the Vora-Value measure using a more straightforward algorithm.

A strength and weakness of the Luther and Vora-Vora optimisations is that they as-
sume - as an explicit part of their formulations - that all spectra are equally likely.
But, this is not the case in real imaging applications. So we extend our filter design
algorithms in a data-driven manner that it optimises for the best colorimetric estimates
given a collection of illuminants and surface reflectance data. Our extended method
uses quadratic programming that allows us to add linear inequality constraints into the
problem formulation. We show how to find filters that have smooth distribution and
bounded transmittance (e.g. transmit at least 50% of the light) across the spectrum.
Constraints like these make the filters more useful and feasible could make the filters
easier to manufacture. We show that we can find smooth and highly transmissive colour
filters that when placed in front of a digital camera can make the camera significantly
more colorimetric and hence can be used for colour measurement applications with high
demand in colour accuracy.
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Chapter 1

Introduction

1.1 Problem Statement

At the sensor level (in normal lighting), the human eye makes three colour measurements.
Specifically, there are long-, medium-, and short-wavelength cone mechanisms that - as
the names suggest - have spectral sensitivity functions biased in the respective parts of
the visible spectrum [97]. To model the response of the cones, the light - a spectral power
distribution - entering the eye is integrated with the spectrum with each of the three
cone sensitivities to return three numbers that correlate with the eye’s response to the
light. Often it is convenient to linearly transform these numbers to different coordinate
systems, such as the CIE XYZ which is standardised for colour measurement [65].

In situ, we measure colour using a spot measurement device called a colorimeter [38].
This is a contact device placed over the material of interest. The colorimeter gives the
XYZ triplets for the surface. Of course, measuring many colours using a colorimeter is
a tedious operation. One has to place the measurement device of different ‘spots’ and
then make a per spot measurement. Thus, there has been a long standing interest in
the field to use a digital RGB camera as a measurement device. Here an RGB image
is captured of an object or a scene and then the captured RGBs are mapped to the
corresponding colour coordinates.

A schematic diagram of the camera colour measurement problem is shown in Figure 1.1.
Physically, the colour of an object, when viewed by a human observer, is formed by the
light first emerging from the illuminant and reflected from the object before arriving at
the eye and stimulating on the retina. As we see, the colour is formed mainly related
to three physical factors: the illuminant, the object and the observer. A colour is
quantified as if viewed by a CIE standard observer [65] with a well-specified colour

1
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Figure 1.1: A typical colour measurement scenario: the light emitting from the light
source reflected from a colour chart before entering into the sensor system – either by an
observer or a camera. Conventionally camera RGB values are mapped to the reference
CIE XYZ values in the colour correction process where a 3× 3 transform matrix M is
used.

matching functions (CMFs) related to how the human visual system reacts to colour
stimulus (the XYZ CMFs are a linear transform from the cone fundamentals [36]). In
such a way, the three-number values of a colour, i.e. CIE XYZ coordinates [65], will be
determined.

In Figure 1.1, we show how cameras are used for colour measurement. Here an RGB
response is measured by a camera and this is typically colour corrected by a linear
transform to approximate the ground-truth XYZ tristimuli (though sometimes non-
linear transforms are also used). While in general the approximation is quite good,
some mapped colours are far from the actual correct XYZ tristimulus values. One
might assume that the solution to this problem would be to ensure that the camera
sensitivities were the same as the XYZ CMFs (or a linear transform thereof).

Digital cameras, however, are designed to achieve more than the objective of recording
colour; other goals such as keeping noise levels low and cost effectiveness are also im-
portant [30, 61, 85]. Additionally, in manufacturing, the feasibility of camera sensors
and filters are limited to the choices of the materials and techniques available. Actually,
commercial cameras rarely meet the condition and its spectral sensitivity responses are
generally far from the desirable cone fundamentals [79]. As a result, camera RGB re-
sponses are device-dependent and have no simple relation to the ground-truth human
visual colour representations.

Practically, for most applications, e.g. photography and video, it is more important
that we can transform the recorded device RGBs to drive a display so that the image
captured by a camera either looks the same to a human observer or records triplets of
numbers referenced to the human visual system. The colour correction of transforming
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device-dependent RGBs to the device-independent XYZ tristimuli is an essential process
for better accuracy in respect of colour measurement.

A considerable amount of literature has attempted to establish the best mapping between
RGBs and XYZs. Popular methods include various approaches based on least-squares
of linear and polynomial regressions [3, 26, 28, 29, 35, 55, 94], look-up-tables [37], and
more recently, neural networks [13, 47]. Despite the various methods proposed in the
literature, the most widely used method of colour correction is to use a 3 × 3 matrix
transform. This mapping, which we will refer to as linear colour correction (LCC), has
some important properties. First, as demonstrated in [21], if object reflectances (the
percentage of light the surface reflects at each wavelength) and illuminants spectra can
be well described by a 3-dimensional linear model, the mapping from RGB to XYZ
has to be a 3 × 3 matrix and the linear colour correction method provides an exact
colour mapping. Another advantage is that the transform scales linearly with the scene
radiance changes. Suppose that for a surface in the scene, we have the RGB vector ρ

and the XYZ vector χ with the 3 × 3 linear transform matrix M. If the scene is made
twice as intense, e.g. doubling the intensity of the incoming light, correspondingly we
have 2ρ and 2χ. The same matrix M will correctly map the new camera responses to
the XYZs. Finally, the 3 × 3 matrix method has few parameters - and so is easy to
estimate - and it is simple to integrate into image and video processing pipelines.

All colour correction methods fail since RGBs are not linearly related to XYZs. Indeed,
the discrepancy between corrected RGBs and their XYZ counterparts can be large,
especially for some saturated colours. Colour correction is imperfect because the camera
spectral sensitivities are not linearly related to XYZ CMFs nor are surface reflectance
spectra sufficiently well described by a 3-dimensional linear model [21].

When the camera sensor sensitivities can be represented as a linear combination of CIE
CMFs, which is also termed as the Luther condition [40, 52], we say the camera is fully
colorimetric. Under this condition, the RGB responses produced by the camera sensors
can be corrected to the reference CIE XYZs precisely without any error; that is to say,
a camera can carry out colorimetric measurement.

Our study will investigate how we can use a digital camera to deliver accurate colori-
metric measurement while retaining the simplicity of using a linear colour correction.

1.2 Proposed Approach

The idea we propose to solve the problem is to place a specially designed colour filter
in front of the camera with the goal of making the filtered camera measurements more
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Figure 1.2: The proposal of applying a prefilter for a digital camera such that its
filtered RGBs can be best mapped to the reference XYZ tristimulus values using a 3×3
transform matrix.

colorimetric. Figure 1.2 illustrates the idea of using a prefilter for a camera such that
the filtered RGBs are as linearly related to the target XYZs as possible. Placing a
spectrally-selective colour filter in front of a camera will alter the spectra entering the
camera; or equivalently, it can be seen as the filter will change the camera responds
to the incoming lights. When we place a filter in front of the camera, we multiply the
camera’s spectral sensitivities by the filter transmittance to calculate the new effective
camera sensitivities.

How we design and solve for the best filter to make a camera colorimetric are the
central concern of this thesis. We will start the filter design by looking into the Luther
condition, i.e. the camera sensitivities are a linear combination from the CIE XYZ CMFs.
We will seek colour filters that best satisfies the Luther condition when placed in front
of a camera. We formulate the problem as a mathematical optimisation and develop
algorithms to solve for the optimal filter. We will show that with the addition of an
optimised filter, the filtered camera can meet the Luther condition to a remarkable
degree and thus becomes significantly more colorimetric.

Now, we reformulate the problem formulation so we can find the optimal filter that tar-
gets the more generalised Vora-Value goodness measure [88]. The Vora-Value, in effect,
measures the similarity between the vector spaces spanned by the spectral sensitivities
of a camera and the XYZ colour matching functions underpinning the human visual
system. The Vora-Value has the advantage that the best filter is related to the target
basis and not fixed coordinates (e.g. the XYZ CMFs) with respect to that basis.

As well as developing a method for finding a filter that optimises the Vora-Value (makes
the vector spaces most similar), we examine the relationship between the Vora-Value
and Luther condition optimisations. We show that the optimal Luther-filter can simul-
taneously maximise the Vora-Value if we find the filter that targets at the orthonormal
basis of the XYZ CMFs, i.e. the camera sensitivities are most similar to a special lin-
ear transform of XYZ CMFs that is orthonormal). This is an important result as the
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Luther-optimisation is much simpler to implement and faster to execute. Therefore, we
can use the simpler Luther-condition formulation to maximise the Vora-Value measure
with better algorithm performance.

The filter design by the Luther-condition is a data-independent method as it makes no
prior knowledge about the world but only assumes that any and all spectral stimuli are
equally possible to be captured by a camera. Arguably the data-independent method is
superior in that the filters it solves for should work in the most general cases. The real-
world lights and reflectances, however, do not vary arbitrarily but tend to be smooth [14,
67, 93]. Most naturally occurring spectra can be well described in a linear model with a
small number of parameters [15, 23, 56, 57, 99]. In the literature, many studies show that
surface reflectance spectra can be adequately approximated with six to eight-dimensional
basis. Illuminants, by contrast, are much less describable by small parameter models.
Artificial lights such as fluorescent and LED lights can have very spiky peaks with varying
peak number and positions. And yet, illuminants are also far from being arbitrary as
artificial lights are usually designed to have colours near the Planckian locus [65], a
requirement to score highly on colour rendering indices [10]. Also, as for the natural
daylights, they can be modelled by a 2-dimensional basis [42].

Given the known features of the real-world spectra, possibly a more useful variant of the
Luther condition would be one that is data-driven. That is, we use the spectral data
collection which a camera most often encounter in the real world; based on the data,
the best mapping can be derived for the camera RGB responses to be transformed to
XYZs. With this in mind, we extend our filter design optimisation for making the sensor
responses as close to the CIE XYZ tristimulus values as possible, given the knowledge
of the real-measured surfaces and illuminants spectra data.

Earlier, we focus on finding the optimal colour filter that makes a digital camera more
colorimetric. Our approach is mathematical. We seek the best filter without worrying
about whether we can fabricate the filter we design. However, the filters are, necessar-
ily, limited to the fabrication process. Hence, the colour filters in turn are extended to
incorporate physical constraints: smoothness and bounded transmission. The filters are
constructed by a group of smooth filter basis and also restricted to have transmittance
greater than a minimum threshold. Not only does this allow us to control the optimi-
sation but these filters are plausibly easier to manufacture. The colour filters we solve
for are smooth, relatively high transmissive, physically realisable. The validity of these
filter design methods and the optimised filters is demonstrated through simulations of
colour measurement for a collection of digital cameras.
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In this thesis, we aim to improve the colorimetric property of digital cameras by carefully
design a spectrally-selective colour filter that can be placed in front of a camera. To
briefly summarize, there are mainly six novel contributions in this thesis:

• We design a colour filter that makes an off-the-shelf camera better approximate
the Luther condition, i.e. its effective sensitivities are linearly related to the CIE
XYZ colour matching functions.

• The filter can be designed given any sensitivity set representing of the human visual
system (e.g. cone fundamentals, RGB and XYZ colour matching functions or any
linear combination thereof) under the optimisation criteria of the Vora-Value.

• We prove how a filter solved from the Luther condition method can be optimal in
terms of Vora-Value by introducing the concept of orthonormal basis vectors.

• The filter is also designed in a data-driven way to better represent the colour
measurement of the real scenes where the real world colour spectra are used.

• The physical feasibility of the filters is improved by adding reasonable constraints
(smoothness and transmissivity) on the filters and incorporated into the optimi-
sation formulation.

• Significant improvement has been gained by employing a simple sampling method
to tackle the issue of local minima in the optimisation.

1.3 Thesis Outline

Chapter 2 presents the background to this thesis, especially the CIE colorimetry for
establishing the foundation of the colour measurement. A survey of existing methods
for the design and evaluation of filters is also presented.

Chapters 3, 4 and 5 propose different methods for finding optimal colour filters given a
digital camera to improve the colour measuring ability. The design of the colour filter is
formulated as a parameterised optimisation problem. Chapter 3 sets out to find a filter
that best satisfies the Luther condition. It is well known that a camera with spectral
sensitivities that are a linear transform from the XYZ CMFs can be used to measure
colour without error. With the help of a colour filter, a camera becomes better linearly
related to the human visual sensitivities, leading to a significant gain in colour accuracy.

The Vora-Value is a measure of the similarity between the vector spaces spanned by the
spectral sensitivities of an RGB camera and the XYZ CMFs. In Chapter 4, we show
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that we can maximise the Vora-Value using a gradient ascent procedure. We then go on
to consider the relationship between the Luther-condition and Vora-Value optimisations
since they return different ‘optimal filters’. We prove an important result. Specifically,
if we run the Luther-condition optimisation where we use an orthonormal variant of the
XYZs (a linear transform of the XYZ CMFs that are orthonormal), then the Luther-
condition optimisation also maximises the Vora-Value. This is practically important
since the Luther optimisation is much easier to formulate. That is, we can use the
simpler Luther optimisation formulation to maximise the Vora-Value target.

In Chapter 5, we extend our optimisation to find the best colour filter given a corpus
of measured lights and surfaces. We consider various scenarios when a data-driven
approach might be used, including mapping corresponding RGBs for surfaces across
pairs of lights and mapping RGBs measured for multiple lights to a single target light.

In Chapter 6, constraints are placed on the filter and incorporated into the optimisation
to ensure that the filter solutions are smooth and transmissive (and so plausibly more
easy to manufacture). Smoothness is incorporated by modelling the filter transmittances
as the weighted sum of the first few terms in a cosine basis. Transmission is bounded
by reformulating the optimisation as a quadratic programming problem. We show how
we can find a filter that optimises the fit to the data (mapping RGBs to XYZs) and
has a transmittance in a given range (e.g. always at least 50% transmittance across the
visible spectrum). We also consider the whole algorithm formulation in more detail in
this chapter, Indeed, all the optimisations presented to this point are not guaranteed to
find a global optimum, but rather the optimisations are search procedures that converge
to a good solution. We show how better filters can be found using multiple initialisation
points (i.e. by sampling).

A summary of the thesis contributions and suggestions for future work in Chapter 7
completes the thesis.



Chapter 2

Literature Review

In this chapter, we present the background that we build upon in this thesis. In Sec-
tion 2.1, we review the human visual system and colorimetry. In Section 2.2, we show
the model of the image colour formation calculating the camera triplets. The data sets
that we are going to use in the experiments are described in Section 2.3. Various meth-
ods for colour correction - mapping RGBs to colorimetric counterparts - are discussed
in Section 2.4. Quantitative measures for determining how well camera systems can
measure colour are given in Section 2.5. In Section 2.6, we review the prior art in filter
design for colour measurement. A brief summary completes this chapter.

2.1 Colorimetry

2.1.1 The Human Vision System

The perception of colour begins with light. Light is the magic key that unlocks the door
of the wonderful world for every creature that has a vision system. The vision system of
all creatures is sensitive to only a fraction of the electromagnetic spectrum. The visible
spectrum for human vision runs, approximately, from 400 nanometres to 700 nanometres
(nm), namely the visible spectrum, as shown in Figure 2.1.

This spectrum can be observed through a rainbow or by a prism as Issac Newton demon-
strated back in 1666. In his famous experiment, the ‘colourless’ sun beam was refracted
into a colourful spectrum, i.e. violet, indigo, blue, green, yellow, orange and red. As
compelling as this experiment is, it is in fact a little misleading. Naively one might
suppose colour perception is related to the colour of monochromatic stimuli. But, it is
more complex than this. In fact, colours are properties of a vision system; that is to say,

8
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Figure 2.1: Electromagnetic of light with enlarged visible spectrum. The image is
obtained from https://en.wikipedia.org/wiki/Light.

colour is primitively a physiological sensation towards a physical stimulus, rather than
a physical property of materials.

The human vision system (HVS) is a sophisticated sensing system. Initial stages start
from the eye, mainly including the radiant flux falling upon the cornea, traversing
through optical media, and arriving at the retina, see Figure 2.2. Among multi-layers
of the retina, there exists two types of photoreceptors – cones and rods, names derived
from their shapes (see the shapes of the coloured pigments as shown on the right panel of
Figure 2.2). These two photoreceptors are responsible for different tasks. The rods work
at low light levels – scotopic vision – with a low spatial acuity, while cones are active
at high light levels – photopic vision – stimulating colour perception and high spatial
acuity. They work together under mesopic vision, e.g. under light level as moonlight.

Figure 2.2: Section of human eye with a schematic enlargement of the retina.
The cones and rods receptors are depicted in different shapes and colours on the
right panel. This image is obtained from http://www.closerlookatstemcells.org/
stem-cells-and-medicine/macular-degeneration.

https://en.wikipedia.org/wiki/Light
http://www.closerlookatstemcells.org/stem-cells-and-medicine/macular-degeneration.
http://www.closerlookatstemcells.org/stem-cells-and-medicine/macular-degeneration.


Chapter 2 Literature Review 10

Figure 2.3: Schematic diagram of trichromatic colour matching experiment by addi-
tive mixture of lights. The intensity of the three primary Red, Green, and Blue lights
can be adjusted to visually match a test light. On the right, we show the RGB colour
matching functions for the CIE 1931 Standard Observer.

For a human with normal colour vision, the retina hosts three classes of cones. They
are referred to as long-, middle- and short-wavelength sensitive cones (L, M and S),
according to the part of the visible spectrum to which they are most sensitive. These
cone types indicates that the colour vision of the human visual system is trichromatic.

2.1.2 The Colour Matching Experiments

The foundation of colour science is built on the colour matching experiment. The colour
matching functions derived from the colour matching experiment provide a quantitative
link between the physical light stimuli and the colours perceived by the human vision
system, and is the cornerstone of the colorimetry science.

The success of colour matching experiment relies on the empirical fact that, for a human
observer with normal colour vision, a light of any spectral power distribution can be
visually matched to a carefully chosen mixture of three primary lights. That is, we have
the ability to match a colour of any light as the mixture of three primary lights.

A simple apparatus for the colour matching experiment is illustrated in Figure 2.3. In
the experiment, the observer views a bipartite field where one side is lit by a test light
while the other side is lit by the light mixtures of three primaries (i.e. carefully chosen
monochromatic red, green, blue lights). The observer’s task is to adjust the intensities
of three primary lights on one side in order to match the bipartite visual field of the fixed
test light on the other side. A colour match is reached when the two visual stimuli appear
visually indiscernible to the human observer. Sometimes, no match is possible and in this
case, one of the primary lights should be added to the test light field. Mathematically,



Chapter 2 Literature Review 11

we can model this as if we were subtracting some of the primary light. See [33] for more
detail.

Grassmann made this colour additive mixture more explicit mathematically by setting
out specific rules for additive colour matching [32, 45]. Grassmann proposed to treat the
colour matching as a linear system and formulated four laws, which are called Grass-
mann’s laws:

• Symmetry: If colour stimulus A matches colour stimulus B, then they still match
when we exchange their colour fields.
=⇒ if A ≡ B then B ≡ A.

• Transitivity: If A matches B and B matches C, then A matches C.
=⇒ if A ≡ B and B ≡ C then A ≡ C.

• Proportionality: If A matches B, then αA matches αB where α is a positive scalar
indicating the power increase or reduction of the colour stimulus.
=⇒ if A ≡ B then αA ≡ αB.

• Additivity: if A matches B and C matches D, then the mixture of A and C matches
the mixture of B and D.
=⇒ if A ≡ B and C ≡ D then A + C ≡ B + D.

We adopt the notation of using the symbol ‘≡’ to denote the visual match as in [16].

Now we will determine how the human visual system responds to the change of the
spectral power distribution of the testing light. Let pR, pG, and pB denote the fixed
primary lights used in the colour matching experiment, and E denote an arbitrary testing
light. Using the notation, a colour match between a test colour stimulus E and the
additive mixture of the primary stimuli can be expressed as

E ≡ r pR + g pG + bpB (2.1)

where the scalars r, g and b denote the intensities of the corresponding primary lights
and are called the tristimulus values of stimulus E.

The spectral stimulus values are derived when the monochromatic stimuli with unit
intensity are employed. Let Eλ represent a monochromatic light at wavelength λ, a
colour match is written as

Eλ ≡ rλ pR + gλ pG + bλ pB (2.2)
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where the multipliers rλ, gλ and bλ are the tristimulus values of Eλ. When each
monochromatic light across the visible spectrum is sequentially matched by the pri-
maries, we can have the complete spectral colour matching functions.

The curves plotted in Figure 2.3 show the results of a colour matching experiment -
where the test stimulus is a unit power stimulus at every wavelength across the visible
spectrum - for an observer viewing a 2◦-bipartite field. The light primaries used for
deriving the colour matching functions are monochromatic R, G, and B stimuli with
wavelengths of λR = 700 nm, λG = 546.1 nm, and λB = 435.8 nm, respectively [38].
Note that these monochromatic lights with specific peak wavelength values are reference
primaries used as standards for colorimetric specifications [33].

To verify the equation in (2.2), consider a monochromatic light Eλ at λ = 500 nm. From
the RGB colour matching functions, we read rλ = −0.072, gλ = 0.085 and bλ = 0.048.
In this example, Equation (2.2) becomes

E500nm ≡ −0.072pR + 0.085pG + 0.048pB (2.3)

Notice that the intensity value of the red primary is negative, indicating that the red
primary is added to the test field. In the actual match of the 500 nm monochromatic
light, the mixture of the green and blue primary lights are adjusted to match the mixture
of the test light and the red primary light. Equivalently, we can rewrite as

E500nm + 0.072pR ≡ 0.085pG + 0.048pB (2.4)

By now, we are able to quantify the colour matching behavior by three functions that
relate the matching intensities of the primary light to the test light. Literally, the colour
matching results do not offer us the exact spectral match between the test light and the
primary lights, but the same visual appearance of the bipartite visual fields.

2.1.3 CIE Colorimetric System

The Commission Internationale d’Eclairage (CIE) is an international authority that
has standardised the colorimetric specifications since its foundation in 1913 [65]. It
recommends standards to describe colour, to enable colour measurement and to facilitate
colour communication. These standards provide a consistent definition essential for
colorimetry and for the meaningful exchange of colour information between different
media.
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Figure 2.4: The CIE XYZ colour matching functions of 1931 Standard Observer (in
solid lines) and of 1964 Standard Observer (in dashed lines).

Standard Colorimetric Observer

The CIE has established the 1931 Standard Colorimetric Observer, often referred as 2◦

Observer. This standard observer was derived from the results of two important colour
matching experiments at the time, performed by Guild [33] and Wright [102]. Their
experiments have leaded to the CIE 1931 RGB colour matching functions [24], shown
in Figure 2.3.

The standard observer is used because scientific works have shown that individuals differ
in the number of photosensitive cones and rods [79, 80], as well as the overall colour
sensitivities [5, 77, 78, 102]. It is desirable to have a standard observer for quantifying
the sensitivity responses of the visual system.

In Figure 2.3, it can be seen that RGB curves have negative values which made calcula-
tion a little cumbersome (in the time of early 1930s when computers were not available).
To circumvent this problem, the CIE made some changes to redefine a new set with all
positive values. The modification for the XYZ colour matching functions, x(λ), y(λ),
z(λ) of the CIE 1931 standard observer, see solid lines in Figure 2.4, are were made in
certain manner [103]. Firstly, they are a linear combination from the RGB matching
curves and their tristimulus values in the CIEXYZ functions are all positive. Secondly,
the y(λ) function reserves the property of photometric quantities of the light which is
set as identical as spectral luminous efficiency function [65, 83].

The 2◦ Observer is suitable for viewing angles between 1◦ and 4◦, but fails to maintain
high accuracy under some application conditions with larger viewing angle. Later in
1959, two groups (Stiles and Burch [78], Speranskaya [77]) performed the matching
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Figure 2.5: Calculation of XYZ tristimulus values given the spectral information of
the illuminant, the surface and the observer.

experiments of enlarged 10◦ diameter viewing field. This leads to the CIE establishing
a new system, the CIE 1964 Standard Colorimetric System, which provides 10◦ colour
matching functions, shown as the dashed curves in Figure 2.4.

Calculation of the Tristimulus Values

With the help of the colour matching functions (CMFs), we are now able to compute
the tristimulus values for any given light. Figure 2.5 visualises a colour measurement
scenario with the spectral information available. The calculation of the XYZ tristimulus
values from the spectra data – a CIE D65 illuminant [65], a Macbeth chart patch [59],
and CIE 2◦ standard observer – are shown in Figure 2.5. In the following, we will show
how the calculation of XYZ is performed.

The colour sensation process starts from the light emitted from the source illuminant,
then reflected from the object surface before entering the observer’s eye. Hence, the
colour of a surface is mainly determined by three physical factors: the spectral power
distribution of the illuminant, the spectral reflectance of the object, and the spectral
sensitivities of the human visual sensors.

Let E(λ) denote the spectral power distribution of an illuminant, S(λ) the spectral
reflectance of a surface, and x(λ), y(λ), and z(λ) the CIE CMFs. The XYZ tristimulus
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values are defined as

X = k

∫
Ω
E(λ)S(λ)x(λ)dλ,

Y = k

∫
Ω
E(λ)S(λ)y(λ)dλ,

Z = k

∫
Ω
E(λ)S(λ)z(λ)dλ

(2.5)

where the normalising constant k = 100/
∫
ΩE(λ)y(λ)dλ makes Y value equal to 100 for

a perfect reflecting diffuser (that reflects 100% of the incoming light) [8]. The integral
is made in the defined domain of the visible spectrum Ω.

Note that the integration can be alternatively expressed in the form of numerical sum-
mation with sampling intervals ∆λ as

X = k

λ2∑
λ=λ1

E(λ)S(λ)x(λ)∆λ,

Y = k

λ2∑
λ=λ1

E(λ)S(λ)y(λ)∆λ,

Z = k

λ2∑
λ=λ1

E(λ)S(λ)z(λ)∆λ.

(2.6)

where the constant k is 100/
∑λ2

λ=λ1
E(λ)y(λ)∆λ. The visible domain Ω is in the wave-

length range of [λ1, λ2]. The functions with respect to the wavelength λ are sampled at
every ∆λ across the visible spectrum.

Typically and justifiably from a colour accuracy point of view [76], a spectrum can be
represented by 31 measurements made between 400 nm and 700 nm by 10 nm sampling
interval. Note, the methods we set forth - since they are designed for the discrete domain
- are agnostic about the sampling interval. If the data is given at a 5 nm sampling dis-
tance then each spectrum would be represented as a 61-component vector. Henceforth,
we will talk about spectra being 31-dimensional vectors (and this corresponds to the
format of most available measured spectral data).

The product of E(λ)S(λ) is termed as the colour signal, i.e. C(λ) = E(λ)S(λ). Hence-
forth, we will use C(λ) to represent the spectral product of the light and reflectance for
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convenience. By substituting into (2.6), we have

X = k

λ2∑
λ=λ1

C(λ)x(λ)∆λ,

Y = k

λ2∑
λ=λ1

C(λ)y(λ)∆λ,

Z = k

λ2∑
λ=λ1

C(λ)z(λ)∆λ.

(2.7)

CIE 1976 Uniform Colour Spaces and Colour Difference Formulae

The CIEXYZ colour space in the previous section has a non-negligible drawback that
the colour difference in the space is not uniform. That is, the equal distances in the
colour space are not consistent with the equal perceptual differences. Hence, in 1976,
the CIE technical committee made two uniform colour space recommendations, CIELAB
and CIELUV [103]. We mainly use the CIELAB colour space in the study and therefore
only the calculations for this colour space have been given below.

The CIELAB colour space is defined by the following equations:

L∗ = 116f(Y /Yn)− 16

a∗ = 500[f(X/Xn)− f(Y /Yn)]

b∗ = 200[f(Y /Yn)− f(Z/Zn)]

f(x) =

x1/3 if x > (24/116)3

(841/108)x+ 16/116 if x > (24/116)3

(2.8)

where Xn, Yn, Zn are the values of X, Y , Z for a perfect reflective diffuser white.

CIELAB colour space is not only uniform but its axes correlate roughly to perceptual
attributes. From the calculation of (2.8), it can be observed that L∗ is a function of Y
and Yn suggesting a reflection of the luminance intensity of the stimulus. The horizontal
axis a∗ approximates the colour direction of green-red, while the vertical axis b∗ gives a
clue about blue-yellow direction.

As a uniform colour space, the Euclidean distances in CIELAB colour space can be cal-
culated to represent approximately the perceived colour difference between two different
stimuli. The CIELAB colour difference equation is defined as

∆E∗
ab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]1/2 (2.9)
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Figure 2.6: Relative spectral power distributions of CIE Standard Illuminants A,
D50, D55, D65, D75, and E.

When applying this colour difference equation, note that it was originally designed for
the colour stimuli of the same size, viewed under lights not too different from D65 in
neutral surroundings.

CIE Standard Illuminants

Objects are always lit under various illuminants, e.g. changing day lights, artificial in-
door lights, and outdoor lights. According to (2.5), stimulus values are calculated from
the multiplication of illuminant and object reflectance. Therefore, any change in the
illuminant spectral power distribution can result in different XY Z values. With the
existence of countless light spectra, the reference colour appearance of the object under
typical lighting conditions is of great importance. In order to simulate typical lighting
conditions, CIE established several standard illuminants and artificial light sources [38].
We list the most widely used as follows:

• Standard illuminant A simulates the incandescent lamp light with a correlated
colour temperature (CCT) of 2856 K.

• Standard illuminant D65 represents a typical daylight illuminant with a CCT of
about 6504 K and is one of a series of CIE daylight illuminants designated at CCTs
of about 5000 K, 5500 K, and 7500 K, known as D50, D55, and D75 respectively.

• Illuminant E has an even spectral power distribution representing the equal-energy
spectrum.

Note that colour temperature is defined as the temperature of the blackbody radiator
(or Planckian radiator) which had the same chromaticity as the given stimulus. The
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term - correlated colour temperature - is used when some light sources have chromaticity
values deviated from the Planckian locus.

The physical property of an illuminant is determined by its Spectral Power Distribution
(SPD) of the radiation emitted from the light source. The SPD denotes the energy
distribution at each wavelength throughout the visible spectrum. The relative spectral
power distribution of the CIE standard illuminants are drawn in Figure 2.6. The relative
SPD is normalised SPD at 560 nm where the value is set to 100.

2.2 Image Colour Formation

A physically accurate model of camera image formation for a Lambertian surface colour
(the one that reflects light into all viewing directions equally) [8, 66] is written as

ρk =

∫
Ω
E(λ)S(λ)Qk(λ)dλ , k ∈ {R,G,B}. (2.10)

Similar to (2.5), the colour is formed by the interaction of the light E(λ) , the surface
S(λ), and the sensor Qk at a pixel. The subscript k indicates the colour channel (usually,
short-, medium- and long-wave sensitive mechanisms or more commonly known as R-,
G- and B- channels). The function Qk(λ) is the spectral sensitivity of the kth camera
colour channel.

Substituting the colour signal C(λ) = E(λ)S(λ) into into (2.10), we have

ρk =

∫
Ω
C(λ)Qk(λ)dλ , k ∈ {R,G,B}. (2.11)

We can recast the continuously integrated responses in (2.11) using discrete representa-
tion

ρk =

λ2∑
λ=λ1

C(λ)Qk(λ)∆λ , k ∈ {R,G,B}. (2.12)

We use a constant sampling value ∆λ = 10nm in this thesis and henceforth we will
assume the term ∆λ is incorporated into the camera response vectors.

Under the discrete representation, the image formation problem can be formulated using
linear algebra. The tools of linear algebra are very useful in studying the colour imaging
problem and are extensively used in this thesis.
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Using vectors for sampled spectra, (2.12) can be compactly written as

ρT = cTQ (2.13)

where c is a 31× 1 vector of the colour signal spectrum sampled at measuring intervals.
Q is a 31 × 3 matrix whose columns respectively contain the R, G, and B spectral
sensitivities. The 3× 1 vector ρ denotes the R, G, and B response values.

Let C denote a 31× n matrix whose columns represent n colour signal spectra. The set
of n× 3 RGB responses can be written as a single concise expression:

P = CTQ. (2.14)

2.3 The Data Sets

In this section, we introduce the data sets that we will use in the design of the op-
timal prefilters for digital cameras, and also in the evaluation of colour measurement
performance.

2.3.1 Camera Spectral Sensitivity Functions

The camera data set - the spectral sensitivity functions of digital cameras ranged from
400 nm to 700 nm with an interval of 10 nm - that we will be using are the work of
Jiang et al. [41]. The camera set comprises of 28 commercial cameras covering a variety
of types, including professional DSLRs, point-and-shot, industrial and mobile cameras.
This camera group has a mix of CMOS and CCD sensors. Most cameras are equipped
with CMOS sensors, except Canon EOS 1D, Nikon D200, D40, D50, D80, and two Point
Gray Grasshopper cameras which use CCD sensors.

A large component of the set comprises 9 Canon and 10 Nikon cameras. Generally,
cameras from the same manufacturer show similar sensitivity features. We will pay
close attention to these subsets while applying our methods.

The ground-truth spectral sensitivity functions of the cameras were measured using a
monochromator and a spectrophotometer PR655. The measurement setup of how the
camera sensitivities are derived are not the focus here but details can be found in the
supplementary material of [41].
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We will design colour filters for each individual camera given their spectral sensitivity
functions. The validity of the filter design method (with respect to the colour accuracy
improvement ) will be analysed both individually and collectively.

2.3.2 Reference Colour Matching Functions

Unless otherwise stated, we will use the CIE 1931 XYZ colour matching functions of a
2-deg standard observer. The motivation of the 2-deg observer is that as for a digital
camera, the pixel colour is viewed with a small viewing angle and 2-deg is more suitable
for imaging applications.

2.3.3 Illuminant and Object Spectra

To evaluate the colour measuring performance, a data set of illuminant and reflectance
spectra is required. Both illuminant and reflectance data set are measured by the Com-
putational Vision Laboratory of Simon Fraser University [1], which is publicly accessible.
The SFU data set was chosen because it provides high quality spectral data and contains
sufficient variety of reflectances and common illuminants. We will refer to this data set
as SFU data hereafter.

The surface reflectance set is consisted of data from several sources, including the 24
Macbeth colour checker patches, 1269 Munsell chips, 120 Dupont paint chips [93], 170
natural objects [93], the 350 surfaces in Krinov data set [46], and 57 additional surfaces
measured by Simon Fraser University [6].

The illuminant set has 102 light spectra, including 81 natural daylight spectra measured
at various times of the day and under various weather conditions, 11 artificial lights
(e.g. 4 tungsten lights, 3 fluorescent lights and 4 simulated daylights) in the laboratory
condition and the rest 10 illuminants are synthetic lights.

2.4 Colour Correction

2.4.1 Colour Correction Transformation

For digital cameras, a colour correction is usually performed on the RGB measurements
to give estimate of the CIE tristimulus values of an object. Given the spectral data
of the capturing illuminant, object reflectances and the spectral sensitivity functions,
we can calculate the ground-truth XYZ values and the camera colour responses. A
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correction transformation will be determined by minimising the colour difference between
the measured and estimated colour values.

Let two n× 3 matrices X and P represent the corresponding XYZ and RGB responses
of n colour signals. The function Ψ mapping the RGB values P to the ground-truth X

can be generally represented as:
X = Ψ(P) (2.15)

Many different algorithms for solving the colour correction problem have been developed
in the literature. Popular mapping methods includes linear [28, 98] and polynomial
least-squares regressions (there are many variants of the linear, polynomial and root-
polynomial methods) [26, 35, 48], look-up-tables [37], and neural networks [13, 104].

2.4.2 Linear Colour Correction

The linear colour correction method uses a 3 × 3 matrix. The best linear correction
matrix between P and X can be calculated as a least-squares regression:

min
M
∥ PM−X ∥2F ⇒M = [PTP]−1PTX = P+X. (2.16)

where M is a full rank 3× 3 matrix. The ‘book formula’ shown in the right hand side of
the equation P+ is the Moore-Penrose inverse, i.e. P+ = [PTP]−1PT .

This simple but useful method, even though it is not optimal in terms of fitting error,
has two advantages compared to most non-linear methods. First, the transform scales
linearly with exposure. If the scene is made twice as intense (e.g. by doubling the
quantity of incoming light), the same matrix correctly maps the camera measurements to
XYZs (because the magnitude of camera RGBs and XYZs both double). Typically, non-
linear methods do not have this exposure-invariant property (except root-polynomial [29]
and hue-plane preserving [2]).

The second advantage is that a linear transform is, well, linear. The human eye measures
colour stimuli linearly: at the cone quantal catch level, the response to the sum of
two spectral stimuli is equal to the sum of the responses to the two stimuli viewed
individually [97]. This can be an important physical consideration. As an example,
when we view a surface that has highlights, the recorded colour is a convex sum of the
so-called body colour (the colour name we would assign to the object) and the colour
of the highlight [43], sometimes called the interface colour. If, we are viewing a red
shiny plastic surface the body colour is red and if the viewing light is white then the
interface colour is also white (i.e. the same as the colour of the light). As we move from
pure body to pure highlight colour, the measured XYZs lie on a 2D plane in the colour
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space. Equally, the camera, which at the sensor level has a linear response, will also
make measurements that lie on a 2D plane. But, a non-linear correction will distort the
plane and the result will be an image that is not physically accurate or even physically
plausible. This problem is discussed in detail in [2, 55].

2.4.3 Calculating Colour Error

Often, the perceptual colour difference metric is commonly used for the evaluation of the
colorimetric performance for a colour measurement system. The smaller colour difference
values, the better colour accuracy.

We will use the colour difference formula, ∆E∗
ab in the CIELAB colour space, among

other options such as CMC (l:c) [51] (widely used in textile industry), more advanced
formula CIEDE2000 [50], most recently ∆EITP for high dynamic range and wide gamut
imagery [69]. The colour error metric ∆E∗

ab was chosen for the following reasons. First of
all, ∆E∗

ab can be easily and intuitively computed as the Euclidean distance between two
colour points in the CIELAB colour space while other metrics require considerable in-
crease in complexity of calculation. Secondly, ∆E∗

ab is a widely used and accepted colour
difference metric which makes it easier for comparison to other studies who also use ∆E∗

ab

for evaluation. More importantly, it facilitates our study results better understand by
the industry. Thirdly, there is a good correlation between ∆E∗

ab and CIEDE2000 but
with the advantage of much less calculation cost. Lastly, we can design our filter for
minimising the colour difference metric. It is possible for us to derive a vigorous formula
(derivatives of the objective functions) based on the ∆E∗

ab under linearised colour space
[74].

Practically, the colour performance of a camera can be assessed through image capturing
of the measuring scene under a real illuminant. The measured RGBs are mapped to
make an estimate of the XYZs in the colour correction process. later, the predicted and
the ground-truth XYZs are converted into the CIELAB colour space and then the colour
difference between them is evaluated in terms of ∆E∗

ab.

When there are multi-illuminants and multi-reflectances, we calculate the average colour
error across the reflectance set under each illuminant condition. For example, if we have
m illuminants and n reflectance spectra, the overall mean colour error is calculated as

∆E∗
avg =

1

mn

m∑
i=1

n∑
j=1

∆E∗
i,j (2.17)

where the colour error of every reflectance under each illuminant, ∆E∗
i,j , is calculated.
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Other statistical indicators like median, 95-percentile, maximum colour errors can also
be used to have a better sense of the colour performance across the data set.

2.5 Measures of the Goodness of a Set of Spectral Sensi-
tivities

Given a set of spectral sensitivities, the questions that naturally comes is that how
they perform if they are used for colour measurement. It is essential and desirable
to have quality measures of filters that can be trusted to use in the evaluation of their
performance in colour reproduction. In the following paragraphs, we review some widely
recognised goodness measures for filter quality evaluation in the imaging systems in the
literature.

To measure the quality of a spectral sensitivity for colour measuring, Neugebauer pro-
posed a quality factor, namely q-factor [62]. Given a camera sensitivity, the q-factor
measures its goodness by returning a number in the range of [0, 1]. We say a sensitivity
is maximally or 100% good if there is a linear combination of the XYZ CMFs that ex-
actly matches the camera sensitivity. The intuition here is reasonable: if we had three
linearly independent camera sensitivities that each scored 1, then we can find a linear
combination of the sensitivities that equals the XYZ CMFs.

Suppose X represents the 31×3 matrix of the CMFs (X, Y and Z are in the columns) and,
as a reminder, each column has 31 terms because we are sampling the visible spectrum
from 400 nm to 700 nm at 10 nm sampling. Let f denote the 31 × 1 camera sensitivity.
Then the closest linear combination of X that matches f is written as XX+f where X+

denotes the Moore-Penrose inverse [68]. The q-factor is defined as the following:

q =
∥ XX+f ∥22
∥ f ∥22

(2.18)

What does the q-factor tell us about the goodness of a set of camera sensitivity functions?
Well, the answer is not straightforward. Colour response is three dimensional. Yet, the
q-factor treats each camera sensitivity separately.

Unlike the q-factor targeting an individual sensitivity function, Vora and Trussell [88, 91]
proposed a goodness measure for a set of sensitivity functions. They adopted a vector
space approach for analysing the filter quality: the goodness measure, namely Vora-
Value. It is defined by the projection of the space spanned by filters onto that spanned
by the human visual space under a certain illuminant.
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Let Q represent a set of spectral sensitivities and X represent the set of the XYZ CMFs.
The Vora-Value is defined as

ν(Q,X) =
trace

(
Q(QTQ)−1QTX(XTX)−1XT

)
α

(2.19)

where the superscripts T and −1 denote the matrix transpose and inverse, respectively,
and trace() returns the sum of the elements along the diagonal of a matrix. The constant
α defines the number of visual channels (or mathematically, the dimension of the rank
of matrix X), three for the trichromatic human visual system.

While (2.19) looks unwieldy, it has an elegant geometric interpretation. We can think of
the columns of X and Q as spanning three dimensional subspaces of the 31-dimensional
space (as X and Q are 31 × 3 matrices). The Vora-Value can also be regarded as a
percentage-type of measure of how similar the subspaces are. If the Vora-Value is 1,
this means the subspaces are identical. And, the RGBs measured by the camera are a
linear transform from the XYZ tristimuli. When the Vora-Value is 0, this means the
subspaces are orthogonal to each other. As a heuristic, if a camera has a Vora-Value
greater than 0.95, then, in general, RGBs can be colour corrected to XYZs with a small
average error.

It is shown that Vora-Value is a generalisation of Neugebauer’s q-factor and can be used
to evaluate the performance of a set of sensitivity functions with any number. Vora
and Trussell [87] also extended it to a family of data-dependent measures: given a data
set with known statistical information, these data-dependent measures can assess the
ability of the sensitivity set relate to the mean-square tristimulus errors.

A more comprehensive measure was later proposed by Sharma and Trussell [73], named
‘Figure of Merit’ (FOM). This measure evaluates the spectral sensitivity set related to a
perceptually uniform colour error (the CIELAB colour error) and takes the measurement
noise into account. In this measure, two important aspects are accounted for: the degree
of perceptual relevance and the varying noise levels. Moreover, it provides a unified
framework with flexibility to derive variant figures of merits that can suit the practical
applications. Later, Quan et al. [71] extended the FOM to a more complex measure,
namely Unified Measure of Goodness (UMG), by incorporating a more practical noise
model (including both signal-dependent and signal-independent noise).

In our work, we will use the goodness measure, Vora-Value, to evaluate the performance
of the optimal filters solved from our optimisations.
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Observer Camera

𝐌𝟔×𝟑
[𝐑𝐆𝐁 , 𝐑𝐆𝐁𝐟 ]𝐗𝐘𝐙

Filter + Camera

Figure 2.7: For measuring the object colours, two images are taken, once with and
once without a colour filter placed in front of the camera. The colour values combined
from two images are mapped to the reference XYZ tristimuli using a 6 × 3 correction
matrix.

2.6 Filter Design in Colour Imaging

The problem of designing the optimal sensitivities for a colour imaging system has been
intensively investigated [3, 34, 70, 73, 90, 96, 100, 105]. For every colour measuring de-
vice, the sensitivity characteristics of the imaging device are fundamental in determining
how the system responds to the colour stimuli. The imaging system can be built for
many purposes. Yet, here we focus on the objectives that are devoted for the colori-
metric reproduction to achieve high colour fidelity, i.e. they interpret the physical data
obtained from sensors to account for the colour properties of the human visual system.

In the literature, most studies focus on the optimal sensitivity design of the whole
sensitivity set - a complete new sensitivity set consisting of three or more channels - for
the colour measuring system. However, the approach we propose in this thesis is much
simpler. Given an off-the-shelf camera, we simply place a specially designed filter in front
of the camera which will reshape the effective sensitivity functions of the camera. Our
objective is to seek optimal transmissive prefilter so that the filtered camera becomes
more colorimetric (by significantly reducing the colour errors in linearly transforming
the RGB values to the XYZ values).

The idea of placing a coloured filter in front of a camera to make it more colorimetric
has been previously proposed [25]. In this work, Farrell and Wandell proposed placing a
filter between the object and the sensors. The approach is illustrated in Figure 2.7. Two
images are captured, once with and once without the filter. That is, the first is taken as
normal with the native spectral sensitivities; the second is taken by placing a coloured
filter in front of the imaging device. In this way, six measurements are made per pixel.



Chapter 2 Literature Review 26

Let Pf and P denote the image RGB values of n colour samples taken with and without
a prefilter. The superscript f denotes the image taken with the filter presented. Thus,
both Pf and P are n × 3 matrices. With two images taken, mathematically, we can
compose a new matrix

Pn×6 = [P , Pf ] (2.20)

where the new matrix has the size of n× 6.

For this case, when we perform the linear colour correction as in (2.16), the least-squares
matrix M becomes a 6× 3 matrix:

min
M
∥ Pn×6M−X ∥2F ⇒M6×3 = [PT

6×nPn×6]
−1PT

6×nX. (2.21)

Note that the ground-truth XYZ tristimuli X is still an n× 3 matrix.

Farrell and Wandell’s approach can offer significantly reduced colour errors (linearly from
camera outputs to tristimulus values). The emphasis of the prior art was to increase
the dimensionality of the capture. Since two captures are made which produce six
measurements per pixel. The target XYZs is matched by applying a 6 × 3 correction
matrix.

Although both our proposed and Farrell and Wandell’s work consider the use of prefilters
for the image, the logic behind is different. In [25], the filter is used to increase measuring
data representation by capturing more images and the best filter was chosen empirically
(from a set of commercially available choices that supports the best colour measurement).
Of course, by doing so, the filters are not optimal. Yet, our proposal aims at reforming
the spectral characteristic of the sensing system in order to change the effective camera
sensitivities to meet either the Luther condition or to better predict the XYZ tristimulus
values.

In the following, we review the methods that look for the optimal set of sensitivity func-
tions in the colour measuring applications. Most colour imaging systems are assumed to
have three RGB channels. Usually, the sensitivity set is designed under a well-defined
objective. The evaluation metrics reviewed in Section 2.5 are good options for being the
design measures.

As reviewed in the last section, Vora and Trussell [91] developed a simple ‘goodness’
measure, Vora-Value, to assess how closely a spectral sensitivity set measures colours
compared with the human visual system. In [88, 90], Vora and Trussell used the Vora-
Value as a design tool for finding the optimal sensitivity set to be used in a colour scanner.
They also emphasised the importance of generating smooth sensitivity functions for
better physical realisability. To achieve this goal, a group of single-Gaussian filters
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and a sum-of-Gaussian functions were used. Moreover, by using the Gaussian functions
reduces the number of degrees of freedom of the filter parameters and forces the resulting
filters to be smooth.

Vrhel and Trussell investigated the design of optimal filters under multi-illuminants and
as well as the impact of noise [75, 95, 96]. Interestingly but not surprisingly, the best
sensors that solve these problems are not linearly related to the XYZ CMFs [73].

The spectral sensitivity functions can also be designed with the goal of minimising the
perceptual colour error, such as ∆E∗

ab. Wolski et al. [100] formulated a non-linear op-
timisation for the filter design using the criterion of ∆E∗

ab colour error. An iterative
searching technique was adopted for seeking the solution. Of course, this method in-
evitably boosts the computational complexity since as indicated by equations in (2.8),
the transform from CIE XYZ to CIE LAB is nonlinear.

We argue that the CIELAB space is not a good objective to aim for in designing the
best sensitivities, in the sense that it would not provide a tractable optimisation criterion
because of the non-linearity nature. Thus it is not easy to use in optimisation for filter
design problems. On the contrary, a simple formula (such as the Luther condition and
Vora-Value) saves computational time and, more importantly, often provides an insight
into the system behaviour.

When higher colour fidelity is required, another option we have is to increase the number
of sensors/filters used for imaging. Vrhel and Trussell [95] showed that an overall colour
error below the just noticeable difference (JND) threshold can be achieved if a set of
four colour filters is used (with a linear colour correction). A more sophisticated case is
to take the measuring noise into consideration. In [82], Trussell et al. claimed that a
group of 12 or fewer Gaussian-modeling filters is sufficient to achieve an average colour
error of less than ∆E∗

ab and maximum error of less than 3∆E∗
ab under a practical level

of shot noise.

In some applications, such as the fine-art archiving, the colour accuracy is more critical
and the restoration of the spectral information is sometimes required. For these applica-
tions, multi-spectral and hyper-spectral imaging systems are widely used [18, 34, 63, 84].
In the multi-spectral system, a camera is equipped with many more filters so that the col-
orimetric values can be determined with great accuracy and more importantly, much of
the spectral information of the objects can also be retained. To build up a multi-spectral
imaging system, one can apply a more complicated colour filter arrays to increase the
number of colour bands [60] or use spectrally-tunable LED lights to make multiple im-
ages captured under various lights [39, 58, 105]. The multi-spectral approach can be
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problematic for it is characterised by longer capture time and much more expensive
imagers.

A great challenge for filter design approach is to fabricate the exact filters to fulfill the
desired accuracy target. One way to take off the burden of the fabrication is to selecting
and combining a set of known filters to achieve the optimal colour fidelity [19, 22, 44].
Given a selection criterion of an error metric, the best filter set can be picked using a
heuristic search method. This strategy is widely adopted in the work of [3, 4, 39, 53]. It
is a practical choice though not optimal.

Our filter design approach focuses on finding the best filter without worrying about the
fabrication process. Yet, we also extend our filter design optimisation to restrain the
shape and transmissivity of the filters to improve the physical feasibility of our filters
(so plausibly could make the filters easier to manufacture).

We would like to make a final note on two types of approaches: data-independent and
data-dependent. The former designs the colour filters to replicate, although most often
to linearly relate to the CIE CMFs such that a unique linear transformation can bring
the device colours to the tristimulus coordinates. As for the data-dependent approach, it
takes advantage of a priori knowledge about the measuring illuminants and reflectances.
However, there are pros and cons of the data-dependent approach. If the data of interest
are known, the data-dependent manner benefits from the data information and results
in better colorimetric performance. On the other hand, if the measured data are very
different from the set that is used for deriving the optimal sensitivities, instead, it will
fail to measure the new data set accurately. Both approaches are considered and used
for designing the prefilter in this thesis.

2.7 Summary

The fundamentals of colour vision and colour imaging are described in this chapter.
These fundamentals form the basis for the following chapters where we develop our
approaches. In this thesis, we will aim to design a colour prefilter for a digital camera
with known sensitivity information such that the new camera system - using the linear
colour correction - is able to deliver much better colorimetric measurement. The filter
will be parameterised as an optimisation problem using both data-independent and data-
dependent criteria. The colour performance will be evaluated in terms of perceptually
uniform colour error indicators.
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Luther Condition Filter Design

In this chapter, we propose to design a prefilter to be placed in front of the camera that
results in the filtered camera best meets the Luther condition. That is, the effective
spectral sensitivities of the ‘filter+camera’ system are linearly related to the colour
matching functions of the human visual system.

3.1 Introduction

Digital cameras are designed to record triplet colour responses in analogy to the trichro-
matic human visual system which has three types of photosensitive cones related to
colour perception [97]. Practically, the spectral sensitivities of a camera are designed to
satisfy many objectives including manufacturability and the need to minimise the con-
spicuity of noise [85]. As a consequence, the camera coordinates it produces are device
dependent and most cameras do not ‘see’ colours like the way we human do. That is, the
RGBs a camera measure, are not a linear transform from colour matching triplets. More
formally, a camera ‘sees’ like we do – with a simple linear colour correction – if and only
if its spectral sensitivities are a linear combination of the corresponding human visual
system matching curves (or equivalently a linear combination of the CIE XYZ colour
matching functions) [36]. This condition is often termed as the Luther condition [40, 52].
If this condition is fully met, we say that the camera is colorimetric and it can reproduce
the exact XYZ tristimulus values (within a linear transform).

In the literature, it has been proposed that to make a camera more colorimetric we
could take several pictures under different coloured filters [25]. However, this prior art
approach sought to increase the dimensionality of the capture – i.e. to take an image
with and without a filter – with respect to which a linear combination can better predict

29
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Figure 3.1: The use of a digital camera with a colour filter placed between the scene
and the camera in a colour matching experiment. The goal is to find a prefilter such
that the RGBs a camera measures (after a 3× 3 correction matrix) are the same as the
colour mixtures a human observer would give to make a match.

what we see (e.g. better predict XYZs). The multiple-image approach can be problematic
because it necessitates a long capture process where the user has to change filters between
image captures. If nothing else, the captured images are not in registration, which is a
problem in itself.

Of course, a more pragmatic way to proceed –– and the one that is implemented in
all camera processing pipelines –– is simply, given the RGBs for a given camera do, by
mathematical means, find a 3 × 3 correction transformation matrix that brings them
as close as possible to the desired XYZs (or display RGBs). Interestingly, when we
linearly regress RGBs to XYZ tristimuli, we can interpret this as linearly transforming
the sensors themselves. That is, a new camera whose sensitivities are modified by the
linear regression transform approximately measures the desired XYZs. It follows that
one strategy to improving the colour measurement capability of a camera would be to
change the camera sensitivities. The closer the spectral sensitivities of a camera are to
being linearly related to the XYZ colour matching functions, the better it will perform
as a tool for colour measurement, i.e. the more colorimetric it will become.

Here we propose that finding the filter to make a camera more colorimetric should be
chosen in tandem with the best colour correction transformation mapping RGBs to
XYZs. Physically, the role of a filter, which absorbs light on a per wavelength basis, is
multiplicative. If f(λ) is a transmittance filter and Q(λ) denotes the camera sensitivities
(red-, green- and blue- channels), then f(λ)Q(λ) is a physically accurate model of the
effect of placing a filter in front of the camera sensor.

Our filter design method is built directly on top of the Luther condition [52]. That is,
the filter multiplied by the camera spectral sensitivities is ‘almost’ a linear combination
from the colour matching functions of the human visual system. If X(λ) denotes the
XYZ colour matching functions, then an explicit Luther condition inspired formulation
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of the filter design problem can be modeled as:

min
f(λ),M

∥ f(λ)Q(λ)M−X(λ) ∥2F (3.1)

where f(λ) defines the spectral transmittance of the colour filter, and M is a fixed 3× 3

transform matrix. ∥ ∥2F denotes the square of the Frobenius norm [31].

Figure 3.1 illustrates the objective of the prefilter for the camera system – to match
the human vision results with equal visual appearance. In the experiment of colour
matching, the goal of the observer is to adjust the intensities of the three primary lights
(R, G and B lights) to make a colour that looks identical to the bipartite of the test
light [78, 102]. In this example, R, G and B are set to, respectively, the intensities r,
g, and b in order to make a visual match. In Figure 3.1, we seek a filter, shown in red
in front of the camera (though the filter colour is not a priori specified), so that the
RGBs of the camera multiplied by matrix M record the same triplets as the observer
does under the same viewing geometry. That is the camera ‘sees’ the mixture of the
light intensities a human observer would use to make a match.

The colour matching experiment is of direct practical importance. Indeed, suppose a
display device can output three colours equal to the R, G and B stimuli used in the colour
matching experiment. It follows that a camera that had sensitivities equal to CIE RGB
colour matching functions would see the correct RGBs to drive the display that would
result in a perceptual match to the test light. Equally, it would suffice that camera’s
sensitivities were linearly related to the CMFs since we could linearly transform the
camera measurements to the correct RGB to drive the display. Of course, we note that -
unlike the RGB colour matching functions - we can only drive the putative display with
positive numbers. Consequently, there are real world colours that cannot be reproduced
on displays.

Later in this chapter, we will show that for a given sensor set, the best filter and best lin-
ear mapping in the minimisation of (3.1) can be found together by solving an alternating
least-squares (ALS) regression problem. To quantify the improvement in colour mea-
surement for a given camera afforded by a colour filter, we calculate the Vora-Value [88]
before and after correction. Remarkably, we find that some cameras become ‘nearly’
colorimetric. We also evaluate the colorimetric performance via a colour correction ex-
periment using a set of measured spectra in terms of the error metric ∆E∗

ab [103], with
and without a filter.
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3.2 The Luther Condition

Let us denote individual camera and XYZ responses as ρ and χ. We can use a camera
to exactly measure colours if and only if there exists a function such that g(ρ) = χ for
all spectra. It follows that if a pair of spectra, c1 and c2, integrates to the same RGB,
then this pair must also integrate to the same XYZ tristimuli:

cT1 Q = cT2 Q ⇒ cT1 X = cT2 X. (3.2)

where Q and X denote respectively the discrete spectral sensitivities of the camera and
the XYZ CMFs. The columns of matrices Q and X represent the spectral sensitivity for
each sensor channel and the rows represent the sensor responses at a sampled wavelength.

Equation (3.2) implies that cT1 − cT2 is simultaneously in the null space of Q and X.
Since any spectrum in the null-space of Q is a physically plausible spectral difference,
this implies that the null-spaces of Q and X are the same and this in turn implies the
Luther condition [52]:

X = QM (3.3)

where M is a 3×3 full rank matrix mapping the camera sensitivities to the human visual
system. See [36] for the original proof of the Luther condition (which we precis above).

3.3 Luther-Condition Filter Optimisation

We propose a modified Luther condition where a camera is said to be colorimetric if there
exists a physically realisable filter which, when placed in front of the camera, generates
effective sensitivities which are a linear transform from the XYZ CMFs.

Let us rewrite (3.1) in the discrete domain. First, let us establish the notation. Let
Q and X denote respectively the spectral sensitivities of a digital camera and the CIE
XYZ colour matching curves and both are 31 × 3 matrices. Let a 31-vector f denote
the sampled equivalent of the continuous filter function f(λ). Let diag(f)Q denote the
discrete equivalence of f(λ)Q(λ). The diag() operation converts a vector into a diagonal
matrix (the vector components appear along the diagonal). Mathematically, fi, the ith
component in f multiplies the ith row in Q. That is, the three camera sensitivities at the
ith wavelength are multiplied by the same value. The diagonal matrix operator allows
us to express component-wise multiplication.
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Specifically, using the notation, we propose that the filter that best matches the Luther
condition can be found by minimising:

min
f,M
∥ diag(f)QM−X ∥2F s.t. f > 0. (3.4)

M is a 3 × 3 correction matrix. We minimise the square of Frobenius norm ∥ ∥2F (i.e.
the sum of squares error) subject to the constraint that the filter value is larger than 0
(physically, we cannot have a filter that has negative transmittance).

We do not have to constrain the maximum transmittance because we can only solve for
f and M up to an unknown scaling factor. Indeed, suppose the filter f is returned where
the max transmittance is larger than 1. The fitting error in (3.4) is unchanged if we
divide f by its maximum value (resulting in a max transmittance of 100%) so long as we
multiply the corresponding correction matrix M by the same value.

3.3.1 Algorithm for Solving the Luther Optimisation

However, there is no closed form solution to (3.4). Rather we solve for f and M using
a technique called Alternating Least-Squares (ALS) regression. Promisingly the alter-
nating least-squares method is guaranteed to converge (although not necessarily to the
global optimum) [106].

To ease notation, we define F = diag(f) and write FQ. When we wish to extract the
vector f from the diagonal matrix F, we write f = ediag(F) (‘e’ signifies to ‘extract’ the
diagonal). The algorithm is shown in Algorithm 3.1.

Algorithm 3.1 ALS algorithm for Luther-condition optimisation
1: i = 0,F0 = Finitial,M0 = I3
2: repeat
3: i = i+ 1
4: min

Mi
∥ Fi−1QMi −X ∥2F

5: min
Fi
∥ FiQMi −X ∥2F

6: until ∥ FiQMi − Fi−1QMi−1 ∥2F < ϵ
7: fLuther = ediag(Fi) and M = Mi

The operator
∏

denotes matrix multiplication. In ALS algorithm, we make an initial
guess of the filter Finitial and solve for M (Step 4). Then we hold M fixed and solve
for F (Step 5). Taken together we estimate a new ‘corrected’ (partial solution) spectral
sensitivities. We repeat this process until convergence (the method is guaranteed to
converge). The filter and then the linear transform - are solved using simple, closed-form
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least-squares estimation. For completeness we provide details of how these calculations
are made in the Appendix A.1.

At each iteration, the filter and linear transform - Fi and Mi - are calculated relative
to the previous i − 1 filters and matrices. It follows in Step 7 that the final solution
is the multiplication of all the per-iteration solutions: fLuther = ediag(

∏i
s=1 Fs) (where

ediag() means to extract the matrix diagonal and forms a vector) and Mj =
∏i

s=1 Ms.

3.3.2 Filter Positiveness

Notice nowhere in the above procedure do we constrain the filter transmittance to be
greater than 0 (even though this constraint is in the optimisation statement). Empiri-
cally, we found that the optimised filter is always positive for all the cameras we tested
(see the experimental results in Section 3.4). Moreover, we prove in Theorem 3.1 pre-
sented below that when there exists a filter which makes the camera sensors perfectly
colorimetric that the filter has to be everywhere positive.

The theorem is presented for continuous spectral sensitivity functions. As such, we write
the XYZ CMFs and camera sensitivities as vector functions: X(λ) and Q(λ).

Theorem 3.1. If there exists an exact solution f(λ) for MTQ(λ)f(λ) = X(λ), and the
variable λ is defined over the domain where X(λ) > 0 and Q(λ) are continuous (and
full rank ), then f(λ) > 0.

Proof. First we remark on the continuity of the camera and XYZ functions. Both are the
result of physical processes which are continuous in nature. To our knowledge, it is not
possible to make a physical sensor system that captures light which has discontinuous
sensitivities. And, in terms of physiological systems, biological sensor response functions
are always continuous.

Next, if f(λ) < 0 across all wavelengths and MTQ(λ)f(λ) = X(λ), then −MTQ(λ) ∗
(−f(λ)) = X(λ). In this case −f(λ) must be all positive and so an all-positive filter
can be found. The interesting case to consider is when the filter has both negative and
positive values.

Clearly the 3×3 matrix MT must be full rank otherwise the mapped camera sensitivities
would be rank deficient and therefore could not model the CMFs. Equally, multiplying
by a filter does not change the rank of the sensor set. Because, by assumption Q(λ)

are continuous it follows that f(λ) must also be a continuous function since otherwise
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MTQ(λ)f(λ) would be discontinuous (multiplying a continuous and discontinuous func-
tions together, save for the case where one of the functions is everywhere 0, results in a
discontinuous function).

As f(λ) is continuous if the function has both negative and positive values there must
be at least one wavelength λv where f(λv) = 0 and so MTQ(λv)f(λv) = 0. But, this
cannot be the case since the XYZ colour matching functions are not all zero at any given
wavelength within the defined domain.

Of course, the theorem is written in the continuous domain. How does this theorem work
given discrete data, e.g. 10 nm samples across the visible spectrum? Pragmatically, we
have found that the recovered filters are always all positive, for the discrete case. And,
of course – by linear interpolation, for example, we can turn non-continuous data into
continuous functions. Then, by the theorem if there is an exact filter correction then
this filter must be all positive. And, the filter must also work at the original sample
points (be all positive here too). Remember, the theorem does not teach how to find
the all-positive filter only that if exact colour correction is possible the filter must be all
positive. For linearly interpolated discrete data the filter must be all positive.

3.4 Results

3.4.1 Luther-filters

The optimal Luther-filters for a group of 28 commercial cameras (the camera data set
described in Section 2.3) are derived. The camera spectral sensitivities are known as
a priori. These cameras have a clear deviation from the Luther condition, see [41]
for further detail. For each camera, a specific filter and a linear transformation were
calculated solved using Algorithm 3.1 developed in the last section.

Figure 3.2c displays an example of colour filter calculated for a Canon 40D camera whose
spectral sensitivities are plotted in Figure 3.2a. The relative spectral transmittance
values are positive in the range between 0 and 100%. Multiplying the Canon 40D
sensitivities by this filter (and linearly fitting to the XYZ colour matching functions),
we arrive at the comparison shown in Figure 3.2d (solid for the XYZ colour matching
functions and dotted for the approximation). The filter corrected sensitivities are almost
the same as the XYZ colour matching functions. In contrast, Figure 3.2b shows the
native camera spectral sensitivities fitted directly to the XYZs. Visually, we can see
that with the addition of our derived filter, the closeness of the spectral sensitivity fit is
remarkable and thus makes the camera much more colorimetric.
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(a) camera sensitivity curves (b) native camera after linear fitting

(c) optimised Luther-filter (d) filtered camera after linear fitting

Figure 3.2: (A) shows the spectral sensitivities of a Canon 40D camera. (B) shows the
least-squares fit of the camera curves (in dashed lines) to XYZ colour matching functions
(in solid lines). With a specially designed colour filter shown in (C), the least-squares
fit of the camera spectral sensitivity curves multiplied by the filter - shown in (D) - is
much closer to the XYZ colour matching functions.

Readers will notice that the filter shape has a steep gradient at the short wavelengths
and so likely not easy to manufacture. Further, across most of the wavelengths the filter
absorbs most of the light. This need not be a problem for colour measurement as we
can increase exposure time, for example. Though, it does mean that the camera with
and without the filter would, for the same recording conditions, capture significantly
less light. And, this could result in an increase in the noise in the final image output by
a camera reproduction pipeline. Indeed, if we deploy this filter - and keep the capture
conditions the same - we would need to ‘scale up’ the recorded values and this operation
also scales up the noise. Effectively, we capture an image at a higher ISO number. The
role of noise and the shape of the filter will be addressed in Chapter 6.
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Table 3.1: Performance of cameras with LUTHer-condition optimised filters versus
the NATive sensitivities with no filter applied in terms of Vora-Value and NRMSE
(note that higher Vora-Value but lower NRMSE value indicate better performance)

.

Vora-Value NRMSE

Individual Camera NAT LUTH NAT LUTH

Canon 40D 0.932 0.986 0.298 0.062

Nikon D90 0.888 0.945 0.374 0.104

Canon group 0.938 0.987 0.285 0.062

Nikon group 0.921 0.944 0.316 0.108

Whole camera set 0.918 0.961 0.317 0.092

3.4.2 Evaluation of Spectral Fitting

To quantitatively measure the spectral match between the filtered and linear transformed
camera sensors and the desired XYZ colour matching functions, we adopt the measures
of Vora-Value [88] and the Normalised Root-Mean-Square Error (NRMSE).

The Vora-Value measures the closeness between the spaces of two imaging systems.
Given a set of filter sensitivities set Q and the colour matching functions X, it is defined
as

ν =
1

3
trace(QQ+XX+) (3.5)

where trace() is a matrix operator that sums up the terms along the diagonal of a matrix
and + is the Moore-Penrose inverse, explicitly Q+ = (QTQ)−1Q. We refer the reader to
[88] where the derivation and significance of Vora-Value as a useful tool for quantifying
the colour measurement potential of a set of colour filters are justified.

The Vora-Value returns a number between 0 and 1 meaning respectively not colorimetric
at all and 100% colorimetric (that the Luther condition is fully satisfied). While there is
not a guide on what different Vora-Values mean, generally a highe Vora-Value indicates
a better colour performance, see Figure 3.3b where the correlation between the Vora-
Values and mean colour errors is shown. Empirically we found that a sensor system with
a Vora-Value above 0.9 captures colours that a 3 × 3 matrix can correct to XYZs to a
tolerable perceptual error (e.g. the colours will look mostly correct and the visual error
will be acceptable). A Vora-Value above 0.99 is indicative of a camera that is almost
colorimetric, i.e. to all practical purposes will sense the real-scene colours like we do.
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(a) NRMSE vs Vora-Value (b) Vora-Value vs mean ∆E∗
ab

Figure 3.3: Correlations between (A) NRMSE and Vora-Value and (B) Vora-Value
and mean ∆E∗

ab.

We also evaluate spectral fitness in terms of the normalised spectral fitness error and is
defined as:

NRMSE =
∥ X−QQ+X ∥F

∥ X ∥F
. (3.6)

where we calculate the the Frobenius norm of the spectral difference between the cor-
rected camera sensitivity functions and the desired CMFs and normalised by that of the
CMFs.

Let us first look at some camera examples before reviewing the results collectively. In
Table 3.1, we look at the Vora-Value and NRMSE performance - with and without their
optimised Luther-filters solved using Algorithm 3.1 - after the linear correction. Note
that Vora-Value and NRMSE have an inverse correlation, see Figure 3.3a. In our study,
we aim for higher number for Vora-Value but lower number for NRMSE.

In the table, NAT denotes the native camera without a filter and LUTH denotes
the camera with a Luther-optimised filter. The first two rows of the table show the
performance of 2 typical DSLR cameras each from a well-known brand. Then we look
at the average performance of the Canon subgroup (with 10 Canon cameras) and Nikon
subgroup (with 9 Canon cameras). Finally, the average performance over the whole
data set of 28 cameras is summarised. We repeat this methodology for NRMSE. In
terms of Vora-Value, the Canon 40D camera which was originally 0.932 becomes 0.986.
The NRMSE reduces from 0.2980 to 0.062, reduced by nearly 80%. By applying this
colour filter and linear mapping, Canon 40D camera becomes almost colorimetric. As for
Nikon D90, good improvement is made as the NRMSE is reduced by two thirds, yet the
Vora-Value is not improved as remarkably as Canon 40D. Taken as a subgroup, Canon
cameras can be filter-corrected to become colorimetric more readily than Nikon cameras.
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Figure 3.4: Spectral match to the Luther condition by unfiltered NATive camera
sensitivities and filtered LUTHer-condition optimised sensitivities for a group of 28
cameras in terms of Vora-Value. The overall average Vora-Values of the camera group
for both conditions are shown in the green box.

The corrected Canon cameras have Vora-Values of 0.972 at least, with an average value
as high as 0.987 for the whole subset compared to 0.944 of the Nikon subgroup.

Collectively, the Vora-Value performance for a set of 28 digital cameras [41] - with and
without their optimised Luther-filters - are shown in Figure 3.4. The Vora-Value for
the unfiltered, NATive sensitivities are shown in blue and for the LUTHer-condition
optimised sensitivities in red. The average results across the camera set is listed in the
last bar within the green box. On average, the native Vora-Value is 0.918 but when
the optimised filter is added it increases to 0.961. We can conclude that spectrally all
cameras are improved to some extent in terms of NRMSE and Vora-Value.

3.4.3 Colour Measurement Experiment

Now let us evaluate the derived Luther-condition filters (solved using Algorithm 3.1)
in terms of a perceptually relevant colour measurement metric. The error metric ∆E∗

ab

[65] calculates the distance between two colour vectors in the CIELAB colour space and
returns a single number that roughly correlates with the perceived difference between
two colours. One ∆E∗

ab corresponds approximately to a ‘Just Noticeable Difference’
to a human observer [103]. When ∆E∗

ab is less than 1, we say that the difference is
indiscernible to the visual system.

Here we wish to evaluate how well the RGBs measured by a camera can be corrected
to match XYZs and how much this colour correction performance is improved when
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Table 3.2: ∆E∗
ab statistics of the colour corrected NATive camera and the colour

corrected camera with the LUTHer-condition optimised filter for Canon 40D camera
under different lighting cases

Mean Median 90% 95% 99% Max

CIE D65

NAT 1.65 1.03 3.55 4.94 11.23 19.29

LUTH 0.46 0.25 1.09 1.45 3.49 5.90

CIE A

NAT 2.30 1.44 4.65 6.17 16.96 26.41

LUTH 0.64 0.40 1.33 1.84 4.75 8.19

102 illuminants

NAT 1.72 1.02 3.68 5.12 12.94 28.39

LUTH 0.53 0.30 1.15 1.65 4.11 6.83

a coloured filter is placed in front of the camera. For each camera (native and filter
corrected), we calculate the RGBs under a single light of CIE D65 and CIE A standard
lights [65], as well as a collection of 102 lights, for the SFU reflectance set of 1995 spectra
[6]. We then find the optimal least-squares linear correction to best map to ground-truth
XYZs. We then calculate the mean, median, 90 percentile, 95 percentile, 99 percentile,
and maximum of ∆E∗

ab over the test data set.

3.4.3.1 Single-light Case

Let us use the Canon 40D camera spectral sensitivities as a putative measurement
device and quantify how well it can measure colours - with and without a filter. In this
experiment the measurement light is either a CIE D65 (bluish) or a CIE A (yellowish)
illuminant. For reflectances, we use the SFU set of 1995 spectra [6] (itself a composite
of many widely used sets). The 1995 XYZs for these reflectances under the specific light
are the ground-truth with respect to which we measure colour error.

Using the Canon camera sensitivities, the reflectance spectra and either the CIE D65
and A lights we numerically calculate two sets of 1995 RGBs. Now, we linearly regress
the RGBs for each light to their corresponding ground-truths (we map the native RGBs
for CIE D65 and A to respectively the XYZs under the same lights). We call these
colour corrected RGBs the NATive camera predictions (and we adopt this notation in
the results shown in Table 3.2). Row 1 and Row 3 of Table 3.2 report the mean, median,
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90, 95 and 99 percentile and maximum CIELAB ∆E∗
ab errors for CIE D65 and CIE A

lights.

Now let us place a filter in front of the camera. Again, we calculate two sets of RGBs (one
for each light) for the camera spectral sensitivities multiplied by the filter found using
the Luther-condition optimisation (Algorithm 3.1). The recorded filtered RGBs are
mapped best to corresponding XYZs using linear regression. The LUTHer ∆E∗

ab error
statistics are shown in Row 2 and Row 4. It is clear that placing a Luther-condition filter
substantially increases the ability of the camera to measure colours accurately. Across
all metrics the ∆E∗

ab errors reported are about a third of those found when a filter is
not used.

3.4.3.2 Multiple-light Case

We now repeat the experiment for a set of 102 measured lights [6]. The results of this
second experiment are shown in the last 2 rows of Table 3.2. Here, the reported error
statistics are averages. For each illuminant - as described in the single light case above -
we calculate the mean, median, 90 percentile, 95 percentile, 99 percentile and maximum
∆E∗

ab. That is, we calculate six error measures for 102 lights. We then take the mean
of each error statistic over all the lights.

In terms of the reported errors of the raw RGBs compared to the filtered RGBs for
the Luther-filters, we see the same data trend for the multiple lights case as we saw
previously for single lights. A Luther-condition derived filter reduces the measurement
error by 2/3, on average.

3.4.3.3 Multiple Cameras

Now, we calculate the mean ∆E∗
ab error (for the 102 lights and 1995 reflectances) for

each of 28 cameras. For each camera, we calculate the optimal Luther-filters. Per
camera, Figure 3.5 summarises the mean and 95 percentile ∆E∗

ab performance. Grey
bars show, respectively, the mean and 95 percentile error performance of NATive (un-
filtered) colour corrected RGBs for the 28 cameras. Respectively, the green lines record
the performance of the best Luther-filters.

It is evident that, whichever statistic is employed, the optimised filters support more than
half of the cameras in the testing group with significant improvements in their colour
measurement ability. This is an interesting result since it shows that within the range of
manufacturable sensors there are sets which can be made much more colorimetric with
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(a) mean ∆E∗
ab colour error

(b) 95-percentile ∆E∗
ab colour error

Figure 3.5: (A) Mean and (B) 95-percentile ∆E∗
ab errors for 28 cameras. The grey-

bars show the colour errors for NATive colour correction. The green lines with red
diamonds show the results by using the LUTHer-condition optimised filters.

the addition of a coloured filter. And these cameras could then be used in applications
where accurate colour measurement is needed.

Additionally, the Luther-filter method works particularly well on some of the cameras.
However, when reviewing the cameras individually, a few cameras like Nikon D40 and
Sony Nex5N, are not improved by a prefilter in terms of the colour errors, despite the
fact that all cameras better approximate the Luther condition (with smaller NRMSE
and higher Vora-Value) with optimised filters. There are two possible reasons. Firstly,
our filters are not straightly designed to minimise the colour errors in the CIELAB colour
space. A better approximation to the Luther condition does not necessary improves the
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performance in terms of colour errors. Furthermore, in the Luther-condition method,
we focus on the sensitivity functions of the cameras and assume that the colour spectra
that the camera measures are equally distributed (or mathematically, they are identical
and independent distributed). However, the real-world colour signals are not arbitrary
which will results in the failure in terms of the colour performance. We will show in
Chapter 5 that when the real spectra are taken into account, these cameras become
significantly more colorimetric.

Discussion

Note, we make a distinction between using a camera for colour measurement and for mak-
ing visually pleasing images. Here, we are interested in using a camera to measure XYZ
tristimuli (or measures like CIE Lab values that are derived from tristimuli [65]). From
a measurement perspective, we need higher tolerances and a higher Vora-Value. Clearly,
from the point of view of making attractive images cameras that have Vora-Values less
than 0.95 can work very well. Indeed, many of the 28 cameras with Vora-Values less
than 0.95 can still take images that look appealing from a photographic perspective.
But, commercial cameras are not suitable vehicles for accurate colour measurement.

3.5 Conclusion

In this chapter, we develop a method to find the best coloured filter such that when
placed in front of a camera, its new effective spectral sensitivities best match the Luther
condition (and become most colorimetric). Experiments demonstrate that applying our
optimised filters to the testing cameras provides a step change in how well a camera can
measure colour and often makes a camera ‘almost’ colorimetric. By adding such a filter
for a digital camera can result in a dramatic improvement in its ability to see the world
colorimetrically.

The following chapter will design the colour filter using the Vora-Value as the optimi-
sation criterion, a more general measure that exploits the geometric perspective of the
sensitivity ‘closeness’ between a camera and the human visual system. We will also show
the mathematical connection between the Luther condition and the Vora-Value.



Chapter 4

Vora-Value Filter Design and its
Relation to Luther Condition
Filter Optimisation

In Chapter 3, we solve for a colour filter that when placed in front of the camera would
make the camera best satisfy the Luther condition. Curiously, the Luther-filter optimi-
sation solves for a filter using the XYZ colour matching functions (CMFs) of the human
visual system as the reference sensitivity set. However, depending on the target sensi-
tivity set (any linear combination of the CMFs can be an eligible option, such as the
cone fundamentals) , a different optimal filter is found. The fact that there are multiple
optimal answers, perhaps, points to a weakness in the optimisation statement? In this
chapter, we will seek a filter by using the Vora-Value [88], under which best matches all
possible target spectral sensitivity sets (e.g. any linear combination of the XYZ CMFs).

4.1 Introduction

The Vora-Value is a goodness measure for a set of sensitivity functions for colorimetric
measurement. For the camera application, it measures the similarity between the vector
spaces spanned by the spectral sensitivities of a camera and the XYZ colour matching
functions underpinning the human visual system.

We visualise the concept in Figure 4.1. In blue, we show the vector space spanned by the
sensitivity functions of the Human Visual Space (HVS). These sensitivities might be the
cone fundamentals or equivalently the XYZ CMFs (we say ‘equivalently’ because these

44
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Figure 4.1: A visualisation of the vector spaces of camera (in red), filtered camera
(in green), and the human visual system (in blue). A colour stimulus is projected to
each of the space. We aim for the filtered camera space to be as closely as possible to
the human visual space such that the colour it records can better predict that of the
human visual response.

sensitivity sets are linearly related [20, 80] and both sets span the same vector space).
Similarly, the camera spectral sensitivities - shown in red - span a different vector space.

When we place a filter in front of a camera, the new effective spectral sensitivities span
a new vector space, shown in green in Figure 4.1. Our aim is to set forth a method for
finding a filter that makes the filtered sensitivities span a subspace (the green vector
space) as close as possible to the human visual space (the blue vector space). The
Vora-Value optimisation has the advantage that the best filter is related to the target
sensitivity basis and not fixed coordinates (e.g. the XYZ CMFs) with respect to that
basis.

Let’s start to make some of this intuition more concrete. First, let us introduce a little
notation. We denote respectively the spectral sensitivities of the camera and the human
visual sensors as matrices Q and X. Again, these two matrices are 31× 3 matrices with
each row of sensitivity responses at a given wavelength. Note the columns of X could
be the CIE XYZ colour matching functions or any function set thereof.

The blue and red planes in Figure 4.1 - for the human visual system and camera sen-
sitivities, respectively - visualise the vector spaces spanned by Q and X. By span we
mean the set of all spectra we can generate by taking linear combinations of the columns
of Q (or X). The matrix Q (or X) spans a 3-dimensional vector space contained in the
31-dimensional space. So, how do we evaluate the closeness (or otherwise) of two vector
spaces spanned by the column vectors of Q and X?
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Usually, when we compare quantities, they are in correspondence. So far the idea of
vectors spanning a subspace has been quite abstract. The key to comparing vector spaces
is defining a method of placing spectra generated in one vector space in correspondence
to matching spectra in another. Let us generate a 31-dimensional spectrum s. Returning
to Figure 4.1, for the stimulus s, we find the corresponding (projected) spectra, sQ and sX

in the vectors spaces spanned by Q and X that are closest to s. We denote the projection
of s onto the camera vector space Q as sQ = P{Q}s [16]. Similarly, we denote the spectral
sensitivities of a camera with a filter, F, placed in front as FQ and the corresponding
projected spectrum as sFQ = P{FQ}s. Finally, the corresponding projection onto the
human visual space X is denoted sX = P{X}s.

And, given these corresponding spectra, we can calculate their distance: ||sQ− sX||2. By
generating lots of random spectra - the values of which are independent and identically
distributed - drawn from 31-dimensional space, we can calculate the mean difference
between their projections to the spaces spanned by Q and X. This projected spectral
error (after normalisation) - calculated over all possible spectra - is our definition of
subspace similarity.

This reasoning leads to a simple, closed-form, vector space similarity formula that cal-
culates a number in [0,1]. Intuitively, it is kind of a percentage measure of how similar
two vector spaces are. Actually, to this point, our reason is (perhaps with a slightly
different emphasis) a retelling of the derivation of the Vora-Value [88]. The Vora-Value
is a measure of how well a camera’s RGBs can be (linearly) corrected to colorimetric
counterparts (under the so-called Maximum Ignorance Assumption [27] which posits
that all spectra are equally likely).

In colour science, the Vora-Value is a single number in the interval of [0,1] which reports
how close a camera’s spectral sensitivities are to the human visual subspace (HVS) [87].
We will utilise the Vora-Value as an optimisation criterion to design the optimal filter
for a given camera and is solved by using a gradient ascent algorithm. We also recast the
gradient-ascent Vora-Value approach so that we can use Newton’s method [11] (which
includes 2nd derivatives) to speed up the optimisation.

Experiments demonstrate that the Vora-Value optimised colour filter can dramatically
increase the colorimetric accuracy across a large set of commercial cameras.

From an algorithmic viewpoint, the Luther and Vora-Value optimisations are quite dif-
ferent from one another. The Luther condition optimisation is solved using a simple
alternating least-squares procedure which converges quickly. The Vora-Value optimisa-
tion, however, has a more complex derivation for the gradient ascent approach. The



Chapter 4 Vora-Value Filter Design and its Relation to Luther Condition Filter
Optimisation 47

Vora-Value optimisation converges less quickly, though arguably to a better overall an-
swer (because of the basis independence property of the Vora-Value).

Apart from the Vora-value filter optimisation, another important result we will present
in this chapter is to prove that if we choose to optimise the Luther condition using
not the XYZ CMFs but a linear combination which is orthonormal, then we are in fact
optimising the Vora-Value. This means we can use the quicker-to-converge Alternating
Least-Squares (ALS) optimisation to find the best Vora-Value filter. An additional
advantage of the ALS method is that it is easier to add constraints into the problem
formulation than to do so for the Vora-Value approach, which will be further explained
in Chapter 6.

The rest of the chapter is structured as follows. In Section 4.2, we review the definition
of the Luther condition and Vora-Value. There, we also introduce the concept of or-
thonormal basis which will underpin our optimisation methods. In Section 4.3, we show
how we design our filter that the new effective camera system maximises the measure
of Vora-Value and also the algorithm used to solve for the optimal filter. In Section 4.4,
we show the close relation between the Luther- and Vora-Value optimisations based on
which a unified filter design method is proposed. After a simple modification in the op-
timisation, the discovered Luther-filter is also the filter that maximises the Vora-Value.
Experimental results are reported in Section 4.5. Section 4.6 concludes the chapter.

4.2 Background

4.2.1 The Luther Condition under Linear Transform

The Luther condition states that the spectral sensitivity curves of the camera sensors
are a linear combination of the CIE XYZ CMFs. Let Q = [r, g,b] and X = [x, y, z] denote
respectively the spectral sensitivities of the camera and the CMFs of the human visual
sensors. Mathematically, the Luther condition is written as

X = QM (4.1)

where M is a 3× 3 matrix. Equivalently we write:

XT1 = QT2M′ (4.2)

where T1, T2 and M′ are 3×3 full rank matrices. Clearly, given (4.1), then M′ = (T2)−1MT1.
That is, the Luther condition does not depend on the particular basis used; we can map
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camera sensitivities to XYZs, cone functions or any linear combination thereof. This is
a key property that we will return to in Section 4.4.

4.2.2 The Vora-Value

The Vora-Value is often used to measure how similarly a camera samples the spectral
world compared to the human visual system. Mathematically, it measures the geometric
closeness between the vector spaces spanned by the spectral sensitivity functions of a
camera and a human observer. The Vora-Value is a number between 0 and 1. When
the Vora-Value is 1, the camera subspace shares the same vector space with the human
visual subspace and this means the camera is colorimetric. Therefore the camera RGBs
can be corrected to the XYZ tristimulus values within a linear transform. Contrastingly,
a Vora-Value of 0 means the two vector spaces are perpendicular to each other. It means
the camera is completely unsuited for the colour measurement task.

Given a camera sensor set Q and the trichromatic human visual sensors X, the Vora-
Value is defined [90] as

ν(Q,X) =
1

3
trace

(
Q(QTQ)−1QTX(XTX)−1XT

)
, (4.3)

Again the superscripts T and −1 denote the matrix transpose and inverse, respectively,
and trace() returns the sum of the elements along the diagonal of a matrix

This representation can be written in a more compact way when we used the notation
of matrix projector. The projector of a matrix, such as Q, is defined as

P{Q} = Q(QTQ)−1QT , (4.4)

thus we can rewrite the Vora-Value in a more compact way as

ν(Q,X) =
1

3
trace(P{Q}P{X}) (4.5)

where P{Q} and P{X} denote the projection matrices respectively of the camera spectral
responses and the human visual sensitivities, respectively.

Projector matrices often occur in least-squares regression. For example, finding y in the
classic regression problem Ay ≈ b has a closed form solution. The linear combination of
the columns of A that solves the least-squares regression is written as: y = (ATA)−1ATb,
which makes the least-squares approximation Ay = A(ATA)−1ATb = P{A}b (the pro-
jector of A multiplied by b).
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Figure 4.2: Three sensitivity sets: cone fundamentals, a set of orthonormal basis, and
the CIE 1931 XYZ colour matching functions. These sensitivity sets are all linearly
related and span the same Human Visual Space.

4.2.3 Orthonormal Basis

In an n-dimensional vector space, a basis is a set of n linearly independent vectors.
Linear independence of the basis ensures that any vector in the vector space can be
expressed as a linear combination of the basis vectors (see Figure 4.2). We say the
basis spans the vector space. There are many sensitivity sets in a vector space and, by
definition, they are all linear transform apart and share the same basis.

Let V = [v1, v2, v3] denote a special linear combination of X that is orthonormal, i.e.
V = XT where T is the linear mapping matrix. Orthonormality implies that its columns
are unit vectors and also perpendicular to each other. Mathematically, we write VTV =

I3 (I3 is the 3× 3 identity matrix) [54]. The orthonormal matrix V can be obtained by
many methods, e.g. the Gram-Schmidt process and QR factorisation [31].

By simple substitution into the matrix projector in (4.4), we can express projector
matrices (and the Vora-Value) in a simpler algebraic form:

P{X} = P{V} = VVT . (4.6)

This suggests that any linearly related matrix shares the same projector matrix. Hence,
the Vora-Value formula is, by construction, independent of the basis that describe the
camera and the HVS.

Orthogonal basis of the colour matching functions is a useful tool for studying problems
in colour science, such as the design of the optimal spectral sensitivities [62, 87, 101],
error propagation [54, 87, 107], and metamer colours [16, 17].



Chapter 4 Vora-Value Filter Design and its Relation to Luther Condition Filter
Optimisation 50

4.3 Vora-Value Filter Optimisation

Here we formulate the filter design problem by using the criterion of Vora-Value. The
filter-modified Vora-Value optimisation for the effective ‘filter+camera’ system can be
written as

arg max
F

ν(FQ,X) =
1

3
trace(P{FQ}P{X}). (4.7)

Incorporating the explicit equation for the projector matrix as (4.4), we have

arg max
F

ν(FQ,X) =
1

3
trace

(
FQ(QTF2Q)−1QTF XXT

)
. (4.8)

Note in writing this equation, we made use of the fact that FT = F (diagonal matrices
are symmetric).

4.3.1 Gradient Ascent for Solving the Optimisation

So far we have concerned ourselves with formulating the filter design problem, that is,
writing down what it is we wish to solve for. Now, we wish to present the mechanics
of how we optimise for the filter. Henceforth we will concern ourselves solving for the
filter with maximising the Vora-Value in this section. Moreover, presenting the gradient
method is a necessary step for us to present a much faster algorithm: the Newton’s
method [11].

For a given filter, we can calculate its Vora-Value. The set of all Vora-Values can be
thought of as a hilly landscape. By calculating the derivative (how the Vora-Value
changes) when the filter is modified in certain directions, we can choose to take a small
step in a direction that increases the Vora-Value.

We maximise the objective function in the usual calculus way by first finding the deriva-
tive of the Vora-Value function and then updating F by moving in the direction of the
gradient (and in so doing we increase ν). It can be shown - step-by-step derivation
details given in Appendix A.2.1 - that the derivative of ν calculated with respect to F
is calculated as:

∂ν

∂Fjj
=

2

3
[(I− P{FQ})P{V}P{FQ}F−1]jj . (4.9)

Equivalently, the gradient of the objective function in terms of the underlying filter
vector - remember f = ediag(F) - can be written as

∇ν(f) = 2

3
ediag

(
(I− P{FQ})P{V}P{FQ}F−1

)
(4.10)
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where the gradient with respect to the filter vector, ∇ν(f), is a 31 × 1 vector. It is
evident that the gradient function has a very interesting structure: it is the diagonal of
the product of three projection matrices multiplied by the inverse of the filter at hand.
We will come back to this interesting feature later.

Gradient Ascent Algorithm

The simple Gradient Ascent algorithm for finding the filter solution of the optimisation
is shown below (see Algorithm 4.1). Note that we use the term ‘gradient ascent’ (but
not the more familiar term ‘gradient descent’) because we are maximising our objective
function.

Algorithm 4.1 Gradient Ascent for solving the optimisation
1: k = 0, f0 = finitial

2: repeat
3: Compute the gradient: ∇ν(fk)
4: Choose a step size: tk > 0

5: Update fk+1 := fk + tk∇ν(fk)
6: k ← k + 1

7: until max(|∇ν(fk)|) ≤ η

8: return fk.

The algorithm works by updating the current filter at step k to a new filter at step
k + 1. At step k we calculate the gradient and then update according to: fk+1 = fk +

tk∇ν(fk). The term tk is the step size (a small positive value) which controls how far
the filter should move towards the direction of the gradient. However, it does not teach
directly how far we should move that leads to the fastest ascent. If we add too much
of the gradient we can step over the maximum and never reach the maximum point.
The simplest approach would be to set tk to a small fixed number. But, in this case,
the optimisation will take a long time to converge. To make convergence quicker, we
adaptively choose the stepsize. Here the step size changes per iteration and is chosen by
the backtracking line search method [11]. We refer the reader to [64] for more details.

By choosing to modify the filter step-wise – at each step seeking to go further up the
hill – we modify the filter until we are on the hill top. Of course, there is nothing in
the gradient ascent method that guarantees that we will find an optimal solution to the
filter design problem. At minimum, we will certainly, arrive at a filter that is better
than the initial guess (e.g., the 100% do-nothing filter f = [1, 1, · · · , 1]T when the filter is
fully transmissive). And, as we present later, we find a very good filter to our problem.
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4.3.2 Newton’s Method for Solving the Optimisation

Often simple gradient ascent is slow to converge. A better way to tackle the optimi-
sation is to adopt the Newton’s method when the second derivative (i.e. the Hessian
matrix) of the objective function can be computed. Newton’s method uses the curva-
ture information (second derivative) of the objective function and generally is faster to
converge, typically it has a quadratic convergence speed compared to linearly for gra-
dient approach. When a neighborhood of the optimal solution is reached, often in just
a few iterations a solution with adequately high accuracy can be achieved. Describing
the details of how the Newton’s method works is beyond the scope of this thesis - but
see [64] for a review - we will rather describe how it is used and report the Hessian we
calculate for the filter design problem.

The Hessian for the filter design problem is a 31 × 31 matrix (assuming 31 sample
wavelengths) and is denoted ∇2µ. The term ∇2

ij denotes the partial derivative δ2µ
δfiδfj .

The Hessian for our problem is calculated as:

∇2ν =− 4

3

(
P{FQ}F−1

)
◦
(
(I − P{FQ})P{V}P{FQ}F−1

)
+

2

3

(
F−1P{FQ}F−1

)
◦
(
(I − P{FQ})P{V}

)
+

2

3

(
(I − 2P{FQ})P{V}P{FQ}F−1

)
◦
(

P{FQ}F−1
)

+
2

3

(
F−1P{FQ}P{V}P{FQ}F−1

)
◦ I

(4.11)

where ◦ denotes the Hadamard product (or elementwise product) of two matrices. The
step-by-step derivation is given in Appendix A.2.3.

Newton’s Method Algorithm

Newton’s method for the problem of filter design is encapsulated in Algorithm 4.2.
Here, given an initial guess finitial, we choose a stepsize after calculating the gradi-
ent and Hessian. Again step-size is tackled using the backtracking line search pro-
cedure [11]. Later we update the filter solution by using its gradient and Hessian:
fk+1 := fk − tk[∇2µ(fk)]−1∇µ(fk). The algorithm will keep refine the filter until a stop-
ping criterion is met. Here we simply use an empirically determined maximum iteration
number (e.g. 1000) when the algorithm is well converged.

As we will see in the experiment section, the Newton’s method converges much more
quickly than the gradient ascent. However, the cost of implementation is significant.
Here the 31 × 1 gradient and 31 × 31 Hessian must be calculated at each step in the
iteration. More onerously the inverse of the Hessian must also be calculated (a compu-
tationally non-trivial operation).

In fact, the Newton’s method we present above has a potential issue. In order to use
the Newton’s method, the Hessian must be positive definite. But, our Hessian is in
fact only positive semi definite. We can update our optimisation to make the Hessian
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Algorithm 4.2 Newton’s method for solving the optimisation
1: k = 0, f0 = finitial

2: repeat
3: Compute the gradient and Hessian: ∇µ(fk) and ∇2µ(fk)
4: Choose a stepsize: tk > 0

5: Update fk+1 := fk − tk[∇2µ(fk)]−1∇µ(fk)
6: k ← k + 1

7: until stopping criterion is satisfied
8: return fk

positive definite and this modification is discussed indirectly next (when we look at the
relationship between the Vora- and Luther-optimisations). Ultimately, we get to (4.24)
and this defines the Hessian that we actually use.

In the next section, we propose a slightly different formalism of the Luther condition
optimisation (proposed in Chapter 3). And this has a penalty term on the norm of the
filter (we seek a filter the transmittance values of which do not vary too sharply across
the visible spectrum). This will also be the key to making the Newton’s method work
in practice.

4.4 The Modified-Luther Condition Optimisation

Below we reformulate the problem of Luther condition optimisation with three important
modifications and will later show how the Luther condition can be connected to the Vora-
Value optimisation. The first change we make is to use an orthonormal basis set of the
CMFs as the target (rather than the CMFs themselves). This step will help elucidate the
similarity between optimising a filter to best meet the Luther condition (The equation in
(4.2) assures the Luther condition still holds within linear transform) and to maximise
the Vora-Value. Second, we recast the optimisation as a gradient ascent optimisation
(and study the Newton formulations). Third, to ensure the well foundedness of the
formulation - and to bound the shape of the filter - we add an additional regularisation
term that constrains the filter.

4.4.1 Modified Luther Condition Filter Design

As we commented earlier, the Vora-Value and Luther optimisations return different
optimal filters. Here we will present a modified Luther condition optimisation which,
ultimately, maximises the Vora-Value and so serves to unify the two filter design method-
ologies.
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Mathematically, we formulate the modified Luther-condition optimisation as

arg min
F, M

µ(F, M) = ∥ FQM−V ∥2F + α||F ||2F (4.12)

where V denotes an orthonormal basis of the CMFs and the subscript ∥ ∥F denotes the
Frobenius norm. Note that here we do not constrain the filter to be positive although
a physical filter should have positive transmittance values. We remove this constraint
because we found that, empirically, our method always returns an all-positive filter solu-
tion. Here we use the symbol µ to denote the objective function with the regularisation
term. Clearly, ∥ FQM−V ∥2F is the core optimisation: we wish to find F (the filter)
such that the filtered sensitivities are approximately a 3 × 3 linear transform M from
the orthonormalised CMFs, here V. The second term in the optimisation is the squared
norm of the filter where α ≥ 0 is a penalty term defined by the user. As α becomes
large, the optimisation must effectively choose a filter whose norm is smaller. Small
norm filters tend to be smoother and less jaggy. We say that the scalar α regularises
the optimisation.

The regularisation term in the optimisation makes it tilt towards a filter with lower
transmittance values over those with higher transmittance values. Indeed, a filter that
has a value of 1% at every wavelength has a lower norm than one which transmits
100% of the light at every wavelength. However, we argue that this is not a problem.
Remember that in the core optimisation, F and M are recovered up to a scaling factor,
i.e. αF and 1

αM is an equally good solution. Viewed through the lens of this scaling
indeterminacy, the filter that reflects 1% of light is equally efficacious as the one that
transmits 100%. Pragmatically, because we know this scaling indeterminacy exists, we
always scale the optimised filter so that its maximum transmittance value is 100%.

Importantly, the regularisation term usefully pushes the optimisation towards recovering
smoother filters. A very jaggy filter with an average transmittance of (say) 50% has a
much higher norm than one that has a uniform 50% transmittance across the spectrum.
Jaggy filters are harder to manufacture so penalizing their discovery in the optimisation
makes sense. In Chapter 6, we show how we can add more explicit constraints on the
shape and transmittance properties of the filters that we design.



Chapter 4 Vora-Value Filter Design and its Relation to Luther Condition Filter
Optimisation 55

4.4.2 Equivalence of the Modified-Luther and Vora-Value Optimisa-
tions

We begin by considering the special case of α = 0 in (4.12):

arg min
F, M

∥ FQM−V ∥2F . (4.13)

Suppose we are given the filter matrix F, then, employing the closed-form Moore-Penrose
inverse solution to the least-squares [31], the best M is obtained

M = ((FQ)TFQ)−1(FQ)TV. (4.14)

Here we see that the best linear mapping M in the Luther-condition optimisation of
(4.12) is essentially a function of the unknown variable matrix F. By multiplying this
newly solved M with FQ, we have

FQM = FQ((FQ)TFQ)−1(FQ)TV = P{FQ}V (4.15)

That is, we pre-multiply the orthonormal basis for the XYZs, V, by the projector for
FQ (see (4.4) for the definition of a projector matrix).

Substituting into (4.13), the optimisation can be rewritten as

arg min
F

∥ (P{FQ} − I)V ∥2F (4.16)

where I is the identity matrix. Equation (4.16) has the advantage that the optimisation
depends only on the filter F.

Theorem 4.1. By minimising ∥ (P{FQ} − I)V ∥2F , we maximise v(FQ,X).

Proof. We will use the following identities derived from some basic properties of the
matrix trace operator and matrix projection:

1. trace(ATA) = ||A||2F

2. trace(AB) = trace(BA)

3. trace(A + B) = trace(A) + trace(B)

4. P{A}P{A} = P{A}, idempotency of projectors

5. P{A} = (P{A})T, the projector is symmetric.

6. trace(P{A}) = rank(A)



Chapter 4 Vora-Value Filter Design and its Relation to Luther Condition Filter
Optimisation 56

Using axiom 1, we rewrite the formula in (4.16) as

arg min
F

∥ (P{FQ} − I)V ∥2F = arg min
F

trace
(

VT(P{FQ} − I)T(P{FQ} − I)V
)

(4.17)

Now, we carry out some algebraic manipulation of the argument of (4.17). Using axiom
2 for moving VT to the other side and known from (4.6), P{X} = VVT, we rewrite

∥ (P{FQ} − I)V ∥2F = trace
(
(P{FQ} − I)T(P{FQ} − I)P{X}

)
(4.18)

Manipulating the above expression using the properties of projector matrix (axioms 3
through 5), we obtain

∥ (P{FQ} − I)V ∥2F = −trace(P{FQ}P{X}) + trace(P{X}) (4.19)

Using axiom 6, clearly in (4.19), trace(P{X}) is a positive constant given the known ma-
trix X. Therefore, we minimise the derived expression by maximising trace(P{FQ}P{X}).
Thus, we can write:

arg min
F

∥ (P{FQ} − I)V ∥2F ≡ arg max
F

trace(P{FQ}P{X}) (4.20)

From the definition of Vora-Value, we know ν(FQ,V) = 1
3 trace(P{FQ}P{X}). We

conclude:
arg min

F
∥ (P{FQ} − I)V ∥2F ≡ arg max

F
ν(FQ,V) (4.21)

In summary, we have shown that a least-squares procedure that finds a filter that - in
combination with a linear least-squares mapping (see (4.13) through (4.16)) - best fits
an orthogonal basis of the colour matching functions (i.e. minimises the fitting error)
must simultaneously maximise the Vora-Value.

Here we have proved the optimisation equivalence; however, the filter solutions found by
the ALS and gradient algorithms can be different as we will show in the experimental
results. The paths these two algorithms taking to a converged solution are different.
The mathematical details of how the filter solution is updated in each iteration in both
algorithms are given in Appendix A.2.2. We show both their similarity and difference
that these two algorithms converge in a similar way but have different convergence rate.
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4.4.3 Gradient and Hessian for the Regularised Optimisation

In (4.22), we reformulate the filter design optimisation that we aim to minimise (instead
of to maximise as for the Vora-Value optimisation):

µ(FQ,X) = −trace(P{FQ}P{X}) + α||F ||22. (4.22)

In contrast to the Vora-Value optimisation, we reverse to the negative and cancel the
fractional scalar in the equation. Here we use the symbol µ to denote the new objective
function with a regularisation term to distinguish from ν for the Vora-Value. The penalty
term that we introduce here is the squared norm of the filter where α > 0.

Clearly, we have ∇µ(f) = −3∇ν(f) + 2αf. The gradient of the regularised optimisation
is calculated as

∇µ(f) = −2 ediag
(

F−1P{FQ}P{X}(I− P{FQ})
)
+ 2αf. (4.23)

Similarly, we can derive the Hessian matrix for (4.22) and its explicit expansion can be
obtained as
∇2µ =− 4

(
P{FQ}F−1

)
◦
(
(I − P{FQ})P{V}P{FQ}F−1

)
+ 2

(
F−1P{FQ}F−1

)
◦
(
(I − P{FQ})P{V}

)
+ 2

(
(I − 2P{FQ})P{V}P{FQ}F−1

)
◦
(

P{FQ}F−1
)

+ 2
(

F−1P{FQ}P{V}P{FQ}F−1
)
◦ I + 2αI

(4.24)

where the last term relates to the regularisation term. Because the inverse of Hessian
drives the Newton’s method, it is essential the Hessian has full rank. We prove in
Appendix A.2.4 that the Hessian is positive definite when a non-zero multiple, α, is
added to the identity matrix and thus the Hessian matrix is invertible.

4.5 Results

4.5.1 Vora-filters

Actually, as we prove the equivalence of the modified Luther optimisation and Vora-
Value optimisation, we have only one optimisation in hand. We name the derived
optimal filters as Vora-filters (in contrast to the Luther-filters in Chapter 3).

The optimal Vora-filters for a Canon 40D and a Nikon D80 DSLR cameras are shown in
Figures 4.3 and 4.4 respectively. In the figure, the maximum transmittance of the filters
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are normalised to 100%. The spectral sensitivities of the testing cameras are plotted in
Figures 4.3a and 4.4a for reference. When using the algorithms for solving for the filters,
we use a regularisation value of α = 0.01 in the Newton’s method and α = 0 in the ALS
and gradient algorithms. On the left, we show the filter solutions derived from three
solvers. Specifically, the optimal filters obtained using the ALS (Algorithm 3.1) in green,
the gradient algorithm (Algorithm 4.1) in blue and the Newton’s method (Algorithm 4.2)
in red. We can see that these three algorithms find very similar (almost the same) filter
solutions for both cameras. So much so that you can only see the difference of the
transmittance values at the ends of the visible spectrum. Otherwise the graphs are on
top of one another.

As readers will see in Figures 4.3 and 4.4, the optimised filters have sharp ‘spiked’
peaks in the short wavelength range (and also the long wavelength range for Nikon
D80 camera). This result at first glance may seem to be surprising but is actually
not unexpected. Both cameras, Figures 4.3a and 4.4a, have little sensitivity at the
ends of the visible spectrum and as consequence to locally change the shape of the
effective sensitivities (filter multiplied by camera) necessitates spikes of the kind shown.
Surely it is with difficulty to manufacture of filters with spikes as shown (if they can be
manufactured at all). The problem will be addressed in Chapter 6.

4.5.2 Comparison of Algorithm Performance

Although these algorithms find highly similar filter solutions, there are significant dif-
ferences in how they converge. In Figure 4.5, we show how many iterations it takes
these three algorithms to converge (here we show the results of the Canon 40D camera).
We evaluate their performance at each iteration in terms of two different error metrics:
Vora-Value in Figure 4.5a and mean ∆E∗

ab in Figure 4.5b.

We use the same data set and calculation process as described in Section 2.4 for calcu-
lating the colour error metric ∆E∗

ab. The mean ∆E∗
ab used is calculated by averaging

the colour error results over the reflectance set under all 102 illuminants.

The performance of the ALS, gradient, Newton’s method algorithms are respectively
shown in green, blue and red lines in Figure 4.5. We can see that the Newton’s method
(red) converges slower in the first few iterations but quickly speeds up to arriving at the
optimal solution. It takes less 10 iterations for a well-converged solution. Comparatively,
for the same Vora-Value target, the numbers of iteration that ALS (green) and gradient
(blue) algorithms need are, respectively, in the magnitude of 102 and 103 iterations.
These two algorithms converge much slower, especially when approaching the optimal.
In terms of running time for finding the optimal filter for a given camera, it takes about
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(a) camera spectral sensitivities (b) by ALS

(c) by Gradient Ascent (d) by Newton method

Figure 4.3: (A) Spectral sensitivities of Canon 40D camera and the optimised filters
solved from the algorithms: (B) Alternating Least-Squares (in green), (C) Gradient
Ascent (in blue) and (D) Newton’s method (in red).

0.1 second for the ALS algorithm and 0.85 second for the gradient algorithm compared to
0.009 second for Newton’s method in Matlab R2018b on a desktop PC (Intel Core i5 64-
bit operating system). We would like our readers recall that Newton’s method generally
costs much more computationally, particularly for calculating the second derivative and
its inverse. In contrast, the ALS method has a much simpler form which uses least-
squares regression solved simply by the closed-form Moore-Penrose inverse [31].

4.5.3 Vora-Values and Colour Measurement Experiment

Now we evaluate the performance of our optimised filters based on Vora-Value opti-
misation and compare to the prior method of Luther-condition based optimisation in
Chapter 3. For convenience, the two filter design methods are noted as Vora-filter and
Luther-filter hereafter, respectively. To be crystal clear, the experimental results we
show for the Luther method is from the algorithm developed in Chapter 3 where we find
the best filter making a camera best match the XYZ CMFs (under a linear transform).
That is, the results do not report the modified Luther optimisation (which, of course,
returns the same result as the Vora-Value modification).
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(a) camera spectral sensitivities (b) by ALS

(c) by Gradient Ascent (d) by Newton method

Figure 4.4: (A) Spectral sensitivities of Nikon D80 camera, the optimised filters solved
from the algorithms: (B) Alternating Least-Squares (in green), (C) Gradient Ascent
(in blue) and (D) Newton’s method (in red).

Table 4.1: ∆E∗
ab statistics of the colour corrected NATive camera without filter,

the colour corrected camera with the optimised LUTHer-filter and VORA-filter for
Canon 40D and Nikon D80 cameras.

Method
Canon 40D Nikon 80D

Vora- colour errors ∆E∗
ab Vora- colour errors ∆E∗

ab

Value mean median 95% 99% max Value mean median 95% 99% max
NAT 0.932 1.72 1.03 5.12 12.94 28.39 0.888 1.95 1.14 6.30 13.14 38.43
LUTH 0.986 0.44 0.22 1.48 3.19 8.77 0.945 1.39 0.87 4.49 7.35 11.43
VORA 0.991 0.38 0.20 1.23 2.97 9.89 0.967 0.81 0.50 2.72 4.66 8.40

Note that the results of Vora-filter reported here relate to the filter solved by using the
ALS algorithm as it has simpler forms (than the gradient ascent or Newton algorithm
for the Vora-Value formulation) for implementation and obtains a filter solution with
almost no difference to the other two algorithms. We also include the results of the
native camera without a filter (denoted NATive) to establish the baseline results. The
Vora-Value results are presented for both cameras Table 4.1. It is clear that with filters
optimising for the Luther condition, both deliver a higher Vora-Value (unsurprisingly,
but a good test that our new Vora-Value method works).
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Figure 4.5: Algorithm convergence in terms of (A) Vora-Value and (B) mean ∆E∗
ab.

From Table 4.1, we can see that the current Vora-filter for Canon 40D improves the
Vora-Value to 0.991 from 0.932 for its unfiltered NATive sensor sensitivities and higher
than 0.986 by the prior art of the Luther-filter. Similar gain can also be seen for Nikon
80D camera on the right part of the table. Generally, a higher Vora-Value indicates
greater similarity of the vector spaces spanned by the sensitivities of a camera and
human visual system and therefore relates to substantially higher accuracy in colour
measurement [88].

Now we examine the performance of our derived filters in the colour measurement exper-
iment. We use the same data set and calculation process as described in Section 2.4. The
colour error statistics are shown in columns 3-7 for Canon and columns 9-13 for Nikon
in Table 4.1. We can see that the filters from the current optimisation performs the
best (when no constraint is added). Compared to the baseline results, for both testing
cameras, we can conclude that by using such optimised filters, we can effectively reduce
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Figure 4.6: Results of Vora-Values for a group of 28 cameras: NATive sensitivities
without a filter (in neutral), the LUTHer-filters (in blue) and the VORA-filters (in
red). The overall averaged Vora-Values of the camera group are given in the last column.

the colour errors by two thirds to three quarters. Compared to the Luther-filters,
we see that a marginal improvement in Vora-Value score leads to a notable increase in
colour performance: a further 10% reduction.

Now, we extend the experiments to a much broader group of 28 digital cameras with
known spectral sensitivity data set. For each camera, we solve for the optimised filters
given the corresponding spectral sensitivities. The Vora-Value performance for 28 cam-
eras - with and without their optimised filters - are shown in Figure 4.6. The Vora-Value
for the unfiltered NATive camera sensitivities are shown in chevroned grey bars and
for the Luther-filters in blue and the new Vora-filters in red. It can be seen that the
current optimised filters have the highest Vora-Value scores. The overall results, aver-
aged across the whole camera group, are depicted in the rightmost bars. We see that,
on average, the native Vora-Value is increased from 0.918 to 0.963 (Luther-filters) and
0.976 (Vora-filters) when the optimised filters are placed. Unsurprisingly, the current
filter method Vora-filters outperforms the prior art Luther-filters for most cameras.

Now we calculate the mean ∆E∗
ab error (using the same illuminant and reflectance data

sets) for 28 cameras. For each camera, we calculate its colour performance of how
well it can predict the ground-truth values using the linear correction - both with and
without a filter - in terms of ∆E∗

ab error metrics. We calculate the optimal Vora-filters
and Luther-filters for each individual camera. Figure 4.7 summarises the mean and
95-percentile ∆E∗

ab performance for each camera in the data set. Grey bars show the
mean and 95 percentile error performance of unfiltered colour corrected RGBs for the
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(a) mean ∆E∗
ab colour error

(b) 95-percentile ∆E∗
ab colour error

Figure 4.7: (A) Mean and (B) 95-percentile ∆E∗
ab errors for 28 cameras. The grey-

bars show the colour errors for NATive cameras simply use colour correction without a
filter. The results by using the LUTHer-filters and VORA-filters are in dashed green
lines and solid red lines respectively.

28 cameras. The dashed green and solid red lines record the performance of the best
Luther-filters and Vora-filters, respectively.

Clearly, by using optimised filters we have greatly improved colour measurement for all
28 cameras and on average the performance increment is significant. Our current op-
timised Vora-filters deliver significantly better colour measurement performance com-
pared with using the prior art of the Luther-condition optimised filters.
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4.6 Conclusion

In this chapter, we have presented a unifying filter design method based on the under-
lying relation between the Luther condition and the Vora-Value. We show the optimal
filter targeting at these two objectives can be simultaneously achieved. Hence, we can
find an optimised Vora-filter that in the least-squares sense, also optimises the Luther
condition. We have developed three algorithms to solve for the best filter, i.e. alternating
least-squares(ALS), gradient ascent and Newton’s method. We also find that the ALS
approach has competitive performance compared to Newton’s method and has a much
simpler formulation. Experiments validate our method.

Both filter design methods presented in the last two chapters are data-independent with
no a priori knowledge of the measuring spectra data. In the next chapter, we will present
a data-dependent filter design method driven by the real-world measured spectra.



Chapter 5

Data-Driven Filter Design

In this chapter, we reformulate our filter design optimisation for making the camera
responses as close to the CIE XYZ tristimulus values as possible given the knowledge of
real measured surfaces and illuminants data. The problem is formulated as a bilinear
least-squares estimation problem (linear both in the filter and the colour correction) and
can be solved using an Alternating Least-Squares (ALS) regression technique (in which
the two unknown matrices are iteratively solved).

5.1 Introduction

Mapping the device RGBs measured by a camera to either display coordinates (such as
sRGB) or the XYZ tristimuli - a human vision system referenced colour space - is called
colour correction. Colour correction is an essential procedure in the camera pipeline
since cameras do not ‘see’ the world as humans do. Fundamentally, this is because the
relationship between the spectral sensitivities of a camera and human visual matching
functions is not a linear mapping. Explicitly, the Luther condition is not satisfied [52].

Many different algorithms for solving the colour correction problem have been developed
in the literature. The most common method is to apply a linear correction transform
mapping RGBs to XYZs (or display RGBs). While linear correction generally works well,
it can still fail in a large number of cases, especially for saturated colours. In order to
address this issue, polynomial regression methods were introduced by additionally con-
sidering the correlation and auto-correlation between sensor channels [35]. Polynomial
and local mapping methods can target more complex colour problem or optimisation
aspects, e.g. to correct spatial [48] and intensity non-uniformity [26], to preserve hue
attribute [3, 55], to map one or two essential surfaces correctly [28], or to achieve bet-
ter perceptual performance [85]. However, Finlayson et al. [29] pointed out that most
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polynomial methods present the exposure issue, i.e. results can be affected by exposure
changes. Indeed, given two input RGBs, ρ and kρ, the outputs of colour correction are
q and kq if it is exposure invariant. For this reason, they proposed the root-polynomial
regression method to retain the exposure-invariant feature and their proposal outper-
formed most polynomial-type methods. Apart from regression approaches, methods
like look-up-tables [37] and recently artificial neural networks [13, 104] have also been
proposed for colour correction.

Inspired by the idea of using a colour filter for improving colorimetric ability [25], in
Chapter 3, we propose a filter design method for a given camera system in the colour
matching sense such that the whole system is almost colorimetric. The results of Luther
condition based filter design provide impressive spectral match, yet did not show any
striking improvement in colour correction for some Nikon cameras (as seen in Figure 3.5).
We hypothesise the reason is that the optimisations presented so far in the thesis do not
take account of the spectral characteristics of actual reflectance and illuminant spectra.

In this chapter, we follow the philosophy of altering the camera sensitivities using a
prefilter, but to exploit the colorimetric capability for a given camera system in a colour
correction way. That is, rather than spectral sensitivity matching, this method builds
upon the system outputs by considering the colour formation process. A camera still
holds the colorimetric characteristic if its outputs regarding to the scene under certain
lighting condition are equal to the human visual responses, even somehow the camera
sensitivity flouts the Luther condition.

Suppose Q(λ) denotes the spectral sensitivity functions of a camera system and X(λ)

denotes the observer colour matching curves respectively. Physically, the role of a filter,
which absorbs light on a per wavelength basis, is multiplicative. If f(λ) is a transmittance
filter, then f(λ)Q(λ) is a physically accurate model of the effect of placing a filter in
front of the camera sensor. Then an explicit colorimetric error by applying a filter in a
least-squares meaning can be modelled as:

min
f(λ),M

∥ [
∫
Ω
E(λ)S(λ)f(λ)Q(λ)dλ]M−

∫
Ω
E(λ)S(λ)X(λ)dλ ∥2F (5.1)

The spectral power distribution of a light source coming into the object is represented
by E(λ) while the object reflectance as S(λ). The subscript ∥ ∥F denotes the Frobenius
norm. The two integration operations over the visible range Ω (from 400 nm to 700 nm)
in the above equation refer to the system responses of a camera and a human observer
respectively. Detailed explanation of colour formation can be found in Section 2.2. In
the above optimisation equation, f(λ) defines the physical feature of the designed filter,
i.e. the spectral transmittance, and M is a 3× 3 linear transform matrix.
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Figure 5.1: Schematic diagram of colour measurement for an object viewed under an
illuminant given their spectral representations. Given the spectral data of the measured
objects, we seek a filter for a camera such that the RGB outputs after a linear mapping
become the same as the XYZ tristimulus values.

Figure 5.1 visualises the formulation problem of a camera system with a prefilter (shown
as a red ellipse for illustration) and an observer under a given viewing condition over a
standard colour chart (the two sensing systems should be placed under the same viewing
geometry in reality). Our aim is to seek a filter for a corresponding camera, so that the
device output RGB values after a linear correction M predict the closest triplets as
possible as a CIE standard observer.

In this chapter, we formulate a filter design driven by the actual measured spectra data
that best approximates a colorimetric system, and develop an algorithm to solve this
optimal filter and mapping matrix. In order to quantify the colorimetric performance,
we calculate the CIELAB colour difference – ∆E∗

ab – between the new system outputs
and reference XYZ values [103] . A comparison of linear colour correction, Luther-filter
method and the current method will be made. You will see a dramatic improvement in
terms of perceptual colour error results using this new method.

Experiments demonstrate that we can find Data-driven filters that can dramatically
increase the colorimetric accuracy across a large set of commercial cameras.

5.2 The Data-driven Luther Condition

The Luther condition for spectral sensitivities presupposes that any and all physical
spectra are plausible. However, we know that reflectance spectra are smooth [14, 46, 93].
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Lights while more arbitrary are designed to integrate to fall near or close to the Planckian
locus [65] and to score well on measures such as the Colour Rendering Index [10].

Let Q and X denote the sensitivity functions of the camera and XYZ responses in
discrete manner, the columns of which are the spectral sensitivity of each sensor channel.
Also, let C denote a collection of n colour spectra in the n × 31 colour signal matrix.
Pragmatically, a camera is colorimetric if its responses are a linear transformation from
the XYZ tristimulus values

CTX = CTQM (5.2)

where M is a 3 × 3 matrix. Equation (5.2) is a Data-driven formulation of the Luther
condition.

5.3 Data-driven Filter Optimisation

Simple Case: in the simple Data-driven approach, we look for a colour filter and the 3×3
colour correction matrix that, in a least-squares sense, best maps camera measurements
for a training colour signal data set to the corresponding ground-truth XYZ tristimulus
values. Denoting an ensemble of n colour signals in the matrix C (in the size of n× 31

), the Data-driven optimisation in (5.1) is rewritten in the discrete representation as:

min
f,M
∥ CTdiag(f)QM− CTX ∥2F s.t. f > 0 (5.3)

Solving (5.3) depends on the structure of the colour signal matrix. If we choose C = I31
(the 31× 31 identity matrix), it simplifies into the Luther-condition optimisation. This
assumption is related to the Maximum Ignorance assumption [72] where all possible
spectra are considered equally likely.

General Case: Let us develop a more general optimisation statement. One, where we
have cnt colour signal matrices - denoted Cj (j ∈ {1, 2, · · · , cnt}) and the corresponding
cnt colour correction matrices Mj . Each colour signal matrix typically corresponds to a
training set of surface reflectances illuminated by a single spectrum of light Ej , thus the
colour signal matrix is Cj = diag(Ej)S, where S is a 31 × n matrix of reflectances, one
reflectance spectrum per column. But, the different light assumption is not a necessary
assumption. As an example, we might mix colour signals for the Maximum Ignorance as-
sumption with measured data (i.e. two colour signal matrices) where both measurement
sets contain multiple lights.
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The general Data-driven filter optimisation problem is written as:

min
f,Mj

cnt∑
j=1

∥ CT
j diag(f)QMj − CT

k X ∥2F s.t. f > 0 (5.4)

Finally, k could denote some other privileged standard reference viewing condition
(where the reference viewing illuminant is not in the set of training lights). For exam-
ple, in colour measurement, we are often interested in the XYZ tristimuli for a daylight
illuminant D65 which has a prescribed but not easily physically replicable spectrum.

In most cases, k = j; that is, per illuminant, we seek the filter such that real camera
responses can be mapped linearly to corresponding XYZ tristimuli (for that light).

5.3.1 ALS Algorithm for Solving the Optimisation

We are going to solve (5.4) for the filter f and the correction matrices using an alternating
least-squares procedure (although we make some necessary adjustments) as shown in
Algorithm 5.1.

Again to ease notation, we use F = diag(f) and write FQ. When we wish to extract f
from F, we write f = ediag(F) (‘e’ signifies to ‘extract’ the diagonal). Notice that the
input to the optimisation is an initial filter guess denoted by fseed. The seeding filter
can be a uniform filter with [1, 1, · · · , 1], the Luther-filter fLuther, the Vora-filter fV ora,
or any random filter. We will investigate the initialisation effect later in the Results
section.

Algorithm 5.1 ALS algorithm for the Data-driven optimisation
1: i = 0,F0 = diag(fseed),Q0 = F0Q
2: repeat
3: i = i+ 1
4: min

Mi
j

∥ CT
j Qi−1

j Mi
j − CT

k X ∥2F , j = 1, 2, ..., cnt

5: min
Fi

∑cnt
j=1 ∥ CT

j FiQi−1
j Mi

j − CT
k X ∥2F , fi > 0

6: Qi
j = CT

j FiQi−1
j Mi

j , j = 1, 2, ..., cnt

7: until ∀(j) ∥ Qi
j −Qi−1

j ∥2F < ϵ

8: fData = ediag(
∏i

s=0 Fs) and Mj =
∏i

s=1 Ms
j , j = 1, 2, ..., cnt

Let us consider three candidate minimisation conditions corresponding to three common
scenarios for colour measurement each of which can be solved using Algorithm 5.1.

1) Multiple Lights: Here we assume that j indexes over cnt illuminants and k = j (per
illuminant we make the target XYZs using the same colour signals). We find a single
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filter which given per-illuminant optimal least-square 3× 3 correction matrices will best
fit camera data to the corresponding multi-illuminant XYZs.

2) Multiple measurement lights, single target light: Again j indexes over cnt illuminants.
But, the target is a single illuminant, for example CIE D65 [65].

3) Single Light. This case is, in effect, the simple restriction of the general case, cnt =
1. We have one measurement light and one target light. Like the Luther-condition
optimisation, we solve for a single correction matrix.

In Algorithm 5.1, it is straightforward to solve for the jth colour correction matrix at
ith iteration, Mi

j , in Step 4 using the Moore-Penrose inverse. In Step 5, we find the
filter with positive values. It is important to note that from a physical perspective, the
transmittance of the filter must be within the range [0, 100%]. Here, to ensure that
the filter is all positive, we can solve for the filter by solving the optimisation subject
to the positivity constraint, we solve a quadratic programming problem [31] (unlike
the Luther-condition case there is no a prior mathematical argument as to why the best
filter should be all positive). Quadratic programming allows linear least-squares problem
subject to linear constraints to be solved rapidly and, crucially, a global optimum is
found. Details of the least-squares computation and its conversion into the quadratic
problem formulation are given in the Appendix A.3.

5.4 Results

5.4.1 Data-filters

Simple Case: We show the Data-filters optimised for a single illuminant - respectively,
a CIE D65 (bluish) or a CIE A (yellowish) illuminant - with a collection of 1995 surfaces
for a Canon 40D camera in Figures 5.2a and 5.2b. These filters are obtained by using the
optimised Luther-filters obtained from Chapter 3 to seed the Algorithm 5.1, ffeed =

fLuther).

General Case: We also show the optimised Data-filters optimised for general case
in Figure 5.2c: under 102 illuminants and 1995 object reflectances (again we use the
Luther-filters to seed the Algorithm 5.1, fseed = fLuther ).

Note that in order to simulate a physically reliable filter, we constrain its parameters in
the range of [0, 100%] and for the current method, the experimental results presented
here (in Table 5.1) are based on this constraint.
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(a) for CIE D65 (b) for CIE A (c) for multi-illuminants

Figure 5.2: Spectral transmittance of the optimised Data-drive filters for single illumi-
nant case (A) CIE D65 and (B) CIE A, and (C) multi-illuminant case of 102 illuminants
for Canon 40D camera.

5.4.2 Colour Measurement Experiments

Now let us evaluate the derived Data-filters in terms of a perceptually relevant colour
measurement reproduction metric.

Table 5.1: ∆E∗
ab statistics of the colour corrected NATive camera, the colour cor-

rected camera with the LUTHer-condition optimised filter, and the colour corrected
camera with the DATA-driven optimised filter for Canon 40D camera under different
lighting cases

Mean Median 90% 95% 99% Max

CIE D65

NAT 1.65 1.03 3.55 4.94 11.23 19.29

LUTH 0.46 0.25 1.09 1.45 3.49 5.90

DATA 0.38 0.20 0.93 1.25 2.45 4.62

CIE A

NAT 2.30 1.44 4.65 6.17 16.96 26.41

LUTH 0.64 0.40 1.33 1.84 4.75 8.19

DATA 0.43 0.25 0.99 1.44 2.63 3.84

102 illuminants

NAT 1.72 1.02 3.68 5.12 12.94 28.39

LUTH 0.53 0.30 1.15 1.65 4.11 6.83

DATA 0.41 0.21 0.96 1.32 2.78 6.78
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5.4.2.1 Single Light Case

Let us again use the Canon 40D camera spectral sensitivities as a putative measurement
device and quantify how well it can measure colours - with and without a filter. In this
experiment the measurement light is either a CIE D65 (bluish) or a CIE A (yellowish)
illuminant. For reflectances we use the SFU set of 1995 spectra [6] (itself a composite
of many widely used sets). The 1995 XYZs for these reflectance and lights are the
ground-truth with respect to which we measure colour measurement error.

Using the Canon camera sensitivities, the reflectance spectra, and either the CIE D65
and A lights, we numerically calculate two sets of 1995 RGBs. Now, we linearly regress
the RGBs for each light to their corresponding ground-truths (we map the native RGBs
for CIE D65 and A to respectively the XYZs under the same lights). We call these
colour corrected RGBs the NATive camera predictions (and we adopt this notation in
the results shown in Table 5.1). Rows 1 and 4 of Table 5.1 report the mean, median,
90, 95 and 99 percentile and the maximum CIELAB ∆E error for CIE D65 and CIE A
lights.

Now let us place a filter in front of the camera. Again, we calculate two sets of RGBs (one
for each light) for the camera spectral sensitivities multiplied by the filter found a Data-
driven colour filter. The recorded filtered RGBs are mapped best to corresponding
XYZs using linear regression. Results for the corrected DATA-driven filtered RGBs for
the two lights are reported in rows 3 and 6 of Table 5.1. For comparison, we also show
the results of optimised Luther-filters. The LUTHer ∆E∗

ab error statistics are shown
in rows 2 and 5.

Clearly, the ‘camera+filter’ can measure colours more accurately compared to the case
where a filter is not used. Across all metrics the ∆E∗

ab errors reported are about a
quarter of those found when a filter is not used.

Significantly, the best Data-driven filter also delivers improved performance compared
with the results reported for the Luther-condition optimised filter. The errors are further
reduced by about a quarter. Incorporating knowledge of typical lights and surfaces into
the optimisation leads to improved colour measurement performance.

5.4.2.2 Multiple Lights Case

We now repeat the experiment for a set of 102 measured lights [6] using the optimal filter
shown in Figure 5.2c. The results of this second experiment are shown in the last 3 rows
of Table 5.1. Here, the reported error statistics are averages. For each illuminant - as
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(a) mean ∆E∗
ab colour error

(b) 95-percentile ∆E∗
ab colour error

Figure 5.3: Mean (A) and 95-percentile (B) ∆E∗
ab errors for 28 cameras. The grey-

bars show the colour errors for NATive cameras simply use colour correction without
a filter. The dashed green lines with black diamonds show the results by using the
LUTHer-condition optimised filters. The results of the DATA-driven optimisation
are plotted in solid red lines.

described in the single light case above - we calculate the mean, median, 90 percentile,
95 percentile, 99 percentile and maximum ∆E∗

ab. We then take the mean of each error
statistic over all the lights. The aggregate illuminant set performance is reported in rows
7, 8 and 9 of Table 5.1 for respectively native RGBs and RGBs measured with respect
to Luther-condition and Data-driven optimised filters.

In terms of the reported errors of the native RGBs compared to the filtered RGBs for the
Luther- and Data-driven filters, we see the same data trend for the multiple lights case
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as we saw previously for single lights. The Data-driven filter reduces the measurement
error by 3/4, on average compared the native camera results.

5.4.2.3 Multiple Cameras

Now, we calculate the mean ∆E∗
ab error (for the 102 lights and 1995 reflectances) for

each of 28 cameras [41]. For each camera we calculate the optimal Luther-condition
and Data-driven optimal filters (where as before the Luther-condition filter seeds the
Data-driven optimisation). Per camera, Figure 5.3 summarises the per camera mean
and 95 percentile ∆E∗

ab performance.

Grey bars in Figures 5.3a and 5.3b show respectively the mean and 95-percentile error
performance of native (un-filtered) colour corrected RGBs for the 28 cameras. Re-
spectively, the dashed green and solid red lines record the performance of the best
Luther-filters and Data-driven filters.

It is evident that the optimised filters support improved colour measurement for all
28 cameras and on average the performance increment is significant. For many cam-
eras the Data-driven optimised filter delivers significantly better colour measurement
performance compared with using the Luther-condition optimised filter.

5.5 Conclusion

In this chapter, we developed a data-driven method that designs transmittance filters
which, when placed in front of a camera, make the camera more colorimetric. The
method tackles colour correction for a given set of measured lights and surfaces, which
we call Data-driven filter optimisation. Experiment results demonstrate that our Data-
driven optimised filters to the testing cameras provides further improvement compared
to the previous data-independent optimisations (i.e. the Luther-condition based opti-
mization method).

Our default optimisation - though compellingly simple to formulate - deliver filters which
are not smooth (difficult to make) and may also transmit very little light. In the next
chapter, we will reformulate our filter optimisations to incorporate both smoothness and
a lower bound on how much light must be transmitted so as to improve the feasibility
of our filters.



Chapter 6

Filter Constraints

In the last three chapters, we proposed three different filter design methods — named
Luther-filter, Vora-filter, and Data-filter respectively — for determining the optimal
spectral transmittance of a prefilter that makes the camera more colorimetric. However,
previous optimisation methods make no constraint on how should we shape the filters
across the spectrum (besides the positiveness for the physical feasibility).

In this chapter, we extend the filter optimisations by providing a method for incorporat-
ing smoothness and transmittance bounds into the same optimisation framework. While
finding the smooth filters, we also develop a multi-initialisation optimisation where we
use multiple initial filters to seed the algorithm. We will show that the solved filters
which are smooth and reasonably highly transmissive - and so plausibly manufacturable
- provide similar performance to the prior art of unconstrained minimisation.

6.1 Introduction

When we look at the optimised filters, Luther-filter in Figure 3.2c, Vora-filter Fig-
ures 4.3 and 4.4, and Data-filter Figure 5.2, clearly, the filters obtained in the previous
chapters are not desireable. For instance, the derived Luther-filter for Canon 40D shown
in Figure 3.2c, has a sharp change in transmittance in the short wavelengths, and as
a whole the filter is not smooth. Moreover, for most of the wavelength range, the fil-
ter transmits little light (<20%). By default, the filters found by using the algorithms
proposed in the previous chapters can be arbitrarily non-smooth (even with the regu-
larisation term introduced in Section 4.4.1 for the modified-Luther filter optimisation)
and it might also be very non-transmissive. Non-smoothness can limit the feasibility of
filter fabrication.

75



Chapter 6 Filter Constraints 76

Figure 6.1: An example of smooth filters constructed linearly by using 6-cosine basis
and also limited to transmit at least 20% of light at any wavelength, compared to the
optimised Data-filter without smoothness constraint.

In this chapter, we restrain the spectral transmittance shape of the colour filter regards
to its physical property. First, we extend the filter design to find a filter which is shaped
in a smoothing manner with plausible transmissivity. We take inspiration from the
work of Vora et al. [90] who emphasised the importance of the smoothness property of
the filter transmittance curves for the fabrication process. They proposed to construct
a smooth filter set by using linear combination of a set of smooth basis filters (e.g.
Gaussian functions). In our work, smoothness will be enforced by specifying filters as a
linear combination of the first few terms of the cosine basis expansion functions.

As well as being smooth, we may also wish a colour filter to transmit at least a lower
bound percentage of the light that passes though. Indeed, a filter with too low trans-
mittance values would perforce, have limited practical utility. When a dark filter (that
absorbs most of the light) is placed in front of a camera, we need to either increase the
exposure time (or widen the aperture) or choose a higher ISO to obtain an image with
the same light level as when no filter is applied. So, we will bound on the transmittance
values with enforced maximum and minimum values to increase the overall amount of
light that passes through the filters and enters into the camera. As a preview, in Fig-
ure 6.1, we present a smooth filter (in green) solved from the Data-driven optimisation
after adding the constraints.

We reformulate our optimisation framework to allow us to incorporate both the smooth-
ness and the minimum and maximum transmittance bounds of the recovered filter which
are key practical concerns. We will show that the reformulation can be seen as a linearly
constrained quadratic optimisation problem [49].
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All optimisation methods presented in this thesis and the extension on smooth and
bounded transmissive filters in this chapter are search based. While our empirical results
are encouraging (the filters we design make cameras much more colorimetric), we cannot
prove that the discovered filters are optimal. Indeed, they are not. If we initialise the
Alternating Least-Squares procedure (e.g. see Algorithms 3.1 and 5.1) with a different
starting point, we arrive at a different optimal filter. One of the advantages of our
approach to bounding the smoothness of the colorimetric filters is that we can enumerate
a coarse set of all smooth filters. And, with respect to this set, we can find the overall
optimal filter.

Experiments demonstrate that we can find physically realisable filters which are smooth
and reasonably transmissive which can greatly improve the colorimetric performance of
a camera and thus we can use the ‘camera+filter’ setting for applications where high
accuracy of colour measurement is needed.

6.2 Adding Filter Constraints

6.2.1 Smoothness Constraint

We would like to control the shape of the transmittance filter. Let us assume that a
filter is a linear combination of a set of m basis filters:

f = c1b1 + c2b2 + · · ·+ cmbm (6.1)

where b1,b2, · · · ,bm are smooth basis functions and c1, c2, · · · , cm are the coefficients
related to each basis vector. It is useful to represent the equation in the vector-matrix
representation as

f = Bc (6.2)

Here B = [b1,b2, · · · ,bm] is a 31 × m matrix with each column representing a basis
function and the vector c = [c1, c2, · · · , cm] contains m-component coefficients.

By judicious choice of basis, we can effectively bound the smoothness of the filter so-
lution. In this work, we adopt the discrete cosine series expansion [81] and take linear
combinations of the first m orthonormal basis - each basis vector has unit length and
is perpendicular to the other basis - to make smooth filters. In Figure 6.2 we show
a smooth filter example constructed by a linear combination of the the cosine basis
functions . Because the individual terms of the cosine basis are smooth, any linear
combination of this basis is also smooth.
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(a) 6 cosine basis functions (b) a smooth filter (c) a smooth filter with
transmittance bounds

Figure 6.2: (A) A set of 6-cosine basis functions, (B) a smooth filter example made
from linear combinations the basis functions, and (C) a smooth filter made from linear
combinations the basis functions and also bounded with min and max transmittances.

6.2.2 Transmittance Constraint

Let us denote the minimum and maximum filter transmittance bounds as:

fmin ⪯ f ⪯ fmax. (6.3)

The scalars fmin and fmax denote the lower and upper thresholds on the desired trans-
mittance of the filter; specifically, fmax is set to 100% by default as fully transmissive and
fmin is a positive value between 0 and 100%. The symbol ⪯ denotes the component-
wise inequality, i.e. every element in the filter vector follows fmin ≤ fi ≤ fmax, i =

1, 2, · · · , 31. Under these constraints, the filter transmittance should fall within the
range of the upper threshold fmax and the lower threshold fmin over the whole spec-
trum. Our desire is to let the filter overall transmit as much light as possible. We can
raise up the lower boundary fmin while keeping fmax = 100% (as fully transmissive).

We can also raise the overall transmittance by

1

31

31∑
i=1

fi ≥ favg (6.4)

where the scalar favg denotes the desired average transmittance value. That is, if we set
favg = 50%, when there comes the equal-energy light, then the filter will transmit at least
50% amount of the light. Equivalently, we can rewrite (6.4) in the vector representation
as

1

31
1T f ≥ favg (6.5)

where the uniform vector is 1T = [1, 1, · · · , 1].

The constraints introduced above can be added to the filter individually or combined.
In Results Section, we will show optimised filters under various combinations and levels
of controls.
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6.3 Filter Optimisation with Constraints

We mainly deploy the following combination where the target filter f can be represented
according to:

f = Bc, s.t. fmin ⪯ f ⪯ fmax (6.6)

where we enforce the optimised filter to be in the span of the column vectors of B
and also to meet the minimum and maximum transmittance constraints. The average
constraint in (6.4) is not added since when we raise up the minimum transmittance fmin,
we usually have a good average transmittance.

With respect to the constrained filter representation in (6.6), we can, respectively, rewrite
the filter design methods given in the Luther-condition based, Vora-Value, and Data-
driven optimisations.

6.3.1 Constrained Luther-Condition Optimisation

Let us rewrite the Luther-condition based filter optimisation in (3.4) under the following
constraints as

min
c,M
∥ diag(Bc)QM−X ∥2F s.t. fmin ⪯ Bc ⪯ fmax (6.7)

where the X denote the CIEXYZ colour matching functions.

6.3.1.1 Solving for Constrained Luther-filters

The optimisation in (6.7) has no closed-form solution. Although we can no longer use the
least-regressions to solve the filter directly, after some necessary changes being made, the
coefficient vector c and matrix M can still be solved following the iterative ALS scheme
given in Algorithm 3.1 which is used for solving the unconstrained filter optimisation.
Specifically, we solve for the filter coefficient vector c by holding the matrix M fixed
and alternatively using the newly solved filter to solve for the matrix M and the process
will continue updating both matrices in turn until it converges to a predefined error
threshold.

In the following, we will demonstrate how to in turn solve the filter and the correction
matrix for the new optimisation under constraints. Actually as pointed out in Section
5.3, the Luther optimisation can be seen as a particular case of the Data-driven method
(when the colour signal matrix is set to an identity matrix C = I31). We present
the detailed procedures here. The derivation given below is similar to that given in
Appendix A.3 but much simpler.
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Given a known coefficient vector c for the corresponding basis matrix B, the correction
matrix M can be solved by:

M = [QTdiag(Bc)diag(Bc)Q]−1QTdiag(Bc)X. (6.8)

In order to solve the filter given in (6.8), we need make changes to the optimisation
formulation. It is useful to vectorise the minimisation. The vectorisation, denoted
vec(), transforms a matrix to a vector by stacking its columns on top of one another.
By using the vectorisation, we can rewrite the minimisation as:

∥ vec
(
diag(f)QM

)
− vec(X) ∥2F (6.9)

Now let us rewrite the diagonal filter matrix as a summation of each value in the diagonal,
fi, with a single entry matrix Di as diag(f) =

∑31
i=1 fiDi. Di is a 31 × 31 matrix with

a single non-zero entry D(i, i) = 1. By substituting the filter matrix using this new
representation into (6.9), we obtain

vec
(
diag(f)QM

)
=

31∑
i=1

fi vec(DiQM) (6.10)

as the vectorisation operator and summation are commutative.

Denoting V = [v1, v2, · · · , v31] where each column is a vector of vi = vec(DiQM). Equa-
tion (6.10) can be expressed more compactly using matrix-vector multiplication as

vec
(
diag(f)QM

)
= Vf (6.11)

Note that DiQM has the size of 31× 3, so after vectorisation, each vector vi is a 93× 1

vector which makes the matrix V in size of 93× 31.

Denoting w for vec(X) and f = Bc, the Luther-condition filter optimisation under con-
straints can be rewritten as

min
c
∥ VBc− w ∥2F s.t. fmin ⪯ Bc ⪯ fmax (6.12)

As the Frobenius norm has the property of ∥ A ∥2F= ATA, the above minimisation can
be expanded and results in the form of a quadratic problem, subject to linear inequality
constraints:

min
c

cTBTVTVBc− 2wTVBc s.t. fmin ⪯ Bc ⪯ fmax (6.13)

where the scalar term wTw is omitted.
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In (6.13), we actually have two inequalities, i.e. Bc ⪰ fmin and Bc ⪯ fmax. In order to
convert (6.13) into the standard quadratic problem formulation [49] (which only allows
one inequality constraint), we make a simple modification:[

B
−B

]
c ⪯

[
fmax

−fmin

]
(6.14)

Now we can use the Quadratic Programming function to solve for the the filter coefficient
vector c. Finally, the filter solution can be calculated as f = Bc.

6.3.2 Constrained Vora-Value Optimisation

By substituting the new filter representation in (6.6) into the Vora-Value filter optimisa-
tion given in (4.7) – where the objective function ν(diag(f)Q,X) is maximised, we have
the explicit formulation as

arg max
c

trace
(
diag(Bc)Q[QTdiag(Bc)diag(Bc)Q]−1QTdiag(Bc)X[XTX]−1XT

)
s.t. fmin ⪯ Bc ⪯ fmax.

(6.15)

6.3.2.1 Solving for Constrained Vora-filters

The gradient technique can still be used for solving (6.15) with the optimal filter solution
under desired constraints.

Using the chain rule for f = Bc, the derivative of ν(diag(Bc)Q,X) with respect to c is
captured by:

∂ν(diag(Bc)Q,X)

∂c = BT ∂ν(diag(f)Q,X)

∂f (6.16)

or, equivalently in its explicit form of the gradient with respect to the filter f as

∂ν(diag(Bc)Q,X)

∂c = BT ediag
(
(I− P{FQ})P{X}P{FQ}diag(Bc)−1

)
(6.17)

where P{} denotes the projector of the matrix as defined in (4.6) and ediag() denotes the
extraction of the diagonal to form a vector. Of course, the filter also needs to satisfy the
transmittance bounds in the range of [fmin, fmax]. The gradient method with inequality
constraints can be solved by using the Projected Gradient Methods [9, 12].

In Section 4.4.2, we have shown the equivalence of the Vora-Value optimisation and the
modified Luther condition (when the orthonormal basis functions of the XYZ CMFs is
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used as the target set). The constrained Vora-Value optimisation can be alternatively
formulated as

arg min
c, M

∥ diag(Bc)QM−V ∥2F , s.t. fmin ⪯ Bc ⪯ fmax. (6.18)

This equation has the same formulation as the constrained Luther-condition filter op-
timisation in (6.7) only where V is used rather than the XYZ CMFs X. Therefore, we
could employ the same ALS procedures as introduced in the last section.

Compared to the gradient algorithm, the ALS algorithm is much simpler to implement
and converges more quickly to the optimal answer.

6.3.3 Constrained Data-driven Optimisation

With respect to the new filter representation, we rewrite the Data-driven filter design
optimisation in (5.4) as

min
c,Mj

cnt∑
j=1

∥ CT
j diag(Bc)QMj − CT

k X ∥2F , fmin ⪯ Bc ⪯ fmax (6.19)

6.3.3.1 Solving for Constrained Data-filters

The current minimisation can be solved using the same alternating least-squares paradigm
of Algorithm 5.1. But, in Step 5, we need to substitute the positive constraint fi > 0
with

fmin ⪯ diag(
i−1∏
s=0

fs)fi = Bci ⪯ fmax (6.20)

That is, the filter we find at the ith iteration when multiplied by all the filters from the
previous iterations is constrained to be in the basis B.

Looking at (6.20), we see that

fi = [diag(
i−1∏
s=0

fs)]−1Bci (6.21)

That is, effectively the basis for the ith filter changes at each iteration. Again we can
solve Step 5 subject to the constraints of (6.21) using Quadratic Programming.

Finally, we note that we could, of course, rewrite Algorithm 5.1 so that at each iteration,
we solve for a filter defined by a coefficient weight directly (we could solve for an m-term
coefficient vector rather than a 31-component filter). The two formalisms are equivalent.
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Here, we chose to solve for the per iteration filter for notational convenience: we can use
the general Data-driven algorithm and simply change how we calculate the per iteration
filter optimisation.

6.3.4 Multi-initialisation Conditions

Alternating least-squares is guaranteed to converge but it will not necessarily return
the global optimal result. But, it is deterministic. So, given the state of the correction
matrices and filter at the ith iteration, we will ultimately arrive at the same solution.

Equally, if we change the initialisation condition, fseed, in Algorithm 5.1, we may end up
solving for a different filter. Empirically, we observed that the Data-filters returned by
the data-driven algorithm depends strongly on the initial filter that seeds the optimisa-
tion, though there is little change for Luther-filters and Vora-filters. We will investigate
the effect of initialisation conditions for data-driven algorithm in details.

Let us consider 3 different ways to seed the Data-driven optimisation:

1) Default: fseed = 1. This uniform unit vector – [1, 1, · · · , 1]T in size of 31×1 – denotes
a fully transmissive filter over the spectrum.
2) Optimised-filter: fseed = fLuther or fseed = fV ora. We seed the Data-driven optimisation
with optimised filter, e.g. the Luther-filter found using Algorithm 3.1 or the Vora-filter
found using Algorithm 4.1.
3) By sampling: Here we find a set of sample filters F (which meet our smoothness and
transmittance boundedness constraints) and for each filter in the sample set, fseed ∈ F ,
we will run Data-driven in Algorithm 5.1.

Algorithm 6.1 generates #filters (number of initial filters)—subject to bounded smooth-
ness constraints—by uniformly and randomly sampling the filter coefficient space. Before
sampling, the algorithm first finds the min and max values of the coefficients (which are
calculated in each of the m dimensions individually). Explicitly, for the ith component
in vector c, we denote its minimum and maximum values as cmin

i and cmax
i .

In Algorithm 6.1, for the minimum value of the ith coefficient, we write:

cmin
i = min ci, s.t. fmin ⪯ Bc ⪯ fmax, i = 1, 2, ...,m (6.22)

That is, over all possible coefficient vectors c, which satisfy the transmittance constraints,
we take note of the minimum value of the ith component. That is, we find the minimum
value that ci can be over the set of all possible solutions. The maximum of the ith
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Algorithm 6.1 Algorithm for generating an initial filter set
1: F = {}
2: cmin

i = min ci, s.t. fmin ⪯ Bc ⪯ fmax, i = 1, 2, ...,m
3: cmax

i = max ci, s.t. fmin ⪯ Bc ⪯ fmax, i = 1, 2, ...,m
4: while cardinality(F) < #filters do
5: ci ∼ U

(
cmin

i , cmax
i

)
, i = 1, 2, ...,m

6: f = Bc , (c = [c1 c2 · · · cm]T )
7: if fmin ⪯ f ⪯ fmax & {∀q ∈ F : angle(f, q) > θ} then
8: F ← F ∪ {f}
9: end if

10: end while

coefficient term is written similarly (see Step 3, Algorithm 6.1). The minimum and
maximum values of ci can be solved using Linear Programming [31].

All m min and max components, taken together, make the two vectors cmin and cmax.
These vectors together define the extremal values in each dimension of an m-dimensional
hypercube. A vector that lies outside the hypercube is guaranteed not to satisfy the
boundedness and transmittance constraints we have placed on our filters. This hyper-
cube usefully delimits our search space (of the sample set of solutions).

To generate a set of filters for initialising the optimisation (solved in the Data-driven
Algorithm), we will sample uniformly and randomly this hypercube. We use the notation
ci ∼ U

(
cmin

i , cmax
i

)
to denote sampling a number in the interval [cmin

i , cmax
i ] uniformly

and randomly. A filter constructed from the corresponding vector c = [c1 c2 · · · cm]T

(f = Bc), will be added into the initial filter set F only if it lies within the transmittance
bounds and it is sufficiently far from those filters already in the set, see Step 7. In
Algorithm 6.1, sufficiently far means at least θ degrees from the other set members.
The function cardinality() returns the number of members in a set.

6.4 Results

In this section, we will solve for filters that are smooth and transmissive. We enforce
smoothness indirectly by assuming that our filters lie within the span of either a 6-,
8-, or 10-dimensional cosine basis. At the same time, the filter should transmit, per
wavelength, a minimum amount of incident light (e.g. 20%, 30% and more).

6.4.1 Constrained Luther-filters

For the constrained Luther-filters, we will carry out two experiments with different
filter constraining conditions. In the first experiment, we are solving for the optimal
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(a) unconstrained Luther-filter (b) different number of basis (c) different min transmittance

Figure 6.3: Spectral transmittance of Luther-optimised filters. (A) filter with no
constraint (in black), filters constructed by 6-, 8-, and 10-term cosine basis functions
with a fixed minimum transmittance of 20% (coloured solid lines). (B) filters with
varying minimum transmittance of 20%, 30% and 40% composed by 8-cosine basis
functions.

filter solutions of the testing camera using 6-, 8-, and 10-cosine basis functions from
the constrained Luther-condition optimisation. In these cases, we seek the filters with
a fixed minimum transmittance that pass at least 20% of the incident light. For each
experimental condition (the number of basis functions), we solve for the optimal filter
solution (equivalently the coefficients for the cosine basis) and the best correction matrix.

The spectral transmittance distribution of the optimal filter solutions under these condi-
tions are shown in Figure 6.3b. For reference, we also plot the best Luther filter with no
constraint, i.e. we run the original optimisation (see Figure 6.3a). Evidently, the fewer
cosine basis functions we use, the smoother the filter becomes.

In the second experiment, the best filters with a varying minimum transmittances of 20%,
30% and 40% composed by 8-cosine basis are also calculated. The spectral distribution
of the solved-for filters are shown in Figure 6.3c.

We evaluate how good the filtered camera performs in the colour measurement exper-
iments in terms of the perceptual colour errors – CIELAB colour difference metrics.
The colour correction experiments are performed for a set of 102 illuminants and 1995
reflectance spectra as described in Section 2.3. We calculate the RGBs of all reflectance
spectra under each illuminant, and find the best 3×3 correction matrices mapping RGBs
to the ground-truth XYZs before converted into CIELAB colour space. Then the overall
mean, median, 90-percentile, 95-percentile, 99-percentile and max of ∆E∗

ab are averaged
over the all test lights.

The colour measurement results are given in Table 6.1. Under the 20% transmittance
bound, we can see that the optimal filter linearly composed by 8 cosine basis (see the
red line in Figure 6.3b denoted ‘LUTH_8cos’) outperforms the other two smoothness
conditions: it reduces nearly two-thirds of the colour errors across all statistical metrics
comparing to those by the linear colour correction. Although constrained filters perform
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Table 6.1: ∆E∗
ab statistics of the colour corrected NATive camera, the colour cor-

rected camera with the LUTHer-condition optimised filter (without constraint), and
the colour corrected camera with the LUTHer-condition optimised filters under various
constrained conditions for Canon 40D camera.

Mean median 90% 95% 99% max

NAT 1.72 1.03 3.68 5.12 12.94 28.39

LUTH 0.44 0.22 1.07 1.48 3.19 8.77

Filter transmittance f ⪰ 20%

LUTH_6cos 0.94 0.54 2.03 2.84 7.00 21.14

LUTH_8cos 0.62 0.38 1.41 2.01 3.47 9.53

LUTH_10cos 0.69 0.42 1.60 2.27 3.89 10.06

Using an 8-term cosine basis

f ⪰20% 0.62 0.38 1.41 2.01 3.47 9.53

f ⪰30% 0.69 0.41 1.59 2.22 3.99 12.69

f ⪰40% 0.83 0.46 1.89 2.63 5.39 16.62

less well than the non-constrained Luther optimal filter, it gains greatly on the filter
transmissivity and smoothness.

The best filter for minimum transmittances of 20%, 30% and 40% are also calculated.
The spectral distribution of the solved-for filters are shown in Figure 6.3c and their
colour correction results are given in the bottom rows in Table 6.1. As expected, greater
minimum threshold will lead to less effective colour reduction. Yet a filter having a min-
imum transmittance value of 40% (an overall of 63% transmittance which is reasonably
transmissive) can still make a camera significantly more colorimetric by reducing nearly
half of the colour errors.

6.4.2 Constrained Vora-filters

The Vora-Value optimised filters for a Canon 40D digital camera are shown in Figure 6.4.
In black, we show the derived optimal filter found when no constraint (smoothness nor
min/max transmittances) is applied. In red, filters are described by the first 8 terms
in a cosine basis expansion and constrained to be between 20% and 100% transmissive.
Finally in dashed green we increase the minimum transmission to 30%.

In Table 6.2, we evaluate the derived filters with respect to a colour measurement ex-
periment in terms of colour error metric ∆E∗

ab statistics. We include the results of the
unfiltered NATive camera sensor as baseline results. The prior art of LUTHer-filters
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Figure 6.4: Spectral transmittance of optimised Vora-filters for Canon 40D camera.
The filter in solid black line is solved with no constraint applied. The filters in red and
dashed green lines are modelled under 8-cosine basis functions and constrained by the
minimum transmittance of 20% and 30% respectively.

under the same constraint conditions is also given for comparison. We repeat this ex-
periment where we optimise for smooth (linearly constructed by the first 8-cosine basis)
and transmittance bounded VORA-filters (at 20% and 30% minimum transmittance
limits).

From the table, we can see that although the performance is not as good as for the
unconstrained filters, the results are still quite good and significantly better than using no
filter. Moreover, the VORA-filters offer slightly better results (about 10% in colour error
reduction) than the LUTHer-filters both for constrained and unconstrained conditions.

Table 6.2: ∆E∗
ab statistics of the colour corrected NATive camera, the colour cor-

rected camera with LUTHer-condition and VORA-Value optimised filters (without
constraint), and the colour corrected camera with the LUTHer- and VORA-filters
under various constraining conditions for Canon 40D camera

mean median 95% 99% max
NAT 1.72 1.03 5.12 12.94 28.39

filter without constraint
LUTH 0.44 0.22 1.48 3.19 8.77
VORA 0.38 0.20 1.23 2.97 9.89

constrained filters f = Bc
condition I: 0.2 ⪯ f ⪯ 1

LUTH 0.62 0.38 2.01 3.47 9.52
VORA 0.51 0.29 1.61 3.48 12.05

condition II: 0.3 ⪯ f ⪯ 1

LUTH 0.69 0.41 2.22 3.99 12.69
VORA 0.62 0.36 1.98 3.93 13.60
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(a) no smoothness constraints (b) 6-basis series (c) 8-basis series

Figure 6.5: Data-driven optimised filters for Canon 40D camera: (A) filters solved
with no smoothness but the min-and-max transmittance constraint, (B) and (C) fil-
ters constructed by 6- and 8-cosine basis functions respectively. Dotted purple lines
(DATA_luther) show the filters initialised with the Luther-optimised filter, solid red
lines (DATA_sampling) show the filters initialised with a sampling filter set. All
filters shown are constrained with a fixed minimum transmittance of 20%.

6.4.3 Constrained Data-filters

Let us visualise the 20% bounded transmittance constraint using the Canon 40D cam-
era sensitivities and our Data-driven optimisation. First, we initialise the optimisation
(Algorithm 5.1) using the Luther-condition optimised filter as the seed filter. The opti-
misation returns the filter, denoted DATA_luther and is plotted in the blue-dashed
line in Figure 6.5a.

We repeat this experiment where we both require the derived filters to transmit at least
20% of the light and also that they belong to the span the first 6- or first 8-terms in a
cosine basis expansion. When the recovered filter is constrained to lie in the span of a 6-
dimensional cosine basis, the recovered DATA_luther filters are shown in Figure 6.5b
(respectively blue and purple dashed lines). See Figure 6.5c for the filters calculated
using an 8-dimensional cosine basis.

The red lines shown in Figures 6.5b and 6.5c are the filters optimised by our sampling
algorithm (using Algorithm 6.1 to find a set of filters to seed Algorithm 5.1 and then
choosing the best one that has the best overall performance). The experiment for de-
riving these sampled filters are described in the next subsection.

By examining Figures 6.5a, 6.5b and 6.5c, it is evident that - when no basis, a 6- or an
8-dimensional cosine basis are used - that changing the initialisation condition results
in a different filter being found.

6.4.4 Sampled-based Optimisation

Using Algorithm 6.1, let us run a sampled optimisation for Data-driven filters. That
is, for a given cosine basis, we calculate a set of candidate solutions, the sample set F .
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Table 6.3: ∆E∗
ab statistics of the colour corrected NATive camera, the colour cor-

rected camera with the DATA-driven optimised filter solutions obtained when ini-
tialised with Luther-condition filter and Sampling filter set respectively under differ-
ent constraints for Canon 40D camera

Mean Median 90% 95% 99% Max

NAT 1.72 1.03 3.68 5.12 12.94 28.39

minimum transmittance of 20%

DATA_luther 0.58 0.38 1.36 1.80 2.77 5.75

6 cosine basis with 20% minimum transmittance

DATA_luther 0.94 0.54 2.03 2.84 7.00 21.14

DATA_sampling 0.59 0.35 1.30 1.83 3.77 14.19

8 cosine basis with 20% minimum transmittance

DATA_luther 0.62 0.38 1.41 2.01 3.47 9.52

DATA_sampling 0.45 0.25 1.02 1.41 3.10 10.63

Here we populate F with 20,000 uniformly and randomly generated filters where the
angular threshold between any two filters in the set is 1 degree, θ = 1°, see Step 7 in
Algorithm 6.1. Each filter in F transmits at least 20% of the light (and F is populated
by filters described as linear combination of a 6- or 8-dimensional cosine basis).

Each filter in F is used to initialise the Data-driven algorithm and we will find 20,000
optimised filters. The colour measurement performance of each filter in this solution
set can be calculated. Then we simply choose the filter that delivers the best overall
measurement performance. In Figures 6.5b and 6.5c, we show the best sample-optimised
filters (red lines) which respectively lie in the span of a 6- and 8-dimensional cosine basis
(and transmit at least 20% of the light). Here ’best’ is defined to be the filter that results
in the smallest mean ∆E∗

ab performance.

Table 6.3 reports the ∆E∗
ab colour error performance 1995 reflectances and 102 lights [6]

for the Canon 40D sensitivities. The row NAT reports the baseline colour correction
results when a per illuminant based linear correction matrix is applied while no filter is
used.

In Table 6.3, we report the correction performances in 3 tranches. Row 2 corresponds
to the filter without using cosine basis as shown in Figure 6.5a. Here we find the
best filter with only the 20% minimum transmittance bound. Rows 3 and 4 report
the performance when the 2 filters shown in Figure 6.5b are used, where the filter is
additionally constrained to be in the span of the 6-dimensional cosine basis. Finally,
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when the filter is constrained to belong to an 8-dimensional cosine basis, the 2 derived
filters lead to the error statistics shown in rows 5 through 6.

Table 5.1 reported the colour measurement performance of the filters found using an
unconstrained optimisation. Table 6.3 reports the colour measurement results that are
found when filters are constrained to have a bounded transmittance (here at least 20%
of the light) and be smooth. Let us consider the bounded transmittance first.

Comparing row 9 of Table 5.1 to row 2 of Table 6.3, we see that adding a lower trans-
mittance bound returns a filter that delivers poorer measurement performance (but still
much better compared with the native camera response). Additionally, requiring that
our filters smooth on top of the minimum also yields relatively poorer performance
compared to the unconstrained filter optimisation.

However, with either the 6- and 8-dimensional cosine basis constraint, we can find the
best filter by seeding Algorithm 5.1 with many possible filter initialisations (and then
choosing the best filter overall). Here, we find that comparable performance is possible.
Compare rows 4 and 6 of Table 6.3 to row 9 of Table 5.1. It is remarkable how well a
constrained filter can work: the performance is ever so slightly worse than the uncon-
strained optimisation. But, the filter is much smoother and more likely to be able to be
manufactured.

6.4.4.1 High Transmissive Data-filters

The best filters with varying minimum transmittance of respectively 100% (i.e. no filter is
applied), 80%, 60%, 40% and 20% (all linearly composed by 8-cosine basis using sampled
optimisation) are also calculated. For each filter, we perform the colour correction
experiment where we use the same data sets as in Table 6.3 (1995 reflectance spectra
and 102 illuminant spectra). The colour correction results are given in Table 6.4. We also
report the exposure adjustment required so that the filtered camera captures the same
amount of light as an unfiltered camera (see the last column). The exposure numbers
are calculated as the reciprocal of the averaged transmittance over the spectrum (when
an equal-energy spectrum light is assumed).

A filter having a minimum transmittance value of 20% needs a doubling exposure to
match the same light level as the unfiltered condition. The best filter with a minimum
transmittance of 40% still makes the camera much more colorimetric but only a 60%
increase in exposure is required. Exposure might be changed by opening the aperture a
fraction, capturing over a slightly longer exposure time or by applying a scaling factor.
When exposure is altered by applying a scaling factor (e.g. increasing the ISO number)
then for low-light scenes there may be an increase in the conspicuity of noise.
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Table 6.4: ∆E∗
ab statistics and relative exposure settings of the colour corrected cam-

era with the optimised Sampling filter set under varying constraints of the minimum
transmittance constructed by 8-cosine basis for Canon 40D camera

Mean Median 90% 95% 99% Max Exposure

Setting

f_min = 100% 1.72 1.03 3.68 5.12 12.94 28.39 1.00

f_min = 80% 1.43 0.86 3.08 4.24 10.91 24.97 1.13

f_min = 60% 1.10 0.68 2.34 3.29 8.00 21.53 1.29

f_min = 40% 0.75 0.44 1.69 2.44 4.87 16.11 1.60

f_min = 20% 0.45 0.25 1.02 1.41 3.10 10.63 2.07

6.4.4.2 Sampled Initialisation

It is worth reflecting on our sample-based optimisation. Clearly, that sampling makes
such a difference to the performance that our optimisation can deliver (for filtered colour
measurement) teaches us that the minimisation at hand has many local minima. By
sampling we are effectively allowing our minimiser (Algorithm 5.1) to find many solutions
and then we have the latitude to choose the (closer to) global minimum. Given we seed
our optimisation with 20,000 filters we might wonder whether we need to actually carry
out the Data-driven optimisation.

In answering this question, first we remark that it is well known that as the dimension
of a space increases, it is more sparse. On the Cartesian plane, if we have more than 360
vectors (anchored at the origin), then the closest angular distance to at least one vector’s
nearest neighbours must be less than 1 degree. In 3-dimensions, we can have thousands
of vectors where every vector is more than 1 degree from its nearest neighbour.

So, let us investigate the number of sampled smooth filters we need for finding a good
approximation to the optimal filter solution, e.g. within acceptable deviation (for the
data at hand). We test on the 8-Cosine basis condition and evaluate the averaged mean
colour errors by varying # filters in the initialisation set from 100, 200, 500, 1000, 2000,
5000, 10,000 to 20,000 (where these filters are selected using Algorithm 6.1). In Figure
6.6, the x-axis represents the number of sampled filters in the initialisation set and the
y-axis represents the average mean colour error in terms of ∆E∗

ab (for the corresponding
optimised filter which is refined for that set of initialisation). One standard deviation
error bar is also shown. From the figure, we can see that little can be gained after using
about 5000 sampled filters for initialisation. Therefore, by using 20000 sampled filters
should be sufficient for our method.
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Figure 6.6: The effect of the number of filters in the initialisation set on the colour
reproduction results in terms of mean colour error assuming filters fall within the 8-
dimensional space. The magnitude of the bars represents the average colour error from
groups of varying the number of filters. The upper one standard deviation error bar is
also shown.

For our 20,000 member sample set F , we calculated the average angular distance for
each element to its nearest neighbour in the set. When F is calculated subject to the
6-dimensional cosine basis constraint, the average nearest-neighbour distance was 2.6
degrees (with a maximum of 7) and for the 8-dimensional case it was 4.6 degrees (with a
maximum of 10). Running the optimisation, Algorithm 5.1, with each element in F , we
effectively refine the initial guess. And, the refinement (difference between the starting
and endpoint filter) is on the same order as the average nearest-neighbour distance.

Significantly, running the optimisation - carrying out the refinement - results in a sig-
nificant performance increment compared to using the only sample filters. That is we
cannot use the sampling strategy alone to find the best optimised filter. The importance
of the refinement step will increase as a greater number of basis functions are used in
the optimisation.

6.4.5 Colour Filtering vs Higher-order Correction Methods

We compared our colour filtering method (Data-driven filters smoothed by 8-cosine ba-
sis and transmittance constraints under sampled optimisation using Algorithm 6.1) to
the hue-plane preserving colour correction (HPPCC) method presented in [55] (which
is a data-driven modification of [3]). This method effectively decomposes 3-dimensional
colour spaces into a number of cones: defined to be regions of colour spaces that are con-
vex combination of 3 bounding vectors (all of which are anchored at the origin (0,0,0)).
All cones share the achromatic axis (1,1,1) and neighbouring cones have two bounding
vectors in common. Each cone has its own 3×3 colour correction transform. If an RGB
lies within a given cone then this RGB is colour corrected by the correction transform
for that cone. Significantly, because neighbouring cones share two bounding vectors the
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Table 6.5: ∆E∗
ab statistics of the colour corrected camera with the Data-driven opti-

mised filter by Sampling method compared to higher-order colour correction methods
for Canon 40D camera

Mean Median 90% 95% 99% Max

LCC 1.72 1.03 3.68 5.12 12.94 28.39

PCC,2 1.40 0.89 3.07 4.19 7.93 18.73

PCC,3 1.25 0.83 2.63 3.48 6.32 31.38

RPCC,2 1.30 0.80 2.73 3.81 7.45 22.94

RPCC,3 1.16 0.72 2.66 3.54 5.53 15.39

HPPCC 1.30 0.79 2.79 4.01 7.33 27.00

Filtering: f_min = 40% 0.75 0.44 1.69 2.44 4.87 16.11

Filtering: f_min = 20% 0.45 0.25 1.02 1.41 3.10 10.63

overall colour correction transform is continuous in the sense that the colours on the
plane between neighbouring cones are mapped to the same colours using either of the
colour correction matrices for each cone. See [55] for more details.

We chose the HPPCC method as it maintains the linear property invariant to exposure
(the same HPPCC transform is applied when exposure changes), it is still relatively
simple to implement, and it is one of the leading colour correction algorithms available.
For our experiments colour space is split into 6 cones.

Finally, we also compared the performance to the linear, polynomial and root-polynomial
colour correction regressions (up to degree of three). LCC denotes a linear colour correc-
tion method using a 3× 3 mapping matrix. PCC,2 denotes a regression of a 2nd order
polynomial regression and PCC,3 denotes the 3rd order polynomial expansion. Poly-
nomial regression is not exposure invariant but a root-polynomial regression is invariant
to exposure. The 2nd and 3rd order root-polynomial regressions are denoted RPCC,2
and RPCC,3. colour correction results - using the same data sets as Table 6.4 - are
reported in Table 6.5.

From the table, we can see that by adopting reasonably transmissive filter with minimum
transmittances of 20% and 40% and using simple linear correction we outperform the
higher order conventional colour correction methods by a large margin (these two results
denoted Filtering are the same as the last two rows in Table 6.4). A filter with minimum
transmittance of 60% (the fourth row in Table 6.4) has comparable performance to the
best performed 3rd-order root-polynomial results (the fifth row in Table 6.5).
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6.5 Discussion

The next challenge of our proposal of colour filters, after the concept supported by the
promising results presented in this thesis, lies in the fabrication process. Though im-
provement have been made – the smoothness of the filter distribution – which will make
our filters suitable for manufacturing, there are other technical issues on the fabrication.
Besides, our filter design methods also suggest that the colour performance is sensitive
at certain wavelength range so that manufacturing the filter with high precision will be
necessary.

Of course, one convenient way (without the involvement of manufacture) of proving the
effectiveness of the idea of a colour prefilter to a camera is to use commercially available
filters that provide similar spectral transmittance property to the desired filter given
a camera under investigation, such as the Wratten filter set by East Kodak [53]. The
selected filters, however, are not optimal and the improvement, if there is any, will be
limited by the similarity of the transmittance pattern between the chosen filter and the
optimal filter (that minimise the errors in the colour measurement).

It is necessary to fabricate physical colour filters for determining the effectiveness in
applications. Ultimately, measuring colour in the real-scene by the ‘filter+cameras’
setting is the only way to validate the idea of colour filters for colorimetric cameras. Of
course, designing the filter that optimises for the fabrication process is beyond the scope
of this thesis. Yet, it is of great interest for us to bring the idea forward into manufacture
and make a real product.

6.6 Conclusion

In this chapter, we extend the filter optimisation by providing a method for incorporating
smoothness and transmittance bounds into the filter optimisations given in Chapters 3,
4, and 5. Initially, when these constraints are adopted, the solved-for filters work less
well. However, experiments demonstrated that our optimisations were highly dependent
on the initialisation parameters, specifically the seed filter (initial guess) that drives the
filter evolution. A simple sampling strategy - i.e. severally running the optimisation for
a set of judiciously chosen seed filters - allows us to mitigate this problem. Significantly
a smooth filter that transmits about 50% of the light across the visible spectrum delivers
almost as good performance as a very non-transmissive and non-smooth filter found via
the unconstrained optimisations.
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We also show the benefit of introducing a colour filter for a camera that a simple linear
colour correction is sufficient and can outperform the conventional colour correction
methods (even using higher-order terms).



Chapter 7

Conclusion

7.1 Contributions

A novel way of making a digital camera more colorimetric has been introduced in this
thesis. We set forth the method of designing a colour filter for a given off-the-shelf camera
that when it is placed in front of the camera makes the new ‘filter+camera’ imaging
system more colorimetric and thus can be used for accurate colour measurement. We
develop both mathematical formulations of the filter design problem and algorithmic
implementations. Source codes are available at https://github.com/zhedazhu1012/
Filterdesign.

A colour imaging system measures colour like a human observer if it satisfies the Luther
condition, i.e. the camera spectral sensitivities are a linear transform from the XYZ (or
equivalently the cone) sensitivities. Unfortunately, for manufacturability reasons and
signal processing practice, commercial RGB cameras are not linear combinations from
the XYZ CMFs.

We propose that we can make a camera more colorimetric if we place a specially designed
colour filter in front of the camera. We make six contributions. First, we design a colour
filter for a given off-the-shelf camera such that the filtered camera better approximates
the Luther condition. Our design problem is expressed in two ways. We either find
a filter such that the linearly transformed filtered camera sensitivities best match the
XYZ CMFs or, in our second contribution, we find the filter that optimises the Vora-
Value. The Vora-Value quantifies the extent which the space spanned (or sampled) by
the filtered camera sensitivities is similar to the space spanned by the XYZ CMFs. This
second optimisation is, advantageously, not tied to any particular target sensitivities
(e.g. the cone fundamentals or XYZ CMFs).
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The Vora-Value optimisation - though arguably a conceptually superior method - is
more complex to formulate and implement than the Luther-optimisation. In our third
contribution, we show that if we use an orthonormal variant of the XYZ CMFs (i.e. a
linear combination thereof that is orthonormal), then we can use the Luther-condition
optimisation to solve for the best Vora-Value filter.

Our fourth contribution is that we extend our methods to find colour filters that take
real world reflectances and lights into account. In our fifth contribution, we reformulate
our method so that we can add linear inequality constraints into the optimisation for-
mulation. Here we explore bounding the smoothness of the filter (hopefully making it
easier to manufacture) and its transmissivity. The latter constraint is important as a
correction filter will not be practically useful if it absorbs most of the incident light.

For making physically realisable filters, we restrict the filter solution set to solve for
much smoother and more transmissive filters by adding constraints. We reform the
optimisations as mentioned above by incorporating filter constraints where a group of
smooth basis filters are linearly combined to generate a smooth filter that at the same
time, is required to reach a minimum transmittance bound.

In our last contribution, we develop a simple sampling method to the filter optimisation
where we systematically sample the set of possible initial filters. For each initialisation,
we solve for the best refinement. This sampling method makes a substantial improvement
in the performance that our optimisation algorithms can deliver.

For all cameras tested, experiment results demonstrate that by the insertion of the pre-
filters, digital cameras perform significantly better in terms of the Luther condition and
Vora-Value compared to the cameras without filtering. In the colour measurement sim-
ulations on real illuminants and reflectances spectra, we demonstrate that our optimised
filters help digital cameras significantly improve colour accuracy compared to the prior
arts of colour correction methods. We show that, in principle, by taking pictures through
our optimised smooth and transmissive filters, we can make cameras significantly more
colorimetric.

7.2 Future Work

There are still several interesting but unexplored issues:

• Currently, our design method is based on a noise-free model. The no-noise as-
sumption simplifies our modelling; however, noise is inevitable for any practical
colour imaging system. For one thing, when a colour filter is placed between the
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scene and the camera, it will absorb part of the light and transmit the rest. The
camera needs to adjust the exposure or ISO settings to match the light intensity
as the condition without a filter, especially when the ambient light is dim. As
such, of course, the insertion of a prefilter will affect the noise level in the camera
responses. It is of great interest to explore how the filter transmittance and ex-
posure will affect the noise level in the colour measurement experiment. Based on
our proposal, Vrhel [92] recently remodelled the prefilter design in the presence of
noise, which can be a good reference to start with when accounting for the role of
noise.

Significantly, any increase in noise due to the filter absorbing light will be magnified
in the colour correction step [7, 86]. It is worth digging in to see how the linear
correction in this study will propagate noise.

• Our filters are designed either to match the human visual sensitivities or to make
the best estimate of the XYZ tristimuli. Yet, they are not quality metrics that re-
late to a perceptually uniform colour space, such as Figures of Merit [74]. Though
a more complicated algorithm for solving the filter is expected, it is worth inves-
tigating what optimal filters will look like and how different they will be when
modelled in a perceptually uniform colour space.

• In our work, as you may find, the colorimetric performance of the filters we show
in the colour measurement test has the presumption that the colour of the light
has been correctly discounted. The process of discounting the illuminant colour
(which is called the white balance) is a step before the colour correction in the
camera processing pipeline. Our eye has the ability (we say colour constancy) to
adapt to the colour of the light. We see a white paper appear white both under
a bluish fluorescent light or a yellowish incandescent light. However, a digital
camera is incapable of discounting such light colour and the white balance process
is necessarily employed in the processing pipeline for the purpose. Though, it is
hard to balance out the light colour correctly for all lighting conditions. Attention
should be paid when the colour filter is to be used in practical applications.

• A filter is designed for every individual camera in the data set. Since many cameras
from the same manufacture or brand usually have very similar sensitivities, it is
useful to produce a ‘general-purposed’ filter that works well for a group of cameras
that have close sensitivity characteristics.

• In the Luther condition filter design, we formulate our optimisation with FQ for
which we interpret the diagonal matrix F as a prefilter that alters the effective
sensitivities of a camera Q. While, in the data-driven filter design, assume we
have a collection of reflectances S measured under an illuminant E, to form the
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camera colour responses, we write as STEFQ. Now, instead of combining the
filter and the camera as E(FQ), we could combine the illuminant with the filter
as (EF)Q. Physically, we can regard the latter as the spectral power distribution
of the illuminant is changed by the filter before coming into the camera. Bearing
this in mind, if we have specified the optimal filter F for a known camera Q,
the prediction of the visual responses of a scene under a given illuminant E is
equivalent to capture the scene under EF. Using a spectrally-tunable illumination
system (e.g. a spectrally-tunable LED lighting system), we can perform camera
colour measurement experiments under one specially-changed illuminant to match
that of the desired illuminant condition.

• The ultimate way to examine the utility of our method is to turn our designed
filters into manufacturing and fabricate physical filters. The practical effectiveness
of the insertion of a prefilter can then be evaluated in measuring real object colours.
Although smoothness constraint is imposed for the optimised filters, it is still far
from that can be fabricated precisely as desired. It is worth refining our filters by
taking more systematic errors in fabrication process into consideration [89]. In the
future, we plan to make a filter and then test how well it works in practice.

7.3 Publications

Journal Publications

Finlayson, G. D., and Zhu, Y. Designing color filters that make cameras more colori-
metric. IEEE Transactions on Image Processing 30 (2021), 853–867.

Zhu, Y., and Finlayson, G. D. A mathematical investigation into the design of prefilters
that make cameras more colorimetric. Sensors 20, 23 (2020), 6882.

Conference Publications

Zhu, Y., and Finlayson, G. D. Designing a color filter via optimization of Vora-Value for
making a camera more colorimetric. In Color and Imaging Conference (2020), Society
for Imaging Science and Technology, pp. 181–186.

Finlayson, G. D., and Zhu, Y. Unifying optimization methods for color filter design. In
Colour and Visual Computing Symposium (2020), vol. 2688, CEUR Workshop Proceed-
ings.



Chapter 7 Conclusion 100

Zhu, Y. Designing a physically-feasible colour filter to make a camera more colorimetric.
In London Imaging Meeting (2020), Society for Imaging Science and Technology.

Zhu, Y., and Finlayson, G. D. An improved optimization method for finding a color
filter to make a camera more colorimetric. In Electronic Imaging (2020), Society for
Imaging Science and Technology.

Finlayson, G. D., and Zhu, Y. Finding a colour filter to make a camera colorimetric
by optimisation. In International Workshop on Computational Color Imaging (2019),
Springer, pp. 53–62.

Finlayson, G. D., Zhu, Y., and Gong, H. Using a simple colour prefilter to make cameras
more colorimetric. In Color and Imaging Conference (2018), Society for Imaging Science
and Technology, pp. 182–186.



Appendix A

Algorithm Implementation

For both alternating least-squares Algorithms 3.1 and 5.1, respectively for Luther-filters
and Data-filters, the filter and the colour correction matrices can be found using simple
least-squares regression. To remind the reader, given A and B - m× n matrices of rank
n where m ≥ n, then the least-squares regression M - an n× n matrix, mapping A to B
(AM ≈ B) can be found in closed-form using the Moore-Penrose inverse [31]:

M = [ATA]−1ATB = A+B

A.1 Algorithm for the Luther-condition Optimisation

In Step 5 of Algorithm 3.1, the optimal filter is found by finding scalars that maps
each row of Qi−1 to the corresponding row of X. The best scalar α mapping the vector
v = [Qi−1

j ]T to w = [Xj ]
T (for the jth row of the data matrices) can be written in closed

form using the Moore-Penrose inverse: α = vT w
vT v .

Similarly, in step 5, the Moore-Penrose inverse can be used for finding M. Denoting
Q = FiQi−1 then Mi = Q+X = [QTQ]−1QTX.

A.2 Algorithms for the Vora-Value Filter Optimisation

Notation

We will use the following notation for the gradient and Hessian matrix (given in the
later section in Newton’s method) with respect to the n-dimensional filter vector f =

101
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[f1, f2, · · · , fn]T :

∇ν(f) =


∂ν
∂f1
∂ν
∂f2...
∂ν
∂fn

 and H = ∇2ν(f) =


∂2ν
∂f21

∂2ν
∂f1f2 · · · ∂2ν

∂f1fn
∂2ν
∂f2f1

∂2ν
∂f22

· · · ∂2ν
∂f2fn

...
... . . . ...

∂2ν
∂fnf1

∂2ν
∂fnf2 · · · ∂2ν

∂f2n

 (A.1)

or equivalently, using the indices, we can respectively express as (∇ν)i = ∂ν
∂fi and Hi,j =

∂2ν
∂fifj . From the definitions, we know that ∇ν and ∇2ν are respectively in the size of
n× 1 and n× n.

A.2.1 Derivation of Gradient

We will show the derivation of the gradient function of the filter-modified Vora-Value
optimisation.

Theorem A.1. ∂ν(FQ,X)
∂F = 2

3

(
(I− P{FQ})P{X}P{FQ}F−1

)
◦ I

Proof. The following rules of matrix calculus are used to obtain the required differentials:

d trace(U) = trace(dU)

d(UV) = U dV+dU V

d(AU) = A dU

dU−1 = −U−1(dU)U−1

(A.2)

Using the above rules, we have

dν(FQ,X) =
1

3
trace

(
dF Q(QTF2Q)−1QTF VVT−

2FQ(QTF2Q)−1QTF dF Q(QTF2Q)−1QTF VVT+

FQ(QTF2Q)−1QT dF VVT
)
.

(A.3)

Using the acyclic property of trace that trace(ABC) = trace(BCA) = trace(CAB), we
can move the dF in each of the term to the end of the formulation. We also use the
projector representation of P{X} to make it more compact as

dν(FQ,X) =
1

3
trace

(
Q(QTF2Q)−1QTF P{X}dF−

2Q(QTF2Q)−1QTF P{X}FQ(QTF2Q)−1QTF dF+

P{X}FQ(QTF2Q)−1QTdF
)
.

(A.4)
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Now we can make the derivative dν(FQ,X)
dF to the right side of the equation in (A.4)

according to the rule of trace(AdF)
dF = A. Also remind that the filter solution we are

looking for lies in the diagonal of matrix F, we have

∂ν(FQ,X)

∂Fii
=
1

3

[
Q(QTF2Q)−1QTF P{X}−

2Q(QTF2Q)−1QTF P{X}FQ(QTF2Q)−1QTF+

P{X}FQ(QTF2Q)−1QT
]
ii

(A.5)

We use F−1P{FQ} = Q(QTF2Q)−1QTF to ease the notation (the diagonality of F guar-
antees it to be invertible). Our gradient function can be expressed as

∂ν(FQ,X)

∂Fii
=
1

3

[
F−1P{FQ}P{X} − 2F−1P{FQ}P{X}P{FQ}+ P{X}P{FQ}F−1

]
ii

(A.6)

Given F−1P{FQ}P{X} is symmetric, we have

∂ν(FQ,X)

∂Fii
=

2

3

[
F−1P{FQ}P{X} − F−1P{FQ}P{X}P{FQ}

]
ii

(A.7)

This equation can be further merged into

∂ν(FQ,X)

∂Fii
=

2

3

[
F−1P{FQ}P{X}(I− P{FQ})

]
ii

(A.8)

where I is the identity matrix.

Now, let us rewrite the derivative in terms of the underlying filter vector f. First,
remember that F = diag(f). Let us denote the inverse operator - the one that extracts
the diagonal from a square matrix and places the result in a vector - as ediag (‘e’ signifies
to ‘extract’ the diagonal elements). Clearly, ediag(diag(f)) = f. Here, diag() is a forward
operation turning a vector into a diagonal matrix and ediag is the companion reverse
operator extracting the diagonal.

Now we can derive the gradient, in terms of the underlying filter vector, as

∇ν(f) = ∂ν(FQ,X)

∂f =
2

3
ediag

(
F−1P{FQ}P{X}(I− P{FQ})

)
(A.9)

where the gradient with respect to the filter vector, ∇ν(f), is a n× 1 vector (in our case,
n = 31).
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A.2.2 Relation of ALS and Gradient Algorithms

In the gradient algorithm, the filter is updated in Step 5 of Algorithm 4.1 at each
iteration as

fk+1 := fk + tk∇ν(fk) (A.10)

where tk is the step size at kth iteration. By substituting the gradient function given in
(A.9), we have

fk+1 := fk − tk ediag
(
(Fk)−1P{FkQ}P{X}(I− P{FkQ})

)
(A.11)

Remember that Fk = diag(fk).

Now let’s look at how the filter is updated at each iteration in the Alternating Least-
Squares (ALS) algorithm. As shown in Algorithm 3.1, we first calculate the correction
matrix M given an initial filter guess and in turn solves for the filter using this newly
solved M.

Explicitly, in the k + 1th iteration, the correction matrix M is calculated using the
Moore-Penrose inverse solution to the least-squares regression

Mk+1 =
(
(FkQ)TFkQ

)−1
(FkQ)TX (A.12)

By holding Mk, we can solve for a new filter solution as

fk+1 :=
P{FkQ}P{X}

P{FkQ}P{X}P{FkQ} fk

:= fk − (Fk)2

P{FkQ}P{X}P{FkQ} ediag
(
(Fk)−1P{FkQ}P{X}(I− P{FkQ})

) (A.13)

Comparing the calculation formula in (A.11) and (A.13), we can see that these two
algorithms update the filter matrix/vector in a similar way. The difference is the step
size for updating the filter: it is a constant stepsize tk in the Gradient algorithm; however,
in the ALS algorithm, the step size is not a constant but changes as a function of the
previous filter refinement.

A.2.3 Derivation of Hessian Matrix

Here we present how we derive the second derivative, i.e. the Hessian matrix, of our
objective function: the filter-modified Vora-Value optimisation.
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Theorem A.2. The Hessian matrix of the filter-modified Vora-Value optimisation:

∇2ν(f) =− 2
(

P{FQ}F−1
)
◦
(
(I− P{FQ})P{V}P{FQ}F−1

)
+(

F−1P{FQ}F−1
)
◦
(
(I− P{FQ})P{V}

)
+(

(I− 2P{FQ})P{V}P{FQ}F−1
)
◦
(

P{FQ}F−1
)
+(

F−1P{FQ}P{V}P{FQ}F−1
)
◦ I

(A.14)

Proof. Starting from (A.9), the Hessian matrix makes a further derivative of its first
derivative (the second derivative). As the matrix variable F appears multiple places in
the equation, to ease the notation, we use A, B and C to respectively denote P{X},
P{FQ} , F−1 hereafter in this subsection.

Now we differentiate for the second derivative by applying the rules of matrix calculus
as given in (A.2)

d2ν =
2

3
trace(−2CB dF CBA dF + 2CB dF CBAB dF+

CBC dF A dF− CBC dF AB dF−

CBA dF CB dF + 2CBAB dF CB dF−

CBABC dF dF)

(A.15)

After further merging between two terms in each line (where trace is a linear mapping
and the distributive property holds), we obtain

d2ν =
2

3
trace

(
− 2CB dF CBA(I− B)dF + CBC dF A(I− B)dF−

CBA(I− 2B)dF CB dF− CBABC dF dF
) (A.16)

where I denotes the 31× 31 identity matrix.

Given f = diag(F) and any two square matrices M and N, we have trace(MT dF N dF) =∑
i

∑
j Mi,jNj,i dfi dfj where elements having the same indices in two matrices are mul-

tiplied. Using this property into (A.16) and the symmetric property of matrices A,B,C
(as projector matrices and the diagonal filter matrix F are symmetric), we can derive
the Hessian matrix as

d2ν(f) = − 2
(

BC
)
◦
(
(I− B)ABC

)
+
(

CBC
)
◦
(
(I− B)A

)
+(

(I− 2B)ABC
)
◦
(

BC
)
−
(

CBABC
)
◦ I

(A.17)
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where ◦ denotes the Hadamard product (or elementwise product) of two matrices, i.e.
(M ◦N)i,j = Mi,jNi,j . Here you may notice that we did not add the 2

3 so as to ease the
notation as a scalar does not affect the optimisation.

The explicit expansion of the equation over projector matrices are written as

d2ν(f) = − 2
(

P{FQ}F−1
)
◦
(
(I− P{FQ})P{X}P{FQ}F−1

)
+(

F−1P{FQ}F−1
)
◦
(
(I− P{FQ})P{X}

)
+(

(I− 2P{FQ})P{X}P{FQ}F−1
)
◦
(

P{FQ}F−1
)
+(

F−1P{FQ}P{X}P{FQ}F−1
)
◦ I

(A.18)

A.2.4 Positive Definite of the Hessian Matrix

As the inverse of Hessian is essential in driving the Newton’s method, it is necessary
that the Hessian matrix has full rank. Here we prove that the Hessian matrix of the
modified Luther optimisation with a positive regulariser is to be positive definite.

We start from the gradient function of the Vora-Value based objective function (when
we discount the regulariser): the gradient is the product of three projector matrices and
the inverse of the filter matrix. The special property can be revealed if we multiply fT

to it and we find

fT∇ν(f) = fT ediag((I− P{FQ})P{V}P{FQ}F−1) = 0 (A.19)

That is, the inner product of the filter vector, f, and the gradient, ∇ν(f), are perpendic-
ular.

By using this property for the regularised formula that fT∇ν(f) = 0, we have

fT∇µ(f) = fT
(
− 3∇ν(f) + 2α f

)
= 2α fT f

(A.20)

Further, if we make the derivative to the both sides of (A.20) with respect to f, we obtain

∇µ+ (∇2µ) f = 4α f. (A.21)
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If we multiply fT to this equation, we have fT∇µ+ fT (∇2µ) f = 2α fT f. From (A.20), we
know fT∇µ(f) = α fT f. Hence, we get

fT (∇2µ) f = α fT f > 0, if α > 0 (A.22)

which guarantees the Hessian to be positive-definite under a positive α (and of course,
a physically plausible filter is a non-zero vector, f > 0).

A.3 Algorithm for the Data-driven Optimisation

In Step 4 of the ALS Algorithm 5.1 for the Data-driven optimisation, each Mi
j can be

solved directly using the Moore-Penrose inverse. Denoting Q = CT
j Qi−1

j then Mi
j =

Q+CT
k X = [QTQ]−1QTCT

k X.

In Step 5 of Algorithm 5.1, the filter f is embedded in the equation and so we cannot
solve for it directly as we could for the Luther-condition case. To solve for the filter, it
is useful to vectorise the minimisation. We recapitulate the minimisation statement of
Step 5:

min
F

cnt∑
j=1

∥ (CT
j F)QjMj − CT

k X) ∥2F (A.23)

This Frobenius norm ∥ ∥2F is generally applied to matrices as here but can equally be
applied to vectors. The operator vec() stacks the columns of a matrix on top of each
other. We rewrite (A.23) by using the vectorisation as:

min
F

cnt∑
j=1

∥ vec(CT
j FQjMj)− vec(CT

k X) ∥2F (A.24)

Now let us rewrite the diagonal filter matrix F in the following way

F = f1


1

0
. . .

0

+ f2


0

1
. . .

0

+ ...+ f31


0

0
. . .

1


= f1D1 + f2D2 + ...+ f3D31

(A.25)

where the filter matrix is represented as a summation of each value in the diagonal value,
fi, multiplied with a single entry matrix Di as F =

∑31
i=1 fiDi. Here, Di is a 31 × 31

matrix with a single non-zero entry at D(i, i) = 1.
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By substituting this new filter representation into the first term of the minimisation
in (A.24), we obtain

vec(CT
j FQjMj) =

31∑
i=1

fi vec(CT
j DiQjMj) (A.26)

Now let us denote a matrix Vj = [v1,j v2,j · · · v31,j ] where its column represents vi,j =

vec(CT
j DiQjMj), Equation (A.26) can be expressed more compactly as

vec(CT
j FQjMj) = Vjf (A.27)

where f = [f1 f2 ... f31]
T . Note that if Cj is a 31×n matrix, then CT

j DiQjMj is an n×3

matrix (where 3 denotes the number of colour channels) and thus vi,j is 3n × 1 which
makes matrix Vj have size of 3n× 31.

Now we stack all Vj , j = 1, 2, .., cnt matrices (under cnt different lighting conditions)
on top of each other making an (3n ∗ cnt) × 31 matrix, V. Similarly, we stack all cnt
targeting XYZs on top of each other denoted as w = vec(CT

k X) which has the size of
(3n ∗ cnt)× 1. We remind the reader that k might equal j. Or, k might denote a single
privileged illuminant such as CIE D65.

Now the minimisation in (A.24) can be equivalently rewritten as:

min
f
∥ Vf− w ∥2F (A.28)

The best f can be found in closed form using the Moore-Penrose inverse:

f = [VTV]−1VTw. (A.29)

A.4 Algorithm for the Filter Constraints

Equation (A.29) solves for the 31-component f in one step. Suppose we write f = Bc. We
constrain the filter to be describable by a linear basis (B is 31×m where 1 ≤ m ≤ 31).
Additionally, the filter is restrained by a minimum fmin and maximum fmax bounds
on the transmittance. Then to solve for the filter we find the coefficient vector c that
minimises:

min
c
∥ VBc− w ∥2F s.t. fmin ⪯ Bc ⪯ fmax (A.30)



Appendix A Algorithm Implementation 109

By expanding the Frobenius norm in (A.30), we obtain

min
c

cTBTVTVBc− 2wTVBc s.t. fmin ⪯ Bc ⪯ fmax (A.31)

In (A.31), we actually have two inequalities, i.e. Bc ⪰ fmin and Bc ⪯ fmax. In order to
convert (A.31) into the standard quadratic problem formulation [49] (only one inequality
equation is allowed), we make a slight modification of the inequality constraints:[

B
−B

]
c ⪯

[
fmax

−fmin

]
(A.32)

Now we can use the Quadratic Programming function to solve for the the filter coefficient
vector c. Finally, the filter solution can be calculated as f = Bc.
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