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Highlights 

 

 The piezotronic fields in non-uniform piezo-semiconductive fibers are solved using a power 

series expansion method. 

 The convergence and correctness of the method are proved. 

 The antisymmetry of the electromechanical fields is broken due to the contoured profile. 

 A necking heterogeneous piezoelectric semiconductor PN junction is more conveniently 

modulated. 
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Abstract: In order to evidently improve the working performance of piezotronic devices, non-uniform 

piezoelectric semiconductor fibers with contoured profiles are designed. However, apart from the finite 

element method, it’s hard to achieve analytical descriptions of the electromechanical fields in these 

non-uniform piezoelectric semiconductor fibers because of the governing equations with variable 

coefficients. For solving this bottleneck and exploring improved performance and new phenomena 

caused by the non-uniform profile, a power series expansion method is proposed based on the 

framework of the one-dimensional linearized model and is further applied to analyze the piezotronic 

performances of n-type non-uniform piezoelectric semiconductor fibers and PN junctions. It is revealed 

via systematical numerical simulations that the antisymmetry of the electromechanical fields in 

piezoelectric semiconductor fibers is broken because of the contoured profile and the piezotronic 

coupling. Meanwhile, the barrier configuration in a non-uniform PN junction is sensitive to the variation 

of cross-sectional area. Furthermore, the current-voltage relation of a necking heterogeneous 

piezoelectric semiconductor PN junction can be manipulated more conveniently by external mechanical 

loadings, meaning that the sensitivity of the device is improved. Not limited by non-uniform 

piezoelectric semiconductor fibers with contoured profiles, this method exhibits broad applicability, 

which is still available for solving multiple-coupled properties of functional graded piezoelectric 

semiconductor media. 

 

Keywords: contoured piezoelectric semiconductor, PN junction, power series expansion method, 

polarization, piezotronics. 
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1. Introduction 

 

Recently, more and more piezoelectric semiconductive (PS) devices, such as nanogenerators [1, 2], 

piezotronic field-effect transistors [3, 4], piezotronic and chemical sensors [5-7], piezotronic logic 

nanodevices [8] and so forth, have been successfully developed and applied due to their unique 

coupling of piezoelectricity and semiconductor properties. Accompany with that, a new research area 

called piezotronics and piezophototronics has been formed. Different from the conventional 

semiconductors, the electric properties of PS devices can be tuned by applied mechanical loading, which 

is the main effect of piezotronic coupling [9-11]. 

When self-powered PS devices are applied as sensors, one of the most concerned issues is 

sensitivity. To improve their sensitivity to mechanical loading, materials with high piezoelectric 

constants and low dielectricity were developed since they are easier to produce higher piezoelectric 

fields [12, 13]. Another choice to obtain superior electric response is employing PS composite structures 

instead of single PS media [14, 15]. Recently, it has been revealed that non-uniform strain applied on the 

PS media can effectively improve the effective piezoelectric constant and then enhance the piezotronic 

performance [16], which brings new inspiration for the structural design of high sensitivity PS devices. As 

we all know, the simplest way to produce non-uniform strains in PS fibers is to employ a non-uniform 

shape with variable cross sections. Actually, a nanogenerator based on conical PS nanowires has been 

successfully fabricated, which can produce an output power that is strong enough to continuously drive 

a commercial liquid crystal [17]. Moreover, it was demonstrated via FEM analysis that tapered PS 

nanostructures can transduce tiny input mechanical forces into high piezo-potentials [18, 19]. Non-

uniform PS structures show great potential in designing piezotronic devices with high sensitivity, hence 

                  



 5 

it is necessary to theoretically analyze their electromechanical properties, which is just the origin of this 

contribution. 

The previous works about the non-uniform PS structures mentioned above are all based on conical 

fibers because it’s easy for engineering implementation, as well as convenient for obtaining exact 

theoretical solutions. Actually, PS fibers with arbitrary contoured profiles are usually encountered during 

application. For example, unavoidable defects during mechanical processing or chemical and biological 

corrosion may lead to accidented surfaces. Sometimes, some particular variable profile patterns are 

designed with the aim of improving the sensitivity. Especially, with the development of modern 

micromachining, e.g., 3D printing technology, fabricating a non-uniform PS fiber at will is anticipated to 

achieve sooner and later. However, finding an theoretical solution beyond of FEM [20] to depict the 

electromechanical fields in a non-uniform PS fiber with random cross sections is still rare, which can't 

meet the design needs of engineers and scientists. In order to seek a general solution that is suitable for 

any non-uniform PS fibers with a random cross section, this paper presents a simple approach, i.e., the 

power series expansion method, to model and analyze the piezotronic performance of PS nanofibers, 

which is also the highlight of this contribution. 

Firstly, the linearized one dimensional model for the non-uniform PS fibers is established in Section 

2, which is based on the fully coupled theory of PS materials [21-26]. After that, a power series 

expansion method is proposed in Section 3 to solve the partial differential equation with variable 

coefficients that governs the carrier distributions in non-unifrom PS fibers. In Section 4, the convergence 

of the power series expansion method is examined for three cases, one with a uniform n-type PS fiber 

and the other two with the cross-sectional area varying in linear and quadratic forms respectively. Then 

the influence of cross-sectional area variation on the electromechanical fields is investigated using fibers 

with linearly varying cross-sectional area as an example, and some novel phenomena induced are 
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revealed. Further, the power series expansion method is used to describe the piezotronic behavior of 

non-uniform PS PN junctions in Section 5. The improvement of sensitivity caused by junction necking is 

also investigated. Finally, the conclusions are summarized in Section 6. 

 

2. One-dimensional Coupled Equations of a Contoured PS Fiber 

 

 

Fig. 1. Sketch of a non-uniform PS fiber with variable cross section. 

 

In this paper, the usually used coupled-field theory consisting of the equations of linear 

piezoelectricity and charge conservation for electrons and holes is ultilized to describe the 

electromechanical coupling properites of PS materials [27, 28], i.e., 
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where the Cartesian tensor notation has been used. σij (i,j = 1,2,3), ui and Di are the stress tensor, 

mechanical displacement vector, and electric displacement vector, respectively. q represents the 

elementary charge, and  the mass density. p and n respectively stand for the concentrations of holes 

and electrons, with J p 
i  and J n 

i  being their individual current densities. Meanwhile, N + 
D and N –

A  are the 

impurity concentration of donors and accepters. A comma followed by a suffix “,i” and “,j” respectively 

denote the derivative with respect to the coordinates xi and xj, and the repeated subscript indexes i and 

j represent the summation from 1 to 3. The partial derivative with respect to t represents the time 

derivative. Based on the assumption of zero net recombination rate, the constitutive relations can be 

expressed as 

 
,

,

,

,

,

.

ij ijkl kl kij k

i ij j ijk jk

p p p

i ij j ij j

n n n

i ij j ij j

c S e E

D E e S

J qp E qD p

J qn E qD n









 

 

 

 

 (2) 

Here cijkl, ekij, εij, μ p 
ij (μ n 

ij ) and D p 
ij (D n 

ij ) represent the elastic constants, piezoelectric constants, dielectric 

constants, carrier mobility, and carrier diffusion constants respectivley. Meanwhile, the strain tensor Skl 

and electric field vector Ej are controlled by the following strain-displacement relation and the electric 

field-potential relation 
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The electron and hole concentrations can be written as: 
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where Δn and Δp are perturbations of the carrier concentrations, and n0 and p0 denote the initial carrier 

concentrations in the reference state before stress applied. Considering the case of uniform doping with 

small Δp and Δn, the first n and p in Eq. (2) can be written as n0 and p0. Then the nonlinear terms of n 

and p in the last two equations of (2) are linearized such that n,j and p,j are linear correlations to Ej. Some 

expressions in Eqs. (1) and (2) become: 
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Consider the extensional deformation of a non-uniform PS fiber with variable circular cross section 

shown in Fig. 1, the fiber length is L and the x3 coordinate locates along the central line with its origin at 

the left end surface. The variable cross-sectional area is represented by a random function A(x3) and a 

pair of extensional forces F are applied at the two ends. For the equilibrium and the steady states 

considered, the governing equations become [20]: 
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Here 𝑐̅33, 𝑒̅33 and 𝜀3̅3 are the effective one-dimensional elastic, piezoelectric, and dielectric constants 

introduced by the one-dimensional stress relaxation condition [29], i.e., 
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The isolated boundary condition at two ends x3 = L and x3 = 0 require J n 
3  =J p 

3  = 0 in Eq. (7), thus: 
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Subtracting these two equations from each other, we have: 
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It should be stressed that the carried mobility μ p 
33(μ

 n 
33) and the carrier diffusion constants D p 

33(D
 n 
33) in Eq. 

(10) satisfy the Einstein relation, i.e., 
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with the Boltzmann constant kB and the absolute temperature T. We note from the first equation in Eq. 

(7) that the axial force Aσ33 is a constant. Therefore, the mechanical boundary conditions at x3 = L and x3 

= 0 require Aσ33 = F, and then we can obtain 
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Substituting Eqs. (10) and (12) into the second equation of Eq. (7), we get a differential equation with 

variable coefficients: 

                  



 10 

 2

,33 ,3 ,3( ) ( ) ( ) 0A n p A n p A n p          (13) 

with 

 

33 33
0 0

2 33 33

2

33
33

33 33

( )

,

( 1)

n p

n p
q n p

D D

e

c

 












 (14) 

which controls the electrical performance of a contoured PS fiber under extension. 

 

3. Power Series Expansion for the Partial Differential Equation with Variable Coefficients 

 

Eq. (13) is a partial differential equation with variable coefficients, for which exact analytical 

solution is available only for some specific forms of cross-sectional area variation function A(x3). The aim 

of this paper is to seek a general theoretical solution applicable to an arbitrary contour shape. 

Motivated by Taylor series, a known one-dimensional function can be written into a power series. 

Despite of unknown np and random A(x3), they still can be expressed as 

 

23 3 3
0 1 2

0

23 3 3
0 1 2

0

[ ( ) ( ) ] ( ) ,

[ ( ) ( ) ] ( ) ,

s

z

M
s

s

s

M
z

z

z

x x x
A A A A A

L L L

x x x
n p N N N N

L L L





    

       





 (15) 

where Ms and Mz are the series truncation parameters. As is determined by the cross-sectional area 

variation function and Nz will be determined afterwards. Substitute Eqs. (15) into Eq. (13) yields: 
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Eq. (16) should be valid for arbitrary x3, which requies that the coefficients of (x3/L)z must be zero. This 

leads to: 
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2 1 12 2
0 0 0

1 1
( 2)( 1) ( 1) ( 1) 0.

z z z

s z s s z s s z s

s s s

A z s z s N s A z s N A N
L L

     

  

             (17) 

Then, the recursive linear equation for Nz can be expressed as: 
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From Eq. (18), we note that there are totally two undetermined coefficients, i.e., N0 and N1. Other 

coefficients Nz for z > 1 can be calculated using Eq. (18) . In addition, we get from Eq. (18) that: 
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Therefore, the power series solution is convergent as long as |A1| < |A0| is ensured beforehand. Until 

now, we’ve obtained the semi-analytical solution to the partial differential equation (13), which will be 

used to describle the electromechanical fields in PS media.  

 

4. Piezotronic Behaviors of Non-uniform N-type PS Fibers 

 

In order to illustrate the generality and applicability of the power series expansion method deduced 

above, Eq. (15) is adopted to solve the electromechanical fields in the non-uniform n-type ZnO fiber 

shown in Fig. 2, in which the origin of the x3 coordinate locates at the middle of the fiber. The material 
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constants of ZnO are listed in Table 1. Besides, the parameters used in this section to calculate the 

electromechanical fields of the n-type PS fibers are shown in Table 2 unless otherwise stated. 

 

 

(b) 

Fig. 2. N-type PS fiber with variable cross sections 

 

Table 1 

Material constants of ZnO [30]. 

Notation Description Value 

s E 
33 Elastic compliance constant 6.94 × 10-12 m2/N 

d33 Piezoelectric constant 11.67 × 10-12 C/N 

ε T 
33 Dielectric constant 1.12 × 10-10 F/m 

q Elementary charge 1.60218 × 10-19 C 

kBT/q Thermal voltage at 300 K 0.0259 V 

 

Table 2 

Parameter settings for the n-type fibers in Section 4. 

Notation Description Value 
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L Length of the the left and right halves 1 μm 

Ar Area of the right end surface 2.598 × 10-14 m2 

Al Area of the left end surface Varies with function A(x3) 

F Applied end force 2 nN 

n0 Initial electron concentration n0 = 1021 /m3 [30] 

 

4.1 Degenerated equations for non-uniform n-type PS fibers 

 

For n-type PS materials, hole concentrations are neglected, i.e., the Δp and p0 terms in Sections 2 

and 3 vanish. Then, Eq. (13) becomes 

 
2

,33 ,3 ,3 0,A n A n A n       (20) 

and the perturbation of the carrier concentration n reduces as 

 23 3 3
0 1 2

0

[ ( ) ( ) ] ( ) .
zM

z

z

z

x x x
n N N N N

L L L

       (21) 

For the isolated n-type PS fiber in Fig. 2, two boundary conditions are enough to determine the 

unknown coefficients N0 and N1 in Eq. (21), and the electrical open-circuit boundaries at x3 =  L are 

considered, i.e. 
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With the aid of Eqs. (9), (12) and (21), the electric field distribution E3 and the strain distribution S33 can 

be calculated. However, with the known E3, a potential reference point is needed to uniquely 

determined the potential distribution φ. In some relevant literatures [31, 32], this potential reference 

point can be chosen anywhere in the fiber because it does not influence the carrier distributions 

physcially. In present paper, we are particularly interested in the potential distribution, so the state 

before stress applied is chosen as the reference state. Hence, the relation between the potential and 

carrier concentration can be expressed as [33]: 

 
0 exp( ),

B

q
n n

k T


  (23) 

which can be used to quantificationally calculate the potential distribution φ. 

 

4.2 Convergence of the power series expansion method 

 

The convergence of the method should be examined first to ensure computational accuracy. Table 

3 displays the values of coefficient N1 for some selected truncation parameters Mz for three different 

types of profile pattern, i.e., a uniform form with A(x3) = A0, a linear form with A(x3) = A0(1+α1x3/L), and a 

quadratic form with A(x3) = A0(1+α2x3/L)2. In simulations, the area ratio of the left end surface to the 

right end surface Al / Ar is set to 0.4. It shows that the series produce stable results with about 30 series 

terms kept. In this paper, 50 terms in the series are adopted to obtain adequate accuracy in the 

following simulations. 
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Table 3 

Coefficient N1 for different truncations Mz. 

A(x3) = A0 A(x3) = A0(1+α1x3/L) A(x3) = A0(1+α2x3/L)2 

Mz N1 (×1018) Mz N1 (×1017) Mz N1 (×1017) 

20 3.70845 20 3.75782 20 3.84100 

22 3.70798 22 3.75729 22 3.84030 

24 3.70793 24 3.75722 24 3.84021 

26 3.70792 26 3.75721 26 3.84020 

28 3.70792 28 3.75721 28 3.84020 

30 3.70792 30 3.75721 30 3.84020 

 

4.3 Numerical validation of the power series expansion method for non-uniform n-type fibers 

 

Before analyzing the piezotronic performance of the non-uniform PS fiber, it is crucial and 

necessary to verify the power series expansion method and the linearized non-uniform model. It is 

found that for a special profile function A(x3) = A0(1+α2x3/L)2, it’s easy to obtain an exact analytical 

solution of Eq. (20) without using the power series expansion method (details are shown in Appendix A). 

In addition, both the exact analytical solution and the power series expansion method we used are 

based on the 1D linearized equations, whose precision for describing an actual 3D PS fiber needs to be 

clarified. Therefore, Fig. 3(a) gives the electric potential φ distribution respectively from the exact 

analytical solution, the power series expansion method and the nonlinear 3D FEM simulation (details in 

Appendix B) for some selected applied forces when Al / Ar = 0.4. The results from the exact analytical 

solution and the power series expansion method agree excellently well with each other, proving the 
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correctness of the theoretical method. However, when F is relatively large, the potential at the left end 

(smaller tip) calculated by 3D FEM software deviates from those obtained by the other two analytical 

methods, which is mainly caused by the following two reasons: 

(1) The linearized model we used gives accurate results only when the carrier concentration 

perturbation Δn is relatively small (compared with the initial carrier concentration n0). When F = 15 nN, 

Δn at the left end reaches up to 8 × 1020 m3 (shown in Fig. 3(b)), which is about 0.8 times of the initial 

carrier concentration. The linearized model is acceptable when |Δn| < 0.5n0. Therefore, the discrepancy 

between the present results and those of FEM occurs near the ends when F = 15 nN. 

(2) The cross section of a 3D PS fiber is a 2D circular plane, in which the electric potential distribution is 

non-uniform, as shown in Fig. A1 in Appendix B. This actual inhomogeneous distribution is induced by 

two transverse strains in x1-x2 plane via Poisson’s effect. However, this phenomenon has been ignored in 

the linearized one-dimensional model with only the axial strain S33 considered, which inevitably leads to 

some deviations of the results. Nevertheless, when F is relatively small, these tiny deviations are 

negligible, meaning that the power series expansion method adopted here is accurate enough to 

conduct the following analysis. 

  

 (a) (b) 
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Fig. 3. (a) The distribution of electric potential φ calculated by different methods; (b) The 

corresponding carrier concentration variation Δn. 

 

4.4 Influence of the cross-sectional area variation of non-uniform n-type fibers 

 

Next, we will choose a linear cross-sectional area variation A(x3) = A0(1+α1x3/L) as an example to 

explore some interesting piezotronic performances of the n-type non-uniform PS fiber. Figs. 4(a) and 4(b) 

show the distributions of electric potential φ and the carrier concentration variation Δn along the x3 axis 

for different values of area ratio Al / Ar, in which Al = Ar corresponds to uniform fibers while Al ≠ Ar stands 

for non-uniform fibers with variable cross sections. As expected, after applying the axial force F, 

electrons are driven to one end of the fiber, and the piezo-potential is partially screened by free carriers, 

resulting in mainly flat middle parts of the potential curves. This phenomenon exists in both uniform and 

non-uniform fibers and presents the typical piezotronic coupling, i.e., the mechanically induced 

redistribution of mobile charges. However, new performance, the antisymmetry destruction, appears 

only in non-uniform fibers. In (a) and (b), we see that the distributions of φ and Δn are antisymmetric 

about x3 = 0 for a uniform fiber (Al = Ar). Generally, as the applied force F increases, this antisymmetry 

will be gradually broken [33]. However for non-uniform PS fibers (Al ≠ Ar), this antisymmetry can be 

broken even under a much smaller applied force F, and it depends on the area ratio Al / Ar. For example, 

for a smaller Al / Ar (a thinner left tip) in (a) and (b), the piezo-potential and carrier concentration at the 

left end vary more rapidly and dramatically than those at the right end. Even when the piezo-potential 

near the thinner end increases 5 times as the surface area decreases, the potential and carrier 

concentration variation near the thicker end hardly change. A detailed explanation of this phenomenon 

will be given in the next paragraph. (c) and (d) show the distributions of strain S33 and polarization P. It 
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can be seen that a substantially larger strain is always produced at the narrow tip (the left tip when Al < 

Ar), and thus gives a larger polarization in this zone via piezoelectric effect. In addition, the electric 

distribution φ for different values of initial carrier concentration n0 when Al = 0.2Ar is plotted in Fig. 4(e). 

With the decrease of n0, electric potential φ near the two ends increases, and the antisymmetry broken 

becomes more severe. This is because there are not enough free carriers to screen the piezo-potential 

when n0 is small. As n0 is down to 1018 m3, the non-uniform PS fiber performs like a dielectric without 

free carriers. Therefore, we can deem 1018 m3 as a criterion of n0, beyond which the semiconductive 

property should be taken into account. Fig. 4(f) shows the potential difference Δφ between the two 

ends of the fiber for both compressive and tensile stresses. It can be found that the potential-force 

relation is non-antisymmetric and nonlinear, which is quite different from that of an insulating 

piezoelectric fiber (strictly antisymmetric and linear) and mainly owes to both the geometry and the 

piezotronic coupling.  

  

 (a) (b) 
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 (c) (d) 

 

 (e) (f) 

Fig. 4 (a) Electric potential φ, (b) carrier concentration variation Δn, (c) axial strain S33 and (d) 

polarization P along the axis for different values of area ratio Al / Ar, F=2 nN. (e) Electric potential φ 

along the axis when initial carrier concentration n0 varies. (f) Potential difference Δφ between the two 

ends x3 = L versus applied force F. 
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It is known that polarization charges appear at the polarization discontinuities. Therefore, there 

exist surface polarization charges with a density ρs = P·n [34] per unit area at both end surfaces of the 

fiber. Then the total surface charge Qs can be calculated by ρs·A. To clearly reveal the reason for the 

antisymmetry broken of the electromechanical fields in non-uniform PS fibers, we list the values of ρs 

and Qs for different values of Al / Ar in Table 4. It can be seen that positive charges appear on the right 

end surface while negative charges on the left. Since electrons in n-type fibers are negatively charged, 

they will be driven away from the negative polarization charges on the left surface and attracted to the 

positive charges on the right by electrostatic forces, which is consistent with the Δn distribution in Fig. 

4(b). At the left end, both the absolute values of ρs and Qs increase as the surface area shrinks. By 

contrast, they vary quite slightly at the right end. This is because the deformation of the thinner left end 

is much larger than the thicker right end when subjected to an axial loading, and thus producing a larger 

polarization there via piezoelectric effect. Accordingly, more free electrons are redistributed near the 

left end compared to the right, and further causes a more dramatic variation of the electromechanical 

fields there. This unique antisymmetry broken is useful for designing piezotronic devices with high on-

off ratios. 

 

Table 4 

Surface charge density ρs and surface charge QS on the left and right end surfaces. 

Al / Ar  ρs(-L) (×10-7 C/m2) ρs(L) (×10-8 C/m2) Qs(-L) (×10-21 C) Qs(L) (×10-21 C) 

1 -0.7410 6.8185 -1.9252 1.7715 

0.8 -0.9360 6.8167 -1.9454 1.7710 

0.6 -1.2698 6.8148 -1.9793 1.7705 

0.4 -1.9708 6.8129 -2.0480 1.7700 
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0.2 -4.3542 6.8109 -2.2624 1.7695 

 

5. Piezotronic Behaviors of Non-uniform PS PN Junctions 

 

To further demonstrate the versatility of the power series expansion method and exploring new 

physical phenomena caused by PS fiber’s contoured profile, the piezotronic behaviors of non-uniform PS 

PN junctions are analyzed here. Consider two kinds of non-uniform ZnO PS PN junctions shown in Fig. 5, 

the top one is a homogeneous junction with a uniform c-axis throughout the fiber, while the bottom one 

is a heterogeneous junction with opposite c-axes in the two halves. The parameters used for the PN 

junctions in this section are listed in Table 5, where the superscripts ‘l’ and ‘r’ respectively denote the 

quantities in the left and the right regions of the junction, i.e., x3 < 0 and x3 ≥ 0.  

 

 

Fig. 5. Non-uniform homogeneous and heterogeneous PS PN junctions 

 

Table 5 

Parameter settings for the PN junctions in Section 5 
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Notation Description Value 

L Length of the the left and right halves 2 μm 

Ar Area of the right end surface 2.598 × 10-14 m2 

Al Area of the left end surface 2.598 × 10-14 m2 

A0 Cross-sectional area at the origin Varies with function A(x3) 

F Applied end force 7 nN 

n r 
0  Initial electron concentration of the n-doped zone 1021 /m3 [35] 

p l 
0  Initial hole concentration of the p-doped zone 1021 /m3 [35] 

n l 
0  Initial electron concentration of the p-doped zone 7 × 1020 /m3 [35] 

p r 
0  Initial hole concentration of the n-doped zone 7 × 1020 /m3 [35] 

 

5.1 Equations for non-uniform PS PN junctions 

 

In PN junctions, holes (electrons) are driven from the p-zone (n-zone) to the n-zone (p-zone), 

forming a space charge region near the interface between them. Because of this, the electromechanical 

fields in PN junctions are more complex than those in pure n-type or p-type fibers. Taking the region x3 ≥ 

0 (denoted by superscripts ‘r’) for instance, Eq. (10) gives 
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with an undetermined constant C1. Using the power series expressed in Eq. (15), Eq. (24) becomes 
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Combining Eq. (25) with the first equation in (9), we have: 
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in which C2 is the undetermined constant. Similarly, general solutions for x3  0 can also be derived with 

two another undetermined constants C3 and C4. Until now, eight unknown constants N r 
0 , N r 

1 , N l 
0, N

 l 
1, C1, 

C2, C3 and C4 exist, which will be determined through the following boundary conditions:  

 
3 3 3 3( ) 0, ( ) 0, (0 ) (0 ),

(0 ) (0 ) 0, (0 ) (0 ), (0 ) (0 ).

D L D L D D

n n p p 
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   

   
 (27) 

In addition, Δp and Δn must satisfy the global charge neutrality conditions [11, 36], i.e., 

 0, 0.
L L

L L
A ndx A pdx

 
      (28) 

Only one of Eq. (28) is independent. So far, we have eight boundary conditions, enough to determine all 

the unknown constants in Eqs. (24), (25), and (26). After that, the electromechanical fields in PS PN 

junctions can be obtained. 

 

5.2 Numerical validation of the power series expansion method for PS PN junctions 
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We note that a homogeneous PN junction will degenerate into the n-type fiber studied in Section 4 

if the doping profile is chosen to be n l 
0  = n r 

0 = 1021 m-3 and p l 
0  = p r 

0 = 0. Based on this fact, the numerical 

example in Section 4.4 will be calculated again using the equations in Section 5.1, and then their results 

will be compared with each other to validate the power series expansion method for PN junctions 

deduced here. The comparison of the electric potential φ for some selected profiles is shown in Fig. 6. 

The curves agree very well with each other, indicating that the power series expansion method here is 

still valid for the multi-coupled analysis for PS PN junctions. 

 

 

Fig. 6. A comparison of the electric potential φ calculated using the equations for n-type fibers with 

that using the equations for PN junctions. 

 

5.3 Influence of the cross-sectional area variation of non-uniform PS PN junctions 

 

In this subsection, the cross-sectional area variation function A(x) = A0+A0α(x3/L)2 is chosen as an 

example to study the influence of profile on the piezotronic behavior of non-uniform PS PN junctions. 

                  



 25 

The profile has been shown in Fig. 5, which is symmetric about x3 = 0, so in following analysis the surface 

areas of the two ends Al and Ar are kept constant as 2.598 × 10-14 m-2, while the interface area A0 is 

variable. 

Firstly, the distribution of axial strain S33 in homogeneous and heterogeneous junctions are 

examined in Figs. 7(a) and 7(b), respectively. As expected, subject to a pair of constant applied forces, a 

smaller A0/Ar(l) (a narrower fiber) corresponds to a larger strain and the largest strain always locates at 

the thinner middle region. Meanwhile, the strains near the two ends hardly change for different A0/Ar(l). 

As a result, the piezoelectric polarization P near the depletion region, shown in Figs. 7(c) and 7(d), 

changes most evidently with the necking of the PN junction. Further, in Fig. 7(e) for homogeneous 

junctions, the electric potential φ are almost unchanged for different A0/Ar(l) values. This is because in 

the middle part of the fiber, potential is totally screened by free charges although the largest strain 

variation is located there. While near the two ends, the strain variations are too tiny to obviously change 

the potential via piezoelectric effect. Unlike the case of homogeneous junctions, φ in heterogeneous 

junctions shown in Fig. 7(f) are much more sensitive to A0/Ar(l). We see that with the necking of the PN 

junction or the decreasing of A0/Ar(l), a potential barrier gradually appears at the interface. This indicates 

that compared with a homogeneous junction, the depletion zone in the heterogeneous junction is much 

easier to be manipulated by external mechanical loading, especially when it possesses a narrower 

middle part. Such difference is induced by the surface effective polarization charge density ρs on the 

interface that origins from the discontinuity of P [11], i.e., 

 (0 ) (0 ).s P P     (29) 

The quantitative ρs variation versus Ar(l) /A0 for homogeneous and heterogeneous junctions is shown in 

Fig. 7(g). We see that surface effective polarization charges only exist in heterogeneous junctions (as 

shown in Fig. 5), and thus result in the configuration change of their depletion regions. 

                  



 26 

 

 

 (a) (b) 

 

 (c) (d) 
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 (e) (f) 

 

(g) 

Fig. 7. Electromechanical fields in homogeneous and heterogeneous PS PN junctions for different values 

of cross-sectional area ratio A0/Ar(l). (a), (c) and (e) respectively stands for the strain S33, piezoelectric 

polarization P, distributions of the electric potential φ in homogeneous junctions, and (b), (d), and (f) are 

those fields in heterogeneous junctions. (g) represents the surface effective polarization charge density 

ρs on the interface of homogeneous and heterogeneous junctions for different values of Ar(l) / A0. 
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It’s necessary to investigate the influence of cross-sectional area variation on the current-voltage 

relation (I-V curve) of a PN junction since it is closely related to the barrier configuration [37, 38]. The I-V 

relation is strongly nonlinear, so a COMSOL analysis is performed using the nonlinear current 

constitutive relations. The electrical boundary conditions applied at the two ends of the PS PN junction 

are 

 ( ) , ( ) .L V L V      (30) 

For a non-uniform heterogeneous PS PN junction with A0/Ar(l) = 0.5, the I-V curves under different F are 

plotted in Fig. 8(a). It’s observed that a larger applied force F leads to a smaller current, which is because 

it produces a higher potential barrier at the interface, making it more difficult for free carriers to 

smoothly flow through the junction. Furthermore, reviewing the fact shown in Fig. 7(f) that the potential 

barrier in a necking junction is more sensitive to F than that in a uniform one, it might be reasonable to 

conclude that its current-voltage relation can be tuned much more easily as well. To confirm this idea, 

|ΔI/I0|, the mechanical loading sensitivity of the current, for different interface areas is depicted in Fig. 

8(b), in which I0 is the current without applied force, and ΔI is the current variation deviating from F = 0. 

Results show that a smaller A0/Ar(l) corresponds to a larger |ΔI/I0| for the same F, which proves that a 

thinner middle part of the PS PN junction leads to a higher mechanical loading sensitivity. For example, 

at the area ratio of 0.2, the current sensitivity is about twice that of a uniform fibre. This phenomenon is 

beneficial for the structural design of ultrahigh sensitive piezotronic devices based on piezotronic PN 

junctions. 
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 (a) (b) 

Fig. 8. (a) Current-voltage relations in a non-uniform PS PN junction for different values of F. (b) Current 

sensitivity curves versus F for different values of cross-sectional area ratio A0/Ar(l). 

 

Recently, more and more attentions have been paid to the polycrystalline piezotronic ceramics [39-

41], in which whether the interface barriers formed between adjacent nanocrystals increase, decrease 

or remain unmodified depends on the orientation of piezoelectric nanocrystals. Two typical simplified 

configurations, head-to-head and head-to-tail, are shown in Fig. 9(a), to which the power series 

expansion method is still applicable. Their potential distributions are shown in Figs. 9(b) and 9(c) with n l 
0 

= n r 
0 = 1021 m-3, p l 

0  = p r 
0 = 0, and other material constants and cross-sectional area variation function are 

the same as those used for Fig. 7. Results demonstrate that the interface barrier in the head-to-head 

configuration is sensitive to the area variation, whilst that in the head-to-tail configuration isn’t. The 

reason is similar to that for PS PN junctions, i.e., piezoelectric charges always tend to appear at the 

heterogeneous interface. This qualitative analysis is benificial for the application of statistical piezotronic 

devices made of multiple nanoplatelets. 
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(a) 

 

 (b) (c) 

Fig. 9 (a) Schematic representation of two typical polycrystalline piezotronic configurations with head-

to-head and head-to-tail orientations. Electric potential distribution φ for different values of cross-

sectional area ratio A0/Ar(l) in (b) head-to-tail and (c) head-to-head configurations. 

 

6. Conclusions 
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Based on the linearized one-dimensional coupled equations, a power series expansion method is 

proposed to investigate the electromechanical behaviors of non-uniform piezoelectric semiconductor 

(PS) fibers with variable cross sections. The carrier concentration variation and cross-sectional area 

variation along the axial direction are expanded into power series to obtain the semi-analytical solution 

of the governing equation with variable coefficients. The convergence of the method is examined 

respectively for uniform PS fibers and fibers with linear and quadratic forms of cross-sectional area 

variation. It takes fewer than 30 terms for all of the series involved to converge. The accuracy of the 

method is validated by comparing the semi-analytical results with those obtained from the exact 

analytical solution. However, three-dimensional finite element simulation shows that the proposed 

linearized model is only applicable to the cases of small external loading. When the mechanically 

induced carrier concentration variation exceeds 0.5 times the initial value, the deviation between the 

results of the linearized model and the numerical solution is unacceptable. This issue needs to be further 

investigated in future works. 

The proposed power series expansion method is utilized to explore the piezotronic performance of 

non-uniform n-type PS fibers. The antisymmetry of the electromechanical fields in these non-uniform 

fibers is broken. For the fiber with linear cross-sectional area variation, when the piezo-potential near 

one end increases 5 times as the surface area decreases, the potential near the other end hardly 

changes. This is because the larger deformation of the thinner end produces more polarization charges 

on the surface, thus changing the field distribution nearby more drastically. Further, the power series 

expansion method is extended for the analysis of PS PN junctions. Results show that the potential 

barrier configuration and the corresponding current-voltage relation of a necking heterogeneous PS PN 

junction are more sensitive to mechanical loading than those of a uniform one. When the interface area 
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of a junction shrinks to 1/5 of its end surface area, the sensitivity of the current to external mechanical 

loading increases to twice that of a uniform junction. The theoretical method herein extends the 

fundamental theory of piezotronics, and the qualitative phenomena and quantitative results reported 

enrich the structural design of high sensitivity piezotronic devices. 
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Appendix A 

 

In this appendix, we introduce the exact solution for the electromechanical fields in a non-uniform 

fiber with the cross-sectional area varying in the form of A(x3) = A0(1+α2x3/L)2. For this profile, Eq. (20) 

can be transformed into a Helmholtz equation, i.e., 

 
2

,33( ) 0n n       (A1) 

with 

 3
21 ,

x

L
    (A2) 

and its solution is 

 
1 3 2 3sinh( ) cosh( ).n C x C x        (A3) 

Here C1 and C2 are undetermined coefficients that need to be derived by using of the electrical open-

circuit boundary condition in Eq. (22). Then, n can be calculated via 
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Appendix B 

 

According to relevant literatures [33, 37], the following 3D nonlinear equations for the n-type PS 

fiber are solved using FEM software: 
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For the static extensional deformation considered in this paper, the current equation J n 
i,i  = q∂n/∂t has 

been omitted here. If we still choose the state before stress applied as the reference state, the current 

equation is transformed into the relation of carrier concentration n and electric potential φ, i.e., Eq. (A7). 

Fig. A1 shows the potential distribution φ calculated by the 3D FEM software in a cross section at x3 

= 0.95 μm of the PS fiber, for which A(x) = A0(1+α2x3/L)2, Al / Ar = 0.4 and F = 5 nN. It is observed that φ 

is non-uniform in the cross section, which deviates from the assumption of 1D linearized method. 

However, the variation tendency of φ in the x1-x2 plane is small, and then its influence on calculation 

accuracy is tiny. 

 

Fig. A1. The non-uniform distribution of electric potential φ in a cross section of the PS fiber. 

 

                  



 35 

References 

 

[1] Y. Qin, X.D. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging, Nature, 

451 (2008) 809-813. 

[2] M.A. Johar, M.A. Hassan, A. Waseem, J.S. Ha, J.K. Lee, S.W. Ryu, Stable and high piezoelectric output 

of GaN nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening, 

Nanomaterials, 8 (2018) 437. 

[3] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and 

nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6 (2006) 2768-2772. 

[4] R.S. Dahiya, G. Metta, M. Valle, A. Adami, L. Lorenzelli, Piezoelectric oxide semiconductor field effect 

transistor touch sensing devices, Appl. Phys. Lett., 95 (2009) 034105. 

[5] J.M. Wu, K.-H. Chen, Y. Zhang, Z.L. Wang, A self-powered piezotronic strain sensor based on single 

ZnSnO3 microbelts. Rsc Adv., 3 (2013) 25184-25189. 

[6] J.J. Qi, H. Zhang, S.N. Lu, X. Li, M.X. Xu, Y. Zhang, High performance indium-doped ZnO gas sensor. J. 

Nanomater., 2015 (2015) 954747. 

[7] J. Zhang, J.L. Zhou, Humidity-dependent piezopotential properties of zinc oxide nanowires: Insights 

from atomic-scale modelling, Nano Energy, 50 (2018) 298-307. 

[8] W.Z. Wu, Y.G. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices, Adv. Mater., 22 (2010) 

4711-4715. 

                  



 36 

[9] M.K. Guo, Y. Li, G.S. Qin, M.H. Zhao, Nonlinear solutions of PN junctions of piezoelectric 

semiconductors, Acta Mech., 230 (2019) 1825-1841. 

[10] K.Y. Lee, B. Kumar, J.S. Seo, K.H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang, S.W. Kim, P-type 

polymer-hybridized high-performance piezoelectric nanogenerators, Nano Lett., 12 (2012) 1959-1964. 

[11] R.R. Cheng, C.L. Zhang, W.Q. Chen, J.S. Yang, Temperature effects on PN junctions in piezoelectric 

semiconductor fibers with thermoelastic and pyroelectric couplings, J. Electron. Mater., 49 (2020) 3140-

3148. 

[12] K. Tong, C.R. Zhou, Q.N. Li, J. Wang, L. Yang, J.W. Xu, G.H. Chen, C.L. Yuan, G.H. Rao, Enhanced 

piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 

ceramics, J. Eur. Ceram. Soc., 38 (2018) 1356-1366. 

[13] W.Z. Wu, L. Wang, Y.L. Li, F. Zhang, L. Lin, S.M. Niu, D. Chenet, X. Zhang, Y.F. Hao, T.F. Heinz, J. Hone, 

Z.L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature, 

514 (2014) 470-474. 

[14] S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z.H. Lin, G. Ardila, L. Montes, M. Mouis, Z.L. Wang, Ultrathin 

nanogenerators as self-powered/active skin sensors for tracking eye ball motion, Adv. Funct. Mater., 24 

(2014) 1163-1168. 

[15] P. Rajagopalan, V. Singh, I.A. Palani, S.J. Kim, Superior response in ZnO nanogenerator via interfaced 

heterojunction for novel smart gas purging system, Extreme Mech. Lett., 26 (2019) 18-25. 

[16] Y.M. Zhang, G.W. Hu, Y. Zhang, L. Li, M. Willatzen, Z.L. Wang, High performance piezotronic devices 

based on non-uniform strain, Nano Energy, 60 (2019) 649-655. 

                  



 37 

[17] Y.F. Hu, Y. Zhang, C. Xu, G.A. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar 

assembly of conical nanowires and its application for driving a small liquid crystal display, Nano Lett., 10 

(2010) 5025-5031. 

[18] R. Araneo, C. Falconi, Lateral bending of tapered piezo-semiconductive nanostructures for ultra-

sensitive mechanical force to voltage conversion, Nanotechnology, 24 (2013) 265707. 

[19] R. Araneo, G. Lovat, P. Burghignoli, C. Falconi, Piezo-semiconductive quasi-1D Nanodevices with or 

without anti-symmetry, Adv. Mater., 24 (2012) 4719-4724. 

[20] C. Ren, K.F. Wang, B.L. Wang, Adjusting the electromechanical coupling behaviors of piezoelectric 

semiconductor nanowires via strain gradient and flexoelectric effects, J. Appl. Phys., 128 (2020) 215701. 

[21] H.Y. Huang, Z.H. Qian, J.S. Yang, Mechanical manipulation of electrical behaviors of piezoelectric 

semiconductor nanofibers by time-dependent stresses, Acta Mech. Solida Sin., 33 (2020) 579-585. 

[22] P. Li, F. Jin, J.S. Yang, Effects of semiconduction on electromechanical energy conversion in 

piezoelectrics, Smart Mater. Struct., 24 (2015) 025021. 

[23] F.Y. Jiao, P.J. Wei, Y.H. Zhou, X.L. Zhou, Wave propagation through a piezoelectric semiconductor 

slab sandwiched by two piezoelectric half-spaces, Eur. J. Mech. A-Solids, 75 (2019) 70-81. 

[24] N. Li, Z.H. Qian, J.S. Yang, Effects of edge and interior stresses on electrical behaviors of 

piezoelectric semiconductor films, Ferroelectrics, 571 (2021) 96-108. 

[25] M.H. Zhao, Q.Y. Zhang, C.Y. Fan, An efficient iteration approach for nonlinear boundary value 

problems in 2D piezoelectric semiconductors, Appl. Math. Model., 74 (2019) 170-183. 

                  



 38 

[26] X. Guo, P.J. Wei, Dispersion relations of in-plane elastic waves in nano-scale one dimensional 

piezoelectric semiconductor/piezoelectric dielectric phononic crystal with the consideration of interface 

effect, Appl. Math. Model., 96 (2021) 189-214. 

[27] B.R.F. Pierret, Semiconductor fundamentals, Addison-Wesley, 1989. 

[28] H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, 1969. 

[29] C.L. Zhang, X.Y. Wang, W.Q. Chen, J.S. Yang, Carrier distribution and electromechanical fields in a 

free piezoelectric semiconductor rod, J. Zhejiang Univ.-SCI A, 17 (2016) 37-44. 

[30] C.L. Zhang, X.Y. Wang, W.Q. Chen, J.S. Yang, An analysis of the extension of a ZnO piezoelectric 

semiconductor nanofiber under an axial force, Smart Mater. Struct., 26 (2017) 025030. 

[31] R.R. Cheng, C.L. Zhang, W.Q. Chen, J.S. Yang, Piezotronic effects in the extension of a composite 

fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors, J. Appl. Phys., 124 (2018) 064506. 

[32] Y. Guo, C. Zhang, W. Chen, J. Yang, Interaction between torsional deformation and mobile charges 

in a composite rod of piezoelectric dielectrics and nonpiezoelectric semiconductors. Mech. Adv. Mater. 

Struct. (2020) in press. 

[33] W.L. Yang, Y.T. Hu, E.N. Pan, Tuning electronic energy band in a piezoelectric semiconductor rod via 

mechanical loading, Nano Energy, 66 (2019) 104147. 

[34] G.L. Wang, J.X. Liu, X.L. Liu, W.J. Feng, J.S. Yang, Extensional vibration characteristics and screening 

of polarization charges in a ZnO piezoelectric semiconductor nanofiber, J. Appl. Phys., 124 (2018) 

094502. 

[35] G.Y. Yang, L. Yang, J.K. Du, J. Wang, J.S. Yang, PN junctions with coupling to bending deformation in 

composite piezoelectric semiconductor fibers, Int. J. Mech. Sci., 173 (2020) 105421. 

                  



 39 

[36] Y.X. Luo, C.L. Zhang, W.Q. Chen, J.S. Yang, An analysis of PN junctions in piezoelectric 

semiconductors, J. Appl. Phys., 122 (2017) 204502. 

[37] W.L. Yang, J.X. Liu, Y.T. Hu, Mechanical tuning methodology on the barrier configuration near a 

piezoelectric PN interface and the regulation mechanism on I-V characteristics of the junction, Nano 

Energy, 81 (2021) 105581. 

[38] Y. Liu, Y. Zhang, Q. Yang, S.M. Niu, Z.L. Wang, Fundamental theories of piezotronics and piezo-

phototronics, 14 (2015) 257-275. 

[39] P. Keil, M. Trapp, N. Novak, T. Fromling, H.J. Kleebe, J. Rodel, Piezotronic tuning of potential barriers 

in ZnO bicrystals, Adv. Mater., 30 (2018) 1705573. 

[40] S.H. Liu, M. Han, X.L. Feng, Q.H. Yu, L. Gu, L.F. Wang, Y. Qin, Z.L. Wang, Statistical piezotronic effect 

in nanocrystal bulk by anisotropic geometry control, Adv. Funct. Mater., 31 (2021) 2010339. 

[41] K.A. Taylor, E. Gjonaj, Z. Zhou, B. Xu, Mesoscopic modeling of the mechanically tunable electrical 

conductivity of ZnO varistors, J. Appl. Phys., 127 (2020) 155104. 

 

 

 

                  


