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Abstract: Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis
in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing
the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a
network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected
subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can
give us a snapshot of actively expressed genes and transcripts under infection conditions. In the
present study, we have analyzed microarray data sets and compared the gene expression profiles of
the patients with the different data sets of the healthy control. Using a network medicine approach to
identify the most influential genes in the gene interaction network, we uncovered essential genes and
pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up-
and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The
results underpin the identification of seven significant hub genes with high centrality values: ISG15,
MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with
diverse biological processes not limited to host interaction, type 1 interferon production, or response
to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be
involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell
signaling. In conclusion, these results reinforce the development and implementation of tools based
on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage.

Keywords: Cryptosporidium parvum infection; Differentially Expressed Genes (DEGs); key protein;
miRNA; gene ontology

1. Introduction

Cryptosporidium species are generally widespread protozoan parasites that cause
severe gastrointestinal problems in animals and humans [1]. Cryptosporidium parvum infects
a variety of domestic and wild animals, in addition to humans, it is known to be an
important agent associated with zoonotic cryptosporidiosis [2]. Calves under the age of
8 weeks are the most frequent victims of this Cryptosporidium species, often associated
with acute diarrhoea, morbidity, and death [3]. Animals infected with zoonotic subtypes
could potentially spread the disease to other animals, farmers, and humans. Pre-weaned
calves have occasionally been found to host other Cryptosporidium species [3,4].
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The Centers for disease Control and Prevention, United States, have classified
Cryptosporidium as an emerging protozoan parasite affecting 748,000 humans in the
United States every year [5]. Currently, about 40 Cryptosporidium species have been
detected that can infect vertebrates [6]. The mode of infection primarily involves the
infection of the microvilli of the small intestine leading to disruption of the ionic balance
in the intestinal tract, resulting in gastroenteritis. The gastrointestinal tract hosts the
intestinal microbiota as a complex organ. However, the gastrointestinal epithelium also
acts as an active site of infection in many vertebrate hosts; therefore, understanding the
host-parasite interaction in Cryptosporidium has significant importance [7,8].

Cryptosporidium species are identified using genotyping techniques such as RFLP,
PCR, and the Sanger sequence for 18S rRNA gene [9,10]. In addition, the gp60 gene is fre-
quently used for genome sequencing in C. parvum and Cryptosporidium hominis (C. hominis).
Depending on the species involved, the host age and immune condition, C. parvum is the
most common parasite that causes Cryptosporidiosis [11]. People in under-equipped cities
in underdeveloped nations succumb to enteric infections through contaminated food and
drinking water owing to infectious oocysts in faeces, resulting in diarrhoea [12,13]. Infected
hosts shed many oocytes that are resistant to disinfectants like chlorine and can withstand
routine water treatment. Observations indicate that even fewer than 10 Cryptosporidium
oocysts are necessary to cause illness [14,15]. Therefore, the study of miRNAs at the
host-pathogen interface is anticipated to yield helpful information for identifying possible
molecular treatment targets for modulating C. parvum pathogenesis. We have performed a
gene-transition study of differentially expressed gene (DEG) data and text mining between
a C. parvum infected person and a healthy one. It is widely thought that, to know the
function of a gene, it must be analyzed in the context of gene interaction network, because
gene networks are commonly interpreted as encoding functional information in their con-
nections. So, our study mainly focused on the “guilt-by-association (GBA)” presumption
which states that physically and functionally linked genes are possibly participating in the
same biological pathways, having comparable effects on the phenotypes [16].

After Cryptosporidium infection by targeting PDCD4, a pro-inflammatory protein
that further increases NF-B activation in the biliary epithelial cell, TLR4/NF-B signaling is
suppressed to some extent [17]. TLR4 expression in cholangiocytes is regulated by let-7i,
which contributes to epithelial immunological responses against C. parvum infection [18].
Let-7i expression is reduced in cholangiocytes infected with C. parvum via a NFkB/MyD88
dependent pathway [18]. Consequently, using microarrays and bioinformatics the current
study was carried out at the DEG and miRNA expression profiles of intestinal epithelial
cells, which led to a better understanding of the immunologic features in C. parvum.
Hence, gene expression biomarkers from infected tissue (intestinal epithelial cells) were
investigated to find potential immune biomarkers for C. parvum infection and to uncover
prospective immunological biomarkers.

Furthermore, the tissue had accumulated a pool of immune cells travelling from active
disease sites towards lymphoid organs, so this tissue is useful for exploration. In C. parvum
infected patients, interaction networks and validated relationship data were observed using
curated and empirically identified differentially expressed genes. The study considers the
network’s hubs, motifs, and modules equally when identifying biomarkers and regulatory
pathways, rather than establishing a connection between them in gene-disease associations

2. Method and Material

A detailed workflow is given in Figure 1.
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Figure 1. The workflow of the methodologies used in the study of the C. parvum infection-related PPI network is depicted 
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GEO is a data archive repository for microarrays, chips, and high-throughput gene 

expression data [19]. The GEO (Affymetrix GPL17077 platform, Agilent-039494 Sure Print 
G3 Human GE v2 8x60K Microarray 039381 039381 (Probe Name version) was used to 
retrieve the gene expression dataset GSE87047 [20,21]. The probes were converted into 
their corresponding gene samples via the annotation interface. In the GSE87047dataset, 03 
C. parvum infection intestinal epithelium tissue samples and 03 non-C. parvum infection 
samples were included. A large sample size could reliably expose differentially expressed 
genes (DEGs) or non-coding RNAs. Hence, GEO datasets with at least ten samples were 
chosen for further analysis [22]. To assure unbiased and deregulated gene expression data, 
the R-affy and Lumi packages’ RMA was used to perform background data correction and 
data standardization. The RMA approach was applied to reduce inconsistencies caused 
by the normalizing of individual Affymetrix GSE series, which conducts quintile normal-
ization, since its precise differential change detection and constant variance on a log scale. 
When calculating fold-change to discover DEGs, the RMA method provides strong spec-
ificity and sensitivity. We also used the Bioconductor Package (Lumi pipeline), designed 
exclusively for Illumine data analysis (BeadChip). It verifies data consistency and normal-
ization while also lowering data volatility [23,24]. 
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Figure 1. The workflow of the methodologies used in the study of the C. parvum infection-related PPI network is depicted
in this diagram.

2.1. Microarray Datasets Collection and Pre-Processing

GEO is a data archive repository for microarrays, chips, and high-throughput gene
expression data [19]. The GEO (Affymetrix GPL17077 platform, Agilent-039494 Sure Print
G3 Human GE v2 8x60K Microarray 039381 039381 (Probe Name version) was used to
retrieve the gene expression dataset GSE87047 [20,21]. The probes were converted into
their corresponding gene samples via the annotation interface. In the GSE87047dataset,
03 C. parvum infection intestinal epithelium tissue samples and 03 non-C. parvum infection
samples were included. A large sample size could reliably expose differentially expressed
genes (DEGs) or non-coding RNAs. Hence, GEO datasets with at least ten samples were
chosen for further analysis [22]. To assure unbiased and deregulated gene expression data,
the R-affy and Lumi packages’ RMA was used to perform background data correction
and data standardization. The RMA approach was applied to reduce inconsistencies
caused by the normalizing of individual Affymetrix GSE series, which conducts quintile
normalization, since its precise differential change detection and constant variance on a
log scale. When calculating fold-change to discover DEGs, the RMA method provides
strong specificity and sensitivity. We also used the Bioconductor Package (Lumi pipeline),
designed exclusively for Illumine data analysis (BeadChip). It verifies data consistency and
normalization while also lowering data volatility [23,24].

2.2. Identification of Differentially Expressed Genes (DEGs)

We used R’s linear model for the microarray analysis (LIMMA) package to investigate
DEGs in each GEO dataset, by doing simple t-test, moderate t-test, and f-test calcula-
tions. Even with fewer arrays, we can get consistent and reliable results by using the
Empirical Bayes technique and lowering the standard errors. The DEGs between healthy
and C. parvum infection were determined using the limma program [25]. DEGs are de-
fined as genes with p < 0.05, |log2 f old change| ≥ 2 defined as upregulated DEGs and
downregulated DEGs, respectively.
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We used the LIMMA package in R to look into DEGs in each GEO dataset, and
analyzed them by simple, moderate, and f -test’s. Further, with the application of Empir-
ical Bayes and decreasing standard errors, it is possible to achieve steady and reliable
results even with fewer arrays. The DEGs between healthy and C. parvum infection were
determined using the limma program [25].

2.3. Construction and Analysis of PPI Networks

Specific DEGs identified following enrichment analysis were used for construction
and analysis of PPI networks. The DEGs’ primary PPI network was created using the
simple concept of one gene correspondence with one protein. The network was built
using interaction data from the GeneMANIA database [26], and the file was checked and
uploaded for further literature verification in Cytoscape [27,28]. The PPI networks were
constructed in Cytoscape, and MCODE was used to identify the most critical module in
the PPI networks.

2.4. Topological Properties of the Network

The network’s topological features are the first and most crucial foundational analysis—
topological analysis aids in comprehending a network’s structure, making the underlying
mechanisms easier to understand. The topological features of the PPI network of DEGs are
determined by utilizing the Cytoscape plugins Network Analyzer [29] and Cytohubba [30]
to quantify degree (k), betweenness centrality (CB), and bottleNeck (BN). The network
features were examined to determine the network’s essential behaviours [31–36].

Degree(k)
A node/gene in the network determines the total number of links, expressed by the

degree k. In the network regulation process, it determines a node’s local significance. The
nodes are symbolized by N, whereas the edges are designated by E in the graph G = (N, E).
The degree of the ith node (ki) is defined as ki = ∑N

ij Aij, where Aij denotes the graph’s
adjacency matrix elements.

Betweenness
The measure of a node’s proportion of all shortest-path traffic from all feasible routes

from nodes I to j is called betweenness centrality. As a result, it is a metric that describes a
node’s ability to profit from the flow of information throughout the network [37] and its
ability to affect signal processing across the network’s other nodes [38]. CB(v) of node, v
may be calculated using Equation (1) if dij(v) indicates the number of geodesic pathways
from one node I with another node j passing through the node v.

Cb(v) = ∑
i,j;i 6=j 6=k

dij(v)
dij

(1)

Equation (2) summarizes the normalized betweenness centrality, where M denotes
the number of node pairs excluding v.

CB(v) =
1

MCb(v)
(2)

BottleNeck (BN)
The high betweenness nodes are the bottleneck. It can be estimated using central

betweenness, which seems to be a measurement of the centrality of a node in a network,
and equal to the number of shortest paths. Let D n be the shortest node-rooted path tree,

BN(v) = ∑ x ∈ VRn(v) (3)

where Rn(v) = 1 if more than V(Dn)
4 paths from node n to other nodes in Dn meet at the

vertex v; otherwise Rn(v) = 0.



Vaccines 2021, 9, 1427 5 of 16

2.5. Identification of Biomarker

Centrality measurements are used to identify potential therapeutical target genes
since they can characterize the most impacting genes in a complex network, capable of
quick information transmission, reception, and sensitivity to local and global perturbations.
We calculated the centrality score for each gene in the C. parvum infection network using
cytohubba [30] and network analyzer [29] for each centrality degree and bottleNeck. A gene
with a higher degree (k) and bottleneck (BN) value can help identify the biological entity in
the network that plays the most critical role. So, we used cytoHubba and network analyzer
to measure degree (k) and BN. First, we chose the top 10 ranking genes based on degree
and BN. Then, in the degree and BN of the network, we discovered the common genes. We
found biomarkers in intestinal tissue with extremely high hub and BNvalues, indicating
that these genes play a significant regulatory function in the C. parvum infection network.

2.6. Identification of miRNA Associated with Hub Genes

MIENTURNET (MicroRNA ENrichment TURned NETwork) was used for microRNA
target enrichment analysis. The tool is based on miRTarBase and TargetScan sequence-
based miRNA target predictions [39]. Screening of miRNA of hub genes and driver
genes was performed using MIENTURNET. The significant functional enrichment of
predicted miRNA was performed using the MIENTURNET tool. Using Cytoscape 3.6.1,
we constructed a hub genes-miRNA interaction co-expression network. Disease ontology
(human), REACTOME and KEGG, were also used to perform functional enrichment
analysis between target genes and identified miRNAs.

3. Results
3.1. Extraction and Pre-Processing of Microarray Data

According to the methodology section’s inclusion and exclusion criteria, microarray
gene expression profiles with accession number GSE870476613 were selected contain-
ing expression data from intestinal epithelial tissue infected with C. parvum infection
(Table S1). To identify DEGs between C. parvum infected patient and healthy control, we
used GSE87047 datasets. The volcano plot and box plot of healthy and C. parvum infec-
tion for tissue samples are shown in Figure 2A. We found 163 DEGs, of which 109 up
and 54 down-regulated DEGs from the samples of C. parvum infected tissue, and healthy
control sets were compared after applying the statistical threshold of log2 (fold change)
BH-p-value.

3.2. Functional and Pathway Enrichment Analysis

GO enrichment analysis was used to understand how DEGs function. Furthermore,
KEGG pathway and GO enrichment analyses for the DEGs, both up and downregulated
from intestinal epithelial tissue of C. parvum infected patient samples were performed
(Tables S2 and S3). The significant enrichment of up and downregulated DEGs in intesti-
nal epithelial tissue is shown in Figures 3 and 4, respectively. Biological processes (BP)
enriched in upregulated DEGs in intestinal epithelial tissue included negative regulation
of viral genome replication, negative regulation of viral life cycle, cellular response to
type I interferon signaling pathway, cytokine-mediated signaling pathway, regulation
of T-helper 2 cell cytokine production, regulation of leukocyte chemotaxis, and positive
regulation of leukocyte chemotaxis (Figure 3A). The cladogram results revealed many
genes showed expression which were involved in various biological processes such as
cytokine-mediated signaling, cellular response to type I interferon, and negative regulation
of viral genome replication.
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Figure 2. (A) Normalized boxplots of microarray dataset of GSE87047. Green boxplots represent C. parvum-infected
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that are upregulated, and black scatters indicate DEGs that are not significant. The x-axis displays the log2 fold change, and
y-axis depicts −log10 fold change (p values).

Molecular function analysis suggests that cytokine receptor binding and activity,
CXCR chemokine receptor binding, chemokine activity, receptor binding, adenylyl trans-
ferase, receptor antagonist activity, and proteasome binding interleukin-6 receptor binding,
cAMP-dependent protein kinase regulator activity, and growth factor activity were all
abundant (Figure 3B). Changes in cellular component upregulated DEGs were seen in the
lipid droplet, perinuclear region of cytoplasm, mitochondrial respiratory chain complex,
endocytic vesicle lumen, mitochondrial outer membrane, mitochondrion, cytoplasmic vesi-
cle lumen, fibrillar center, and nuclear inner membrane, among other places (Figure 3C).
Biological pathway analysis revealed that the upregulated DEGs were mainly enriched in
influenza A, cytokine–cytokine receptor interaction, Hepatitis B and C, TNF, Toll-like recep-
tor, and IL-17 NF-kappa B, chemokine, JAK-STAT signaling pathway, arthritis Salmonella
infection, rheumatoid and tuberculosis (Figure 3D).

Downregulated DEGs in the intestinal epithelial tissue of C. parvum infected patient
were enriched in BP, including negative regulation of FGF receptor signaling pathway,
chondrocyte development, striated muscle contraction, cellular hyperosmotic response,
and negative regulation of BP delayed rectifier potassium channel activity, hyperosmotic
response, Wnt signaling etc. (Figure 4A). As for molecular function of the down-regulated
DEGs in intestinal epithelial tissue were actin filament binding, proton antiporter, inositol-
1,3,4,5-tetrakisphosphate 5-phosphatase activity, etc. (Figure 4B). Changes in cellular com-
ponent (CC) of downregulated DEGs were mainly enriched endoplasmic reticulum lumen,
nucleoplasm part, an integral component of the plasma membrane, golgi sub-compartment,
cytoskeleton, nuclear body, nucleolus, mitochondrion, etc. (Figure 4C). Biological pathway
analysis revealed the downregulated DEGs are mainly enriched in vitamin A and carotenoid
metabolism, wnt signaling, cancer pathway, TLR4 signaling and tolerance, G13 signaling
pathway, tryptophan metabolism, differentiation pathway, IL-3, IL-4 signaling pathway
(Figure 4D).
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Figure 3. DEGs that are upregulated are classified using Gene Ontology. Plots of the log-p value
and the enriched Enrichr-based combination score. The p-value indicates the significance of enrich-
ment and the number of genes/proteins in the category. Clustergram generated by Enrichr using
upregulated genes. Genes associated with each term are indicated by red cells in the matrix, with
p-values showing the top 10 most enriched terms <0.05 (A) Biological process (B) Molecular function
(C) Cellular component and (D) Biological pathway. (E) In clustergram, the red cells in the matrix
indicate the genes associated with the top 10 significant biological processes. (F) In clustergram,
throughout the matrix, red cells represent the genes involved with the top 10 significant molecular
functions. (G) In clustergram, the red cells in the matrix indicate the genes associated with the top
10 important cellular component. (H) In clustergram, throughout the matrix, red cells represent
the genes involved with the top 10 significant biological pathways. * denotes the highly significant
(p value).



Vaccines 2021, 9, 1427 8 of 16

Vaccines 2021, 9, x FOR PEER REVIEW 8 of 17 
 

 

Downregulated DEGs in the intestinal epithelial tissue of C. parvum infected patient 
were enriched in BP, including negative regulation of FGF receptor signaling pathway, 
chondrocyte development, striated muscle contraction, cellular hyperosmotic response, 
and negative regulation of BP delayed rectifier potassium channel activity, hyperosmotic 
response, Wnt signaling etc. (Figure 4A). As for molecular function of the down-regulated 
DEGs in intestinal epithelial tissue were actin filament binding, proton antiporter, inosi-
tol-1,3,4,5-tetrakisphosphate 5-phosphatase activity, etc. (Figure 4B). Changes in cellular 
component (CC) of downregulated DEGs were mainly enriched endoplasmic reticulum 
lumen, nucleoplasm part, an integral component of the plasma membrane, golgi sub-com-
partment, cytoskeleton, nuclear body, nucleolus, mitochondrion, etc. (Figure 4C). Biolog-
ical pathway analysis revealed the downregulated DEGs are mainly enriched in vitamin 
A and carotenoid metabolism, wnt signaling, cancer pathway, TLR4 signaling and toler-
ance, G13 signaling pathway, tryptophan metabolism, differentiation pathway, IL-3, IL-4 
signaling pathway (Figure 4D).  

 

Figure 4. DEGs that have been downregulated are classified using gene ontology. Plots of the log-p
value and the enriched enrichr-based combination score. The p value indicates the significance
of enrichment and the number of genes/proteins in the category. Using downregulated genes,
Clustergram was generated by Enrichr. Genes associated with each term are indicated by the red cells
in the matrix, depicting top 10 enriched terms with p-value < 0.05 (A) Biological process (B) Molecular
function (C) Cellular component and (D) Biological pathway. (E) Clustergrams display the genes
associated with the top 10 biological processes in red cells in a matrix. (F) In clustergram, the red
cells in the matrix indicate the genes associated with the top 10 significant molecular function. (G) In
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3.3. PPI Network and Module Analysis

PPI networks were designed, displayed, and analyzed using Cytoscape software
v.3.4.0 and the STRING v.10.5 database. The DEG PPI network was created (Figure 5A),
and the essential module was found using Cytoscape (Figure 5B). The topological net-
work properties of DEGs in intestinal epithelial tissue of a C. parvum infected patient were
analyzed using network analyzer and cytohubba (cytoscope plugin), (Table S3). Metas-
cape was used to perform functional analysis of genes involved in this module [40]. We
found that the genes in module 1 were mainly enriched in positive control of cell death,
TNFSF members mediating non-canonical NF-kB pathway, neutrophil differentiation,
DDX58/IFIH1-mediated activation of interferon-alpha/beta, cytokines, and inflammatory
response. Interleukins signaling Type-II interferon signaling (IFNG), SARS-CoV-2 innate
immunity evasion and cell-specific immune response, cytokine signaling in the immune
system, antiviral mechanism via IFN-stimulated genes.
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are used to colour a bar graph of enriched terms across all total expressed genes. (C) The most
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3.4. Biomarker Identification

The top ten higher degree (hub genes) in intestinal epithelial tissue of Cryptosporidium
parvum infected patient DEGs network are identified. The names, abbreviations, degree, and
bottleneck for these hub genes are shown in Table 1. The hub genes are ISG15, MX1, IFI44L,
STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These hub genes were mainly enriched
in interaction with the host, type 1 interferon production, response to interferon-gamma
Figure 6B. In addition, our study identified four-driver gene biomarkers (IFI44, IFIT3, IFITM1,
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and MX1) in the network, with many centrality scores (degree and bottleneck). The nodes
(proteins or genes) with high centralities are essential to maintain the biological network’s
self-organization behavior. We discovered that the majority of the genes are involved in
important biological processes such as apoptosis, innate immunity, inflammatory responses,
cell proliferation phosphorylation, cell growth, cell cycle, gene expression, cell differentiation,
cell signaling, signal transduction, immune responses, and cell apoptosis, among others, using
gene enrichment analysis. The most enriched pathways associated with these DEGs were also
identified, as shown in Figure 6C. Further research into these infrared genes could lead to a
better understanding and prevention of C. parvum infection.

Table 1. Top 10 hub genes expressed in intestinal epithelial tissue of C. parvum infected patient and
its topological properties.

S.No. Genes Degree Gene BottleNeck

1. ISG15 355 IFIT3 62

2. MX1 349 IFITM1 58

3. IFI44L 291 GBP1 58

4. STAT1 286 IFI44 56

5. IFIT1 283 IFIT2 56

6. OAS1 280 MX1 54

7. IFIT3 280 TRIM22 54

8. RSAD2 263 NMI 54

9. IFITM1 258 IFI27 54

10. IFI44 251 IFIT5 53
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Figure 6. Module 1 PPI network with functional enrichment generated from GeneMANIA. (A) A PPI network with
43 nodes and 834 edges yielded the most significant module. (B) The module 1 PPI network, which contains 42 genes.
Upregulated genes are highlighted in red, downregulated genes are highlighted in cyan, and hub genes are highlighted in
green. (C) p-values are used to color a bar graph of enriched phrases across module 1 genes.

3.5. Identification of miRNAs Targeting Hub Genes of DEGs Infected by C. parvum

MIENTURNET was used to extract the targets of hub gene-miRNAs. The ISG15, MX1,
IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44 are the ten hub genes having
the highest interactions with miRNAs. Hub genes and miRNAs interacted in networks
that were built as shown in Figure 7A. MiR-146a-5p, miR-1-3p, miR-1248, miR-203a-3p,
miR-92b-3p, miR-124-3p, and miR-26b-5p are among the major miRNAs that are targeted
by hub genes. We found significant correlation between differentially expressed miRNAs
and the enrichment of the 08 differentially expressed miRNAs in parvum infection (p < 0.05
and FDR 0.1). Besides, the 8 hub genes are targeted by miR-146a-5p (RSAD2, STAT1, IFIT1,
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IFITM1, ISG15, IFI44, IFI44L, IFIT3). Using the KEGG pathway and disease ontology
analysis, we assessed the putative functions of the differentially expressed miRNAs. The
results underpin how miRNAs were clustered in a variety of pathways, with a focus on
the signaling pathway, fluid shear stress, Hepatitis B, cell cycle, kaposi sarcoma-associated
herpesvirus infection, atherosclerosis, FoxO signaling pathway, endocrine resistance, and
melanoma. Cellular senescence is a term that refers to the ageing of cells. Proteoglycans
in cancer, pancreatic cancer, Glioma, AGERAGE signaling pathway in diabetic complica-
tions, microRNAs in cancer, Epstein-Barr virus infection, and focal adhesion (Figure 7B).
The miRNA is involved in many diseases’ ontology including, cervix carcinoma, inter-
stitial lung disease, pulmonary fibrosis, prostate carcinoma, pancreas adenocarcinoma,
diabetic retinopathy, retinal vascular disease, thyroid carcinoma, peripheral nervous system
neoplasm, sarcoma, rheumatic disease, breast carcinoma, renal cell carcinoma, bile duct
carcinoma, neuroblastoma, autonomic nervous system neoplasm, and autosomal dominant
disease. Further, it is involved in many types of cancers, such as large intestine, colorectal,
colon, germ cell, thyroid, intestinal, musculoskeletal system, connective tissue, kidney,
pancreatic, bile duct, and urinary system cancer.
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analysis outcomes. (A) MiRNA-hub genes target network visualization, with green triangular circles
representing miRNAs and pink circles indicating hub genes miRNAs. (B) Based on the enrichment
analysis target hub genes for the top ten differentially expressed miRNAs, a dot plot of functional
enrichment analysis for the top ten differentially expressed miRNAs. The top 10 differentially
expressed miRNAs were chosen for functional enrichment analysis. On the x-axis, selected miRNAs
are illustrated, while KEGG pathways results are shown on the y-axis. The size of the dots reflects
the gene ratio, and the colour of the dots indicates the adjusted p-value (FDR) (number of miRNA
targets found enriched in each category over the number of total genes associated with that category).
(C) The pathways of the reactome.
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4. Discussion

Genome-wide gene expression data has been shown to be a reliable resource for
identifying molecular pathways underlying human disorders, such as parasite infections.
Using in vivo, in vitro, or ex vivo techniques, only a few studies have identified gene
expression changes in C. parvum infected clinical samples. These investigations, however,
have been unable to fully comprehend the role of dysregulated genes at the molecular and
network levels [41–43]. This study investigated the epithelium’s response to C. parvum
infection using a series of comprehensive computational analyses. Despite some improve-
ments in Cryptosporidium biology, pathogenicity, and genetic characterization [44,45],
no viable cryptosporidiosis control strategies have been discovered. The main problem
is that the host-Cryptosporidium interaction mechanism is still poorly understood and
comprehended. In the last few decades, researchers have uncovered the nature of host
gene non-coding RNA (e.g., lncRNA and miRNA), which has led to new targets and tactics
for preventing and treating C. parvum infections in animals and people [46]. In the present
study, we systemically investigated the expression profiles of differentiated expressed
genes and miRNAs in cells infected with C. parvum using a network theoretical approach.

The study C. parvum infected epithelial cells of human have a uniquely diverse gene
expression profile, proving new insights into the host’s response. Various studies have
shown that infection with C. parvum stimulates and suppresses apoptosis in host epithelial
cells [47–50]. RNA molecules are increasingly shown to have a role in various biological
processes, including control of gene transcription [51,52]. The two Apicomplexan protozoan
parasites, Plasmodium falciparum, and C. parvum, have been shown to express distinct
non-protein-coding RNA genes [53–57]. IFN-inducible genes that produce IFN-induced
protein 44 had considerably higher mRNA levels following serotype Typhimurium infection
(IFI44) [58]. Therefore, it is essential to evaluate the innate immune genes related to type I
INF response. Unfortunately, limited information is available to describe immune response
expression of genes in infected cells to C. parvum. Therefore, the interest of the current
study was to find out upregulated and downregulated genes to human type I INFs and
epithelial cells infected by C. parvum.

In mice, a virulent dam mutant Salmonella vs. WT Salmonella infection revealed ISG role
in host response [59]. Although IFN-/ does not directly activate the MX1 gene, evidence
demonstrates that it is involved in the host response to Salmonella infection [59,60]. In
uninfected and Salmonella-infected macrophages, serine-arginine regulates the expression
of numerous gene regulations, with several essential innate immunity genes (Nos2, MX1)
relying on several SR/hnRNPs to maintain repression [60]. At the host-parasite interface,
C. parvum and intestinal epithelial cells interact by transmitting effector molecules from
the host cell and the parasite [61]. Studies have shown that some C. parvum proteins are
transported into host epithelial cells and participate in parasite intracellular growth [61,62].
This has led to studies of selective delivery of low-protein-coding-potential transcripts into
infected host epithelia [63]. Moreover, C. parvum infection results in the termination of host
genes via different mechanisms [20,21], which supports the idea that the infection produces
extensive transcriptional gene suppression in infected cells. However, these investigations
have been unable to appreciate the molecular and network roles of dysregulated genes
fully. The following analysis of intestinal response to C. parvum infection investigation
includes detailed computational studies.

Further, TNF and NF-kappa beta signaling pathways were overrepresented in upregu-
lated genes whose biological processes are linked to cytokine–cytokine receptor interaction,
TLR4, TNF, IL-17, NF-kappa B, and chemokine signaling pathway. These findings support
previous research suggesting that C. parvum infection activates the body’s innate immune
system by triggering the production of anti-parasitic interferon-gamma cytokine molecules.
In addition, Wnt signaling is necessary to repair and regenerate human intestinal epithelial
cells when infected with parasites. As a result, C. parvum infection may alter cell signaling,
obstructing epithelium regeneration and repair.
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We discovered ten elevated hub genes implicated in response to C. parvum infection
(ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44). The overex-
pression of three biomarkers (IFI44, IFIT3, IFITM1, and MX1), known to directly target the
C. parvum genome, was verified by protein interaction network analysis DEGs. MiRNAs
are known to influence the expression of host genetic components required for infection
response. MiRNAs appear to have a posttranscriptional influence on gene expression,
affecting various biological processes, including disease onset and progression [64–67].
MiRNAs are also involved in the regulation of complex parasite–human host interactions.
Previous research has looked into the expression of C. parvum-induced miRNA in human
biliary epithelial cells [64]. The miRNA expression profile of C. parvum-infected human
intestinal epithelial cells, on the other hand, is unknown. In this study, we discovered that
a variety of miRNAs target C. parvum-infected intestinal cells. MiR-146b, which binds the
TLR4 receptor, regulates the TLR4 signaling pathway [68]. After infection with C. parvum,
there were no changes in the gene and miRNA expression profiles in the intestinal epithe-
lium. As a result, the goal of this study was to use differential expression and network
analysis to examine the intestinal epithelial gene expression profile after C. parvum in-
fection. The key miRNAs (MiR-146a-5p, miR-1-3p, miR-1248, miR-203a-3p, miR-92b-3p,
miR-124-3p, and miR-26b-5p) targeting multiple host genes presents us a narrow window
of novel therapeutic opportunity to target genes in cryptosporidiosis pathophysiology.
However, in vitro, ex vivo, and in vivo studies are required to validate the actual role of
anti-C. parvum microRNAs in cryptosporidiosis in humans. The primary miRNA (miR-
146b) targets many host genes, allowing us a small window of opportunity to target genes
involved in C. parvum pathogenesis. Anti-C. parvum microRNAs must be validated in
C. parvum infected individuals by in vitro, ex vivo, and in vivo studies.

5. Conclusions

The transcriptome of C. parvum-infected epithelial cells and healthy controls revealed
differentially regulated cellular processes in response to infection. Thus, identifying and
quantifying parasite-specific miRNAs and their target miRNAs are critical for a deeper
molecular insight in the case of parasitic disease. In addition, the importance of investigat-
ing transmission, the likelihood of virulence, and the impact on public health investigations
is paramount for every infection. Our findings in the present study would provide novel
insights for exploring the control measures for diagntableosis and control of cryptosporid-
iosis in humans. Therefore, these findings highlight the significance of developing early
detection tools and implementing them into clinical practices to identify and treat cryp-
tosporidiosis in humans.
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