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ABSTRACT 
 

Up to 80 % of cases of prostate cancer present with multifocal tumour lesions leading to the 

hypothesis of a field effect present in an apparently normal prostate that predisposes it to cancer 

development. In this thesis we explore the development of the field effect in the prostate by 

analysing normal tissues. 

We first applied Whole Genome DNA Sequencing (WGS) to morphologically normal tissue 

and benign prostatic hyperplasia (BPH) samples (n = 44) from men with and without prostate 

cancer. Substitutions (P =7.1x10-03, Wilcoxon rank sum test) and indels (P = 9.5x10-04) were 

significantly higher in morphologically normal samples, including BPH, from men with 

prostate cancer (median = 436) compared to those without (median = 141). Subclonal 

expansions under selective pressure were significantly associated with prostate cancer presence 

(P = 3.5x10-02, Fisher exact test). Phylogenies reveal lineages were sometimes shared between 

BPH and normal tissues but were completely distinct from tumour clones.  

Secondly, we gathered 95 samples from previously analysed normal tissue of a prostate cancer 

patient and performed deep targeted sequencing (> 500X) on a panel of 98 prostate cancer 

associated genes. We identified hundreds of mutations and validated the majority of the 

mutations previously found for this patient. Some genes showed repeated mutations in specific 

areas of the prostate whereas others were spread across the prostate. Apart from gene MUC3A, 

we did not find evidence of positive selection. 

Our results show that field characterisation of the human prostate is associated with selected 

clonal expansions in morphologically normal tissue/BPH that expand under selective pressure 

by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to 

the presence of the cancer. Expansions are characterised by lack of recurrent driver mutations, 

by almost complete absence of structure variants/copy number alterations and by distinct 

mutational processes. 
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1.1 CANCER 
 

Cancer is a group of diseases which are all characterized by an increased proliferation of cells 

and the subsequent invasion of other organs in the body (metastasis). In the hallmarks of 

cancer1, Hanahan & Weinberg describe a series of characteristics that have to be present in 

cells that are essential for cancer development: sustainability of proliferative signaling, evasion 

of growth suppressors, resistance to programmed cell death (apoptosis), limitless replication, 

increased angiogenesis (blood vessels growth that enable the progression of the tumour), and 

invasion of other organs in the body (metastasis) (Figure 1.1). Recently, two other important 

characteristics have been proposed: alterations in the energy metabolism of the cell and 

immune system evasion by the cancer cells2. Genome instability and inflammation are known 

factors that contribute to the acquisition of the hallmarks of cancer. 

 
Figure 1.1: Ten hallmark traits. Adapted from Hanahan et al.1. 

 
These characteristics are generally acquired by cells through genetic alterations (mutations) 

and can lead to an increase rate of alterations in the cancer genome. If mutations start to 

accumulate in oncogenes, tumour suppressor genes or DNA repair genes, an abnormal cell can 

escape growth and regulatory control mechanisms, which in turn leads to the development of 

a tumour. Therefore, cancer is a disease of heritable changes to the genome. 

 

It is widely assumed that cancer progression is driven by natural selection3. According to the 

clonal evolution model4, cells carrying an advantageous mutation will grow into a bigger 

population called a clone. Clonal expansions  will then diversify and suffer selection pressures 

in a highly dynamic microenvironment5. During this process there may be mutations that are 

fully clonal (present in 100% of cells) and subclonal (present only in a subset of cells). 
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Eventually, clones can gain the ability to invade surrounding tissues and metastasise, which 

can lead to the patient’s death. 

 

The evolution of clones is regulated by the occurrence of advantageous mutations or “drivers” 

that encourage cancer development6. A study by Martínez-Jiménez et al.7 implemented the 

Integrative OncoGenomics (IntOGen) pipeline on more than 28,000 tumours from 66 cancer 

and identified 568 driver genes, which included previously reported genes and 152 potential 

novel driver genes. Some well-known driver genes reported in this study are tumour 

suppressors TP53, PTEN, ARID1A, epigenetic modifiers such as KMT2C and KMT2D and 

oncogenes PIK3CA and KRAS. Potential novel driver genes include RASA1 and FOXA2.  

 

There are also neutral mutations that do not influence cancer evolution and these are referred 

to as “passenger mutations”. However, there is evidence that mutations  classified as 

“passenger” could have an impact in cancer development under specific circumstances5. An 

example would be a mutation that normally would be identified as a passenger having an effect 

only when there is another mutation in another gene. 

 

There are multiple models of cancer evolution. The classical model involves the consecutive 

acquisition of mutations and subsequent growth of subclones under selection pressure4. In 

Figure 1.2 we can see an example of a branched model of evolution, in which there is a high 

clonal heterogeneity since the early stages of tumour development. However, there is 

increasing evidence that cancer does not always follow a continuous steady development8, but 

a model of punctuated evolution occurs, in which rapid changes occur at the beginning8 (Figure 

1.3). In these circumstances, events that promote tumour progression can occur simultaneously 

in short periods of time. Chromothripsis, first reported in lymphocytic leukemia by Stephens 

et al.9, is an example one of these events. This mutational phenomenon is characterised by a 

massive genome shattering and reassembly that leads to hundreds of genomic rearrangements 

localised in a couple of chromosomes10. Point mutations can also arise in very short periods, 

which results in specific patterns of genomic alterations called kataegis, first observed in breast 

cancer11. It is primarily characterized by clusters of 10-20 base substitutions concentrated in 1-

2 kilobases near genomic rearrangement sites11. Mutations tend to be C>T and C>G, usually 

appearing in a TpC mutation context, and located near large genomic structural variants 
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Figure 1.2: Cancer clones under selective pressures. Some subclones become dormant while 

others expand. Each coloured circle represents different subclones. Vertical lines indicate the 

presence of selective pressures. Adapted from Greaves et al.5. 

 

Figure 1.3: Stepwise model of evolution versus punctuated mutation events. Mutations A-E are 

needed for clonal expansion initiation and cancer development, and occur in the premalignant 

phase (P). Mutations F-H represent ongoing evolution leading towards the acquisition of more 

aggressive characteristics (Phase A). In the crisis model (punctuated evolution), the 

premalignant phase is almost non-existent8.  
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1.1.1 CANCER HETEROGENEITY 
 

Cancer heterogeneity is characterised by the detection of different cellular clones or subclones 

in the same tumour or between the primary tumour and metastases. They show different 

patterns of gene expression, histology and metastatic potential. Genetic heterogeneity has been 

reported in colon12, lung13, breast14, ovary15, kidney16 and prostate17,18, among other cancers. 

This is exemplified in a study by Gerlinger et al.19, where branching tumour evolution was 

observed during the development of kidney cancer. In one patient, a small combination of 

mutations was observed in all specimens from the same tumour, but there was a subset of driver 

mutations that where found only in specific regions, indicating a highly intratumour 

heterogeneity. Phenotypic convergent evolution, in which similar adaptive strategies occur 

through different mechanisms, was detected in driver gene SETD2, where deleterious 

mutations were found in spatially separated samples.  

 

Cancer heterogeneity is a hallmark of the dynamic evolution of the disease but creates a 

problem in determining the risk of progression and managing treatment16,20. As a single biopsy 

only accounts for a small amount of tissue, this means that a key biopsy may be missed, leading 

to a false picture of the state of the disease16,21. Even with a good characterization of the 

different branching clones, it is difficult to predict which ones are more aggressive.  

1.1.1.1 IMPORTANT ROLE OF SUBCLONES IN CANCERS WITH HIGH 
INTRATUMOUR HETEROGENEITY 

High genetic heterogeneity commonly leads to the forming of multiple and diverse subclones 

that could engage in both competition and cooperation. A study by Inda et al.22 in a 

glioblastoma multiforme mouse xenotransplant model reported an example of cooperativity, 

where a cell subpopulation carrying a EGFR mutation promoted growth of all tumour cells. 

Sometimes cooperation between subclones has been critical for specific subpopulations that 

initially lack metastatic potential to invade other tissues, aided by processes driven by another, 

more invasive subpolulation of cells. This scenario is described by Chapman et al.23 after 

observing that protease activity of cells around the primary tumour was a key step for other 

cells to metastasise as well. The ongoing branching process favoured by high genetic 

heterogeneity may also lead towards the development of treatment resistance and evasion of 

the immune system. This event occurs when a subclone is not affected by treatment and 

consequently becomes the dominant clone19. However, higher clonal diversity does not 
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necessarily predict a worse patient outcome. A study by Andor et al.24 examining 12 different 

cancer types observed that survival decreased when more than two clones coexist in the same 

tumour but increased when more than 4 clones were present.   

 
1.1.2 GENETIC AND EPIGENETIC ALTERATIONS IN CANCER 
 

Cancer is characterized by heritable changes in the genome. These alterations or mutations are 

caused by exposure to mutagenic agents or errors in DNA replication and repair. They can be 

classified as somatic (occurring in a cell during the lifetime of the patient) or germline 

(inheritable from the cell of a parent). Germline mutations are present in every cell of the body 

from birth. Both germline and somatic have been associated with risk of cancer development. 

However, in this thesis we will focus only on somatic mutations. 

1.1.2.1 POINT MUTATIONS 

Point mutations are substitutions of a single nucleotide for another that can occur anywhere in 

the genome. When they occur in protein-coding regions of genes they are classified into three 

types: silent mutations or synonymous (the gene codes for the same aminoacid); missense 

mutations (the gene codes for a different aminoacid); and nonsense mutations (they code for a 

stop codon, so the aminoacid is not fully translated). The last two are also referred to as non-

synonymous mutations. When they are somatic or single nucleotide variants (SNVs), they 

occur in a single cell in somatic tissue, some of them can lead to cancer25. Genes TP53, PIK3CA 

and BRAF have been found to be mutated in more than 10 % of patients in a wide range of 

cancers25.   

1.1.2.2 INSERTIONS AND DELETIONS  

Insertions and deletions (INDELS) occur when one or more nucleotides are added or subtracted 

from DNA sequence during replication. Indels that occur in coding regions can alter the end 

protein product. They are classified in two types: frameshift and non-frameshift indels. Non-

frameshift indels are characterized by addition or elimination of a multiple of three base pairs, 

which would introduce or delete one or more aminoacids but would not alter the rest of the 

protein. On the other hand, frameshift indels introduce a reading frame change that alters the 

protein sequence from the location where the indel occurred. Although both types are 

damaging, frameshift indels are more likely to result in the protein losing its function. In some 

cases, DNA fragments are inserted and deleted simultaneously, producing what it is called a 
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complex indel. Though complex indels represent a small proportion of the total indels, they 

have been detected in key cancer-associated genes26. Most of these affected genes are tumour 

suppressors genes (PIK3R1, TP53, ARID1A, PTEN and ATRX) and oncogenes (EGFR, ALK, 

MET). 

1.1.2.3 GENOMIC REARRANGEMENTS AND COPY NUMBER ALTERATIONS (CNAs) 

Genomic rearrangements or breakpoints constitute DNA changes of a size that range from 100 

base pairs to various megabases, therefore affecting large chromosomal regions. They can take 

the form of deletions, insertions, duplications, inversions (genetic material is inverted) and 

translocations (genetic material is exchanged between chromosomes). Rearrangements can be 

highly complex when several joining sites and more than two chromosomes are involved27. 

Sometimes small regions of DNA with sequence homology or “microhomology” are observed 

in the genomic rearrangements. They involve regions of homology of less than 70 bp that occur 

at the junctions of the rearrangement28 (Figure 1.4).  Genomic rearrangements are described as 

balanced when the exchange of genetic material does not lead to a gain or loss of the number 

of a gene. On the other hand, an unbalanced rearrangement could result in gene copy number 

alterations (CNAs). A copy number alteration is considered when the DNA fragment lost or 

gained is between 1kb and 3 Mb in size29. The effect can be neutral, but in many cases its 

occurrence is associated with cancer development, progression and metastasis27. In fact, many 

studies30–32 show that the higher the percentage of the genome with CNAs, the worst the 

outcome for the patient. It has been observed that there are regions in the genome or “hotspots” 

where rearrangements arise in tumours but not in healthy tissues. Another study33 found 

breakpoints events are observed in both tumour and normal, but the distribution across the 

genome is different: cancer associated breakpoints are found recurrently in specific regions 

whereas in normal tissue they are distributed in a uniform fashion.  

 

Chromosomal rearrangements can produce gene fusions, which is an event that results in the 

combination of unrelated genes. A widely studied gene fusion is the Philadelphia chromosome 

found in chronic myelogenous leukemia. This translocation joins the viral oncogene ABL in 

chromosome 9 and the BCR gene in chromosome 22 in patients suffering chronic myelogenous 

leukemia34. The result is an altered kinase that increases the proliferation of myeloid cells by 

inhibiting apoptosis. In a similar fashion, the anaplastic lymphoma kinase (ALK) is altered by 

a gene fusion between the ALK gene and the protein EML4 triggered by an inversion. This 

event is observed in 2-5% of non-small cell lung cancers27. 
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Wenli Gu et al.35 described several mechanisms that can drive chromosomal rearrangements 

that can result in copy number changes35. During these processes separate segments of DNA 

are joined, which can result in fusion of genes, inversions of the DNA segment and 

translocations. Most cases are caused by Non-allelic homologous recombination (NAHR), by 

which two regions of DNA of 10-300 kb (called Low-Copy repeats or LCRs) that share a high 

similarity are aligned during meiosis or mitosis (instead of chromosomal allelic copies). This 

“crossover” can produce genomic rearrangements (Figure 1.4) that are localised in specific 

areas of the genome or hotspots, and therefore they tend to generate an increase of recurrent 

CNAs. Another studied mechanism that could result in copy number changes is non-

homologous end joining (NHEJ)36, a double-strand breaks repair pathway. NHEJ is likely to 

contribute to non-recurrent copy number changes by rejoining sequences that are not 

homologous. Finally, CNAs can occur through microhomology-mediated-break-induced 

replication (MMBIR). This mechanism involves joining sequences with microhomology 

regions after errors during DNA replication28,37.  

 

A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

Figure 1.4: (A) Genomic rearrangements35. (B) Microhomology at a rearrangement junctions. 

Adapted from Ottaviani et al.28.  
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1.1.2.4 EPIGENETIC ALTERATIONS 

Epigenetics is the study of processes that determine changes in cells of heritable nature but that 

do not make a change in the DNA sequence. One of the main epigenetic mechanisms is DNA 

methylation. A base located in the 5’ position of a cytosine is methylated and constitutes an 

epigenetic mark in human DNA. Most of these marks occur in CpG dinucleotides which tend 

to be concentrated in specific regions of the genome but can also be located independently. In 

normal cells, methylation of dense CpG regions (also called CpG islands) is unusual, whereas 

these regions appear to be hypermethylated in cancer cells38. Hypermethylation of CpG has 

been associated with gene repression involved in silencing genes related to cancer suppression.  

 

Other known mechanisms are histone modification and DNA and RNA protein interactions38. 

Histones are DNA-binding proteins that can suffer posttranslational modifications such as 

acetylation and methylation, among others. Along with methylation, these processes determine 

if chromatin is active (open) or inactive (closed), which in turn influences the possibility of 

gene expression/repression. Inactive chromatin has been commonly associated with cancer, as 

this prevents many critical regulatory proteins binding to DNA39.  

 

1.2 PROSTATE CANCER AND BENIGN PROSTATIC HYPERPLASIA 
 

1.2.1 OVERVIEW 
 

Prostate cancer is one of the four most common cancers worldwide, with an estimated 

1,276,106 new cases diagnosed and 358,989 deaths a year (in 2018), most of them occurring 

in developed countries40. The majority of tumours are characterised by highly proliferating 

cells that form adenocarcinomas of acinar type. They originate from epithelial tissue and are 

characterized by the formation of acini and tubules41. Up to 75% arise in the peripheral zone, 

with only 20% and 5% arising from the transition and central zones respectively. Healthy 

prostate epithelium presents a secretory layer of columnar cells and a basal layer.  As cancer 

progresses, the basal layer is lost, and the cells suffer a series of changes, such as uncontrolled 

growth, alterations in cell shape and cellular atypia (enlarged nuclei and nucleoli). 

 

In approximately half of the prostate cancers detected by the PSA blood test (prostate specific 

antigen, section 1.2.2), the disease progresses slowly and poses no risk for the patient42. Radical 

radiotherapy or prostatectomy constitute the most common treatments with curative intent for 
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intermediate and high risk prostate cancer, both of which can produce lasting side effects that 

significantly affect the patient’s quality of life, such as incontinence and erectile dysfunction43. 

It is important to make the distinction between indolent and aggressive prostate cancers, in 

order to give the appropriate treatment and avoid unnecessary overtreatment. However, 

prediction of cancer progression at initial diagnosis is still unfeasible and radical overtreatment 

may still be performed. So far risks factors for prostate cancer, and specifically, aggressive 

prostate cancer, are not clearly determined and there is limited understanding about the early 

stages of prostate cancer development. Advancing age is associated with lower survival, with 

a higher proportion of men (26%) presenting high-risk disease by age 7544. Also, in many cases 

prostate cancer is asymptomatic and can even be characterised as indolent disease. In an 

autopsy study by Jahn et al.45 it was revealed that asymptomatic prostate tumours were detected 

in 36% of Caucasian and 51% of African-American men aged 70-79. Further studies are 

needed to deepen our understanding of the disease and to identify biomarkers that would allow 

for more accurate prognostic tests. This would greatly reduce the long-term life altering side 

effects that patients suffer from unnecessary overtreatment and the economic impact on health 

care systems.  

 

1.2.2 THE PROSTATE 
 

The prostate is a gland approximately the size of a walnut (11-16g) and forms part of the male 

reproductive system46 (Figure 1.5B). It secretes an alkaline fluid that constitutes 30% of semen 

(prostate secretions), along with sperm and fluid from the seminal vesicles. The prostate 

secretions are mainly composed of calcium, zinc, citric acid, acid phosphatase, albumin, and 

prostatic specific antigen (PSA)47,48. 

 

Histologically, the prostate gland is composed of a secretory epithelium comprised of columnar 

cells and basal cells. It contains 30-50 tubuloalveolar glands, that excrete into 15-25 separate 

excretory ducts that open to the urethra. It is contained in a fibromuscular stroma composed of 

smooth muscle and connective tissue. There are different zones: the peripheral zone (contains 

large glands, the ducts open into the urethra), central zone (submucosal glands) and transition 

zone (mucosal glands) and anterior fibromuscular zone or stroma (Figure 1.5A). 
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1.2.3 PROSTATE DEVELOPMENT 
 

In the embryo, the male gonad starts to differentiate under the influence of the Y chromosome. 

Around the 10th gestational week, the production of fetal androgens by the gonad will stimulate 

a region of the urogenital sinus (UGS) mesenchyme to interact with the underlying epithelium. 

As a result, epithelial outgrowths, called prostatic buds, form and continue to interact with the 

mesenchyme during prostate development. This interaction will mediate duct formation, 

regulate epithelial proliferation and lead to the expression of epithelial androgen receptors 

(ARs) and specific prostate proteins49. 

 

Some aspects of prostatic development such as epithelial morphogenesis, proliferation and 

androgen receptor expression are mediated by androgen receptors present in the UGS 

mesenchyme49, but the expression of androgen dependent secretory proteins is mediated by the 

epithelial AR. Similarly, the UGS mesenchyme will grow and differentiate into prostatic 

smooth muscle that will organise around acini, and later will constitute the stroma of the 

prostate50. 

 

Figure 1.5: (A) Three zones of the prostate: the central zone (CZ), the transition zone (TZ) 

and the peripheral zone (PZ). The anterior fibromuscular stroma is also depicted. Based on a 

figure from Wadhera et al.274. (B) Male reproductive system.  Taken from Encyclopaedia 

Britannica. 
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In summary, three stages of development have been identified. During the first 20-30 weeks 

(bud stage) the ducts of the prostate are simple, columnar cells are observed in the basal layer 

and no lumen can be seen. Around 31-36 weeks (bud-tubule stage) cellular acini are present in 

both the peripheral and transition zones of the prostate. In the last weeks before birth, cluster 

of acinotubular glands form. Secretory protein PSA can be detected from 32 weeks onwards. 

The prostate suffers morphogenesis and growth during this prenatal stage, and then a second 

phase of growth occurs during puberty. During these periods of growth, cell proliferation is 

higher than cell death, but the normal adult prostate is characterized by a very low cell turnover 

rate49. Additional growth is considered to be pathological, which can occur during neoplastic 

processes but also with other conditions such as benign prostatic hyperplasia (BPH). 

 

1.2.4 RISK FACTORS OF PROSTATE CANCER 
 

Prostate cancer risk factors are not clearly defined, but it is widely known that the main 

contributing factor is old age. 64% of new diagnoses in the US are in men at least 65 years 

old51. Other factors such as family history and ethnicity are also associated with the disease52. 

Men with a family history of prostate cancer are at greater risk of developing it themselves, 

with the risk doubling when there is a first degree relative that has had prostate cancer. 

Interestingly, men with specific heritable genetic alterations increase prostate cancer risk, most 

prominent of which are mutations in the BRCA1 and BRCA2 suppressor genes that are involved 

in processes of DNA repair. In total, 70 germline variants have been identified to have an 

effect in prostate cancer risk and account for 30% of the heritable component of prostate 

cancer53. It has also been reported that prostate cancer incidence rate is higher among African-

American men (185.4 per 100,000) in comparison to Caucasians (US:107 per 100,000, EU:34-

100.1 per 100,000)54, whereas Chinese men have the lowest rate (1.7 per 100,000)54. Although 

still controversial55, these differences may be explained by environmental factors such as 

obesity, radiation exposure, androgenic (anabolic) steroids and red meat consumption.  

 
1.2.5 DETECTION OF PROSTATE CANCER 
 

Clinical assessment of suspected prostate cancer includes measurement of serum PSA and 

digital rectal examination (DRE) of the prostate. The PSA test measures the amount of PSA in 

the blood. Elevated levels of PSA have been associated with prostate cancer48. DRE is a 

procedure that involves the insertion of a gloved finger in the anus, to facilitate examination of 
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the surface of the prostate which lies behind the rectal wall. Abnormalities such as enlargement 

or changes in consistency are identified which could indicate the presence of a tumour. 

PSA is an unreliable test because of its low specificity and sensitivity. A high PSA result can 

also be caused by BPH (Benign Prostatic Hyperplasia) or other causes such as prostatic 

infection or inflamation. Nevertheless, higher levels are expected in the presence of prostate 

cancer, and as an independent variable, it is still a better predictor than other strategies alone, 

such as DRE and transrectal ultrasound (TRUS)55. A level around 4 ng/ml indicates presence 

of disease 25% of the time56 and the risk increases with higher levels of PSA. Patients with 

levels >100 ng/ml are almost certain to have metastatic disease and are informed about the 

probability of requiring hormonal therapy or chemotherapy57. The exact cut-off level for what 

is considered the normal PSA level has not been established, but levels of 2-3 ng/ml are often 

considered normal in young men56. Many institutions employ age and race-specific reference 

ranges for ‘normal’ PSA in clinical practice.  

After assessment of PSA, DRE and a thorough clinical history to identify relevant risk factors 

(such as ethnicity, age and family history) patients are frequently offered multiparametric 

magnetic resonance imaging (mpMRI) as a first line screening tool. mpMRI is generally only 

offered to those patients who would be suitable candidates for radical intervention to treat their 

prostate cancer. Results from mpMRI are evaluated using a five-point Likert scoring system58 

and the Prostate Imaging-Reporting and Data System (PI-RADS). Higher scores (4-5) denote 

greater suspicion of underlying malignancy, whereas lower scores (1-2) indicate a low 

suspicion. Depending on clinical risk factors, patients with PI-RADS scores greater than 3 may 

be offered a biopsy to confirm57. PSA density (PSAD) (serum PSA (ng/ml) divided by prostate 

volume (mL)) of greater than 0.10 ng/ml2 may also identify those patients for which biopsy is 

indicated. For scores of 1 or 2, serum PSA is usually repeated after 3-6 months to ensure a 

return to baseline levels. The detailed information regarding tumour location obtained from the 

mpMRI is used to determine optimum placement of the biopsy needle to increase the chances 

of detecting cancer.  

Historically, the most common type of prostate biopsy was TRUS. The biopsy, guided by 

ultrasound allows the sample collection from the prostate for further analysis under the 

microscope by pathologists. A thin needle is inserted through the rectum wall into the prostate. 

A small “core” of prostate tissue is removed, and this is normally done 12 times. In spite of 

taking multiple “cores”, it is still possible to miss tumour tissue i.e. sampling error. More 
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recently, the transperineal approach has been utilized more frequently in combination with the 

results of the mpMRI to provide greater accuracy in detection of prostate cancer. In this 

approach, the biopsy needles are inserted through the perineum through a metal grid, enabling 

systematic sampling of prostatic tissue and improved access to the anterior prostate. 

As prostate cancer is multifocal in nature in 80% of cases17, complete histologic and genomic 

representation of the cancer is often impossible, as foci may harbour different aberrations. 

Consequently, sometimes upwards of 30 cores are collected. Based on images of the biopsies 

a score called “Gleason score” is assigned by a histopathologist for classification purposes 

(section 1.2.6.1). If cancer is diagnosed, other tests such as isotope bone scans are performed 

to rule out the presence of metastatic disease before the patient can progress to radical 

treatment. 

1.2.6 RISK STRATIFICATION AND TREATMENT 
 

1.2.6.1 GLEASON SCORE 

The Gleason score is the most common grading system in prostate cancer using biopsy 

samples. Depending on the level of differentiation and abnormal glandular growth patterns 

observed in the biopsy, a grade between 1 and 5 is given (Figure 1.6). The score is the sum of 

the most and second-most dominant types of glandular growth patterns in the tumour (e.g 3+4= 

7). These values are also reported in addition to the Gleason score. This is relevant, as having 

a higher score in the most dominant pattern indicates a more advanced disease.  If only one 

type is found, that grade is doubled e.g 3+3. As a rule, a grade must comprise at least 5% of 

the tumour to be considered55. A Gleason score below 6 is difficult to interpret, as there is 

uncertainty about the presence of cancer. 

 

The Gleason score is currently one of the best prognostic factors for predicting clinical behavior 

and response to treatment55 and has been modified throughout the years59. In a study by L 

Egevad et al.60, the Gleason score had a very strong prognostic value as a predictor of death 

from cancer. Only 23% of patients with a Gleason score of 6 died from prostate cancer, in 

contrast to 70% of patients with a 8-10 Gleason score60. 

If the patient has had their entire prostate removed (radical prostatectomy), no cancer foci can 

be missed, a more accurate evaluation can be performed and the resulting Gleason score is 

referred to as pathological Gleason score. The extent to which cancer has spread is also better 
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assessed. For this reason, two categories in term of classification can be made: clinical stage 

(assessment done without radical prostatectomy) and pathological stage (assessment following 

surgery).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.6.2 TNM STAGE 

The American Joint Committee on Cancer (AJCC) and UICC (International Union for Cancer 

Control) are the most common staging system for prostate cancer, called the TNM (Tumour 

node metastasis) system (Table 1.1)55. This system is used to evaluate treatment options and 

prognosis. It considers 3 characteristics that were first described by Brierley et al.61: description 

of the primary tumour site (T category), the possibility of spreading to the lymph nodes (N 

category), and the presence of metastasis (M category) (see Table 1.1).  

  

Figure 1.6: Prostate cancer grading system, adapted from Chen Ni et al.59 using Gleason 

scores. Column 1-3, from left to right: most and second-most dominant types of glandular 

growth patterns for each group of H&E microscope slides from prostate samples; sum of each 

grade given to each pattern; grade prognostic groups according to Gleason score that range 

from I (most favorable) to V (least favorable). 

 



                                                                                                                                     Chapter 1 

 16 

T – Primary Tumour 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour  

T1 Clinically inapparent tumour that is not palpable 

T1a Tumour incidental histological finding in 5% or less of tissue resected  

T1b Tumour incidental histological finding in more than 5% of tissue resected  

T1c Tumour identified by needle biopsy (e.g., because of elevated PSA) 

T2 Tumour that is palpable and confined within prostate 

T2a Tumour involves one half of one lobe or less  

T2b Tumour involves more than half of one lobe, but not both lobes  

T2c Tumour involves both lobes 

T3 Tumour extends through the prostatic capsule 1 

T3a Extracapsular extension (unilateral or bilateral) including microscopic bladder 

neck involvement  

T3b Tumour invades seminal vesicle(s) 

T4 Tumour is fixed or invades adjacent structures other than seminal vesicles: external 

sphincter, rectum, levator muscles, and/or pelvic wall. 

N - Regional Lymph Nodes  

NX Regional lymph nodes cannot be assessed  

N0 No regional lymph node metastasis  

N1 Regional lymph node metastasis 

M – Distant Metastasis 2 

M0 No distant metastasis  

M1 Distant metastasis  

M1a Non-regional lymph node(s)  

M1b Bone(s)  

M1c Other site(s) 
1 Invasion into the prostatic apex or into (but not beyond) the prostatic capsule is not classified as T3, but as 
T2. 
2 When more than one site of metastasis is present, the most advanced category is used. (p)M1c is the most 
advanced category 
 

Table 1.1: TNM staging system. Adapted from Brierley et al.61. 

 

 

 



                                                                                                                                     Chapter 1 

 17 

 

1.2.6.3 D’AMICO/ NICE CATEGORIES 

In conjunction to the TNM system, disease management is determined by the assessment of 

PSA and Gleason score. A classification system using these two parameters that predicts the 

risk of progression in localized prostate cancer was developed by D’Amico and described in 

the NICE (National Institute for Health and Care Excellence) guidelines57,62 (Table 1.2). 

 

Level of risk PSA  Gleason score  Clinical stage 

Low risk <10 ng/ml and ≤6 and T1 to T2a 

Intermediate 

risk 

10–20 ng/ml or 7 or T2b 

High risk1 >20 ng/ml or 8-10 or ≥T2c 

Abbreviation: PSA, prostate-specific antigen. 

1 High-risk localised prostate cancer is also included in the definition of locally advanced prostate 

cancer. 

 
Table 1.2: D’Amico categories. Adapted from NICE (2019)57. 

1.2.6.4 PRIMARY TREATMENT 

For patients that are considered low risk according to the D’Amico classification system 

“Active Surveillance” is favoured over other forms of more aggressive treatment such as 

radical prostatectomy or radiotherapy. This consists of close monitoring of PSA, regular DRE 

examinations and mpMRI. For example, PSA readings occur every 3-4 months during the first 

year and every six months after the second year of diagnosis; DRE is performed annually and 

mpMRI is performed every 12-18 months. In case of suspicious clinical changes another biopsy 

is taken. This approach improves the patient’s quality of life and reduces overtreatment. If 

cancer is locally advanced or the cancer is considered of intermediate risk, the most common  

treatment offered is radical prostatectomy (removal of the prostate), which has been well 

documented to increase prostate cancer specific survival55. The surgery includes the resection 

of the seminal vesicles and enough surrounding tissue in an attempt to ensure a negative 

margin. This procedure has common adverse side effects such as urinary incontinence and 

impotence, which can decrease quality of life substantially43. Other treatments for high risk 

patients include radiotherapy with or without hormonal therapy55. 
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1.2.7 PRE-NEOPLASTIC LESIONS 
 

Prostatic intra-epithelial neoplasia (PIN) and proliferative inflammatory atrophy (PIA) are two 

histologically classified precancerous lesions that are multifocal and heterogeneous63,64 (Figure 

1.7). PIN is characterized by non-invasive hyper-proliferative cells that have a malignant 

morphology, but still present an intact basal layer, whereas PIA shows inflammatory infiltrates, 

generally associated with atrophic tissue. It is widely accepted that both PIN and PIA act as a 

precursor to prostate cancer63,65,66. When present simultaneously with prostate cancer it has 

been observed that both chromosomal and genetic alterations correlate with primary tumours, 

indicating their involvement in prostate cancer development67. Specifically, PIA presents an 

increased expression of genes Ki67, bcl-2, GSTP-1 and COX-2. However, the opposite has also 

been reported: PIN foci can be distinct to those observed in the main tumour mass68. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.8 BENIGN PROSTATIC HYPERPLASIA 
 

Benign prostatic hyperplasia is characterized by an enlargement of the prostate, produced by 

increased proliferation of both epithelial and stromal cells. Nodules form in the transition zone 

of the prostate (around the urethra), and continue growing while pressing on the urethra69. This 

increase in pressure can result in bladder outflow obstruction and can lead to the development 

Figure 1.7: Field effect and progression from prostatic intraepithelial neoplasia (PIN) to 

multifocal prostate carcinoma275. 
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of LUTS (Lower Urinary Tract Symptoms), among other disorders. The main risk factor for 

the development of this condition is age (as is the case in prostate cancer), with more than 70% 

men being affected by the age of 70 years69. The mechanisms that lead to this enlargement are 

believed to be mediated by androgens, estrogens, growth factors, inflammatory and immune 

mediators70.  

 

The two main factors that influence prostate development are androgens and stromal tissue.  

However, in the adult, prostate growth is quiescent. Therefore, there may be genetic, 

physiologic or environmental aspects favouring new growth. Because of this reason, BPH has 

been called a “reawakening” of processes that are involved in the organogenesis of the 

prostate71. 

 

The role of estrogen has also been investigated in BPH.  Estrogens could have an “imprinting 

role” in the fetal prostate in utero72. A physiological increase of 50% of estrogen during 

gestation in mice had the consequence of an enlarged prostate in adulthood, showing a 6.6 fold 

increase in androgen receptor levels in comparison to controls. The number of glands also 

increased, especially in the areas BPH originates in the adult. This outcome suggests that 

estrogens can alter the sensitivity of the prostate to androgens and that is a long-lasting effect 

that could lead to dysfunction in growth regulatory patterns later in life.  

 

Inflammation is also thought to be involved in the development of BPH73. A study in stromal 

fibroblasts revealed the presence of upregulated genes related to the secretion of inflammatory 

mediators73. These mediators (secreted by the stroma) produced an increase in the proliferation 

of both epithelial and stromal cells74. The presence of heterogeneous bacterial and viral strains 

has been reported in patients with BPH, which could explain the increased production of 

inflammatory mediators observed in these patients73. 

 

It is widely thought  that BPH does not lead to prostate cancer development, although in many 

cases both conditions coexist70. Some studies70,75 have linked BPH to prostate cancer, but the 

nature of this association is unclear and it is a topic of controversy within the urological 

community. Histologically, they are very different: most prostate cancers originate from 

epithelial cells in the peripheral zone of the prostate, whereas BPH originates in the transition 

zone70. However, BPH and Prostate cancer do have many aspects in common. As observed 

previously, both conditions are dependent on androgens for growth, respond to antiandrogen 
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therapy, show a high grade of inflammation and share genetic and epigenetic 

alterations75.Therefore, it would be logically to consider BPH as a possible risk factor for 

prostate cancer. Furthermore, observations from historical autopsy data show that 83% of 

prostate cancer arises in the presence of BPH.  

 

In a 100 single-nucleotide polymorphism (SNP) study by Saaristo et al.76 BPH patients 

carrying the mutation in HBOX13 gene (previously associated with an increased risk of 

hereditary prostate cancer77) were observed to be 4.6 times more likely to develop prostate 

cancer. Similarly, epigenetic alterations in tumour suppressor genes (14-3-3σ, RASSF1A), 

heavy metal binding genes (MT1G) and genes that code for proteins that are ABC transporters 

(MDR1) have been found in both BPH and prostate cancer have been found in both BPH and 

prostate cancer75. 

 

A recent study by Liu et al.78 that examined the mutational, methylation and transcriptional 

landscape of BPH samples detected somatic substitutions and nine cancer mutational 

signatures (see section 1.3.4) in all samples. The most prevalent one was signature 1, which 

has been associated with age, the main contributor to BPH onset. In addition, analysis of the 

methylation profile in BPH revealed hypermethylation in CpGs from gene promoter regions 

and identified two different BPH subgroups: the first was referred to as “the stromal signature”, 

defined by the differential expression of specific genes that had been previously associated 

with stromal samples by Tomlins et al.79; the second was associated with obesity and 

hypertension in the patients that was also confirmed by transcription changes in genes related 

to fatty acid and protein metabolism. However, clear evidence of BPH arising as a result of a 

cancerous process was not established because of the lack of driver mutations.  

 
1.3 NEXT GENERATION SEQUENCING 

 
Next-generation sequencing (NGS or high-throughput sequencing) refers to a group of 

technologies that allow researchers to rapidly sequence DNA and RNA by establishing the 

order of the bases A, T/U, C and G at low cost. Some examples are Illumina/Solexa sequencing 

(that use sequencing by synthesis, described in section 1.3.1), Roche 454 sequencing 

(pyrosequencing), Ion torrent: Proton/PGM sequencing (sequencing by synthesis, based on 

hydrogen ions detection) and SOLiD sequencing (sequencing by ligation). Whole genome 

sequencing (WGS) is characterised by sequencing all the regions in the genome, whereas whole 
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exome sequencing (WES) involves the selection of protein coding regions (exons and splice 

sites).  It is also possible to perform targeted sequencing (described in section 1.3.2) and select 

only regions of interest, a method that allows scientists which reduces the cost considerably. 

Sequencing of the transcriptome can quantify gene expression levels, editing of RNA and 

alternative splicing80, and has widely replaced microarray technologies. Other sequencing 

approaches like Bisulfite-Seq and ChIP-seq are used for the detection of changes in DNA 

methylation and histone modifications. 

 
1.3.1 ILLUMINA SEQUENCING (SEQUENCING BY SYNTHESIS) 
 
Illumina sequencing was developed by Shankar Balasubramanian and David Klenerman in 

199881 and it is the platform used for sequencing experiments in this thesis. This method82 is 

one of the most frequently used and it is currently generating more than 90% of the sequencing 

data in the world. The DNA has to go through a multistep process called library preparation 

before sequencing. Library preparation methods involve DNA fragmentation to short pieces 

(100-250bp) and adapter ligation to both 5’ and 3’ ends of the piece. An individual index (short 

sequence of 6-8 nucleotides) can also be added to identify each read during data analysis. 

Library preparation methods differ in many aspects such as the DNA fragment size and indexes 

used. The steps described above are a representative example.  

 

Once library preparation is accomplished, the sequencing process is performed inside of a glass 

flow cell. Attached to the bottom of the cell are short nucleotide sequences called 

oligonucleotides. When the DNA enters the flow cell, the adapters will match the 

complementary oligonucleotides while sequencing takes place. First, thousands of DNA are 

replicated through a process called bridge amplification, where polymerase enzymes create a 

complementary strand (forward or reverse) and the original one is washed away. Secondly, the 

new strand bends and the adapter at the end attaches to oligonucleotides again for the same 

process to be repeated. A complementary strand (equal to the original) is created. Thirdly, the 

double strand DNA is denatured and both strands attach to new oligonucleotides to undergo 

bridge amplification again. This clonal amplification aids researchers to control the quality of 

the sequences and identify sequencing artefacts by allowing to compare forward and reverse 

strands.  
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After amplification a polymerase uses modified deoxyribonucleotide triphosphates (dNTPS) 

containing a reversible terminator with a fluorescent label that blocks any further 

polymerization (Figure 1.8). Each base is added one by one and will be detected by a camera 

(each base has a unique fluorescent emission). This sequencing reaction is carried on millions 

of template molecules at the same time, and it is done separately for each one of the four bases. 

When the camera records the images, the terminators are removed and the cycle is repeated. 

Base calls are recorded by the Real Time Analysis (RTA) software on the Illumina platform 

for every cycle and stored on BCL files as sequencing progresses. This is a binary file is the 

raw data output of the sequencing run and contains each base call and a quality score assigned 

to it. After the run is completed the BCL files are converted to FASTQ files, a text-based file 

format that stored the raw sequence data and the quality scores. For each flow cell lane two 

FASTQ files are created per sample during a paired-end run. 

 

 

 

 

 

 

 

1.3.2 TARGETED SEQUENCING  
 
Targeted sequencing involves the isolation of the DNA of only a subset of genes or regions 

and sequenced for the study of specific areas of interest, reducing costs and time. Common 

approaches to select the areas of interest are the amplification by PCR (polymerase chain 

reaction) of target regions by using oligonucleotide probes and hybridization capture method. 

In this thesis we used the hybridization capture method. This approach consists of adding 

biotinylated DNA or RNA bait molecules to the DNA of interest that represent the targeted 

DNA regions that will hybridize to the previously fragmented DNA. Then, using a magnet, the 

bait molecules are captured along with the regions of interest, obtaining a sequencing library 

Figure 1.8: Sequencing by synthesis. 
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enriched for those regions (Figure 1.9). This method is of interest for studies that require 

sequencing with a very high sensitivity, such as the detection of subclones in heterogeneous 

tumours, validation of mutations with a great deal of certainty or mutations that occur at a very 

low frequency. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.3.3 SOMATIC VARIANT CALLING 
 

1.3.3.1 POINT MUTATIONS 

Many algorithms have been developed in order to detect single nucleotide variants (SNVs) 

from aligned sequencing data. Variation in the genome could be detected by measuring the 

number of occurrences of the variant alleles for each nucleotide in comparison to the reference 

allele. However, all the mutation calling methods have to account for sequencing errors, 

alignment errors and a variable proportion of cells with the mutation. For these reasons, 

different computational approaches have been developed to perform SNV calling with 

confidence and distinguish true variants from sequencing artifacts. Different approaches are 

used depending on the samples analysed: matched tumour-normal or single sample. In the first 

scenario, commonly used methods are probabilistic models and heuristic algorithms.  

Probabilistic models aim to estimate the probability for the joint genotypes (𝐺!|𝐺") by using 

the Bayes’s rule83. This estimation assumes diploidy in tumour and normal samples, and 

therefore the variant allele frequency (VAF) of true variants is expected to be around 0.5-1.0. 

Figure 1.9: Library preparation for targeted sequencing. Adapted from Rizzi et al.276. 
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A few examples are SAMtools84, SNVSniffer85 and CaVEMan86.  CaVEMan achieves a high 

level of specificity and sensitivity, by applying post-processing filters11. This ensures that the 

false positives are removed and the true somatic variants are kept. Compared to other mutation 

callers it has been found to be amongst the top performers in terms of sensitivity and 

specificity87.  

 

However, the assumption of diploidy can pose a limitation when detecting variants present in 

subclones with different ploidy (as is frequently the case) or when the aim is to detect very low 

frequency variants from high coverage sequencing data. For these cases it is recommended to 

choose other callers such as Strelka88, MuTect89, LoFreq90, MuSe91 and deepSNV92 that do not 

assume diploidy and jointly model the allele frequencies (𝑓!|𝑓").  

 

Another approach is to use heuristic algorithms (applied in tools like VarScan293 and 

Shimmer94) that take into account different factors from the sequencing reads such as allele 

count, read quality and read depth and apply thresholds to select potential SNVs.  

1.3.3.2 DETECTION OF STRUCTURAL VARIATION: INDELS AND 
REARRANGEMENTS 

Some strategies to identify structural variation are de-novo assembly of unaligned reads 

(SOAPindel95, BRASS (https://github.com/cancerit/BRASS)),  splitting of reads (Pindel96, 

PRISM97) and  depth coverage analysis (CVNator98). Assembly can be performed de novo by 

using de Bruijn graphs99, which requires a large amount of computational resources. The 

splitting of reads works by breaking the sequencing reads and mapping them separately to a 

reference genome. The exact location, size and type of indel (deletion, insertion or complex) is 

given by the mapping location in the reference and its orientation. It is very accurate for short 

(1-20 bp) and medium sized indels (1-50-1000 bp) but often miss larger indels because of 

mapping limitations100. Read-depth of coverage approaches frequently miss small indels but 

are more effective for identification of changes above 1 kb and copy number variants. They are 

based on the detection of regions with significantly higher or lower coverage. Read depth is 

expected to be proportional across the genome, so a change produced by duplicated or deleted 

regions results in read depth variations.  
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1.3.3.3 DETECTION OF COPY NUMBER ALTERATIONS  

In the past, common approaches for CNAs identification were developed for array based 

technologies, such as whole genome array comparative genomic hybridization (aCGH)101 and 

single nucleotide polymorphism (SNP) arrays102. aCGH examines the relative frequency of 

probe DNA segments between two genomes, while SNPs arrays compares the probe intensities 

at known loci with another genome to detect allele changes. With the development of new high 

throughout sequencing, strategies based on whole genome sequencing data have been 

developed. In a previous study the battenberg algorithm was used for detecting clonal and 

subclonal CNAs103 . Copy number alterations may lead to changes in allelic frequency in 

tumour samples. Allele frequencies come from binomial distributions, as their value can be 

estimated from the proportion of reads present of each allele. When these frequencies are very 

different, estimates of the B-allele frequency (BAF) can be obtained. This approach is 

described in detail in Methods, section 2.9.5. 

 

1.3.4 MUTATIONAL SPECTRA IN CANCER 
 

Cancer genomes carry somatic mutations that result from mutational processes that occur from 

the time the egg is fertilized104. In the majority of cases these mutations are repaired, but some 

are not and lead to a fingerprint of that process on the genome. The causes that drive the 

mutational processes can be exogenous or endogenous. Tobacco smoke and ultraviolet light 

are the most common exogenous causes. In lung cancer, it has been observed that tobacco 

smokers had on average a 10-fold increase of somatic mutations in their genome, in comparison 

to non-smokers105,106. For example, in the case of tobacco smoke, the mutational process is 

characterized by an increase of the number of C>A transversions107.  

 
Different mathematical approaches can be used to decipher the mutational signatures that 

contribute to each sample from the SNV called104,108,109.  Perhaps the most common is the 

application of Non-Negative Matrix Factorization (NMF) to trinucleotides. The six substitution 

types are considered (C>A, C>G, C>T, T>A, T>C, T>G), as well as the bases present before 

(5’) and after (3’) the mutated base. This provides 96 possible scenarios of mutation types (6 

substitution types * 4 types of 5’ base * 4 types of 3’ base). Mutational signatures are defined 

as different weightings of these 96 types. For each sample, the relative proportion of mutations 

caused by each signature are reported.  
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This model was used to analyse 4,938,362 mutations from 7,042 cancers and was able to 

decipher more than 20 different mutational signatures109. These signatures are used regularly 

in the community and are referred to as the COSMIC (Catalogue Of Somatic Mutations In 

Cancer) mutational signatures. Signature 1 is thought to result from an endogenous mutational 

process started by the deamination of 5-methylcytosine and is also characterized by small 

numbers of small insertions and deletions. Along with signature 5 they have been associated 

with age. Other signatures have also been linked to specific biological processes, such as 

signature 3, 4 and 7. Signature 3 has been associated with a very high number of large insertions 

and deletions produced by a failure of DNA double-strand break-repair by homologous 

recombination and BRCA mutations. Signatures 4 and 7 have been associated to tobacco 

smoking and ultraviolet light exposure, respectively.  

 

A more recent study by Alexandrov et al.110 has updated these signatures by analysing 23,829 

samples from a wide range of cancer types, including samples from patients treated with 

chemotherapy. This dataset was comprised of 2,780 highly curated PCAWG (Pan-Cancer 

Analysis of Whole Genomes) whole genomes, 19,184 exomes and 1,865 other whole genomes. 

All previous signatures except signature 25 were confirmed in this analysis and a total of 

thirteen new signatures were detected (Figure 1.10). Two of them (31 and 35) were associated 

with previous chemotherapy treatment. In addition, some signatures were found to be more 

complex than previously thought and were comprised of multiple previously undetected 

mutational processes that result in different substitution patterns. Consequently, these 

signatures (7,10 and 17) were split into two or more signatures.  

 

However, the NMF method requires a very high number of samples (>200). A solution to this 

problem is applying quadratic programming methods. This approach involves using the 

previously known signatures discovered by Alexandrov et al.110 to estimate the contribution of 

each signature for a given sample (Methods, section 2.12). 

 

1.3.5 DETECTION OF CLONAL EXPANSIONS  
 

A clone is a group of cells that carry the same genetic alterations. A clonal expansion is 

characterized by the increasing number of a group of cells. The number of clones that are 

present in a tumour sample can be detected by analysis of the variant allele frequency (VAF) 

of SNVs detected by NGS technologies. Mutations that are early or clonal, will be found in the 
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majority of cancer cells in a sample and so are expected to have a high VAF, whereas late or 

subclonal mutations would be expected to occur in fewer cells and so have a low VAF. Other 

aspects that are necessary to estimate are tumour purity and copy number alterations (CNAs)21. 

Combining the VAF with this information gives a Cancer Cell Fraction (CCF), so CNAs and 

tumour purity information is important for a correct estimation of the CCF. Substitutions with 

similar CCFs will be clustered together into clones or subclones. 

 

In recent years, computational methods have been developed to analyse the presence of clonal 

and subclonal expansions in tumours. Most of them are based on Bayesian analysis, a method 

that allows to create a model of clonal structure with many uncertainties, such as the number 

of subclones and tumour cell fractions (which are unknown)21. DPClust, a Bayesian Dirichlet 

process111 has been used in many studies17,103,112 for this purpose (Methods, section 2.11.1). 

This method models clusters of clonal and subclonal somatic mutations, estimates the number 

of clones, the fraction of cells carrying that clone and the number of mutations in each clone. 

Figure 1.10: Mutational signatures across human cancer110 
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Other approaches, like CloneHD113, build the subclonal architecture using CNAs and somatic 

variants by producing a model of relationships applying Hidden Markov Models. 

 

1.3.6 METHODS FOR DETECTING DRIVER GENES  
 

Driver genes can be detected by analysing substitutions patterns in multiple samples. Somatic 

mutations that are silent (synonymous) are considered to be neutral or passenger mutations, 

whereas non-synonymous mutations are considered to have the potential to be drivers, or 

positive selected. The most common method for analysing this is the calculation of the non-

synonymous to synonymous ratio in each gene/region of interest. Selection is considered to be 

present when the dN/dS ratio deviates from what it would be expected by chance (dN/dS ~1). 

However, one of the main problems of these methods is the inability to determine whether a 

mutation is pathogenic or not, as non-synonymous substitutions can be passenger mutations as 

well114. For this reason, many methods identify those genes that are mutated more frequently 

than it would be expected by chance in comparison to a simulated background mutation rate, 

such as MutSig2CV115, OncodriveCLUST116 and in some cases combine this information with 

a predicted functional impact for each mutation (OncodriveFML117). Other methods such as 

dNdScv118 (described in Methods 2.15.2) include the correction for gene length, and calculates 

the mutation rate for each type of mutation separately (missense, nonsense and splice variants).  

 

1.4 PROSTATE CANCER GENOME 
 
1.4.1 GENETIC ALTERATIONS 
 
Primary prostate cancer has a low coding mutation rate, similar to those of acute myeloid 

leukemia and breast cancer; 7 to 15-fold lower than melanoma or lung cancer (Figure 1.11). 

Up to 80% of cases of prostate cancer constitute multifocal disease17,20. Multifocal prostate 

cancer is characterized by the presence of multiple tumour foci in the prostate. In recent studies 

it has been observed that the different foci are of independent origin17,119. The genomic lesions 

in prostate cancer show a very high variability not only between foci (intratumour 

heterogeneity), but also between patients. Intratumour heterogeneity is characterized by the 

detection of different cellular clones or subclones in the same tumour, which show different 

patterns of gene expression, histology and metastatic potential.  
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Many studies have reported multiple genomic alterations in prostate cancer but it is best 

characterized by the presence of rearrangements120. They can cause the dysregulation of 

multiple genes related to prostate development, androgen signaling, PI3K and WNT pathways 

and cell cycle regulation121. PI3K pathway in involved in cell proliferation, cell survival and 

angiogenesis whereas WNT pathway plays an important role in development, cell adhesion 

and polarity, among others. The most common genetic alterations are discussed below. 

1.4.1.1 SNPs  

 

 

An evaluation of SNPs associated with prostate cancer risk in the large PRACTICAL (Prostate 

Cancer Association Group To Investigate Cancer Associated Alterations in the Genome) 

consortium 122 identified 63 novel variants, of which 38 SNPs were discovered in gene-rich 

regions (intronic, missense and UTR regions), affecting genes strongly involved with cell cycle 

and DNA repair pathways such as ATM, CDKN1B, INCENP and HAUS6, among others. These 

variants, in combination with 85 previously identified loci associated a higher susceptibility of 

prostate cancer development explain up to 28.4 % familial relative risk for the disease.  

1.4.1.2 SNVs  

Unlike other cancers like renal cell carcinoma123, no common initiating mutation has been 

detected in prostate cancer124 and the most recurrent genes are at relatively low level. In a study 

by Zhao et al.125, 333 genes were classified as drivers in prostate cancer, of which SPOP, TP53, 

Figure 1.11: Somatic coding mutations rates of human cancers277. 
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SPTA1, AHNAK, HMCN1, ATM, FOXA1 CSMD3, LRP1B and FREM2 are among the most 

recurrently mutated genes. Other studies also report highly recurrent mutated genes such as 

COL5A1, MED12126 and ARID1A, CASZ1, CNOT3, PIK3R1, TBX3 and ZMYM3127. A recent 

study by Armenia et al128. examined whole exome data from 1013 samples from primary and 

metastatic prostate tumours. Metastatic samples showed an enrichment of mutations in genes 

TP53, AR, PTEN, RB1, FOX1, APC, BRCA2 and epigenetic modifiers KMT2C and KMT2D in 

comparison to primary tumours, whereas the SPOP gene was significantly enriched in primary 

tumours. In addition, they detected 97 novel mutated genes at very low frequencies, of which 

70 had been previously reported in cancer and 9 were specific to prostate cancer. A few 

examples are gene PIK3R2 (involved in the PI3K pathway), SPEN, (involved in the androgen 

signaling pathway), DNA repair genes MRE11A and PALB2. Ubiquitin protease genes USP28, 

USP7 and CUL3 were also significantly mutated.   

1.4.1.3 INSERTIONS AND DELETIONS  

Chromosomal deletions of tumour suppressor gene PTEN at chromosome 10q23.3 are present 

in 40% of localized prostate cancers and in 60% of metastatic cancer129, and has been 

associated with a higher risk of metastasis. Other known prostate cancer genes that present 

recurrent indel events are TP53, AR, KMT2C, KMT2D, RB1, APC, BRCA2, CDK12, ZFHX3 

and  PIK3CB and were significantly enriched in metastatic samples in comparison to primary 

tumours121,127,130. 

1.4.1.4 GENOMIC REARRANGEMENTS 

The gene fusion of the ERG gene from the ETS family of transcription factors (involved in 

transcription regulation) and androgen-responsive promoter TMPRSS2 (both located in 

chromosome 21) have been reported in 50% to 75% of cases131. It has been associated with a 

worse outcome than TMPRSS2-ERG negative cancers in some studies132, but this association 

is still controversial133. Other genes from the ETS family such as ETV1, ETV4 and ETV5 are 

also frequently involved in fusions with other partners other than TMPRSS2134. Overall, these 

rearrangements can lead to gene activation or repression, which in turn can affect oncogenic 

signaling processes131. Because they tend to be distributed homogeneously within a discrete 

tumour lesion it is thought to be an early event in the disease132. As TMPRSS2 is androgen-

responsive, the TMPRSS2-ERG fusion and androgen receptor (AR) relationship has been 

investigated. Several studies report an association between structural rearrangements and AR 

activity in early onset prostate cancer135. The AR achieves this by inducing a spatial proximity 
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between the genes present in the rearrangements131. Interestingly, an abundance of androgen 

driven rearrangements have been reported in early onset prostate cancer, whereas more elderly 

patients showed non-androgen associated rearrangements136. 

 

Sequencing of the transcriptome has revealed that other rearrangements between several RAF 

kinases such as SLC45A3-BRAF and ESRP1-CRAF1 are present in 1-2 % of prostate cnacer 

patients. A higher Gleason score and more advanced disease was a common trend among these 

patients137. Similarly, the analysis of RNA-Seq data from 14 primary prostate cancers and 

matched normal tissue revealed 37 novel fusions in tumour tissue and 3 of them were recurrent: 

SDK1-AMACR, RAD50-PDLIM4 and CTAGE5-KHDRBS3138. 

1.4.1.5 COPY NUMBER ALTERATIONS (CNAs) 

As mentioned earlier, chromosomal rearrangements can lead to a higher frequency of copy 

number alterations (CNAs). The most frequently observed copy number losses include deletion 

of chromosome 8p (affecting tumour suppressor gene NKX3), loss of chromosomal region 

13q13.1-q31.1 (which surrounds gene RB1) and deletions at the 16q region. In contrast, 

frequent gains have been reported in chromosome 8q, chromosome 7 and chromosome 16p139. 

The percentage of the genome affected by CNAs in prostate cancer has been found to be 

correlated with tumour grade, biochemical recurrence and metastasis17,120. For example, it is 

known that the androgen receptor (AR) gene undergoes amplification (copy number gains) 

after hormonal therapy and it is a negative prognostic factor for overall survival140,141. 

Similarly, a study by Camacho et al.30 reported nine specific copy number changes (two 

deletions and seven gains) associated with relapse.  

Specific copy number changes have also been associated to different evolutionary patterns in 

prostate cancer regarding ETS rearrangements127. Deletions between TMPRSS2 and ERG 

genes in ETS positive cancers occur at early stages of development and usually occurs 

simultaneously with deletions in tumour suppressor PTEN, deletions at 17q21.31 and the 

amplification at 16p13.330. On the other hand, ETS negative cancers are characterised by copy 

number losses in genes CHD1, RGMB, BRCA12, RB1 and FOXO1127 and amplifications in 

genes EGFR and MYC30. CHD1 has been specifically associated with the initiation of ETS 

negative cancers, as this event prevents the TMPRSS2-ERG rearrangement. Other copy 

number losses have been observed in both ETS positive and negative cancers, which seem to 

be triggered by whole genome duplication. 
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1.4.2 MUTATIONAL SPECTRA IN PROSTATE CANCER 
 
Initially, prostate cancer was associated with signatures 1 and 6109. Later, a study by Cooper et 

al.17, signatures 1A and 5 were identified in tumour tissue from a group of three prostates. 

Signature 8 was identified in some samples of one prostate in tumour tissue only, whereas 

signatures 1A and 5 were present in both tumour and normal tissue from two of the prostates. 

These results show that abnormal processes are also at work in morphologically normal tissue, 

giving further evidence that a field effect is at work (Figure 1.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

More recently142, the analysis of 23,829 samples revealed an association between signatures 1, 

2, 3, 5, 6, 8, 12, 13, 18, 33, 37, 39, 40, and 41 and prostate cancer (Figure 1.10). Signature 1 

and 5 have been associated to ageing and have been found in many cancers but also normal 

somatic cells143. Therefore, they have been referred to as clock-like signatures, as mutations 

are produced at a continuous rate. Cell proliferation is a critical contributor to signature 1, but 

little is known about the biological processes driving signature 5143.  Signature 2 and signature 

13 tend to occur in the same samples and its presence is associated with the activity of the 

AID/APOBEC family of cytidine deaminases. Similarly, signature 6 is related to defective 

DNA mismatch repair144. Signatures 8, 12, 33, 37, 39, 40 and 41 have unknown aetiology. 

 

 

Figure 1.12: Relative contributions of mutational signatures for each sample for a group of 

three prostates17. 
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1.4.3 EPIGENETIC ALTERATIONS 
 

It has been observed that epigenetic alterations patterns are less variable between tumours than 

other genetic alterations145. For example it is widely known that gene GTSP1 (Glutathione S-

Transferase pi 1) shows hypermethylation in more than 90% prostate cancer tissues146,147.  

Similarly, tumour suppressor gene RASSF1A and caretaker gene APC are also hypermethylated 

in malignant prostate tissue148,149 and associated with aggressive prostate cancer148,150,151. A 

group of 8 candidate genes have been proposed as methylation prostate cancer biomarkers  

(AOX1, CCDC281, GABRE, GAS6, HAPLN3, KLF8, MOB3B and SLC18A2)152–154. In 

addition, hypomethylation of some markers seems to be another mechanism associated with 

prostate cancer, especially as a late event, when metastasis is  occurring38. Epigenetic 

modifications have been detected even in the neoplastic lesions such as PIN (see section 

1.2.7)150,155. 

 

1.5 FIELD CANCERIZATION 
 

Field cancerization or the field effect, is a phenomenon characterized by the presence of 

molecular, genetic and epigenetic alterations in morphologically normal tissue that can lead to 

the development of cancer. These alterations are usually not apparent under histological 

examination156. This idea was first introduced by Slaughter et al.157 after observing the 

presence of multiple tumours in 11% of  patients with oral squamous cell carcinomas. It was 

proposed that the otherwise morphologically normal tissue comprised a “field” that led to tissue 

carcinogenesis. These lesions appeared as multiple tumours in different areas of the alimentary 

tract mucosa, suggesting multifocal disease.  

 

The presence of somatic substitutions, mitochondrial mutations and methylation changes in the 

preneoplastic field from patients with cancer has been investigated in different types of cancer. 

It has been observed that these mutations occur in groups of cells in the morphologically normal 

tissue, indicating the presence of clonal expansions. These clones can harbour mutations in 

cancer associated genes that are also found in the primary tumour. For example, TP53 

mutations have been observed in the morphologically normal mucosa of HNSCC (head and 

neck squamous cell carcinoma) patients with cancer158. Similarly, Park et al.159 reported 

abnormal methylation levels in colon cancer associated genes SFRP2, TFPI2, NDRG4 and 

BMP3 both in adjacent and non-adjacent normal tissue of patients. Abnormal molecular 
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changes are not always shared between tumour and morphologically normal tissues. In liver, 

multiple clones were supported by somatic substitutions and indels that were also detected in 

cirrhotic liver but not in hepatocellular carcinoma (HCC) samples. Although no shared driver 

mutations were found between normal/cirrhotic liver and distant HCC at that stage, it is 

speculated that the continuous competition of evolving clones in normal liver tissue could 

eventually result in neoplastic transformation160. Clonal proliferation was associated with 

mutation burden, although it was observed that clonal events do not necessarily lead to cancer 

development.  

 

RNA sequencing data collected from morphologically normal tissue from patients with a wide 

range of cancers also confirms the findings from whole genome sequencing: somatic mutations 

and clonal expansions are a common feature161. In some cases, clonal expansions were 

associated with the presence of cancer or neoplastic lesion. Tissues that had a direct exposure 

to environmental carcinogenic factors (ultraviolet radiation, smoking and nutritional habits), 

or had a very high proliferation rate, such as skin, lung and esophagus, had the highest mutation 

burden161. This finding is consistent with previous observations regarding tobacco smoke 

contribution to a field effect in oral squamous cell carcinoma156. However, the association 

between environmental factors underlying field cancerization is lacking in many types of 

cancers. Other etiologic factors are considered, such as age, diet, inflammation and hormones. 

Therefore, the conjunction of heritable genetic and epigenetic factors, exogenous carcinogen 

exposure and lifestyle factors could determine the propensity to tissue somatic alterations by 

affecting tissue microenvironment. Because of its potential relevance in cancer initiation and 

development it is one of the main focus of this thesis.  

 

1.5.1 GENETIC ALTERATIONS IN MORPHOLOGICALLY NORMAL TISSUES 
 

Although the mutational landscape in morphologically normal tissues from donors without 

cancer has been less extensively studied, there are records that tissue with a histologically 

morphologically normal appearance can harbour a significant amount of mutations, early 

clonal expansions, distinct expression profiles and methylation changes that could potentially 

lead to tumour development in many tissues.  

 

For example, somatic mutations have  been detected in the exomes of sun-exposed 

morphologically normal skin118 and esophagus162, where they found 3,760 mutations from 4 
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donors and 8,919 mutations from 9 donors, respectively. Both studies revealed that a group of 

positively selected genes were driving clonal expansions. Specifically, genes NOTCH1, 

NOTCH2, NOTCH3, FAT1 and TP53 were found to be mutated both in normal skin and 

esophagus, all known drivers of esophageal squamous cell carcinomas (ESCC) and cutaneous 

squamous cell carcinomas (CSCC). Comparable findings have been reported in blood, where 

the detection of clonal expansions in healthy patients over 65 has been  associated with a 

significant increase in the risk of leukemia163–166. 

 

A recent study by Colom et al.167 further investigated the clonal evolutionary dynamics in 

normal tissue of the esophagus in mouse (control) and in esophageal normal tissue treated with 

a mutagen. Clonal expansions were detected in both tissues and eight positively selected genes 

were found in mutagen-treated tissue. Mutations in these genes were also present in the control 

tissue but apart from NOTCH1, there was no evidence of selection. In both cases the number 

of clones decreased with time followed by expansion of existing clones, but the rate of clonal 

loss and subsequent expansion was much higher in the mutagen-treated tissue due to a stronger 

clonal competition. Clonal growth was observed to be controlled by the nature of the 

neighbouring cells: an advantageous clone surrounded by wild type cells will expand rapidly 

whereas the presence of competing clones nearby diminishes overall growth of all clones. 

Interestingly, in normal esophageal tissue (control) a higher number of clones was observed, 

which is explained by the slower rate of clonal loss. These results indicate that competition 

between specific clones in normal tissues is determinant to preserve homeostasis.  

Overall, there is strong evidence that morphologically normal tissues harbour mutations and 

that in some instances there is strong positive selection of cancer associated genes. This 

indicates that in many cases normal tissues are comprised of a mixture of evolving clones that 

eventually could increase the risk for cancer development168. However, the mechanisms that 

lead to these changes and their role in cancer initiation are not understood.  

 

1.5.2 FIELD EFFECT IN PROSTATE CANCER 
 
The possible presence of a field effect in prostate cancer is supported by two main observations: 

the multifocal nature of up to 80% of prostate cancers and molecular evidence67. Multifocality 

coupled with the occurrence of multiple and heterogeneous genetic alterations of a distinct 

origin, it is a clear indication of a potential field affecting the prostate as a whole.  
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In a recent study by Cooper et al.17, mutations and clonal expansions were found at high levels 

in morphologically normal tissue (under the microscope it looks normal), in many cases distant 

from the tumour, suggesting evidence for the presence of fields effects and their involvement 

in prostate cancer evolution. Chromosomal rearrangements were also reported by Shancheng 

Ren et al.138  in RNA-seq data from morphologically normal tissue adjacent from the tumour. 

In a study by Risk et al.169 biomarkers were identified to play a role in the cancerization of the 

prostate. They found an overexpression of cancer-associated genes (ERG, HOXC4, HOXC5 

and FOLH1) in benign tissue from men with prostate cancer compared to men without prostate 

cancer. In addition, genes COX-2 and PCA3 showed an increase in expression in normal tissue 

areas that are adjacent to the tumour in patients that suffered recurrence170. 

 

Abnormal alterations in morphologically normal tissue are also detected at epigenetic level, a 

finding noted by Chai et al.156. Several studies have highlighted the importance of analysed the 

methylation status of key genes in terms of predicting prostate cancer development after an 

initial negative biopsy. Hypermethylation in genes APC, GTSP1 and RASSF1 has been 

observed in morphologically normal tissue in many studies155,171–173 and it has proven to be a 

better predictor of cancer development than histopathological examination alone171–173. 

Hypermethylation in genes APC and GTSP1 was reported in 95% and 43% respectively in 

patients with an initial negative biopsy that later developed prostate cancer171. In a study by 

Møller et al.174 they explored the possible presence of a field effect of epigenetic nature by 

assessing a group of 9 genes in morphologically normal tissue from men with and without 

prostate cancer.  These genes had been previously reported as hypermethylated in prostate 

tumour tissue146,147,152–154. They identified a four gene methylation signature (AOX1, GSTP1, 

HAPLN3 and SLC18A2) that was specific to morphologically normal samples from men with 

prostate cancer only. This four gene methylation signature had a higher positive predictive 

value of developing prostate cancer than the PSA test.  

 

The presence of a field effect is of clinical relevance, as the effect of the field needs to be 

removed, not just the tumour foci, if recurrent cancer is to be prevented156. The early detection 

of a field effect in the prostate could also help to risk stratify disease at diagnosis and 

requirements for closer surveillance or repeated biopsies171–173. It may also help identify new 

drug therapies or mechanisms that could be targeted by treatment.   
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1.6 THESIS AIMS 
 

The objective of this thesis is to gain insights about the mechanisms that drive multifocal 

prostate cancer development in the early stages of the disease. This could lead to the 

development of better diagnostic tools that would allow to identify aggressive cancers from 

indolent ones thus avoid unnecessary treatment. We explore the possibility of the presence of 

a field effect in the morphologically normal tissue of the prostate by carrying two different 

approaches. First, we analysed whole genome sequencing data from a group of 

morphologically normal tissue samples from men with and without prostate cancer to 

determine if the changes observed could be driving the development of multifocal cancer in 

the prostate. We used different methods to identify the genomic alterations, detect clonal 

expansions, mutational signatures and driver genes. We report a high number of genetic 

alterations in normal tissues and an association between mutation burden and clonal expansion 

presence and prostate cancer.  

 

Secondly, we performed targeted sequencing with high coverage on a 100 gene panel in 96 

samples from normal tissue of one prostate. A detailed representation of the mutational 

landscape of the prostate in these genes is provided. We observed a group of mutated genes in 

multiple samples, suggesting the presence of clonal patches.  

 

1.7 CHAPTER SUMMARIES 

In Chapter 1 we describe the biological knowledge necessary to understand the key aspects of 

cancer biology, prostate cancer. We also introduce different approaches for the analysis of next 

generation sequencing technologies required for the characterisation of abnormal genetic 

alterations.  

In Chapter 2 we describe the sequencing and computational methods applied in this thesis.  

In Chapter 3 we examine the mutational landscape for morphologically normal tissues men 

with and without cancer, matched tumours and cell cultured fibroblasts.  

In Chapter 4 the results of the subclonal architecture reconstruction of morphologically normal 

samples (including samples with BPH and cell cultured fibroblasts) and tumour from patients 

with and without cancer are presented. We describe the evolutionary relationship between the 
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tumour, normal and BPH samples and observe a clear association between clonal expansions 

and the presence of cancer.  

In Chapter 5 we present the results obtained from the deep targeted sequencing of a panel of 

98 genes that are relevant in prostate cancer of 96 morphologically normal and tumour samples 

from a prostate cancer patient. Detection of substitutions is performed and assessed, in 

combination with the spatial location of each sample. 

 

In Chapter 6 we summarise our key findings, address their implications and examine different 

options for further research in the field.  
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CHAPTER 2 : METHODS 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                     Chapter 2 

 40 

 
 
2.1 SUMMARY 
 
In this chapter the laboratory techniques, computational and statistical methods implemented 

in this thesis are described. A detailed description of all the steps followed from the sample 

collection to the analysis of the genomic data obtained after sequencing. We outline sample 

collection and library preparation techniques, NGS technologies, NGS data processing 

approaches and tools. We then describe machine learning methods that allowed us to detect 

clonal expansions and mutational signatures, pathway analysis and methods to assess a 

mutation’s functional impact and statistical analyses used to find associations between clinical 

variables and genomic data.  

 

2.2 PREPARATION OF THE PROSTATE 
 

Here we describe the steps taken to collect samples from frozen tissue for Whole Genome 

Sequencing (WGS) and from formalin-fixated paraffin-embedded (FFPE) tissue for targeted 

sequencing as outlined by Warren et al175. Specimens from prostatectomy and 

cystoprostatectomy performed at Addenbrooke’s hospital in Cambridge were processed as 

follows: they were weighed, inked (to identify the correct orientation later on) and measured 

in three dimensions. The prostates were cut transversely into 3 slices: one of them was selected 

for DNA extraction and subsequent WGS and processed further (see section 2.3) whereas the 

rest (apex and basal part of the prostate) were processed and eventually formalin-fixed and 

paraffin-embedded for future analyses such as the patchwork experiment (see section 2.4).    

 

2.3 PROCESSING SELECTED TISSUE FOR WGS 
 
4-6 mm cores were taken from the selected slice, inked at one end (for correct identification of 

anatomical features and orientation) and frozen. The slice from which the cores were taken was 

then pinned on a cork to prevent it from shrinking and formalin-fixated as described by 

Egevad176 (Figure 2.1).  This slice represents a “map” that indicates the location where each 

core was retrieved from. A section immediately adjacent was hematoxylin and eosin (H&E) 

stained, allowing the identification of normal and tumour tissue and subsequent selection of 
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samples. Each core could be mapped to the original formalin-fixated slice using the inked 

marks that were visible both in the H&E and formalin-fixated slice (Figures 2.1D and 2.2A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1 PROCESSING OF THE TISSUE CORES 
 
A longitudinal section was taken from each frozen core and tumour cellularity was estimated 

(Figure 2.2B). Then, a transverse single 5 μm section was taken from the frozen cores and H&E 

stained. After this, six adjacent 6×50 μm sections were cut. This process was repeated multiple 

times. The six 6×50 μm were used for DNA extraction, whereas the 5 μm was used to assess 

the presence or absence of cancer in central pathology review by three histopathologists (Figure 

2.2 C). All these steps were performed in Cambridge by Anne Warren. Then, I measured the 

Figure 2.1: Sample tissue sampling from fresh radical prostatectomy specimens. Adapted from 

Warren et al.175.  (A) Prostate was removed prostatectomy with the seminal vesicles intact, (B) 

inked for the correct identification of the anatomical regions, (C) cut transversely into 5 mm 

slices (D) and multiple punch biopsies were taken from each slice. (E) Each core’s location was 

recorded on a map diagram, and then each core was frozen at 80 C (F). The remaining fresh 

slices were pinned to a cork and fixated (G).  
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distance (in mm) (using the H&E stained slice adjacent to the one where the cores were 

retrieved from, Figure 2.2A) between all the morphologically normal samples and their 

respective tumours, where present.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Processing frozen tissue from prostate, adapted from Warren et al.175. (A) An 

adjacent section was taken from the slice where the cores were taken from and H&E stained. 

Matched normal and tumour samples were selected by comparing the inked holes on the FFPE 

H&E stained section with the map. (B) A frozen section was taken longitudinally from each 

tissue core and tumour cellularity was estimated for the whole core. (C) Single transverse 

frozen sections of 5 µm were taken (S1-S5) and H&E stained and the presence of tumour was 

assessed. In between each pair of 5 µm sections, six 6×50 μm sections were taken for DNA 

extraction (T1-T4).  
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Figure 2.3: (A) FFPE mega-blocks used for the patchwork experiment and fresh slice used for 

WGS. 1 mm3 punches were taken:  77 from normal tissue and 18 from tumour (tumour area 

shown in red).  In 15 cases two 1 mm3 samples were taken from the same punch. (B) Mega-

block 1 and 2 were taken from above and below the fresh WGS slice, mega-block 3 was from 

the bottom of the prostate. Fresh slice was adapted from Cooper et al.17 

A
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2.4 SAMPLE COLLECTION FROM FFPE TISSUE FOR TARGETED  

         SEQUENCING 

 

Basal and apical slices described in section 2.2 were also pinned to a cork and formalin fixated. 

All the formalin fixated parts of the prostate (the apical slice, the slice where the cores were 

taken from and the basal slice) were cut into 5 mm slices or mega-blocks (Figure 2.3) and 

stored. Three of these FFPE slices or mega-blocks were selected from one prostate that had 

been previously processed for whole genome sequencing (WGS), as described in section 2.3. 

An adjacent section from the slice used for WGS (Figure 2.2A) had previously been taken, 

H&E stained and reviewed by 3 histopathologists to confirm the presence or absence of cancer, 

so the FFPE mega-blocks could be mapped to this section and normal and tumour tissue 

identified. Two of the FFPE blocks were from above and below the frozen tissue slice (section 

2.3) and the third was from the bottom of the prostate. A total of 95 punches were taken using 

a 1 mm3 punch: 77 punches from normal (39 from mega-block 1, 8 from mega-block 2 and 10 

from mega-block 3) and 18 from tumour tissue (2 from mega-block 2 and 16 from mega-block 

3) as illustrated in Figure 2.3.   

 
2.5 DETAILED SPECIFICATION FOR OUR SEQUENCING 

EXPERIMENTS 
 
2.5.1 WGS EXPERIMENT  
 

DNA from whole blood samples and frozen tissue was extracted and quantified using a ds-

DNA assay (UK-Quant-iT PicoGreen® dsDNA Assay Kit for DNA) following manufacturer’s 

instructions with a Fluorescence Microplate Reader (Biotek SynergyHT, Biotek). Acceptable 

DNA had a concentration of at least 50ng/μl in TE (10mM Tris/1mM EDTA), with an OD 

260/280 between 1.8-2.0. This was performed by researchers at CRUK CI. 

Paired-end whole genome sequencing (WGS) of the samples was performed at Illumina, Inc. 

(Illumina Sequencing Facility, San Diego, CA USA). 1 ug of DNA was used to generate paired-

end libraries following the End Sample Prep Kit (Catalog # PE-102-1002). A Covaris E220 

was used for DNA fragmentation. 300 bp inserts were selected manually by agarose gel 

electrophoresis and PCR amplified for 10 cycles. Final quality of libraries was assessed with 

the Agilent Bioanalyzer and quantified by qPCR and picogreen fluorimetry.  
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100 base paired-end reads were sequenced on the Illumina HiSeq2000 using TruSeq 

Sequencing by synthesis (SBS) chemistry (described in section 1.3.1) v3 to a target depth of 

50× for the tumour samples and 30× for morphologically normal and blood samples. Cell 

cultured fibroblasts were sequenced on the Illumina HiSeq 2000.  

2.5.2 TARGETED SEQUENCING EXPERIMENT 
 

DNA from 1 mm3 punches from FFPE blocks was extracted using   allprepDNA/RNA kit from 

Qiagen and quantified (Qubit dsDNA HS Assay Kit) with a qubit fluorometer following 

manufacturer’s instructions. Total DNA had a total concentration of at least 64 ng in TE (10mM 

Tris/1mM EDTA), with an OD 260/280 between 1.8-2.0.  

At least 10 ng of DNA was used to generate paired-end libraries following the SureSelectXT 

Low Input Target Enrichment System for Illumina from Agilent (GB9707B). The Sureselect 

enzymatic fragmentation kit (p/n 5191-4080) was used to generate 150-200 bp DNA 

fragments. The DNA ends were repaired, dA-Tailed and a molecular barcoded adaptor was 

ligated to each sample. Libraries were then amplified and purified with AMPure XP beads. 

Assessment of the pre-capture library was performed with the Agilent Tapestation instrument 

(p/n G2991AA). At least 500 ng of pre-capture was used for hybridization to a target-specific 

probe capture library that was designed by Agilent. The 95 target regions were captured using 

streptavidin-coated magnetic beads. Then libraries were amplified and purified using AMPure 

XP beads. Assessment of the libraries post-capture was performed using the Agilent 

Tapestation instrument. Final libraries were pooled with a final concentration of 4 nM. Paired-

end targeted sequencing of the samples was performed at the Quadram Institute (Norwich 

Research Park, UK).100 base paired-end reads were sequenced on the Illumina NextSeq 500 

using NextSeq 500/550 High Output Kit v2.5 (300 Cycles) to a target depth of 500× for all 

samples the blood control. Two runs of sequencing were performed to achieve a higher 

coverage. Sequencing data was merged for all the computer based downstream analyses.  

 

Target regions included in the probe capture library comprised a panel of 98 genes (Figure C.2, 

Appendix C): 62 genes commonly involved in prostate cancer127 , 11 of which have been 

reported at the very low frequency128, 15 genes that were also targeted by Martincorena et al. 

in skin118, known to be involved in a wide range of cancers and 22 genes detected in 

morphologically normal tissue with WGS that were reported as having potential functional 

significance (see Chapter 3, section 3.5.4).  
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2.6 QUALITY CONTROL 
 

Quality control is used to identify low quality sequence reads and other problems that occur in 

sequencing experiments such as the presence of contaminants (adaptors or foreign DNA). 

Sequencers generate a quality control report by default, but it only addresses problems related 

to the sequencing process. They also produce a quality score per base of sequence. Other checks 

can be performed after sequencing and necessary to evaluate other metrics. The tool FASTQC 

was used for this purpose (http://www.bioinformatics.babraham.ac.uk/projects/fastqc), which 

is the most frequently used to assess the quality of FASTQ files. For both the WGS and the 

targeted sequencing experiment we looked at the quality values across all bases and sequences, 

the proportion of each base in every sequence, the GC content present in each sequence, 

undetermined base calls (designated as N), sequence length distribution, mismatched pairs, 

duplication levels and overrepresented sequences (such as adapters and other contaminants). 

 

2.7 ALIGNMENT 
 

In order to identify variants from our sequencing data, the reads need to be mapped to the 

human reference genome. Here we used the Burrows-Wheeler alignment tool (BWA)177,178. 

This algorithm uses Burrows-Wheeler Transform (BWT), which allows gapped alignment and 

mismatches, informs about mapping quality and outputs multiple possible alignments. It can 

be used for both single-end and paired-end reads. The output files are FASTQ format and the 

output is a SAM (Sequence Alignment Map) file format, a text-based format first introduced 

by Heng Li et al.179 that is used to store sequences aligned to a reference genome. 

 

2.7.1 BURROWS-WHEELER TRANSFORM 
 
We have an alphabet Σ where symbol $ is not part of Σ and always appear at the end of a string 

𝑋 = 𝑎#𝑎$…𝑎%&$ so that 𝑎%&$ = $. If we let 𝑋[𝑖] = 𝑎' , 𝑖 = 0,1, … , 𝑛 − 1 be the ith symbol of 

𝑋, 𝑋[𝑖, 𝑗] = 𝑎' …𝑎( a substring and 𝑋' = 𝑋[𝑖, 𝑛 − 1] a suffix of X. The suffix S of X is 

comprised of a permutation of integers 0, …, n -1 and so S(i) is the start position of the smallest 

suffix ith. This permutation produces n strings that are lexicographically sorted. Therefore, the 

BWT of X can be expressed as B[i] =$ when S[i]=0 and B[i]=X[S(i)-1] when S[i]>0. An 

example of how the BWT is constructed is illustrated in Figure 2.4. 
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Let W be a substring of X, the position of each appearance of W in X appears in an interval in 

the suffix array. All the suffixes that have the prefix W are sorted together, and so we can define 

the intervals as: 

 

 

𝑅(𝑊) = min	{𝑘:𝑊	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑒𝑓𝑖𝑥	𝑜𝑓	𝑋)(+)} 

𝑅(𝑊) = max	{𝑘:𝑊	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑒𝑓𝑖𝑥	𝑜𝑓	𝑋)(+)} 

 

 

 

Figure 2.4: Constructing suffix array and BWT string for X= googol$. String X is circulated 

to generate seven strings, which are then lexicographically sorted. After sorting, the positions 

of the first symbols form the suffix array (6, 3, 0, 5, 2, 4, 1) and the concatenation of the last 

symbols of the circulated strings gives the BWT string lo$oogg. Adapted from Heng Li et al.180 

 

The interval [𝑅(𝑊), 𝑅(W)] is called the “SA interval” of W. In figure X, the string “go” has an 

“SA interval” [1, 2] and suffix values [3, 0]. The “SA intervals” of a substring X inform about 

the positions of each component of the string. In order to align the short sequences to a 

reference genome the algorithm searches for the “SA intervals” of substrings X that match the 

query (reference genome). As there are n permutations there may be many different matches, 

some more exact than others. To achieve the most exact match, the intervals 𝑅 and 𝑅 are 

calculated iteratively from the end of W in a process called “backward search”181. 
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2.8 POST-ALIGNMENT PROCESSING 
 

After alignment, the SAM files can be converted to a BAM (Binary Alignment Map) format. 

The BAM format is a compressed binary version of a SAM file and stores the same 

information. At this point, the information of the alignment is stored randomly (the order of 

appearance in the FASTQ files) in the BAM file. In order to access the data easily, the BAM 

file needs to be sorted by alignment coordinates (ordered by chromosome and position) and 

indexed. Indexing generates a text file containing all the ordered coordinates of our BAM file 

that allows to extract information of interest from it quickly. Before performing variant calling 

we need to assess a few aspects: quality of the alignment and duplication levels. This analysis 

is commonly performed with Picard tools (http://broadinstitute.github.io/picard/), a command 

line tool specifically designed for the analysis of Illumina NGS data. It is used to produce a 

wide range of metrics that provide important information (depending on the type of NGS 

performed) about the quality of a BAM file and quality of the alignment. This analysis provides 

information about several features such as the total number of reads that aligned to the reference 

genome, the number of high quality aligned reads, the number of mismatches, the number of 

reads aligned in pairs (both reverse and forward strand were aligned), among others. Other 

aspects that can be assessed with Picard tools are duplication levels and coverage metrics. In 

this thesis we analysed the alignment quality, duplication levels and coverage.  

 

2.8.1 DUPLICATION LEVELS 
 
Duplication is a very important aspect that can affect the analysis of a sequencing experiment. 

If high duplication levels are observed, two or more reads that originate from the same fragment 

of DNA can be observed. Duplicates can be classified as PCR duplicates or optical duplicates. 

PCR duplicates are produced when there is enrichment bias caused by PCR overamplification 

for some regions of the library. The may not be exactly identical but have a very high sequence 

similarity. Optical duplicates are observed when during sequencing a single cluster of reads is 

misread as two different clusters and the sequencing platform reports two different read calls 

when there is only one. This type of duplicates is completely identical. 
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2.9 VARIANT CALLING 
 
2.9.1 CA VEMAN  

CaVEMan detects single nucleotide variants (SNVs) by calculating a probability score 

(parameter q) for likely phenotypes at each genomic position, given prior information 

regarding reference alleles, copy number or ploidy, the fraction of aberrant tumour cells that 

are present in each cancer sample and sequencing quality scores.  This is done by applying an 

EM (expectation-maximization) algorithm. CaVEMan achieves a high level of specificity and 

sensitivity, by applying post-processing filters86,87. Some filters include mutation probability 

threshold, read depth and comparison of the somatic variant to a matched normal (a true variant 

should not be present in the normal sample). More complex filters can be tailored to specific 

projects, which further increases reliability of the algorithm. They can be classified in three 

different categories: filters dependent on intrinsic thresholds of sequencing, filters for 

elimination of systematic sequencing artefacts produced by next-generation sequencing and 

filters for specific genomic features that contribute to mapping errors. For example, filters 

included in the Cancer Genome Project Wellcome Trust Sanger Institute pipeline are: DTH 

(less than one third of mutant alleles have a base quality equal or higher than 25), RP (coverage 

is less than 8), MN (more than 0.05 of mutant alleles with a base quality equal or higher than 

15 are found in a matched normal), UM (at least 0.05 of mutant alleles with a base quality 

equal or higher than 15 are found in at least 2 unmatched normal samples), PT (mutant alleles 

are all on one direction of the read and in the second half of the read, MQ (mean mapping 

quality of the mutant allele reads was below 21), SR (position falls within a simple repeat), CR 

(position falls withing a centromeric repeat), PH (mutant reads are on one strand and mean 

mutant base quality was below 21), HSD (position falls within a high sequencing depth region), 

GI (position falls within a germline indel), VUM (position has 3 or more mutant allele present 

in at least 1 % of unmatched normal samples), SE (coverage is equal or higher than 10 on each 

strand but mutant allele is only present on one strand) and MNP (The proportion between 

tumour sample mutant allele proportion and normal sample allele proportion is below 0.2). 

2.9.1.1 EM ALGORITHM TO CALCULATE PARAMETER q  

The EM algorithm is an iterative approach that calculates maximum-likelihood estimates for 

model parameters182. It is especially useful when the data is incomplete or has latent variables 

(variables that are hidden). In a scenario with complete data, to apply EM we need some 

observed data y with a parametric density p(y|q) and a description of the desired complete data 
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X. It is assumed that the data can be modelled as a continuous random vector X with density 

p(x|q), where q Î W for some set W. In summary, we observe the realization y of the random 

vector Y that depends on X, but X cannot be observed directly.  

The objective is to make a guess about the complete data X and estimate the parameter q  that 

maximizes the log-likelihood of X.   

𝜃-./ = argmax
0∈2

𝑙𝑜𝑔𝑝(𝑦|𝜃). 

When the data is incomplete, the data X is the observed data Y + missing data (latent) data Z, 

such that X = (Y, Z). 

There are two main steps: the estimation step and the maximization step. 

1) We use the conditional probability distribution 𝑝R𝑦, 𝑧T𝑦, 𝜃(3)U in order to calculate the 

conditional expected log-likelihood, also called the Q-function. The parameter q is 

initialised with m =0. The conditional expectation is computed using the 𝜃(3)	from the 

previous iteration.  

𝑄	R𝜃T𝜃(3)U = W 𝑙𝑜𝑔𝑝(𝑦, 𝑧|𝜃)𝑝(𝑦, 𝑧|𝑦, 𝜃(3)
	

5
)𝑑𝑥 = W 𝑙𝑜𝑔𝑝(𝑦, 𝑧|𝜃)𝑝(𝑧|𝑦, 𝜃(3)

	

6
)𝑑𝑧

= 𝐸6|8,0(")[𝑙𝑜𝑔𝑝(𝑦, 𝑍|𝜃)]. 

2) A new estimate of the parameter 𝜃 that maximizes the Q-function is found. The new 

estimate is 𝜃(3:$).  

 

𝜃(3:$) = argmax
0∈2

𝑄(𝜃|𝜃(3)). 

These two steps are performed until the estimate converges to a stable value after many 

iterations. 

2.9.2 DeepSNV 

The deepSNV algorithm was first developed by Gerstung et al.92 is used to compare a sample 

of interest (test) to a control. For each genomic position, the number of observed nucleotide 

counts from both strands in the test and the control is modelled with a hierarchical binomial 
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model. For each base a likelihood ratio test is obtained to address the problem of the expected 

variation between the two types of samples (test vs control), and account for the increased 

number of SNVs expected in the test in comparison to the control sample. 

2.9.3 PINDEL 

Pindel96 is a popular method used to identify insertions and deletions that has been used in 

many studies16,43. It implements a pattern growth algorithm to identify break points of deletions 

and medium sized insertions and their respective fragments in comparison to the reference 

genome from paired–end reads96. With the given output Pindel maps all the reads to the 

reference genome using SSAHA2183 (Sequence Search and Alignment by Hashing Algorithm), 

an algorithm that performs searches on big DNA databases. Then, it selects those paired reads 

that are only mapped in one end and whose other end cannot be mapped anywhere in the 

genome. The mapped end must have no mismatched bases. The mapped end is used to find the 

direction of the unmapped read by comparing to the reference genome and determines if it is a 

deletion or an insertion. Some aspects that lead to missing variants are the presence of repeats 

in the reference genome, as it would prevent unique mapping. Also, only perfect matching is 

considered, which means that SNPs or sequencing errors in the regions of indels may be the 

cause of missing true positives96. In order to remove false positive variants, multiple filters are 

usually applied. For example, filters commonly included by the Cancer Genome Project 

Wellcome Trust Sanger Institute pipeline are: F004 (medium read depth strand bias check), 

F005: high read depth strand bias check, F006 (small call excessive repeat check), F010 

(variant must not exist within the unmatched normal panel), F012 (germline check), F018 

(sufficient depth), F015 (no normal calls), F016 (verify indel condition) and F017 (variant must 

not overlap with a simple repeat).  

2.9.4 BRASS 

Brass (Breakpoints via assembly) is an algorithm developed at the Wellcome Trust Sanger 

institute to find genomic rearrangements in paired-end NGS sequencing data. It consists of two 

phases. In Brass phase I, discordant reads are detected and used to find regions of interest in 

the genome (it reports read mapping orientations). These regions are only considered if there 

are enough reads supporting them, appear in a difficult region in the genome or if they were 

found in the matched normal sample. In Brass phase II, a de novo assembly using Velvet184 is 

performed on the reads mapping around the breakpoint windows determined in Brass phase I. 
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If this produces the expected pattern then the end result is a mapping of the breakpoint to base 

pair resolution.  

2.9.5 BATTENBERG ALGORITHM 

The Battenberg algorithm103 is used to detect copy number alterations in sequencing data. Copy 

number alterations produce allelic imbalances. To detect them, the B- allele frequency (BAF) 

of germline SNPs (and therefore assign the same BAF for positions of interest surrounding the 

SNP) is calculated as the fraction of the total number of reads from allele B (𝑟;,') and the sum 

of the total number of reads from alleles A (𝑟<,') and B (𝑟;,'). The alleles of all SNPs are paired 

according to whether they come from the mother or the father, a process that is known by 

haplotype phasing103,185. This technique results in BAF values that are more accurately and one 

can proceed to classify CNAs as clonal or subclonal (section 2.9.5.1). Here we will express the 

number of reads from alleles A and B as a function of the number of chromosome copies 

(integer value) for each allele (𝑟<,' = 𝑛< and 𝑟;,' = 𝑛;): 

𝐵𝐴𝐹' =
𝑛;,'

𝑛<,' + 𝑛;,'
,				𝐸𝑞. 1 

The BAF of a germline heterozygous SNP should fall around 0.5 if there are no allelic 

imbalances, so lower or higher values indicate the presence of CNAs (loss or gain, 

respectively). To obtain accurate detection of CNAs it is important to first estimate the fraction 

of tumour cells present in the sample, also referred to as tumour purity (r). Thus, we account 

for the number of chromosome copies in tumour cells (𝑛<,= and A and 𝑛;,=) and the number of 

normal chromosome copies in normal cells (𝑛<,% and 𝑛;,%) in the sample: 

𝐵𝐴𝐹' =
𝜌𝑛;,= + (1 − 𝜌)𝑛;,%

𝜌R𝑛<,= + 𝑛;,=U + (1 − 𝜌)(𝑛<,% + 𝑛;,%)
, 𝐸𝑞. 2 
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BAF values from samples with variable tumour purity are illustrated in Figure 2.5.  

 

 

 

 

 

 

 

 

Case A shows a region from a tumour sample with tumour purity of 100% with no CNAs: the 

values fall around 0.5 and form a single thick band in the middle. In contrast, case B shows a 

clonal gain that is represented by two separate bands: allele A presents more reads that allele 

B. Cases C and D demonstrate the importance of sequencing depth and tumour purity on CNAs 

estimation. In case C, a lower purity (75 %) produces less defined bands. The effect is even 

more pronounced in case D where a lower coverage (40x) increases the noise and the bands 

from both alleles are mixed. Finally, cases E and F depict the difficulties in detecting subclonal 

CNAs. As the changes are occurring only in a percentage of the total cells and there can be 

more than one subclone, the BAF values are not constant, producing poorly defined bands. In 

this case, read pairs corresponding to both variant alleles and read pairs corresponding to the 

reference allele and the variant allele are found simultaneously. This scenario can only occur 

Figure 2.5: B-allele frequencies (BAF) of germline heterozygous SNPs can be used to identify 

copy number aberrations. A-F show that the BAF is noisy, and that it gets increasingly more 

difficult to separate the bands as the purity or coverage goes down and when the aberration is 

subclonal. To reduce the noise, SNPs can be phased to determine which allele is the B-allele. 

By combining the SNPs over longer stretches of DNA it becomes possible to detect subclonal 

aberrations. Adapted from Dentro et al.188 
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if each read pair come from different cell populations (subclones). For this reason, it is much 

easier to estimate CNAs that are clonal. The challenge of BAF variation due to low coverage 

has been addressed by performing haplotype phasing103,185. This technique involves taking 

CNA information from SNPs in the same region and pairing the alleles of all SNPs according 

to whether they come from the mother or the father. After phasing, BAF values are more 

accurately and one can proceed to classify CNAs as clonal or subclonal (section 2.9.5.1). 

2.9.5.1 DETECTING  SUBCLONAL COPY NUMBER ALTERATIONS 

 

In order to detect subclonal CNAs, we assume that there is clonal change when the BAF 

deviates from the expected value of 0.5 is made. Taking the copy number values for each allele 

𝑛< and 𝑛; for the estimated clonal and subclonal CNAs (integer and non-integer values, 

respectively), we can calculate the allele frequency ℎc>  under the assumption that copy number 

values are clonal. In order to do this, we have to round up or down the subclonal values (a non-

integer value) to the closest integer value above and below the real value. Thus, there are four 

possible scenarios: 

 

Both A and B alleles are rounded down: 

 

ℎc> =
𝜌 ⇂ 𝑛; ⇃ +1 − 𝜌

𝜌(⇂ 𝑛< ⇃ +⇂ 𝑛; ⇃ +(1 − 𝜌)2
, 𝐸𝑞. 3 

 

Both alleles A and B are rounded up: 

ℎc> =
𝜌 ↾ 𝑛; ↿ +1 − 𝜌

𝜌(↾ 𝑛< ↿ +↾ 𝑛; ↿ +(1 − 𝜌)2
, 𝐸𝑞. 4 

 

The A allele is rounded up and the B allele is rounded down: 

 

ℎc> =
𝜌 ⇂ 𝑛; ⇃ +1 − 𝜌

𝜌(↾ 𝑛< ↿ +⇂ 𝑛; ⇃ +(1 − 𝜌)2
, 𝐸𝑞. 5 

 

The A allele is rounded down and the B allele is rounded up: 
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ℎc> =
𝜌 ↾ 𝑛; ↿ +1 − 𝜌

𝜌(⇂ 𝑛< ⇃ +↾ 𝑛; ↿ +(1 − 𝜌)2
, 𝐸𝑞. 6 

 

Now we can compare the observed allele frequency ℎ> to the calculated clonal ℎc> values from 

all the four scenarios. If the observed ℎ> is significantly different from  ℎc> in all four cases a 

subclonal CNA is identified. 

 

2.10  MUTATIONAL SIGNATURES DETECTION METHODS 
 
2.10.1 NON-NEGATIVE MATRIX FACTORIZATION 
 

This method is a machine learning technique first introduced by Pateero et al.186that has been 

adapted to perform de novo signature extraction. Computational frameworks such as 

SigProfiler187,188 and SignatureAnalizer[refs] are based on the non-negative matrix 

factorization method.  This approach allows us to find latent features that cannot be directly 

observed, but the result of these features combined. A key characteristic of this approach is that 

all the values have to be positive. For a matrix A (𝑈 × 𝑉) with nonnegative elements, matrices 

W (𝑈 × 𝐾) and H (𝐾 × 𝑉) have to be found so that A is the product of matrices W and H: 

 

𝐴 = 𝑊𝐻 

 

𝑎' = [𝑤'$𝑤'?	…𝑤'+] × r
ℎ$
…	
ℎ+
s =t𝑤'( × ℎ'

+

(@$

 

 

In order to achieve this, the dimensions of factor matrices W and H have to be lower than those 

of the original matrix A. Each row in H is a component and each row in W is a weight of that 

component.  

 

In the context of signature extraction, we have to consider 96 possible scenarios of mutation 

types K. These 96 scenarios refer to the 96 possible mutated trinucleotides. Mutational 

signatures are derived from specific patterns of these 96 trinucleotides, therefore, a mutational 

signature is described as a discrete probability density function over the domain of mutation 

types K. Thus, a mutational process’s signature P1 is described as a combination of these 

probabilities and expressed as nonnegative K-tuple 𝑃$ = [𝑝$$, 𝑝$?, … 𝑝$+]	!, where ∑ 𝑝$+A
+@$ = 1  
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and 𝑝$+ is the probability of the mutation process P1 to originate a mutation type K of all K 

types. Therefore, a set of mutational signatures can be represented as a nonnegative mutational 

signature matrix: 

 

𝑃	(𝐾 × 𝑁) = x
𝑝$$ 𝑝?$ ⋯
⋮ ⋮ ⋱
𝑝$A 𝑝?A ⋯

	 𝑝"&$$ 𝑝"$
	 ⋮ 	⋮
	 𝑝"&$A 𝑝"A

|	, 

 

where K is the number of mutation types (96 possible trinucleotides) and N is the number of 

signatures (needs to be determined). Each mutational process is supported by a specific number 

of mutations in the genome, which can be classified as the exposure of that genome to that 

mutational process. 

The exposure of G genomes to a set of processes N can be expressed as: 

 

																																												𝐸	(𝑁 × 𝐺) = x
𝑒$$ 𝑒?$ ⋯
⋮ ⋮ ⋱
𝑒$" 𝑒?" ⋯

	 𝑒B&$$ 𝑒B$
	 ⋮ 	⋮
	 𝑒B&$" 𝑒B"

|	,  

 

where N represents the signatures and G is the number of genomes. 

 

Finally, the mutational catalogue of a cancer genome could be represented as: 

 

𝑀	(𝐾 × 𝐺) = x
𝑚$
$ 𝑚?

$ ⋯
⋮ ⋮ ⋱
𝑚$
A 𝑚?

A ⋯

	 𝑚B&$
$ 𝑚B

$

	 ⋮ 	⋮
	 𝑚B&$

A 𝑚B
A
|	,  

 

where K represents the number of mutation types (all trinucleotide combinations) and G the 

number of genomes.  

 

With this NMF model, mutational signatures of a cancer genome can be seen as a superposition 

of signatures present in that genome and their exposures. For a set of G genomes and N 

mutational signatures, this can be expressed as:  

 

M ≈ P × E  
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However, there are limitations to this method: the number of signatures that can be detected is 

dependent on the number of genomes available and the number of mutations per sample. When 

a dataset does not meet those requirements, there is a possibility of refitting previously 

validated signatures (extracted using NMF or other methods) from large cohorts of cancer 

genomes to individual samples. Some approaches used for this purpose have been developed 

such as Non-linear Programming Methods and the SigProfilerSingleSample tool (an updated 

version of SigProfiler) (described in Methods, section 2.10.2 and section 2.10.3, respectively). 

 

2.10.2 NON-LINEAR PROGRAMMING METHODS 
 
Non-linear programming is an approach used to solve an optimization problem. A set of n 

decision variables 𝑥$, 𝑥?, … , 𝑥%			are selected in order to optimize (maximize or minimize) an 

objective function. This function is subject to constraints (called equalities or inequalities), that 

determine what is called the feasible region the decision variables can be selected from in order 

to optimize the objective function. A general non-linear program could be described as:  

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑓(𝑥$, 𝑥?, … , 𝑥%) 

																	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 ∶ 	 𝑔$(𝑥$, 𝑥?, … , 𝑥%) ≤ 𝑏$, 

																																												𝑔3(𝑥$, 𝑥?, … , 𝑥%) ≤ 𝑏3	,, 𝐸𝑞. 1 

 

 

 

One type of non-linear programming method is Quadratic Programming (QP). Here the 

objective function is a quadratic function of several decision variables dependent on linear 

constraints. In a Quadratic Programming problem, we have a n-dimensional vector m, an 𝑛 × 𝑛 

dimensional symmetric positive matrix Q here referred to as 𝑆!𝑆 (the superscript T implies 

transposition), an 𝑚 × 𝑛 dimensional real matrix A and an m-dimensional real vector w. 

 

Applied to signature refitting, the dimensional vector of real values m corresponds to the 

normalized observed vector of mutation scenarios (96 x 1); S can be defined as a 96 x k matrix 

(reference signatures), where each column represents a contribution of mutational scenarios to 

one signature and k is the number of known mutational signatures; w is a matrix of weights k 
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x 1 to be estimated. The objective is to estimate a n-dimensional vector w that will minimize 

the difference between observed vector m and S. 

The quadratic programming problem can be expressed as follows:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	(𝑚 − 𝑆𝑤)!	(𝑚 − 𝑆𝑤) = 𝑚!𝑚 −𝑤!𝑆!𝑚 −𝑚!𝑆𝑤 + 𝑤!𝑆!𝑆𝑤 

 

																	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	t𝑤( = 1,𝑤( ≥ 0
	

(

,			𝐸𝑞. 2 

 

which is the same as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − 𝑚!𝑆𝑤 +
1
2𝑤

!𝑆!𝑆𝑤 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	t𝑤( = 1,			𝑤( ≥ 0, 𝐸𝑞. 3
	

(

 

 

This problem can be solved using the dual method of Goldfarb and Idnani189. 

 

2.10.3 SIGNATURE REFITTING USING SIGPROFILER 

 

The updated version of the tool for mutational signature analysis SigProfiler187,188 

SigProfilerSingleSample (https://github.com/AlexandrovLab/SigProfilerSingleSample) uses 

previously extracted signatures and estimates the number of somatic mutations that are 

associated with a known set of mutational signatures in a single sample. 

 

The contribution of each signature is estimated using non-linear programming method 

described by Byrd190. However, the tool applies a set of rules that limit the number of signatures 

that can be attributed to a sample. These rules ensure that not all reference signatures are used 

for the mutational profile reconstruction by incorporating previous biological knowledge. The 

aim of this measure is to control for inaccurate signature attributions with a low biological 

plausibility. 
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2.11 CLUSTERING METHODS 
 

Clustering methods are used to find structure and groups of similar objects in the data. They 

reveal useful relationships between objects. The kind of clustering techniques described in this 

section are classified as unsupervised, which means that they perform the division into groups 

without any external information or labels of the objects. In this thesis the agglomerative 

hierarchical clustering and Bayesian clustering analysis were applied to detect related groups 

of mutational signatures and reconstruct the clonal architecture, respectively. 

 

In bayesian statistics, a prior distribution 𝑝(𝜃) is assigned to all unknown parameters in the 

model and a posterior distribution 𝑝(𝜃|𝑦)	 for all parameters is inferred given the observed 

data (Eq.1). The prior distribution represents subjective beliefs about the parameters, and 

𝑝(𝑦|𝜃) is defined as the likelihood function or the probability of obtaining the data given the 

parameters. According to Bayes’s theorem: 

𝑝(𝜃|𝑦)~𝑝(𝜃) × 𝑝(𝑦|𝜃), 𝐸𝑞. 1 

Here we will focus on nonparametric bayesian methods, where there is at least one infinite-

dimensional parameter. This feature allows the creation of complex models, where the 

model’s complexity grows as more data is observed. The number of clusters do not have to be 

specified in advance, and it is inferred by the observation of the data. A very popular prior 

distribution in bayesian nonparametric inference is the Dirichlet Process191 (see section 

2.11.1) 

2.11.1 DETECTION OF SUBCLONAL POPULATIONS USING A BAYESIAN 
DIRICHLET PROCESS 

 
In this section we describe the methods used to reconstruct the clonal architecture of tumour 

and normal samples from NGS data for each patient. The  clustering method used to detect the 

subclonal populations was developed by Dentro et al.192 and has been applied in a vast number 

of studies17,103,193,194. It aims to determine the number of subclones (clusters) within a tumour, 

the fraction of cancer cells in each cluster and the number of mutations that belongs to each 

cluster, which are all unknown parameters. Subsequently, the subclonal architecture for each 

patient can be illustrated as a phylogenetic tree (see section 2.11.1.2). 
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Reconstruction of the clonal architecture relies on clustering together mutations (in this case, 

SNVs) with similar cellular cell fraction (CCF) values, under the assumption that each mutation 

has occurred only once in the lifetime of a tumour. As stated in section 2.11.1.1, CCFs depend 

on CNAs and VAF values. VAF is a measure of the proportion of reads with the variant, the 

sequencing depth determines how accurate this can be obtained. Sequencing depth is a 

changing measure in any sequencing experiment. Therefore, CCF can vary greatly due to 

changes in sequencing depth. In order to account for this diversity, an error model is used: 

 

𝑟' ∼ 𝐵𝑖𝑛R𝑟=C=,' , 𝑝'U, 

Where the number of variant reads can be compared to the number of successes of N 

independent coin tosses, being N the total read depth. The number of successes (variant reads) 

are modelled through a binomial distribution, 𝑟' being the number of variant reads at location 

i, 𝑟=C=,' the total depth at location i, and 𝑝' the probability of observing a mutant read. The 

probability 𝑝' is defined by the proportion of expected reads if the mutation is fully clonal (𝜁') 

and the true fraction of cells carrying the mutation (𝜋'). Therefore,  

 

𝑝' = 𝜁'𝜋'. 

 

As we will discuss later, 𝜁' can be obtained from the tumour purity and copy number status of 

the location. The estimation of 𝜋' is performed using a Bayesian Dirichlet process in n 

dimensions, with n representing the number of samples. The dimensions represent the number 

of related samples for each patient (normal, tumour and BPH). A Dirichlet process is a 

stochastic process used in Bayesian nonparametric models that has two parameters: a base 

probability distribution (P0) and dispersion parameter a. It can be seen as a distribution over 

distributions, as each draw from a Dirichlet process is a distribution in itself sampled from 

another distribution (the base probability distribution or P0). The sample space of P0 is possibly 

infinite, so each draw is performed from an unknown number of distributions. With this method 

we can co-estimate all the unknown parameters: the number of subclones (clusters) or 

contributing distributions within a tumour, the fraction of cancer cells in each cluster and the 

number of mutations that belongs to each cluster. 

The stick-breaking representation of the Dirichlet process195 is often used for this purpose: 

𝑃 = ∑D@$E 𝑤D𝜋0$ , 𝑤𝑖𝑡ℎ	𝜋D~𝑃#. 
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𝜋0$ represents a location in the CCF space and 𝜔D is the probability weight probability weight 

of the hth mutation cluster. This probability can be defined as: 

𝜔D = 𝑉D∏ (1 − 𝑉F)FGD , 	𝑤𝑖𝑡ℎ	𝑉D~𝛽(1, 𝛼). 

𝑉D are parts of a unit length stick that are sequentially broken off from the remaining stick (as 

depicted in Figure 2.6). Each iteration produces a smaller 𝑉D, as the remaining stick decreases 

each time a new part is broken off. Each partition represents a fraction of the total cluster weight 

(number of SNVs) and a CCF is assigned by resampling using the SNVs allocated to that 

cluster. Using the associated weight and stick location of a SNV, the probability that a SNV is 

generated by that substick is calculated for each substick and SNV. This process is performed 

repeatedly until all SNVs are assigned to a cluster. Therefore, clusters (cellular populations), 

are estimated, determined by the accumulation of the weight and SNVs in specific locations. 

 

2.11.1.1 CCFs ESTIMATION 

The CCF is estimated from the VAF and the number of copies of alleles in that position. The 

VAF is the percentage of sequence variant reads (𝑟3H=) divided by the total amount of reads 

(𝑟IJ>) at that position. Therefore, the VAF or 𝑓' of a SNV i can be calculated as follows:  

 

𝑓' =
𝑟3H=,'

𝑟3H=,' + 𝑟IJ>,'
, 𝐸𝑞. 1 
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Allele frequencies are affected by CNAs, if there are any. If there is a subclonal loss or gain, 

the VAF can increase or decrease depending on which allele (variant or reference) has been 

affected by the CNA. Because of this reason, it is important to have the CNAs for all locations. 

An example is illustrated in Figure 2.7.  

 

Therefore, for each SNV there is a copy number state, also called multiplicity or 𝑚' for a given 

mutation i. In order to have an accurate estimation of the number of cells containing a mutation, 

we must consider the following: 

𝑢' = 𝐶𝐶𝐹'𝑚', 𝐸𝑞. 2 

 

As stated earlier, a clonal SNV is present in 100% of cells so it has a CCF of 1.0. Therefore, 

the number of chromosome copies or multiplicity 𝑚' has to be an integer and 𝑢' ≥ 1. A 

subclonal mutation, however, is present in less than 100% of cells (it has a CCF less than 1.0). 

The multiplicity value 𝑚'=1, as it is only carried by one chromosome copy (if there are not any 

CNAs). In this case 𝑢' < 1. 

Figure 2.6: Stick-breaking schematic. The stick-breaking property of the Dirichlet process 

(DP)is used to estimate the number of mutation clusters in the data. For each mutation, a 

stick of arbitrary length is broken into randomly sized bits that represent a cluster. At point 

A, breaks have been introduced, corresponding to clusters 𝑐$ − 𝑐K. B shows the stick after 

introducing break 5, whereas C shows the completed stick-breaking procedure. The size of 

each broken part represents the weight associated with a cluster and influences the mutation 

assignments, in which a high weight makes it more likely that a mutation is assigned to that 

cluster. These weights are updated after probabilities for each cluster have been obtained 

for each mutation, eventually converging on a solution. Adapted from Dentro et al.192. 
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In summary, to calculate the value 𝑢' for a given location i, we have to consider the fraction of 

tumour cells of our sample (𝜌), the number of chromosome copies in those cells for that 

specific locus (𝜌𝑛=C=,%,'), and the fraction of normal cells (1 − 𝜌) with the number of 

chromosome copies in normal cells (𝑛=C=,%,') at locus i: 

𝑢' = 𝑓'
1
𝜌 �𝜌𝑛=C=,=,' +

(1 − 𝜌)𝑛=C=,%,'�, 𝐸𝑞. 3 

 

Normal cells are considered to have a diploid copy number state (𝑛=C=,%,'= 2), whereas tumour 

cells copy number state 𝑛=C=,=,' can be calculated by copy number analysis (discussed in section 

2.9.5). For SNVs 3 and 4 in figure 6, the values for 𝑢' would be: 

 
4

4 + 6𝑥
1
0.8 𝑥

[0.8𝑥2 + 0.2𝑥2] = 1.000 

 
11

11 + 9𝑥
1
0.8 𝑥

[0.8𝑥3 + 0.2𝑥2] = 1.925 

 

2.11.1.2 PHYLOGENY RECONSTRUCTION 

 

Phylogenetic trees that illustrate the evolutionary relationships between subclones can be 

constructed using the CCF information for each clone/subclone and by applying the pigeonhole 

principle. This principle specifies that if we have 𝑚 containers or pigeonholes and 𝑛	items or 

pigeons to store in the containers and 𝑛 > 𝑚 there has to be a container with more than one 

item. Following this principle in subclonal reconstruction, we assume that the sum of the CCF 

of a subclone or subclones has to be smaller than the CCF of their ancestor. Phylogenies can 

be linear (each cluster is a descendant from an older cluster) or parallel. Figure 2.8 illustrates 

these two scenarios. In case A we have a linear phylogeny with CCFs of 100%, 80% and 40% 

for clusters 1, 2, and 3, respectively. As 100% cluster 1 + 80% cluster 2 >100%, cluster 2 with 

a CCF of 80% has to be a descendant of cluster 1. The same applies to cluster 3: cluster 2 80% 

+ cluster 3 40% >100%, so cluster 3 is a descendant of cluster 2. In the parallel phylogeny, 

however, cluster 2 has a CFF of 50%. As cluster 2 50% + cluster 3 40% < 100, cluster 3 could 

be a descendant of cluster 2 or cluster 1.  
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Figure 2.7: Copy number alterations affect variant allele frequencies. Allele frequencies of 

single nucleotide variants (SNVs) must be transformed to cancer cell fractions (CCFs), 

accounting for copy nuber changes, before they can be clustered to identify subclonal 

populations. This illustration shows four SNVs in different (sub)clonal populations and in 

regions with different copy number states, to illustrate this principle. SNVs 1 and 2 are clonal 

and subclonal respectively and appear in a nonaberrated copy number state. SNV 3 coincides 

with a subclonal deletion, with the SNV falling on the retained allele (i.e., the other allele is 

subclonally deleted). SNV4 has occurred before a gain and is therefore carried by two 

chromosome copies. Even though SNV 1, 3, and 4 are clonal, their allele frequencies differ 

because of copy number alterations (CNAs). Adapted from Dentro et al.192 
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2.11.2 HIERARCHICAL CLUSTERING 
 
The description by Frigui et al.196 was used for the elaboration of this section. This type of 

clustering is referred to as hierarchical or nested, as opposed to partitional or unnested 

clustering. Whereas partitional clustering is just a separation of the data objects into non-

overlapping groups, hierarchical clustering allows the existence of subclusters. This means that 

there can be overlapping groups (nested clusters) that can be organised as a tree. Therefore, a 

cluster or node can be seen as the combination of its subclusters or subnodes and the root of 

the tree is the object that contains all the clusters.  

 

There are multiple ways of performing hierarchical clustering, but here we are going to focus 

on agglomerative hierarchical clustering approach. This technique generates the tree by 

separating each single point into a cluster and iteratively merging the closest clusters until a 

single cluster (root of the tree) is obtained. The closest clusters are merged based on their 

similarity or proximity measure, which is defined using different approaches:  

 

Maximum linkage: the maximum distance between the two points from two different clusters 

that are farther apart. 

Single link: the shortest distance between two points of two different clusters.  

Average link: the average distance between each point in one cluster and all the points in the 

other cluster. This approach was the one used in this thesis. 

 

Cluster 1: 100 %

Cluster 3: 40 %
Cluster 2: 50 %

Cluster 1: 100 %
Cluster 2: 80 %
Cluster 3: 40 %

A B

Figure 2.8: Phylogeny reconstruction applying pigeonhole principle. A) A linear phylogeny 

is represented. B) Parallel phylogeny, where cluster 3 has to possible ancestors. 
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The distance between any pair of points can be calculated in different ways, which can be 

quantitative measures or similarity/dissimilarity measures. In this thesis we used quantitative 

measure called Euclidean distance. It is calculated by measuring the line segment between two 

points or computing the absolute value of the difference between two points.  

 

2.12 PCA 
 

Principal component analysis (PCA) was first introduced by Karl Pearson197 and is a widely 

used technique that is commonly applied for dimensionality reduction and visualisation of data. 

The main purpose of this analysis is to decrease the number of dimensions of a dataset that 

presents a high number of attributes (interrelated variables) while retaining as much variation 

as possible. It also allows to find hidden patterns in the data and identify correlated variables. 

In order to attain this, the set of observations is transformed to new variables called principal 

components (PCs). These components are ordered so the first one accounts for as much 

variability as possible and unlike the original variables, they are linearly uncorrelated. 

Let x be a vector of p random variables. The first step is to generate a covariance matrix (𝑛 × 𝑛) 

that contains the covariances between all possible pairs of p variables present on the data set. 

The covariance between two variables can be calculated using the formula:  

 

𝑐𝑜𝑣(𝑋, 𝑌) = $
%&$

Σ'%1	(𝑋' −𝑥)(𝑌' − 𝑦). 

 

The variances are represented by the diagonal elements of this matrix, while the rest of the 

elements correspond to the covariances between variables. Thus, high covariance values 

(values > 0) indicate redundancy, or correlation between variables. In order to decrease 

redundancy, the original variables have to be transformed so that the covariance is closer to 0. 

This is known as eigen decomposition, where a square matrix A is decomposed into paired 

eigenvectors and eigenvalues. An eigenvector �⃗�	is a non-zero vector of a linear transformation 

of a given matrix A that is changed by a scalar factor or eigenvalue 𝜆	determined by that linear 

transformation so that: 

 

𝐴�⃗� = 𝜆�⃗�, 𝐸𝑞. 1 
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The eigenvalues of A can be calculated using the following equation, where I corresponds to 

the identity matrix: 

 

�⃗�(𝐴 − 𝜆𝐼) = 0,	which is equal to: 

 

𝑑𝑒𝑡 �
𝑎$$ − 𝜆 𝑎$? ⋯
𝑎?$ 𝑎?? − 𝜆 ⋯
⋯ … ⋱

	 𝑎$+ 	
	 𝑎?+ 	
	 ⋮ 	

� 

                                                      𝑎+$ 𝑎+? ⋯	 𝑎++ − 𝜆 	 

 

After eigenvectors and eigenvalues are calculated and sorted in decreasing order, the 

eigenvectors with the lowest eigenvalues are removed (reducing dimensionality) to form a 

matrix d x k from the chosen eigenvectors or k. The order eigenvectors/eigenvalues are sorted 

now corresponds to the order of the principal components, the highest pair corresponds to the 

first principal component. 

 
2.13 BOOTSTRAP 
 

Bootstrapping is a statistical method first introduced by Bradley Efron in 1979198 used to do a 

wide range of statistical inferences by measuring the accuracy of sample estimates such as 

variance, confidence intervals and standard errors. It is also commonly used to assess the 

stability of results, especially useful when the original sample size is small. Bootstraping is 

based on resampling with replacement from the original data to create many simulated sample 

sets of the same size as the original dataset. The original probability distribution 𝐽 is analogous 

to the empirical distribution 𝐽¡ obtained after resampling the original data.  

 

2.14 POSITIVE SELECTION ANALYSIS 
 

2.14.1 IDENTIFYING NEUTRAL EVOLUTION FROM THE VAF DISTRIBUTION   
 
Evolutionary dynamics of tumours are very complex and are essential for the understanding of 

cancer development and designing successful treatment strategies. As discussed in the 

Introduction (section 1.1), the evolutionary processes in cancer development can be neutral or 

driven by selection.  
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In order to determine the evolutionary dynamics in our samples we used a model developed by 

Williams et al199. that is based on the analysis of the variant allele frequency (VAF) distribution 

of a sample. This model assumes that tumours that evolve neutrally are originated when a single 

cell gained a significant amount of tumour inducing mutations and therefore all the descendants 

harbour them. If subclonal mutations occurring later on accumulate at a steady rate and are not 

under selection pressures we can infer that these are neutral. In this scenario, the VAF of a 

neutral mutation f increases in a constant manner over time, so the age of the tumour is equal 

to f. This can be expressed as follows: 

 
𝑑𝑀
𝑑𝑡 = 𝜇𝜋𝜆𝑁(𝑡), 𝐸𝑞. 1 

 

where N(t) is the number of tumour cells at time t with a dividing rate of l for each unit t, µ is 

the mutation rate that results from cell division and p is the average number of chromosome 

sets in the tumour cell. However, cell division is not always successful, as cells can undergo 

apoptosis and differentiation. For this reason, instead of µ here we consider the fraction of 

effective cell divisions or b where both lineages survive. As cells grow exponentially, we can 

model the mean number as a function of time: 

 

𝑁(𝑡) = 	 𝑒LM= , 𝐸𝑞. 2 

 

To solve this, we integrate over the growth function N(t) in a time interval [𝑡#, 𝑡]: 

 

𝑀(𝑡) =
𝜇𝜋
𝛽 R𝑒LM=𝑒LM=%U, 𝐸𝑞. 3 

 

which inform about the total number of subclonal mutations accumulated in a tumour between 

𝑡# and 𝑡. The variant allele frequency f is defined as the inverse of the number of alleles in a 

population and therefore can be obtained as follows: 

 

𝑓 =
1

𝜋𝑁(𝑡) =
1

𝜋𝑒LM=
, 𝐸𝑞. 4 

 

As f and t are interchangeable, we can redefine equation X like so: 
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𝑀(𝑓) =
𝜇
𝛽 £
1
𝑓 −

1
𝑓3NO

¤ , 𝐸𝑞. 5 

This equation represents the distribution of mutations when under a neutral model of evolution, 

which is a power law distribution (the cumulative number of mutations at a frequency f is 

proportional to 1/f). By using the R package Neutralitytestr199, we tested this model of neutral 

evolution on our data. Using linear models the empirical distribution of mutations (VAF) is fit 

against a 1/f power law distribution. The goodness of fit measure R2 (variance explained by the 

model) is calculated. Neutral evolution is reported when R2 ≥ 0.98. In a more recent paper, 

Williams et al.200 improved their previous approach by using the curve described by equation 

5 and checking whether the empirical data collapsed into this curve after normalization. To 

compare how well does the empirical data fit against this hypothetical distribution three metrics 

are used: the area between the empirical data and the theoretical distribution, the Kolmogorov 

distance between the two distributions and the Euclidean distance of all points between the 

empirical data and the theoretical distribution. These three metrics showed a much better 

performance to fit of the empirical data to the neutral 1/f power law distribution. 

All these metrics are illustrated in Figure 2.9. 
 
 
 
 
 
 
 
2.14.2 FINDING POSITIVE SELECTION AT GENE LEVEL 
 
As stated in section 1.3.6 (See Introduction), there are many methods for analysis of positive 

selection that consist of the calculation of a dN/dS ratio. When the dN/dS ratio deviates from 

~1 positive (or negative) selection is suspected.  

 

In this thesis a dN/dS method118 adapated from Greenman et al.114 was used to detect the 

presence of driver genes in morphologically normal tissue. This approach has proven to be 

more accurate than traditional methods, as it takes into account the background mutation 
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spectrum, the length of the sequence of each gene and the variation of the mutation rate across 

genes. An infinite site dN/dS model is applied, which allows us to have a separate dN/dS ratio 

for missense, nonsense and essential splice site mutations so we can assess the presence of 

selection in these mutation types independently. Essential splice site mutations are described 

as those positions located -2 and -1 upstream of an exon start and +1, +2 and +5 downstream 

of an exon end. 

Each of these mutation types is treated as a random variable modeled through a Poisson 

distribution. 192 parameters were used to assess the mutation potential of each base and 

transcriptional strand bias in the coding strand (the nucleotides up and downstream a given 

base, e.g. ACG>ATG). In total, the model has 195 parameters after including all mutation types 

Figure 2.9: Test statistics for neutrality. (A) Example of the VAF distribution of a neutral 

tumour and (C) a tumour with one selected subclone. To test the model of neutrality three 

different test statistics were used to compare the empirical data (blue line) to the expected 

normalised normalised distribution (red line or universal neutrality curve (UNC)). The 

statistics used were the area between the curves (AUC, grey area), the Kolmogorov distance 

(orange line) and the Euclidean distance between all points on the two curves. Adapted from 

Williams et al.197 
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(missense, nonsense, splice site and synonymous mutations, so that each type of mutation is 

modeled as: 

 

𝜆P8%,<QBG<!B = 𝑡 ∗ 𝑟<QBG<!B ∗ 𝑆P8%,<QBG<!B  

 

											𝜆3'P,<QBG<!B = 𝑡 ∗ 𝑟<QBG<!B ∗ 𝑆3'P,<QBG<!B ∗ 𝑤3'P 

 

											𝜆%C%,<QBG<!B = 𝑡 ∗ 𝑟<QBG<!B ∗ 𝑆%C%,<QBG<!B ∗ 𝑤%C% 

 

							𝜆PRF,<QBG<!B = 𝑡 ∗ 𝑟<QBG<!B ∗ 𝑆PRF,<QBG<!B ∗ 𝑤PRF 

 

𝑟<QBG<!B   accounts for the relative rate of ACG>ATG transitions per ACG site in the sequence, 

t accounts for the local mutation rate, 𝑤3'P|%C%|PP   represent the rate of missense mutations in 

relation to synonymous mutations, and S represents the number of sites that can have a 

missense mutation in that gene sequence at that location. Therefore, t controls for the gene to 

gene variation in coverage or in the background mutation rate, and S controls for the length of 

the sequence of each gene.  

 

The likelihood of observing a number of missense ACG>ATG mutations in a specific gene 

(𝑛3'P,<QBG<!B), with and expected rate (𝜆3'P,<QBG<!B) is expressed as:  

 

𝐿3'P,<QBG<!B = 𝑃𝑜𝑖𝑠R𝜆3'P,<QBG<!BT𝑛3'P,<QBG<!BU = 𝜆% ∗
𝑒&L

𝑛! , 𝐸𝑞. 1 

 

Using Poisson regression, the maximum-likelihood estimates and confidence intervals for the 

195 parameters are calculated. As we have 192 parameters to define the trinucleotide context 

and 4 different mutation types (missense, nonsense, essential splice sites), we calculate the 

joint likelihood as the product of each individual likelihood of the 192 trinucleotide rates * 4 

types of mutations:  

 

𝐿 =¨ �𝑃𝑜𝑖𝑠R𝜆P8%,(T𝑛P8%,(U ∗ 𝑃𝑜𝑖𝑠R𝜆3'P,(T𝑛3'P,(U ∗ 𝑃𝑜𝑖𝑠R𝜆%C%,(T𝑛%C%,(U
(∈{$,?,…,$U?}

∗ 𝑃𝑜𝑖𝑠R𝜆PRF,(T𝑛PRF,(U�,			𝐸𝑞. 2	 
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The estimates of the 192 parameters are calculated from the total number of mutations and are 

considered constant across all genes. Then, maximum-likelihood estimates are obtained for t, 

𝑤3'P, 𝑤%C%, 𝑤PRF for each gene. Finally, a likelihood ratio test is used to compare the observed 

model to a neutral model where 𝑤3'P = 1, 𝑤%C% = 1 and 𝑤PRF=1. False discovery rate is 

controlled by applying the Benjamini-Hochberg method for multiple testing201. 

 

2.15 FUNCTIONAL IMPACT ANALYSIS 
 

In order to assess the functional impact of our set of variants we applied the wANNOVAR 

tool202. wANNOVAR annotates the functional impact for each variant by analysing the 

position (chromosome, location, reference and alternate nucleotides) of each mutation. It 

applies previously developed tools (SIFT203, PolyPhen2 HVAR204, MutationTaster205, 

MutationAssessor206, FATHMM207, MetaLR208) and generates a summary of the functional 

predictions for those variants. 

 

Although there are slight differences, all these tools are based on analysing the protein 

sequence conservation patterns. The rationale is that mutations affecting highly variable sites 

tend to be better tolerated than mutations in highly conserved regions. In order to obtain this 

information, an alignment of the protein of interest and related proteins with shared function 

(same family or homologous proteins) is performed to examine the conservation patterns across 

the amino acid sequence. Based on the alignment results, the normalized probabilities for every 

possible amino acid change are calculated. Those above or equal to an established cutoff are 

considered neutral. These tools vary regarding the range of features analysed apart from 

conservation levels, the databases consulted for the annotations and the methods followed to 

find homologous sequences. For example, PolyPhen2 HVAR is known for integrating 

conservation patterns from sequence alignments and three protein structure features that are 

essential for protein stability and function. MutationTaster, on the other hand, considers other 

features such as splice sites regions and its effects, protein length and mRNA stability. 
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2.16 DETECTION OF KATAEGIS EVENTS  
 
 
For the detection and visualization of clustered mutations in all samples, the R package 

“ClusteredMutations” was used. The inter-mutational distance (IMD) or distance between each 

somatic substitution and the substitution immediately prior, was calculated and then 

represented in “rainfall plots”. We considered kataegis events when there were more than 10 

mutations clustered within 1kb. 
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3.1 SUMMARY 
 
 
The presence of genetic changes drives cancer development by altering the characteristics of 

the cell. Mutations have been identified in genes associated with tumour suppression, DNA 

repair, cell proliferation and cell adhesion.  

In this chapter we characterise the mutational landscape of morphologically normal tissues and 

tumours from patients with and without prostate cancer. We report and compare the specific 

genetic alterations (SNVs, indels, structural variants and copy number changes) and mutational 

signatures present in each group of samples (tumour, morphologically normal tissue from 

cancer patients and morphologically normal tissue from healthy men). Clear associations could 

be made between the nature of the sample and the characteristics of the mutational landscape, 

such as mutation burden and presence of cancer associated genes. Cancer presence was 

associated with a higher number of SNVs and INDELs in comparison to samples from patients 

without cancer. CNAs and rearrangements were only found in tumour samples. A wide range 

of mutational processes were detected in all morphologically normal samples, including 

previously associated prostate cancer associated processes.  

 

3.2 BACKGROUND 
 
Next generation sequencing technologies have become an essential tool for the characterization 

of mutational landscape of prostate cancer. As described in the Introduction (section 1.4) many 

studies17,18,124,132 have reported that a wide range of genomic changes such as DNA copy 

number alterations, rearrangements and gene fusions, single point mutations and indels 

promote cancer development in the prostate. Genomic alterations occur throughout the in 

lifetime of a cell. Most of them are passenger mutations that do not affect cell behaviour, but 

sometimes mutations in key genes lead to the development of abnormal cell clones that can 

lead to cancer. For this reason, the characterisation of morphologically normal tissues is of 

utmost importance to understand early stages of cancer development.  

 

Overall, there is evidence that morphologically normal tissues harbour mutations and that in 

some instances there is strong positive selection of cancer associated genes118. This indicates 

that in many cases normal tissues are comprised of a mixture of evolving clones that eventually 
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could increase the risk for cancer development168. However, this has not been explored in 

prostate. 

 

In prostate, the presence of an a wide range of genetic alterations in morphologically normal 

tissue form prostate cancer patients17 suggest that this tissues have the potential of becoming a 

preconditioned epithelium that acts as a “field” that could lead to cancer, a theory evidenced 

by the fact that failure to remove margins has been associated with local recurrence209. As 

described in the introduction (Introduction, section 1.5.2), this field could be epigenetic in 

nature.  

 

3.3 MATERIALS 
 
3.3.1 SAMPLES 
 

We analysed 89 samples (summarized in Table 3.1) from 30 patients with prostate cancer 

obtained after prostatectomy at Addenbrooke’s hospital: 39 samples from morphologically 

normal tissue and 38 from tumour tissue. An extra 7 morphologically normal tissue samples 

were collected from men without prostate cancer: 5 samples collected at autopsy at the Tissue 

and Research Pathology/Pitt Biospecimen Core at the University of Pittsburgh and two from 

cystoprostatectomy collected at Addenbrooke’s hospital. An extra five samples of cell cultured 

fibroblasts derived from stroma were collected: two at York Teaching Hospital NHS 

Foundation Trust and three at Castle Hill Hospital in Hull. 10 samples from normal tissue were 

classified as having benign prostatic hyperplasia (BPH) by the histopathologist Dr. Anne 

Warren.  Multiple morphologically normal samples from the same patient were taken in six 

cases (Patients 0065, 0073, 0077, 0006, 0007 and 0008) (Table 3.2). All patients had a matched 

tumour except patient 0240. Matched control from blood and lymphocytes were included for 

all epithelial and fibroblast samples, respectively.  

Samples were collected subject to ICGC standards of ethical consent (https://icgc.org/). Ethical 

approval for the morphologically normal samples (including BPH) and fibroblasts was 

obtained from the NHS East of England-Cambridge (REC [03/018]) and from the NHS Hull 

and East Yorkshire (REC ref 07/H1304/121), respectively. Patients gave informed consent and 

identities were anonymised at source. 
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Blood samples were used as normal controls for tumour and morphologically normal tissue.  

Cell cultured lymphocytes were used as controls for the cell cultured fibroblasts.  

Table 3.1: Samples collected from morphologically normal, BPH and tumour tissues from 

patients with and without cancer. 

 

 

 

 

 

 

 
 

                             

 

 

 

 

 

 

 

SAMPLES 

PATIENTS Normal tissue Tumour tissue 

 

Cancer (29) 

 

 

 

 

Normal tissue 30 (Prostatectomy) 38 (Prostatectomy) 

 BPH 9 (Prostatectomy) 

Fibroblasts 5 (cell culture) 

 Normal tissue 6 (2 Cystoprostatectomy 

and 5 Autopsy) 

 

Non-cancer (7) BPH 1  

 

A 

Samples Type Samples Type 

0006 Tumour 1 0006 Normal 1 

0006 Tumour 2 0006 Normal 2 

0006 Tumour 3 0006 Normal 3 

0006 Tumour 4     

0007 Tumour 1 0007 Normal 1 

0007 Tumour 2 0007 Normal 2 

0007 Tumour 3 0007 Normal 3 

0007 Tumour 4     

0007 Tumour 5     

    

0008 Tumour 1 0008 Normal 1 

0008 Tumour 2 0008 Normal 2 

0008 Tumour 3 0008 Normal 3 

 

B  

Samples Type 

0065 Normal 

0065 
 

BPH 

0073 Normal 

0073 BPH 

  

0077 Normal 

0077 BPH 

 

 

Table 3.2: A) Three patients with multiple samples from normal and tumour tissue. B) Three 

patients have an additional sample from BPH. 
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3.4 METHODS 
 
3.4.1 SAMPLE COLLECTION AND SEQUENCING 
 

A total of 89 samples was collected and reviewed by an histopathologist (see Methods, section 

2.3). DNA was extracted and whole genome sequenced (Methods, section 2.5.1). The 

preprocessing steps were performed by researchers at Cambridge University and the library 

preparation and sequencing was performed by Illumina Inc. The tool FASTQC (described in 

Methods, section 2.6) was used to assess the quality of FASTQ files.  

 

3.4.2 PRE-VARIANT CALLING PROCESSING: ALIGNMENT AND DUPLICATE 

REMOVAL 

 
Sequencing data from each lane was aligned to the GRCh37 reference human genome178 using 

the  Burrows-Wheeler Aligner’s Smith-Waterman Alignment (BWA-SW, described in 

Methods, section 2.7) v0.5.9-r16+rugo using parameters -1 32 -t 6178. SAM files can be 

converted to a BAM format using Samtools179. Picard tools (Methods, section 2.8) option was 

used to assess the quality of the alignment (option CollectAlignmentSummaryMetrics), remove 

duplicated reads (option MarkDuplicates) and calculate coverage of the region of interest 

(option CollectHsMetrics). This data has been submitted to the European Genome-Phenome 

Archive (EGAD00001000689). 

 
3.4.3 VARIANT CALLING 
 

Substitutions, insertions and deletions were detected using the Cancer Genome Project 

Wellcome Trust Sanger Institute pipeline. Somatic mutations (SNVs), INDELs, structural 

variants and copy number alterations were called using CaVEMan, Pindel, Brass and the 

Battenberg algorithm respectively (described in Methods, section 2.9). The filters applied for 

SNVs and indels are mentioned in Method sections 2.9.1 and 2.9.3 as part of the Cancer 

Genome Project Wellcome Trust Sanger Institute pipeline. 

 

3.4.4 VISUAL VALIDATION 
 
Visual validation of single nucleotide variants was made for all substitutions of 5 samples using 

G-browse (Figure 3.3), a genome browser used to view short read sequences. Samples with 



                                                                                                                                     Chapter 3 

 79 

differing number of mutations were chosen to determine if there is a relationship between the 

number of variants obtained and the quality of the calls.  

 
3.4.5 FUNCTIONAL IMPACT OF MUTATIONS 

 
In order to assess the functional impact of our set of variants we applied the wANNOVAR 

tool202. wANNOVAR annotates the functional impact for each variant by analysing the 

position (chromosome, location, reference and alternate nucleotides) of each mutation. In 

addition, I compared our variants to the following existing variation databases containing gene 

annotation datasets: UCSC Genome Browser210, 1000 Genomes Project211, dbSNP212, 

COSMIC213 and TCGA214.  

 

3.4.6 POSITIVE SELECTION 
 

A previously described dN/dS method developed by Martincorena et al.118 (see Methods, 

section 2.15.2) was used to detect positive selection in coding variants. dN/dS ratios were 

quantified for missense, nonsense and essential splice mutations using the package R dNdScv 

(https://github.com/im3sanger/dndscv).  

 
3.4.7 MUTATIONAL SIGNATURE DETECTION 

 
Signature refitting using quadratic programming methods (see Methods, section 2.10.1) was 

performed using the recently published new mutational catalogue  from Alexandrov et al.142  . 

All the mutational signatures that currently reported in COSMIC were included in the analysis 

except signature 25 which was not confirmed in the new catalogue142. Signatures 27, 43, 45-

60 have been classified as possible sequencing artefacts, but their inclusion in the analysis 

allows the detection of artefacts in our samples.   

 

Using the whole list of reference signatures may lead to overfitting, where the majority of 

signatures of the list are assigned in most samples (overcalling). A common approach to solve 

this is the previous selection of signatures to include in the analysis. The limitation of the 

number of signatures can be performed based on different criteria. In this thesis we explore 

signature stability as a factor that affects correct signature assignment as described in Results 

sections 3.5.5.1.2 and 3.5.5.1.3. Alternatively, we used the mutational analysis tool 

SigProfilerSingleSample187,188 (described in section 2.10.3) that includes techniques to limit 

the number of signatures based on previous biological knowledge.  
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3.5 RESULTS 
 
3.5.1 QUALITY CONTROL 
 

3.5.1.1 FASTQC ANALYSIS 

 
Overall, samples had a good FASTQC report confirming the good quality of the data: per base 

and sequence quality average was > 30, all bases were proportionately distributed, no 

overrepresented sequences such as adapters were in the data and duplication levels were low. 

Regarding GC content we found that a small proportion of the reads differ considerably from 

the expected normal distribution (the sum of the deviations from the normal distribution 

represented more than 15 % of the reads).  An example of some of these metrics is depicted in 

Figure 3.1. The proportion of unique reads reported in normal (including BPH and BPH 

fibroblasts) and tumour ranged from 86% -99% and 88% -98%, respectively (Figure 3.2) 

3.5.1.2 SEQUENCING METRICS 

A mean coverage of 53X was achieved for normal samples that ranged from 31X to 65X 

(including BPH and BPH fibroblasts) and of 59X for tumours that ranged from 49X to 92X. 

The alignment to the reference genome was of good quality, with a percentage of mapped reads 

that ranged from 85 % - 91 % in normal samples and 88 % - 91 % in tumours. These metrics 

are represented in Figure 3.2. 

3.5.1.3 VISUAL VALIDATION 

Visual validation of single nucleotide variants was made for all substitutions for five samples 

using G-browse (Figure 3.3). A set of rules were followed in order to determine whether the 

variant was valid or not: presence of the variant in at least one read of the control (from blood), 

strand bias, very high number of mutations surrounding the variant and multiple base changes 

at the mutant position all indicated a likely force variant. Strand bias was considered when the 

variant was only present in the backward or forward read or when only one of the strands had 

good quality reads. Samples with differing number of mutations were chosen to determine if 

there is a relationship between the number of variants obtained and the quality of the calls (n = 

28 to 1213). This showed that the majority of the variants (86 % in 0074, 84 % in 0077_BPH, 

75 % in 0159, 82 % in 0240 and 60 % in 0008_N3) were considered to be either good or 

tentative quality (Figure 3.4) and that there was no association between the quality of variants 
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and the total number of variants of each sample (P = 0.38, F-test). Sample 0008_N1 was 

removed from future analyses as the number of variants was very low (n = 28) and half of them 

were of poor quality.  

 

 

 

 

 

 

 

 

 

 

A B

C D

FASTQC REPORT

Mean GC content

Quality score distribution over all sequences

Mean sequence quality (Phred score)

GC distribution over all sequences

Position in read (bp)

Quality scores across all bases

C

Figure 3.1: An example of quality metrics produced by the FASTQC software. This is for sample 

6N1. (A) Quality values across all bases of all sequences. Mean quality, median value and inter-

quartile range are represented by the blue line, the central red line and the yellow box, respectively. 

Points above 90 % and below 10 % are indicated by the lower whiskers. (B) Per base of read 

sequence quality score. (C) GC content across the length of each sequence in comparison to a 

modelled normal distribution of GC content. (D) Relative number of sequences with different 

duplication levels. 
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Figure 3.2: Coverage and Alignment metrics: mean coverage is 53X for all normal samples. 

The % of mapped reads is the proportion of reads that aligned successfully to the reference 

genome. The % of unique reads plot is the number of reads that remain after removing PCR 

duplicates and shows very low levels of duplication. 
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Figure 3.3: Example of variant at 46135211 bp in chromosome 19 for sample 0074. Blue and 

yellow lines represent the forward and backward reads, respectively. Quality of the read is 

indicated by the intensity of the colours. This variant occurs both in high quality backward and 

forward reads and it is absent in the control sample. There is no evidence of indels around the 

variant.  
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3.5.2 MUTATIONAL LANDSCAPE 
 

SNVs, INDELs, breakpoints and copy number changes were called in all 89 samples (Figure 

3.5, Table A.1 for normal (including BPH) and fibroblasts samples and Table A.2 for tumour 

samples in Appendix A). 26,135 SNVs (median of 421 per sample), and 17,370 indels (median 

of 445) were identified in morphologically normal samples, whereas tumour samples 

harboured a total of 97,745 SNVs (median of 2,560.5) and 11,087 indels (median of 265). No 

copy number alterations and only 8 rearrangements (median of 0) (not represented in figure 

3.5) were detected across all morphologically normal (including BPH) patients (sample 0063 

(n=1), 0127 (n=3), 0073_N (n=1), 0074 (n=1), 0006_N1 (n=1) and sample 0006_N3 (n=1), 

whereas a median of 22 copy number alterations and a median of 40 rearrangements were 

found in cancer. Overall, morphologically normal samples had significantly fewer number of 

substitutions (P = 6.81x10-12), indels (P = 4.51x10-03), copy number alterations (0 in normal) 

and rearrangements (P < 2.2x10-16). This absence of copy number in normal samples is notable.  

 

In the 166 tumours reported by Wedge et al.127 they found a group of 32 tumour samples with 

very few CNAs, that we will refer to as “quiet”. A comparison between these “quiet” tumours, 

the high CNAs counterparts and the normal samples analysed in this thesis is presented in 

section 3.5.7.  

 

Fibroblasts also harboured a high number of SNVs (6,597; median of 1116). The majority of 

the variants in morphologically normal tissue (including BPH and fibroblasts from BPH) were 

present in non-coding regions, with only 283 mutations present in exons. 

Figure 3.4: Visual validation results for five samples. Variants inspected using G-browse. 
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Figure 3.5: Mutational landscape. (A) From top to bottom: sample type (morphologically 

normal tissue in prostate cancer patients, BPH tissue in prostate cancer patients, tissue from 

non-prostate cancer patients, BPH fibroblast cell culture); number of SNVs detected per 

sample; number of INDELs (insertions, deletions and complex insertions/deletions) per 

sample. Each column represents a sample and they are ordered according to sample type and 

decreasing number of SNVs (see order in column “Samples”, Table A.1, Appendix A). 8 

rearrangements (not represented in figure) were detected across all patients (sample 0063 

(n=1), 0127 (n=3), 0073_N (n=1), 0074 (n=1), 0006_N1 (n=1) and sample 0006_N3 (n=1). No 

copy number alterations were detected. (B) Number of SNVs detected per sample; number of 

INDELs (insertions, deletions and complex insertions/deletions) per sample. Each column 

represents a sample and they are ordered according to sample type and decreasing number of 

SNVs (see order in column “Samples”, Table A.2, Appendix A). (C) Plot showing the 

relationships between the number of SNVs between BPH samples and normal samples in 

prostate cancer patients. (D) Plot showing the relationships between the number of SNVs 

between samples from people with or without prostate cancer. (E) the number of INDELs 

between samples from people with or without prostate cancer. 
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3.5.3 ASSOCIATION WITH CLINICAL FEATURES AMONG NORMAL 
SAMPLES 

  

Substitutions and indels were significantly higher in morphologically normal samples from 

men with prostate cancer compared to those without: SNVs, median 436 for cancer vs 141 non-

cancer, P = 7.1x10-03, Wilcoxon rank sum test and; Indels, median for cancer 445 vs 62 non-

cancer, P = 5.5x10-03, Wilcoxon rank sum test. Notably, cystoprostatectomy sample 0239 had 

an exceptionally high number of mutations (1202) in comparison to the other non-cancer 

patients. There is some evidence that a higher number of mutations is present in BPH samples 

in patients with prostate cancer compared to other normal tissue (median 952 for BPH 

compared to 424 for morphologically normal tissue, P = 0.05, Wilcoxon rank sum test).  

 

There was no evidence of an association between the number of SNVs and the distance within 

the prostate between morphologically normal and tumour samples (r = -3.1x10-02,  

P = 0.85, Spearman’s correlation, Figure 3.6). Similarly, although age is a known contributor 

to prostate cancer development, only a weak non-significant association was found between 

age and the number of mutations in morphologically normal samples (r = 0.26, P = 0.082 

Spearman’s correlation, Figure 3.7). The stromal content of each sample was not linked to 

whether the sample had BPH (P = 0.58, Wilcoxon rank sum test, Figure 3.8, Table A.3 in 

Appendix A) or the total number of substitutions (P = 0.09, Figure 3.9). 
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Figure 3.6: N/T distance in relation to total number of SNVs: correlation between the normal 

tumour distance (in mm) and the total number of SNVs for all samples from prostate cancer 

patients. There was no association between the variables (r = -3.1x10-02, P = 0.85, Spearman’s 

correlation). 



                                                                                                                                     Chapter 3 

 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

75

100

Normal Normal (BPH)
Sample type

St
ro

m
al

 c
on

te
nt

 (%
)

Type
Normal
Normal (BPH)

20

40

60

0 500 1000 1500 2000 2500

BPH
Normal tissue
Normal tissue (no PC)

Sample type

SNVs

A
g
e
 a

t 
d
ia

g
n
o
si

s

Figure 3.7: Age distribution of patients in relation to total number of SNVs: correlation between 

the number of SNVs and the age of the patient across all samples. The relationship was not 

significant (r = 0.26, P = 8.2x10-02 Spearman’s correlation). 

 

Figure 3.8: Violin plots showing the relationship between stromal content and the presence or 

absence of BPH. 
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3.5.4 GENE MUTATIONS WITH PREDICTED FUNCTIONAL IMPACT IN 
NORMAL TISSUE 

 

In morphologically normal, fibroblasts and BPH samples a total of 283 substitutions and indel 

mutations were observed in coding regions of 165 genes. wANNOVAR202 (described in 

Methods, section 2.16),  was used to predict the functional impact of these group of variants.  

113 of the 283 mutations show a potential functional significance and 7 occurred in cancer-

related genes (PPARG, BRCA1, GATA1, WHSC1, POLE, FAT1 and HOXD11) reported in the 

cancer gene census213 (Table A.4 in Appendix A). Of these, mutations in GATA1, WHSC1, 

FAT1 and POLE were only observed in samples from a primary prostate fibroblast culture. 

Mutations with predicted functional impact also included  the genes MIR671, SOBP, CTHRC1, 

IQGAP1, L1TD1, FOXJ3, ATP1A3, PHF12, BCAT1, GMPR2, ADAM28, DHX32, DSG3, 

DDX19A, KIAA1217, PPARG, PTK2B, RPL18 and XKRX, which have also been classified by 

The Cancer Genome Atlas Research Network (TCGA) as a prognostic marker (genes that 

correlate poorly with the patient survival) for many cancers214. All 113 mutations were present 

in one sample, except for 5 cases: mutations affecting genes GYPA and NACAD were present 

in multiple samples from different patients and mutations in genes BCAT1, FAT2 and MIR671 

were present in two samples from the same patient. Of all 113 in this set, only BRCA2 and 

Figure 3.9: Relationship between stromal content and the total number of SNVs in prostate 

cancer patients. No correlation was found between the two variables (P = 0.09, Spearman’s 

correlation). 
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ADAM28 have been previously classified as recurrently mutated drivers in prostate 

cancer127,128. Dn/dS driver detection (see Methods, section 2.15.2) was performed but no 

significant hits were found.  

 

Interestingly, from the 113 genes with a predicted functional impact, 13 were also observed to 

be mutated in tumour samples (Table A.4 in Appendix A). However, mutation in gene ACOT1 

was occurring in a matched tumour from the same patient.   

 

3.5.5 MUTATIONAL SIGNATURES 
 

3.5.5.1 MUTATIONAL SIGNATURE DETECTION USING QUADRATIC 
PROGRAMMING METHODS 

 
3.5.5.1.1 PRELIMINARY RESULTS 

 

SNVs were assigned to the mutational signatures defined in Alexandrov et al.142 using a 

quadratic programming method (see Methods, section 2.12) in all normal and tumour samples  

except for the three samples with less than 100 SNVs (PD2604c_illumina, 0008_N3 and 

0007_T4) (Figure 3.10). In these preliminary results all signatures were used. Overall, we 

detected 25 signatures across morphologically normal (including BPH), cell cultured 

fibroblasts and tumour samples.  

 

From the 13 signatures detected in tumours there is a group of 8 signatures that have been 

previously reported as prostate cancer signatures142 : 1, 3, 5, 8, 18, 37, 39 and 40).  Five of 

these are recurrent (present in at least 5 samples). There are no recurrent signatures among the 

remaining five signatures discovered in tumour. In contrast, normal samples (not including 

fibroblasts) show a much more variable pattern: a high number of signatures was detected 

overall (23), with 10 of them previously reported in prostate cancer of which 8 are recurrent. 

In comparison to tumours, 5 non-previously associated prostate cancer signatures (9, 19, 30, 

32) were detected recurrently. Fibroblasts samples harboured 12 mutational signatures, of 

which 2 (signature 24 and 16) were unique. These initial results are presented in Figure 3.10. 
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Figure 3.10: Mutational signatures detected in tumour and matched morphologically normal 

tissue from prostate cancer patients and normal tissue from men without prostate cancer. All 

signatures were used in this preliminary analysis. 

3.5.5.1.2 STABILITY ANALYSIS 
 

To estimate the confidence and stability of the detected signatures, we followed the method 

described by Huang et al215. With this approach, the SNVs of each patient was perturbed 1000 

times using random resampling with replacement. For each bootstrap, signature contributions 

were estimated using quadratic programming methods. Subsequently, we compared the 

signature’s contributions obtained from the original data and after bootstrap by calculating the 

mean squared error (MSE) between the estimated proportion of signatures in each case (Figure 

3.11. In agreement with previous results215, some of the signatures detected showed a 

remarkable variability after bootstrap. This is the case of signatures 5, 37, 54, 32, 30, 19, 8, 6 

and 3, among others.  
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Figure 3.11: Mean squared error (MSE) of all the mutational signatures contributions after 

bootstrap across all samples.  

3.5.5.1.3 INCREASING ROBUSTNESS OF SIGNATURE SELECTION 
 
We decided to use a similar approach in order to increase the robustness of signature detection. 

We introduced a preliminary step to select which signatures would be included in the analysis 

and thus, reducing the possibility of overfitting. First, each patient mutational profile was 

randomly altered using bootstrapping and signature contributions were estimated using 

quadratic programming methods for each bootstrap. Signatures that were detected in the lowest 

number of iterations of bootstrap resampling were removed one at a time until all the signatures 

were present in at least 90% of iterations. Second, quadratic programming methods were 

applied to the original data using the selected signatures after bootstrapping. Following the 

recommendation by Rosenthal et.al216 only those signatures that contributed to at least 6 % of 

SNVs were used in the final assignment.  

 

3.5.5.1.4 MUTATIONAL SIGNATURES AFTER BOOTSTRAP 
 
The analysis was repeated after including only those signatures that showed to be robust 

(selected signatures after bootstrapping, present in at least 90% of replicates), as described in 

section 3.5.5.3. Overall, the total number of signatures (not including fibroblasts) detected after 

bootstrap decreased from 25 to 20 in the final set: 6 in tumours, 20 in morphologically normal 

and 12 in fibroblasts (with overlaps among all the groups). These results still show a much 

more diverse set of signatures in morphologically normal (n=20) in comparison to tumour 
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(n=6). In tumour, all non-recurrent signatures that lacked a previous association with prostate 

cancer were no longer detected. In morphologically normal tissue the signatures 12, 15, 16, 28 

and 42 disappeared completely. Interestingly, they had very low contributions (~10%), 

accounted only for a small number of mutations (median of 9) and were present in less than 3 

samples.  

Mutational signatures 1, 3, 5, 8, 18 and 40 were detected both in tumour and morphologically 

normal tissue/BPH samples (Figure 3.12). All of these signatures have been previously been 

identified in prostate cancer samples142. Signature 1 (associated with ageing), signature 5 and 

the recently discovered signature 40 were overrepresented in tumour samples (P = 2.39x10-05, 

P = 9.62x10-04 and P = 5.85x10-08 respectively, Fisher’s exact test). The aetiologies of signature 

5, signature 8 and signature 40 are unknown142. 

 

Fourteen signatures (4, 6, 7b, 7c, 9, 19, 22, 26, 30, 31, 32, 37, 39, 44) were unique to 

morphologically normal tissue/BPH. There were no significant differences between 

morphologically normal tissue and BPH samples for any of the signatures (P > 0.05; Fisher’s 

exact test). Signatures 39, 9, 37, 3, 32, 30 and 6 were present in at least five samples, whereas 

the rest are only present in single samples. Signatures 39 and 37 have been previously observed 

in prostate cancer, but their aetiology is unknown142.  

Interestingly, the set of signatures found in cell cultured fibroblasts (1, 3, 5, 9, 40) resembled 

more the one found in tumours than in morphologically normal tissue. Both groups harboured 

the same signatures in similar proportions (P < 0.05 for all signatures, Fisher’s exact test) with 

the exemption of signature 9 that was only present in fibroblasts (P = 1.28x10-02, Fisher’s exact 

test). 

 

In order to explore whether samples of the same nature (morphologically normal, tumour, 

normal-BPH and cell cultured fibroblasts) share similar mutational signatures, we applied 

unsupervised hierarchical clustering (see Methods, section 2.11.2) and principal component 

analysis (PCA) (see Methods, section 2.13). For clustering, a dendrogram was constructed 

using the relative contributions of the different mutational processes of each sample. The 

proximity between each cluster was defined as the average distance between each point in one 

cluster and all the points in the other cluster. The Euclidean distance was calculated to measure 

the similarity between clusters. We also performed multiscale bootstrap resampling using the 

R package pvclust (http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/).  
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These analyses suggest that the overall pattern of signatures in normal tissue and tumour are 

different (Figures 3.13 and 3.14), with morphologically normal/BPH samples showing a much 

more diverse set of signatures (n=20) compared to tumours (n=6).  

 

 

Figure 3.12: Mutational signatures detected in tumour and matched morphologically normal 

tissue from prostate cancer patients and normal tissue from men without prostate cancer. To 

estimate the confidence and stability of the detected signatures, bootstrapping was performed in 

order to perturb each patient’s mutational profile. Six patients had more than two samples 

analysed and one morphologically normal sample did not have a matched tumour. 
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Figure 3.13: Hierarchical clustering of mutational signatures: dendrogram constructed by 

unsupervised hierarchical clustering using the relative contributions of mutational signatures 

in each sample. The distance between two clusters was defined as the average distance between 

each point in one cluster and all the points in the other cluster.  Clustering uncertainty was 

assessed by multiscale bootstrap resampling using the R package pvclust. Red squares 

represent the major clusters that are significantly supported by the data (P < 0.05; number in 

red is the number of resamplings where the cluster was present). 

Figure 3.14: Principal component analysis of mutational signatures. PCA was performed 

using the relative contributions of mutational signatures in each sample. Each sample type 

(tumour, BPH, normal and non-cancer tissue) is represented by a different colour (red, dark 

blue, light blue and green). 
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3.5.5.2 MUTATIONAL SIGNATURE SELECTION USING SIGPROFILER 

Mutational signatures were also inferred for each sample 

using SigProfilerSingleSample187,188 using the set of signatures defined by Alexandrov et. al24. 

Mutational signatures 1, 5, 8, 18 and 40 were detected both in tumour and in morphologically 

normal tissue/BPH samples (Figure 3.15). All of these signatures have 

previously been identified in prostate cancer samples110. Signature 1 was overrepresented in 

tumour samples (P = 4.89x10-03, Fisher’s exact test). The total number of signatures detected 

morphologically normal tissue decreased drastically from 20 (obtained using quadratic 

programming methods and bootstrap and presented in section 3.5.5.1.4) to 7 signatures. The 

cosine similarity between the reference signatures and the reconstructed profiles was 

significantly higher in tumour samples in comparison to normal samples (median of 0.97 

for tumour vs 0.88 normal), likely the result of a lower number of SNVs in normal tissues. 

Furthermore, a clear association between the number of SNVs for each set of samples and the 

cosine similarity was observed (P = 1.69x10-07 P = 4.26x10-03 in normal and tumour, 

respectively, F statistic).   

Three signatures (3, 4, and 28) were unique to morphologically normal tissue. There were 

no significant differences between non-BPH morphologically normal tissue and 

BPH. Signatures 4 and 28 were present in only one sample, whereas signature 3 is present in 

10 samples.     

 

 

 

 

Figure 3.15: Mutational signatures detected using SigProfiler in tumour and matched 

morphologically normal tissue from prostate cancer patients and normal tissue from men 

without prostate cancer.  
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3.5.6 HYPERMUTATION ZONES OR KATAEGIS 
 

19 kataegis events (clusters of at least 10 mutations that occurred within 1000kb) were detected 

in 12 tumour samples that ranged from 10-27 (median of 13) (Table A.5, Appendix A). (Figure 

3.16). No kataegis events were detected in normal tissues as hypermutation being very low, 

with the most mutated 1000 kb regions harbouring a maximum of 6 mutations. 
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Figure 3.16: Kataegis events in tumour samples by chromosome. The plots represent regional 

clustering of mutations. IMD is represented in the y-axis on a log base 10 scale. Mutations are 

ordered on the x-axis according to genomic position in the genome. The colour of each dot 

represents a nucleotide change: T > C (yellow), T > G (green) T > A (pink), C > T (red), C > G 

(black), C > A (blue). 
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3.5.7 COMPARISON BETWEEN NORMAL AND “QUIET” TUMOURS 
 

Substitutions and indels were significantly lower in morphologically normal samples in 

comparison to tumour samples reported in Wedge et al.127 whose total genome affected by 

CNAs was £ 6 % (P = 1.49x10-12 for SNVs and 1.34x10-13 for indels, Wilcoxon rank sum test, 

Table 3.3). However, these “quiet” tumours had significant fewer alterations overall than the 

high CNAs counterparts (P = 5.06x10-07 for SNVs and 6.77x10-07 for indels, Wilcoxon rank 

sum test). Only 7 mutations of which 4 had shown a potential functional significance in this 

thesis (ACOT1, MST1, MUC20 and ARL13B, section 3.5.4) overlapped between normal 

samples and these group of tumour samples. All these mutations were present in those tumours 

with more than 6 % of the genome altered by CNAs.  

 

 

 

 

 
 
 

 
 
 
 
 
 

 

 

Chromosome Position Gene Mutation type Sample present
1 1637160 CDK11B silent Normal/Tumour (non-quiet)

14 74004547 ACOT1 missense Normal/Tumour (non-quiet)
21 46918360 SLC19A1 missense Normal/Tumour (non-quiet)

3 49725021 MST1 missense Normal/Tumour (non-quiet)
3 195452645 MUC20 missense Normal/Tumour (non-quiet)

16 1291928 TPSAB1 silent Normal/Tumour (non-quiet)
3 93761891 ARL13B missense Normal/Tumour (non-quiet)

 

% of genome affected by CNAs Number of samples Average SNVs Average indels Samples
< 6 32 2214 2177 Tumour samples from Wedge et al.128 

> 6 134 2902 2867 Tumour samples from Wedge et al.128 

0 44 427 670 Normal samples from WGS

 

Table 3.3: Proportion of tumour samples affected by CNAs examined by Wedge et al.128 The 

average number of SNVs and indels is shown for each group. The third row shows the average 

of each type of mutation for the normal samples in this thesis. 

Table 3.4: List of genes that were both present in tumour samples analysed by Wedge et al.128 

and the normal samples here examined. 



                                                                                                                                     Chapter 3 

 98 

3.6 DISCUSSION 
 
 
These results demonstrate a number of critical features about the mutations present in non-

neoplastic tissue taken from cancerous and non-cancerous prostates. A high number of 

substitutions and indels along with multiple mutational processes were detected in 

morphologically normal prostate cancer samples, a finding that confirms the findings 

previously reported by Cooper et al.17. They also noted prostates 0006 and 0007 lacked 

telomere attrition, a feature associated with aging cells and observed in the blood from a 115 

old woman where mutations were suspected to have arisen due to somatic mosaicism217. In 

contrast, quiescent tissues such as the brain lacked mutations. Given that the prostate is a rather 

quiescent tissue, the number of mutations reported in this chapter is striking and constitute 

evidence of a field effect in the prostate. 

 

The number of SNVs and indels was found to be significantly higher in morphologically 

normal samples from cancer patients compared to non-neoplastic samples. Our results support 

the idea that the presence of substitutions and indels possibly contributing to subclonal 

expansions in non-neoplastic tissue is a feature associated with cancer development. However, 

it is not clear whether these clonal expansions initiate the cancerous process or occur after 

cancer has already developed. This finding is similar to that previously reported in leukemia163–

166, normal skin and esophagus118,162.  

 

Morphologically normal tissues were characterised by very few rearrangements and a complete 

lack of copy number alterations and kataegis events. This is in total contrast to the overall 

spectrum of mutations observed in prostate cancer samples that in general contain an 

abundance of all classes of genetic alteration and it is specifically characterised by a high 

number of rearrangements such as TMPRSS2-ERG. A previous study by Mehdi et al.218 

analysed samples from 2647 subjects and reported that CNAs occur naturally in 4-9 % of the 

genome in healthy individuals. However, reports regarding the presence of copy number 

alterations in normal tissue of the prostate are mixed. A  study by Yu et al.219 found that normal 

tissue adjacent to prostate tumours in prostate cancer patients harboured CNAs, some of which 

were also observed in the tumours. Of note, our samples were collected from morphologically 

normal areas that were distant (5 mm or more) from the tumour in 20/33 of cases. On the other 

hand, the examination of whole genome sequencing data from BPH tissue (non-neoplastic) 
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from prostate samples revealed almost no CNAs in comparison to tumours78. Several 

studies160,220 that analysed whole genome sequencing data from normal liver and lung in 

patients showed similar results to the ones reported in this thesis: copy number changes and 

rearrangements were common in tumours but not in normal samples.  

 

Conversely, the occurrence of CNAs is generally but not always a characteristic of prostate 

tumours. A study by Wedge et al.127 reported that a significant proportion of prostate tumour 

samples presented SNVs and indels but minimal CNAs. Although the number of SNVs and 

indels in these samples was significantly higher than in morphologically normal samples, it 

was significantly lower than in the high CNAs counterparts. In addition, mutational processes 

detected in these samples were more similar to those observed in the tumours analysed in this 

thesis. These findings suggest that the mechanisms that generate CNAs (along with 

chromosomal rearrangements) are not always operative in neoplastic processes and are not a 

requirement for prostate cancer development. Alternatively, the lower number of CNAs may 

reflect an early stage of the disease30.  

 

Homologous recombination (HR), non-allelic homologous recombination (NAHR), non-

homologous end joining (NHEJ) and microhomology-mediated break-induced replication 

(MMBIR) are DBS repair mechanisms that could result in CNAs, rearrangements and 

hypermutation. Specifically, the last three are more mutation prone than the highly accurate 

homologous recombination (HR). A study by Ponder et al.221 showed that the activation of the 

stress response has the potential to favour the more error prone MMBIR mechanism over HR. 

DBS repair mechanisms generate single stranded DNA (ssDNA), which due to its higher 

vulnerability to damage has been associated to kataegis events222. The absence of these three 

types of genetic alterations in normal samples suggest that this type of DNA damage by DBS 

and errors in the repairing mechanisms (or both) occur at a lower rate in normal samples. In 

contrast, the clear association of SNVs and indels in normal tissues with prostate cancer 

presence supports the potential increase of replication errors and non-DBS DNA damage 

produced by endogenous or exogenous environmental factors. 

 

It has to be noted that the number of indels in morphologically normal tissue is higher than in 

tumours. It has been observed that the number of indels in human genomes is normally below 

10 % of the total number of SNVs223,224. Our data shows that in normal tissue the total number 

of indels is 63 % of the total SNVs, whereas in tumour is 11 % of total SNVs. The high number 
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of indels in morphologically normal tissue could be an inaccurate result and more advanced 

filtering criteria should be considered. However, given that indel variants were not used for 

any of the analyses presented in this thesis and therefore the number of indel variants do not 

have any implications on the interpretation of results, no further measures were applied.  

 

Prostate cancer associated mutational signatures142 were present in both morphologically 

normal and tumour tissue using the different approaches presented in this thesis. Non-linear 

methods detected a highly diverse set of signatures (20) in morphologically normal tissues, 

even after applying bootstrap techniques. This result is in contrast to the 6 signatures detected 

in tumour. The lack of previous association to prostate cancer of the majority of these 

signatures and the low representation in the normal samples (35 % of the signatures were 

present in only 10 % of the samples) suggest that the mutational signature profiles in normal 

tissues include incorrectly assigned signatures. This is further supported by the fact that 

signature refitting performs less accurately as the number of mutations per sample decreases225. 

Morphologically normal samples in this study had fewer mutations in comparison to tumours 

(median of 421 vs 2560.5, respectively). Bootstrapping and signature selection increase the 

robustness of the detection, but there are still false signature assignments.  In comparison, 

mutational profiles obtained using SigProfilerSingleSample showed a small set of 7 signatures 

of which only two signatures (Signature 4 and 28) have not been previously associated with 

prostate cancer110. A greater number of mutations was significantly associated with the higher 

similarity of each sample to the reconstructed profile.  

 

The presence of prostate cancer associated signatures in normal tissue of the prostate has been 

previously reported by Cooper et al.17 and suggests that the same processes driving prostate 

cancer are at least partly responsible for the mutations in normal tissue. Other studies226,227 

have also shown that mutational processes commonly occur in morphologically normal tissues, 

including normal tissues from BPH78. Of the 9 mutational signatures detected by Deli Liu et 

al.78 we detected only signature 1 in 9/10 of the BPH samples. Signature 1 has been associated 

with age, which is one of the main causes of both prostate cancer development and BPH onset. 

 

Higher mutation rates were observed in BPH samples in comparison to normal samples without 

BPH. BPH disease has been associated with the hyper-proliferation of stromal tissue228. 

Whether the increase of alterations in BPH normal samples is related an early cancerous 

process or unique to BPH pathogenesis alone is unknown. Although stromal proliferation has 
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been observed to be much higher than that in epithelial tissue, no association between stromal 

content and mutation burden was found. A better identification of the stromal/epithelial 

compartments through laser-capture microdissection could render different results.  

 

A high number of mutations was detected in the cell cultured fibroblasts from BPH samples 

and four of them occurred in genes reported in the Cancer Gene Census213. It has been observed 

that stromal cells from BPH, unlike stromal cells from normal prostatic tissue, have capability 

of inducing growth of prostatic epithelia in vivo228. However, these growths are non-neoplastic. 

Non-cancer sample 0239 had BPH, a high number of substitutions (1202), a pattern that was 

absent in the other non-cancer patients.  This finding suggests that development of BPH alone 

is a factor that can increase mutation burden in normal tissues, likely the result of a higher 

proliferation rate observed in BPH cells229. It seems plausible that the increased accumulation 

of somatic mutations could over time increase the risk for cancer development168, a theory in 

agreement with previous studies reporting  that although a causal link has not been established 

between BPH and prostate cancer, an association exists70,75,230.  

Apart from isolated cases (PPARG, BRCA1, GATA1, HOXD11, WHSC1, FAT1 and POLE) we 

did not find evidence for the presence of mutations in known or novel genetic drivers, which 

highlights the possible importance of epigenetic alterations in driving expansion. This 

observation is consistent with previous findings78 in BPH tissue where they found somatic 

mutations but no recurrent mutations that would indicate positively selected genes. Overall, 

these group of genes have been associated with leukemia231,232,breast233–236, bladder233,237 

colon238,239, kidney240, endometrial241, head and neck carcinoma242–244, pancreatic233 and 

prostate245–247 cancers. These genes have been associated with tumour suppression (BRCA1 

and FAT1248,249), DNA repair (POLE250), morphogenesis (HOXD11), epigenetic regulation 

(WHSC1251), lipid metabolism (PPARG252) and red blood cell development (GATA1253). 

Notably, four of the potential driver genes (GATA1, WHSC1, FAT1 and POLE) were only 

observed in samples from primary prostate fibroblasts from BPH samples.  

 

The finding of a few mutations in a small group of genes is in line with reports from cancers 

where no initiating event has been identified and supports the suggestion that there might be 

epigenetic cause for the mutations we observe and the field effect. This hypothesis is supported 

by several studies that have reported high hypermethylation levels in genes such as  APC, 
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GTSP1 and RASSF1 in morphologically normal tissue in the prostate155,171–173 and it has proven 

to be a better predictor of cancer development than histopathological examination alone171–173. 

Hypermethylation in genes APC and GTSP1 was reported in 95% and 43% respectively in 

patients with an initial negative biopsy that later developed prostate cancer171.  

 

In summary, these results show potential evidence of a field cancerization in the prostate and 

provide key insights into genomic evolution of prostate cancer at very early stages of 

development. The examination of the subclonal architecture presented in the next chapter will 

help to improve our understanding of evolutionary dynamics in normal tissues from men with 

and without prostate cancer and support the findings presented in this chapter.  
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CHAPTER 4 : RECONSTRUCTION OF 

THE SUBCLONAL ARCHITECTURE  
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4.1 SUMMARY 
 

In this chapter we study clonal expansions detected in morphologically normal (including BPH 

samples) and tumour samples using Bayesian Dirichlet clustering process (see Methods, 

section 2.11.1) using allele frequency of variants and copy number changes. Phylogenies were 

reconstructed to illustrate how the clones observed evolved and to determine whether normal 

and tumour samples from the same patient shared a progenitor. Variant allele frequency (VAF) 

distributions were analysed in all samples to explore the evolution dynamics and report those 

samples where neutral evolution is suspected.  

 

4.2 MATERIALS 
 

4.2.1 DATASETS 

We analysed the same set of samples described in section of chapter 3 (Table A.1, Table A.2, 

Appendix A). Ethical approval was obtained as described in section 3.3.1 of Chapter 3.  

4.3 METHODS 
 

4.3.1 DATA PROCESSING 
 

Two steps were performed before reconstructing the subclonal architecture: the adding of low 

frequency variants and the removal of variants that have been reported as single nucleotide 

polymorphisms (SNPs). 

 

4.3.2 LOW FREQUENCY VARIANTS 
 

The Bayesian Dirichlet process uses the substitutions that were detected using the CaVEMAN 

variant caller. Many variants are discarded as they have insufficient coverage i.e a very low 

allele frequency (< 5 %). However, for the detection of subclones and the reconstruction the 

correct phylogenetic tree these low allele frequency variants are crucial. To rectify this, from 

multiple samples from a patient, we retrieve substitutions with low allele fractions in one 

sample if they were detected (passing all CaveMAN filters) in another sample from the same 

patient. In order to do this, we retrieved all the read counts for each base (A, C, G and T) for 

all the variants detected by CaveMAN from the BAM file using the tool Bam-readcount 



                                                                                                                                     Chapter 4 

 105 

(https://github.com/genome/bam-readcount). This tool produces the number of reads for each 

base at each position in a list provided by the user. If a sample had at least one read with a 

variant reported with certainty in a related sample, the variant was included for that sample in 

the analyses performed in this chapter. This approach was applied to all the patients where 

more than one sample was analysed.  

 

4.3.3 CLONAL EXPANSION DETECTION 
 

The subclonal architecture of normal and tumour samples from individual prostate was 

reconstructed using a Bayesian Dirichlet process adapted to cluster substitutions from whole 

genome sequencing data in n dimensions112 where n is the number of related samples from a 

patient (see Methods, section 2.11.1). For those cases where there was only one sample such 

as non-cancer patients (cases 0239, 0240, 0241, 0242, 0243, 0244 and 0245) and fibroblasts 

(cases 0247, 0250, 0251 and 0252) (Table A.1, Appendix A) a 1-dimensional Dirichlet process 

was applied. The fraction of cells carrying a particular mutation was estimated from the mutant 

allele fraction, copy number alterations (CNAs) and cellularity (see Methods, section 2.11.1). 

Copy number alterations were identified using the Battenberg algorithm (see Methods, section 

2.9.5). The prior distribution was defined by P0 ∼ U (0, 1) and α∼Γ (0.01,0.01). 

These priors have been used previously103. The posterior distribution of the parameters of 

interest (the number of clusters, the fraction of cancer cells in each cluster and the number of 

mutations that belongs to each cluster) is estimated by Gibbs sampling. Only those clones 

supported by at least 1.5 % of total substitutions for each patient were kept. For cases 0006-

0008, clusters supported by less than 1.5 % of total substitutions but previously validated  by 

deep sequencing17 were used for the phylogeny reconstruction.  

 

To illustrate the relationship among different clones, phylogenetic trees were constructed using 

the pigeonhole principle (See Methods, section 2.11.1.2). In all cases the allele frequencies of 

the subclone were significantly different to the estimated background rate (P < 0.05). Each tree 

was annotated with their corresponding genomic alterations: substitutions, indels, 

rearrangements and copy number changes. The assignment of substitutions to each clone or 

subclone was performed using the information generated by the Bayesian Dirichlet process 

clustering. For indels, rearrangements and copy number we assigned to each cluster the number 

of alterations detected for each sample. We also calculated shared alterations between multiple 
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samples for the same patient and checked if the pattern of unique and shared mutations were 

in agreement with the subclonal architecture identified using the Dirichlet process.  

 
4.3.4 NEUTRAL EVOLUTION ANALYSES 
 

Neutrality analyses were performed using the R package Neutralitytestr199. This package uses 

variant allele frequencies from sequencing data and fits a distribution that is predicted from a 

neutral model of evolution https://github.com/marcjwilliams1/neutralitytestr. In brief, this 

model proposed by Williams et al.200 predicts that subclonal mutations (with allele frequency 

< 0.25) follow a 1/f power law distribution (Methods, section 2.15.1). For these analyses, only 

those mutations with VAF >0.1 were considered, as recommended by the package authors. 

Subclonal clusters were removed from further analysis when evidence for neutrality was found. 

Three different metrics (area under the curve, Kolmogorov distance and Euclidean distance) 

(see Methods, section 2.15.1) were used to fit the allele frequency distribution to a 1/f power 

law distribution.  

 

4.4 RESULTS 
 

4.4.1 DATA PROCESSING 
 

A mean of 480, 301, 444 (SD of 450, 149 and of 422, respectively) low frequency variants 

were added to each normal, BPH and tumour sample from all the remaining samples from each 

patient, respectively (see Figure 4.1, Tables A.1 and A.2, Appendix A). A significantly higher 

number of low frequency variants were added to patients where three or more normal and 

tumour samples were taken (P =1.7x10-04 in morphologically normal, P = 1.5x10-06 in tumour, 

Wilcoxon rank sum Test). 

 

Variants that were reported to be at the position of SNPs in SNPdb were identified in all 

samples using tool wANNOVAR (Methods, section 2.16). In order to explore the effects of 

SNPs on the subclonal reconstruction, the Bayesian Dirichlet process was applied both 

including and excluding SNPs. For the main results that are outlined in detail in sections 4.4.4 

- 4.4.8 we remove the variants at SNPs. An average mean of 266 SNPs per sample in normal 

and an average of 201 SNPs in tumour tissue were removed (Figure 4.2, Tables A.1 and A.2, 
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Appendix A). I explore the effect of variants located at SNPs on the phylogenies in section 

4.4.9. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

0

1000

2000

3000

00
06
_N

3
00
07
_N

2
01
22

00
06
_N

2
00
07
_N

3
00
65
_B
PH

00
08
_N

2
00
06
_N

1
00
07
_N

1
00
63

00
65
_N

00
74

00
08
_N

3
00
66

01
16

00
73
_B
PH

01
60

00
73
_N

01
45

00
77
_N

00
77
_B
PH

01
62

01
20

01
24

00
72

01
56

01
27

01
44

01
46

01
40

01
15

01
49

00
76

01
52

00
69

01
59

Samples

Su
bs
tit
ut
io
ns

0

2000

4000

6000

00
06
_T
1

00
63

00
06
_T
2

00
06
_T
4

00
65

00
08
_T
1

01
60

01
22

00
08
_T
2

01
62

00
77

01
20

00
07
_T
2

00
07
_T
1

01
56

01
24

01
45

00
72

01
27

01
40

00
06
_T
3

00
76

00
66

01
16

01
49

01
59

00
74

00
73

01
52

01
15

01
46

01
44

00
07
_T
5

00
69

00
07
_T
3

00
07
_T
4

00
08
_T
3

Samples

Su
bs
tit
ut
io
ns

Added low VAF SNVs

SNVs

A

B

Normal

Tumour

Figure 4.1: Number of SNVs per sample detected by CaVEMan (red) and added low frequency 

variants found in the paired sample (blue) in normal samples (A) and tumour samples (B). 
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4.4.2 NEUTRALITY ANALYSES 
 

A total of 134 clusters (Tables B.1-B.8) associated with clones were identified using the 

Bayesian Dirichlet process (median of 3 and 95% CI of 2.51, 4.25). Clusters where evidence 

for neutral evolution was detected were removed: 20 clusters in morphologically normal 

samples from men with cancer (Tables B.1-B.5, Table B7, Appendix B), 6 clusters from men 

without prostate cancer (Table B.8, Appendix B) and 4 clusters from fibroblasts samples (B.6, 

Appendix B). The clone removed was always the one with the lower CCF, as neutral mutations 

tend to have a VAF around or below 0.25. The VAF distribution and the fitted distribution 

predicted from a neutral model of evolution is represented for all samples in Figure B.1, 
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Figure 4.2: Number of removed SNPs per sample (grey) relative to the total number of SNVs 

(including low frequency SNVs) in normal (A) and tumour samples (B). 
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Appendix B. Neutral cases show a distribution that resembles 1/f power law distribution (P > 

0.05; Area under the curve, Kolmogorov distance and Euclidean distance).  

 

 

Table 4.1: Summary of samples harbouring clonal expansions. Neutrality evolution (green) is 

suspected when P > 0.05 (Area under the curve; Kolmogorov distance and Euclidean distance). 

 

 

 

Samples Evolution P  (Area under curve) P  (Kolmogorov distance) P  (Euclidean distance) No of clones Sample type Gleason Total SNVs
0063 neutral 0.413 0.359 0.366 0 BPH 3+4 1075
0065_N non-neutral 0.03 0.06 0.03 3 Normal tissue 3+4 591
0065_BPH neutral 0.23 0.4 0.21 2 BPH 3+4 952
0066 non-neutral 0.001 0.002 0.001 1 BPH 3+3 1157
0069 neutral 0.249 0.276 0.235 0 BPH 3+4 399
0072 non-neutral 0.008 0.014 0.008 1 BPH 3+3 30
0073_N non-neutral 0.09 0.18 0.08 3 Normal tissue 3+4 395
0073_BPH neutral 0.77 0.63 0.68 1 BPH 3+4 674
0074 non-neutral 0.002 0.005 0.002 1 BPH 3+4 1213
0076 non-neutral 0.003 0.007 0.005 2 Normal tissue 3+4 314
0077_N non-neutral 0.01 0.04 0.01 1 Normal tissue 3+3 338
0077_BPH non-neutral 0.02 0.01 0.03 1 BPH 3+3 424
0115 non-neutral 0.02 0.02 0.02 1 Normal tissue 3+4 418
0116 neutral 0.16 0.21 0.9 0 BPH 3+4 1075
0120 non-neutral 0.02 0.03 0.03 1 Normal tissue 3+4 285
0122 neutral 0.28 0.37 0.29 0 Normal tissue 3+4 430
0124 neutral 0.09 0.16 0.08 0 Normal tissue 3+4 457
0127 neutral 0.08 0.15 0.07 0 Normal tissue 4+5 405
0140 neutral 0.14 0.17 0.17 0 Normal tissue 4+5 407
0144 neutral 0.25 0.41 0.25 0 Normal tissue 4+3 488
0145 neutral 0.22 0.35 0.24 0 Normal tissue 3+3 547
0146 neutral 0.11 0.19 0.13 1 Normal tissue 3+4 392
0149 non-neutral 0.02 0.02 0.02 1 Normal tissue 3+3 357
0152 neutral 0.05 0.08 0.07 0 Normal tissue 3+3 402
0156 neutral 0.12 0.24 0.09 1 Normal tissue 4+5 436
0159 non-neutral 0.009 0.005 0.01 1 Normal tissue 3+4 328
0160 neutral 0.18 0.12 0.16 0 Normal tissue 4+3 370
0162 non-neutral 0.02 0.02 0.02 1 Normal tissue 3+5 407
0006_N1 non-neutral 0.01 0.02 0.01 1 Normal tissue 3+4 578
0006_N2 neutral 0.16 0.23 0.16 0 Normal tissue 3+4 639
0006_N3 neutral 0.06 0.12 0.05 1 Normal tissue 3+4 2566
0007_N1 neutral 0.11 0.17 0.12 1 Normal tissue 4+3 527
0007_N2 neutral 0.74 0.84 0.91 2 Normal tissue 4+3 1818
0007_N3 neutral 0.51 0.68 0.59 0 Normal tissue 4+3 636
0008_N2 neutral 0.59 0.84 0.65 1 Normal tissue 3+3 718
0008_N3 neutral 0.59 0.72 0.72 0 Normal tissue 3+3 695
0238 neutral 0.32 0.33 0.32 0 Normal tissue (No PC) 140
0239 non-neutral 0.009 0.01 0.008 2 Normal tissue (No PC) 1202
0240 neutral 0.78 0.77 0.9 1 Normal tissue 852
0241 neutral 0.42 0.35 0.44 0 Normal tissue (No PC) 141
0242 neutral 0.18 0.26 0.15 0 Normal tissue (No PC) 125
0243 neutral 0.93 0.51 0.78 0 Normal tissue (No PC) 148
0244 neutral 0.86 0.58 0.7 0 Normal tissue (No PC) 159
0245 neutral 0.24 0.51 0.23 0 Normal tissue (No PC) 104
0246 neutral 0.111 0.076 0.114 0 Cultured Fibroblasts (BPH) 234
0247 non-neutral 0.045 0.043 0.051 1 Cultured Fibroblasts (BPH) 238
0250 neutral 0.134 0.175 0.138 1 Cultured Fibroblasts (BPH) 2431
0251 neutral 0.295 0.505 0.229 3 Cultured Fibroblasts (BPH) 2578
0252 neutral 0.427 0.539 0.469 2 Cultured Fibroblasts (BPH) 1116
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4.4.3 SUBCLONAL ARCHITECTURE RECONSTRUCTION 
 

After removal of clones with evidence of neutral evolution, a total of 25 clusters under selective 

pressure were identified in morphologically normal (including BPH) and fibroblasts (Tables 

B.1-B.6 and Table B.8, Appendix B) and 48 identified in tumour samples (Tables, B.1-B.5, 

Appendix B). Overall, the total number of clones is 91 (59 in tumour samples and 32 in normal 

samples), as some clusters were comprised of shared clones between multiple samples for the 

same patient.  

 

Of the morphologically normal samples (including BPH) harbouring clonal expansions under 

selective pressure, 79 % had only one subclone, whereas 21 % had two or more (Table 4.1). 

This is in contrast to tumour samples, where among samples with clonal expansions 12 % of 

samples harboured one subclone and 88 % harboured 2 or more clones (P = 0.407, Wilcoxon 

rank sum test, Tables B.1- B.5). 4 out of 5 BPH fibroblasts from normal tissue harboured one 

clone or more. The total number of clones in normal tissue (including BPH) was not associated 

with the patient’s Gleason score (P = 0.163, Wilcoxon rank sum test, Table 4.1) or the total 

number of SNVs per sample (P = 0.670, Wilcoxon rank sum test, Table 4.1). Similarly, the 

number of clones was not significantly different in fibroblasts samples in comparison to normal 

(including or excluding BPH, P = 0.186 and P = 0.197, Wilcoxon rank sum test, Table 4.1) or 

between normal and BPH samples (P = 0.828). 

 

The number of samples with subclonal expansions under selective pressure was significantly 

higher in morphologically normal tissue taken from cancer patients (23/37; 65 %) compared to 

samples from non-cancer patients (1/7;14 %; P = 3.5x10-02, Fisher exact test, Table 4.1; 

fibroblasts not included). 

 

The cancer cell fraction (CCF) of the clonal expansions was significantly higher in samples 

from BPH fibroblasts compared to morphologically normal samples from cancer patients (BPH 

not included): median of 47 for BPH fibroblasts vs 35 for morphologically normal samples (P 

= 4.43x10-02, Wilcoxon rank sum test, Figure 4.3). No significant differences were found 

between the CCFs of morphologically normal and BPH (median of 39) samples (P = 0.252, 

Wilcoxon rank sum test, Figure 4.3) and BPH fibroblasts and epithelial BPH samples (P = 
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0.275, Wilcoxon rank sum test, Figure 4.3). However, the CCF was slightly associated with 

the stromal content (P = 5.82x10-02, F-statistic, Figure 4.4) and the percentage of epithelial 

content (Figure 4.5) was significantly higher than the CCF for each sample (P = 1.81x10-06, 

paired T-test). 

 

Among the samples where clonal expansions under selection pressure were detected, no 

association was observed between CCF and Gleason score (P = 0.151, Wilcoxon rank sum test, 

Table 4.1). Examples of the posterior distribution of the fraction of cells harbouring a mutation 

modelled using the Bayesian Dirichlet process are represented in Figure B.2, Appendix B.  

 

Phylogenies from 17 out of 29 men were reconstructed (Figures 4.6, 4.7) and described in detail 

in the next sections (4.4.4 - 4.4.6). Only men where there was evidence of positive selection in 

at least one normal sample were reconstructed. Subclones in three patients (0065, 0073, 0077) 

could have been positioned differently in the phylogeny and equally agree with the data. In the 

following description I use the lineages where they have been placed in a linear configuration. 

The alternative lineages are illustrated in Figure B.4, Appendix B. The subclonal architecture 

identified with the Bayesian Dirichlet process was always supported by the shared indels 

identified by Pindel.  
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Figure 4.3: Boxplots showing the relationship between the cellular cell fraction (CCF) and 

the type of normal samples from prostate cancer patients (normal, normal with BPH and BPH 

fibroblasts). 
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Figure 4.4: Relationship between the average stromal content and the CCF for each 

morphologically normal sample from men with prostate cancer (P = 5.82x10-02, F-statistic).  

Figure 4.5: Comparison between the CCF and the epithelial content for each morphologically 

normal sample from men with prostate cancer. The CCF is significantly higher than the 

epithelial content, P = 1.81x10-06, paired T-test. 
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4.4.4 COMPLEX MEN 
 
 

Phylogenies for these patients have been previously reconstructed using fewer normal 

samples17. A total of 64, 62 and 45 substitutions supporting the detected clusters had been 

previously validated17 by PCR/deep sequencing in all tumour samples from patients 0006, 0007 

and 0008, respectively. In morphologically normal, 1 substitution for patient 0006 and 4 

substitutions for patient 0007 supporting the detected clusters had been previously validated17. 

The reconstruction of the subclonal architecture performed for this thesis resembles very 

accurately the ones depicted by Cooper et al17. for those samples already analysed (Figure 4.6 

vs Figure B.3, Appendix B). The slight differences (described in the next sections) are due to 

excluding those tumour samples where there was neutral evolution was suspected and a more 

stringent filtering of clusters was performed: only those clusters that were supported by 1 % of 

the total number of substitutions for each patient were considered. All three phylogenies 

(Figure 4.6) are characterised by harbouring one or more subclonal clusters in at least one 

morphologically normal sample. No shared clones are found between normal and tumour 

samples.  

4.4.4.1   PATIENT 0006 

A total of 11 clusters (Table B.1, Appendix B) were detected for this patient and 2 of them 

were found in morphologically normal samples (Figure 4.6 A). In comparison to the phylogeny 

presented by Cooper et al.17 (Figure B.3, Appendix B), we note the absence of shared clones 

T1/T2/T3/T4/N1 and T1/T2/T3, as it was only supported by 1 SNV and one SV. These clones 

have not been considered in this representation due to a more stringent filtering.  

In the normal tissues, one cluster was detected in samples N1 and N2 and two in sample N3. 

However, there was evidence of neutral evolution in normal sample N2 and N3, so these were 

not considered in the phylogeny. Mutations with a potential functional significance occur in 

genes RYR3 and MEPE and were assigned to the subclonal expansion detected in N1.  

There are three independent clones from samples T2 (CCF=100 %), T3 (CCF=100 %) and T4 

(CCF=100 %), with an extra T4 subclone in 46% of cells. Shared clones are found between 

T1/T2 and T1/T4 (CCF =100 %). T1 appears to be a mixture of the T2 and T4 lineages. A 

unique subclone is detected in sample T1, but as there are two lineages found for T1 (T1/T2 
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and T1/T4), it is not possible to know whether this clone (93% of cells) emerges from T1/T2 

or T1/T4, or both. 

4.4.4.2   PATIENT 0007 

We detect 11 clusters in this patient (Table B.2, Appendix B), with 2 of them present in normal 

samples (Figure 4.6 A). In this phylogeny shared clones T1/T2/N1 and T3/T4/T5detected by 

Cooper et al.17 (Figure B.3, Appendix B) are not included because the SNVs supporting those 

clusters (10 and 3, respectively) do not pass the new filtering criteria. One shared subclone 

between samples N1 and N2 is reported in 35 % and 33% of cells, respectively. Interestingly, 

the shared subclone N1/N2 harbours mutations with a potential functional significance (see 

Chapter 3, section 3.5.4) affecting coding genes ADAM28, BCAT1 and FAT2. Another 

subclone is observed in 22 % of cells in sample N2. This subclone (represented linearly in 

Figure 4.6 A) could have also been positioned in a parallel fashion (Figure B.4 A, Appendix 

B). An independent clone in sample T3 and shared lineages between T1/T2 (100%/56%) and 

T4/T5 (100%/100%) are reported in this patient. Two extra subclones from T5 (73% and 62%) 

and T1 (100% and 100%) and T2 (81%) have evolved in a linear fashion from shared lineage 

T4/T5 and T1/T2, respectively.  

4.4.4.3   PATIENT 0008 

We identified 9 clusters (Table B.3, Appendix B): 7 were present in tumour samples and 1 was 

present in normal sample N2 (Figure 4.6 A). In contrast to the phylogeny reconstructed by 

Cooper et al.17 (Figure B.3, Appendix B), shared clone T1/T2/T3/N1 and the independent clone 

in N1 have not been included because they failed to meet the new filtering criteria. Specifically, 

sample N1 was not included in the subclonal reconstruction analysis because of the low number 

of SNVs for this sample (28). This phylogeny is characterised by an independent subclone in 

N2 (20%) and a T1/T2/T3 lineage comprised of 2 shared clones (100%/100%/13%) and 

(98%/96%6%). Two shared clones are also observed between T1/T2 (100%/100% and 

93%/55%, respectively) that evolve in two unique subclones in T1 (51% and 43%) and unique 

subclone in T1 (56%). Cluster 12 (Table B.3, Appendix B) could not be placed in the phylogeny 

according to the pigeonhole principle. This cluster shows mutations in a small fraction of the 

tumour samples (6% in T1, 7% in T2 and 22% in T3) that are shared with normal samples N2 

and N3 and are supported by 100 SNVs and one indel. According to the pigeonhole principle 

a shared T1/T2/T3/N2/N3 should be the first common ancestor, which means that any clone 

evolving from that cluster would have a CCF smaller than the ancestor. As there is a shared 
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cluster in 100% of cells in T1/T2 (supported by 1526 of SNVs, 123 indels and 25 SVs) it is 

impossible to include both clusters 12 and cluster 1 in this phylogeny. Given the stronger 

evidence of overall mutations supporting  shared clone T1/T2 and its previous validation by 

Cooper et al17., we included cluster 1 and discarded cluser12.  
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6: Subclonal architecture of patients with multiple samples: (A-B) Phylogenies 

revealing the relationships between sample clones for each case. Each coloured line represents 

an independent clone/subclone in a sample. When two or more coloured lines are together they 

represent one clone that is in all samples represented. The length of the line is proportional to 

the weighted number of substitutions present in each clone, the thickness shows the cell 

fraction associated with that clone (Also shown in Tables B.1-B.4, Appendix B). For example, 

case 0077 contains a shared subclone with 8% N, 33% BPH and 2% T supported by 113 

substitutions and 4 indels. Dotted lines are associated with samples that have no evidence of a 

unique sample clone: it represents a possible clone evolving from the shared clones.  The very 

low fraction tumour subclone (< 4%) shared with normal and BPH tissue in case 0077 and 

between normal and tumour in case 0072 suggests cancer tissue contained some of the N/BPH 

cells. 
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4.4.5 PATIENTS WITH BOTH BPH AND NORMAL SAMPLES 
 

Three cases had samples in normal, BPH and tumour tissue. In the majority of cancers, the 

morphologically normal tissue and cancer had distinct lineages (as illustrated by the Complex 

Men and cases 0065 and 0073; Figure 4.6 A and B). 5 and 6 clusters were detected for cases 

0065 and 0073 (Table B.4, Appendix B), respectively. An almost identical subclonal 

architecture for these two patients (Figure 4.6 B) is observed, with an independent clonal 

cluster in the tumour and a subclonal cluster in the normal sample (N). Notably, BPH and 

morphologically normal tissue had a shared lineage: two shared subclones in ~ 60 % and ~40 

% of cells in case 0065 and two shared subclones in ~70 % and ~50 % of cells in case 0073. 

In both cases these subclones have been represented linearly (one subclone is the descendant 

of the other) in Figure 4.6 B but they could have also evolved in parallel, as the sum of their 

CCF <100. The alternate configuration of these phylogenies is illustrated in Figure B.4 B 

(Appendix B). A unique BPH subclone with evidence of selection (CCF of 64%) is detected 

only in sample 0073. Mutations with a potential functional significance occur in gene 

ANKRD20A2 in the unique N subclone. 

 

Patient 0077 harboured 4 clusters (Table 4.6) and had a similar configuration to the previous 

patients (0065 and 0073) with one exception: this phylogeny presents two subclones with 2% 

contribution in the tumour targeted sample, 8-38% in the morphologically normal sample and 

33% in the BPH sample, consistent with a model in which the tumour targeted sample contains 

some of the N/BPH subclone. In this phylogeny, a shared N/BPH/T cluster should be the first 

common ancestor. However, according to the pigeonhole technique a cluster that evolves from 

an ancestor should have a CCF equal or smaller than the ancestor. Here the shared N/BPH/T 

clusters have mutations from tumour in 2 % of cells, and a fully clonal tumour cluster could 

not have emerged from this cluster. As the cluster in the tumour sample is fully clonal, there is 

no possibility of another tumour clone evolving in parallel to the main tumour clone. The only 

explanation is that the tumour sample harbours a small percentage of normal/BPH cells. 

Regarding the normal and BPH contributions, they could have emerged in a parallel fashion 

(alternate configuration, Figure B.4 B, Appendix B) or linearly (Figure 4.6 B) for the same 

reasons discussed in case 0006. 
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4.4.6 PATIENTS WITH ONE NORMAL AND ONE TUMOUR 
 

Phylogenies for 11 patients with only morphologically normal and tumour samples were 

constructed. Clusters detected for these 11 cases ranged between 2 and 3 (see Table B.5 and 

Figure 4.7). There was a fully clonal cluster in the tumour in all cases. An extra tumour 

subclone emerging from the main tumour clone was present in 8 cases (all except for cases 

0076, 0149, and 0156). At least one unique normal sample with evidence of clonal expansion 

was present in these 11 patients at levels of 27-60 % of cells (Table B.5, Appendix B). 7 

samples (cases 0072, 0076, 0120, 0146, 0156, 0159, 0162, Figure 4.7, Table B.5, Appendix B) 

showed evidence of the subclonal normal cells being present in the cancer tissue at low cellular 

fraction (< 13%; median of 3, IQR of 2), a scenario already described in patient 0077 for 

clusters 3 and 5 of that phylogeny.  Coding mutations with a potential functional significance 

were found in 3 genes (RDH10, SOBP and MAP3K4) in the normal subclone for patient 0066, 

7 genes (PHF12, FOXJ3, L1TD1, NPFFR1, COL6A1, ZNF687 and UNC80) in the normal 

subclone for patient 0074 and in one gene (TIE1) for patient 0162.  

 

4.4.7 NON-CANCER PATIENTS 
 

Subclones were detected in all cases with a CCF that ranged from 24% -32% (median of 31) 

but were not considered because of evidence of neutral evolution except in case 039 (Table 

B.8, Appendix B). This case presented two subclones (31 % and 47 % of cells, respectively) 

(Figure 4.8). Interestingly, this patient is characterised by having BPH. The number of 

substitutions in non-cancer samples is considered low for clonal expansion detection in all 

cases (~140 substitutions) except patient 239 (1202 substitutions). 

 

4.4.8 FIBROBLASTS 
 
Clonal expansions were also detected in 4/5 fibroblasts samples (0247, 0250, 0251 and 0252) 

(Figure 4.8).  A single subclonal cluster was detected in sample 247 cluster with a CCF of 25 

% supported by 137 substitutions. Sample 0250 harboured one cluster in 40 % of cells and 

samples 0251 and 0252 presented 3 and 2 clusters each in 54 %, 86% and 100% of cells and 

40 % and 77 % of cells, respectively (see Table B.6, Appendix B).  
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Figure 4.7: Subclonal architecture of patients with morphologically normal and matched 

tumour (N-T). Phylogenies revealing the relationships between sample clones for each case. 

Each coloured line represents an independent clone/subclone in a sample. When two or more 

coloured lines are together they represent one clone that is in all samples represented. The 

length of the line is proportional to the weighted number of substitutions present in each clone, 

the thickness shows the cell fraction associated with that clone. For example, case 0120 

contains a shared subclone with 36% N and 2% T supported by 125 substitutions and 7 indels. 

Dotted lines are associated with samples that have no evidence of a unique sample specific 

clone. The very low fraction tumour subclone (2- 13 %) shared with normal and T tissue in all 

three case suggests cancer tissue contained some of the N/BPH cells. 
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We found a median of 9 coding mutations supporting all the fibroblast clusters (see Table B.6, 

Appendix B). 18 of them had a potential functional significance (see Chapter 3, section 3.5.4). 

Interestingly, among these we find the cancer related genes FAT1, POLE, and ACR (reported 

in the cancer gene census213) and genes (DSG3, RPL18, KIAA1217 and DHX32), which have 

been classified by The Cancer Genome Atlas Research Network (TCGA) as a prognostic 

marker for many cancers (see Chapter 3, section 3.5.4). Mutations in DSG3 and POLE occur 

simultaneously in cluster 4 (CCF of 74 %) from patient 0252, KIAA1217 and RPL18 are 

mutated in cluster 4 (CCF of 100 %) from patient 0251, DHX32 and ACR in cluster 2 (CCF of 

40 %) from patient 0250 and mutations in FAT1 correspond to cluster 2 (CCF of 54 %) in 

patient 0251. 

 
4.4.9 EFFECT OF SNPs IN THE SUBCLONAL ARCHITECTURE 
 

Clusters were also detected when variants at SNP locations were included (see Tables B.9 to 

B.14, Appendix B). Overall, all cases were very similar to the ones described in sections 4.4.4 

- 4.4.6 (Tables B.1 to B.5 and Table B.7), with the main lineages being the same. However, we 

observe that SNPs affect those N/T subclones where we detected a small contribution (< 13%) 

in the tumour sample. There are three instances (patients 0069, 0140 and 0149) where a NT 

subclone is detected only when variants at SNPs were included. For the remaining NT clusters, 

we observe a small decrease of the tumour contribution for these subclones, although is not 

significant (P = 1.07x10-01, Wilcoxon rank sum test, Figure 4.9).  

 

4.4.10 SAMPLE MAPPING 
 

The distance (in mm) between normal and tumour samples, multiple normal and multiple 

tumour samples was taken (Table A.1, Appendix A) and associations between the distance 

between the different samples and the subclonal architecture were explored. The minimum 

distance (mm) between cancer and normal samples for the samples (median of 19) with 

independent lineages was greater compared to samples with normal infiltration in the tumour 

sample (median of 7.1) (Figure 4.10), but there was no statistical significance (P = 1.8x10-01, 

Wilcoxon rank sum test). Similarly, there was no significant association between the proximity 

of the normal sample to the matched tumour and whether the cancer was multifocal (P = 0.852, 
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Wilcoxon rank sum test, Figure 4.11, Table A.1, Appendix A) or whether the clones were 

multiple or single (P = 0.307, Wilcoxon rank sum test, Figure 4.12). 
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Figure 4.8: Example density plots of cell cultured fibroblasts and morphologically normal 

samples from patients where phylogenies could not be reconstructed.  They show the 

posterior distribution of the fraction of cells bearing a mutation, modelled by a one-

dimensional Bayesian Dirichlet process. The median density is indicated by the purple line 

and 95% confidence intervals by the blue region. The grey histogram shows the observed 

frequency density of mutations as a function of the fraction of cells bearing the mutation. 
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Figure 4.9: Violin plots showing the relationship between tumour infiltration and the inclusion 

of SNPs for the clonal expansion detection analyses. No association was found (P = 1.07x10-

01, Wilcoxon rank sum test). 

 

Figure 4.10: Violin plots showing the relationship between normal infiltration of the tumour 

sample and the distance in mm between normal samples with subclonal expansions and the 

matched tumour sample. No association was found (P = 1.8x10-01, Wilcoxon rank sum test). 
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Figure 4.11: Violin plots showing the relationship between multifocality and the distance in 

mm between normal samples and the matched tumour sample. No association was found (P = 

0.852, Wilcoxon rank sum test). 
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Figure 4.12: Violin plots showing the relationship between the number of clonal expansions 

and the distance in mm between normal samples and the matched tumour sample. Only 

samples with at least one clonal expansion were included in the analysis. No association was 

found (P = 0.307, Wilcoxon rank sum test). 
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4.5 DISCUSSION 
 

In this chapter we have characterised the subclonal architecture of both tumour and 

morphologically normal tissue for patients with prostate cancer, morphologically normal tissue 

in men without cancer and cell cultured fibroblasts from normal tissue with BPH. Our results 

demonstrate that the majority of patients harbour subclonal expansions under selective pressure 

in morphologically normal samples (including those from BPH), in contrast to samples from 

men lacking cancer (1/7). In some cases, multiple subclones were detected (0006, 0065, 0073, 

0239) which shows that there may be more than one independent expansion in a single prostate. 

No link was observed between the number of subclones and clinical parameters. These 

observations suggest that the presence of the subclonal expansions could be linked to the field 

effect and the development of cancer. Although the implications of the presence of clonal 

expansions in normal tissues for cancer development are still being debated, there is evidence 

that shows the presence of multiple clones undergoing selection that carry driver genes in the 

normal human eyelid and esophagus118,162. Their presence could potentially lead to cancer 

development following a multistage model of carcinogenesis254. This model postulates that the 

accumulation of a specific number of sequential genetic changes in driver genes precedes 

cancer initiation. Although a few protein coding mutations have been found supporting clonal 

expansions, in this study we could not confirm the presence of positively selected genes in 

normal tissue due to the low number of coding mutations detected. This scenario would be in 

agreement with the notable absence of clonal expansions under selective pressure and 

significantly lower number of overall genetic alterations (see chapter 3, section 3.5.3) in 

morphologically normal tissue from men without cancer. The prostates from men with cancer 

have undergone notable changes as a whole. These findings are slightly different to those 

reported by Martincorena et al.118 in skin and esophagus where the clonal expansions were 

detected in normal tissue from patients without cancer. However, the skin and esophagus are 

tissues with an incredibly high proliferation rate in comparison to prostate and they are also 

exposed to known mutagens (ultraviolet light and diet).  

The phylogenies also reveal that subclones in morphologically normal samples are distinct 

from those in the tumour, but morphologically normal and BPH samples from the same patient 

on the other hand often have a shared lineage (Figure 2b).   
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It has been already discussed in chapter 3 (section 3.6) that the higher proliferation rate in BPH 

may be contributing to a heavier mutation burden and occurrence of clonal expansions. This is 

further supported by the finding of two subclonal expansions under selection in the BPH non-

cancer sample 0239. An association between BPH and cancer development has been shown in 

several studies, although the link remains controversial. Similarly, fibroblasts from BPH 

samples showed evidence of clonal expansions in four samples. Substitutions were present in 

at least 25%, 40%, 100% and 77% of cells in cases 0247, 0250, 0251 and 0252, respectively. 

Interestingly, these features have been also associated with cancer-associated fibroblasts or 

CAFs255. Whether these subclones are driving the BPH disease process alone or contributing 

to cancer development needs further examination using other approaches such as single-cell 

sequencing.  A previous study that explored the spatial competition of clonal expansions in 

normal esophagus has revealed that the multiple clones that have similar fitness or are evolving 

neutrally can coexist in normal tissue while tissue homeostasis is maintained. When a clone is 

surrounded by other clones with similar fitness, the growth rate of each clone population is 

diminished. The genotype of neighbouring cells is as important as the acquisition of 

advantageous mutations. Therefore, the higher mutation burden and clonal expansions 

observed in normal tissues from prostate cancer patients could increase the risk of cancer 

development by the acquisition of driver mutations over time, but it is also dependent on the 

discrepancy in fitness among the surrounding cells.  

Overall, these results further support the hypothesis of a field cancerization in the prostate and 

provide key insights into genomic evolution of prostate cancer at very early stages of 

development.  
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CHAPTER 5 : PATCHWORK 

EXPERIMENT 
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5.1 SUMMARY 
 

Prostate cancer is a highly heterogeneous disease that is multifocal in nature. This genomic 

diversity poses a great challenge in order to characterise the mutational landscape in cancer 

and detect driver genes. In this chapter we describe “The Patchwork experiment”, an approach 

that allows us to explore the presence of a field effect in the prostate by targeted sequencing a 

large number of samples (n = 95) from morphologically normal and tumour tissue from one 

single prostate patient. This patient had been previously WGS sequenced before for previous 

analyses presented in chapters 3 and 4. We detected 21 recurrently mutated genes and clonal 

expansions affecting 10 genes and one driver gene under positive selection.  

 

5.2 MATERIALS 
 
5.2.1 SAMPLES 

We analysed 96 samples (summarized in Figure 5.1) collected from ICGC prostate patient 

number 0007 (Methods, section 2.4) obtained after prostatectomy at Addenbrooke’s hospital: 

77 samples from morphologically normal tissue, 18 from tumour tissue and one control from 

blood. Ethical approval was obtained from the NHS East of England-Cambridge REC [03/018]. 

Samples were collected subject to ICGC standards of ethical consent (https://icgc.org/).  

 

5.3 METHODS 
 
5.3.1 DATA COLLECTION AND QUALITY CONTROL 
 
95 punches of 1 mm3 were taken from three different 5 mm FFPE block slices (Methods, section 

2.4). A previously collected blood sample for the WGS experiment was used as control. I 

extracted the DNA, constructed the libraries and performed targeted sequencing using the 

Illumina Nextseq sequencing system at the Quadram Institute (Methods, sections 2.5.2). The 

tool FASTQC (Methods, section 2.6) was used to assess the quality of FASTQ files.  

 

 

 



                                                                                                                                     Chapter 5 

 127 

5.3.2 PRE-VARIANT CALLING PROCESSING: ALIGNMENT AND DUPLICATE 

REMOVAL 

 
Reads were mapped to the GRCh37 reference human genome using the Burrows-Wheeler 

Aligner’s maximum exact matches (BWA-MEM)177 algorithm. This algorithm is similar to 

BWA-SW but faster and more accurate. SAM files from the two sequencing runs were 

converted to a BAM format and merged using Samtools179. However, the sequencing metrics 

of the first sequencing run were calculated and are depicted in Figure C.1 (Appendix C). Picard 

tools (Methods, section 2.8) option was used to assess the quality of the alignment (option 

CollectAlignmentSummaryMetrics), remove duplicated reads (option MarkDuplicates) and 

calculate coverage of the region of interest (option CollectHsMetrics).  

 

5.3.3 VARIANT CALLING AND POSITIVE SELECTION ANALYSIS 

 

Substitutions were called for each sample against a deep sequenced matched blood control 

using a likelihood ratio test from the R package deepSNV (Methods, section 2.9.2).  

Positive selection in coding variants was detected using the package R dNdScv 

(https://github.com/im3sanger/dndscv). dN/dS ratios were quantified for missense, nonsense 

and essential splice mutations. This is a previously described dN/dS method developed by 

Martincorena et al.118 (see Methods, section 2.15.2) that was also used in Chapter 3, section 

3.5.4.  

 

5.4 RESULTS 
 
5.4.1 DNA YIELD AND LIBRARY METRICS 
 

The mean yield of the total DNA obtained from each punch was significantly higher in tumour 

(mean of 392 ng) than in morphologically normal (mean of 181 ng) samples (P = 2.16x10-4, 

Wilcoxon rank sum test, Figure 5.1). A median of 1730 pg/ul (IQR of 575) DNA post-capture 

was obtained after library preparation, with a percentage on target (DNA molecules that were 

successfully captured by the hybridization process to the designed RNA probes) that ranged 

from 84 % to 97 % (median of 94). The median library size was 328 bp (Figure 5.2).  
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Figure 5.2: Library metrics for each sample. (A) Post-capture DNA (pg/ ul), (B) library size 

(bp) and (C) percentage of hybridized DNA within the targeted region of interest. 

 

Figure 5.1: Total DNA yield (ng) in morphologically normal and tumour samples. 
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5.4.2 QUALITY CONTROL 

 

5.4.2.1 FASTQC REPORT  

The FASTQC report indicates a very good quality of the reads: per base and sequence quality 

average was > 30, all bases were proportionately distributed. Adapters were found in the first 

round of sequencing and were removed. Estimated PCR duplication levels were very high: 

unique reads reported in normal and tumour ranged from 15% - 84% and 22% - 38%, 

respectively (Figure 5.4). Regarding GC content we found that a proportion of the reads do not 

follow the expected normal distribution (the sum of the deviations from the normal distribution 

represented more than 30% of the reads). An example of some of these metrics is depicted in 

Figure 5.3.  

5.4.2.2 SEQUENCING METRICS 

A mean on target coverage (after removing duplicates and off target capture reads) of 331X 

was achieved after two sequencing runs for normal samples (maximum of 648X and minimum 

of 83X, IQR of 124) and of 398X for tumours (maximum of 484x and minimum of 152X, IQR 

of 122). The blood control sample had a mean coverage was 878X. The alignment to the 

reference genome was of good quality, with a percentage of mapped reads that ranged from 

91% - 99% in normal samples (median of 98%) and 85% - 99% in tumours (median of 98%). 

Overall, a median of 38 % of reads were classified as off target capture and were discarded in 

normal and tumour samples (ranging from 16 – 86 in normal and of 29 to 59 in tumour). All 

these metrics are represented in Figure 5.4. Per base coverage across the total target region 

(protein coding regions of 98 genes) is shown in Figure C.2, Appendix C. Coverage for each 

gene across all samples ranged from a median of 133X in SMARCA1 (the gene with the lowest 

median coverage) and 1196 in MUC3A (the gene with the highest median coverage). The 

distribution of mutations detected across genes had a weak correlation with coverage 

(Spearman’s ρ = 0.39, P = 5.6x10-5) (Figure 5.5).  
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Figure 5.3: Quality metrics for the 96 samples of the Patchwork experiment. (A) Quality 

values across all bases of all sequences. Mean quality, median value and inter-quartile range 

are represented by the blue line, the central red line and the yellow box, respectively. Points 

above 90% and below 10% are indicated by the lower whiskers. (B) Per sequence quality score. 

The y-axis represents the number of sequences. (C) GC content across the length of each 

sequence in comparison to a modelled normal distribution of GC content. The y-axis represents 

the number of sequences. 
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Figure 5.4: Coverage and Alignment metrics: The percentage of mapped reads represents the 

reads that aligned successfully to the reference genome. The percentage of unique reads show 

moderate to high levels of duplication. 

 

Figure 5.5: Mutations and coverage for each gene and across samples. There was a 

moderate variability of coverage for each gene. An association was found between the number 

of mutations detected per gene and their coverage (Spearman’s ρ=3.9x10-1, P=5.6x10-5). 
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5.4.3 DETECTED SNVs 

 

Overall, 354 SNVs were identified with support from at least three reads (Table C.1, Appendix 

C): mutations were detected in 47 out the 77 normal samples with a total of 169 mutations. 

Mutations were detected in all 18 tumour samples with a total of 185 (Table C.1, Appendix C). 

258 SNVs (73 %) were non-synonymous. The mutation burden (measured as 

substitutions/megabase) was significantly higher in tumour (P = 5.5x10-3, Wilcoxon rank sum 

test, Figure 5.6) than in normal samples (mean of 0.06 and 0.03, respectively). The variant 

allele frequency ranged from ~ 0.6 % to 42 % in tumour (median of 2 %) and ~ 1 % to 36 % 

(median of 3) in normal samples and was significantly higher in the tumour samples (P = 

4.4x10-5, Wilcoxon rank sum test, Figure 5.7).  
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Figure 5.6: (A) Mutation burden across samples. (B) Boxplots showing the relationship between 

mutation burden and sample type (Normal/Tumour). 
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Figure 5.7: (A) Variant allele frequency across all samples. 354 mutations were detected in 

normal (blue) and tumour samples (red). (B) Boxplots showing the relationship between 

variant allele frequency and sample type (Normal/Tumour). 
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Of the 98 genes targeted, we identified at least one mutation in 63 of them (Figure 5.8). Mutated 

genes across samples are represented in Figure 5.9. A complete list of all the genes (mutated 

and non-mutated is shown in Table C.2, Appendix C). 

 

For 24 genes (ARID1A, ASHL1, ASXL2, BCAT1, CASZ1, CDK12, CGREF1, FAT1, FOXA1, 

FAT2, LRP1B, MKT2C, KMT2D, MUC3A, MUC5B, NACAD, NOTCH1, NOTCH2, 

PPARG1A, SETD2, SF3B1, SPEN, TMPRSS15 and ZFHX3) mutations were present in more 

than 3 samples (Figure 5.9). A spatial representation of all the mutations is shown for the whole 

prostate for those mutations reflecting clonal expansions or that affected the same gene in at 

least 3 samples (Figures 5.10 and 5.11).  

 

 Mutations detected from WGS for this patient were validated (Chapter 3, Figure A.1, 

Appendix A) in genes BCAT, FAT2, ADAM28, GPBP1 and TMPRSS15 (in the normal samples) 

and RFPL11 and SF3B1 in tumour samples.  All mutations in these genes occurred in the same 

genomic location (in multiple normal/Tumour samples) except for gene FAT2, for which we 

report an extra five mutations in different genomic locations, three in normal samples and two 

in tumour.  
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5.4.3.1 POSITIVE SELECTION AND RECURRENT MUTATIONS IN DRIVERS 

 
Using the dN/dS method (Methods, section 2.15.2) the gene MUC3A was identified to be under 

positive selection in the normal samples, harbouring 10 mutations that were protein altering 

mutations (Table 5.1). In addition, genes MUC5B, ZFHX3, BCAT1, KMT2C, KMT2D, SF3B1 

and ASHL1 were recurrently mutated but the number of non-synonymous mutations did not 

reach significance.   

 

 

5.4.3.2 CLONAL EXPANSIONS 

We identified mutations in the same genomic position overlapping several samples, suggesting 

seven clonal expansions. Normal tissue revealed four small clones that were supported by 

mutations in MUC5B, MUC3A, KMT2C and ASHL1 and a larger clone in BCAT1 that 

harboured several subclones affecting genes ADAM28, FAT2, GPBP1 and TMPRSS15 (Figure 

5.11). In tumour, we identified two clones supported by mutations in genes SF3B1 and 

MUC5B. Mutations in genes BCAT1, ADAM28, FAT2, GPBP1, TMPRSS1 and SF3B1 were 

validated by the slice used for WGS for the same patient.  

 

5.4.3.2.1 CLONE 1 
  

Mutations affecting gene in BCAT1 overlapped in 14 samples (18, 22, 31, 34, 56, 60, 65, 68, 

69, 19-2, 34-2, 58-2, 60-2, 69-2) and supported a large clone and subclones A, B and C (Figure 

5.11 B). Mutations in BCAT1 were present both above and below the slice used for WGS 

analysed in Chapter 3, sometimes separated by at least 2.5 cm from top to bottom of the 

prostate. CCFs in this large clone ranged from 3 % to ~ 60 % (Figure 5.10).  Subclone A 

affecting gene TMPRSS15 was occurring in samples 56, 60 and 60-2 and could have either 

originated from the BCAT1 clone or independently as it has a low cellular fraction (the 

Gene Synonymous Missense Nonsense Splice qvalall
MUC3A 0 10 0 0 1.63x10-3

Table 5.1: Gene MUC3A is detected to be under significant positive selection after correcting 

for multiple hypotheses testing (qval < 0.05). 
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pigeonhole principle is explained in Methods, section 2.11.1.2); subclone B (ADAM28 and 

FAT2) was shared between samples 58-2, 60 and 60-2 and subclone C (gene GPBP1) could 

have either originated from the BCAT1 gene clone or subclone B. These subclones have been 

represented linearly in Figure 5.11 B using the pigeonhole principle. All subclones (A, B, and 

C) were present in the slice immediately below the slice used for WGS, the median distance 

between the samples supporting each subclone was of 8.25, 5 and 5.5 mm, respectively (Figure 

5.11 A).  

 

5.4.3.2.2 CLONE 2 
 
A large clone in tumour tissue was detected affecting gene SF3B1 across ten samples (85, 86, 

87, 88, 89, 91, 93, 94, 95 and 96). Mutations had an average CCF of 81 % and clustered together 

in the bottom slice of the prostate in an area of 0.7 cm2 for SF3B1, 20 mm below the one used 

for WGS (Figures 5.10 and 5.12).  

 

5.4.3.2.3 CLONE 3 
 
 A smaller subclone in the bottom slice of the prostate was affecting gene MUC5B comprised 

4 samples (87, 88, 89 and 94). Mutations had an average CCF of 59 % clustered in an area of 

0.15 cm2 (Figures 5.10 and 5.12). 

 

5.4.3.2.4 CLONES 4, 5, 6 AND 7 
 
Mutations were detected in no more than two samples affecting genes MUC5B, MUC3A, 

KMT2D and ASHL1 (Figure 5.12), suggesting the presence of small clones. CCFs ranged from 

3 % to 6 % (Figure 5.10). All mutations were from different slices. Substitutions in MUC5B 

and MUC3A occurred in the slices immediately above and below the one used for WGS, 

whereas substitutions in KMT2D and ASH1L were further apart, one in the top slice 

(immediately above the one used for WGS) and the other in the bottom slice (20 mm below 

the WGS slice). 
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ADAM28/FAT2, GPBP1 and TMPRSS15) supported by mutations overlapping multiple 

samples. (B) CCF of independent clones. Tumour samples are highlighted with red lines.  
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Figure 5.12: Spatial representation of recurrent mutations in the prostate. Each gene/family of 

genes is represented separately with a different colour. Dots (for normal samples) and triangles 

(for tumour samples) indicate the location of the sample with the mutation. Grey dots/triangle 

show samples that did not harbour a mutation in that specific gene and empty dots represent 

samples with no mutations. Dots with black lines represent mutations occurring in the same 

genomic location. The horizontal plane marks the area where the sample for the WGS 

experiment was taken. Clonal expansions are highlighted with round circles.  
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5.5 DISCUSSION 
 
In this chapter we have targeted-sequenced 98 cancer associated genes in morphologically 

normal and tumour tissue from one patient with prostate cancer.  

 

We found that the mutation burden was significantly lower in normal tissue in comparison to 

tumour. The overall mutation burden in prostate tumours has been reported to be higher (0.83-

0.93 per Mb) in WES130,256 and targeted sequencing experiments (0.33 per Mb)257 than the one 

observed here, but much lower than in melanoma and lung cancer109. A possible explanation 

of the low mutation burden in tumours is the small sample size (18). Similarly, the mutation 

burden in normal in prostate is much lower than the observed in other normal tissues such as 

sun-exposed skin118. It is also plausible that there are low mutation rates among the genes 

targeted. Sequencing a broader panel of genes (or the whole exome) would address this 

problem. 

 

We identified gene MUC3A was recurrently mutated and under positive selection in normal 

tissue. The MUC3A gene encodes for a membrane-associated mucin and it has been found 

recurrently mutated in gastric258, ovarian, pancreatic, endometrial and lung squamous cell 

carcinoma259, although the majority of these mutations were non-damaging. Altered expression 

levels of MUC3A have also been linked to poor prognosis in breast260, gastric261, 

appendiceal262, esophagus263 and clear-cell renal cell carcinoma264.  

 

Other genes, such as MUC5B, ZFHX3, BCAT1, KMT2C, KMT2D, SF3B1 and ASHL1 were 

recurrently mutated but the number of protein-altering mutations did not reach significance. 

However, the low detection of drivers could be a result of not having enough mutations in only 

one patient. Including more samples from other patients could greatly increase the possibility 

of detecting more genes as significant118. 

 

We detected seven clonal expansions occurring in the same group of cells simultaneously, 

however, only one small clone contained the driver mutation MUC3A. Mutations supporting 

clonal expansions were observed to be in nearby samples in genes TMPRSS15, ADAM28, FAT2 

and GPBP1 (median distance of 8.25, 5, 5 and 5.5 mm, respectively), SF3B1 (clustered in an 

area of 0.7 cm2) and MUC5B (clustered in an area of 0.15 cm2), except for mutations in BCAT1, 

that were distributed across the prostate. All of them except MUC5B mutations were validated 
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by WGS. Interestingly, clones overlapping more distant samples (ASH1L, MUC3A, KMT2D 

and normal clone in MUC5B) were located in different prostate slices. This could be due to a 

lower vertical characterization of the prostate (only 3 slices).  

 

However, clones with mutations in genes KMT2D and ASH1L had samples with no mutations 

in those genes in between. Given the low number of samples with detected mutations for these 

genes (two), the low CCF (< 6 %) and the lack of validation from the WGS experiment it is 

plausible that these mutations could be artefacts. Another explanation could be the presence of 

cell seeding, a phenomena that occurs when cells disseminate to other regions22. This scenario 

would suit the observed distribution of mutations affecting gene BCAT1 that supported the 

large clone 1. Some of them were present in samples close together and in the same vertical 

plane, but there were also mutations from the top slice separated by 17 mm and other samples 

in between without detected mutations in BCAT1. This clone has been validated by WGS. 

 

All clonal expansions harbouring the same mutation in different samples were found in one 

tissue type (normal or tumour): a clone harbouring mutations in BCAT1 (and its subclones) 

was unique to normal, whereas SF3B1 and MUC5B clones were unique to tumour tissue. As 

these genes contain the largest clonal expansions, these observations suggest there are no 

shared clones between normal and tumour. This is consistent with the findings in chapter 4. 

However, the majority of the mutated genes are found in both tissues.  

 

At this stage, these results validate previous findings and show that mutations and clonal 

expansions are occurring in cancer associated genes, sometimes affecting multiple areas in 

normal tissues of prostate cancer patients. These results are in line with the presence of a field 

effect in normal tissue, although the frequency of drivers detected in this thesis in the normal 

prostate is low. Expanding the number of patients could increase the probability of detecting 

more low frequency mutations in potential drivers. Conversely, this result suggests that the 

field effect could be governed by epigenetic mechanisms. 
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CHAPTER 6 : DISCUSSION AND 

FUTURE WORK  
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In this thesis we aimed to understand the nature of the field effect in multifocal prostate cancer 

by analysing next generation sequencing data from morphologically normal tissue from men 

with and without prostate cancer. It had been previously reported that morphologically normal 

tissue of the prostate harboured a high number of mutations and clonal expansions. The two 

projects presented in this thesis are relevant for the understanding of early changes in cancer 

development that potentially lead to prostate cancer. In this section we summarise our results 

and suggest future research instructions to expand the knowledge about multifocal disease and 

the early stages of cancer initiation. 

 
6.1 PROJECT 1: THE CHARACTERISATION OF THE MUTATIONAL 

LANDSCAPE AND SUBCLONAL ARCHITECTURE 
RECONSTRUCTION IN MORPHOLOGICALLY NORMAL TISSUES 
OF THE PROSTATE 

 
For this project we analysed WGS data from morphologically normal tissue epithelium 

(including BPH samples) and fibroblasts cell cultures from men with and without prostate 

cancer and compared the normal data to their matched tumour when prostate cancer was 

present (Chapters 3 and 4). We confirmed high levels of mutations in the normal prostate as 

previously reported17. The contribution of each class of genetic alteration greatly differed 

between normal and tumour tissue: CNAs, chromosomal rearrangements and occasional 

kataegis events were specific to tumour tissue, whereas SNVs and indels were observed in both 

tissues. Prostate cancer is highly characterised by a high number of CNAs rearrangements such 

as TMPRSS2-ERG and there is evidence that proportion of the genome altered by these 

alterations have been associated with the progression of the disease30.  

  

The number of mutations in normal tissue from men with cancer was significantly higher in 

comparison to the normal prostates of men lacking cancer. Interestingly, a higher mutation rate 

was observed in BPH samples in comparison to normal samples without BPH, possibly due to 

hyper-proliferation of stromal tissue228 that characterises BPH. Whether this finding is related 

to cancer development is unknown. In line with these results, the subclonal architecture 

reconstruction revealed that a high proportion of the normal samples from men with prostate 

cancer harbour subclonal expansions under selective pressure. Moreover, multiple unrelated 

subclones have been identified in a single prostate. Shared clones were found between multiple 
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normal and BPH/normal samples from the same patient but not between normal and tumour 

samples. In contrast, no subclonal expansions under selective pressure were detected in men 

without cancer.  

 

No known or novel genetic drivers were identified in normal tissues except isolated instances 

(PPARG, BRCA1, GATA1, HOXD11, WHSC1, FAT1 and POLE), which strongly suggests the 

importance of other mechanisms such as transcriptomic and epigenetic alterations driving the 

clonal expansions. Interestingly, mutations in GATA1, WHSC1, FAT1 and POLE were only 

observed in samples from a primary prostate fibroblast culture. Clones from cell cultured 

fibroblasts also showed a higher cellular cell fraction than morphologically normal clones, 

which has also been reported in CAFs, a known contributor to carcinogenesis255.  

 

Mutational processes (described by Alexandrov et al.110) were also detected in normal, BPH, 

BPH fibroblasts and tumour tissues. Tumour samples were defined by a group of signatures (1, 

5, 8, 18, and 40) that have been previously associated with prostate cancer. This group was also 

observed in normal, BPH and BPH fibroblasts, in addition to signatures 4 and 28. Among the 

signatures identified, we highlight signatures 1, 5, 8. The presence of these processes in normal 

and BPH tissues has been previously reported by Cooper et al.17 and Liu et al.78 (Signature 1). 

We could confirm the widely described225 observation that a lower number of SNVs results in 

a worse performance of the signature refitting process. However, the techniques applied by 

SigProfilerSingleSample tool in order to limit the number of signatures based on previous 

biological knowledge greatly improves the outcome of the mutational profile reconstruction.  

 
6.2 THE PATCHWORK EXPERIMENT 
 
 
For the second project of this thesis targeted sequencing was performed on 98 genes from 

morphologically normal and tumour tissue samples from one patient with prostate cancer. The 

genes on the panel were carefully selected according to the following criteria: included were 

known cancer and prostate cancer genes reported in the literature and genes that were found 

mutated in our group of normal samples. Mutations in genes BCAT1, FAT2, ADAM28, GPBP1 

and TMPRSS15 that were previously detected by WGS for this patient were validated with this 

experiment. The gene MUC3A was recurrently mutated and identified as driver by the dN/dS 

method. Mutations in this gene have been observed (most of them non-damaging) in a variety 

of cancers: gastric258, ovarian, pancreatic, endometrial and lung squamous cell carcinoma259. 
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Likewise, MUC3A has been found to be differentially expressed and associated with poor 

prognosis in breast260, gastric261, appendiceal262, esophagus263 and clear-cell renal cell 

carcinoma264.  

 

Other recurrently mutated genes were MUC5B, ZFHX3, BCAT1, KMT2C, KMT2D, SF3B1 and 

ASHL1 but were not detected as drivers. Increasing the number of samples/patients could help 

improve the detection of significant driver genes118.  

 

We detected a total of 7 clonal expansions supported by mutations that were present in nearby 

multiple samples, and 5 of them (BCAT1, FAT2, ADAM28, TMRPSS15 and GPBP1) were 

previously detected by WGS. A small clone contained mutations in gene MUC3A that were 

present in distant samples from different FFPE blocks. This scenario is also observed in clones 

containing mutations in genes ASH1L, KMT2D and MUC5B. It is plausible that these clones 

are affecting the tissue between these FFPE blocks, so further sequencing from this area would 

be needed in order to validate this. All clonal expansions were unique to each tissue type, 

indicating no intermixing between morphologically normal and tumour tissue, a finding that is 

in line with the results reported in chapter 4. Overall, our results show that frequency of drivers 

in the normal prostate is low, but expanding the number of patients could provide with more 

information.  

 

6.3 OVERALL DISCUSSION AND LIMITATIONS OF THE RESEARCH 
 
The analysis of the mutational landscape of normal prostate tissue from men with and without 

prostate cancer and the results obtained from the patchwork experiment reveal that these tissues 

harbour a high number of mutations, clonal expansions and mutational processes. All these 

findings are specific to prostate cancer patients. This suggests that the normal tissue of men 

with prostate cancer has undergone significant changes that could be associated with the 

development of cancer and the field effect and are in line with other studies that reported high 

numbers of mutations and clonal expansions in normal samples from esophagus162, skin118 and 

blood. In blood, the presence of clonal expansions has been significantly linked to an increased 

risk of developing leukemia overtime163–166. It is plausible that a higher frequency of mutations 

increases the possibility of developing cancer following a multistage model of 

carcinogenesis254. Nonetheless, we did not find the driving mechanism responsible of this field 

effect, as very few protein coding mutations were detected in normal tissues and only gene 
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MUC3A was detected as a potential driver by the dN/dS method. More studies (discussed in 

sections 6.4.1.2 and 6.4.2) are needed to validate this result and possibly uncover new potential 

driver genes. This scenario is consistent with results reported in a recent study by Liu et al.78 

in BPH tissue where they found somatic mutations but no recurrent mutations that would 

indicate positively selected genes. It has to be noted that the coverage reached in this study was 

no higher than 100X and therefore not enough to reveal very low frequency mutations. Overall, 

the lack of recurrent mutations in protein coding regions suggests that the development of a 

field effect could be governed by either epigenetic mechanisms, altered expression levels or 

both and needs to be further examined.  

 

Likewise, more understanding is needed of the effect of BPH and the development of the field 

effect. BPH alone was a factor that was associated with a higher mutation burden even in non-

cancer patients. Given that there is only one non-cancer patient with BPH, this association has 

to be further examined by analysis. Lastly, the present study failed to prove a relationship 

between age and mutation burden due to patients with prostate cancer having a similar age 

range and a very low number of non-prostate cancer patients (n =7). Similarly, the commonly 

observed association between age and prostate cancer development reported in many 

studies51,265 was lacking in this thesis. These limitations will be addressed as described in 

section 6.4.1. 

 

At the moment, more studies that explore the nature of the field effect are needed, as most 

studies focus on the examination of normal tissue adjacent to the tumour and therefore do not 

address the mechanisms that cause multiple distant lesions. This work will allow us to identify 

molecular features within normal tissue that could be used as biomarkers of early disease or 

targets for potential therapeutic intervention with the aim to prevent prostate cancer, slow its 

progression or even stop it. 

 
6.4 FUTURE WORK 
 
 
At this stage there a few factors that are crucial to deepen our understanding of the early stages 

of cancer development: expanding the number of samples for some of the tissue types, 

integrating data from multiple sequencing platforms, achieving a much more precise 

characterisation of all normal cell types in the prostate and reconstructing the subclonal 

architecture at single-cell resolution. 
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6.4.1 EXPANDING THE NUMBER OF SAMPLES 
 

6.4.1.1 WGS EXPERIMENT 

Firstly, increasing the number of samples of morphologically normal tissue from men without 

prostate cancer would be beneficial, as this group was only comprised of 7 samples. WGS 

sequencing for all the analyses described in Chapter 3 would be performed on at least 20 more 

non-cancer samples, of which at least 8 must have BPH and an another 8 must be from 

fibroblasts (4 from morphologically normal and 4 from BPH). This approach would allow us 

to achieve three goals. First, obtaining a more robust association between clonal expansions 

under selective pressure in normal tissues and prostate cancer presence, which would validate 

the results present in this thesis. Second, we would elucidate whether the changes observed in 

BPH (both epithelium and stroma) are unique to BPH or are also related to the development of 

a field effect. Thirdly, establishing the already reported relationship between age, mutation 

burden and clonal expansions in normal tissues is observed in the prostate. Apart from WGS, 

further experiments could be performed on all samples proposed here (see section 6.4.2). 

6.4.1.2 PATCHWORK EXPERIMENT 

As mentioned in section 5.5, the number of mutations detected in only one prostate was not 

high enough for detection of positively selected genes. As stated by Martincorena et al.118, the 

inclusion of more samples from other patients could increase the possibility of detecting more 

genes under positive selection that reach significance118. Expanding the number of prostates to 

five (one from a man without prostate cancer) would help elucidate whether there is a notable 

proportion of potential driver genes in morphologically normal tissues of the prostate and 

whether it is affected by the presence of cancer. Future experiments regarding these expanded 

group of prostates are described in section and 6.4.3. 

 
6.4.2 IDENTIFYING THE INITIATING EVENT OF THE FIELD EFFECT. 

INTEGRATING DATA FROM MULTIPLE SEQUENCING PLATFORMS 
 
By using WGS we have obtained a good characterisation of normal tissue of the prostate and 

observed clear differences between morphologically normal tissues from men with and without 

prostate cancer. However, this technique has its limitations. As described in chapter 1, there 

are many changes that can alter gene function without altering the DNA sequence. There is 

evidence that the field effect could be epigenetic in nature. Integrating data from multiple 

sequencing platforms is essential to achieve this. Bisulphite sequencing could be used to 
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characterize methylation levels across the expanded group of samples as suggested in section 

6.4.1.1, including the new category of BPH samples from men without prostate cancer. It has 

been previously reported that methylation profiles in normal tissues from men with prostate 

cancer are different to those from men lacking cancer266,267. More importantly, 

hypermethylation in genes APC and GTSP1 and specific CpG loci268 in normal tissues from 

men with a prostate negative biopsy can successfully predict cancer development later on. 

Likewise, we could carry out experiments to examine gene expression levels across already 

analysed samples and the new ones proposed in section 6.4.1.1 by using RNA-seq. Previous 

studies using microarrays reported that adjacent morphologically normal tissue from men with 

cancer displayed different gene expression patterns in comparison to men without cancer269,270. 

Combining RNA-sequencing, methylation and WGS data would greatly improve our 

understanding the nature of the field effect and holds promise for the development of an early 

diagnostic test by defining field effect methylation and expression profiles.  

 
6.4.3 DEEP CHARACTERISATION OF NORMAL CELLS AT SINGLE CELL 

RESOLUTION AND BULK SAMPLES 
 
The patchwork experiment revealed the presence of mutations in cancer related genes in one 

prostate. However, there was only one positively selected gene detected. Firstly, expanding the 

number of prostates to four could increase the possibility of detecting more positively selected 

genes118. Including at least a sample from a man without prostate cancer would also be ideal to 

compare the differences of mutational landscape in normal tissues from men that have 

developed prostate cancer and those who have not, and further validate the findings reported 

in this thesis. Secondly, a broader coverage of coding regions could be accomplished by 

performing exome sequencing instead of performing targeted sequencing only on a panel of 

genes. As a result, we would not miss potential driver genes that have not been targeted. 

Thirdly, single cell experiments could be carried out on all four prostates (including patient 

0007 used for the patchwork experiment) in combination to exome sequencing from bulk 

samples. Single-cell whole genome sequencing (scWGS) and single-cell RNA sequencing 

(scRNA-Seq) would be performed for the detection and validation of potential driver genes 

and differential expression analyses, respectively.  Single cell sequencing (ScSeq) has proven 

to be a very useful technique to reconstruct the subclonal architecture and study cancer 

evolution. Previously detected mutations through WGS and targeted DNA sequencing will be 

validated for patient 0007. Cells from frozen prostate normal epithelium (including BPH) from 

men with and without prostate cancer, normal stroma (from BPH and non-BPH samples) and 
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tumour could be isolated by using fluorescence-activated cell sorting (FACS). The subclonal 

architecture would be reconstructed at single cell resolution, providing an accurate subclonal 

composition for each tissue type and revealing subclone/subclone interactions. ScSeq 

technologies have been applied to normal tissues of the prostate by Gervaise et al.271 and 

Crowley et al.272 that both performed scRNA to characterise the normal anatomy of the 

prostate, and Wouter et al.273, who studied the regeneration potential of normal stem cells. 

However, no scSeq experiments have been performed to address the nature of the field effect 

in the prostate cancer. 

 

This would greatly enhance our understanding of early cancer development as it would allow 

a better characterization of genetic heterogeneity in morphologically normal and tumour 

tissues, possible detection of cancer invasion at an early stage and discovery of rare cell 

populations, which is a critical step in the understanding of drug resistance development. 

Stromal-epithelium interactions could be assessed in relation to the development of the field 

effect and BPH pathogenesis.  

 

Overall, continuing this line of research is critical for the future development of better screening 

and prognostic tests through the dentification of specific drivers and expression/methylation 

profiles from prostate tumours and normal tissues from patients with and without prostate 

cancer. Deepening our understanding about the mechanisms responsible for the early stages of 

cancer initiation also has the potential to lead to characterisation of aggressive and indolent 

disease and to development of better treatments. The correct detection and prognostic tools are 

essential to improve the wellbeing of prostate cancer patients by avoiding the long term and 

life changing side effects that result from sometimes unnecessary treatments such as radical 

prostatectomy. 

 

6.5 CONCLUSION 
 

In summary, the findings presented in this thesis show further evidence of a field cancerization 

in the prostate and provide insights regarding the clonal dynamics of morphologically normal 

tissue. We detected a high number of mutations, clonal expansions and mutational processes 

in morphologically normal tissue from men with cancer in comparison to those without, 

indicating that the normal prostate in cancer patients had undergone notable changes as a 

whole. However, we can confirm that there is no clone mixing between clonal expansions from 
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tumour and morphologically normal tissues. Whether these findings in normal tissues are 

driving the disease process or on the other hand, are a result of tumour development is still 

unknown. Subclonal architecture reconstruction at single-cell resolution and examination of 

the epigenetic and expression profiles of normal tissues from men with and without cancer are 

needed to deepen our understanding or early stages of cancer development and the field effect.  
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APPENDIX A 

SUPPLEMENTARY FIGURES AND TABLES FOR 

CHAPTER 3 
Cases Sample type Snvs Indels CNAs SVs Age PSA Pathological_stage Gleason Multifocal Distance N-T (mm)
0006_N3 Normal tissue 2566 580 0 1 71 7 T3aNxMx 3+4 N 1
0006_N2 Normal tissue 639 482 0 0 71 7 T3aNxMx 3+4 N 9
0006_N1 Normal tissue 578 72 0 1 71 7 T3aNxMx 3+4 N 9.1
0007_N2 Normal tissue 1818 656 0 0 60 10.1 T1cNxMx 4+3 Y 2
0007_N3 Normal tissue 636 520 0 0 60 10.1 T1cNxMx 4+3 Y 4
0007_N1 Normal tissue 527 25 0 0 60 10.1 T1cNxMx 4+3 Y 4
0008_N2 Normal tissue 718 467 0 0 64 6.7 T2aN0Mx 3+3 Y 13
0008_N3 Normal tissue 695 495 0 0 64 6.7 T2aN0Mx 3+3 Y 17
0008_N1 Normal tissue 28 14 0 0 64 6.7 T2aN0Mx 3+3 Y
0240 Normal tissue 852 559 0 0 73 5.2 unknown unknown Y
0065_N Normal tissue 591 468 0 0 61 12.8 T1cNxMx 3+4 N 19
0145 Normal tissue 547 634 0 0 50 10.85 T1cNxMx 3+3 Y 6
0144 Normal tissue 488 459 0 0 53 6.4 T1cNxMx 4+3 N 5
0124 Normal tissue 457 428 0 0 66 5.63 T1cNxMx 3+4 Y 5
0156 Normal tissue 436 460 0 0 69 19.03 T1cNxMx 4+5 N 1
0122 Normal tissue 430 461 0 0 66 8.38 T3aNxMx 3+4 Y 1
0115 Normal tissue 418 578 0 0 55 7 T1cNxMx 3+4 Y 13
0140 Normal tissue 407 349 0 0 68 9.34 T2aNxMx 4+5 Y 4.05
0162 Normal tissue 407 369 0 0 61 11.05 T2aNxMx 3+5 Y 1.5
0127 Normal tissue 405 352 0 3 61 7.63 T1cNxMx 4+5 Y 4.1
0152 Normal tissue 402 500 0 0 57 6.5 T1cNxMx 3+3 N 18
0073_N Normal tissue 395 419 0 0 60 6.3 T1cNxMx 3+4 Y 15.1
0146 Normal tissue 392 451 0 0 68 7.3 T1cNxMx 3+4 Y 4
0160 Normal tissue 370 440 0 0 51 15.4 T1cNxMx 4+3 Y 0.5
0149 Normal tissue 357 480 0 0 67 13.9 T2aNxMx 3+3 Y 13
0077_N Normal tissue 338 437 0 1 66 7 T1cNxMx 3+3 Y 2
0159 Normal tissue 328 353 0 0 73 6.79 T1cNxMx 3+4 Y 14
0076 Normal tissue 314 346 0 0 59 7.3 T1cNxMx 3+4 Y 7
0120 Normal tissue 285 354 0 0 52 7 T1cN0M0 3+4 Y 3.1
PD6204c Normal tissue 23 16 0 0 unknown unknown unknown unknown unknown
0074 BPH 1213 691 0 0 54 6.07 T1cN0Mx 3+4 Y 5.5
0066 BPH 1157 474 0 0 70 20.74 T1cNxMx 3+3 Y 2.1
0063 BPH 1075 518 0 1 68 10.6 T1cNxMx 3+4 Y 20
0116 BPH 1075 420 0 0 62 11.13 T1cNxMx 3+4 Y 2
0065_BPH BPH 952 583 0 0 61 12.8 T1cNxMx 3+4 N 5.1
0073_BPH BPH 674 572 0 0 60 6.3 T1cNxMx 3+4 Y 15
0077_BPH BPH 424 461 0 1 66 7 T1cNxMx 3+3 Y 6
0069 BPH 399 347 0 0 64 7.57 T1cNxMx 3+4 Y 3
0072 BPH 300 567 0 0 61 5.4 T1cNxMx 3+3 Y 7.1
0239 Normal tissue (no PC) 1202 134 0 0 72 unknown
0244 Normal tissue (no PC) 159 62 0 0 65 unknown
0243 Normal tissue (no PC) 148 77 0 0 15 unknown
0241 Normal tissue (no PC) 141 67 0 0 25 unknown
0238 Normal tissue (no PC) 140 55 0 0 62 unknown
0242 Normal tissue (no PC) 125 58 0 0 54 unknown
0245 Normal tissue (no PC) 104 60 0 0 45 unknown
0246 Cultured fibroblasts (BPH) 234 21 0 0 unknown unknown
0247 Cultured fibroblasts (BPH) 238 51 0 0 unknown unknown
0250 Cultured fibroblasts (BPH) 2431 184 0 0 unknown unknown
0251 Cultured fibroblasts (BPH) 2578 231 0 0 unknown unknown
0252 Cultured fibroblasts (BPH) 1116 169 0 0 unknown unknownTable A.1: Morphologically normal sample summary. Coloured cells indicate multiple 

samples. In yellow are those samples not included in the mutational signature analysis. Sample 

order corresponds to the sample order displayed in Figure 3.5 A. 
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Cases Sample_type Snvs Indels CNAs SVs Age PSA Pathological_stage Gleason Multifocal
0006_T1 Tumour 6133 614 33 80 71 7 T3aNxMx 3+4 N
0006_T4 Tumour 3626 375 7 23 71 7 T3aNxMx 3+4 N
0006_T2 Tumour 3225 428 15 31 71 7 T3aNxMx 3+4 N
0006_T3 Tumour 1802 230 8 42 71 7 T3aNxMx 3+4 N
0007_T2 Tumour 2434 199 7 35 60 10.1 T1cNxMx 4+3 Y
0007_T1 Tumour 1678 251 10 9 60 10.1 T1cNxMx 4+3 Y
0007_T5 Tumour 1251 165 9 22 60 10.1 T1cNxMx 4+3 Y
0007_T3 Tumour 853 162 2 1 60 10.1 T1cNxMx 4+3 Y
0007_T4 Tumour 88 138 3 16 60 10.1 T1cNxMx 4+3 Y
0008_T1 Tumour 3309 381 18 55 64 6.7 T2aN0Mx 3+3 Y
0008_T2 Tumour 2533 255 14 49 64 6.7 T2aN0Mx 3+3 Y
0008_T3 Tumour 170 223 6 1 64 6.7 T2aN0Mx 3+3 Y
0065 Tumour 3423 420 27 32 61 12.8 T1cNxMx 3+4 N
0145 Tumour 2666 316 78 83 50 10.85 T1cNxMx 3+3 Y
0144 Tumour 1925 261 83 75 53 6.4 T1cNxMx 4+3 N
0124 Tumour 2703 273 13 31 66 5.63 T1cNxMx 3+4 Y
0156 Tumour 2872 267 46 53 69 19.03 T1cNxMx 4+5 N
0122 Tumour 3352 323 18 39 66 8.38 T3aNxMx 3+4 Y
0115 Tumour 2804 305 24 41 55 7 T1cNxMx 3+4 Y
0140 Tumour 2602 287 53 126 68 9.34 T2aNxMx 4+5 Y
0162 Tumour 3308 263 40 479 61 11.05 T2aNxMx 3+5 Y
0127 Tumour 2657 382 25 32 61 7.63 T1cNxMx 4+5 Y
0152 Tumour 2104 200 43 58 57 6.5 T1cNxMx 3+3 N
0073 Tumour 2123 211 46 64 60 6.3 T1cNxMx 3+4 Y
0146 Tumour 2055 192 23 13 68 7.3 T1cNxMx 3+4 Y
0160 Tumour 3381 173 21 12 51 15.4 T1cNxMx 4+3 Y
0149 Tumour 2446 187 22 2 67 13.9 T2aNxMx 3+3 Y
0077 Tumour 3204 553 74 187 66 7 T1cNxMx 3+3 Y
0159 Tumour 2321 298 36 32 73 6.79 T1cNxMx 3+4 Y
0076 Tumour 2588 308 46 88 59 7.3 T1cNxMx 3+4 Y
0120 Tumour 3236 382 31 37 52 7 T1cN0M0 3+4 Y
PD6204a Tumour 2300 179 48 72 unknown unknown unknown unknown unknown
0074 Tumour 2255 208 21 25 54 6.07 T1cN0Mx 3+4 Y
0066 Tumour 2507 301 9 83 70 20.74 T1cNxMx 3+3 Y
0063 Tumour 4890 640 83 41 68 10.6 T1cNxMx 3+4 Y
0116 Tumour 2450 218 13 97 62 11.13 T1cNxMx 3+4 Y
0069 Tumour 1752 170 10 24 64 7.57 T1cNxMx 3+4 Y
0072 Tumour 2719 349 55 144 61 5.4 T1cNxMx 3+3 Y

Table A.2: Tumour samples summary. Coloured cells indicate multiple samples. In yellow are 

those samples not included in the mutational signature analysis. Sample order corresponds to 

the sample order displayed in Figure 3.5 B. 
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Sample % Cancer % Dysplasia - Non Invasive % Lymph Average epithelial (%) Average stroma (%) SNVs CCF Type
0006_N1 0 4 0 34 62 578 48 Normal
0006_N2 0 0 0 26 74 639 0 Normal
0006_N3 0 19 0 5 76 2566 34 Normal
0007_N1 0 3 1 12 84 527 35 Normal
0007_N2 0 4 5 20 71 1818 30 Normal
0007_N3 0 0 0 20 80 636 0 Normal
0008_N2 0 23 0 30 47 718 20 Normal
0008_N2 0 0 0 25 75 695 0 Normal
0063 0 0 2.5 7.5 90 1075 0 Normal
0065_N 0 0 0 20 80 591 60 Normal
0065_BPH 0 0 0 32 68 952 58 Normal (BPH)
0066 0 0 0 24 76 1157 52 Normal (BPH)
0069 0 0 0 13 87 399 0 Normal (BPH)
0072 0 3 0 31 53 300 38 Normal (BPH)
0073_N 0 0 0 20 80 395 71 Normal
0073_BPH 0 0 0 12 88 674 69 Normal (BPH)
0074 0 0 0 15 85 1213 46 Normal (BPH)
0076 0 0 0 20 80 314 37 Normal
0077_N 0 0 0 15 85 338 37 Normal
0077_BPH 0 0 0 15 85 424 33 Normal (BPH)
0115 0 0 0 40 60 418 35 Normal
0116 0 0 0 45 55 1075 0 Normal (BPH)
0120 0 0 0 12.5 87.5 285 36 Normal
0122 0 0 0 40 60 430 0 Normal
0124 0 0 0 20 80 457 0 Normal
0127 0 0 0 20 80 405 0 Normal
0140 0 0 0 20 80 407 0 Normal
0144 0 0 0 30 70 488 0 Normal
0145 0 0 1 20 79 547 0 Normal
0146 0 0 0 10 90 392 60 Normal
0149 0 0 0 30 70 357 36 Normal
0152 0 0 0 20 80 402 0 Normal
0156 0 0 0 20 80 436 56 Normal
0159 0 0 0 20 80 328 44 Normal
0160 0 0 0 25 75 370 0 Normal
0162 0 0 1 20 79 407 40 Normal

Table A.3: Percentage of epithelial and stromal tissue across all morphologically normal 

samples from prostate cancer patients. 
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Chr Position Ref Alt Type Gene Function Found in dbSNP COSMIC TCGA Present in Tumour
4 171010770 C G exonic AADAT Nsym .

14 74004547 C T exonic ACOT1 Nsym rs199627073 Yes
22 51177701 G A exonic ACR Nsym . Tier1

8 24192995 G A exonic ADAM28 Nsym . Yes
4 175897727 C T exonic ADAM29 stopgain . Yes
4 71388554 A G exonic AMTN Nsym .

10 61846440 A T exonic ANK3 Nsym .
9 42368472 C A exonic ANKRD20A2 Nsym .
3 93761891 C A exonic ARL13B Nsym rs139997243
1 1431048 A G exonic ATAD3B Nsym rs201429000

19 42492630 T C exonic ATP1A3 Nsym . Yes
1 154309899 C T exonic ATP8B2 Nsym rs767034036

12 24989522 G T exonic BCAT1 Nsym . Yes
17 41245732 G A exonic BRCA1 Nsym . Tier1 Yes

6 32261213 C T exonic C6orf10 Nsym .
22 37888677 C T exonic CARD10 Nsym rs377599502
17 77757713 G C exonic CBX2 Nsym .

1 93657591 C T exonic CCDC18 Nsym . Yes
1 227441857 C T splicing CDC42BPA Nsym .
7 150934857 G T exonic MIR671 Nsym . Yes
3 130383856 A C exonic COL6A6 Nsym .
3 15563062 G A exonic COLQ Nsym rs374642884
8 2836275 C T exonic CSMD1 Nsym rs200039361 Yes
8 104394781 G A exonic CTHRC1 Nsym . Yes
8 143960482 G T exonic CYP11B1 Nsym .

16 70398492 G A exonic DDX19A Nsym . Yes
12 12974315 A G exonic DDX47 Nsym .
10 127527604 A G exonic DHX32 Nsym . Yes
19 49868880 C G exonic DKKL1 Nsym .
21 34958343 C T exonic DONSON Nsym . Yes
18 29049153 C T exonic DSG3 Nsym rs561461640 Yes

5 118274932 G T exonic DTWD2 Nsym .
4 187077231 C T exonic FAM149A Nsym rs368472968
2 170387991 C T exonic FASTKD1 Nsym rs752543615
4 187524513 C T exonic FAT1 Nsym . Tier1 Yes
5 150885254 A T exonic FAT2 Nsym .
1 42645391 G A exonic FOXJ3 Nsym . Yes
1 151065765 A G exonic GABPB2 Nsym .

X 48651642 C T exonic GATA1 Nsym . Tier1
14 24706276 G A splicing GMPR2 Nsym . Yes
15 74368296 G A exonic GOLGA6A Nsym rs542174200
15 75561228 C T exonic GOLGA6C Nsym rs778683471

5 56526784 C T exonic GPBP1 Nsym rs775619360
9 125797606 T A exonic GPR21 Nsym .
4 145041707 C A exonic GYPA Nsym rs7658293

11 5269623 G C exonic HBG1 Nsym rs56205611
2 176972669 C G exonic HOXD11 Nsym . Tier1

X 114141604 G T exonic HTR2C Nsym . Yes
15 91025262 T G exonic IQGAP1 Nsym . Yes
10 24832217 G T exonic KIAA1217 Nsym . Yes
12 52696929 C A exonic KRT86 Nsym rs771522388 Yes
21 46117387 C A exonic KRTAP10-12 Nsym .

1 62673042 G C exonic L1TD1 Nsym .
7 107718670 G A exonic LAMB4 Nsym .

X 78011018 A G exonic LPAR4 Nsym .
6 161528978 G A exonic MAP3K4 Nsym .
6 131931221 T C exonic MED23 Nsym .
4 88766379 C G exonic MEPE stopgain .

12 86373908 C T exonic MGAT4C Nsym rs770702724
20 3026740 G C exonic MRPS26 Nsym .

3 49725021 C T exonic MST1 Nsym rs114429531 Yes
4 187455234 A T exonic MTNR1A Nsym rs576228243
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7 100646974 G A exonic MUC12 Nsym rs112087460
7 100679390 A G exonic MUC17 Nsym rs150982179 Yes
3 195452645 G A exonic MUC20 Nsym rs200616967 Yes

11 1264393 A G exonic MUC5B Nsym rs753807150
11 1264418 C G exonic MUC5B Nsym rs201556927
17 8526330 T C exonic MYH10 Nsym .

7 45123906 T G exonic NACAD Nsym rs61740887
16 5083441 C G exonic NAGPA Nsym . Yes
10 72025930 A C exonic NPFFR1 Nsym .
16 14859247 C T exonic NPIPA2 Nsym rs753086489

9 99699418 C A exonic NUTM2G Nsym .
1 159283843 C A exonic OR10J3 Nsym .

14 20389481 C T exonic OR4K5 Nsym rs372302210
5 140221312 A C exonic PCDHA8 Nsym . Tier1

19 15580517 G A exonic PGLYRP2 Nsym .
17 27277948 C T exonic PHF12 Nsym . Yes
10 3190389 C T exonic PITRM1 Nsym .

8 110467001 A T exonic PKHD1L1 Nsym .
12 133240651 T C exonic POLE Nsym rs539312991 Tier1

7 72412591 G A exonic POM121 Nsym rs201184041
2 130832415 C T exonic POTEF Nsym rs757139860

22 16287673 C G exonic POTEH Nsym .
3 12421223 G A exonic PPARG Nsym . Tier 1 Yes
1 12921443 T C exonic PRAMEF2 Nsym rs201306561
8 27293809 C T exonic PTK2B Nsym rs201274282 Yes

12 9317737 G A exonic PZP Nsym rs150415784
8 74233189 G C exonic RDH10 Nsym .

22 29837565 C G exonic RFPL1 Nsym .
19 49120614 T A exonic RPL18 Nsym . Yes
15 33873844 G T exonic RYR3 Nsym .

2 120209639 C T exonic SCTR Nsym .
9 135163738 T C exonic SETX Nsym . Yes

19 52133292 A G exonic SIGLEC5 Nsym rs1973019
9 131115799 G A exonic SLC27A4 Nsym rs148488076
6 107956183 C T exonic SOBP Nsym . Yes

15 43892272 T C exonic STRC Nsym .
6 46658843 C T exonic TDRD6 Nsym rs369734344

16 4312380 T A exonic TFAP4 Nsym .
1 43784988 G C exonic TIE1 Nsym .
5 72419763 C T exonic TMEM171 Nsym rs767193589

19 55889178 C T exonic TMEM190 Nsym rs146395464
21 19685332 A T exonic TMPRSS15 Nsym .
13 43180704 A C exonic TNFSF11 Nsym .

2 210777327 G T exonic UNC80 Nsym .
4 9213373 C T exonic USP17L10 Nsym rs759473039
2 61528508 A C exonic USP34 Nsym . Yes
4 1957776 G T exonic WHSC1 Nsym . Tier1

X 100177851 C T exonic XKRX Nsym . Yes
19 38057101 T C exonic ZNF571 Nsym .

1 151261719 C A exonic ZNF687 Nsym .
19 58385906 G C exonic ZNF814 Nsym rs545083939

 Table A.4: Mutations in coding regions with functional significance: Functional impact was 

assessed using wANNOWAR11. 
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Figure A.1: Protein coding genes across all samples with predicted functional impact. 
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Samples Chr Position Distance Number of mutations within 1kb
162 17 50057108 2643 27

65 17 50057108 2643 26
120 21 20809988 2728 20
162 8 37614329 1062 20
162 21 20809988 2728 20
162 4 123264467 2866 17

6_T3 4 123264467 2866 17
77 1 238324648 3419 14

162 1 238324648 3419 14
162 1 242076771 490 13
162 6 116067481 938 12
120 21 27943158 1192 11
162 17 29253772 461 11
162 21 27943158 1192 11
162 Y 58909134 490 11

6_T3 17 29253772 461 11
6_T1 8 37614329 1062 11

120 21 27939898 2733 10
162 21 27939898 2733 10

  

 

Table A.5: Kataegis events in tumour samples 



 

 179 

APPENDIX B 
SUPPLEMENTARY TABLES ANF FIGURES FOR 

CHAPTER 4 

 

 

0

50

100

150

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�������������

���������
���������

����
���������������

������
���
���
������

���
����

����
����

����
���

���
��
���

���
�
���

��
��
��
��
�
��
��

��
�
��

��
�
��

��
��

��
�
�
�
�
��

�
�
�
�
��

�
�
��

µ � = 88.1

R2 = 0.98

0

200

400

600

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

100

125

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

��������
������
���
���
��
��
���
�����
���
����
����
�
������

�����
����
���
���
���
���
��
���
���
������

��
���

����
��
�����

����
��
�����

�
��
�����

�����
����

���
��

����
���

���������
µ � = 74.9

R2 = 0.96

0

100

200

300

400

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

��������
���
���
�����
���
�����
�������

�����
�����

������

����
�����

�����
����

���
�����

��
��
���

�������
���

���
���

��
���

���
���

���
��
���

��
�����

��
�
��

��
��

�
��

�
����

��������

µ � = 107

R2 = 0.99

0

200

400

600

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
���
��
���
��
�
���
���
��
��
���
���
����
���
��
���
��
���
���
���
���
���
����
����
����

�����
�����

�����
������

���
�������

��������
�����

�����
���

�����
�����

����
����

������������

µ � = 109

R2 = 0.9

0

200

400

600

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�������
�������

����
��
�����
���

�������
�����
������

��
���
�������

������
�
�������

�����
�
������

����
���

���
���

���
��
������

������
�
����

��
�����

���
�
����

����
�
����

���
�����

µ � = 38.4

R2 = 0.99

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0063

Sample 0065_N

Sample 0065_BPH

Sample 0066

Sample 0069

P, Area under the curve = 0.41
P, Kolmogorov distance = 0.35
P, Euclidean distance = 0.36

PC (BPH)

PC (BPH)

PC (BPH)

PC

PC

0

200

400

600

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

P, Area under the curve = 0.03
P, Kolmogorov distance = 0.06
P, Euclidean distance = 0.03

P, Area under the curve = 0.23
P, Kolmogorov distance = 0.4
P, Euclidean distance = 0.21

P, Area under the curve = 0.001
P, Kolmogorov distance = 0.002
P, Euclidean distance = 0.001

P, Area under the curve = 0.24
P, Kolmogorov distance = 0.27
P, Euclidean distance = 0.23



 

 180 

 

 
 

 

 

 

0

50

100

150

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

������
��
���
���
���
�����
�����
���
��
���
��
�������

������
������

��
���
��
��
������

�����
�������

����
�������

��
��
��
��
�����

��
��
�����

����
������������

�����
����

���������

µ � = 30.6

R2 = 0.95

0

50

100

150

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

30

60

90

120

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

����������
��
����
���
���
���
��
��������

����
��
����
�����

�������
�����

���
���
�������

���
�����

����
���

�����
�
��
������

�����
��
�
���

�
��

��
�����

����
����

����
����

�
��

������µ � = 46.5

R2 = 0.97

0

100

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
������
����
����
�����������

����
������

����
�����������

���������
�����

�����
���
���
����

��
��
���
����

���
���

��
��
��
��
���

��
�
��
��
�
�
��

��
���

��
�
��

�
�
��

�
�
�
��

�
��

��
�����

�
��

µ � = 72.8

R2 = 0.99

0

100

200

300

400

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
������
���
��
���
���
��
��
���
���
����
���
��
���
��
���
���
���
���
���
��
����
��
����

��
�����

���
���
��
����

�����
����

����
��
�����

�����
����

����
�����

�����
����������

����������

µ � = 188

R2 = 0.93

0

300

600

900

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

30

60

90

120

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�������
���
�
���
��������

��
���
�����
�����
��
����
����
���
������

���
���
��
����

���
�����

��
�����

����
�����

�
�����

����
��
���

��������
���

��
�������

�������
����

������������

µ � = 34.8

R2 = 0.95

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0072

Sample 0073_BPH

Sample 0073_N

Sample 0074

Sample 0076

P, Area under the curve = 0.008
P, Kolomogorov distance = 0.014
P, Euclidean distance = 0.008

P, Area under the curve = 0.09
P, Kolomogorov distance = 0.18
P, Euclidean distance = 0.08

P, Area under the curve = 0.77
P, Kolomogorov distance = 0.63
P, Euclidean distance = 068

P, Area under the curve = 0.002
P, Kolomogorov distance = 0.005
P, Euclidean distance = 0.002

P, Area under the curve = 0.003
P, Kolomogorov distance = 0.007
P, Euclidean distance = 0.005

PC (BPH)

PC

PC (BPH)

PC

PC



 

 181 

 

 
 

 

 

 

 

0

50

100

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

��������
���
����
��
�����
�����
�����
���
����
��
�����

����

�����
�
���
�
��
��
������

���
������

����
�������

������
����

���
����

��
���

��
���

����
����

������
���

����
������������

µ � = 35.4

R2 = 0.96

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�������
�����
���
���
����
����
��
�����
��������

���
�������

����
��
��
�
���
������

���
����

��
���
���

����
�����

����
����

�
�
�����

�������
�����

��
�����

���
������

���
������������

µ � = 42.5

R2 = 0.97

0

100

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

������
����
����
�����
���
���������

�
���
����
��
����
�����

�������
���
��
����

����
���
���
��
��
�
��
����

��
�
���

�
���

�
��
��
���

���
��������

����
������

��
����

�����
���

������
����

µ � = 37.8

R2 = 0.96

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

30

60

90

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������

���
���
�����
���
����
����
���
��
����
����
�������

�����
��
���
��
����

���
����

���
����

���
�����

��
���

���
���

��
���

���
���

��
���

�
���

��
��

��
���

��
���

��
��

�
����

��������

µ � = 152

R2 = 0.99

0

250

500

750

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

50

100

150

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������

������
�����
���
����������

���
����
����
�������

������
������

��
����

���
���
���
������

����
���

���
�
��������

�����
����

��
����

���
��

������
����

�����
�������������

µ � = 26.3

R2 = 0.97

0

50

100

150

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Samp e 0077_N

Sample 0077_BPH

Sample 0115

Sample 0116

Sample 0120

P, Area under the curve = 0.01

P, Area under the curve = 0.02

P, Area under the curve = 0.02

P, Area under the curve = 0.16

P, Area under the curve = 0.02

P, Kolomogorov distance = 0.04
P, Euclidean distance = 0.01

P, Kolomogorov distance = 0.01
P, Euclidean distance = 0.03

P, Kolomogorov distance = 0.02
P, Euclidean distance = 0.02

P, Kolomogorov distance = 0.21
P, Euclidean distance = 0.9

P, Kolomogorov distance = 0.03
P, Euclidean distance = 0.03

PC

PC

PC

PC (BPH)

PC



 

 182 

 

 

 
 

 

 

 

0

200

400

600

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
������
����
����
�����
���
�����
�������

���
��
���
���
�����

����
��
�
��
���
������

������
��
���
����

����
��
�
���

���
�
��
�
��
�
����

�����
�
���

�
���

��
�
���

���
�
��

���
��

�
��

��
��

��
����

µ � = 38.1

R2 = 0.99

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�������
����
�������

�
��������

�����
�������

�����
������

����
��
���
�����

������
�����

�
���
����

���
����

���
����

������
����

������
���

���
�
�����

���
����

���
��

�
���

���������µ � = 42.1

R2 = 0.98

0

50

100

150

200

250

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�������

����
���
�����
��
�
�����
�����
���
������

���������
�����

����
���
��
������

����
��
�������

�������
����

�����
��
�
��
�����

�����
���

��
��

����
����

�
����

���
���

����������µ � = 39.8

R2 = 0.97

0

50

100

150

200

250

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������

������
������
�������

������
������

����
��
�����

����
��
�
�����

������
��
�
������

���
���
�����

��
����

��
����

��
��
���

���
��
����

��
��

��
���

�����
�
���

��
����

���
�������

µ � = 33.7

R2 = 0.99

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

����������
������
�����
������

���
���
��
����
����
�������

�������
�����

���
���
���
����

�
�������

����
������

���
��
��
�
�
�����

����
�
����

��
��

��
���

���
����

��
����

���
��

�����
��

µ � = 36.8

R2 = 0.99

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0122

P, Area under the curve = 0.28
P, Kolmogorov distance = 0.37
P, Euclidean distance = 0.29

Sample 0124

Sample 0127

Sample 0140

Sample 0144

P, Area under the curve = 0.09
P, Kolmogorov distance = 0.16
P, Euclidean distance = 0.08

P, Area under the curve = 0.08
P, Kolmogorov distance = 0.15
P, Euclidean distance = 0.07

P, Area under the curve = 0.14
P, Kolmogorov distance = 0.17
P, Euclidean distance = 0.17

P, Area under the curve = 0.25
P, Kolmogorov distance = 0.41
P, Euclidean distance = 0.25

PC

PC

PC

PC

PC



 

 183 

 
 

 

 

 

 

 

0

30

60

90

120

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
���������

��������
����
�
�����
�����
���
��
����
���������

���
���
������

���
���
��
���
���
����

�����
��
����

�
����

���
���

��
���

���
��
��
��
��

���
��

��
��

�
�
�
��

��
��

����
����������

µ � = 47.5

R2 = 0.99

0

100

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

������
����
������
���������

��������
���
�����
����
�����

������
������

������
��
�
����

���
��
���
�����

����
�
���

���
��
���

���
��
����

��
�����

��
�
���

�
�
���

�
��

���
�����

��������µ � = 32.7

R2 = 0.99

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

80

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�����������
�����
���
���
��������

�����
����
��
���������

����
��
��
���
����

�
��
���
����

�
�
���
���
���
��
��
���

�
������

���
��
�����

��
��
�������

�����
������

����
��

��������
����

µ � = 37

R2 = 0.96

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
����
������
���
�����
�
��������

�����
����
�����
���������

��������
����
���
���
����

���
���
�����

�������
��
����

���
��
��
����

���
���

�
��
���

���
���

����
����

����
�
������������µ � = 42.3

R2 = 0.98

0

50

100

150

200

250

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

25

50

75

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

���������
��
�����
���
���
�����
������

��
����
����
�������

�������
���
��
������

�������
��
��
����

�������
������

����
��
��
�������

���
���

���
��

�
��

���
��

����
����

��
��

�����
���

µ � = 38.7

R2 = 0.97

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0145

Sample 0146

Sample 0149

Sample 0152

Sample 0156

P, Area under the curve = 0.22
P, Kolmogorov distance = 0.35
P, Euclidean distance = 0.24

P, Area under the curve = 0.11
P, Kolmogorov distance = 0.19
P, Euclidean distance = 0.13

P, Area under the curve = 0.02
P, Kolmogorov distance = 0.02
P, Euclidean distance = 0.02

P, Area under the curve = 0.05
P, Kolmogorov distance = 0.08
P, Euclidean distance = 0.07

P, Area under the curve = 0.12
P, Kolmogorov distance = 0.24
P, Euclidean distance = 0.09

PC

PC

PC

PC

PC



 

 184 

 

 
 

 

 

 

 

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�������

������
�
���
���
�������

��������������
���������

����
��
�
��
���
������

��
���
���
��
�����

���
����

��
��
��
������

�����
���

�����
���

�������
���

������������������
����

µ � = 28.3

R2 = 0.96

0

50

100

150

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

100

200

300

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
����������

����
�����
���
���
��������

����
����
���
������

������
��
��
����
����

���
�����

�
��
����

�����
��
���

���
����

�
������

����
���

���������
���

���
�����

��
�
�����

�
���

�
�
��

µ � = 31.5

R2 = 0.98

0

50

100

150

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

50

100

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�������������
����
��
�����
�������

��
��
����
��
�����

����

��������
��
��
��
����

��
���
���
���
����

���
����

��
��������

��
�����

���
�
�
�
�����

��
���

�����
��������

�����
������

���

µ � = 35.4

R2 = 0.97

0

50

100

150

200

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

100

200

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�����������
�����
���
���
�����

�����
���
������������

���

�������
��
���
������

���
��
�����

�����

���������
����

����
�������

������
���

���������
�������

������

������������

µ � = 75.8

R2 = 0.95

0

100

200

300

400

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

200

400

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
����������

����
�������

����
��
�����
���
������

���������

�������
�����

������
�����

���
�
������

�������
���

���
����

��
�����

������
���

���
��

����

���
��

��
����

��
����

��������

µ � = 89.7

R2 = 0.99

0

200

400

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0159

Sample 0160

Sample 0162

Sample 6_N1

Sample 6_N2

P, Area under the curve = 0.009
P, Kolmogorov distance = 0.005
P, Euclidean distance = 0.01

P, Area under the curve = 0.18
P, Kolmogorov distance = 0.12
P, Euclidean distance = 0.16

P, Area under the curve = 0.02
P, Kolmogorov distance = 0.02
P, Euclidean distance = 0.02

P, Area under the curve = 0.01
P, Kolmogorov distance = 0.02
P, Euclidean distance = 0.01

P, Area under the curve = 0.16
P, Kolmogorov distance = 0.23
P, Euclidean distance = 0.16

PC

PC

PC

PC

PC



 

 185 

 
 

 

 

0

200

400

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

����������
����
�����
�����
���
�����
���
����
����
�������

�������
�����

������
���
����

��
������

�����
��
���

���
�����

������
�����

��
��
���

������
�����

��
���

���
����

��������µ � = 293

R2 = 0.97

0

500

1000

1500

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

30

60

90

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
����������

����
�����
���
�����
�����
���
����
��
���
������

������
���
���
������

���
��
���
���
����

����
��
����

���
����

��
�����

�����
��
��
���

��
����

���
����

���
���

������
������µ � = 136

R2 = 0.98

0

200

400

600

800

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

100

200

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�����������

����
�����
������

�����
����
������

����
�����

����
���
����
��
���
���
��
�����

���
����

����
��
��
��
���

���
�
��
���

��
���

��
��
��
��
��

��
���

��
�
��

��
��

��
��

���
��

�����
��

µ � = 221

R2 = 1

0

500

1000

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

100

200

300

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������������

�����
���
�����
��������

����
�������

����

�����
���
��
����
����

���
��
����

���
���

�������
������

����
�
��
����

�����
��
���

��
��

����
���

��
��

�
��

���
���

��
����

�
��

µ � = 80.1

R2 = 1

0

100

200

300

400

500

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

����������
�
�����������

�����
��������

���������������

�����
�����

��
������

����
�
���
��
�����

����
���

���
���

�����
������

����
�
��
��

��
�
��

��
��

��
��

�
���

��
���

���
��

����
���

µ � = 49.4

R2 = 1

0

100

200

300

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 6_N3

Sample 7_N1

Sample 7_N2

Sample 7_N3

Sample 8_N2

P, Area under the curve = 0.06
P, Kolmogorov distance = 0.12
P, Euclidean distance = 0.05

P, Area under the curve = 0.11
P, Kolmogorov distance = 0.17
P, Euclidean distance = 0.12

P, Area under the curve = 0.74
P, Kolmogorov distance = 0.84
P, Euclidean distance = 0.91

P, Area under the curve = 0.51
P, Kolmogorov distance = 0.68
P, Euclidean distance = 0.59

P, Area under the curve = 0.59
P, Kolmogorov distance = 0.84
P, Euclidean distance = 0.65

PC

PC

PC

PC

PC



 

 186 

 
 

 

 

 

 

 

0

50

100

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������

�����
������
��������

������������
����
����
���
�����

�������
��
����

���
��
���
�
������

���
��
��
���

���
���

��
���

���
����

��
���

�
�
��

��
���

���
��

���
��

�
��

��
��

��
�
��

���

µ � = 75.4

R2 = 1

0

100

200

300

400

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

0.00 0.25 0.50 0.75 1.00
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
��������

������
����������

�������
����
�����
����
������

�����
��
��
�����

��
��
���
������

��
����

����
���

���
���

��
���

����
��
���

�
��
�
�
�
��

��
�
�
���

��
�
��

��
�
��

�
��

���
��

��
��

���

µ � = 62.9

R2 = 1

0

100

200

300

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

5

10

15

0.00 0.25 0.50 0.75
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
����������

����
����������

�������
�
�����������

�������

������
��������

����

���
�����

�
������

�������
����

����
����

��
������������

���
��

�������
��

�

��
�����

���������
���

µ � = 15.5

R2 = 0.99

0

25

50

75

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

20

40

60

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�����
���
��
���
��
��
���
����
���
����
���
���
���
���
���
����
����
���
���
��
��
����

����
����

����
���
���
����

������
����

���
����

�����
���

���
�����

����
����

����
���

����
��������

µ � = 173

R2 = 0.94

0

250

500

750

1000

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

5

10

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�������

����
��������

��������
��������

����
�����������

������������
��
����

���������
��
����

�������
���

������
��������

���
�
��
�

����
���

��
��

��
�

����
�
�����

���
�����

����

µ � = 15.3

R2 = 1

0

25

50

75

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 8_N3

Sample 0240

Sample 0238

Sample 0239

Sample 0241

P, Area under the curve = 0.59
P, Kolmogorov distance = 0.72
P, Euclidean distance = 0.72

P, Area under the curve = 0.78
P, Kolmogorov distance = 0.77
P, Euclidean distance = 0.9

P, Area under the curve = 0.32
P, Kolmogorov distance = 0.33
P, Euclidean distance = 0.32

P, Area under the curve = 0.009
P, Kolmogorov distance = 0.01
P, Euclidean distance = 0.008

P, Area under the curve = 0.42
P, Kolmogorov distance = 0.35
P, Euclidean distance = 0.44

No PC
N

No PC

PC

PC

No PC (BPH)



 

 187 

 

 

 

 

 

 

0

5

10

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

����������
����
�����

�������������
���
����
�����������

������������
��������������

�������
����

���

��

�
���

����
�������

������
���

����
�����

�����
���

��
���

������
������

µ � = 16.1

R2 = 0.98

0

25

50

75

100

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

5

10

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�����������
����������������

������������
��
����������������

��
������������

�������
�����

�������
������

��
��

�������
����

�
�
��
���

���
����

���

��������
����

��

�
�
���

�

��

µ � = 14

R2 = 0.99

0

20

40

60

80

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

5

10

15

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

��������
���

��������
��������

�����������������������
������������������

��������
�������

�����

����
����

��
���������

����
�

�
���

����
�����

����
��

��
��

�
����

�

�����
�

���

µ � = 14.4

R2 = 0.99

0

25

50

75

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

2

4

6

8

0.0 0.2 0.4 0.6
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�

�������������������
������

��
��������

����
�����������

������
�
�����

��
���������

���
�
������

�������
��
����

��
����

�����
������

���
��

�
��

��
��

��
���

��
�
��

���

���
�
�
�������

µ � = 11

R2 = 0.99

0

20

40

60

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

0

10

20

30

0.0 0.2 0.4 0.6 0.8
Allelic frequency f

N
um

be
r o

f 
m

ut
at

io
ns

VAF histogramA

�
�������������������������

��������������
�����������

���������
���
������

���������������
������

�
����

��
�����

������
�����

��
��
��

�
�
��

���

��
�
��

��
��

��
��

��

�

��
��

�
�

���

µ � = 15.2

R2 = 0.96

0

30

60

90

1/0.25 1/0.1
Inverse allelic frequency 1/f

C
um

ul
at

ive
 n

um
be

r 
of

 m
ut

at
io

ns
 M

(f)

�

�

Best fit line
Data

Linear model best fitB

0.00

0.25

0.50

0.75

1.00

1/0.25 1/0.1
Inverse allelic frequency 1/f

N
or

m
al

ize
d 

M
(f)

Empirical
Theoretical

Normalized cumulative distributionC

Sample 0242

Sample 0243

Sample 0244

Sample 0245

Sample 0246

No PC

No PC

No PC

No PC

FB (BPH)

P, Area under the curve = 0.18
P, Kolmogorov distance = 0.26
P, Euclidean distance = 0.15

P, Area under the curve = 0.93
P, Kolmogorov distance = 0.51
P, Euclidean distance = 0.78

P, Area under the curve = 0.86
P, Kolmogorov distance = 0.58
P, Euclidean distance = 0.7

P, Area under the curve = 0.24
P, Kolmogorov distance = 0.51
P, Euclidean distance = 0.23

P, Area under the curve = 0.11
P, Kolmogorov distance = 0.07
P, Euclidean distance = 0.11



 

 188 

 

 

 

 

Figure B.1: (A) VAF distribution of all samples. (B) Cumulative distribution and least 

squares best fit line with R2 values and estimated mutation rates (𝝁/𝜷). (C) Normalized 

cumulative distribution and Area under the curve, Kolmogorov distance and Euclidean 

distance value. 
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 Figure B.2: 2D density plots of the posterior distribution of the fraction of cells (modelled 

using the Bayesian Dirichlet process) harbouring a mutation for 6 samples. (A) In case 6 we 

observe shared clonal mutations (6_T1/6_T4; 6_T1_6_2), unique clones in 6_T1, 6_T3) and 

two unique subclones (6_N1 and 6_N3). (B) BPH cases 0065 and 0077 show shared subclonal 

mutations in cases 0065 (N/BPH) and 0077 (N/BPH), unrelated subclones in 0065_N, 0077_N 

and unrelated clones in 0065_T and 0077_T. (C) Single cases 0066, 0120 and 0146 present a 

tumour clonal cluster with an extra subclonal tumour subclone in ~ 50% of cells and a subclonal 

cluster in the normal sample. 
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cluster T1 T2 T3 T4 N1 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values Coding genes

2 0 0 0 0 0 0 0.346 319 207 1 2.96 34% in N3

4 0 0 0 0 0.481 0 0 442 54 1 4.11 48% in N1 RYR3, MEPE 

7 0 1.030 0 0 0 0 0 1520 287 8 14.14 100% in T2

8 0 0 0 0.463 0 0 0 308 114 5 2.86 46% in T4

9 0.931 0 0 0 0 0 0 2538 360 46 23.61 93% in T1

HIST1H2BJ, NUBPL, SRF1, GNPDA2, SLC13A3, DUOX1, CCR3, 
DCC, RRP9, CDK2AP2, ACSS3, PTEN, SORBS1, TTC35, SETX, ZBBX, 
DNPEP, RYR2, C19orf38, AGAP2, ASTN1

10 0 0 0 0.955 0 0 0 1300 113 5 12.09 95% in T4

19 0.950 0 0 0.983 0 0 0 1415 116 11 13.16
95% in T1, 
100% in T4 CNGA4, MYO1F, HS35T4, PDGFRB, CALCRL, AVPR1B 

25 1.016 1.091 0 0 0 0 0 1108 111 21 10.3
100% in T1, 
100% in T2 PTPRO, DDX4, ANKRD17, LCA5, SLC22A16, CDC5L

26 0 0 1.129 0 0 0 0 554 185 46 5.15 100% in T3

3 0 0 0 0 0 0.353 0 332 316 0 2.62 35 % in N2

1 0 0 0 0 0 0 0.230 751 208 0 5.93 23 % in N3

6

cluster T1 T2 T3 T4 T5 N1 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 1.184 0.575 0.003 0.008 0.005 0.002 0.003 0.003 1148 43 0 21.71 100% in T1, 56% in T2
HIC1, APOL3, KIT, TRIM49, 
KIAA1614, NCOA7

2 0.014 0.003 0.002 0.011 0.005 0.355 0.304 0.011 622 4 0 11.76 35% in N1, 30% in N2 ADAM28, BCAT1, FAT2

6 0.010 0.001 0.003 0.001 0.733 0.001 0.003 0.002 253 67 8 4.78 73% in T5

10 1.242 0 0.003 0.011 0.003 0.001 0.002 0.003 395 87 8 7.47 100% in T1 RPL11

12 0.020 0.004 0.004 0 0.620 0.001 0.002 0.002 209 67 7 3.95 62% in T5

13 0.052 0.812 0.003 0.011 0.004 0.001 0.002 0.002 980 67 15 18.53 81% in T2

14 0.010 0.002 0.964 0.009 0.006 0.001 0.003 0.002 683 133 1 12.92 96% in T3

20 0.010 0.003 0.002 0.947 0.966 0.001 0.003 0.003 273 9 0 5.16 94% in T4, 96% in T5

3 0.010 0.006 0.014 0.027 0.009 0.000 0.180 0.204 237 206 0 3.94 18 % in N2, 20 % in N3

9 0.006 0.003 0.002 0.015 0.004 0.015 0.216 0.003 282 627 0 4.69 22% in N2

40 0.019 0 0.005 0.024 0.006 0.21 0.3035 0.0108 64 3 0 1 21% in N1, 30% in N2

21 1.291 0.004 0.002 0.009 0.004 0 0.004 0.0033 63 86 7 1 100% in T1 C12orf63

17 0.005 0 0.003 1.506 0.974 0 0.0011 0.0004 78 9 0 1.3 1005 in T4, 97% in T5

7

Table B.1: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants for case 0006 (prostate cancer patient with multiple normal and a tumour samples). 

Two subclone in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, indels and genes with predicted functional significance are annotated for each cluster. 

Table B.2: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants for case 0007 (prostate cancer patient with multiple normal and a tumour samples). 

Two subclone in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, indels and genes with predicted functional significance are annotated for each cluster. 
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cluster T1 T2 T3 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 0.977 1.000 0 0 0 1526 71 25 41.41112619 100 % in T1, 100 % in T2
PHRF1, C22orf43, CEACAM1, 
SIGLEC11, ZCCHC8, PHF10, RASAL2, 

21 0.518 0.013 0.014 0.005 0.004 204 111 3 5.535956581 51 % in T1

35 0.926 0.545 0.004 0 0 67 72 24 93 % in T1, 55 % in T2 MIA3

33 0.003 0.555 0.009 0.001 0.002 87 100 0 2.360922659 56 % in T2

24 0.433 0 0 0 0 68 110 3 43% in T1 AASDH

27 0 0 0 0.200 0 54 461 0 1.465400271 20 % in N2

40 1.015 0.993 0.138 0 0 44 2 0 1.194029851  100 %in T1, 100 % in T2, 13 % in T3

18 0.976 0.959 0.06 0.016 0.004 261 1 0 7 98% in T1, 96% in T2, 6% in T3

7 0.029 0.037 0.065 0.184 0.191 206 0 0 5.6
3% in T1, 4% in T2, 6% in T3, 18% in N2, 
19% in N3

12 0.063 0.068 0.223 0.157 0.254 100 0 0 2.7
6% in T1, 7% in T2, 22% in T3, 16% in N2, 
25% in N3

8

Table B.3: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants for case 0008 (prostate cancer patient with multiple normal and a tumour 

samples). One subclone in the normal sample was not considered due to suspected evidence of 

neutral evolution (green). Cluster 12 (grey) was discarded because it was not possible to 

include it in the phylogeny according to the pigeonhole principle (see section 4.4.4.3). Each 

row represents a cluster identified by the Bayesian Dirichlet process. SNVs, indels and genes 

with predicted functional significance are annotated for each cluster. 
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Table B.4: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants from prostate cancer patients with a normal, a BPH and a tumour sample. Two 

subclones in the BPH sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, indels and genes with predicted functional significance are annotated for each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster N BPH T SNVs Indels Svs Total SNVs (%) CCF values Coding genes
1 0 0 0.534 275 205 16 6.66                 53% in Tb CHD1, ZNF616, SLAM9

2 0 0 1.018 2548 204 16 60.34
100% in Ta

AGRN, NAP1L4, DNAH9, OR4C5, A1CF, CES1, KIAA0182, 
CHST10, RANBP2, PLBD2, COL29A1, LRP1B, FBXO5, OBSCN

3 0 0.295 0 419 386 0 11.75 29 % in BPH
4 0.396 0 0 170 274 0 11.76 39% in N ANKRD20A2
5 0.396 0.389 0 61 94 0 1.74 40% in N, 39% n BPH
7 0.595 0.578 0 68 94 0 1.94 60% in N, 58% in BPH

cluster N BPH T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0 0 0.526 102 104 32 3.69 52% in Tb

2 0 0 0.996 1680 103 32 60.91 100% in Ta
FAN86, SMARCC2, KNCK13, KIAA1409, PLXNC1, TRRAP, 
SLCO20A1, INPP4B

3 0 0.276 0 560 181 0 20.3 28 % in BPH
5 0 0.643 0 71 181 0 2.57 64 % in BPH
8 0.464 0 0 249 213 0 9.02 46% in N
9 0.500 0.440 0 55 102 0 1.99 50% in N, 44% in BPH

11 0.717 0.689 0 39 101 0 1.41 71% in N,69% in BPH

cluster N BPH T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.002 0.001 0.375 118 274 93 3.77 37% in Tb

2 0.002 0.002 0.985 2699 274 94 86.34 100% in Ta

LYPD3, ARID2, SPOP, MAP4, SPATS2, GLIS1, U2AF2, IBTR, 
C10orf12, SULT1C3, MGMT, TGFBI, MTMR15, APOBEC3F, 
KIF26B

3 0.084 0.333 0.020 113 0 0 3.61 8% in N, 33% in BPH, 2% in T
5 0.380 0.335 0.023 88 0 0 2.81 37 % in N, 33 % in BPH, 2 % in T

0077

0073

0065
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cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.001 0.512 417 148 41 13.65 51% in Tb GLIPR1L2, LPHN2, CCDC18

2 0.002 1.105 1783 148 42 58.4 100% in Ta
C2orf63, USP34, DPYD, CAP29, SLC3A1, ETV3, 
TIPRL, AP1G2, TIMM50, TGM7, TUBGCP4, NCOR2

3 0.528 0 852 469 0 27.9 52% in N RDH10, SOBP, MAP3K4

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.003 0.496 157 171 122 6.6 50% in Tb

2 0.004 1.056 2077 171 122 87.41 100% in Ta
POLRMT, DDX17, RTN2, GDF2, CPT2, PAWR2, 
RASGRF2, DUSP6, ZNF518, NCKAP5, ARHGEF5

3 0.383 0.031 117 7 0 4.92 38% in N,3% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 0.002 0.497 1071 98 12 33.46 49% in Tb
HYAL1, C3orf63, ZNF280D, CDH8, MIR1538, 
NAA35, IRF5, TRA2B

2 0.002 0.953 1082 99 13 33.81 95% in Ta
DSG2, RYR1, CYP2D6, CRX, MIR1279, CBX8, GOT1, 
C6orf170, SLC22A5

3 0.468 0 1023 680 0 31.96 46% in N
PHF12, FOXJ3, L1TD1, NPFFR1, COL6A1, ZNF687, 
UNC80 

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 0.002 0.880 2453 302 88 92.46 88% in T

KCNV2, FBXO10, EHD4, LRP6, MYOI5A, LRP10, 
GOLGA8A, CUL7, KLC4, SIGLEC7, BTBD18, EXOC3L, 
NDUFV1, FAM65A, KCNQ5, PABPC1, TET2, NUP205, 
DNAI2, NAGPA, GGTLC1, BAIAP2L2

2 0.370 0.022 189 6 0 7.12 37% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.005 0.390 70 148 20 3.61 39% in Tb

2 0.001 1.051 1638 148 21 84.52 100% in Ta

OR52W1, FAM160A2, CLU, BRCA1, CGB1, FCGRT, 
MIER3, DOCK7, NOLC1, ALDH2, DYNLT1, TTLL2, 
TTN, NCK15D

3 0.355 0 183 569 0 9.44 35% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.003 0.359 620 191 18 21.54 36% in Tb APC, CTNNA2, MORC3

2 0.002 1.052 2127 191 19 73.9 100% in Ta

FAM193, DNAH3, APC, C17orf58, SMC2, BUB1, 
AHSG, PLCL1, KIAA1751, EFCABUB, TAF3, ENO1, 
NKX3-2, IPO4, CSNK1A1L, CD33, HEATR6

3 0.364 0.020 125 2 0 4.34 36% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.000 0.427 174 94 6 8.73 43% in Tb KIAA1683, FSTL5

2 0.002 0.987 1616 93 7 81.12 100% in Ta
IQCE, ELP2, P2RY2, HIP1, RNF219, KIAA1731, 
TDRD1, EPB41L2, PTTG1, ATP13A5, TIPRL

3 0.303 0.009 130 446 0 6.52 30% in N
6 0.608 0.047 41 5 2 60 % in N, 4 % in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 0.003 1.560 2391 179 2 94.54 100% in T
C3orf63, CSPP1, CHRDL2, ROBO2, IMPA1, PPP1CC, 
BTNL8, CEP170, TTN, INCENP, MME

2 0.359 0 120 472 0 4.74 36% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes

1 0.002 1.208 2719 263 53 90.75 100% in T

TRIP13, CYYR1, TRIOBP, KRT12, ITGB2, IL6ST, 
CCDC85B, KIAA0317, NRG3, C9irf64, RARS2, 
DDX10, CSMD3, RAD50, TG, PMPCA, LRP1B, 
ABCB11, RBM44, CD5L, DNAH3, NKX3-1, CBY3

2 0.269 0.110 123 2 0 4.1 26 % in N, 11 % in T
5 0.558 0.131 123 2 0 4.1 56% in N, 13% in T

0146

0066

0076

0074

0072

0156

0149

0120

0115
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Table B.5: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants from prostate cancer patients with a normal and a tumour sample (except case 

0240, where there is no matched tumour). Three subclones in the normal sample were not 

considered due to suspected evidence of neutral evolution (green). Each row represents a 

cluster identified by the Bayesian Dirichlet process. SNVs, indels and genes with predicted 

functional significance are annotated for each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0 0.530 133 147 16 6.42 53% in Tb INTS9, PLEKHA8

2 0.003 0.985 1790 146 16 86.43 100% in Ta
PADI3, MYH7, KIAA171, RAG1, MYT3, AMBN, 
NUMA1, SIRT7, GOLGB1, GPR111

3 0.444 0.016 148 5 0 7.14 44% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0 0.580 106 129 239 3.58 58% in Tb SDCCAG3

2 0.004 0.986 2670 129 240 90.32 100% in Ta

LRRK2, GUCA2A, WDR6, WNT5A, JUN, CDH8, 
EHBP1, NOLC1, CELSR2, HSD3B2, ATP6V0A4, TTN, 
KISS1, ZC3H13, B46ALT4, BPNT1

3 0.401 0.037 180 5 0 6.08 40% in N,4% in T TIE1

cluster N T SNVs Indels SVs Total SNVs (%) CCF values Coding genes
1 0.277 NA 365 279 0 42.8 28%
2 0.573 NA 73 280 0 8.56 57%

0240

0162

0159
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Table B.6: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants from BPH fibroblasts from men without prostate cancer. Four subclones were 

not considered due to suspected evidence of neutral evolution (green). Each row represents a 

cluster identified by the Bayesian Dirichlet process. SNVs, indels and genes with predicted 

functional significance are annotated for each cluster. 

 

 

 

 

 

 

 

 

 

 

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0246 1 0.25 149 21 63.6 25%

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0247 1 0.244 134 51 56.3 24% GABPB2, ANK3

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes

1 0.219 1141 92 46.9 22%
MYH10, FASTKD1, MRPS26, WHSC1, 
AMTN, PCDHA8, LAMB4, GPR21

2 0.397 1158 92 47.6 40% DHX32, PGLYRP2, DKKL1, ACR

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
1 0.23 528 57 20.4 23% DONSON, PTK2B
2 0.545 428 58 16.6 54% CCDC18, FAT1, RFPL1
3 0.869 36 58 1.39 87%
4 1.009 1150 58 44.6 100%% KIAA1217, TNFSF11, RPL18

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
2 0.236 545 56 48.8 24%
3 0.403 177 57 15.8 40% OR10J3, PITRM1, ZNF814
4 0.726 302 57 27 73% POLE, DSG3

0250

0251

0252
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Table B.7: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants from prostate cancer patients with a normal and a tumour sample. Subclones 

in the normal sample were not considered due to suspected evidence of neutral evolution. 

Because there was only one normal subclonal cluster for these patients the whole phylogeny 

was not constructed in Figures 4.6 and 4.7. Each row represents a cluster identified by the 

Bayesian Dirichlet process. 

 

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.483 546 256 20 10.53 48 in Tb
2 0.002 1.013 3937 257 21 76 100 % in Ta
3 0.250 0 702 635 1 13.5 25 % in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.609 256 85 12 24.5 61% in Tb
2 0.002 1.016 1257 85 12 73.85 100 % in Ta
3 0.329 0 158 347 0 9.28 33 % in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.003 0.394 2347 214 97 39% in T
2 0.326 0 900 416 0 32% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.021 0.614 1641 157 19 54.86 2% in N, 61% in Tb
2 0.050 1.007 1130 158 20 37.78 5% in N, 100% in Ta
3 0.320 0.018 204 8 0 6.82 32% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.427 290 89 10 11.68 43% in Tc
2 0.002 0.742 524 89 10 21.11 74% in Tb
3 0 1.055 1446 90 11 58.25 100% in Ta
4 0.318 0.000 221 423 0 8.9 32% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.463 466 189 16 19.63 46% in Tb
2 0.001 1.024 1676 188 16 70.62 100% in Ta
3 0.340 0.021 192 5 0 8.09 34% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.001 0.983 2338 284 126 91.29 94% in T
2 0.289 0 186 346 0 7.26 30% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.374 132 128 37 7.22 37% in Tb
2 0.001 1.050 1458 129 38 79.75 100% in Ta
3 0.271 0.016 238 4 0 13.01 27% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.440 734 103 27 28.9 44% in Tc
2 0.003 0.754 380 102 28 14.96 75% in Tb
3 0.004 1.061 1132 102 28 44.58 100% in Ta
4 0.300 0.022 288 9 0 11.34 30% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.562 722 97 29 19.22 56% in Tb
2 0 0.988 1243 97 29 33.09 100% in Ta
3 0.350 0.054 221 6 0 5.88 35% in N, 5% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.007 0.998 3022 165 12 94.43 100 % in T
2 0.345 0.106 163 9 0 5 34 % in N, 10 % in T

0144

0145

0152

0160

0063

0069

0116

0122

0124

0127

0140
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cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0238 1 0.282 118 55 84.2 28%

cluster.noN SNVs Indels Total SNVs (%) CCF values Coding genes
1 0.261 318 67 26.4 26% MED23
2 0.542 712 67 59.2 54% IQGAP1, TFAP4, ZNF571

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0241 1 0.305 90 67 63.8 30%

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0242 1 0.249 60 58 48 25%

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0243 1 0.266 108 77 72.9 29%

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0244 1 0.247 109 62 68.5 25%

cluster N SNVs Indels Total SNVs (%) CCF values Coding genes
0245 1 0.261 64 60 61.5 26%%

0239

Table B.8: Subclonal hierarchies identified by the Bayesian Dirichlet process not including 

SNP variants from a morphologically normal sample from men without prostate cancer. None 

of the subclones except one were considered due to suspected evidence of neutral evolution 

(green). Each row represents a cluster identified by the Bayesian Dirichlet process. SNVs, 

indels and genes with predicted functional significance are annotated for each cluster. 
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Case 6 Case 8 Case 7

Figure B.3: Phylogenies of three patients with multifocal prostate cancer reconstructed by 

Cooper et al.17. Each line represents a clone from a sample. The length of each line is 

proportional to the weighted quantity of mutations on a logarithmic scale. Adapted from 

Cooper et al.17. 
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Figure B.4: Alternate configuration representing the subclonal architecture of patient 

0007 and patients with normal, BPH and tumour samples. (A) In case 0007, subclone in 

N2 is positioned in parallel, as opposed to linearly in Figure 4.6 A. (B) All multiple. 

shared N/BPH subclones and unique normal and BPH subclones have been positioned 

in parallel (evolving independently), in contrast to having originated linearly (Figure 4.6 

B). 
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cluster T1 T2 T3 T4 N1 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values
8 0.01 0.00 0.00 0.00 0.00 0.00 0.35 1052 207 1 7.22 27% in N3

23 0.01 0.00 0.00 0.00 0.48 0.00 0.00 503 54 1 3.45 48% in N1
12 0.01 1.03 0.00 0.00 0.00 0.00 0.00 1720 287 8 11.8 100% in T2
13 0.01 0.00 0.00 0.49 0.00 0.00 0.00 407 114 5 2.79 49% in T4

9 0.80 0.02 0.00 0.00 0.00 0.00 0.00 3418 360 46 23.46 80% in T1
15 0.01 0.01 0.00 0.98 0.00 0.00 0.00 1308 113 5 8.97 98% in T4
16 0.93 0.02 0.00 0.98 0.00 0.00 0.00 1746 116 11 11.98 100% in T1, 100% in T4
26 1.01 1.09 0.00 0.00 0.00 0.00 0.00 1288 111 21 8.84 100% in T1, 100% in T2

4 0.01 0.00 0.98 0.00 0.00 0.00 0.00 1318 185 46 9.04 100% in T3
30 0.01 0.01 0.00 0.00 0.00 0.34 0.00 314 316 0 2.15 34% in N2
45 0.01 0.00 0.00 0.00 0.00 0.00 0.23 179 208 0 1.22 1% in N3

6

cluster T1 T2 T3 T4 T5 N1 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values
1 1.23 0.39 0.00 0.01 0.01 0.00 0.00 0.00 1861 43 0 25.13 100% in T1, 32% in T2
3 0.01 0.00 0.01 0.02 0.00 0.34 0.34 0.02 740 4 0 9.99 34% in N1, 34% in N2

12 0.01 0.00 0.00 0.00 0.68 0.00 0.00 0.00 625 67 15 8.44 68% in T5
9 0.05 0.81 0.00 0.01 0.00 0.00 0.00 0.00 1130 67 15 15.25 80% in T2

24 0.01 0.00 1.02 0.01 0.01 0.00 0.00 0.00 696 133 1 9.39 100% in T3
31 0.01 0.00 0.01 1.06 0.93 0.00 0.00 0.00 485 9 0 6.54 100% in T4, 100% in T5
19 0.01 0.00 0.01 0.01 0.00 0.00 0.23 0.00 304 627 0 4.1 23% in N2
73 0.01 0.00 0.00 0.00 0.00 0.20 0.17 0.00 83 3 0 1.12 20% in N1, 17% in N2

7

cluster T1 T2 T3 N2 N3 SNVs Indels SVs Total SNVs (%) CCF values
1 0.877 0.856 0.042 0.016 0.014 2692 2 0 61.1 88% in T1, 86% in T2, 4% in T3

43 0.002 0.579 0.016 0.003 0.003 96 100 0 2.17 58 % in T2
39 0 0 0 0.201 0 61 363 0 1.38 20 % in N2
53 0.994 0.606 0.002 0.001 0 49 143 49 1.1 100% in T1, 61% in T2
55 0 0.019 0.013 0.272 0.338 41 4 0 1 27% in N2, 34% in N3

8

Table B.9: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants for case 0006 (prostate cancer patient with multiple normal and a tumour samples). 

Two subclones in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, and indels with predicted functional significance are annotated for each cluster. 

Table B.10: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants for case 0007 (prostate cancer patient with multiple normal and a tumour samples). 

Two subclones in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, and indels with predicted functional significance are annotated for each cluster. 

Table B.11: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants for case 0008 (prostate cancer patient with multiple normal and a tumour samples). 

Two subclones in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs, and indels with predicted functional significance are annotated for each cluster. 
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cluster N BPH T SNVs Indels Svs Total SNVs (%) CCF values
1 0.00 0.00 0.53 301 208 16 6.66                     52% in Tb
2 0.00 0.00 1.02 2858 209 16 60.34 100% in Ta
3 0.00 0.29 0.00 571 658 0 6.68 29 % in BPH
6 0.42 0.00 0.00 262 447 0 11.76 41% in N
7 0.47 0.48 0.00 176 150 0 1.5 46% in N, 48% n BPH

10 0.76 0.74 0.00 61 150 0 1.84 73% in N, 73% in BPH

cluster N BPH T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.00 0.48 77 104 32 2.71 48% in Tb
2 0.00 0.00 0.98 1951 103 32 68.75 100% in Ta
4 0.00 0.29 0.00 619 181 0 21.81 29 % in BPH
6 0.00 0.62 0.00 148 181 0 5.21 61 % in BPH
8 0.46 0.00 0.00 460 213 0 16.2 46% in N

11 0.48 0.44 0.00 123 203 0 4.33 48% in N, 45% in BPH

cluster N BPH T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.001 0.376 129 274 93 3.6 37% in Tb
2 0.002 0.001 1.000 2938 274 94 8.2 100% in Ta
3 0.088 0.338 0.012 152 0 0 4.24 8% in N, 34% in BPH, 1% in T
4 0.346 0.317 0.013 232 0 0 6.48 34 % in N, 31 % in BPH, 1 % in T
5 0.563 0.571 0.012 112 4 0 3.12 56% IN n, 57% in BPH

0065

0073

0077

Table B.12: Subclonal hierarchies identified by the Bayesian Dirichlet process including SNP 

variants from prostate cancer patients with a normal, a BPH and a tumour sample. Two 

subclones in the normal sample were not considered due to suspected evidence of neutral 

evolution (green). Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs and indels with predicted functional significance are annotated for each cluster. 
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cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.001 0.516 337 148 41 9.81 51% in Tb
2 0.002 1.078 2038 148 42 59.36 100% in Ta
3 0.529 0 1058 469 0 30.81 53% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.003 0.500 173 171 122 6.19 50% in Tb
2 0.004 1.056 2412 171 122 86.35 100% in Ta
3 0.425 0.036 208 7 0 7.44 42% in N,3% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.502 1062 98 12 32.32 50% in Tb
2 0.002 0.948 1091 99 13 33.21 95% in Ta
3 0.456 0.007 1109 680 0 33.75 46% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 0.901 2453 302 88 89.95 90% in T
2 0.390 0.019 258 6 0 9.46 39% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.004 0.397 84 148 20 3.55 39% in Tb
2 0.000 1.045 1901 148 21 80.38 100% in Ta
3 0.353 0.011 341 569 0 14.41 35% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.003 0.361 694 191 18 21.11 36% in Tb
2 0.002 1.038 2376 191 19 72.28 100% in Ta
3 0.391 0.024 217 2 0 6.6 39% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.000 0.423 172 94 6 7.49 42% in Tb
2 0.003 0.997 1780 93 7 77.52 100% in Ta
3 0.308 0.013 218 446 0 9.49 31% in N
5 0.617 0.069 99 5 4.31 61 % in N, 7 % in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.002 1.608 2408 179 2 92.15 100% in T
2 0.348 0.052 177 4 0 6.77 34% in N and 5% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.000 1.208 2724 263 53 87.92 100% in T
2 0.270 0.076 176 2 0 5.68 27% in N, 7% in T
4 0.595 0.151 162 2 0 5.22 60% in N, 15% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.511 101 147 16 4.1 51% in Tb
2 0.003 0.982 2115 146 16 85.87 100% in Ta
3 0.432 0.034 236 5 0 9.58 43% in N, 3% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0 0.615 141 129 239 3.19 61% in Tb
2 0.003 0.996 3025 129 240 68.6 100% in Ta
3 0.387 0.014 293 5 0 6.64 38% in N, 1.5% in T

0146

0066

0076

0074

0072

0156

0149

0162

0159

0120

0115

Table B.13: Subclonal hierarchies identified by the Bayesian Dirichlet process including 

SNP variants from prostate cancer patients with a normal and a tumour sample. Subclones 

in the normal sample marked in green were not considered due to suspected evidence of 

neutral evolution. Each row represents a cluster identified by the Bayesian Dirichlet process. 

SNVs and indels with predicted functional significance are annotated for each cluster. 

 



 

 203 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.48 605 256 20 10.74 47% in Tb
2 0.00 1.01 4106 257 21 72.9 100 % in Ta
3 0.25 0.00 921 635 1 16.35 25 % in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.61 226 85 12 11.33 60% in Tb
2 0.00 1.00 1478 85 12 74.12 100 % in Ta
3 0.41 0.32 290 4 0 14.54 41 % in N, 3% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.40 2325 214 97 70 39% in T
2 0.33 0.00 957 416 0 28.79 32% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.02 0.62 1890 157 19 54 2% in N, 62% in Tb
2 0.06 1.02 1240 158 20 35.42 5% in N, 100% in Ta
3 0.34 0.03 339 8 0 9.68 32% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.42 305 89 10 18.61 42% in Tc
2 0.00 0.75 618 89 10 69.13 74% in Tb
3 0.00 1.06 1644 90 11 55.57 100% in Ta
4 0.32 0.00 328 423 0 11.08 32% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.46 533 189 16 18.61 46% in Tb
2 0.00 1.03 1980 188 16 69.13 100% in Ta
3 0.35 0.03 289 5 16 10.09 35% in N,, 3% in T
3 0.44 0.54 62 5 0 2.16 44% in N, 54% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.02 0.94 2461 284 126 87.67 95% in T
2 0.31 0.00 290 346 0 10.33 31% in N

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.37 162 128 37 7.27 38% in Tb
2 0.00 1.04 1658 129 38 74.48 100% in Ta
3 0.32 0.02 382 4 0 17.16 32% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.43 847 103 27 28.23 43% in Tc
2 0.00 0.72 326 102 28 10.86 72% in Tb
3 0.00 1.06 1372 102 28 45.73 100% in Ta
4 0.30 0.03 439 9 0 14.63 30% in N, 2% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.00 0.57 718 97 29 31.1 57% in Tb
2 0.00 0.99 1248 97 29 54 100% in Ta
3 0.34 0.03 286 6 0 12.39 33% in N, 4% in T

cluster N T SNVs Indels SVs Total SNVs (%) CCF values
1 0.000 0.990 3227 165 12 92.27 100 % in T
2 0.330 0.120 253 9 0 7.23 343% in N, 12 % in T

0144

0145

0152

0160

0063

0069

0116

0122

0124

0140

0127

Table B.14: Subclonal hierarchies identified by the Bayesian Dirichlet process including 

SNP variants from prostate cancer patients with a normal and a tumour sample. Subclones 

in the normal sample were not considered due to suspected evidence of neutral evolution. 

Because there was only one normal subclonal cluster for these patients the whole phylogeny 

was not constructed in Figures 4.6 and 4.7. Each row represents a cluster identified by the 

Bayesian Dirichlet process. SNVs and indels with predicted functional significance are 

annotated for each cluster. 
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Figure C.1: Coverage and alignment metrics for the first targeted-sequencing run only: The % 

of mapped reads represents the reads that aligned successfully to the reference genome. The % 

of unique reads show moderate to high levels of duplication. 
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Figure C.2: Per base coverage across the total target region (98 genes.) Each line 

represents a sample and the matched dashed lines indicate the average coverage for 

that sample. 
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Sample Chr Postion Ref Alt Vaf Gene Type Mutation Type
36 11 533874 T C 0.02425579 HRAS Normal Missense
87 11 1247919 G A 0.01321138 MUC5B Tumour Missense
87 11 1248959 C T 0.03291714 MUC5B Tumour Missense
88 11 1248959 C T 0.30458716 MUC5B Tumour Missense
89 11 1248959 C T 0.22972973 MUC5B Tumour Missense
94 11 1248959 C T 0.14574315 MUC5B Tumour Missense
7 11 1253905 G A 0.01129944 MUC5B Normal Missense
82 11 1261570 C T 0.05149052 MUC5B Tumour Missense
78 11 1262534 G A 0.01486989 MUC5B Tumour Missense
59 11 1262935 A G 0.03196347 MUC5B Normal Missense
80 11 1264150 C T 0.02412869 MUC5B Tumour Missense
59 11 1264453 G A 0.0178282 MUC5B Normal Missense
28 11 1265018 C T 0.02862254 MUC5B Normal Missense
80 11 1265741 C T 0.01481482 MUC5B Tumour Missense
93 11 1266188 C T 0.01353503 MUC5B Tumour Missense
84 11 1266787 G A 0.01002735 MUC5B Tumour Missense
14 11 1266856 G A 0.0130039 MUC5B Normal Missense
59 11 1266856 G A 0.01949318 MUC5B Normal Missense
87 11 1266950 G A 0.00873138 MUC5B Tumour Missense
11 11 1267210 G A 0.02330509 MUC5B Normal Missense
57 11 1267352 C T 0.01955307 MUC5B Normal Missense
94 11 1267649 C T 0.01877934 MUC5B Tumour Missense
57 11 1267691 A C 0.02219321 MUC5B Normal Missense
57 11 1267694 T A 0.02113606 MUC5B Normal Missense
94 11 1267874 C T 0.01547988 MUC5B Tumour Missense
80 11 1267901 C T 0.01949861 MUC5B Tumour Missense
59 11 1268224 G A 0.02199662 MUC5B Normal Missense
78 11 1268356 C G 0.02071563 MUC5B Tumour Missense
78 11 1268359 C A 0.01950355 MUC5B Tumour Missense
40 11 1268857 T C 0.01468625 MUC5B Normal Missense
84 11 1268887 G A 0.01456311 MUC5B Tumour Missense
80 11 1269835 G A 0.02681992 MUC5B Tumour Missense
82 11 1269938 C T 0.02569593 MUC5B Tumour Missense
93 11 1270253 C T 0.01198872 MUC5B Tumour Missense
80 11 1270361 C T 0.02250804 MUC5B Tumour Missense
78 11 1270543 C T 0.01218274 MUC5B Tumour Missense
31 11 1270603 G A 0.01582279 MUC5B Normal Missense

07-Feb 11 1270841 C T 0.02097902 MUC5B Normal Missense
93 11 1270964 C T 0.01824818 MUC5B Tumour Missense
87 11 1272768 G A 0.02264151 MUC5B Tumour Missense
88 5 1278788 G A 0.0256776 TERT Tumour Missense
40 5 1294888 G C 0.07746479 TERT Normal Missense

69-2 19 10602443 C T 0.01579467 KEAP1 Normal Missense
77 1 10699508 G T 0.05762712 CASZ1 Tumour Missense
86 1 10699741 G A 0.01310401 CASZ1 Tumour Missense
68 1 10725274 A C 0.0206044 CASZ1 Normal Missense
79 8 13356839 T A 0.03167421 DLC1 Tumour Missense
80 17 16001803 G A 0.10280374 NCOR1 Tumour Missense
31 17 16004833 C A 0.03636364 NCOR1 Normal Missense
59 1 16260749 G A 0.02493075 SPEN Normal Missense
87 1 16261434 C T 0.01805054 SPEN Tumour Missense
68 1 16261655 C T 0.01807229 SPEN Normal Nonsense
11 1 16263971 T A 0.02507837 SPEN Normal Missense
59 1 16264087 T G 0.05588235 SPEN Normal Missense
46 8 17611830 T C 0.06818182 MTUS1 Normal Missense
83 8 17612484 C T 0.021611 MTUS1 Tumour Missense
41 18 19154252 C T 0.05487805 ESCO1 Normal Missense
56 21 19685332 A T 0.10869565 TMPRSS15 Normal Missense
60 21 19685332 A T 0.11188811 TMPRSS15 Normal Missense

60-2 21 19685332 A T 0.08753316 TMPRSS15 Normal Missense
59 16 23646819 G T 0.03703704 PALB2 Normal Missense
82 4 23803389 G A 0.07531381 PPARGC1A Tumour Missense
41 4 23814699 T A 0.11981567 PPARGC1A Normal Missense
80 4 23815403 C T 0.06214689 PPARGC1A Tumour Missense
88 1 24019162 A G 0.04573171 RPL11 Tumour Missense
60 8 24192995 G A 0.0487106 ADAM28 Normal Missense

58-2 8 24192995 G A 0.28615385 ADAM28 Normal Missense
60-2 8 24192995 G A 0.31717172 ADAM28 Normal Missense

18 12 24989522 G T 0.12749004 BCAT1 Normal Missense
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22 12 24989522 G T 0.07983193 BCAT1 Normal Missense
31 12 24989522 G T 0.12781955 BCAT1 Normal Missense
34 12 24989522 G T 0.22123894 BCAT1 Normal Missense
56 12 24989522 G T 0.0982659 BCAT1 Normal Missense
60 12 24989522 G T 0.17894737 BCAT1 Normal Missense
65 12 24989522 G T 0.17777778 BCAT1 Normal Missense
68 12 24989522 G T 0.10958904 BCAT1 Normal Missense
69 12 24989522 G T 0.23870968 BCAT1 Normal Missense

19-2 12 24989522 G T 0.10354223 BCAT1 Normal Missense
34-2 12 24989522 G T 0.0899654 BCAT1 Normal Missense
58-2 12 24989522 G T 0.26436782 BCAT1 Normal Missense
60-2 12 24989522 G T 0.3003413 BCAT1 Normal Missense
69-2 12 24989522 G T 0.09401709 BCAT1 Normal Missense

41 2 25965700 G A 0.08994709 ASXL2 Normal Missense
79 2 25966190 C T 0.02419355 ASXL2 Tumour Missense
80 2 25973185 C T 0.02973978 ASXL2 Tumour Missense
78 1 27057818 C T 0.01692708 ARID1A Tumour Missense
80 1 27057871 C T 0.02914798 ARID1A Tumour Missense
7 1 27087497 G A 0.02030457 ARID1A Normal Missense
8 1 27101367 C T 0.02517483 ARID1A Normal Missense
53 2 27324413 G A 0.03640257 CGREF1 Normal Missense
82 2 27324413 G A 0.03378378 CGREF1 Tumour Missense
88 2 27324491 T G 0.02277433 CGREF1 Tumour Missense
87 6 32163797 C T 0.0100365 NOTCH4 Tumour Missense
78 6 32166698 C T 0.02835052 NOTCH4 Tumour Essential_Splice
11 6 32190386 A T 0.02722772 NOTCH4 Normal Missense
31 17 37627772 C A 0.0302267 CDK12 Normal Missense
68 17 37646947 C T 0.04484305 CDK12 Normal Missense
78 17 37687312 G A 0.01677149 CDK12 Tumour Missense
18 14 38061207 C A 0.03333333 FOXA1 Normal Missense

36-2 14 38061334 G A 0.02766477 FOXA1 Normal Missense
59 14 38061705 C G 0.04849885 FOXA1 Normal Missense
13 14 38061715 C A 0.02334152 FOXA1 Normal Missense
80 3 41278198 G A 0.05147059 CTNNB1 Tumour Missense
80 7 45122562 T G 0.04926108 NACAD Tumour Missense
41 7 45122943 G A 0.16666667 NACAD Normal Nonsense
41 7 45123366 G A 0.01190476 NACAD Normal Missense
41 7 45123606 G A 0.0083682 NACAD Normal Missense
80 7 45123618 C T 0.00746826 NACAD Tumour Missense
79 7 45123668 G A 0.00641368 NACAD Tumour Missense

58-2 7 45124337 G A 0.04040404 NACAD Normal Missense
78 7 45124745 C T 0.02003643 NACAD Tumour Missense
84 7 45125114 G A 0.02362205 NACAD Tumour Missense
80 18 45422958 C T 0.03112841 SMAD2 Tumour Missense
94 12 46244829 T G 0.02466793 ARID2 Tumour Missense
80 12 46244872 C T 0.02762431 ARID2 Tumour Missense
14 3 47098411 G A 0.03058104 SETD2 Normal Missense
86 3 47125634 C T 0.02123894 SETD2 Tumour Missense
98 3 47163854 C T 0.04017857 SETD2 Normal Missense
41 3 47165452 G A 0.09178744 SETD2 Normal Missense
59 13 48955485 G A 0.10752688 RB1 Normal Missense
89 12 49424741 G A 0.01950719 KMT2D Tumour Nonsense
78 12 49424788 G A 0.02195609 KMT2D Tumour Missense
94 12 49431879 C T 0.01697531 KMT2D Tumour Missense

58-2 12 49436359 G A 0.03828829 KMT2D Normal Missense
6 12 49443578 G A 0.02772277 KMT2D Normal Missense

67-2 12 49443578 G A 0.02013423 KMT2D Normal Missense
94 12 49444220 C T 0.02842809 KMT2D Tumour Missense
78 12 49444771 C G 0.0212766 KMT2D Tumour Missense
46 12 49444804 C T 0.02071823 KMT2D Normal Missense
86 12 49444932 C T 0.01902174 KMT2D Tumour Missense
77 12 49445146 G T 0.01845019 KMT2D Tumour Missense
82 12 49448810 C T 0.02424242 KMT2D Tumour Essential_Splice
83 19 54649392 G A 0.01575533 CNOT3 Tumour Missense
71 18 56001095 G A 0.04132231 NEDD4L Normal Missense
59 18 56035013 G A 0.03181818 NEDD4L Normal Missense
14 17 56435261 G A 0.0256917 RNF43 Normal Missense

58-2 5 56526784 C T 0.2137931 GPBP1 Normal Missense
60-2 5 56526784 C T 0.22878229 GPBP1 Normal Missense

60 2 61575498 C T 0.02439024 USP34 Normal Missense
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36-2 X 70463806 T C 0.05367232 ZMYM3 Normal Missense
80 16 72821167 G A 0.02662722 ZFHX3 Tumour Nonsense
82 16 72821931 G A 0.01634684 ZFHX3 Tumour Missense
78 16 72821934 G A 0.01401542 ZFHX3 Tumour Missense
80 16 72829379 G A 0.11721612 ZFHX3 Tumour Missense
82 16 72830121 C T 0.02355073 ZFHX3 Tumour Missense
79 16 72831230 G A 0.02443281 ZFHX3 Tumour Missense
80 16 72831317 T G 0.03189066 ZFHX3 Tumour Missense
80 16 72831366 G T 0.02267003 ZFHX3 Tumour Missense
11 16 72831371 T A 0.03494624 ZFHX3 Normal Missense
80 16 72831844 T A 0.02580645 ZFHX3 Tumour Missense
82 16 72832556 C T 0.02292264 ZFHX3 Tumour Missense
80 16 72863687 C T 0.03414634 ZFHX3 Tumour Missense
78 16 72991494 C T 0.01373626 ZFHX3 Tumour Missense
57 16 72991509 G A 0.0195599 ZFHX3 Normal Missense
80 16 72992349 T A 0.05069124 ZFHX3 Tumour Missense

18-2 6 87865458 A G 0.09516838 ZNF292 Normal Missense
28 4 88766952 A G 0.04100946 MEPE Normal Missense
59 9 98209631 G A 0.02504174 PTCH1 Normal Missense
97 9 98231349 T C 0.07881773 PTCH1 Normal Missense
59 7 1.01E+08 C T 0.01689189 MUC3A Normal Missense
71 7 1.01E+08 C T 0.01554404 MUC3A Normal Missense
31 7 1.01E+08 A T 0.02047244 MUC3A Normal Missense
79 7 1.01E+08 C T 0.01546392 MUC3A Tumour Missense

58-2 7 1.01E+08 C T 0.015625 MUC3A Normal Missense
41 7 1.01E+08 T C 0.02512563 MUC3A Normal Missense
79 7 1.01E+08 C T 0.01600985 MUC3A Tumour Missense
71 7 1.01E+08 C T 0.01532567 MUC3A Normal Missense
89 7 1.01E+08 C T 0.01496479 MUC3A Tumour Missense

67-2 7 1.01E+08 C T 0.01884701 MUC3A Normal Missense
46 7 1.01E+08 C T 0.01265823 MUC3A Normal Missense
50 7 1.01E+08 C T 0.01368301 MUC3A Normal Missense
80 7 1.01E+08 C T 0.01530612 MUC3A Tumour Missense
64 7 1.01E+08 C T 0.01908397 MUC3A Normal Missense
68 7 1.01E+08 C T 0.01217533 MUC3A Normal Missense
88 5 1.12E+08 C T 0.2625 APC Tumour Missense
82 11 1.14E+08 A G 0.04219409 USP28 Tumour Missense
64 12 1.15E+08 T A 0.03030303 TBX3 Normal Missense
79 1 1.2E+08 C T 0.02014652 NOTCH2 Tumour Missense
85 1 1.2E+08 C T 0.01751825 NOTCH2 Tumour Missense
64 1 1.2E+08 G A 0.02430134 NOTCH2 Normal Missense
97 1 1.21E+08 A G 0.13953488 NOTCH2 Normal Missense
97 12 1.25E+08 A G 0.06321839 NCOR2 Normal Missense
68 12 1.25E+08 G A 0.01492537 NCOR2 Normal Missense
40 4 1.26E+08 C T 0.02247191 FAT4 Normal Missense
59 4 1.26E+08 G A 0.04597701 FAT4 Normal Missense
41 4 1.26E+08 T - 0.03088803 FAT4 Normal no-SNV
85 4 1.26E+08 G A 0.02201835 FAT4 Tumour Missense
85 4 1.26E+08 T C 0.02301255 FAT4 Tumour Missense
88 4 1.26E+08 C T 0.03238866 FAT4 Tumour Missense
84 X 1.29E+08 A C 0.2716763 SMARCA1 Tumour Nonsense
82 9 1.39E+08 C T 0.02259887 NOTCH1 Tumour Missense
89 9 1.39E+08 G A 0.01114206 NOTCH1 Tumour Missense
87 9 1.39E+08 C T 0.01395349 NOTCH1 Tumour Missense
83 9 1.39E+08 C T 0.01211454 NOTCH1 Tumour Missense
79 9 1.39E+08 C G 0.01923077 NOTCH1 Tumour Missense
79 9 1.39E+08 G C 0.01953125 NOTCH1 Tumour Missense
78 9 1.39E+08 G A 0.0177305 NOTCH1 Tumour Missense
89 9 1.39E+08 A T 0.05317919 NOTCH1 Tumour Missense
80 7 1.4E+08 C T 0.0372093 BRAF Tumour Missense
80 2 1.41E+08 C T 0.14 LRP1B Tumour Missense
54 2 1.42E+08 C T 0.05027933 LRP1B Normal Missense
79 2 1.42E+08 C T 0.03529412 LRP1B Tumour Missense
80 2 1.42E+08 C T 0.05421687 LRP1B Tumour Missense
76 4 1.45E+08 C T 0.18518519 GYPA Tumour Missense
77 4 1.45E+08 C T 0.08805031 GYPA Tumour Missense
60 5 1.51E+08 A T 0.03740158 FAT2 Normal Missense

58-2 5 1.51E+08 A T 0.28878648 FAT2 Normal Missense
60-2 5 1.51E+08 A T 0.28060046 FAT2 Normal Missense

68 5 1.51E+08 G A 0.03125 FAT2 Normal Missense
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Table C.1: Total number of SNVs detected using “deepSNV”. 

 

 

 

 

 

 

41 5 1.51E+08 G A 0.05594406 FAT2 Normal Missense
91 5 1.51E+08 G A 0.03731343 FAT2 Tumour Nonsense
46 5 1.51E+08 C T 0.02803738 FAT2 Normal Missense
80 7 1.52E+08 C T 0.03550296 KMT2C Tumour Missense
41 7 1.52E+08 T C 0.05194805 KMT2C Normal Missense
78 7 1.52E+08 C T 0.01986755 KMT2C Tumour Missense
31 7 1.52E+08 G A 0.03436426 KMT2C Normal Missense
78 7 1.52E+08 C G 0.01778656 KMT2C Tumour Missense
78 7 1.52E+08 G A 0.02016129 KMT2C Tumour Missense
41 7 1.52E+08 G A 0.04411765 KMT2C Normal Missense
78 7 1.52E+08 C T 0.02835052 KMT2C Tumour Missense
80 7 1.52E+08 G A 0.03501946 KMT2C Tumour Missense
39 7 1.52E+08 C T 0.06349206 KMT2C Normal Missense
41 7 1.52E+08 C A 0.04316547 KMT2C Normal Missense
41 7 1.52E+08 A T 0.021611 KMT2C Normal Missense
64 1 1.53E+08 A T 0.02507837 LCE2B Normal Missense
64 1 1.53E+08 T C 0.02551834 LCE2B Normal Missense
39 1 1.55E+08 G A 0.03236797 ASH1L Normal Nonsense
71 1 1.55E+08 G A 0.022 ASH1L Normal Nonsense
39 1 1.55E+08 G A 0.03005008 ASH1L Normal Missense
68 1 1.55E+08 G A 0.025 ASH1L Normal Nonsense
83 1 1.55E+08 C T 0.02290076 ASH1L Tumour Missense
79 1 1.55E+08 C T 0.03503185 ASH1L Tumour Missense
42 1 1.55E+08 C T 0.05208333 ASH1L Normal Missense
68 1 1.55E+08 C T 0.03829787 ASH1L Normal Missense
46 1 1.55E+08 G T 0.04402516 ASH1L Normal Missense
85 1 1.55E+08 C T 0.02028081 ASH1L Tumour Missense
41 1 1.55E+08 C T 0.07222222 ASH1L Normal Missense
66 1 1.55E+08 C T 0.03184713 ASH1L Normal Missense
54 1 1.57E+08 C T 0.02511416 ETV3 Normal Missense
33 1 1.57E+08 A T 0.0282187 ETV3 Normal Missense
60 4 1.88E+08 C T 0.04545455 FAT1 Normal Missense
53 4 1.88E+08 C T 0.02826087 FAT1 Normal Missense
78 4 1.88E+08 G A 0.02422908 FAT1 Tumour Nonsense
79 4 1.88E+08 G A 0.0259366 FAT1 Tumour Missense
82 4 1.88E+08 C T 0.02232143 FAT1 Tumour Missense
85 2 1.98E+08 T C 0.38848921 SF3B1 Tumour Missense
86 2 1.98E+08 T C 0.41578947 SF3B1 Tumour Missense
87 2 1.98E+08 T C 0.32209738 SF3B1 Tumour Missense
88 2 1.98E+08 T C 0.30711611 SF3B1 Tumour Missense
89 2 1.98E+08 T C 0.33488372 SF3B1 Tumour Missense
91 2 1.98E+08 T C 0.35261708 SF3B1 Tumour Missense
93 2 1.98E+08 T C 0.33874239 SF3B1 Tumour Missense
94 2 1.98E+08 T C 0.22251309 SF3B1 Tumour Missense
95 2 1.98E+08 T C 0.41153846 SF3B1 Tumour Missense
96 2 1.98E+08 T C 0.30382294 SF3B1 Tumour Missense
96 2 2.26E+08 C T 0.09774436 DOCK10 Tumour Missense
78 1 2.27E+08 C T 0.05976096 CDC42BPA Tumour Missense
41 1 2.27E+08 A T 0.05217391 CDC42BPA Normal Missense
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Genes Targeted sequencing (TS) WGS Tissue Type
ADAM28 Mutated Mutated Normal (WGS)/Normal (TS)
ADAM29 - - -
AKT1 - - -
ANTXR2 - - -
APC Mutated - Tumour
AR - - -
ARID1A - - -
ARID2 Mutated - Tumour
ARID4A - - -
ARID4B - - -
ASH1L Mutated - Normal/Tumour
ASXL2 Mutated - Normal/Tumour
ATAD3B - - -
ATM - - -
BCAT1 Mutated Mutated Normal (WGS)/Normal (TS)
BRAF Mutated - Tumour
BRCA2 - - -
CASZ1 Mutated - Normal/Tumour
CDC42BPA Mutated - Normal/Tumour
CDK12 Mutated - Normal/Tumour
CDKN1B - - -
CGREF1 Mutated - Normal/Tumour
CHD1 Mutated - Normal
CNOT3 Mutated - Tumour
CTNNB1 Mutated - Tumour
CUL3 - - -
DLC1 Mutated - Tumour
DOCK10 Mutated - Tumour
ESCO1 Mutated - Normal
ETV3 Mutated - Normal
FAM149A - - -
FAT1 Mutated - Normal/Tumour
FAT2 Mutated Mutated Normal (WGS)/Normal (TS)
FAT4 Mutated - Normal/Tumour
FOXA1 Mutated - Normal
GATA1 - - -
GPBP1 Mutated Mutated Normal (WGS)/Normal (TS)
GYPA Mutated - Tumour
HRAS Mutated - Normal
IDH1 - - -
KDM6A - - -
KEAP1 Mutated - Normal
KMT2C Mutated - Normal/Tumour
KMT2D Mutated - Normal/Tumour
KRAS - - -
LCE2B Mutated - Normal
LRP1B Mutated - Normal/Tumour
MEPE Mutated - Normal
MRE11A - - -
MTUS1 Mutated - Normal/Tumour
MUC3A Mutated - Normal/Tumour
MUC5B Mutated - Normal/Tumour
NACAD Mutated - Normal/Tumour
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Table C.2: List of genes that were targeted sequenced for the Patchwork experiment. 

Mutated/Non-mutated (-) genes are indicated (including synonymous and non-synonymous 

mutations) for both the patchwork experiment and the whole genome sequenced slice for the 

same patient (0007). 

 

NCOR1 Mutated - Normal/Tumour
NCOR2 Mutated - Normal/Tumour
NDST4 - - -
NEDD4L Mutated - Normal
NOTCH1 Mutated - Normal/Tumour
NOTCH2 Mutated - Normal/Tumour
NOTCH3 Mutated - Normal/Tumour
NOTCH4 Mutated - Normal/Tumour
NRAS - - -
PALB2 Mutated - Normal
PCSK2 Mutated - Normal
PIK3CA - - -
PIK3CB - - -
PIK3R1 - - -
PIK3R2 - - -
PPARG - - -
PPARGC1A Mutated - Normal/Tumour
PTCH1 Mutated - Normal
PTEN - - -
RB1 Mutated - Normal
RBM10 - - -
RNF43 Mutated - Normal
RPL11 Mutated Mutated Tumour (WGS)/Tumour (TS)
SETD2 Mutated - Normal/Tumour
SF3B1 Mutated Mutated Tumour (WGS)/Normal (TS)/Tumour (TS)
SMAD2 Mutated - Tumour
SMAD4 - - -
SMARCA1 Mutated - Tumour
SOX2 - - -
SPANXC - - -
SPEN Mutated - Normal/Tumour
SPOP - - -
TBL1XR1 Mutated - Normal
TBX3 Mutated - Normal
TERT Mutated - Normal/Tumour
TMPRSS15 Mutated Mutated Normal (WGS)/Normal (TS)
TP53 - - -
TRAT1 - - -
U2AF1 - - -
USP28 Mutated - Tumour
USP34 Mutated - Normal
USP7 - - -
ZFHX3 Mutated - Normal/Tumour
ZMYM3 Mutated - Normal
ZNF292 Mutated - Normal/Tumour


