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Abstract 

 

Combined processing between caregivers and children may facilitate word 

learning during the preschool years, reflecting successful transfer of representations 

between adults and children when speaking or encoding labels. This thesis 

investigated the neural correlates of early word learning during caregiver-child 

interactions. Caregivers taught their 32- and 54-month-old children the names of 

eight new objects within a simpler task in which children were taught three object 

names, and a more complex task in which children were taught five object names. 

Children’s comprehension was later tested by an experimenter who presented them 

with pairs of objects and asked the child to select each by name. The caregiver’s 

learning was assessed in a word production test. Functional near infrared 

spectroscopy (fNIRS) data was obtained from both the caregiver and child during 

these tasks. The first empirical chapter (Chapter 2) describes the methods 

development and reports a piloting study. Three sets of analyses on these data are 

then reported. In the second empirical chapter (Chapter 3), neural responses to the 

differing naming events were examined for both the caregiver and child. For 

children, naming of learned words was different to naming of words not learned 

within the right temporal cortex, indicating differences in social and language related 

processing. Further, caregivers’ neural responses differed based on their child’s 

learning within the left parietal cortex. The second set of analyses revealed that 

distinctiveness of object locations during the interactions predicted which words 

children learned. The third set of analyses, reported within the third empirical 

chapter (Chapter 4), investigated whether neural coherence was greater as caregivers 

and children directly interacted during word learning, compared with caregivers and 

children who were also teaching and learning words but who were not interacting 

with each other. After statistically correcting for multiple comparisons, no 

differences in coherence were found between pairs of interacting caregivers and 

children, and scrambled pairings of caregivers and children. Technical limitations of 

the research are discussed, along with implications for broader connections to the 

literature and suggestions for future directions.  
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Chapter 1 – General Introduction: Interactive Word Learning Between 
Preschool Children and Caregivers 

 

Hoff (2006) argued that, observably, social environments provide resources 

for children’s vocabulary development above and beyond exposure to an analysable 

language model. These resources, as broadly described in the psychological 

literature, include caregivers’ responsiveness to and contingency with the child’s 

behaviour, joint attention, and explicit naming of objects. For example, a caregiver 

may name an object they notice their child is already looking at, establishing a 

common focal point between them and their child, and providing a naming input that 

is consistent with the child’s visual focus. A survey of the relevant literature reveals 

that social connection facilitates children’s word learning in two ways. First, 

caregivers and children share experiences of the outside world during play, which 

ultimately makes learning new words more salient and motivates learning language 

as a communicative tool for the child. Second, when interacting, caregivers and 

children actively shape language learning environments in ways that help the child 

make clear mappings between new words and their intended referents.   

 

1.1 Caregiver-Child Interactions and Shared Experiences 

At a fundamental level, sharing experiences may motivate early language-

learning (Steels & Kaplan, 2000). Research that spans theoretical perspectives and 

methodologies suggests that, even from infancy, children are sensitive to the 

difference between sharing an experience of their environment with another person 

and experiencing their surrounding environment alone (Beier & Spelke, 2012; 

Carpenter et al., 1998; Henderson et al., 2002; Striano, Reid & Hoehl, 2006). Many 

studies of very early development have focused on joint attention, or the sharing of a 

common focal point between two or more individuals during an interaction. 

Typically, this common focal point might be an object that both individuals are 

exploring simultaneously. For example, an adult and toddler may be viewing the 

same object during stimulus presentations in which the object is named. It has been 

argued that, phenomenally, this is different from viewing the object alone because an 

individual’s experience is more salient based on knowing that another person is 

focused on the same object with them (Zahavi, 2015). To support this hypothesis, 
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children seem to be driven to learn new words in order to direct others’ attention and 

to share attention with others (Hoff, 2006; Tamis-LeMonda, Kuchirko & Song, 

2014). This is accomplished by eliciting the sharing of attention and other contingent 

social inputs that occur when they are focused on referents with their caregivers.  

What is harder to answer than whether sharing attention occurs and why it 

motivates children to communicate, is how sharing attention directly changes 

anything about the cognitive processes underlying word learning. Mundy and Jarrold 

(2010) hypothesized that sharing attention with another person may enhance 

encoding of information based on the properties of neural networks alone. This is 

based on the principle that simultaneous activation of multiple networks increases 

the depth of encoding of external stimuli (for research supporting this theory, see 

Munakata & McClelland, 2003; Otten, Henson & Rugg, 2001). Sharing attention 

activates a dorsal, frontoparietal attention system involved in self- and other- 

referenced information processing, and this network may enhance simultaneous 

activation within visual and language processing networks. For example, children’s 

encoding of an object, word or other stimuli may be enhanced via the broader neural 

response to sharing attention with their caregiver.  

According to this hypothesis, activation within frontal and parietal attention 

areas may facilitate word learning and retention. Functionally, these areas are 

activated during episodes of shared attention as early as 14 months (Henderson et al., 

2002). In support of the hypothesis that activation within this system might generate 

a more complex neural signature of learning, sharing attention during learning elicits 

a longer neural response over the left hemisphere during referent selection as early as 

18 months. Hirotani et al. (2009) compared event-related potentials as toddlers 18-

21-months old saw correctly labelled or incorrectly labelled objects for newly taught 

words. Toddlers were taught the object names in either a “social” condition while an 

experimenter made eye contact and spoke in a positive voice, or in a “non-social” 

condition while the experimenter did not make eye contact and spoke in a neutral 

tone. Both groups of toddlers showed evidence of having made associations between 

these taught words and the objects they represented via an early-going difference in 

response to congruent and incongruent pairings over the left inferior frontal gyrus 

(IFG). However, only toddlers who had been taught the object names in the social 

condition showed a later-going difference in waveforms when later presented with 

objects and names that did not match, over left temporal electrode sites. This was 
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attributed by the authors to a failure to semantically integrate the incongruent word-

object pairing after learning the original in a social context. By contrast, learning the 

exact same mappings without sharing attention did not result in this effect.  

Convergently, sharing experiences may compensate for times when 

caregivers and children are not behaviourally in alignment with each other. While 

caregiver-child coordination can help children make correct word-object mappings 

in many cases, some research suggests that it’s not a perfect system. In a review, 

Samuelson, Kucker and Spencer (2017) point out that sometimes caregivers name 

different objects to those their child is attending to, resulting in a lack of consistency 

between the visual and speech inputs the child receives concurrently (Pereira et al., 

2014; Tomasello & Farrar, 1986; Yu & Smith, 2012). However, if these inputs are 

more salient when attention is shared compared with when it is not, children may 

then be biased to encode word-object mappings specifically when their caregiver is 

sharing attention to a referent with them. As a result, this bias may partially filter out 

incorrect mappings made when children are focused on a different object or aspect of 

their environment from what their caregiver is referring to when naming. 

Another mechanism through which sharing experiences enhances language 

comprehension, and potentially word learning, is that it entrains perspectives 

between conversation partners. Individuals can begin a dialogue in very different 

places, but the sooner their perspectives fall in synchrony, the better they may be 

able to process each other’s meanings. For example, processing meaning in another 

person’s speech during dialogue can be bolstered by lower-level coupling at non-

linguistic, sensorimotor levels. Garrod and Pickering (2009) argue that conversation 

is a form of joint action that relies on coupling at non-linguistic levels such as 

posture or speech rate, in order to align processing required at higher level, linguistic 

levels. The effects of representational alignment can be seen, for example, when 

conversation partners shift gaze to look at elements of a picture in synchrony rather 

than with the delay that can be seen as a listener follows a monolog (Richardson, 

Dale & Kirkham, 2007). This study indicates that when representations are in sync, 

language processing is more seamless as individuals make predictions about the 

objects or nouns their conversation partner refers to, orienting to referents along 

with, rather than after, the speaker.  
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1.2 Caregivers and Language-Learning Environments 

The previous section revealed that more broadly distributed activation that 

includes, but is not limited to, language networks appears to facilitate word learning 

above and beyond a specialized language processing system alone. However, it can’t 

specify in practical terms how contextual processing facilitates solving everyday 

word learning problems. In this section, this aspect is examined: namely, how 

speakers can direct children’s mapping of new words to their correct referents 

through building on the statistical properties of the child’s visual environment. In an 

environment with potentially hundreds of objects, caregiver-child interaction helps 

constrain a name to one specific object fairly quickly, leading to a rapid mapping 

between the two (Jesse & Johnson, 2016). Because children are sensitive to 

ostensive communicative cues from adults such as looking to and talking about 

objects, and these cues then positively affect their learning (Wu & Kirkham, 2010, 

see Sobel & Kirkham, 2012), social communication provides an additional basis of 

information from which children can directly draw inferences about the meanings of 

new words (see Tamis-LeMonda et al., 2014). 

From the child’s perspective, caregivers shape early language-learning 

environments through providing coherent visual and auditory inputs. In an 

environment that contains numerous objects, caregivers directly hold, point to or talk 

about objects in-context as they name them (Cartmill et al., 2013; Kalagher & Yu, 

2006; Yu & Smith, 2013; Yu et al., 2009). For example, in environments that 

contain many possible referents for each spoken new word, adult speakers may name 

an object specifically when the child is focused on it, narrowing the number of 

possible real-world referents to a single focal point. To support this hypothesis, data 

from head-mounted cameras revealed that caregivers spontaneously named toys that 

their child was focused on more frequently than objects they were not (Suanda et al., 

2016). Previous research suggests that children learn more when adults name objects 

that the child is looking at (Tomasello & Farrar, 1986), indicating that, by creating a 

direct correlation between what the child is seeing and the name they are hearing, 

social partners use attention to help children learn new words. Social interaction can 

help to regulate attention toward referents in order to facilitate retention of new 

mappings as well. From very early in development, caregivers talk about objects to 

help children sustain focus on them (Suarez-Rivera, Smith & Yu, 2019), potentially 

resulting in increased depth of object encoding and a more robust association 
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between the word and object. These examples show that behavioural coordination 

between adults and children allows children to make rapid and accurate mappings 

between words and objects while exploring their environment, based on narrowing 

the space of possible referents to one. Previous studies examining free play between 

caregivers and children suggest that behavioural coordination emerges 

spontaneously during interactions (Kalagher & Yu, 2006; Suarez-Rivera et al., 2019; 

Yu & Smith, 2013) and can predict children’s learning of new nouns (Samuelson et 

al., 2011). 

As the previously discussed examples show, the gateway through which 

interaction impacts on word learning may be through influencing a variety of 

processes that facilitate making accurate word-object mappings (Samuelson et al., 

2011; Suarez-Rivera et al., 2019; Sullivan et al., 2015). This concept can extend 

beyond explicitly naming objects and establishing joint attention, to facilitating 

binding between words and objects based on visuospatial organization as objects are 

named. Previous work suggests that auditory information related to events is indexed 

to the corresponding visual information via spatial location (Richardson & Kirkham, 

2004) suggesting that children encode spatial information when playing with new 

objects. Further, spatial encoding may enable children to draw associations across 

multiple naming events through time. Spatial predictability in where objects are 

located during interactions primes children to make word-object mappings through 

boosting children’s attention to objects based on their locations and through 

deepening encoding of word-object mappings within working memory (Benitez & 

Smith, 2012; Samuelson et al., 2011). This may be because children are faster to 

orient initially to objects that are named when they appear in a consistent spatial 

location as opposed to when their locations shift around.  

Corresponding modelling work most notably shows that recurrent naming of 

an object in the same location results in a stronger word-object association than 

naming of an object in different locations, because object locations are encoded 

when objects are presented. Using the encoded spatial location can help resolve 

ambiguities in naming; for example, when children heard a new word, they were 

able to map the name to an absent object when the speaker tapped or snapped their 

fingers over the table at the location it had previously occupied. During naming of 

objects, a working memory trace develops that can then be used to associate the new 

word with a single referent based on indexing these together at the location 
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(Samuelson et al., 2011), a mechanism which can explain these experimental 

findings with toddlers.  

Spatial predictability of object locations has been correlated with word 

learning during openly structured interactions in which caregivers taught their 

children new nouns, suggesting that caregivers use spatial structure to teach their 

child. When caregivers were given two objects and asked to teach their 17- to 22-

month-old children the names, the percentage of time that caregivers consistently 

held each object in their right or left hand was correlated with better performance in 

a subsequent test of learning (Samuelson et al., 2011). Critically, the same factor that 

had predicted children’s learning after being directly manipulated in a highly 

controlled study also predicted children’s learning in an openly structured interaction 

with their caregiver.  

The preschool years are characterized by marked changes in cognitive 

development (Kyttälä et al., 2014; Newbury et al., 2016; Vlach & DeBrock, 2017; 

2019), language experience (Grassmann, Schulze & Tomasello, 2015; Kalashnikova, 

Mattock & Monaghan, 2015; Law et al., 2017), and social development (Saxe, 

2013). On the one hand, many of the same processes observed in toddlers continue 

to facilitate learning new words during these years. For example, visual joint 

attention with an adult speaker remains pivotal to word learning at four to five years 

of age (Sullivan et al., 2015), though preschool-aged children show more initiative 

than toddlers in actively coordinating their attention with an adult speaker in order to 

learn. Likewise, between two and five years of age, individual differences in 

performance during working memory tasks are correlated with verbal processing, 

while visuospatial processing is related to vocabulary (Alloway, Gathercole & 

Pickering, 2006). Children also bring emerging new skills to word learning 

interactions, many of which can be characterized as explicitly inferring what infants 

and toddlers may rely more on caregivers to facilitate. For examples, children’s 

participation in dialogue about new referents facilitates their word learning, while 

during naming, they can utilize explicit strategies like a mutual exclusivity bias to 

help resolve ambiguities in specific naming instances (Grassmann et al., 2015; 

Kalashnikova et al., 2015; Lewis et al., 2020).  

In the preschool years, children are more sensitive to the significance of 

being taught new information and may attend selectively to being intentionally 

informed by an adult. The ability to determine what is pedagogically valuable 
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emerges during these years, as prior work suggests that children ages 3-7 show 

variable responding to teaching-related cues within social interactions, varying based 

on the testing cohort and task (Bonawitz et al., 2011, Sobel & Corriveau, 2010; see 

also Sobel & Kirkham, 2012). Previously, this development has been demonstrated 

as children learn to make causal inferences that are required to understand the 

function of a new machine. For example, preschool-aged children may explore a 

new toy less on their own after being taught about it by an adult, as they perceive 

that they have fewer aspects to investigate on their own (Sobel & Sommerville, 

2010). Interestingly, the study suggests that preschoolers are responsive to 

pedagogically relevant information in interactions with an adult, regardless of 

whether teaching them was intended. Children demonstrate further biases toward 

learning from interactions in which an adult is explicitly teaching (Sobel & 

Sommerville, 2009) and in which the information being taught is consistent with the 

data they have accumulated from their own observations (Sobel & Buchanan, 2009). 

Collectively, this work reveals that preschoolers directly respond to explicit teaching 

from an adult and also compare this teaching with beliefs from their own experience. 

This is consistent with research showing that 4-year-olds, but not 3-year-olds, 

discriminately learn word-object mappings when they believe an adult speaker is 

knowledgeable about the properties of objects that determine their label category 

(Sobel & Corriveau, 2010).  

    

1.3 Neural Correlates of Interactive Word Learning 

The following section explores how coordination between adults and children 

may enhance the child’s underlying neural encoding of word-object mappings as 

new objects are named during interactions. Dynamic neural field models of word 

learning show that when hearing a name consistently co-occurs with seeing an 

object, a memory trace builds up for the pairing between the two, boosting activation 

for that specific pairing and simultaneously inhibiting the pairing of that name with 

other objects (Bhat, Spencer & Samuelson, 2018; Samuelson et al., 2011). By 

contrast, incorrect or inconsistent mappings can be made when an association drawn 

between one word-object mapping interferes with another mapping or when there is 

inconsistency in which objects and words are indexed together. When the child is 

learning consistent word-object pairings during interactions, a signature may appear 
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in neural activation during naming that indicates the semantic association being 

made. This signature may be predicted from prior, computer-based tasks.   

The neural correlates of semantic processing include distinct but 

interconnected networks. These include a left-lateralised language processing 

network, and activation within cortical networks that implement attention and 

working memory (Xu et al., 2016). Of these, the language processing network has 

been shown most consistently to be activated in language processing tasks. This 

network extends from Broca’s area in the left inferior frontal gyrus (IFG), to 

Wernicke’s area in the left posterior temporal lobe (Balsamo, Xu & Gaillard, 2006; 

Chou et al., 2006; Fiebach & Friederici, 2004; Grindrod et al., 2008; Hirshorn & 

Thompson-Schill, 2006; Hofstetter, Friedmann & Assaf, 2017; Liljeström et al., 

2009; Romeo, Leonard et al., 2018; Wong et al., 2011; see also Fedorenko, 2014). 

Unsurprisingly, the language network is activated during processing of new words 

(Davis et al., 2009; López-Barroso et al., 2013; Nora et al., 2017; Takashima et al., 

2019). For example, Takashima et al. (2019) trained 8- to 10 and 14- to 16-year-old 

children 30 new Japanese words, such as tanuki. Children were presented with word-

picture pairings on the first training session, along with descriptive sentences such as 

“It likes to trick people.” Children were then scanned one day later and again eight 

days later, shown sets of four pictures, and asked to select which was the match for 

the new word. These words were intermixed with pseudo-Japanese words that they 

had not been exposed to before, and in order to assess learning, they were also asked 

whether each stimulus was an existing word. As an additional control, children were 

presented with Dutch words (all children were Dutch speaking). A main effect of 

language was found; Japanese words elicited a stronger response in the left IFG area, 

whereas Dutch (familiar) words elicited a greater response within the posterior 

temporal lobe and inferior parietal lobe. This indicates language processing areas 

respond differently between hearing new or familiar words. Interestingly, no 

differences were observed in this paradigm between recently learned and pseudo 

words, limiting the scope of these effects to explain what activation is specific to 

word learning. It is important to note that, for children, language processing is less 

left-lateralized than it is in adults and can also be localized to the right inferior 

frontal gyrus (IFG, Berl et al., 2014; Nora et al., 2017). Even for adults, bilateral IFG 

activation may better help to hone language processing around information that is 

most relevant within noisy environments (Adank, Davis & Hagoort, 2012).  
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Attention, cognitive control and working memory are relevant processes 

involved in semantic cognition, that are all thought to support how word-object 

mappings are integrated, moment-to-moment. Among other things, they enhance the 

speed of processing and encoding of relevant stimuli necessary to map words to 

objects (Fedorenko, 2014). Working memory, for example, has been associated with 

vocabulary acquisition (for a review, see Gupta & MacWhinney, 1997) and with 

learning of news words (Archibald & Joanisse, 2013). Most frequently, attention-

orienting and attention-regulating networks are activated during sentence processing 

and new word-learning tasks (Berl et al., 2014; Ferreira et al., 2015; Liljeström et al., 

2009; López-Barroso et al., 2013) or these areas show structural plasticity during 

children’s training in learning new words (Ekerdt et al., 2020).  

Attention and working memory have been shown to be critical for children’s 

language processing (Berl et al., 2015; Nora et al., 2017). When 4- to 12-year-old 

children were asked to evaluate whether statements about concrete nouns were true 

during an fMRI scan, they showed increased activation relative to baseline in left-

lateralized language processing areas, such the left IFG. However, they also showed 

activation within the right IFG, the superior frontal gyrus, posterior cingulate cortex 

and the anterior cingulate cortex, areas generally associated with attention (Berl et 

al., 2014). Thus, attention appears to be directly involved in language processing as 

children evaluate descriptions of everyday nouns.  

Attention also plays a role in learning new nouns for adults and especially for 

children. In one study, adults were trained on 40 sets of imaginary word-item 

pairings and then scanned while asked to classify these words and everyday words as 

belonging to a living or a non-living category. Their neural responses showed 

activation not just within left-lateralized language processing areas, but within 

attention areas such as the superior frontal gyrus and superior parietal cortex, that 

responded differentially to categorizing familiar versus recently learned words 

(Ferreira et al., 2015). While this network tends to be treated as a background 

support in most word learning studies, an unexpected finding from Ekerdt et al. 

(2020) suggests that the dorsal attention system may be primarily responsive to early 

word learning. Children were scanned in a structural imaging paradigm before and 

after completing eight weeks of learning nonsense word-animal pairs. While myelin 

density within the left posterior temporal cortex prior to training was associated with 

children’s word-learning during the study, only the precentral gyrus showed changes 
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in myelin density after training. Micro-structural plasticity within this area was 

interpreted as indicating that it was the dorsal attention system, not the language 

processing network, that changed the most as a result of the training. When putting 

together computational modelling and neuroimaging approaches, it appears that 

attention and working memory may functionally play a role in word learning. It 

remains an open question, whether distinct differences within these processes can be 

observed at a neural level based on whether word learning is taking place.  

While the cognitive building blocks of attention and working memory enable 

children to encode word-object pairings, further work suggests that in interactive 

contexts, social computations that occur while observing a conversation partner 

impact on the neural responses to hearing objects named. Egorova, Shtyrov and 

Pulvermüller (2016) found that a neural network underlying the interpreting of 

actions was activated when processing the name of a new object after participants 

observed one person asking another what they wanted them to retrieve. By contrast, 

a region involved in semantic processing was activated when they previously 

observed the same person asking what these objects were called. What the first 

speaker was initially asking determined how adults processed the exact same object 

name from the second speaker. This indicates that different social computations that 

are tied to different interpretations of the speaker’s intent may alter how an object 

name is processed. In another study with children, Rice, Moraczewski & Redcay 

(2016) presented 7- to 13-year-olds with video clips of an experimenter saying “The 

following items are on the breakfast menu: pancakes and fruit. I am trying to eat 

healthy, which one should I pick?”. In one condition, children believed that the video 

feed was live and in another, they were told it was pre-recorded. During the “live” 

condition, children showed activation within the temporo-parietal junction, an area 

involved in perspective-taking, that was not present when they did not perceive that 

they were interacting. Therefore, children responded to the demands of perceiving 

their interaction was live with more effortful processing of the speaker’s intentions. 

During the preschool years, the development of reasoning about others’ mental states 

is critical (Wellman, Cross & Watson, 2001) and this ability is robustly present when 

mapping words to objects by four years of age (Sobel & Corriveau, 2010). This 

indicates that social computations about the caregiver’s intention when teaching new 

words may change throughout these years, a trajectory prior literature has not yet 

mapped.  
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Finally, an open question remains: whether the caregiver’s brain activity 

when naming new objects as they teach their child is different when their child is 

learning (i.e., when the teaching is successful) compared with then they are not. 

Previous work reveals that caregivers’ responsiveness as teachers impacts directly on 

children’s learning (see sections 1.1 and 1.2). Therefore, it would make sense that 

caregivers, as well as children, encode the environment as they name objects 

differently when they are successfully teaching their child. However, no studies to 

date have investigated the neural correlates of teaching new words. As will be more 

thoroughly discussed in the next section, previous findings indicate that relationships 

in brain activity between adults and children can be observed when they are 

interacting face-to-face (Piazza et al., 2020), and that alignment in brain activity 

between a speaker and listener predicts the detail of speech comprehension 

(Stephens, Silbert & Hasson, 2010). Like behaviour, the neural signatures of word 

learning can be explored from a social network perspective, as a combination of the 

caregiver’s and child’s brain activity while word-object mappings are made. For 

example, caregivers may respond to sharing attention with their child, may process 

what their child is looking at or saying more effortfully, or may perspective-take 

more, when successfully teaching new words.  

Putting the pieces together, the previous literature is clear that language and 

other cognitive processes play a role in learning words, while leaving open more 

questions of how environmental context and social computations impact on word 

learning during a live interaction between caregiver and child. Fundamentally, 

previous work shows that the inferior frontal gyrus plays a pivotal role in processing 

nouns (Balsamo et al., 2006; Chou et al., 2006; Fiebach & Friederici, 2004; Grindrod 

et al., 2008; Hirshorn & Thompson-Schill, 2006; Liljeström et al., 2008; Romeo, 

Leonard et al., 2018; see also Fedorinko, 2014) and is also fundamental to word 

learning (Davis et al., 2009; López-Barroso et al., 2013; Nora et al., 2017; 

Takashima et al., 2019). Therefore, during interactions, this area may be activated as 

the child maps new words to objects. In addition, language processing has been 

shown to rely on cognitive processes such as attention and working memory 

(Archibald & Joanisse, 2013; Berl et al., 2014; Ekerdt et al., 2020; Ferreira et al., 

2015). In an interaction, these processes are likely to be crucial for the child to hone 

attention to naming events and to remember word-object pairings as multiple objects 

are being dynamically explored. Finally, these processes do not operate in isolation 
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when examining the neural responses to nouns within a (perceived) live interaction 

(Rice, Moraczewski et al., 2016), and in situations that involve referential ambiguity 

(Nieuwland, Petersson & Van Berkum, 2007). Processing of spoken nouns during a 

real-world interaction also requires social computations about the context in which 

these names are embedded, what the speaker is referring to and why. The neural 

correlates of social computations may be observed within the child’s and caregiver’s 

neural response to naming as caregivers teach their children new words, in a way 

that has not been observed within isolated, computer-based word learning tasks.   

 

1.4 Hyperscanning and Neural Coherence During Interactions 

Hasson et al. (2012) argue that individual brains can be studied not just as 

isolated processors, but as individual nodes embedded within a larger social network.  

The advantage of this approach is being able to observe how brain activity between 

two or more communicating individuals become mutually shaped by inputs from 

each other. For example, during a dialogue, the brain activity of one conversation 

partner has been shown to temporally entrain with that of the other as they exchange 

linguistic and non-verbal information, indicating that their underlying 

representations grow in alignment via the dynamics of the interaction. This may 

create neural variables that emerge at a more holistic level than individual social 

computations (Scholkmann et al., 2013), such as quantitatively observable 

relationships in brain activity that indicate when individuals are in alignment. A 

second advantage is that one can determine how underlying alignment in brain 

activity between two or more interacting partners sets the conditions for transferring 

information from one person to another. Nowhere is the hypothesis that alignment in 

brain activity facilitates information transfer better established than in the domain of 

verbal communication. Sharing experiences between caregiver and child may predict 

the child’s overall word learning, and this can be approached through examining 

relationships in the caregiver’s and child’s brain activity continuously throughout an 

interaction.  

Some prior work suggests that neural synchrony occurs during verbal 

communication. For example, a previous study revealed that temporal correlations in 

brain activity were associated with speech comprehension. Stephens et al. (2010) 

fMRI-scanned one individual as they told an unrehearsed story in English and 

another individual as they told an unrehearsed story in Russian. English-speaking 
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participants were then scanned as they heard the stories, and their neural signals 

were correlated with those of the speaker who told a story in a language they 

comprehended and the speaker who told a story in a language they did not. In the 

English story condition, three types of correlations were found. Neural signals 

between the speaker and listeners were correlated, time point to time point, within 

lower-level auditory processing areas and within language processing areas, 

suggesting that the speaker and listener shared common semantic processing. 

Second, the speaker’s and listeners’ neural signals were correlated with a speaker-led 

lag over posterior, non-linguistic areas such as the temporo-parietal junction and 

praecuneus, and third, correlated with a listener-led lag within frontal areas such as 

the dorsomedial and dorsolateral prefrontal cortex. This suggests that an interplay 

exists in context-driven processing between the speaker and listener. Critically, the 

correlations within listener-led areas were in turn correlated with the detail in which 

the story was later remembered, indicating that they reflected the depth of speech 

processing. By contrast, correlations only occurred within lower-level auditory areas 

when non-Russian speaking participants listened to the story told in Russian, 

indicating that the correlations observed in the English condition reflected speech 

comprehension rather than auditory perception.  

Multiple other studies have shown that local, phased-locked brain activity 

measured by fNIRS is correlated across frequency ranges that are relevant to making 

decisions in an experiment, as participants interact with each other (Cui, Bryant & 

Reiss, 2012; Liu et al., 2016; 2017; 2019). Hyperscanning refers to a method of 

scanning participants simultaneously as they are interacting and analysing data with 

the intention to observe relationships in brain activity between individuals. For 

example, a dyad may be engaged in a conversation, or in game play, as fNIRS data is 

collected from each individual (for a review of fNIRS hyperscanning, see 

Scholkmann et al., 2013). For example, Cui et al. (2012) scanned participants while 

they each pressed a button in response to a visual cue presented on a computer 

monitor. In a cooperative condition, participants timed their presses as closely as 

possible to each other. In a competitive condition, participants tried to be the first to 

respond. Finally, in an alone condition, each player passively observed the other 

playing the game. Brain activity was measured simultaneously from both 

participants over frontal cortical sites. Neural coherence was computed as the mean 
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cross-correlation of transformed signals within corresponding channel1 pairings, for 

each dyad, within each condition, above and beyond the coherence observed in these 

channels over a period of rest (for a technical review of the WTC analysis, see 

Grinsted et al., 2004). Greater neural coherence was found during cooperation as 

opposed to competition over a frequency range of 0.08-0.33 Hz, corresponding to 

periods ranging from 3-13 seconds, and was also found to be higher during any sort 

of interactive play as opposed to individual play within this frequency range. 

Significant values based on measurements from the scalp corresponded to the right 

superior frontal gyrus. By contrast, the actual response times were closer between 

participants in the competition condition. Thus, this area may be involved in social 

processing during live interaction.  

Using the same wavelet transform coherence (WTC) analysis, neural 

coherence has been found within a number of different interactive tasks. Coherence 

has been observed between dyads during interactive Jenga play (Liu et al., 2016), 

when jointly completing a visual working memory task (Dommer et al., 2012), when 

making live eye contact (Hirsch et al., 2017), when engaged in an imitation task 

(Holper, Scholkmann & Wolf, 2012) and when interacting within complementary 

leader-follower roles (Jiang et al., 2015). Neural coherence within a mirroring 

network (intra-parietal sulcus, inferior frontal gyrus, and posterior temporal cortex) 

was observed during turn-based game play (Liu et al., 2017). Finally, neural 

coherence has been shown to be sensitive to individual differences based on 

relationship status (Pan et al., 2017), indicating that some advantages may also exist 

for caregivers and children who have years of interactive history. 

Finally, neural coherence has been directly related to participants’ 

comprehension of concrete descriptions of nouns and objects. Liu et al. (2019) 

systematically varied the communication mode (face-to-face, face-to-face without 

eye contact, or back-to-back) along with the syntactic consistency of presented 

stimuli. Dyads were alternately presented with images and partial sentences and, 

based on the image, asked to fill in the sentence. For example, Participant A was 

shown a picture of a cowboy tossing a sailor a book, and the sentence beginning “A 

cowboy hands a sailor....” and was asked to read the complete sentence to participant 

                                                 
1 Within fNIRS neuroimaging, a channel refers to the measurement space between the optode 
source that emits infrared light and the optode detector that measures reflected light from the scalp. 
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B, “A cowboy hands a sailor a book”. Participant B was then shown an image and 

pressed a button to confirm whether it matched the image described; fifty percent of 

the time, the picture matched and 50% of the time it was inconsistent. In a consistent 

syntax condition, Participant B was then shown a picture and a sentence beginning 

like “A cowboy hands a sailor...” and the process was alternated, whereas in an 

inconsistent syntax condition, they were shown a sentence with a prepositional 

object only, i.e., “A cowboy hands a book”.  If neural coherence was influenced by 

syntactic consistency and not merely face-to-face interaction, then coherence should 

differ based on whether the sentence structure presented to both participants 

matched. 

Within this study, brain activity was measured bilaterally over the sylvian 

fissure (dividing the temporal lobe from frontal and parietal cortices), and the 

frequency range with maximum coherence for each channel was explored between 

periods of 14 and 100 seconds. Over the right posterior superior temporal cortex 

(pSTC), greater coherence was found between syntactically consistent sentences 

compared with other conditions. Coherence within this channel was positively 

correlated with accuracy for picture-description matching within this condition. 

Greater coherence was also observed during face-to-face interactions within the right 

temporo-parietal junction (TPJ), indicating that mentalizing might be more aligned 

between participants during live interactions. These effects were not found for 

scrambled participant pairs, and their relationship to communication remained 

significant when the global mean of coherence increase was included as a covariate 

into the statistical model for actual pairs. While the effects of this study do not 

consistently answer the original questions (is coherence greater when 

communication has consistent properties and does coherence predict communication 

quality), temporal alignment within the right posterior temporal lobe was 

instrumental to resolving inconsistencies in expected and heard syntax during 

dialogue. It is possible that a similar effect could occur with the introduction of new 

words into dialogue.   

Neural coherence has previously been observed between adults and children 

during a variety of tasks, including game play (Miller et al., 2019; Reindl et al., 

2018), and openly structured face to face interactions (Piazza et al., 2020). Piazza et 

al. (2020) tested infants 9- to 15-months of age, and an experimenter, in a together 

and apart condition. In the together condition, the infant and adult played together 
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with items like a picture book and toys. In the apart condition, the child interacted 

with their caregiver while the experimenter told a story to another adult. Brain 

activity was recorded over the prefrontal and parietal cortices and the 

temporoparietal junction. Temporal relationships in brain activity were measured in 

each of these conditions by correlating the unprocessed signal within each channel 

measured from the experimenter with that of the child, time point to time point. 

Coherence in observed data was additionally validated by testing correlations from 

phase-scrambled data for every channel combination and using a bootstrapping 

procedure to estimate 20,000 of these combinations.  

During the “together” condition in which the experimenter faced and 

interacted with the infant, differences in inter-subject correlation were found 

between prefrontal channels on both the experimenter’s and child’s head, between 

prefrontal areas on the experimenter’s head and parietal areas on the child’s head, 

and between prefrontal areas on the child’s head and one central and one parietal 

area on the experimenter’s head. Interestingly, the correlations between signals were 

predominately child-led by around three seconds, suggesting that coherence may 

have been driven predominately by the responsiveness of the adult to the child 

during the interactions. The authors argued that neural coherence that occurs 

between infants and adults during live interactions likely sets the conditions for 

language learning.   

Studies with older children show that neural coherence is associated with 

cooperation toward a common goal between adults and children. Miller et al. (2019), 

tested 8- to 12-year-old children and their caregivers with the cooperative and 

competitive and independent button press tasks used by Cui et al. (2012). Greater 

coherence in the prefrontal cortex was found during the cooperative play, as opposed 

to the independent play. Similarly, Reindl et al. (2018) tested 8- to 13-year-old 

children in an adapted version of this paradigm. Children pressed a button to cause a 

dolphin to rise and catch a beach ball. During the cooperation condition, if their 

avatar and their caregiver’s avatar caught the ball simultaneously, they jointly won 

the trial. In the competition condition, their avatar had to catch the ball first. Children 

also played these games with an experimenter who they did not know. Brain activity 

was measured over frontal cortical sites. Coherence within each channel was 

measured as the number of timepoints that exceeded a threshold for chance, based on 

first establishing null levels of coherence in channel pairings from adults and 
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children who were not interacting. Additionally, only channels with significantly 

greater frequencies of these above-threshold values within one condition, compared 

with the mean of a null distribution of 1200 scrambled channels, were analysed. 

Within the dorsolateral prefrontal cortex and frontopolar cortex, neural coherence 

was found between caregivers and children during cooperative game play. By 

contrast, no coherence above and beyond the baseline was found between children 

and strangers in any condition, or between caregivers and children when they were 

simply trying to press the button faster than the other person.  

The above examples show that neural synchrony between interacting partners 

is associated with verbal processing, cooperation and face-to-face, child-adult 

interactions. However, prior empirical work has not established if and how neural 

synchrony is related to learning new words. Wass et al. (2020) list three potential 

mechanisms for how communicative behaviours could entrain oscillatory activity 

between interacting participants and sustain it through time. The first is through 

behavioural entrainment, or getting in synchrony with another person via shared 

patterns of movement, etc. The second is ostensive cues, or behaviours that explicitly 

indicate communicative intent. These behaviours may act as “edges”, resetting 

underlying phasic activity between the sender and receiver and establishing a 

common pattern between them. As an example, if a child and caregiver establish eye 

contact, this may function as an ostensive cue. The third mechanism is higher-level 

alignment that occurs via self- and other referencing, shared understanding and 

comprehension. Thus, within caregiver-child interactions, the behaviours that 

establish shared experiences may also establish neural coherence.  

Additionally, the authors sketch out a possible mechanism for how neural 

synchrony could directly support early word learning, based on the hypothesis that 

specific learning events, like naming an object, can be influenced by the polarity of 

underlying neural activity. That is, some work suggests that the net shifts in 

oscillatory activity may be systematically related to the excitatory/inhibitory polarity 

of underlying neuronal activity (Busch, Dubois & VanRullen, 2009; although see 

Ruzzoli et al., 2019). The authors posit one could expect that if the child’s brain 

activity was properly timed to the naming of objects, these naming events would be 

more thoroughly encoded than if they are randomly timed (for related work on 

perceptual awareness, see Busch et al., 2009; Mathewson et al., 2009). According to 

this logic, coherence between the caregiver and child may intuitively improve the 
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timing of naming such that the child makes more word-object mappings in response 

to the caregiver’s naming of objects, specifically when the caregiver and child are in 

alignment.  

Collectively this research and theoretical work reveal that neural synchrony 

can be observed between an adult speaker and listener and also between adults and 

children who are interacting. Additionally, temporal relationships in brain activity 

observed through these measures are sensitive to both cooperation and to speech 

comprehension. Less research has mapped neural synchrony to free play (i.e., an 

openly structured interaction) between adults and children (Piazza et al., 2020), and 

to the best of our knowledge, no research has directly explored neural coherence 

between adults and children during a naturalistic interactive task, or during any sort 

of word learning task. Therefore, while much work suggests that neural coherence 

could underlie word learning between caregivers and children based on its relevance 

to other tasks, and some work has suggested possible theoretical mechanisms for this 

relationship (Piazza et al., 2020; Wass et al., 2020), the literature has not directly 

established whether neural coherence between caregivers and children is associated 

with children’s word learning during play.  

 

1.5 Outstanding Questions   

While much work has been done to map, in detail, how behavioural 

coordination and shared attention shape early word learning, the neural mechanisms 

are significantly less understood. While differential processing of new and familiar 

words has been investigated for young children within controlled laboratory tasks 

(Takashima et al., 2019), to the best of our knowledge, no functional imaging study 

has explored differences between learned words and words not learned within a live 

interaction between a caregiver and child. One outstanding question is: while their 

caregiver teaches them, how are children’s neural responses to an adult’s naming of 

objects they later show evidence of having learned (learned words), different from 

their responses to naming of objects they do not later show evidence of having 

learned (words not learned)? Word learning during a live interaction requires 

language, attention, working memory and social computations, and it is unknown 

how these different computations are activated for children when hearing new 

words.  
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In general, the neural correlates of teaching new object names have not been 

previously studied, and specifically, no one has examined caregivers’ neural 

responses as they teach their child object names. One unanswered question is 

whether the caregiver’s neural activation while naming objects that their child learns 

is different than it is to those their child doesn’t learn, based on differences of 

processing that lead to more effective teaching. Caregivers may be more effectively 

engaged in language, cognitive or social computation during instances of naming 

that result in their child’s learning. Differences in the effectiveness of their 

communication may be detected in their own neural data.  

Another question is how encoding of new object names is influenced by 

behavioural coordination that occurs between the caregiver and child during 

interactions. Computational modelling work suggests that behavioural coordination 

could directly impact on neural responses to naming of new objects during 

interactions between caregivers and children (Samuelson et al., 2011). But how do 

caregivers connect with their child and what behaviours underlie the differences in 

responses to learned versus words not learned during interactions? Previous work 

has revealed that behavioural coordination has a clear function of helping children 

map each new word with a specific referent in space and time (Samuelson et al., 

2011). Therefore, spatial organization may be one place to start in investigating how 

coordinating shared environments enables children to encode word-object mappings.  

Finally, it is an open question whether neural coherence between the 

caregiver and the child while teaching and learning object names is correlated with 

the child’s word learning (Piazza et al., 2020; see also Wass et al., 2020). In other 

words, can neural synchrony between the caregiver and child indicate whether they 

are in alignment enough for the child to learn? Based on previous neuroimaging 

studies that show that neural coherence predicts speech comprehension and speech-

picture matching (Liu et al., 2019; Stephens et al., 2010), and from developmental 

research that shows neural coherence can be observed during interactions between 

adults and children (Miller et al., 2019; Piazza et al., 2020; Reindl et al., 2018), it is 

possible that neural coherence is positively correlated with children’s word learning 

during face-to-face interactions with a caregiver.  
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1.6 Applications of Functional Near Infrared Spectroscopy (fNIRS)  

Prior to discussing the aims and design of the current study, a brief 

introduction is provided to the neuroimaging technology used to measure brain 

activity in this thesis. Within neuroimaging paradigms, functional near infrared 

spectroscopy (fNIRS) measures the density of infrared light that has been passed 

through the scalp, skull and cortical tissues. NIR light (695-1000 nm) is passed 

through these tissues by an optode on the surface of the participant’s scalp (a source) 

at a wavelength that is relatively transparent to these tissues, and that is 

predominately absorbed by the chromophore of hemoglobin proteins (see Ferrari & 

Quaresima, 2012). In the present apparatus, optical density that is measured by an 

additional optode positioned around three cm from the light source (a detector) can 

be converted using the modified Beer-Lambert law (Scholkmann et al., 2014) to 

indicate levels of hemoglobin concentrated within the microcircuitry of the cortical 

tissue. Because chromophores vary based on the level of oxygenation, often two or 

more wavelengths are emitted to measure the concentration within oxygenated 

vessels and deoxygenated vessels in these tissues (for reviews, see Ferrari & 

Quaresima, 2012; Scholkmann et al., 2014). From this point forward, oxygenated 

hemoglobin will be referred to conventionally as HbO, deoxygenated hemoglobin 

will be referred to as HbR, and the relationship between them will be referred to as 

neurovascular coupling. Importantly, hemoglobin concentration, measured by 

fNIRS, has been reliably correlated with the BOLD signal within fMRI research to 

measure neural activation during cognitive tasks (Fishburn et al., 2014; Wijeakumar 

et al., 2017; see Scholkmann et al., 2014). The event-related, averaged neural 

response to key events of interest, such as naming of new objects, is referred to as 

the hemodynamic response.  

Functional near infrared spectroscopy (fNIRS) can be used to provide 

accurate information about where in the cortex activation is occurring (the spatial 

resolution), and about the time-course over which activation occurs (the temporal 

resolution). In order to determine where neural signals are originating, a geometry is 

created, consisting of a set array of sources and detectors with a distance from each 

other that is scaled to head size, so as to record from the same cortical areas in each 

participant (Wijeakumar et al., 2015). The spatial resolution of fNIRS, as in, how 

reliably the source of the light absorption in the brain can be determined, is thought 

to be superior to that of EEG (Lu et al., 2010), but is still greatly improved through 
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image reconstruction methods. The path of diffusion through which light passes into 

cortical tissues can be modelled in order to provide a precise localization for the 

signal in the cortex, creating voxelated correlates to the task-related neural response 

(Doulgerakis et al., 2019; Wijeakumar et al., 2015; 2017). This enhances the spatial 

resolution capabilities of the measure and provides better standardization of the 

source of signals that is robust to minor variation in where optodes are placed on 

each participant’s scalp. Further, the temporal resolution of fNIRS technology is 

considered good (Huppert et al., 2006; Tak & Ye, 2014), which enables accurate 

measures of the time course of the hemodynamic response, connectivity and 

coherence measures.  

In addition to being able to localise signals precisely within the brain, fNIRS 

also has a critical advantage for research that is not available with other commonly 

used neuroimaging technologies for cognitive neuroscience research such as EEG 

and fMRI. fNIRS technology is robust to participant movement and can therefore be 

applied to work with young children (Buss et al., 2014; see Pinti et al., 2018; 

Soltanlou et al., 2018; Wilcox & Biondi, 2015) and with participants who are 

moving freely within naturalistic tasks (Lancia et al., 2018). In a review, Pinti et al. 

(2018) describe why fNIRS technology has advantages for studying social 

interaction. As social behaviours require movement for interacting partners to jointly 

explore their environment, follow gaze, and spontaneously imitate each other (as 

examples) the robustness of fNIRS to motion enables applications of the technology 

to mapping relationships between behaviour and brain activity that occur during 

interactions. Because participants can interact, fNIRS technology can capture how 

brain activity is driven by the moment-to-moment behaviours that occur during 

interactions.  

Though barely touching on the depth of research and knowledge about fNIRS 

technology, the points made here reveal that this measure is optimally suited to 

studying interactive word learning between caregivers and children. Judgements on 

the quality of spatial resolution of the measure may vary (Tak & Ye, 2014) but when 

critical, this resolution can be improved via statistical modelling (Doulgerakis et al., 

2019; Singh et al., 2005; Wijeakumar et al., 2015; 2017). The measure further 

provides good temporal resolution (Tak & Ye, 2014), enabling responses to be 

measured for spontaneous naming events that occur in real time during interactions, 

and that additionally can be used to determine neural synchrony between 
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participants. Critically, fNIRS technology is robust to participant movement, 

enabling caregivers and children to explore new objects on their own terms, without 

restricting them, thus capturing behaviour that is closer to what occurs in the real 

world.  

 

1.7 Aims and Design of the Current Project 

The primary aim of the current project was to identify the neural mechanisms 

of early word learning, within naturalistic caregiver-child play. The project explored 

how children learn words during play with their caregiver, and what breaks down 

within behavioural coordination and brain activity when a caregiver is not successful 

in teaching their child new words. Data from the same study was analysed for all 

results presented in this thesis. Thirty-seven dyads of caregivers and their children 

(19 aged 32-months and 18 aged 54-months) sat across from each other at a table 

within a laboratory space. They were given two sets of new objects to play with. The 

first set consisted of three unusual toys (new objects), and the second set consisted of 

five unusual toys. Before beginning each task, an experimenter provided the 

caregiver with word-picture pairs to reference as they taught their children the object 

names. Caregivers and children then interacted with the toys. After the interactions 

with their caregiver, children were tested by an experimenter in a referent-selection 

task to determine which names they had learned. The child was presented with pairs 

of new objects on a tray and asked to select one by name. We recorded fNIRS from 

both the caregiver and child over frontal, temporal and parietal areas during their 

interactions and the following referent selection test. Within this study, we aimed to 

determine how the child’s brain activity was different between naming of learned 

words and words not learned and also to test whether children’s learning during the 

interactions would be influenced by behavioural and neural coordination with their 

caregiver.  

In the second empirical chapter (Chapter 3), we investigated the neural 

correlates of interactive word learning between caregivers and preschool aged 

children within this task, conducting an event-based analysis of children’s and 

caregiver’s neural responses to naming of new objects. As planned, we analysed 

neural responses to naming across the interactions. Based on the previously 

established role of the left inferior frontal gyrus in semantic processing and word 

learning for adults and children, and the right inferior frontal gyrus in language 
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processing for children (see section 1.3 for references) we hypothesized that, for 

children, the inferior frontal gyrus would respond differentially during naming of 

words the child learned versus during naming of words the child did not learn. 

However, neural responses to naming were simultaneously analysed over all of the 

areas we recorded from in order to explore how language, attention, working 

memory and social processing were associated with children’s learning.   

In order to further explore the role of behavioural coordination toward 

influencing children’s encoding of object names, we investigated how the spatial 

organization within objects’ locations supported children’s ability to map new words 

to intended referents. Behaviourally, we tested whether the coordination of object 

locations between the caregiver and child influenced the child’s learning. Based on 

previous computational approaches and experimental findings (Benitez & Smith, 

2012; Samuelson et al., 2011), we predicted that the spatial consistency of object 

locations during play, measured continuously through time, could predict how 

successfully word-object mappings were made by the child. For example, if the 

dyads kept objects lined up as they named them and held them in either the right or 

left hand, children might use each object’s location to index one name to that object, 

thereby making accurate word-object mappings. With more robust mappings made 

during play, children would then give more correct responses when asked to select 

each object by name during a comprehension test. In the second part of the study, we 

then established that one particular aspect of spatial coordination, the distinctiveness 

of locations that new objects occupied during the interaction, predicted which words 

children learned during the interactions.  

In the final empirical chapter (Chapter 4), we investigated whether neural 

coherence between the caregiver and child during learning was correlated with the 

number of words the child learned. This was based on the hypothesis that observed 

alignment in brain activity is related to successful communication and behavioural 

coordination, and ultimately facilitates word learning. Over these same frontal, 

temporal and parietal regions, we calculated a mean coherence value based on the 

continuous time series of the fNIRS data throughout each caregiver-child interaction 

with the new toys. In other words, rather than looking specifically at hemodynamic 

responses to naming events within the individual child’s and caregiver’s brain, we 

calculated the robustness of temporal relationships in their brain activity as they 

interacted through time. Coherence was analysed within corresponding channel 
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pairings between the caregiver and child. Coherence values were calculated using 

the WTC toolbox in MATLAB (Grinsted et al., 2004).  

In order to validate the coherence values in our actual data, we compared the 

mean coherence, for each channel, with that of a null distribution of corresponding 

channels we created from mismatched caregiver-child pairs. Because ours was the 

first study to assess whether neural coherence between the caregiver and child 

through time would be correlated with the child’s word learning, we took an 

exploratory approach to determine whether neural coherence was greater for 

caregivers and children who were learning words together, compared with caregivers 

and children who were completing the same task but not interacting with each other. 

Any channels that showed significantly higher coherence on average, compared with 

the mean of the baseline, would be correlated with the number of words the child 

learned. However, no such correlations were appropriate as neural coherence was not 

greater for caregivers and children who were directly interacting, compared with that 

of mismatched caregiver-child pairs. 
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Chapter 2: General Methods Development and Piloting 

 

2.1 Overview of Methodological Aims 

The present chapter provides an overview of the methods development and 

piloting of the thesis project. The primary aim of methods development and 

preliminary testing was to be able to extract clearly defined variables from 

behaviours that occur spontaneously during interactions. The primary challenge was 

to enable participants to interact in a controlled laboratory environment as they 

would at home while measuring and analysing specific variables of interest within 

the constraints of fNIRS and machine learning technology. In the present study, 

variables and events of interest were examined within an open task structure of word 

learning during caregiver-child play. Similar, though not identical, methods 

development can be seen in prior studies that examined child-adult interactions 

(Clerkin et al., 2016; Piazza et al., 2020; Smith, Jayaraman, Clerkin & Yu, 2018; 

Suarez-Rivera, Smith & Yu, 2019). As in this prior work, we did not manipulate the 

variables we examined, like naming or object presentation during teaching and 

learning, by indicating to caregivers how they should teach. Instead, we measured 

and analysed children’s and caregivers’ learning, neural responses to naming events, 

spatial consistency and neural coherence within the existing data.  

In the present chapter, considerations relevant to the sample tested and the 

development of stimulus, apparatus, video coding and machine learning methods are 

each described. Then a small, preliminary study that built from and tested the 

capabilities of these considerations is reported in section 2.3. The primary purpose of 

the pilot study, which did not have enough power to find the differences of greatest 

interest, was merely to ensure that neural coherence could be observed between 

adults and preschool-aged children in an equivalent manner to how it could be 

observed between interacting adults. This was a relevant consideration given that the 

underlying patterns of neural activity may have some differing temporal structure at 

different stages of maturity, and that fewer studies had been conducted examining 

neural coherence between adults and children prior to collecting the data for this 

study. Should it be possible to observe similar levels of neural coherence between 

adult-child and adult-adult dyads who were engaged in play with the objects used in 

the study and should the below described methods plan be feasible for analysing data 

from caregiver-child dyads, then this would provide some indication that the 
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methods were enough to proceed with the main study. Recent work has further 

confirmed the validity of neural coherence between interacting adults and children 

(Leong et al., 2017; Miller et al., 2019; Piazza et al., 2020; Reindl et al., 2018), 

further resolving that particular concern.  

 

2.2. Preliminary Methods Development and Considerations 

2.2.1 Age and Demographic Considerations 

The study tested children between 29 and 56 months of age, including a 

fairly continuous recruitment between these ages in the pilot study and two discrete 

age groups of 32-month-old children (29 through 34 months) and 54-month-old 

children (51 through 56 months) in the main study. This age range is of theoretical 

interest but also presents methodological challenges. In terms of theory, the 

preschool years are pivotal to language learning and later literacy (Avons, et al., 

1998; Cabell et al., 2015; Lonigan, 2007; Song et al., 2015; Stokes & Klee, 2009). 

Yet, less work has considered how this is related to the rapid and simultaneous 

development of multiple types of skills between two and five years of age, and our 

age groups fell on either end of this developmental timeframe. These occur in the 

domains of social cognition (Saxe, 2013; Sobel & Corriveau, 2010; Sobel & 

Sommerville, 2009), and working memory to facilitate verbal skill (Kyttälä et al., 

2014; Newbury et al., 2016; Vlach & DeBrock, 2017; 2019). The preschool years are 

also important to study because interactions between adults and children impact on 

the quality of children’s word learning between two and five years of age, predicting 

their vocabulary (Liebeskind et al., 2014; Napoli & Purpura, 2018). Yet, as discussed 

in sections 1.3-1.5, prior work has not tapped the neural correlates involved in 

interactively teaching and learning new words during these ages.  

Logistically speaking, the children needed to be old enough to be able to 

finish the task, engaging in the word learning and comprehension tests for a lengthy 

period of time and with an intensive prior setup. Only children around 30 months 

and older were likely to be able to participate in this study, given the length of the 

setup and task, and the number of words to be learned. For example, Hirotani et al. 

(2009), tested children aged 18- to 21-months in a word learning and joint attention 

task using EEG/ERP. However, this task had a far simpler setting up procedure, and 

also a shorter and simpler word learning task. Prior neuroimaging work in lengthier 

and more involved language processing tasks and using more spatially precise 
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analysis methods had typically tested children no younger than four to five years of 

age (Ekerdt et al., 2020; Romeo, Leonard et al., 2018; Romeo, Segaran et al., 2018). 

The younger group of the present study essentially fell between these prior studies, 

at 29- through 34-months of age. Some aspects of the setup still needed to be 

considered in order to make them accessible for these younger children. Most 

notably, experimenters’ roles were divided so that each child spent as little time in 

the testing room as possible. While one experimenter explained the task to the 

caregiver and went through the lengthy process of setting up the adult’s fNIRS cap 

and checking the signals, another experimenter completed the vocabulary test with 

the child and let the child play with toys in a waiting area. Both experimenters then 

placed optodes in the child’s fNIRS cap and adjusted the signals simultaneously to 

speed up the process. Children were offered snacks and drinks during the study. 

When moving, younger children are also more likely to pull out an optode, either 

intentionally or by accident. This was prevented through placing an additional cap 

over the NIRS cap. Finally, during periods in which the caregiver and child were not 

interacting, such as the comprehension test, further measures were taken to ensure 

caregiver and child were disconnected from each other even while in the same space. 

Caregivers faced away from their child, and could they not see each other’s test. 

Portions of the test that involved the caregiver only, like their cap digitization and 

their production test, were completed after the child had already been taken to the 

waiting room by the second experimenter to play. Collectively, these adjustments 

enabled us to test 32-month-old children in a naturalistic paradigm with an 

exceptionally involved setup, thus observing a younger age group than was typically 

tested in the most similar neuroimaging studies. Future work could explore 

behavioural paradigms and tasks with scaled down word learning demands in 

younger children, exploring technologies that can test mutual prediction and 

synchrony, such as eye tracking and motion capture, as alternatives to a complicated 

fNIRS setup.   

Throughout the piloting and final sample recruitment, we aimed to recruit a 

sample representative of the local population of a city and surrounding areas in the 

eastern part of the UK. Nurseries involved in the recruitment were selected from a 

database held at the university. Though this was not intended, the average household 

income reported by the present sample was greater than the average of the city and 

surrounding areas. In addition to this consideration, children had slightly higher-
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than-average vocabulary scores within the British Picture Vocabulary Scale (BPVS) 

-3. These overall vocabulary scores, as reported later in Chapter 3, were positively 

correlated with the number of words children learned in the present study.  

Testing and space constraints made one aim of the piloting to create a mostly 

portable testing design. As a result, the presented work presents a starting path 

toward a fully portable design that would be more accessible to participants who find 

it difficult to commit to travel back and forth from a university, potentially 

expanding the reach of the present design. Portable setups could include emerging 

wireless fNIRS technology (Abtahi et al., 2016; Piper et al., 2014) and a way to 

place an overhead camera that is not permanently installed and that can be used to 

stably record object locations through time. However, all other aspects of the design, 

including the table and chairs, toys, cameras, and the board on which to affix the 

object photos and labels for the caregiver to read, were already part of a portable 

design that was fully packed away after each session, even in the present study 

conducted in a laboratory space. 

 

2.2.2 Stimulus Development 

The stimuli were chosen ahead of time and then tested in the piloting study 

through measuring the participants’ learning and examining the overhead video feed 

to determine how easy it would be for a machine learning network to classify the 

objects. Objects chosen for the study were selected to have comparable size but 

maximal contrast in colour and shape, for easy classification by the machine learning 

algorithm and distinctiveness for the child. This was done prior to the piloting phase. 

Photos of the new and familiar objects that are later modelled in Figure 3.1, are 

shown here and described in Figure 2.1. Of these objects, the complexity and colour 

distinctiveness were matched between new and familiar sets. Additionally, the ratio 

of toys with animal-like characteristics was kept consistent across new and familiar 

toy sets (the yellow squishy worm, felt puppet and green caterpillar had animal-like 

characteristics in the new toy set, and the horse, rabbit and dog were included in the 

familiar object set). The new words chosen from the NOUN database (Horst & Hout, 

2016) were divided into four new words with two syllables and four words with one 

syllable, though, as described elsewhere, their pairing was counterbalanced across 

the new objects.  
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Figure 2.1. Photographs of new toys (left in shown in black box) and familiar toys 
(right) used in the experiment. The set of three objects is pictured in the top row, and 
the set of five objects is pictured in the bottom row. 

 

In order to counterbalance the pairing of new words with new objects, eight 

different sets of word-object pairings and corresponding comprehension test 

sequences were made that could be cycled through systematically. For each session 

sheet, the pairings of new words with new objects changed systematically. In the 

referent selection task, objects were each presented twice as a target and twice as a 

distractor. The means to determine the pairings and order were as follows. Randomly 

chosen combinations of the possible orders for the three and five object sets were 

used to construct a planned presentation sequence in each session. Each new and 

familiar object (and corresponding name) were tagged and then inserted into one of 

four session sheet templates formulated to ensure that each object was (a) presented 

as a target in the first half of the test and the last half of the test and also as a 

distractor in the first half of the test and in the last half of the test, and (b) that each 

object was presented once on the left and right of the other object as a target, and 

once on the left and right of the other object as a distractor. These measures ensured 

that the comprehension tests given to each child had equivalent difficulty, and that 

the relative side objects appeared on, which objects they were paired with, how 

spread out their presentation was, and how often they appeared as targets and as 

distractors and when, were each varied systematically across participants (see 

Appendix C). Essentially, this meant that even though children weren’t presented 

with the exact same sequence of object pairings every time in the comprehension test 



SECTION 2 – Experimental Chapters 
 

 32 

(in order to counterbalance the presentation between different objects across 

participants), they each had an equally difficult comprehension test.  

 

2.2.3 Event Coding 

Here, the planning of the event coding paradigm is described, largely prior to 

conducting the study and with staff in the lab even prior to conducting a pilot study 

with actual participants. A language annotation software developed by the Max 

Planck Institute for Psycholinguistics, was used to code the naming events that 

occurred during conversations between caregivers and children. The software 

enables synchronizing audio and video recordings and selecting and marking events 

in the audio waveform along hierarchical tiers of organization (Wittenburg et al., 

2006). Audio events are marked in minutes, seconds and milliseconds from the start 

of the recording. In the present study, the video recordings were converted into an 

audio (.wav) format. Then the video and audio file from the same interaction were 

inserted into a new file. Coders watched the video and marked the onsets of the 

flashes that indicated the beginning and end of each block. Then the audio was 

listened through while watching the video and each time a new word was named, the 

coder selected the event in the waveform, creating a record of the onset and offset of 

the spoken name. The object name spoken was typed into the annotation along with 

an indicator (“p” or “c”) of whether the caregiver or child had said the new object 

name. The annotations were then processed with a script that computed the onset and 

offset of each naming event in milliseconds and output a spreadsheet with columns 

for the object name, who said the name, the onset and the offset of the event in 

milliseconds, from the onset flash. A new file was then made for the reliability 

coding (described in section 3.2.4).  

The software has been successfully applied to annotating language events in 

prior studies (for examples, see Colletta, Pellenq & Guidetti, 2010; Gerstenberger, 

Partanen & Reißler, 2017). The primary limitation of the present approach is that the 

audio coding portion is immensely time consuming and requires multiple human 

coders. Recommendations for future work include exploring an automated machine 

learning analysis of the waveforms, involving training the machine algorithm to 

recognize the new words in a speech stream and then allowing the algorithm to 

predict when new naming events occurred in conversation. Otherwise, the scope of 
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any project is limited to the time taken to find and mark the naming events for each 

dyad.  

 

2.2.4 Machine Learning  

In order to measure the object locations, we would need an open-source 

machine learning network specialized in object classification and that also predicted 

objects’ locations. The methods for the machine learning were researched prior to 

conducting the piloting or the main study and then were experimented with 

throughout the data collection. This began by exploring the video feeds visually and 

reading about the constraints of object classification using open source CNNs to see 

if the testing environment worked within those constraints. The study further 

required a balance between speed and computational efficiency and accurate 

predictions. Though two CNNs were originally considered as options (Redmon et 

al., 2016; Zhang et al., 2016), Faster R-CNN was chosen for ease of varying training 

parameters and adequate information posted informally about how to train, fix, and 

apply the network for a similar purpose by users online. Convolutional neural 

networks (CNNs) typically require consistency between the training images and the 

new data in aspects such as camera angle, object appearance, and the environment 

background. Otherwise, the network cannot generalize from the objects it was 

exposed to in one fairly constrained set of examples, to data that may differ 

significantly in the distributions of these aspects in the real world. Some structural 

adaptations have been proposed to address these limitations for Faster R-CNN (Chen 

et al., 2018). In the present study, controlling the distribution of object presentations 

between the set of examples that was used to train Faster R-CNN to recognize the 

new objects, and the full dataset, could be mostly accomplished through controlling 

the environment and the camera. As described earlier in the present chapter, this was 

achieved by choosing simple, solid new objects with high colour and shape contrast, 

by stabilizing the camera angle and setting up the table in the same place each time, 

by making sure that new objects from different sets were covered up when not in 

use, and by removing brightly coloured objects in the surrounding environment, for 

some examples. However, ambiguity still existed in object detection even with a 

straightforward camera view, objects that were distinct and a neutral background 

environment. For example, participants may wear brightly coloured clothing or may 

hold the objects at angles that were not included in the training data. This led in 
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some cases to missing data or inaccurate predictions. In this section, some further 

methods and limitations of the current approach are discussed from an experimental 

standpoint. 

After controlling for distraction in the background environment as much as 

possible, the length and the number of training epochs and the minimum confidence 

were further explored in order to find the best fit to the new data. As described in 

section 3.2.9, we trained the network with a representative sample of our data: 

around 900 randomly selected video frames that varied across four randomly 

selected participants in the study for which we had annotated bounding boxes around 

each new object and the table. The number of training epochs, or the number of 

passes over the training data, were varied in an exploratory manner between 50 and 

500 total epochs. We further varied the length of each individual epoch (as in, how 

many examples would be randomly selected before updating the model weights) 

between these values. The test results, the predictions made on approximately 160 

images that were randomly withheld from the training set, were then visually 

inspected by two experimenters to look for signs of model overfitting, like drawing a 

box around only a small part of a whole object, and for missing predictions for 

clearly visible objects that may indicate the model had not been trained through 

enough epochs. The final number chosen was 100 epochs with an epoch length of 

100. After determining this, the minimum prediction confidence required to draw a 

bounding box was varied between 50% and the default of 80%. A confidence level 

of >= 65% was selected by further visual inspection by two experimenters. This 

practical judgement was made to ensure that bounding boxes were drawn around the 

objects as often as possible but without a major increase in inaccurate predictions 

(i.e., boxes drawn around something that was not the object). Two different versions 

of the network were trained for each object set (three objects: the blue jack, keychain 

and yellow squishy worm; five objects: green caterpillar, felt puppet, brightly 

coloured blocks, paint roller and red mesh structure). These parameter settings were 

explored separately for the CNN corresponding to each set size but were kept 

consistent between them during the later data processing. After the data processing 

around 100 frames per object were randomly selected and marked for accuracy. In 

the data, objects were accurately predicted in 86% of the frames where they were at 

least 25% visible. Further research could increase the accuracy of the model, but 

even more importantly, its ability to generalize to new environments. This requires 
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updating the technology used within a rapidly developing field of computer vision, 

and also to utilize networks trained on exceptionally large pre-existing image 

datasets to achieve greater expertise in object recognition across varied contexts.  

 

 

 
 

Figure 2.2. An example of the machine learning predictions of the new object 
locations for the three object set. Faster R-CNN output bounding box coordinates 
around each toy and the table in each video frame. The object locations analysed 
were the x and y midpoint of the highest confidence bounding box, drawn around 
each object.  
 

2.3 Piloting Study 

The study design was piloted with seven caregiver-child dyads with children 

ranging continuously in age from 30- to 56-months, and seven adult-adult friend 

dyads recruited from the undergraduate student population at a local university. The 

objective of the study was to determine whether neural coherence could be measured 

within adult-child dyads during a word learning task. Because prior work that had 

specifically examined speech comprehension and neural synchrony had done so in 

adult-adult dyads (Liu et al., 2019; Stephens et al., 2010), the pilot data was used to 

compare neural coherence between adult-adult dyads and adult-child dyads. This is 

because the children’s thought processes and the neural signatures that reflect them 

are less mature, and some processes may occur at differing timescales (Wass et al., 

2020). The aim of the analysis was to explore the capabilities of the behavioural task 

and the neural coherence measure even prior to the implementation of more rigorous 

baseline controls. This was done via comparing coherence within task relevant 

frequencies and non-task relevant (heartbeat) frequencies and comparing between 

the following factors. The pilot study examined differences of task (between new 

object training versus a familiarization with everyday objects), age pairing (between 

adult-child and adult-adult dyads), and number of objects (3 new objects and 5 new 
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objects). Finally, the piloting study was used to iron out some aspects of the 

methods. These included determining how to best assess how many words caregivers 

and children learned, and how to make the space suitable for a later machine learning 

analysis, each discussed in this report.  

 

2.3.1 Participants 

Fourteen adults (7 dyads) were tested in the final paradigm with three and 

five objects. Adults were recruited as friends and were assigned on arrival to be the 

“teacher” (in the role of the caregiver) or the “learner” (in the role of the child). 

Seven caregiver-child dyads were recruited. Children who participated ranged in age 

from 30 to 54 months.  

 

2.3.2 Stimuli and Apparatus 

In the pilot study, adult teachers were in the role of the caregiver and adult 

learners were in the role of the child. Caregivers and children (or adult teachers and 

learners) were seated across from each other, at a medium sized white table, in a 

well-lit testing room. A felt board was positioned behind the person in the learning 

role, in view of the teacher or caregiver. Images and labels for new objects were 

placed on the board for the caregiver to reference while teaching object names. The 

stimuli, described in section 2.2.2, can be seen in Figure 2.1. A full description of the 

apparatus for the fNIRS recording can be seen in section 3.2.3, and a model of the 

apparatus can be seen in Figure 3.2. Optical density measurements via fNIRS were 

recording for caregivers and children, and for adult teachers and learners, during the 

session.  

 

2.3.3 Procedure 

This is an abbreviated version of the full procedure used in the pilot and main 

study, that is described in full in section 3.2.3. In the pilot study, adult teachers and 

caregivers could see and teach the object names, while adult learners and children 

learned them. First, the teacher was brought into the experiment room and was set up 

for testing. They were told they would see pictures and names of the objects on the 

board and that they needed to teach the child/adult learner the names of the toys. 

While the task was explained, the teacher was also fitted with a NIRS cap and the 

quality of the NIRS signals were checked. Afterward, we brought the child or learner 
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into the testing room and fitted them child with a NIRS cap and checked the quality 

of the NIRS signals. Once we had completed the setup, we began the NIRS and 

video recordings and marked the onset of the interaction with a synchronized flash 

and a simultaneous stimulus marker in the NIRS recording. Like in the main study, 

in the first two learning blocks, the participants were given 2.25 min per block (45 

sec per object * 3 objects, total 4.5 min) to discuss the names of the objects. In 

between these blocks, the participants were given three familiar objects and left to 

interact for 1.5 min.  

After the second training block was completed, the teacher was moved to 

face away from the child/learner and an experimenter interacted with the learner for 

an additional 1.5 minutes using the familiar toys. The experimenters then began the 

comprehension test. During each trial, different experimenters would ask the teacher 

and learner to retrieve the target object. The learner retrieved the object while the 

teacher pointed to the correct photo on the display card. This was repeated across 

twelve comprehension trials: six trials where they were asked to select a familiar 

object and six trials where they were asked to select a new object. The entire word 

learning task and comprehension test were then repeated with the set of five new 

objects. Participants were given 3.75 minutes in each interaction (45 sec per object * 

5 objects, 7.5 total minutes). The second comprehension test consisted of twenty 

trials: ten trials in which the participants were presented with a pair of familiar 

objects and asked to select one of the objects alternating with 10 trials in which they 

were presented with a pair of new objects and asked to select one of the objects. At 

the end, an experimenter asked the teacher and learner, separately, the name of each 

new object, saying “Can you tell me what this is called?”, as an additional word 

production test.  
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Figure 2.3. A schematic showing the procedure. This succession was repeated twice 
within each session, for a three object set in which the word learning blocks lasted 
2.25 minutes, and the five object set in which the word learning blocks lasted 3.75 
minutes. The familiarization periods lasted 1.5 minutes each. The comprehension 
test then consisted of trials that were repeated twice for each new and familiar object 
in the set.    

  

2.3.4 Results 

2.3.4.1 Behavioural Results: Adult learners scored, on average, 98.2% 

accuracy during the new object trials of the referent selection test, ranging from 

seven to eight learned words out of eight possible. Adults’ immediate recall of the 

object names was nearly perfect. In the production test, adult learners scored a 

78.7% on average, ranging from four to eight words remembered out of eight 

possible. Children scored an average of 64.2% in the comprehension test, ranging 

from three to eight learned words, but an average of only 21.4% in the production 

test, ranging from zero to three words remembered later. For this reason, 

performance in the production test was taken as an indication of adults’ learning, but 

performance in the referent selection (comprehension) test was taken as an indication 

of children’s learning.  

2.3.4.2 Neural Coherence Analysis and Results: A mixed effects linear model 

was run with the Task (new object training versus the familiarization) as a within 

subjects factor, and Group (child-caregiver dyads or adult friends dyads) as a 
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between subjects factor. Random effects in the model included a dyad identifier and 

the fNIRS channel. The data was first filtered so that coherence in the task-relevant 

range was greater than the approximate mean of 0.3/1 for each channel (observation) 

retained. The remaining mean neural coherence across each task between periods of 

3.2-12.8 seconds was the dependent variable (Cui et al., 2012). Overall, an effect of 

task was found, with coherence during teaching and learning new words 

significantly lower than during play with the familiar objects, t127 = -3.27, p = 0.001, 

Figure 2.4. The degrees of freedom represent the number of viable channels times 

the number of dyads. This indicated that the process of learning something new 

broke neural synchrony down significantly. By contrast, there was no difference in 

coherence based on whether or not the participants were caregivers and children, or 

adult friends, t127 = -1.53, p = 0.128, and no interaction between the learner’s age and 

task type, t127 = 0.72, p = 0.474.  

 
Figure 2.4. Boxplots that show neural coherence within the task-relevant frequency 
band (corresponding to a period length of 3.2-12.8 seconds), for the familiarization 
in which caregivers and children played with the regular toys, and the new object 
training (word learning) in which the caregiver taught their child object names. 
Channels with low coherence in the task-relevant frequency band (< .3) were 
omitted from this analysis.  
 

As a control, we examined coherence during the range of 0.6-1.0 seconds, or 

the range of resting heartbeat. At these period lengths and using the filtered dataset, 

no effect of task (familiar objects vs new objects) was found,  t127 = -0.98, p = 0.329. 

By contrast, child-adult dyads had lower heartbeat-driven coherence compared with 

adults, t127 = -2.31, p = 0.023, while no interaction was found between new vs. 

familiar objects and age, t127 = 0.51, p = 0.614.  
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Figure 2.5. Boxplots that show neural coherence within the heartbeat-relevant 
frequency band (corresponding to a period length of 0.6-1.0 seconds), for adult-adult 
friend and caregiver-child dyads. Channels with low coherence in the task-relevant 
frequency band (< .3) were omitted from this analysis.  
 

As an exploratory measure, we tested whether coherence was higher in the 

easier task with three objects or in the more difficult task with five objects. When we 

compared coherence between the types of new object trainings, we only found a 

marginal effect of task, with coherence being slightly lower in the longer and more 

difficult task with five objects t65 = -2.00, p = 0.050. No effect of learner age was 

found, t65 = -0.45, p = 0.658 nor interaction between task and age, t65 = -0.25, p = 

0.802.  

2.3.4.3 Brain-Behaviour Relationships: To further explore the data, a 

distribution was created of the channels based on the mean coherence across the 

task-relevant frequency band and during the new object trainings. Those channels 

that were, on average, above one standard deviation from the mean coherence (0.307 

+ 0.006), were selected for further comparisons. The coherence values within these 

channels, channel 1, located over the left inferior frontal gyrus (IFG), and channel 

18, located over the right posterior temporal cortex (PTC), were tested for 

correlations with the number of words children and the number of words adult 

learned.  However, neither channel was correlated with the words participants 

learned, for channel 1, r12 = -0.298, p = 0.301, for channel 18, r12 = 0.293, p = 0.308. 
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2.3.5 Conclusions and Adjustments Made 

Conducting and analysing the pilot data revealed some key aspects of the 

study design. As the pilot study was conducted, we practiced minimising the time 

needed to set up and to have the child in the testing room. This included completing 

the caregiver setup first. Most adult-adult dyads were run prior to having caregivers 

and children into the lab to pilot the full session, so this was practiced on adults until 

the experimenters had minimized the setup time and time in between tasks. The final 

procedure was predominately planned prior to the piloting study but was practiced 

throughout the adult testing so as to be ready to test children with the complicated 

apparatus.  

The hyperscanning analysis revealed that coherence was comparable within 

task-relevant frequency bands examined in prior work between child-adult dyads and 

adult-adult dyads, meaning that we could test child-adult dyads and observe 

equivalent task relevant effects as had previously been explored only in adults (Liu 

et al., 2019; Stephens et al., 2010). The pilot data indicated that neural coherence 

during a task-relevant frequency band (3.2-12.8) that had been used in previous 

studies, even those with a very different task (Cui et al., 2012), showed differences 

based on task while the ‘heartbeat’ range (0.6-1.0) did not. Not finding differences 

by task in the cardiac range suggested that differences in coherence observed based 

on task were less likely to be owing to physiological noise in the data, and instead 

were more likely to be driven by engaging in the task. However, a number of 

questions remained, including whether coherence would be intact during the new 

object training within a larger sample, and whether greater power would be afforded 

to find statistical evidence of brain-behaviour relationships.  

During the pilot study, we determined that adult learning could be assessed 

using a later production test, which showed distributions of retention that were 

similar to children in the comprehension test. By contrast, the selection test was too 

easy for the adults, as they were accurate nearly 100% of the time. The production 

test was then applied to all caregivers who were teaching to assess which words they 

learned in the main study and to rule out that they learned the same words during 

interactions as their children.  

The earlier methods development, described in section 2.2, was largely tested 

in the pilot study. Early inspection of the video data during the pilot testing led to 

changes to the environment in order for the machine learning analysis to be feasible. 



SECTION 2 – Experimental Chapters 
 

 42 

We removed any objects from the testing space that had colours similar to our new 

objects and covered new objects up when participants were not interacting with 

them. Though the overhead camera was permanently positioned, piloting was used to 

adjust the audio and video recordings so that we could see and hear the participants 

while they were moving. The side camera was adjusted to enable video coding of the 

referent selection and audio coding of the naming, while the overhead camera, which 

did not have an audio file, was adjusted only for a complete view of the table. 

Having multiple cameras enabled us to record audio with enough clarity to mark the 

naming events in the recordings later, having a viable video + audio recording of the 

comprehension test so that coders could hear which object was asked for and see 

which objects the child selected. Meanwhile, the overhead camera position was 

essential to establishing stable measurements of the object locations that could be 

referenced to the table.  

In the following chapters, the methods and results of the main study are 

reported. The methods development, apparatus and procedure described here were 

applied to the main study. As described in this section, what much of the preparatory 

work and the piloting revealed was the need to structure the testing apparatus and 

surrounding environment in order to be able to extract variables of interest using 

fNIRS and machine learning technology. Most notably, this included minimizing the 

time that children needed to be in the testing room, simplifying the environment for a 

later machine learning analysis of object locations, deciding how the naming events 

would be coded, and confirming that task-relevant neural coherence could be 

measured with adult-child dyads. 
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Chapter 3: The Impact of Neural and Spatial Coordination on Learning During 

Encoding of Object Names 

 
 

3.1 Introduction 

Interactions between adults and children facilitates early vocabulary 

development, above and beyond what is learned from ambient language input 

(Romeo, Segaran et al., 2018; see also Hoff, 2006; Tamis-LeMonda, Kuchirko & 

Song, 2014). For example, children’s ability to make correct word-object mappings 

during interactions is facilitated by the coordination of their attention and working 

memory with an adult speaker (Cartmill et al., 2013; Kalagher & Yu, 2006; Suanda, 

Smith & Yu, 2016; Sullivan, Mundy & Mastergeorge, 2015; Tomasello & Farrar, 

1986; Yu & Smith, 2013; Yu et al., 2009). At a neural level, previous work suggests 

that children’s event-related responses in a referent selection task are more sensitive 

when the initial encoding of the new words and objects occurred as they shared 

attention with an adult (Hirotani et al., 2009). The implication is that, early in 

development, social interaction supports word learning via coordination between 

adults and children, ultimately enhancing the child’s underlying neural encoding of 

pairings made between objects and spoken new words (Mundy & Jarrold, 2010; 

Samuelson et al., 2011). 

Traditionally, the neural correlates of language development have been 

studied within computer-based tasks that do not tap the influence of interaction on 

word learning in the real world. This previous work points to the importance of 

localized speech and language processing, but also attention and working memory. 

Foremost, children’s language-learning can be functionally mapped to a language-

processing network between Broca’s area in the left inferior frontal gyrus and 

Wernicke’s area in the left posterior temporal cortex (Balsamo, Xu & Gaillard, 2006; 

Berl et al., 2014; Romeo, Leonard et al., 2018; Romeo, Segaran et al., 2018; 

Takashima et al., 2019) and also to attention and working memory networks (Berl et 

al., 2014; Ekerdt et al., 2020; Nora et al., 2017). Additionally, it is known that the 

neural correlates activated during processing concrete nouns are more broadly 

distributed when children believe themselves to be engaged in interaction with 

another person (Hirotani et al., 2009; Rice, Moraczewski & Redcay, 2016). It is clear 

that contextual social computations are made during the processing of concrete 
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nouns when children perceive that they are sharing representations, compared with 

when they are knowingly presented with pre-recorded stimuli while alone. However, 

the neural signatures of word-learning through direct, live social interaction and 

how they are influenced by behaviour are virtually unmapped by previous work.  

The present study aimed to determine whether neural signatures of children’s 

word learning could be detected within the child’s and caregiver’s neural responses 

to naming of new objects during their interactions. Functional near infrared 

spectroscopy (fNIRS) technology enabled a naturalistic testing paradigm in which 

participants could interact with each other and with objects on the table (see Pinti et 

al., 2018). The preschool years were chosen to assess interactive word learning, 

given their pivotal role in early language development and later literacy (Avons, et 

al., 1998; Cabell et al., 2015; Lonigan, 2007; Song et al., 2015; Stokes & Klee, 

2009), and that this age group has been studied less because they are often 

considered too young for functional neuroimaging research with high spatial 

resolution in language-learning tasks.  

During this task, caregivers taught their 32- and 54-month-old children the 

names of eight new objects during free play, while fNIRS data was recorded from 

both the caregiver and child and the interactions were videotaped. We aimed to 

analyse event-related hemodynamic responses following instances of naming. The 

first analysis determined whether the time-locked, neural responses to naming of 

objects the child learned were significantly different within the child’s and 

caregiver’s brain activity, compared with those words the child did not learn (for 

previous work that discussed a two-person social neuroscience framework, see 

Hasson et al., 2012; Wass et al., 2020). 

A second set of analyses explored whether children’s learning could be 

predicted by behaviour that occurred during the interactions. Previous work had 

shown that the consistency in new objects’ spatial positions during play with 

caregivers facilitated children’s memory for their names (Samuelson et al., 2011), 

and, more generally, that visuospatial working memory is correlated with verbal 

working memory (Alloway, Gathercole & Pickering, 2006), and particularly with 

children’s receptive and expressive vocabulary scores (Stokes et al., 2017) during the 

preschool years. Taken together, prior work suggests that development of spatial and 

language processing domains influence each other, potentially pointing to the role of 
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spatial coordination as a key aspect of interactive word learning between caregivers 

and preschool aged children.  

 

3.2 Methods    

3.2.1 Participants   

We recruited a sample of 68 preschool aged children from a city and 

surrounding areas in the UK. These included two age cohorts, 38 32-month-olds (M 

= 32.2 months, SD = 56 days) and 30 54-month-olds (M = 53.6 months, SD = 57 

days). Of those, we excluded 24 children who did not want to wear the NIRS cap, 

and seven children because of technical errors. The final sample consisted of 19 32-

month olds (M = 32.5 months, SD = 52 days) and 18 54-month olds (M = 53.7 

months, SD = 58 days) and their caregiver.  

 

3.2.2 Stimuli and Apparatus  

Caregivers and children were seated across from each other, at a medium 

sized table, in a well-lit testing room. We videotaped the session from an overhead 

camera that was mounted to the ceiling, and with two additional cameras placed at 

opposite sides of the table. A felt board was positioned behind the child, in view of 

the caregiver. We attached images and names of the objects to the board for the 

caregiver to reference while teaching their child the object names. During the word 

learning task, our new stimuli consisted of eight unusual toys, including a three-

object set of a yellow squishy toy, a large decorative key ring, and a large blue jack, 

and a five-object set of a wooden caterpillar that had been painted solid green, a 

miniature paint roller, a red mesh structure, brightly coloured blocks, and a small felt 

puppet, (see Fig 3.1). During breaks, children played with two sets of familiar toys 

that consisted of a small plastic horse, a cup and a toy train for the three-object set, 

and a toy bed, rabbit, dog, small shoe, and small plastic sunglasses for the five-object 

set.  

Both the caregiver and child were fitted with a stretchy NIRS cap that 

delivered near-infrared light at wavelengths of 690 nm and 830 nm via eight fibre 

optic cables (sources) and measured optical density via 16 fibre optic cables 

(detectors). We used a 48-channel TechEn ® CW7 system, with a geometry that was 

divided between both participants. Optodes were fitted securely into the cap with 

grommets. Given that they were moving freely, participants wore an additional cap 
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over the NIRS cap in order to hold the optodes in place. Optode locations were 

recorded in 3D space using a digitization device that registered the locations of head 

landmarks and the optodes. Though we did not analyse these data for the current 

study, participants were each fitted with a Pupil Labs head-mounted eye tracker that 

consisted of a camera that pointed outward from the participant’s forehead to 

provide an egocentric view at 100 diagonal degrees, which captured most of the 

participant’s visual field, as well as an eye camera that recorded x and y coordinates 

of the participant’s gaze direction.  

 

Figure 3.1. New toys (left) and familiar toys (right) used in the experiment.  

 

3.2.3 Procedure 

The caregiver was first taken into the testing room by an experimenter while 

a second experimenter completed the British Picture Vocabulary Scale, version 3 

(BPVS-3) with the child (Dunn & Dunn, 2009). The BPVS-3 measured the child’s 

vocabulary, for example, by presenting the child with a set of four pictures and 

asking them to point to one of the pictures, e.g., “Can you point to ‘house’?” 

Meanwhile, the caregiver was told they would see pictures and names of the objects 

on the board and that they needed to teach the child the names of the toys while they 

played with them as naturally as possible. While the task was explained, the 

caregiver was also fitted with a NIRS cap and head-mounted eye tracker. After the 

caregiver had been set up, including checking the quality of the NIRS signals, we 
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brought the child into the testing room and fitted the child with a NIRS cap and eye 

tracker. We then inspected and made final adjustments to the NIRS signals for both 

participants and calibrated the eye trackers. Once we had completed the setup, we 

began the NIRS and video recordings and initiated a flash and a simultaneous 

stimulus marker in the NIRS recording. These events marked the beginning of each 

task for all cameras and the neuroimaging data.    

At the start of the word learning block between caregiver and child, an 

experimenter pronounced the names of the new objects while the caregiver viewed 

photos of the objects and their labels on the board. Participants were then left to 

interact as naturally as possible. In the first two word learning blocks, the caregiver 

was given 2.25 min per block (45 sec per object * 3 objects) to interact with the child 

and teach the child the names of the objects. Across both blocks, the participants 

were given 4.5 min to interact with the new objects. In between the two word 

learning blocks the caregiver was given three familiar objects (the toy horse, cup and 

train) and left to play with the child for 1.5 min. This familiarized the child with 

these toys prior to testing. After the second training block was completed, the 

caregiver was moved to face away from the child and an experimenter played with 

the child for an additional 1.5 minutes using the familiar toys. This helped ensure the 

child was comfortable interacting with the experimenter prior to the testing phase.   

The experimenters then began the comprehension test. The child and 

caregiver (still facing away from each other) were presented simultaneously with 

pairs of the familiar objects alternating with pairs of new objects, by the 

experimenters (the actual toys were presented to the child while a display card with 

their photos was shown to the caregiver). During each trial, the experimenter would 

ask the child to retrieve the target object. The child retrieved the object while the 

caregiver, unable to see the child and out of their child’s view, pointed to the correct 

photo on the display card. In total, participants completed twelve comprehension 

trials: six trials where they were asked to select a familiar object and six trials where 

they were asked to select a new object.   

The entire word learning task and comprehension test were then repeated 

with the set of five new objects. Because we had increased the number of objects, 

participants were given 3.75 minutes in each interaction (45 sec per object * 5 

objects) for a total of 7.5 min of interacting with these objects across both blocks. 

The second comprehension test consisted of twenty trials: ten trials in which the 
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participants were presented with a pair of familiar objects and asked to select one of 

the objects alternating with 10 trials in which they were presented with a pair of new 

objects and asked to select one of the objects.  

Finally, in order to test children’s and caregiver’s ability to produce the 

object names, an experimenter asked the child the name of each new object, saying 

“Can you tell me what this is called?” The child was given a few seconds to answer. 

The caregiver faced away from the child during this task and wore headphones. 

Subsequently, caregivers completed an identical production test, to assess their 

learning. We obtained a digitization of all optode locations on the child’s and 

caregiver’s head using key landmarks from the 10-20 reference system, including 

digitizing the nasion, right and left ear, Cz and inion as landmarks. 
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Figure 3.2. The apparatus and procedure. From left to right, (1) caregiver and child learning the names of five new objects. The caregiver 
referenced the object pictures and corresponding names on the felt board positioned behind the child while teaching their child (2) caregiver and 
child playing with familiar objects, (3, enlarged), second interaction with the new objects (4) a familiarization with the child and experimenter 
while the caregiver faced away and (5) the comprehension test in which an experimenter separately presented the child and caregiver with pairs 
of objects and asked them to select each new and each familiar object twice. The child is shown selecting an object from a tray, while the 
caregiver, facing away, points to photos of the objects on a display card.
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3.2.4 Observer Coding of Behaviour  

Using a waveform of the participants’ speech, we marked the onset and offset 

of each time the caregiver or child named an object during each caregiver-child 

interaction with the new objects. A language annotation software (Wittenburg et al., 

2006) was used for the marking of naming events, using the procedure described in 

section 2.2.3. Coders also watched videos of the comprehension test to select the 

object the child picked during each trial. If the child picked up both objects during 

the trial, the coder judged which toy the child ultimately selected based on the last 

object they remained holding or handed to the experimenter upon request. If the 

child selected the correct object on both trials for a given name, that object name was 

marked as a learned word. If the child picked the correct object on only one trial or 

on neither trial, that name was recorded as a word not learned. The coder then 

listened to a video of the child’s production test and if the child had later produced 

any of the words marked as not learned from the comprehension test, that word was 

updated to be a learned word (this occurred only a few times in all of the data). The 

child’s production test was scored along a five-point Likert scale that the coder used 

to rate the accuracy of the child’s pronunciation. The scale ranged from 1 = “not at 

all” to 5 = “perfect pronunciation”. Any of the child’s pronunciation attempts that 

were scored as a three (close), and up, were counted as correct/learned. Ultimately, 

the child’s learning outcome was calculated as the percentage of learned words out 

of the total of eight possible words over the course of the session. The caregiver’s 

learning was based on a scoring of their production test, identical to the child’s 

scoring.  

Data from approximately 22% of participants in the study were double-

coded. Reliability between video coders was calculated for each participant and then 

averaged across participants. For the naming events, the percent agreement between 

coders was assessed based on the number of events for which both coders had 

independently marked the onset of a naming event within 250 ms of each other, over 

the total number of coded events. Inter-coder reliability was 97.73%. For the 

comprehension test, reliability was assessed based on the percentage of trials in 

which coders agreed on which object the child selected, with an overall inter-coder 

reliability of 99.59%. Finally, reliability on scoring the production test was assessed 

based on whether coders agreed on the participant’s accuracy in naming each object 

within one level of the Likert scale, with an overall reliability of 99.22%.   
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3.2.5 Scoring the British Picture Vocabulary Scale (BPVS-3)  

Each child’s original score was based on the ratio of words they identified 

out of the number of words they were presented with. Because the BPVS-3 was not 

standardized for our youngest age group (who were 2.7 years old on average, while 

the test is standardized starting at three years), we standardized our sample based on 

the original scores in each age group we tested (standardized score = child’s original 

score – mean original score/sample standard deviation).  For these older children, we 

found a strong correlation between the scores we standardized based on our sample 

and the population-based scores, r15 = 0.99, p < 0.001. 

  

3.2.6 Determining the fNIRS Geometry   

We designed the geometry in which fNIRS optodes would be organized in 

order to cover the maximum number of regions of interest discovered in the fMRI 

literature (Wijeakumar et al., 2015). We conducted comprehensive searches for 

neuroimaging studies of word learning and social interaction in Google Scholar, 

PsychINFO, and PubMED databases, using keywords including “rapid word object 

mapping”, “word learning”, and “child word learning”, as well as “social 

interaction” and “social language development”, and to capture spatial processing, 

from a previous meta-analysis of the neural correlates of visual working memory 

(Wijeakumar et al., 2015, Table 2). We projected the ROIs onto an MNI atlas for an 

adult and a 30-month old child using AtlasViewerGUI in HomER2, overlaying these 

ROIs with the cortical coverage from potential cap geometries based on a 

digitization taken of a woman and of a 30-month-old child. The final geometry we 

selected covered the superior frontal cortex, inferior frontal gyrus, posterior temporal 

cortex and parietal cortex (see Appendices A and B).  
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Figure 3.3. The cortical coverage of the fNIRS, including a.) The NIRS geometry 
array with the front of the head positioned toward the top. Six clusters are arranged 
bilaterally covering superior/prefrontal and inferior frontal, posterior temporal and 
parietal areas. Sources are shown in red and detectors are shown in blue. b.) Cortical 
coverage of the NIRS recording on a representative child (left) and adult (right).  
 

3.2.7 fNIRS Pre-Processing   

The onsets of naming events audio coded during the interactions were 

inserted into the NIRS data. After separating the data collected from the caregiver 

and the child, we conducted signal processing on the unprocessed data using 

HomER2 software (Huppert et al., 2009), We eliminated channels with signal 

measurements that did not fall between 80 dB and 130 dB, dB=20*LOG10(y), where 

y is measured as light intensity, converting the light intensity measures into optical 

density (OD) units. This enabled us to remove low quality channels prior to 

a. 
 
 

b. 
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processing the data. The pre-processing pipeline identified motion artefacts based on 

changes in optical density greater than 0.4 au within one second or with a SD greater 

than 50. A targeted principal component analysis (tPCA) corrected for components 

identified as motion (Yücel et al., 2014). Large, abrupt changes were identified in the 

data and removed because these were due to motion, and naming events during 

which large motion artefacts had occurred were not analysed. Data slower than 0.016 

Hz and faster than 0.5 Hz were then bandpass filtered, leaving only a range of data 

that is associated with task-relevant brain activity, and the remaining motion 

artefacts were removed by channel. After processing the data, concentration values 

for oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR) and total 

hemoglobin (HbT) were computed for each channel using the modified Beer-

Lambert law. The processed data consisted of these concentration values for HbO 

and HbR at each time step.  

 

3.2.8 fNIRS Image Reconstruction and GLM 

A forward simulation was used to determine the sensitivity of light measure 

within each channel of the fNIRS recording. Head 10-20 landmarks for each 

participant, including the nasion, inion, Cz, and right and left ear, as well as the 

location of each optode on the participant’s cap, were first run through a 

transformation algorithm to correct minor measurement errors in the digitization 

readings. AtlasViewerGUI in HomER2 was then used to relax the digitized points 

onto the Collins head atlas for the adults (Aasted et al., 2015), and a 3-year-old 

child’s structural MRI head atlas for the children (Fillmore et al., 2015; Richards et 

al., 2016; Richards & Xie, 2015; see Wijeakumar et al., 2015). To determine the 

sensitivity of each channel to measuring absorption of infrared light in skin, skull 

and cortical tissues, Monte Carlo simulations were run with 100,000,000 photons 

using the projected digitization-to-atlas geometry for each participant (for more 

information about the algorithm used, see Fang and Boas, 2009). The final output of 

the Monte Carlo simulations was a sensitivity profile of the light measurements over 

the whole head, for each wavelength recorded.  

The participant’s head volume and sensitivity profile were then converted 

into NIFTI images. We used NeuroDOT, a MATLAB toolbox designed for post-

processing and spatial registration of fNIRS data, to localize signals to the 

participant’s head volume. NeuroDOT accomplishes spatial registration (e.g., 
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localizing signals that were measured from the scalp to their source in the individual 

participant’s brain) while retaining the temporal structure of the data. Thereafter the 

inherent phase structure that is maintained in this data enables a more accurate 

localization of signals across varying cortical depth, compared with methods that 

average out this structure prior to localizing the signals (Doulgerakis, Eggebrecht, & 

Dehghani, 2019). To control for physiological noise in the data, we conducted a 

global signal regression (Forbes et al., 2021). We then conducted a general linear 

model (GLM) on aggregated hemodynamic responses within the image 

reconstructed data to determine beta (β) values of the averaged hemodynamic 

responses to naming of objects. Beta values consisted of an estimated averaged 

hemodynamic response for each participant, relative to baseline, for naming events 

in each type of task and condition. Finally, these beta images were transformed into 

a common, MNI atlas space for caregivers and children. The beta images were 

converted into a binary mask for each subject. These masks were summed across 

individuals to create a group intersection mask for children and for caregivers 

(separately) that consisted of the voxels common to 70% of the participants’ 

individual masks. The resulting voxelated mask was applied prior to calculating 

relative differences in hemoglobin concentration for each participant based on 

chromophore, learning, task and the child’s age. In other words, the final fNIRS data 

that was analysed consisted of a single, separate beta value within each voxel that 

represented the level of neural activation to the naming events that occurred for HbO 

and HbR, for words that were learned and that were not learned, and that occurred 

during the interaction versus the comprehension test. Voxels were only included if 

measurements were taken from that area of the brain in 70% of the participants. 

Voxels that were only recorded from for under 30% of participants were not 

considered in the analysis.  

 

3.2.9 Machine Learning Predictions of Object Locations  

We used a machine learning network to classify the toys and determine their 

locations within each recorded video frame from the overhead camera. The methods 

development can be viewed in section 2.2.4. TensorFlow, an open source deep 

learning network developed by Google, provided the foundational architecture for 

the training (Abadi et al., 2016). Specifically, we trained Faster R-CNN, a 

convolutional neural network architecture that relies on deep learning and is 
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specialized for image classification, using convolutional feature maps to recognize 

the new objects and the table in our videos. After being trained, the network fed 

suggested object locations into a fast-processing regional proposal network that 

predicted the type and location of an object in the video frame (Zhang et al., 2016). 

In order to enable Faster R-CNN to make predictions about the class and location of 

our objects, we trained the network with a representative sample of our data: around 

900 randomly selected video frames were taken from the overhead camera during 

the word learning interactions and annotated with bounding boxes drawn around 

each object.  

After training the network through 100 epochs, we assessed the accuracy of 

the trained network by inspecting the reliability and accuracy of bounding boxes 

drawn at >= 65% confidence in a representative sample of a few hundred frames. At 

least 100 of these frames were independently judged by two individuals. Once we 

had trained the network for the three and five object sets, we then extracted video 

frames from the recordings of the task and allowed the trained model to make 

predictions about the locations of objects. For each video frame, Faster R-CNN 

produced a class label for each toy (e.g., “green caterpillar”) and rectangular 

coordinates in image space. 

The location predictions began on the first frame in which the caregiver or 

child touched each object. From that point on, using normalized coordinates of the 

bounding boxes, we re-computed the locations of the objects, referenced to the 

location of the table, within each video frame. The bounding box coordinates for 

each toy that had been computed relative to the centre of the table were used to 

analyse the data.  

 

3.3 Analysis 1: Neural Correlates of Interactive Word Learning Between 

Caregivers and Children 

In the first analysis, we investigated the neural correlates of children’s word 

learning during the caregiver-child interactions. Primarily, we aimed to determine 

whether the child’s neural responding to naming of new objects differed between 

naming of learned and of words not learned during interactions with their caregiver. 

We compared event-related neural responses to the caregiver’s naming of objects 

within the learning interactions. We also examined later recognition of the objects as 

the experimenter named objects during the comprehension test. Hemodynamic 
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responses to naming events were analyzed over frontal, temporal and parietal 

cortical regions.  

Because the inferior frontal gyrus (IFG) area has been shown to play a 

pivotal role in semantic and noun processing (Balsamo, Xu & Gaillard, 2006; Chou 

et al., 2006; Fiebach & Friederici, 2004; Grindrod et al., 2008; Hirshorn & 

Thompson-Schill, 2006; Liljeström et al., 2009; Romeo, Leonard et al., 2018; see 

also Fedorenko, 2014) and word learning (Davis et al., 2009; López-Barroso et al., 

2013; Nora et al., 2017; Takashima et al., 2019), we made a prediction that the 

child’s inferior frontal gyrus (IFG) would respond differentially to naming of words 

they learned or did not learn. A single analysis of event-related neural responses to 

naming over the full cortical area covered tested this specific hypothesis though only 

in the context of exploring whether activation within domain-general, including 

attention, working memory (Archibald & Joanisse, 2012; Berl et al., 2014; Ekerdt et 

al., 2020; Ferreira et al., 2015; López-Barroso et al., 2013) and social cognition 

regions (Hirotani et al., 2009; Rice, Moraczewski & Redcay, 2016; Rice & Redcay, 

2016), also contributed to word learning in our task. Finally, we conducted an 

identical analysis examining the caregiver’s hemodynamic responses to naming and 

investigated whether these responses differed between words the child learned or did 

not learn. Based on the critical role of caregiver’s behaviour in teaching new words 

to their child, this analysis would determine whether the caregiver’s brain activity 

could be predicted based on whether their child was learning. In other words, the 

analysis tested whether the caregiver’s neural signature while they taught their child 

was unique when they were effectively communicating the new object names. 

 

3.3.1 Statistical Analysis and Results 

3.3.1.1 Behavioural Results   

On average, 32-month-old children learned 4.05/8.00 words during the study 

(SD = 2.04), while 54-month-old children learned 5.39/8.00 words (SD = 2.03), t35 = 

2.09, p = 0.044. Children’s learning over the entire experiment ranged from 1-8 total 

object names. From the three-object set, children on average learned 54% of words 

while from the five-object set, children learned an average of 62% of words. The 

BPVS-3 scores for 32-month-olds were (M = 37.26, SD = 12.99), and for 54-month-

olds were (M = 70.22, SD = 10.02). The standardized score for the older age group 

was 110. Vocabulary was correlated with the number of words learned in the study, 
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r35 = 0.475, p = 0.003. Additionally, caregivers and children remembered different 

object names χ21 = 1.51, p = 0.220 and did not learn words at a similar rate, r35 = 

0.063, p = 0.713.  Therefore, differential responding in brain activity between words 

that the child learned or did not learn, was related solely to the child’s learning and 

not the caregiver’s own learning.  

3.3.1.2 fNIRS Analysis 

We carried out an analysis plan to compare neural responses to naming of 

learned versus words not learned during the interactions and the children’s 

comprehension test. A mixed effects linear regression model was conducted 

comparing the image-reconstructed beta maps based on age (32 vs 54 months) as a 

between-subjects factor, and learning (naming of learned vs words not learned) and 

chromophore (HbO vs HbR concentrations) as within-subjects factors. The 

dependent variable was the magnitude of the fNIRS hemodynamic response in the 

child’s brain within the voxelated space, relative to baseline. We compared the beta 

values to determine whether there were statistically significant neural responses to 

naming within clusters of adjacent voxels. In order for a cluster to be considered a 

significant effect, differential responding between conditions must be present in a 

minimum number of adjacent voxels, or a large enough area (see below). We were 

not able to conduct any comparisons with naming of familiar objects because the 

familiar objects were not named frequently enough by the caregiver (Median = 18 

events) to analyse along with the caregiver’s naming of new objects (Median = 104 

events). 

AFNI software was used to conduct the regression on the group-level 

voxelated beta maps, using the 3dLME function. To control for family-wise error 

given the number of voxels in which we were analysing beta values, we used the 

3dClustSim function that determined how many adjacent voxels the cluster would 

need to span. In particular, we employed a mixed-ACF approach that has been 

shown to be an effective control for event-related designs (Cox et al., 2017). Only 

those results with a canonical hemodynamic response (a neurovascular coupling 

pattern that shows a statistical interaction between HbO and HbR) are reported here, 

as an inverse relationship between chromophores would be indicative of task-

relevant brain activity (Buss et al., 2014).  
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3.3.1.3 Statistical Comparisons and Results 

Table 3.1. Child Results – Word Learning 

Effect Cluster ROI Hemi 
Volume 
(mm^3) 

Centre of Mass 
x y z 

Chromophore (Hb) Supramarginal Gyrus TPJ R 228 54 -49 45 
Learned x 
Chromophore (Hb) Fusiform STS R 325 57 -56 12 

  
A mixed effects linear regression model was conducted to identify neural 

clusters that were significantly activated to naming events in each condition. The 

neural clusters found through this analysis can be viewed, by condition, in Table 3.1. 

In the analysis, the child’s age (32 months vs 54 months) was included as a between-

subjects factor, whether the child learned the word (learned word vs word not 

learned) and chromophore (HbO vs HbR) were included as within-subjects factors. 

Mean estimations of changes in activation (beta values, µM), were the dependent 

variable. This model revealed a main effect of chromophore, (HbO vs HbR) in the 

right supramarginal gyrus. This response was consistent across all of the naming 

events, whether the child learned the object name or not (see Figure 3.4, a). An 

interaction between learning and chromophore was found in the right fusiform gyrus 

(see Figure 3.4, b.). Opposite going relationships between HbO and HbR were 

qualitatively observed in the child’s hemodynamic response to naming of learned 

words, versus during naming events that did not result in learning.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z = 54 

z = 14 

z = 44 a. 

b. 
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Figure 3.4. The fNIRS effects for children during word learning, including a.) 
Across all naming, children’s brain activity showed a main effect of chromophore in 
the right parietal cortex. b.) Differential responding in the right fusiform gyrus 
between naming of words the child learned and did not learn. Bar graphs show the 
averages and error bars the standard error.  
 
Table 3.2. Child Results – Comprehension Test 

Effect Cluster ROI Hemi 
Volume 
(mm^3) 

Centre of Mass 
x y z 

Chromophore (Hb) Visual Association Area NA L 217 -48 -73 15 
Age x Chromophore 
(Hb) Angular Gyrus TPJ L 232 -44 -59 50 

 
By contrast, no differences were observed during the comprehension test 

between hearing new words the child recognized, new words the child did not 

recognize, and familiar words the child already knew. Instead, a main effect of 

chromophore within the left visual association area suggests that children responded 

to hearing objects named by processing the possible referents. An interaction 

between age and chromophore in the left angular gyrus showed that, qualitatively, 

the younger children had positive HbO activation and negative going HbR 

suppression in a language processing area in response to hearing a new object 

named, whereas older children showed the opposite pattern of effects.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5. The fNIRS effects for children during the comprehension test, including 
a.) Across all naming, children’s brain activity showed a main effect of chromophore 
in the left visual association area. b.)  Differential responding in the left angular 

Z = 54 

z = 50 

z = 18 a. 

b. 



SECTION 2 – Experimental Chapters 
 

 60 

gyrus between younger (32 months) and older (54 months) children’s responses. Bar 
graphs show the averages. Error bars show the standard error.  
 

Table 3.3. Caregiver Results – Word Teaching 

Effect Cluster ROI Hemi 
Volume 
(mm^3) 

Centre of Mass 
x y z 

Age x Chromophore 
(Hb)  Dorsolateral PFC NA L 85 -3 41 52 

Learned x 
Chromophore (Hb) Angular gyrus IPL L 183 -54 -68 16 

  
These same factors were then examined in the caregiver’s brain activity. In 

order to examine whether an effect existed based on the child’s learning, within the 

caregiver’s neural responses to their own naming, we conducted a mixed effects 

linear model with the child’s age (32 months vs 54 months) as a between-subjects 

factor, and the child’s learning (learned word vs word not learned) and chromophore 

(HbO vs HbR) as within-subjects factors. The dependent variable was the mean 

change in activation (µM) within the caregivers’ hemodynamic response to naming. 

This model revealed an interaction between the child’s age and chromophore within 

the left prefrontal cortex that, qualitatively, appeared more positively activated as 

caregivers taught younger (32-month-old) children compared with older (54-month-

old) children. The model also revealed an interaction between the child’s learning 

and chromophore, within the left angular gyrus. This suggests that caregivers’ social 

and semantic processing during naming was different when successfully teaching 

their child. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z = 54 

z = 18 

z = 54 a. 

b. 
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Figure 3.6. The fNIRS effects for caregivers during the word learning interactions, 
including a.) Caregivers showed heightened activation in the left prefrontal cortex 
when teaching younger children and b.)  Differential responding in the left angular 
gyrus between naming of words the child learned and did not learn. Bar graphs show 
the average, and error bars show the standard error.  
 

3.3.2 Discussion 

We aimed to explore the neural correlates that impact on early word learning 

within caregiver-child interactions. To summarize, the behavioural data showed that 

children varied greatly in the number of words they learned out of eight possible 

words, that older children learned, on average, roughly an extra 1.5 words compared 

with younger children, and that children and caregivers did not learn the same words 

during the interactions. For children, the fNIRS data revealed differences within a 

right posterior temporal cortical region to naming events and based on learning. 

During the comprehension test, children showed activation changes in the left visual 

association area and angular gyrus/temporoparietal junction. Importantly, as 

caregivers taught their children, changes in activation were observed in the left 

prefrontal cortex and in the left angular gyrus, the latter based on the child’s 

learning.   

In order to determine what associations have been drawn in previous research 

between each region that showed activation in our task and associated cognitive 

functions, we conducted a location-based search within the Neurosynth database 

(Yarkoni et al., 2011) drawing from metanalyses of functional neuroimaging studies 

that have found activation within the closest range of our centre of mass that 

returned under 75 studies (between three and four mm of our centre of mass). Only 

studies that did not focus on specific populations, such as older adults, were 

considered in these reports.  

First, the results for children are considered. The right supramarginal gyrus 

showed positive HbO activation across all naming events in our study. An ROI-

based survey of the literature revealed that the most frequent association was 

attention (Bankó et al., 2011; Huster et al., 2011; Kühn, Haggard & Brass, 2009; 

Sato et al., 2016; Schulte et al., 2009; Simanova et al., 2014; Spreng et al., 2014; 

Vossel, Thiel & Fink, 2006; White et al., 2014), followed by social stimuli, 

including faces and eye gaze (Decety et al., 2004; Etzel et al., 2016; Frühholz et al., 

2011; Iidaka et al., 2006; Spreng et al., 2014; Williams et al., 2005). Activation 
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within this area in response to naming may indicate heightened attention toward 

instances of naming as well as looking to see where the speaker was attending, for 

example.  

The interaction between learning and chromophore, observed within 

children’s right fusiform gyrus showed differential responding with heightened HbO 

activation when children were not learning from instances of naming. A search 

within the Neurosynth database that returned previous findings within three mm of 

the closest available centre of mass to that of our finding indicates that this area has 

previously been associated in general with social processing (Arsalidou et al., 2010; 

Blackwood et al., 2003; Contreras et al., 2013; Engell & McCarthy, 2013; Hooker et 

al., 2006; Kitada et al., 2009; Koike et al., 2016; Sakaki, Niki & Mather, 2011; 

Schreuders et al., 2018; Tashjian et al., 2018; Thompson et al., 2007; Wutte et al., 

2012) and to a lesser extent, with language processing (Habeck et al., 2012; 

Kepinska et al., 2018; Lin et al., 2011; Majerus et al., 2006; Newman et al., 2013; 

Quinn, Taylor & Davis, 2017). Interestingly, the interaction suggests that what is 

happening when the child is not learning from instances of naming may be more 

interesting in some sense than what is occurring when they are. The activation 

patterns suggest that during instances of naming, children’s brain activity may be 

more heightened afterward when they are not learning.  

During the comprehension test, the main effect found for naming events in 

the left visual association area, was associated primarily in previous literature with 

planning, decision making and control (Brown et al., 2012; Corbetta et al., 1998; 

Grosbras et al., 2001; Guo et al., 2013; Jamadar et al., 2015; Johnson-Frey, 

Newman-Norlund & Grafton, 2005; Limanowski, Lutti & Blankenburg, 2014; 

Pergola et al., 2013; Prado, Van Der Henst & Noveck, 2010; Sabb et al., 2007; 

Salminen et al., 2016; Van der Laan et al., 2012). Differences in age group found 

within the left angular gyrus were associated with processing and memory recall, 

largely related to verbal stimuli (Blondin & Lepage, 2005; Braunlich, Gomez-Lavin 

& Segar, 2015; Dobbins et al., 2002; Donaldson, Petersen & Buckner, 2001; 

Goghari & MacDonald, 2009; Guo et al., 2011; Han et al., 2010; Kim et al., 2017; 

Vogel, Petersen & Schlaggar, 2012; Wendelken, Chung & Bunge, 2012; Yokoyama 

et al., 2002; Zhang et al., 2014). This reveals differences in processing demands in 

the comprehension test with age but does not provide insight to differences in 

recognition for learned words and words not learned.  
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Although no signatures of learning were observed in the inferior frontal gyrus 

when neural correlates were examined over the whole head, children showed 

heightened activation within a temporal area that was shown to be functionally 

associated in general with language. Interestingly, this region was also shown to be 

more active after a word not learned was named, suggesting a need to further 

examine the time course of activation during speech both prior to, and following, 

instances of naming. Also, it suggests that what is occurring when a word is not 

learned, could in some cases be the more robust marker. The combined association 

with unspecified social processing suggests that when not learning, children may 

have spent more time looking at the face or hands and trying to determine the 

intended referent.  

In support of prior work showing that multiple cognitive processes are 

involved in processing new words, children’s neural responses across all naming 

events suggested that heightened attention following a naming event was a primary 

response involved in mapping new names to objects (Ekerdt et al., 2020). Activation 

within the right posterior temporal cortex may indicate the child’s engagement and 

sustained attention to their caregiver’s labelling of objects during the learning 

interactions, as well as the possibility that language processing may be distributed 

more bilaterally for these children, a hypothesis that is not possible to test in the 

present literature. For example, this effect indicates that children experienced 

heightened levels of attention to new words embedded in the caregiver’s speech 

stream and suppressed distracting inputs. This activation may contribute to word 

learning directly, given that children process language more bilaterally than adults, 

or indirectly, by bringing to the forefront aspects of the environment that have 

semantic relevance. 

As caregivers taught their children, an interaction was found between age and 

chromophore in the left prefrontal cortex that was more active following instances of 

naming when teaching younger children. The previous literature suggests that this 

area is involved in interpreting emotional and social relevance (Caplan et al., 2006; 

Coaster et al., 2011; Fiddick, Spampinato & Grafman, 2005; Hartwright, Apperly & 

Hansen, 2014; Kruse et al., 2016; Lewis et al., 2005; Moser et al., 2009; Sakaki, Niki 

& Mather, 2011; Tamir & Mitchell, 2011; Walter et al., 2009). This could indicate 

that caregivers worked harder to see what their younger children were thinking or 

doing when naming the objects. The functional association with social relevance was 
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also true of the area that interacted with children’s learning, in the left angular gyrus 

(Campagne et al., 2016; Canessa et al., 2005; Sakaki, Niki & Mather, 2012; Waugh, 

Hamilton & Gotlib, 2010). Further, this area was also frequently activated in 

language tasks (Khader et al., 2010; Muehlhaus et al., 2014; Sabb et al., 2007).  

 

3.4 Analysis 2: Spatial Coordination Between Caregivers and Children 

During Word Learning 

Previous work has shown that spatial cognition supports the communicative 

inferences that are required for word learning, above and beyond a speaker’s explicit 

labelling of new objects (Benitez & Smith, 2012; Samuelson et al., 2011). Children 

encode object locations when hearing spoken names, providing an index for binding 

words to specific referents within working memory (Axelsson et al., 2016; 

Samuelson et al., 2011; see also Samuelson, Kucker & Spencer, 2017). This then 

facilitates forming associations between specific new words and their referents. In 

one prior study that compared their relative effect, spatial location was more heavily 

relied on than other features that could be used to bind words with objects, such as 

color (Samuelson et al., 2011). This may reflect the unique constraints on word-

object mappings that spatial organization offers, including that no two objects can 

occupy the exact same locations.  

Within naturalistic social interactions, spatial coordination has been shown to 

predict word learning during play between caregivers and children. When caregivers 

and children were given two new objects and asked to teach their 17- to 22-month-

old children the names, spatial structure emerged spontaneously for some dyads as, 

overall, caregivers spent the majority of time (0.75%) holding each object in either 

their right or left hand. However, left-right consistency of manual holding also 

varied between caregiver-child dyads (0.32-1.0%). Critically, this variation was 

positively correlated with the number of children’s correct responses in a later 

comprehension test in which they were asked to select each object by name 

(Samuelson et al., 2011). Thus, early in development, caregivers successfully use 

encoding of object locations to teach their children new words.  

At a behavioural level, we tested a hypothesis that the consistency of object 

locations during the word learning interactions would predict how many words 

children learned (Samuelson et al., 2011), using a more difficult task than that used 

with toddlers, with three and five new objects.  
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3.4.1 Statistical Analyses and Results 

We examined the spatial distributions of object locations in two ways. We 

derived these measures using the adehabitathr package in R (Calenge, 2006).  The 

first measure indicated how consistently each object remained on the table left or 

right during the session. This measure was computed based on the probability 

weighting in each grid square, that indicated how many observations of the object 

were located there. The left-right consistency was a proportion of the weights 

summed on the main side / the weights summed on both sides. The second measure 

required calculating the volume of intersection that each object shared with the 

volumes occupied by other objects on the table (Millspaugh et al., 2004). A kernel 

density estimator was used to calculate the volume occupied by each object during 

each interaction, consolidating the unprocessed data into the space that the object 

most frequently occupied (Walter, Onorato & Fischer, 2015). The volume of 

overlap, which we scored based on this measure, was the average proportion of 

space each object shared with the others on the table. From now we will refer to the 

averaged volume of intersection as the volume of overlap.  

3.4.1.1 Confirmatory Analysis 

To determine whether there was a relationship between spatial consistency 

and overall amounts of word learning, we first conducted a planned correlation 

between the percentage of left-right consistency of the object locations during the 

three and five object training blocks and the number of words the child learned 

during those sessions. The left-right consistency was not significantly correlated with 

the total number of words learned r35 = -0.185, p = 0.274, and when further broken 

down by task, it was not associated with learning either in the three-object task, r35 = 

0.233, p = 0.164, or in the five-object task, r35 = 0.086, p = 0.612. 3.4.1.1.1 

Adaptation: Naming Events: Intervals of object locations from the onset of naming 

events through five seconds later were examined separately, revealing no overall 

relationship between the consistency with which objects remained on the dominant 

left/right side, r35 = 0.027, p = 0.875. No relationships were found when this was 

broken down by task, for three-objects, r35 = 0.235, p = 0.161, and for five objects, 

r35 = -0.054, p = 0.751.   
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3.4.1.2 Exploratory Analyses 

Because object position consistency was not a predictor of word learning, we 

conducted correlations between the volume of overlap and the number of words 

learned. The volume of overlap, measured as the kerneloverlappr function in 

adehabitathr that called the volume of intersection function, did not predict learning 

overall, r35 = -0.227, p = 0.177, and was a weak predictor of learning in the three-

object task, r35 = -0.314, p = 0.058, though not at all in the five-object task, r35 = 

0.019, p = 0.912. When only the interval around the naming events was considered, 

the volume of overlap was not correlated with the total number of words learned, r35 

= -0.226, p = 0.179, was robustly correlated with the number of words learned from 

the three-object set, r35 = -0.429, p = 0.008, and was not correlated with the number 

of words learned from the five-object set, r35 = -0.026, p = 0.878. This finding with 

three objects withstood a Benjamini-Hochberg statistical correction for six 

comparisons. 

Because neither the left-right consistency of object locations nor the volume 

of overlap between them predicted the overall learning, and because visual 

inspection of the data revealed that spatial structure varied considerably between 

objects in the same interaction, we next examined whether these spatial measures 

and other relevant variables could predict which individual words were learned by 

each child. We conducted a set of mixed effects logistic regression models using the 

glmer function in R programming software. In each case, the dependent variable was 

modelled with a binomial probability where possible outcomes were “learned” or 

“not learned”. (For a practical review of applying mixed effects logistic regression 

models, see Sommet & Morselli, 2017; for a theoretical review of applications to 

linguistics research, see Quené & Van den Bergh, 2008). Statistical significance was 

met if p < 0.05. Spatial variables were taken from five seconds following the naming 

events.  

In the first logistic regression model, fixed effects included the number of 

objects as a factorial predictor, and the volume of overlap as a continuous predictor. 

The child’s age group was added as a covarying factorial predictor into the model. A 

dyad (participant) identifier was included as a random effect. A main effect of age 

was found, z = 2.08, p = 0.038 and number of objects, z = 2.08, p = 0.038 and a main 

effect of was found of volume of overlap, z = -2.83, p = 0.005 as well as a marginal 
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interaction between the number of objects and volume of overlap, z = 1.78, p = 

0.075, see Figure 3.5. 

To rule out the possibility that the object position consistency would predict 

which words children learned, we conducted an additional, identical logistic 

regression model with left-right consistency. The only significant predictor in this 

model was age, z = 2.18, p = 0.029. No other predictors were significant, including 

the number of objects, z = 0.64, p = 0.522, the left-right consistency, z = 1.30, p = 

0.193 or the interaction between number of objects and left-right consistency, z = 

0.05, p = 0.957.   
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Figure 3.7. The impact of volume of overlap on the child’s learning, including a.) 
Examples of the spatial distribution and overlap of individual toys within an 
interaction including three objects (left) and an interaction including five objects 
(right). Units are normalized pixel coordinates referenced to the table midpoint, with 
the x axis showing the table from the child’s left to right and the y axis showing the 
table from the child’s side (lower) to the caregiver’s side (upper). b.) Plots of the 
volumes of locations occupied by each toy (calculated using a kernel density 
estimator). (c.) A bar graph showing the difference volume of object overlap 
between words that were learned and words that were not learned.  

a. 

b. 

c. 
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Additional models revealed that neither the caregiver’s number of naming events for 

each object, the child’s number of naming events for each object, or the child’s 

vocabulary (measured by the BPVS-3 survey) predicted children’s word learning. 

Within this model, age did not predict learning, z = 0.14, p = 0.889, nor did 

children’s naming, z = 1.02, p = 0.307, nor did caregivers’ naming, z = 0.90, p = 

0.367. No interactions were found between age and child’s naming z = 0.83, p = 

0.407, between age and caregiver’s naming, z = 0.53, p = 0.598, between the child’s 

and caregiver’s naming, z = -1.10, p = 0.272, or between age, the child’s naming and 

the caregiver’s naming, z = -0.66, p = 0.511.  

A fourth model explored the child’s age (scaled and centred), and the child’s 

standardized BPVS-3 score as fixed effects, and the number of objects as a random 

effect. The dependent variable for this model was the BPVS score collapsed across 

word learning “successes” and “failures”, for each child. Within this model, older 

children were more likely to learn words, t35 = 2.62, p = 0.013, while children’s 

BPVS-3 score was a marginally significant predictor, t35 = 1.96, p = 0.058. There 

was no interaction between the child’s (standardized) BPVS score and age, t35 = 

0.70, p = 0.487. 

 
3.4.2 Discussion 

We aimed to determine whether caregivers who use spatial consistency, for 

example, lining objects up on the table, would be able to more effectively teach their 

children new names than those who don’t. Results showed that object locations 

varied within dyads, thus, overall, caregivers did not seem to make an intentional 

effort to keep toys in a consistent region of space. However, the names of those 

objects that did occupy unique regions of space during a naming interaction were 

more likely to be learned, compared with those that did not. As evidenced by the 

lack of relationships between the left-right consistency of object locations and 

learning, where objects moved around during the interaction did not matter, in and of 

itself. What mattered was how consistently the object occupied unique regions of 

space that did not overlap with those frequently occupied by other objects, which we 

have referred to as the volume of overlap between objects.  

Computational modelling approaches suggest that, from the child’s 

perspective, spatial overlap among objects may interfere with mapping each name to 
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a specific object because spatial location fails to provide a unique index for word-

object mappings (Samuelson et al., 2011). This is consistent with studies that have 

directly manipulated spatial consistency or spatial predictability by switching 

locations between objects rather than merely varying the object locations (Benitez & 

Smith, 2012; Samuelson et al., 2011). In such cases, the word learning was poorer. 

In retrospect, the distinctions between right and left that were analysed in Samuelson 

et al. (2011) could have been more appropriate for a task involving two objects, and 

that in a more complex task involving three and five objects, this distinction may not 

capture the encoding of location that ultimately predicts children’s learning. The 

present work reveals that children’s encoding of spatial location is heavily 

influenced by the uniqueness of the locations each object occupies throughout the 

interaction, and that this has an influence on how effectively children learn words. 

Our findings suggest that distinctiveness of object locations functions as a key aspect 

of social coordination between the caregiver and child that supports word learning. 

From the child’s perspective, distinctiveness of object locations establishes a 

common ground with their caregiver in which to index names with intended 

referents.  

 

3.5 General Discussion 

The present chapter examined the neural and behavioural correlates of early 

word learning during a play interaction in which caregivers taught their 2- to 5-year-

old children the names of new objects. The findings revealed that neural responses 

that were time-locked to naming differed between words the child learned and words 

they did not learn. Within the child’s brain activity, responses to naming in general 

revealed underlying responses to naming events within the right supramarginal 

gyrus, associated with attention, while the neural correlate that differentiated naming 

of learned from words not learned was most closely associated, based on similar 

findings in the prior literature, with social and language processing. During the 

comprehension test, all children responded to hearing the name of the referent they 

would need to retrieve with activation that elicited action planning and decision. 

However, an interaction between age and chromophore suggested that younger 

children put more effort into recall, trial by trial.  

As caregivers taught their children, neural responses to their own naming of 

the new objects revealed interactions between (the child’s) age and chromophore, 
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and between the child’s learning and chromophore. These findings revealed that the 

neural signatures of early word learning were evidenced within both the caregiver’s 

and the child’s brain activity, supporting the general view that neural signatures of 

learning in real-world contexts can be explored at the level of social networks 

(Hasson et al., 2012; Wass et al., 2020). As these results show, when caregivers 

named objects, differing neural signatures were observed depending on the child’s 

age, and whether the child was learning as the objects were being named. This 

suggests that caregivers’ own processing was different when their children were 

learning from their object naming. However, in the present study, it is not possible to 

quantify whether early word learning that emphasizes the combination of neural 

signatures between an adult and child would uniquely signify learning is taking 

place. The impact of coordination between caregivers and children was also 

observed at a behavioural level. The second set of analyses, examining the impact of 

object locations during the interactions and during naming on learning, revealed that 

spatial coordination between the caregiver and child predicted which words the child 

would learn. Specifically, the volume of overlap each object shared with other 

objects on the table interfered with mapping words to objects, and this effect was 

most robust for the specific object names children were more likely to learn. There 

was no evidence to suggest that coordination in the volume of overlap was 

intentional, as in, that caregivers and children deliberately planned to keep objects in 

distinct regions while teaching and learning. Yet, this variable still affected 

children’s learning. 

Key findings in the study differed from the original predictions, while 

remaining consistent in an unexpected way with the literature that had motivated 

these predictions. The first prediction we tested was that differential responding in 

the right or left inferior frontal gyrus (IFG) would be observed in children’s 

hemodynamic responses to learned versus words not learned. This prediction was 

based on previous work with children and adults, suggesting that the IFG shows 

different patterns of activation between new and familiar words and is generally 

activated in language processing tasks. Instead, differential responding between 

learned words and words not learned was observed in the right inferior temporal 

cortex, associated with both social processing and language. Therefore, while the 

original prediction was not supported (no differences were observed in the IFG 

between naming of learned words and words not learned in the whole-brain 
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analysis), the finding is consistent with the hypothesis that differences in language-

related processing would be observed based on the child’s learning. Informatively, 

this correlate of learning in the right temporal cortex had a double association with 

social processing, suggesting a possible close relationship between language-specific 

and general social processing within the child’s neural signature of learning.  

Another prediction, that the child would learn more words when objects were 

consistently placed during learning, directly matched a previous study in which 

children’s overall number of correct responses in a comprehension test were 

correlated with the consistency in which caregivers held each object in their right or 

left hand (Samuelson et al., 2011). However, in the present study with older children 

and involving three and five objects the left-right consistency of object locations 

during the learning interactions bore no statistical relationship to the child’s learning. 

Thus, this prediction was not supported. However, the finding within the exploratory 

analysis, that the volume of overlap between objects predicted learning, was fully 

consistent with previous studies that had motivated our original prediction. In each 

of these studies and an accompanying computational model, the object locations had 

either involved distinct locations or had involved direct overlap in location while the 

child was learning the names (Benitez & Smith, 2012; i.e., either each object 

remained in the right or left hand or switched hands frequently, Samuelson et al., 

2011). Our finding suggests that, as hypothesized, spatial predictability did impact 

on children’s word learning, but contrary to what we had expected, the children in 

our study encoded spatial location relative to the locations of other objects, relying 

on the distinctiveness, rather than the consistency of the objects’ locations. Finally, 

contrary to our initial prediction, no spatial variable directly predicted individual 

differences in children’s learning. Instead, the volume of overlap predicted which 

words the child would learn.  

With regard to the fNIRS measurements taken during the study, there are 

some technical limitation to consider. As coverage of the cortex is greatly limited in 

hyperscanning paradigms that use a single system to record from two individuals, 

employing short distance sources that can be used to regress physiological signals 

out of the data is relatively uncommon in hyperscanning studies. Rather than using a 

signal regression to remove globally presenting physiological noise from the data, 

future work could employ measurements at multiple lengths from the light source, 
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creating a more precise means to regress this noise from the task-relevant signal 

components (Berger, Goodwin & Gaudet, 2012).  

The study also presents directions for future work. The present study did not 

measure what participants were doing with the objects, such as where they were 

looking or when they were interacting with the objects. Future work could explore 

relationships between the caregiver’s and child’s holding of objects during the 

interactions and their neural responses to naming of learned words and words not 

learned. For example, it is possible that a broader range of spatial metrics impact on 

learning when looking and holding are taken into account, such as object position 

consistency. 

Our neural findings suggest that within interactive, real-world paradigms, 

word learning is reflected in children’s neural responses to naming of learned words 

and words not learned, as well as those of their caregiver. Interestingly, what 

happened when children were not learning at times became the most salient marker. 

For example, evidence of increased neural activation during instances of naming in 

the right temporal cortex for children, and in the left parietal cortex for caregivers 

each occurred during naming of words not learned. Further, the volume of overlap 

had a negative impact on children’s likelihood of learning any given word. 

Collectively, this may indicate that caregivers and children had more seamless 

experiences or put more cognitive effort into predicting each other’s behaviour 

before instances of naming (rather than during) when learning was successful. This 

would explain why brain activity after naming was greater after naming of words not 

learned, because of the additional effort required to make sense of conversational 

inputs in those cases. One hope is that this work will provide future research with 

grounds for confirmatory testing of these key findings. Additionally, it is hoped that 

the task described here will provide the foundation for future development in 

naturalistic testing paradigms to investigate the neural correlates of early word 

learning.  
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Chapter 4 – Neural Coherence During Interactive Word Learning  
 

 

4.1 Introduction 

The early development of brain structure and function is shaped by social 

interaction (Belsky & De Haan, 2011; Fox, Levitt & Nelson, 2010), much of which 

takes place between caregivers and children. Crucially, caregiver-child relationships 

shape early language development through day-to-day interaction in which 

caregivers label, hold and talk about objects (Cartmill et al., 2013; Kalagher & Yu, 

2006; Yu & Smith, 2013; Yu et al., 2009). However, the underlying neural states that 

facilitate word learning during interactions are unknown (Wass et al., 2020). In 

addition to momentary changes in brain activity during discrete naming of objects, 

relationships in brain activity between a caregiver and child that are sustained 

through longer periods of time may facilitate children’s mapping of words to objects.  

Temporal alignment in neural signals, like alignment in behaviour, can 

indicate that individuals are representationally in synchrony. Moreover, neural 

alignment may be a more sensitive measure of whether interacting partners 

comprehend each other and are experiencing a similar underlying representation. As 

an analogy, at a behavioural level, interacting partners align their gaze, movements 

and even choice of words to enhance the information shared through speech (Garrod 

& Pickering, 2009). This ultimately results in increased sharing of visual attention 

during dialogue, meaning that individuals are viewing the same situation in a more 

similar way during interactive conversation (Richardson, Dale & Kirkham, 2007). 

Behaviorally, spontaneous alignment that occurs in verbal and non-verbal 

communication suggests that entrainment between individuals leads to better 

communication.  

However, at a neural level, entrainment in brain activity between a speaker 

and listener through time has been shown to play a direct role in speech and 

language comprehension. For example, when English-speaking participants listened 

to a telling of an unrehearsed story in English, brain activity between the original 

speaker and the listeners was correlated, time point to time point, within language 

and other functional neural networks. In other words, neural (BOLD) signals 

measured from the speaker’s and listener’s brain activity moved together 

continuously through time during the telling of the story. Within frontal areas, the 
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correlation values, or the robustness of alignment in the neural signals, predicted the 

detail in which the story in English was later remembered. These correlations were 

not observed when they heard a story told in Russian (Stephens, Silbert & Hasson, 

2010). Therefore, the temporal alignment of neural signals suggests that individuals 

are sharing similar representations that can be driven by speech, and that the 

robustness of entrainment predicts the depth of comprehension.  

Temporal relationships in brain activity have been observed between 

participants as they directly engaged in dialogue, using hyperscanning, a technique 

of collecting neuroimaging data on two or more individuals as they interact with the 

intention to compare relationships in their brain activity (for a detailed discussion, 

see section 1.4). Liu et al. (2019) found that entrainment within the right posterior 

temporal cortex was more robust when participants who alternated in speaking and 

listening roles were given sentences with a common syntactic structure, meaning that 

similarity in the sentence structure that each individual spoke facilitated the other’s 

comprehension. Neural entrainment was measured within decomposed time-

frequency space, after the fNIRS signals had been separated out by frequency 

components, in order to measure the neural coherence (Cui, Bryant & Reiss, 2012). 

Coherence within the posterior temporal cortex specifically predicted how well 

listening participants were able to determine whether pictures they were shown 

matched the speaking participant’s description. These studies indicate that cross-

correlations in neural signals correspond to successful speech processing, and that 

wavelet coherence in particular can quantify this effect.  

Early in development, neural entrainment between interacting adults and 

infants has been shown to increase during face-to-face interaction, as opposed to 

looking away (Leong et al., 2017), or conversing apart (Piazza, et al., 2020). Overall 

entrainment can be statistically explained, in part, by entrainment that occurs 

specifically during communicative behaviours, such as establishing eye contact, or 

smiling (Piazza et al., 2020). For children ages 7-13, neural coherence has been 

shown to increase during cooperative, joint action between caregivers and children, 

when compared with competitive or individual play conditions, or interactions with 

an adult stranger. For example, neural coherence within frontal areas was higher 

when children and caregivers were told to press a button at the same time in a game, 

as opposed to competing to press the button first (Miller et al., 2019; Reindl et al., 
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2018). Taken together, this research suggests that correlations in brain activity are 

associated with behavioural coordination. 

One remaining question, however, is whether neural coherence between 

caregivers and children could predict children’s word learning. Another is why 

neural coherence would impact on learning. No relationship between coherence and 

interactive word learning has been empirically established. However, coherence 

during periods of eye contact and during infants’ smiling have been shown to 

contribute uniquely to neural coherence between and adult and children, suggesting 

that communicative behaviours bring adults and infants more in alignment with each 

other (Piazza et al., 2020). It has been speculated that this may be because ostensive 

social cues increase neural entrainment by functioning as “edges” that reset temporal 

patterns of brain activity between two individuals, aligning them and helping to 

establish common representational ground (Wass et al., 2020). Further, the processes 

elicited in predicting or processing another person’s behaviour, moment-to-moment, 

may increase coherence between interacting partners on a moment-to-moment basis 

(Hamilton, 2021). For example, successful interaction might require keeping track of 

how a conversation partner is viewing or holding objects, which may then impact 

encoding which spoken words correspond to which referents. Communicative 

behaviours that occur during face-to-face interactions may directly boost alignment 

in brain activity, setting the conditions for learning new words. On the other hand, 

neural coherence at the beginning of interactions has been shown to predict 

individual differences in later levels of cooperation between caregivers and children 

as they jointly played a simple game (Reindl et al., 2018), indicating that the impact 

of coherence as a shared state can set the conditions for cooperation between 

caregivers and children, even when disconnected in time. Based on these influences 

between neural coherence and communicative behaviour, one would expect that 

dyads who show greater neural coherence will also teach and learn more effectively.  

No study to date has directly investigated whether neural coherence between 

caregivers and children during an openly structured interaction can predict word 

learning. Therefore, we aimed to answer whether neural coherence between 

caregivers and children would predict how many words the child learned. Functional 

near infrared spectroscopy (fNIRS) was measured from both the caregiver and child 

as the caregiver taught their child the names during play. The main research question 
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was: will neural coherence between caregiver and child during play with new objects 

be correlated with the number of object names the child learns?  

However, in order to investigate whether neural coherence can predict how 

many words were learned, we first needed to establish which areas of the cortex 

were showing neural coherence that was relevant to interactively teaching and 

learning. Neural coherence can be driven by background brain activity that is 

unrelated to a task, by similarity in patterns of physiology such as breathing or heart 

rate, or even by sharing an environment or doing the same task, regardless of 

whether the individuals are interacting (Burgess, 2013). Prior work has used a 

resting baseline to control for alignment in neural signals that occurs as a result of 

basic physiology, as opposed to legitimate experimental results. For example, 

participants may be asked to sit still with their eyes closed for a period of a few 

minutes before completing a task in order to establish a resting baseline (Cui et al., 

2012; Liu et al., 2019). However, coherence that is higher when interacting in the 

same task than during rest can include multiple underlying causes. As stated above, 

these can include similarity in underlying brain activity that results from merely 

doing the same task as another person, and also from interacting with another person. 

Thus, even the aforementioned work that identified and only retained channels with 

coherence higher than the resting baseline, also compared coherence between 

different conditions for those channels that were higher in coherence than the resting 

condition. For example, after retaining channels that were higher in coherence 

compared with resting baselines, Cui et al. (2012) then tested for differences in these 

channels between independent, competitive and cooperative game play during a 

computer-based task. Only those channels that were higher in coherence in the 

cooperative or competitive condition were reported. This indicates that interacting 

with the other person, not merely doing the same task that they were, drove the 

coherence. Alternatively, Liu et al. (2019) compared coherence to a resting state in 

order to determine which frequency ranges to examine in the hyperscanning 

analysis. Those frequencies that differed from the resting baseline were included in 

the analysis.  

It is more difficult to establish the range of experimental conditions necessary 

to distinguish between the relevant impact of the task structure and the impact of 

interaction on neural coherence within openly structured interactions. This is 

because, for some tasks like teaching and learning in-person, there must be two 
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interacting partners rather than two separately engaged individuals whose brain 

activity can be recorded in parallel. Therefore, it would be difficult to establish 

complete control conditions with independent learning. Either the learning phase 

would not involve instances of naming as there would be no conversation partner, or 

the child would be observing two different people teach and learn but not participate 

in learning themselves, for examples. Prior work that studied naturalistic interactions 

where partners did not have distinct teaching and learning roles have used pseudo-

resting conditions to compare with different types of interactions in the experimental 

task. For example, Liu et al. (2016) had participants discuss everyday topics during 

the rest period, and then compared coherence between cooperative, obstructive and 

independent Jenga play and the rest conditions. With adult-child interaction, 

additional considerations can make it difficult to match the stimuli between 

interactive tasks and resting baselines. For example, in the non-interactive condition 

by Piazza et al. (2020), the experimenter who read to the child during the interaction 

condition turned away from them and read to another adult while the child could see, 

and while the child interacted with a caregiver instead. This more variable type of 

baseline shows why it is difficult to establish task-related structure to baselines in 

naturalistic interactions, and the prior work shows why it is important to examine 

resting baselines along with interactive and non-interactive task conditions. Finally, 

proper resting baselines have not previously been used with children in 

hyperscanning studies because it is not typically possible to ask infants and young 

children to sit still with their eyes closed.  

One common and parsimonious way that interaction-derived coherence is 

validated against these background factors is by comparing data from participants 

who were interacting, compared with participants who completed the same task but 

who were not interacting with each other (Hirsch et al., 2017; Liu et al., 2019; Reindl 

et al., 2018). Within these studies, channels that did not show a significant difference 

between actual and scrambled participant pairs were often excluded from further 

analyses. One benefit of this approach for word learning interactions is that it can 

separate coherence that occurs as a result of interacting with that person, from 

coherence that occurs just from generally participating in the same task of teaching 

and learning new words. Ideally, like in adult studies, these types of baselines may 

be used in combination with resting baselines (see Liu et al., 2019), dividing baseline 

physiology from coherence driven by task structure, and coherence driven by task 
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structure from coherence driven by the synchronizing of representations between 

two interacting partners. Because previous research suggests that neural coherence is 

robustly related to moment-to-moment behaviours during interactions (Piazza et al., 

2020) and because we were interested in establishing whether neural coherence 

during interactions could predict how many words children learned, we applied a 

baseline of scrambled caregiver-child pairs to validate our coherence measure, prior 

to exploring any relationships with behaviour. If neural coherence between 

interacting caregivers and children was significantly greater than neural coherence 

between scrambled dyads within any channels, those channels would be tested for 

correlation with the child’s word learning.  

 

4.2 Methods  

4.2.1 Participants 

The data analysed in this chapter is the same as that collected in Chapter 3, 

consisting of a final sample of 19 32-month olds (M = 32.5 months, SD = 52 days) 

and 18 54-month olds (M = 53.7 months, SD = 58 days) and their caregiver. 

Participants were recruited from a city and surrounding areas in the UK.  

 

4.2.2 Stimuli and Apparatus 

Caregivers and children were seated across from each other at a table. 

Caregivers could see the names of photos of objects on a felt board that was 

positioned behind the child. The new stimuli consisted of eight unusual toys, 

including a three-object set of a yellow squishy toy, a large decorative key ring, and 

a large blue jack, and a five-object set of a wooden caterpillar that had been painted 

solid green, a miniature paint roller, a red mesh structure, brightly coloured blocks, 

and a small felt puppet, (see Fig 4.1). fNIRS data was recorded, as described in 

Chapter 3. 
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Figure 4.1. The stimuli and apparatus, including a. left) A model of the experiment 
setup and the first task in which the caregiver taught their child the names of three 
new objects. (right) The objects are pictured. b. (left) A model of the second task in 
which caregivers taught their children the names of five new objects. (right) The set 
of five new objects is shown. The caregiver could see photos and names of objects 
on a felt board positioned behind the child. fNIRS data was recorded from both the 
caregiver and child during these tasks.  
 

4.2.3 Procedure 

For a detailed description of the procedure, see Chapter 3, and for relevant 

methods development, see chapter 2. To summarise, the caregiver and then the child 

were fitted with an fNIRS cap and signals were inspected for quality. At the 

beginning of the session, the child completed the British Picture Vocabulary Scale 

(BPVS-3) survey. Caregivers then taught their children names of eight new objects. 

For the first three new objects, the caregiver was given 2.25 min (45 sec per object * 

3 objects) to interact with the child and teach the child the names of the objects. In 

total, the participants were given 4.5 min to interact with the first three new objects. 

The experimenters then began the comprehension test. The child and caregiver 

(while facing away from each other) were presented simultaneously with pairs of the 

familiar objects alternating with pairs of the new objects, by the experimenters. 

a. 

b. 
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During each trial, the experimenter asked the child to retrieve the target object. The 

child retrieved the object while the caregiver, unable to see the child and out of their 

child’s view, pointed to the correct photo on a display card. In total, participants 

completed twelve comprehension trials: six trials where they were asked to select a 

familiar object and six trials where they were asked to select a new object. The entire 

word learning task and comprehension test were then repeated with another set of 

five new objects. Because we had increased the number of objects, participants were 

given 3.75 minutes (45 sec per object * 5 objects) in each word learning session for a 

total of 7.5 min. The second comprehension test consisted of twenty trials: ten trials 

in which the participants were presented with a pair of familiar objects and asked to 

select one of the objects alternating with ten trials in which they were presented with 

a pair of new objects and asked to select one of the objects. Finally, we tested 

whether the caregiver and child could produce the names of the new objects from 

memory. The caregiver faced away from the child. An experimenter then asked the 

child the name of each new object, saying “Can you tell me what this is called?” The 

child was given a few seconds to answer. Caregivers completed an identical 

production test, to assess their learning.  

 

4.2.4 Determining the fNIRS Geometry   

The geometry in which optodes were arranged was designed to cover the 

main regions of interest from previous studies that bore the highest relevance to the 

present study (for a full methods description, see Wijeakumar et al., 2015), including 

studies from social interaction, language and word learning, and visual working 

memory. The final geometry covered the superior frontal cortex, inferior frontal 

gyrus, posterior temporal cortex and parietal cortex (for a full list of studies used to 

design the geometry, see Appendices A and B). To view the cap geometry used, see 

Figure 4.2. 
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a.  

b.  

 

Figure 4.2. The fNIRS coverage, including a.) the NIRS geometry array for child 
(left) and caregiver (right) with the front of the head positioned toward the top. Six 
clusters are arranged bilaterally covering superior frontal, prefrontal and inferior 
frontal, posterior temporal and parietal areas. Sources are shown in red and detectors 
are shown in blue. b.) Cortical coverage of the cap geometry laid over the left 
hemisphere of a child brain (left) and adult brain (right). It is important to note that 
the gap geometry shown here is the same as in Chapter 3.  

 

4.2.5 fNIRS Pre-Processing   

The data collected from the caregiver’s head and the child’s head were pre-

processed separately, using a method described in more detail in Chapter 3. Data was 

pre-processed with nearly the same steps for both analyses. Signal processing on the 

unprocessed data was conducted using custom parameters within the HomER2 

software (Huppert et al., 2009). Signal measurements were omitted entirely if they 

did not fall between 70 dB and 140 dB, dB=20*LOG10(y), where y is measured as 

light intensity, converting the light intensity measures into optical density (OD) 

units. The pre-processing pipeline identified motion artefacts based on changes in 
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optical density greater than 0.4 au within one second, or with a SD greater than 50. A 

targeted principal component analysis (tPCA) corrected for components identified as 

motion (Yücel et al., 2014). Data slower than 0.016 Hz and faster than 0.5 Hz were 

then bandpass filtered and the remaining motion artefacts removed by channel. After 

processing the data, concentration values for oxygenated hemoglobin (HbO) and 

deoxygenated hemoglobin (HbR) were computed for each channel using the 

modified Beer-Lambert law.  

 

4.2.6 Wavelet Coherence Analysis  

In order to measure the alignment in brain activity between the caregiver and 

child across each word learning interaction, we conducted a wavelet transform 

coherence (WTC) analysis on corresponding channels recorded from each person. 

The coherence measure requires the NIRS signal to be decomposed into time-

frequency components. For example, the function identifies and separates the pattern 

of oscillatory activity in the unprocessed fNIRS signal at different periods. Then a 

wavelet function is used to bandpass filter the original time series within those 

periods. The Wavelet Transform Coherence (WTC) function then calculates 

coherence as the cross-correlation between the two signals that had been transformed 

into time-frequency space (for more in-depth explanation of this analysis, see 

Grinsted, Moore & Jevrejeva, 2004). We used the WTC toolbox in MATLAB to 

calculate the coherence values. This toolbox has previously been used to measure 

neural coherence between interacting partners using fNIRS (Cui et al., 2012; Hirsch 

et al., 2017; Miller et al., 2019), indicating that it was appropriate for our task.  

 Based on systematic visual inspection of time-frequency plots of our fNIRS 

coherence data, as well as previous literature (Hirsch et al., 2017; Liu et al., 2019), 

we determined that coherence in our data was most concentrated over frequencies of 

6 to 30 seconds, or 0.16-0.03 Hz. Thus, the mean coherence level, across all 

frequencies within this range, was computed for each dyad and each interaction, 

including the earlier and later block with three objects and an earlier and later block 

with five objects (Cui et al., 2012). Where possible, we padded the time window 

around which coherence was calculated with 40 seconds of data at the beginning and 

end of the block in order to ensure continuity of the wavelets at longer periods.  
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4.2.7 Validation of Coherence Via Permutation  

One concern with coherence analyses is the likelihood of finding coincidental 

coherence that is due to participants’ engaging in a similar task (Burgess, 2013). In 

order to ensure finding coherence levels that were driven by interactive learning and 

not merely through engaging in the same task, we generated an artificial dataset 

based on pairing time series within corresponding channels, between all 

combinations of caregivers with other children in the study who were not interacting 

with them (for studies which have used a similar baseline, see Hirsch et al., 2017; 

Miller et al., 2019; Reindl et al., 2018). Before conducting this analysis, we trimmed 

all recordings to be the same length between participants in order to fit an 

autoregressive (AR1) function to the time series. Two participants were omitted 

from this baseline, though not the later analysis, due to having recordings that were 

shorter than the others. Ultimately, we calculated the mean within, and then across, 

all of the scrambled pairs for both tasks, resulting in a single value against which to 

compare our data for a statistically significant difference.   
 

4.2.8 Statistical Analysis  

We first aimed to determine whether any of our channels contained 

coherence above the baseline, using a protocol that had been directly used in 

previous studies that were similar to ours (Cui et al., 2012; Hirsch et al., 2017; Miller 

et al., 2019; Reindl et al., 2018). The justification for using this procedure is that a 

null distribution based on scrambled caregiver-child pairs would establish what 

aspects of coherence were due to underlying physiology and task structure, rather 

than the interactive teaching and learning process. Therefore, we conducted 20 one-

sample t-tests to compare the mean coherence value in our data for that channel 

across the entire session, with the mean of the null distribution. HbO values were 

selected this analysis, based on visual inspection of plots comparing overall 

distributions and observed and scrambled data for HbO and HbR that indicated that 

HbO values showed the greatest difference between actual data and the baseline. A 

Benjamini-Hochberg correction for multiple comparisons was applied to the t-tests 

(alpha = 0.1). For the output of this comparison, see Figure 4.3. 
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4.3 Results  

The mean of the observed data of caregivers and children who were 

interacting (M = 0.325 SD = 0.006) was similar to the mean of the null distribution 

of scrambled caregiver-child channels, comprised of all possible combinations of 

caregivers and children who were engaged in the same task but who were not 

interacting (M = 0.320, SD = 0.002). Following a Benjamini-Hochberg correction for 

multiple comparisons, we did not find a difference in coherence between any 

channel in the interacting pairs and the mean of the scrambled caregiver-child pairs 

(p > 0.05). The threshold for a significant p-value set by the Benjamini-Hochberg 

correction was 0.005, for the p value of highest significance. Here are the actual 

results, by channel, none of which met the significance level required by the 

correction. For channel 1, t35 = 0.12, p = 0.902. For channel 2, t36 = 0.26, p = 0.799, 

For channel 3, t31 = 1.10, p = 0.279. For channel 4, t31 = 0.885, p = 0.383. For 

channel 5, t30 = 0.69, p = 0.496. For channel 6, t30 = 0.69, p = 0.496. For channel 7, 

t32 = 1.61, p = 0.117. For channel 8, t30 = 0.62, p = 0.542. For channel 9, t30 = 0.85, p 

= 0.399. For channel 10, t33 = 0.12, p = 0.908. For channel 11, t35 = 0.41, p = 0.685. 

For channel 12, t27 = 1.14, p = 0.261. For channel 13, t28 = 0.883, p = 0.930. For 

channel 14, t33 = 0.47, p = 0.644. For channel 15, t36 = 0.93, p = 0.359. For channel 

16, t32 = 0.14, p = 0.890. For channel 17, t35 = 0.98, p = 0.332. For channel 18, t31 = 

0.25, p = 0.801. For channel 19, t30 = 2.39, p = 0.023. For channel 20, t33 = 0.210, p 

= 0.835. As the results show, none of the channels had significantly higher 

coherence compared with the baseline, indicating that there was not enough power to 

detect coherence increases based on what was happening in interactions between 

caregivers and children. Therefore, we did not continue to explore brain-behaviour 

relationships within the interacting pairs in any channels. 
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Figure 4.3. Boxplots of the coherence data for each fNIRS channel, broken down by 
channel (numbered at the top of each plot) and by task (the simpler task with three 
new objects or the more difficult task with five new objects). The overall mean of 
the null distribution of channels from scrambled caregiver-child pairs is shown as a 
blue dashed line.  

  

Figure 4.4.  A density plot of the coherence levels, by channel, of scrambled 
caregiver-child pairs, overlaid with the distribution of the actual data. Each channel 
was averaged across participants, thus there are 20 values (the average value of each 
of 20 channels) within each distribution. The figure reveals that the distributions of 
these two data sets were different, with the null distribution having far less 
variability than the observed data, even though no statistical differences were found 
between channels.  
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Given that no channels were significantly higher in coherence than the null baseline, 

no specific channels could be correlated with the number of words learned. In other 

words, no specific area of the cortex was uniquely different for interacting caregivers 

and children, which would be needed to reflect task-relevant brain activity. 

Therefore, no theoretical motivation existed based directly on previous work, to 

explore relationships between word learning and coherence within this study.  
 

4.4 Discussion 

An emerging question within the hyperscanning literature is how neural 

coherence, measured throughout interactions, contributes to early word learning 

(Piazza et al., 2020; Wass et al., 2020). We aimed to determine whether neural 

coherence between the caregiver and child as caregivers named new objects would 

predict the child’s learning. However, prior to being able to investigate the impact of 

neural coherence on learning, we failed to observe greater levels of neural coherence 

between interacting children and caregivers compared with that of caregivers and 

children who were engaged in the same task but who were not interacting. Thus, our 

findings do not lend support to the hypothesis that behavioural coordination directly 

drives alignment in underlying brain activity between communicating partners 

(Hasson et al., 2012; Piazza et al., 2020; Wass et al., 2020). Otherwise, what was 

happening during the interactions would increase the coherence in brain activity 

between caregivers and children who were interacting compared with those who 

were not. Nor does it support a hypothesis that neural coherence can reliably predict 

individual children’s word-learning during interactions within local, task-relevant 

brain areas as has been found within other studies that used the same protocol. 

One explanation is that neural coherence between interacting partners does 

increase during interactions, but that this is a subtle phenomenon compared with 

group-level differences in individual brain activity between conditions, the 

traditional type of functional imaging analysis. After conducting a Benjamini-

Hochberg correction for multiple comparisons, Liu et al. (2019) found greater 

coherence between interacting partners within one channel in an array of 20 

channels. In a within-subjects study, their sample size was 84 adult-adult dyads. This 

suggests that greater statistical power may be needed to find task-related neural 

coherence between interacting partners than is required to find task-related 

differences in individual brain activity. A future direction could be to explore neural 
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coherence between caregivers and children with a larger sample size, likely requiring 

data collection paradigms that are more portable. 

Without having access to a larger sample size that could provide the power to 

detect coherence that is specific to interacting pairs, there may still be ways to 

measure, validate and draw brain-behaviour relationships from neural coherence in a 

sample of 37 dyads. This would require addressing some limitations and/or 

exploring how coherence can predict learning in a within-subjects paradigm. To 

address a first limitation, we could quantitatively determine where to look for 

coherence rather than determining this through visual inspection. Liu et al. (2019) 

examined coherence between frequencies of 0.01-0.7 Hz during the task, and 

analysed data within a smaller frequency range that differed maximally from 

coherence during a resting period. To implement an analysis like this, a basic resting 

period such as having a caregiver and child sit facing forward and alone interacting 

with a toy, could provide a measure of resting coherence from which to find the best 

window in which to look for task-relevant coherence. Likewise, Hirsch et al. (2017) 

explored and reported significant coherence values over a subset of frequencies 

extracted during the analysis rather than a priori. The frequency range in which we 

visually observed the highest levels of coherence (6-30 seconds) overlaps with these 

studies (Liu et al. found coherence between 20 and 50 seconds with a shorter task; 

Hirsch et al. found coherence between 12 and 24 seconds). However, because we 

determined which frequencies we wanted to extract based on visual inspection, we 

could potentially have missed the range of maximal coherence within our task. 

Finally, some research suggests that overall behavioural outcomes during caregiver-

child interactions are better predicted by coherence during earlier task blocks, 

compared with later ones (Reindl et al., 2018). Thus, a different consideration is that 

calculating neural coherence within the first half of the training interaction with three 

objects and with five objects, rather than averaging across both the first and second 

half, may prove more promising.   

Finally, more care should be taken to reduce noise that contributes to neural 

coherence from background brain activity and from physiological influences on 

changes to HbO and HbR concentration. While periods of rest may be a problematic 

baseline for hyperscanning studies (Reindl et al., 2018), subtracting coherence 

during periods of rest from coherence during the task prior to validating with 

scrambled pairs may eliminate background noise from these comparisons (Liu et al., 
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2019). In developmental studies in particular, more precise methods are needed for 

establishing what aspects of coherence can be attributed to underlying similarity of 

brain activity at rest, and as a result of being engaged with a task. Alternatively, to 

reduce noise associated with physiology prior to comparing interacting dyads with 

scrambled pairs, it might also be necessary to subtract physiology-related 

components from the dyad-level data, prior to comparing interacting dyads with non-

interacting controls (see Kirilina et al., 2013 for a review of a method to subtract 

frequency bands associated with physiology). While, to the best of our knowledge, 

this has not been previously done in a hyperscanning study, it could potentially 

reduce the amount of noise in the coherence values and increase the likelihood of 

finding a difference between interacting and scrambled caregiver-child dyads.  

It is expected that neural coherence within a small proportion of 

corresponding channels in an array is significantly greater than coherence within 

scrambled participant pairs. Yet, within a handful of relevant studies we reviewed, 

this average was 6.5% of all channels/ROIs tested (Hirsch et al., 2017; Jiang et al., 

2015; Liu et al., 2019; Reindl et al., 2018). Additionally, only two of these studies 

report using a correction for multiple comparisons in testing individual channels or 

ROIs against a scrambled baseline. Therefore, one possible explanation for many 

previous effects is that they were spurious: the result of conducting numerous 

statistical tests, and that with appropriate corrections, null results like ours would be 

more common. Even though previous studies that did not use these corrections may 

have had significant results, neural coherence across tasks and through time may still 

not be specific to interacting dyads. 

Different sorts of brain-behaviour relationships could be explored to test a 

new hypothesis that relationships between coherence and word learning do not need 

to involve overall differences between actual and scrambled caregiver-child pairs, 

but still could be related to learning. For example, Jiang et al. (2012) found that 

neural coherence could be used to classify whether communicative behaviours such 

as turn taking in dialogue, were occurring during face-to-face or back-to-back 

interactions, even though they were not able to validate their coherence measure 

against scrambled pairs within each condition. Thus, it may be possible to 

statistically determine differences in intervals in which naming of learned words 

predominately occurred, and intervals in which naming of words not learned 

predominately occurred, based on the coherence values across these time intervals. 
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In other words, coherence may be different when the same children are learning 

versus when they are not.  

Our findings did not suggest that a robust overall difference exists in 

coherence between caregivers and children who were interacting directly, versus 

those who were interacting with a different partner while doing the same task. Future 

work should be undertaken to boost confidence in these null results or to ultimately 

disprove them, including controlling noise from physiology or other sources in the 

unprocessed data prior to comparing coherence in actual caregiver-child dyads with 

those of scrambled dyads. However, new avenues for research are also opened, most 

importantly, an exploration of whether coherence can be used as an indicator that 

successful communication is taking place regardless of whether overall differences 

in coherence between actual and scrambled dyads are observed, or whether 

coherence can predict intervals of time in which a same child is learning, compared 

with those in which they are not learning.  
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Chapter 5 – General Discussion and Conclusion 

 

5.1 Chapter Overview 

The present thesis investigated the neural correlates of interactive word 

learning between caregivers and children. In two interactive training blocks, 

caregivers taught their 2- to 5-year-old children the names of three and then five new 

objects while playing naturally. Following these interactions, children were 

presented with alternating pairs of familiar and new objects and were asked to select 

one by an experimenter. Though facing away from their child, caregivers saw the 

same object pairs and were separately asked to point to a picture of the correct 

referent. Hemodynamic response data to instances of naming were measured from 

both the caregiver and child during each of these tasks, and neural coherence across 

each naming interaction between the caregiver and child was calculated between 

corresponding channels on the caregiver’s and child’s head. Given that previous 

neuroimaging research had predominately tested children in computer-based word 

learning tasks that lacked a live, social-interactive context (Ekerdt et al., 2020; 

López-Barroso et al., 2013; Nora et al., 2017; Romeo, Leonard et al., 2018; Rice, 

Moraczewski et al., 2016; Takashima et al., 2019), our primary aim was to determine 

how brain activity predicted learning during an interaction. First, we investigated the 

neural correlates of interactive word learning between caregivers and children in 

response to naming, comparing hemodynamic response averages from naming of 

new words that were learned and that were not learned by the child. In order to 

connect differences in hemodynamic responses to behaviour that occurred during the 

interaction, we then explored whether spatial coordination between the caregiver and 

child across the session and during the naming events themselves could predict 

children’s learning. Finally, we compared neural coherence between caregivers and 

children who were interacting during these tasks with that of mismatched dyads. In 

this chapter, the findings from these studies will be reviewed, along with limitations 

and methods considerations, and broader theoretical implications.  

 

5.2. Summary of Main Study Results 

5.2.1 Chapter 3 

Within this chapter, children’s and caregivers’ hemodynamic responses to 

instances of naming were first compared for words the child learned, versus words 
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the child did not learn. Neural responses to naming events differed, between words 

the child learned and did not learn, within both the caregiver’s and the child’s brain 

activity. We then analysed the behavioural data and found that the distinctiveness of 

object locations (which were measured by the volume of overlap) predicted which 

words the child learned. The present study did not find evidence that dyads 

intentionally kept objects in distinct positions in order to teach and learn, or even that 

activation within their neural responses was greater during learning. Taken together, 

these findings suggest that coordination between caregivers and children enables 

children to learn new words, and that it may be easier to learn when children and 

caregivers are processing in compatible ways.  

Results revealed that children’s neural responses differed between learned 

words and words not learned within the right inferior temporal cortex. Meta analytic 

work that used the Neurosynth database revealed that this area is functionally 

associated with social and language processing. This may indicate that interrelated 

language and social-pragmatic processing underlie differences between responding 

to naming of learned words and words not learned during interactions. Activation 

within the right supramarginal gyrus, found in response to instances of naming in 

general, was functionally associated with attention across a variety of different tasks. 

This may suggest that hearing new objects named elicits attention to what is being 

referred to. For example, this may occur when children process speech within 

complex environments (Adank et al., 2012). It is possible that the interaction 

observed suggests that, during learning with an array of multiple new objects, 

children inhibit their attention to distracting stimuli. 

An analysis that examined the caregiver’s neural responses to naming 

revealed an interaction between learning and chromophore within the left angular 

gyrus, functionally associated with determining social relevance and with language 

and category processing. Once again, the oxygenated hemoglobin (HbO) 

concentration showed positive activation in this analysis when naming words that 

were not learned. Further, differences were observed in the left prefrontal cortex 

based on the child’s age, indicating that caregivers may have worked harder to 

process social information when teaching their younger children. Some work 

suggests that children construct their own learning experiences with the 

environmental resources available (for related work, see Trawick-Smith, Russell & 

Swaminathan, 2011; see also Gopnik & Wellman, 2012). In the present study, there 
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is evidence that children’s and caregivers’ processing varied together, supporting the 

applicability of a two-person neuroscience framework to studying early word 

learning (Hasson et al., 2012; Wass et al., 2020).   

We also tested whether one path to the child’s learning could be measured 

via the spatial consistency of object locations and the volume of overlap between 

objects during naming interactions with the caregiver. We found that children’s 

learning was positively predicted by the distinctiveness of object locations (which 

we assessed by the volume of overlap). This finding was consistent with previous 

literature that had found younger children’s word learning was poorer when object 

locations were switched during naming (Benitez & Smith, 2012; Samuelson et al., 

2011). This finding suggests that children struggle to learn more than one new name 

in a location that had been occupied by multiple objects. Taken together, results 

suggest that children’s mapping of words to objects is influenced by a range of 

factors including environmental, behavioural and cognitive coordination with their 

caregiver.  

 

5.2.2 Chapter 4 

We additionally explored an outstanding question in the literature, whether 

neural coherence between caregivers and children during interactions in which the 

caregiver named objects could predict the child’s word learning (Hasson et al., 2012; 

Piazza et al., 2020; Wass et al., 2020). Within this study, we used a wavelet 

transform coherence (WTC) analysis (Cui et al., 2012) to compare neural coherence 

within matched channels between interacting caregivers and children with a 

distribution of matched channels between mis-matched caregivers and children. 

After applying a correction for multiple comparisons, we did not find any channels 

that were significantly more coherent within interacting dyads, compared with dyads 

who were engaged in the same task but who were not interacting. This may be due to 

lack of power in our sample (for a significant finding in a related task with a larger 

sample, see Liu et al., 2019), or to the manner in which we chose to calculate 

coherence. Thus, one future direction is to explore differences in neural coherence 

within-subjects, between intervals of time in which more learned words were named, 

and intervals of time in which more words not learned were named. Further 

methodological considerations regarding the WTC analysis can be found in section 

5.3.4.  
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5.3 Limitations 

The study breaks new ground in terms of applying a naturalistic, 

neuroimaging design to study learning during caregiver-child interactions. However, 

multiple technical limitations and considerations with regard to the design and the 

interpretation of the data could be addressed in future work. 

 

5.3.1 Technical Limitations Within the Behavioural Paradigm 

For the scoring of the British Picture Vocabulary Scale (BPVS-3), original 

scores of children’s vocabulary were bound to reflect age-driven differences, and 

moreover, we were not able to use the population-based standardization typically 

used to score this survey, because the assessment had not been standardized for our 

youngest age group. Standardization of the BPVS-3 begins at three years of age. As 

a solution, we standardized all of the scores for both age groups within the full 

sample of children recruited regardless of whether they had finished the study. When 

we calculated the survey-based standardized score of the older age group, we 

realized that the children in our sample had slightly higher vocabulary scores than 

expected though within one standard deviation. Thus, while they are valid to our 

sample, the standardized scores we used reflect the distribution of these children’s 

vocabularies and may only marginally compare with the survey-based 

standardization.  

 Children’s referent selections were sometimes messy during the 

comprehension test, including picking up more than one object and requiring the 

experimenter to prompt a second time or reaching for a favourite object rather than 

the object asked for by the experimenter. We created a margin of error in which 

children must not retrieve the incorrect object during familiar object trials more than 

six times during the session, because we could assume they knew the names of these 

objects and therefore their selections provided a basis for evaluating how on-task 

they were when selecting new referents. However, it is likely that some responses 

during the new object trials did not reflect what the child knew. Additionally, it is 

possible that in some cases, a child who knew the requested object name was on-task 

during one of the two times they were asked to select it, and that they were off-task 

on the other, leading us to assume they had not learned the word. This would mean 

that sometimes a word the child knew would be counted as a word not learned in the 
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analysis, and sometimes a word the child didn’t know would be counted as a learned 

word.  

  

5.3.2 Technical Limitations Within the Machine Learning Paradigm 

Within the machine learning analysis, Faster R-CNN relied to some extent on 

the stability of the surrounding environment in order to recognize objects whose 

locations varied frame-to-frame. This has been discussed in greater detail in section 

2.2.4. A pseudo-naturalistic design offered greater stability than a fully real-world 

design due to the surrounding equipment and environment of the lab being 

consistent, and due to consistency in the overhead camera placement. However, 

variations such as participant clothing and objects brought into the environment by 

participants occasionally led to erroneous predictions by the network. For example, 

in a case where a participant was wearing a bright yellow shirt, their forearm may be 

mistaken in some instances for the yellow worm toy. In some cases, this created 

noise in the unprocessed data or resulted in missing data even when the objects were 

visible.  

While, in theory, the adehabitathr package offered a conceptually valid 

method for measuring object locations in our study, it had not been previously used 

for a similar type of data (Calenge, 2006; Walter et al., 2015). Conceptually, a 

method designed to measure the volume of overlap in the home ranges of animals 

should also measure the volume of overlap between the areas most associated with 

each object. When fit to the object location data, the function was flexible enough to 

find multiple high-density locations when objects frequently occupied more than one 

location during the interaction. Presently, this package was a user-friendly and 

suitable tool for the research question, though previously untried in this context.  

Most importantly, the CNN was only trained to detect object locations and 

classify the objects in the videos. Therefore, the study did not factor in when objects 

were being held or viewed by participants. We were able to start measuring each 

object after it had been held the first time by the caregiver or child because this 

aspect could be manageably determined by observer video coding. However, we 

could not directly make a connection between the child’s attention to objects or their 

holding/their caregiver’s holding of objects and the impact of overlap during these 

interactions. Previous work focused on embodied spatial coordination, such as 

measuring which hand predominantly held each object during caregiver-child 
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interactions (Samuelson et al., 2011), but our study examined spatial coordination 

more indirectly than it had previously been tested. We assumed that object locations 

changed based on holding and that objects were predominately attended to during 

naming, but only actually measured the object locations following the first time each 

object was held (based on video coding).  

 

5.3.3 Technical Limitations Within the fNIRS Analyses  

The primary methods limitation in the event-based NIRS analysis was the 

variability in the number of times children named each object, (M = 4.45 x/object, 

SD = 3.41) Further, the number of possible children’s naming events did not reliably 

afford comparable statistical power to that of adults’ naming, (M = 12.61 x/object, 

SD = 4.76). One challenge of the present study is that even though it is within a 

neuroimaging paradigm that typically has conventions for spacing between events of 

interest, there is no way to control for when participants name objects, in the same 

way that the intervals of time between stimulus presentations in computer-based 

tasks can be controlled for as a part of the experimental design. The neuroimaging 

data had a fair amount of motion artefact and a low signal-to-noise ratio that was 

corrected in the event-based analysis via removing a substantial number of 

individual channels. Additionally, sparse channel arrangements and limited cortical 

coverage for each participant resulted in limited methods for controlling for 

physiology. In the present event-based analysis, we approached this with a global 

signal regression and via only reporting effects that showed a statistical interaction 

between chromophores.  

Because the neural coherence analysis was conducted at an earlier time point 

and in the channel space, there were fewer channels removed due to signal noise and 

there was not a correction for physiological noise, as this was done during the image 

reconstruction of the event-based analysis. Finally, the analysis of neural coherence 

controlled for physiology post-hoc, by comparing actual and scrambled pairs (Reindl 

et al., 2018). In future, omitting periods in which physiology is known to occur prior 

to extracting coherence data may reduce the inherent noise from physiology and lead 

to a statistically significant difference between coherence within channels from 

actual and scrambled pairs. Kirilina et al. (2013) used a wavelet analysis on multiple 

channels recorded from the scalp to determine which frequencies contained 

physiological signals and discovered that physiological contamination in the data 
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occurred within distinct periods of around 3, 10 and 34 seconds. Since the WTC 

analysis used in the present study (Grinsted et al., 2004) analyses neural coherence 

within a specified time-frequency space, these frequencies could simply be removed 

from the initial coherence calculations.  

 

5.3.4 Hyperscanning Interpretations and Limitations 

 In a review, Hamilton (2021) argued that confidence in hyperscanning 

findings can be bolstered by a neurocognitive theory and better relationships drawn 

between neural coherence and behaviour. Such a theory could do more to explain 

why coherence is greater during active communication and cooperation than when 

individuals engage with the same task. This is critical because finding that brain 

activity is similar between individuals who complete the same task does not indicate 

anything that is not already assumed in studies that examine group-level responses to 

stimuli across individuals. Instead, hyperscanning should reveal more precise 

mechanisms above and beyond this principle. The hypothesis of mutual prediction 

(Kingsbury et al., 2019) posits that alignment in brain activity between interacting 

partners occurs because the individuals simultaneously control their own behaviour 

and predict their partner’s behaviour. Studying mutual prediction in interactions 

requires consideration of the behaviours that occur during the interactions, and how 

these behaviours are related to the corresponding alignment in brain activity. This 

may occur at multiple levels, such making sensorimotor predictions about what a 

conversation partner will do, and semantic predictions about what they intend to say 

next (Stephens et al., 2010; Wass et al., 2020). Further, it may involve computations 

about establishing or maintaining joint attention (Piazza et al., 2020). 

Mutual prediction, broadly applied, opens up a new avenue for interpreting 

neural synchrony during teaching and learning new words. However, few prior 

studies thoroughly examined the role of prediction even in their own findings. For 

example, in the study that revealed correlations between speakers and listeners 

(Stephens, Silbert & Hasson, 2010), the aim was to demonstrate that speech 

comprehension was correlated between a speaker and listeners when the speech was 

understood. Anticipatory activity, or signals that aligned with a listener-led lag, 

proved to be a robust indicator of the depth of speech comprehension. Predicting 

what someone would say was a robust marker of both speech comprehension and 

neural synchrony between speaker and listener. Liu et al. (2019) tested this concept 
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experimentally by manipulating the syntactic consistency in the stimulus 

presentation as speakers and listeners alternated roles. Neural coherence was greater 

when sentence structures were consistent across switches. In the present study, 

coherence and its relationship to learning may have had either a speaker- or listener-

led lag (indicating the importance of processing and prediction), and it could be that 

neural coherence is higher for interacting dyads with a lag like this, and that 

coherence at a lag may be correlated with learning. However, this was not a planned 

investigation of the present study. Instead, only synchrony that occurred time point 

to time point was analysed. Further exploratory work could systematically explore 

lags between caregivers and children (Piazza et al., 2020) in a word learning task. 

For example, a speaker-led lag may exist during times in which adults frequently 

name objects, such that the caregiver anticipates what the child will see and hear 

before naming the object, while the child processes the mapping of word to object 

after the fact. Conversely, a listener-led lag may occur if the child predicts that an 

object is likely to be named or needs to be named, while the adult may look to see 

whether the child made the mapping after naming the object.  

In contrast to the way that mutual prediction has sometimes been articulated, 

when it comes to teaching and learning words, the primary aim is not always to 

understand how participants are reasoning about each other’s actions. As Wass et al. 

(2020) explain, in studies that examine language comprehension, often the aim is to 

explain how representations in a common task (like learning object names) align via 

achieving a shared understanding of semantic meaning. Interactions can establish 

common ground in higher level cognitive processes involved in comprehension, 

narrative and shared meaning (Fishburn et al., 2018; Simony et al., 2016; see Stolk et 

al., 2014). This appears to blur the line between coherence that occurs due to task 

structure (such as teaching and learning new words) and coherence that occurs 

through reasoning about the other person. However, in early language learning, 

much work suggests that mapping words to objects is influenced by actions that 

happen during interactions (Cartmill et al., 2013; Kalagher & Yu, 2006; Samuelson 

et al., 2011; Sullivan et al., 2015; Yu & Smith, 2013; Yu et al., 2009), as well as the 

content of dialogue as it relates to observed stimuli (Sobel & Corriveau, 2010). 

Actual and long-term understanding of word meanings are more often integrated 

across multiple contexts, some of which do not involve face-to-face interaction even 

though they involve ambient conversational input or artefact. The present scope of 
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hyperscanning studies is to examine how varying factors, including dialogue, 

environmental organization and gesture that occur during interactions impact on 

word learning. These types of factors likely play the greatest role in the rapid word-

object mappings made and tested within a single session.  

Much prior hyperscanning work that involved interactions between 

participants has focused on cooperative tasks in which individuals have equivalent 

knowledge and must align their behaviours (Cui et al., 2012; Miller et al., 2019; 

Reindl et al., 2018). For word learning studies, another aspect is the need to consider 

differing roles and knowledge that is possessed by the teacher but not the learner. 

For example, if children do not know an object name, they technically can’t predict 

what will happen in the speech stream. However, prior work suggests that children 

do understand when naming is likely to occur and may even use environmental 

information such as where an object was located before when it was named, to 

predict the naming event (Benitez & Smith, 2012). An important process to observe 

in cases where one person is teaching the other information is how behavioural 

coordination that occurs between the teacher, learner and new objects translates into 

both predictive processes (e.g., I know that this space is where that object was named 

before) as well as processes that resolve ambiguity following naming (Samuelson et 

al., 2011). The present work did find evidence that event-related responses to naming 

in particular are different during successful communication for both caregivers and 

their children. This shows that one general advantage of the hyperscanning approach 

is that it opens up the possibility of examining relationships in brain activity across 

time during an interaction.  

One limitation that exists in the present hyperscanning work is the lack of 

considering the impact of interdependent processes occurring within interactions, 

especially in determining when successful learning was taking place and when it was 

not. A block analysis of coherence within corresponding channels, once baseline 

corrected, can reveal whether there are overall increases in neural coherence between 

interacting partners, but cannot directly link these to moment-to-moment behaviour 

or tell us whether similarity in brain activity may occur from non-corresponding 

pairings (within different areas in the brain). This would distinguish whether 

coherence was higher between caregivers and children at some points in time and 

lower at others, and whether these differences were related to children’s learning. It 

may also indicate that the caregiver and child may need to be engaging in different 
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processes that may be implemented within differing networks. Prior work suggests 

that what is happening during the interactions may drive coherence between adults 

and children moment-to-moment, and that this largely comes down to the effort each 

person is putting into considering what the other person is doing (Miller et al., 2019; 

Piazza et al., 2020; Reindl et al., 2018). Coherence can be examined instead in light 

of sustained behaviours that occur during the interactions, or within both 

corresponding and non-corresponding pairings. For example, a speech production 

area may align in the caregiver’s brain with an area involved in speech 

comprehension for the child, or coherence may only occur during intervals of time in 

which the participants were focused on the same object or when learned words were 

being named. When the two ideas are combined (that coherence should be linked to 

relevant behaviour and that coherence could occur in differing but theoretically 

associated areas of the brain), then this could open up new avenues to explore how 

and when coherence is occurring at a mechanistic level, rather than assuming that 

coherence across entire interactions reflects uniformly distributed sharing of 

meaning and task aims.  

An additional consideration is where experimentally relevant coherence 

should be looked for within the vast amounts of underlying and task-irrelevant brain 

activity. Studies that have used highly controlled stimuli, have chosen a task-relevant 

frequency band (such as, corresponding to a period length of approximately 3-13 

seconds, Cui et al., 2012) based on the durations of individual cycles of a stimulus 

presentation and the expected range of participants’ response times. Other studies 

have determined a window in which to look at coherence post-hoc and based on 

where the greatest differences were found from a resting or non-interactive variant of 

the task (Hirsch et al., 2017; Liu et al., 2019). For naturalistic interactions, it may not 

be possible to say exactly at what frequencies coherence that is relevant to the 

research question can be found, but the problem can be constrained by excluding 

frequencies that are driven by systemic physiology. As mentioned previously, 

Kirilina et al. (2013) identified a frequency band within a WTC analysis of 

individual participants at roughly three seconds corresponding to respiration, and 

another at roughly ten seconds corresponding to Mayer waves. They further found 

that removing these frequencies from the intra-brain coherence analysis improved 

sensitivity to task-relevant brain activity. Future studies could look for optimal 

coherence within a range of frequencies that may plausibly correspond to the 
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cognitive processing needed to map words with objects. One way to use null 

baselines, such as scrambled caregiver-child pairs, is to quantitatively identify the 

frequencies at which coherence is higher specifically for caregivers and children who 

were interacting across a broad range of possible combinations, and then to separate 

and analyse those frequencies.  

Putting these considerations together, the following constraints in interpreting 

hyperscanning results can be considered along with the specific limitations of the 

present study. When possible, hyperscanning should be grounded in behaviour in 

order to understand why neural coherence occurred. This could be examined via 

considering the relationship between neural coherence and looking, holding toys, or 

spatial organization, for examples. Neural synchrony in general should be looked at 

not just as simultaneous alignment in brain activity but taking into account the 

possibility that synchrony has a listener- or speaker-led lag due to the importance of 

mutual prediction in explaining why two people who are in different roles may have 

similar brain activity. Finally, the frequencies at which neural coherence is analysed 

are best determined via a combination of theoretical and quantitative exploration that 

identify those frequencies that mattered for interacting partners. The present study, 

which compared coherence between actual and scrambled caregiver-child pairs, 

made a step toward controlling for everything else that is unimportant to what drives 

genuine experimental results. However, it is limited in terms of the range of methods 

used to do this out of those that are possible. Additionally, as the above discussion 

shows, the field is currently grappling with ways to resolve ambiguity in 

understanding what hyperscanning findings may mean.  

 

5.3.5 Further Design Considerations  

The present study investigated caregiver-child interactions within a pseudo-

naturalistic, openly structured laboratory task. There were aspects of this design that 

may be too naturalistic for the level of control expected of most laboratory research, 

and simultaneously, aspects that may not have been naturalistic enough to ensure full 

ecological validity. In terms of controls, the main area in which this project was 

limited was the inability to isolate specific variables from the context of the 

interaction. For example, brain activity between learned words and words not 

learned in our task could be influenced by variables such as dialogue and visual joint 

attention (i.e., viewing the same object) between the caregiver and child, which were 
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not directly measured. Additionally, we were not able to measure the child’s level of 

verbal attention and processing during the task, and whether relevant activation 

contributed to the differences found between learned words and words not learned. 

Collectively, these limitations suggest that the study represents a start, but not a 

complete path, to mapping the neural and behavioural factors that underlie learning 

in the present task.  

In terms of ecological validity, the current design is in some ways artificial 

compared with learning words in the real world. For example, in our tasks, 

caregivers were essentially learning the new object names along with their children, 

thus, they did not have complex experiences from which to draw when teaching 

them. Additionally, unlike learning in the real world, caregivers likely felt pressured 

and a great deal more focused on helping their child make word-object mappings 

based on the fact that their child would immediately be tested on their learning. 

Thus, some caregivers spent time during the interactions in less natural activities, 

such as repeatedly testing their child on the object names. Finally, the present design 

could not capture the full range of variables that are relevant for learning at home. 

For example, children may frequently map names to objects during interactions 

where the caregiver multi-tasks or shifts attention between siblings, in interactions 

with teachers and peers, and in a number of different environments. Therefore, the 

present study can be viewed as a start toward investigating the neural correlates of 

interactive word learning within naturalistic environments.  

 

5.4 Theoretical Implications 

The present work investigated the behavioural and neural correlates of 

interactive word-learning between caregivers and children. Within computer-based 

tasks, previous work had investigated neural correlates in processing of new words 

(Takashima et al., 2019), concrete nouns (Berl et al., 2014), and structural changes as 

a result of word learning (Ekerdt et al., 2020), for examples. Collectively, previous 

research suggested that neural correlates within language-specific and other 

cognitive neural networks, such as those that implement attention and social 

processing, may facilitate children’s word-learning. In these tasks, cognition 

required to support word learning includes attending to word-object pairings being 

presented repeatedly, and also working memory for which words have previously 

been paired with which objects. Some work specifically suggests that 4-year-old 
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children, among the youngest previously tested in word learning neuroimaging 

studies, must develop attention in order to meet the demands of intensive word 

learning training. This was true even to the point where structural changes to the 

networks that implement attention became the primary result of the word learning 

training even if the preliminary structural measures of areas that implement language 

predicted children’s performance (Ekerdt et al., 2020). What this may suggest is that, 

even in highly controlled laboratory studies, children are ever developing the 

fundamental cognitive building blocks that support focusing on relevant linguistic 

stimuli in the world. The present study investigated the neural correlates of word-

learning while caregivers taught their children new object names, a naturalistic task 

in which brain activity associated with word learning had not been previously 

analysed.  

Learning words during a live interaction only increases the demands on 

perception, attention and working memory because of the need to process naming 

events in conversation, to resolve ambiguity in naming within dynamic multi-object 

arrays, and to maintain consistent word-object mappings while objects are moving 

around. These types of demands, as well as the ways that social interaction facilitates 

children’s ability to map words to objects, have been extensively investigated at a 

behavioural level. Collectively, this research shows that coordinated attention and 

working memory between the adult and child during interactions in which new 

objects are named, enhances the child’s learning (Cartmill et al., 2013; Kalagher & 

Yu, 2006; Yu & Smith, 2013). The present neuroimaging findings may shed some 

light on how and why this occurs in terms of the neural responses to naming. The 

present event-related findings for children, revealed that changes in attention-related 

responding occurred when new objects were named in conversation. This is 

evidenced by the main effect of attention in response to naming and the learning-

invariant activation during play. By contrast, there are multiple possible 

interpretations as to what drove differential responding between learned words and 

words not learned based on the comparison with prior research. The area that 

responded more robustly to naming of words not learned, when compared with prior 

literature, was functionally associated with language processing, and was also 

robustly associated with social processing (see section 3.3.2). This is generally 

consistent with prior work that found that areas of the frontal cortex are engaged 

selectively in semantically challenging tasks (Gabrielli, Poldrack & Desmond, 
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1998). It isn’t possible to know exactly which processes drove the differences 

between hemodynamic responses to learned words and words not learned based on 

the neural activation alone in the present study, but one possible interpretation is that 

when children were learning, something was easier about the social and language 

processing demands around instances of naming.  

This project was the first to test whether caregivers’ brain activity differs 

when successfully, as opposed to unsuccessfully, teaching their children. Though it 

is difficult to interpret the interaction observed, it may be that even for caregivers, 

processing is more effortful during times when learning is not taking place. If so, this 

runs counterintuitive to the common assumption that higher activation levels (as 

indicated by increased HbO) are associated with successful outcomes.  

The findings reveal that within-subjects differences can be detected in the 

neural encoding of naming events during caregiver-child interactions that reflect 

learning. Importantly, the present findings also suggest that learning, and the 

underlying neural responses to naming events that occurred during these interactions, 

likely relies on differences on the attention demands for social and semantic 

processing. This combination may reflect the challenges children faced in keeping 

track of which words went with which referents, given the complexity of the task. 

For example, when a new name occurred within a speech stream, the child needed to 

be able to process not only the word-object pairing, but to hone their attention in the 

moment toward aspects of their caregiver’s behaviour that would help them 

determine the intended referent. The present findings should be interpreted with 

some caution, as the ultimate standard of measuring whether a new word is 

processed in a semantically meaningful way, should be found within the language 

processing network. We did not find evidence, as predicted, that differences between 

learned words and words not learned could be detected in the child’s language 

network, only that an area that is engaged during language and semantic processing 

in language tasks within the right temporal cortex was activated differently when 

children were learning as opposed to not learning from naming events. As discussed 

prior, this could be for a number of reasons. Barring one study (Ekerdt et al., 2020) 

there is not enough information from prior fMRI and fNIRS studies to fully map the 

neural correlates of word learning for children in the preschool years, and, to the best 

of the author’s knowledge, none at all when thinking about openly structured 

interactions.  
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Typically, the child’s behaviour and brain activity have been considered as 

an isolated unit within neuroimaging paradigms of noun processing and of word 

learning (Berl et al., 2014; Ekerdt et al., 2020; Nora et al., 2017; Rice, Moraczewski 

et al., 2016; Takashima et al., 2019). The present study investigated the viability of 

an alternative hypothesis, that the caregiver’s and child brain activity are coordinated 

when the child is encoding new object names. Broader theoretical support for this 

hypothesis can be found in social network models of human cognition, which 

suggest that the behaviour and brain activity of individuals are fundamentally 

constrained by those of others during an interaction (Hasson et al., 2012). According 

to the authors, this occurs as a result of non-verbal social information that aligns 

attention between interacting individuals as well as aligning of their representations 

through dialogue. Social network models of cognition have been applied to predict 

speech comprehension (Stephens et al., 2010), word-picture matching (Liu et al., 

2019) and have been hypothesized to set the conditions between an adult speaker and 

child for the child’s language learning (Hasson et al., 2012; Piazza et al., 2020; Wass 

et al., 2020).  

The present findings from examining event-related responses to naming did 

reveal differences in the neural signatures when caregivers named words their child 

would learn, compared with words their child would not learn. The findings also 

revealed differences in the neural responses to naming events when caregivers were 

teaching 32-month-old, versus 54-month-old, children. While there is evidence 

suggesting that children draw from multiple processes to make word-object 

mappings in complex social environments, there is also a possible relationship 

between the caregiver’s explicit teaching and processing, and whether words were 

learned or not learned. This is in contrast to Chapter 4, where no evidence was found 

that interacting caregivers’ and children’s brain activity were temporally correlated, 

through time, during the word learning interactions. This would normally be 

predicted within a social network model (Hasson et al., 2012; Stephens et al., 2010; 

Wass et al., 2020). Prior work has shown that children actively construct their own 

learning experiences from what is present in the environment (see Gopnik & 

Wellman, 2012). These include the objects present (Trawick-Smith et al., 2011), 

socially demonstrated information (Bonawitz et al., 2011; Göksun, Hirsch-Pasek & 

Golinkoff, 2010; Sobel & Corriveau, 2010; see also Sobel & Kirkham, 2012), and 

spatial organization (Axelsson et al., 2016; Benitez & Smith, 2012; Samuelson et al., 
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2011; see also Samuelson et al., 2017). The present results suggest that caregivers 

may also process what is occurring in the interaction differently, and maybe with 

less effort, when successfully teaching their children.  

In further support of the hypothesis that it’s “easier” to keep track of word-

object mappings when conversation partners are processing in alignment, the 

behavioural results suggest that the volume of overlap in objects’ locations interfered 

with children's ability to make and retain specific mappings. Even though the 

original prediction specified that spatial consistency would be correlated with 

children’s overall performance in the comprehension test, the findings suggested that 

(a) there were not typically consistent spatial trends in the object locations, across 

the full duration of the interactions and (b) of the spatial measures examined, only 

volume of overlap between objects predicted the child’s likelihood of learning 

specific words. These data indicate that reliable behavioural predictors within the 

caregiver-child coordination can be observed when the child is learning, that appear 

to break down when the same child is not engaged in the task toward learning. 

Specifically, children were less likely to learn object names when their locations 

overlapped more with other objects, aggregated through time. This finding suggests 

that coordinated behaviour between the caregiver and child may facilitate social and 

semantic processing. Together, these findings open up a number of potential future 

directions that could fill the gap between the neural findings, and their grounding in 

behaviour.  

 

5.4.1 Lay Summary of Theoretical Implications 

Previous research had shown that coordination between adults who are 

teaching and children who are learning facilitates children’s language-learning. This 

may happen via pointing at, talking about and holding toys as they are named 

(Cartmill et al., 2013; Kalagher & Yu, 2006; Yu & Smith, 2013). Further, the 

consistency of object locations during interactions between caregivers and children 

was correlated with how many correct responses children made in a comprehension 

test (Samuelson et al., 2011). However, no prior work had investigated the neural 

correlates of word learning during live interactions or how space affected learning 

during caregiver-child interactions in the preschool years. In terms of brain activity, 

previous research had only explored the neural correlates of early word learning 

within tasks in which stimuli were planned and presented to the child on a computer 
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monitor (see Balsamo, Xu & Gaillard, 2006; Berl et al., 2014; Ekerdt et al., 2020; 

Hirotani et al., 2009; Nora et al., 2017; Romeo, Segaran et al., 2018; Takashima et 

al., 2019). However, some research with adults had found that language 

comprehension could also be related to the similarity of brain activity between a 

speaker and listener, not merely the brain activity of the individual (Liu et al., 2019; 

Stephens et al., 2010). This could potentially mean that coordinated brain activity 

between caregivers and children, not just coordination in behaviour, could make 

teaching and learning more successful. The present study investigated whether there 

were relationships in behaviour and brain activity between the caregiver and child 

that could predict whether children learned words and how many words children 

would learn, as well as how well caregivers and children coordinated the object 

locations within their shared space during the preschool years.  

All of the research questions addressed within this project were investigated 

within one study in which caregivers taught their 32- and 54-month-old children the 

names of eight new objects while engaged in unstructured play. Children’s and 

caregivers’ behaviour and brain activity were analysed separately between words the 

child later showed evidence of having learned and words they did not learn during 

these interactions. From this data, a study of object locations on the table, measured 

by a machine learning algorithm, revealed that children were less likely to learn a 

new toy name if that toy frequently overlapped with others. This indicates that the 

distinctiveness of toy locations mattered for children’s learning, informing theories 

of exactly why spatial predictability matters for early learning (Samuelson et al., 

2011; see Samuelson, Kucker & Spencer, 2017).  

The present study revealed that children’s neural responses are unique during 

learning. These findings may indicate that children find it easier to keep track of 

word meanings when they are learning from their caregiver’s naming of new toys.  

Similarly, caregivers process differently when their child was learning from their 

own naming of the objects. There was a specific difference found in the caregiver’s 

brain activity between naming events of words their child learned and did not learn 

within the left angular gyrus. By contrast, we did not find continuous relationships 

through time between caregivers’ and children’s brain activity throughout the 

interactions, as had been previously observed in similar studies (Liu et al., 2019; 

Piazza et al., 2020; Reindl et al., 2018; Stephens et al., 2010). Our findings generally 

support the theory that learning may be less demanding in terms of the language and 
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social processing that occurs during naming events than not learning, and that this is 

true for both the caregiver and child. These different types of processes may set the 

conditions for early learning. Critically, the fNIRS and behavioural data that 

measured the distinctiveness of object locations during caregiver-child play was 

associated with differences between learned words and words not learned but did not 

consistently predict differences in amounts of learning. This may indicate that these 

measures are better at distinguishing differences between information that results in 

learning and information that does not, even during the same interaction.   

 

5.5 Future Directions  

One compelling future direction from the present work is to explore 

relationships between brain and behaviour in greater depth. Future research could 

examine a wider range of behaviours and introduce new analyses to further examine 

the relationships between these behaviours and the caregiver’s and child’s brain 

activity. The current work didn’t examine where participants were looking or how 

they were interacting with the objects. One could assess whether the caregiver and 

child were more likely to be viewing the same object when caregivers named it for 

word-object pairings the child later showed evidence of having learned. If a 

caregiver and child were exploring the same aspects of the environment at the same 

time, this may also facilitate communication about the objects for various reasons 

(see Garrod & Pickering, 2009; Tomasello & Farrar, 1986). It may be that the 

percentage of naming events in which the caregiver and child were jointly viewing 

the same object was higher for objects the child correctly selected in the 

comprehension test. This would indicate that the caregiver and child were exploring 

the same aspects of the environment at the same time, and, further, that shared 

experiences drove the differences in neural activation to new naming observed in the 

child’s and caregiver’s fNIRS data. Other ways that joint attention could be observed 

between caregivers and children could include the percentage of cases in which the 

caregiver named an object as the child viewed it or held the object as the child 

viewed it/vice versa.  

Another factor that could be explored in future research was the child’s 

processing of the dialogue during the interactions and how this may have contributed 

to their heightened attention to new object names. While children’s naming of 

objects during the interactions did not reliably afford enough power to be included in 
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an event-based fNIRS analysis, further analyses of children’s naming could establish 

the extent to which caregivers and children sustained dialogue around the same 

object as another indicator of sharing of experience. One limitation to this approach, 

however, is that children often mimicked their caregiver’s naming of objects without 

explicitly demonstrating semantic encoding, for example, by drawing their 

caregiver’s attention to an object or to embedding the object name in a sentence.  

Finally, future research could explore the content of caregiver-child 

dialogues as an indicator of the child’s verbal processing during the interactions. 

Qualitative exploration of the video recordings suggested that children varied in how 

attuned they were, not only to the caregiver’s holding and exploration of objects, but 

to the content of the caregiver’s speech. Assessing the content of caregiver-child 

dialogue during the interactions along with quantitative metrics such as rates of turn-

taking in conversation with similar keywords, may reveal how deeply children 

processed their caregiver’s speech. Further, assessing the content of dialogue could 

reveal when caregivers actively helped their children form word-object associations 

via conversing with them about the objects (Han & Neuharth-Pritchett, 2014). It 

would also assess when caregivers taught their child by testing them, asking them to 

name object-by-object and providing feedback to their responses. These variables 

could then be used to predict task-relevant brain activity during the interactions. For 

example, turn-taking in dialogue between caregiver and child during the interactions 

may predict brain activity associated with learning, whereas testing the child 

repeatedly on the object names may not. Beyond the present data and the variables 

that could be further explored within it, principles from this study could be applied to 

a broader range of contexts in order to better understand how, for examples, culture, 

neurodiversity and an increasing dependence on technology shape social influences 

on word learning (Wei, Leech & Rowe, 2020). Neuroimaging measures could assess 

how apps provide the social resources needed for children to learn and whether these 

resources tap similar mechanisms in the child’s brain to those observed during real-

world interactions with an adult speaker. 

 

5.6 General Conclusion 

The present thesis determined that coordination between caregivers and 2- to 

5-year-old children during play was associated with which words the child later 

showed evidence of having learned. Results from an event-based functional near 
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infrared spectroscopy (fNIRS) analysis revealed that, within brain regions associated 

with both semantic processing and social processing, children and caregivers 

responded differently to naming of objects children learned (learned words) and 

those they did not (words not learned). Additional behavioural measures of spatial 

coordination between the caregiver and child were explored, revealing that the 

distinctiveness of object locations during the interactions predicted which words 

children learned. Neither of these sets of findings provide robust evidence that 

children’s learning came down to caregivers’ active effort. Rather, the best present 

evidence suggests that sometimes it was easier for children and caregivers to remain 

in alignment when naming the objects. However, this conclusion is subject to the 

methodological limitations of the present study as well as the variables that could 

feasibly be measured.  

The most robust markers of learning were observed within-subjects. While 

spatial coordination could not predict children’s overall amount of learning, 

distinctiveness of object locations positively predicted which specific words children 

would learn. Likewise, while no overall cross-correlations were observed between 

caregivers’ and children’s brain activity when measured continuously through time, 

differences were found between the child’s and caregiver’s neural responses to 

naming of learned words and words not learned. The current results reveal that the 

processes children use to learn new words during interactions are similar to those 

observed in prior research that used computer-based stimuli. Potentially, both 

language and social processing are especially vital to learning words during openly 

structured interaction and in dynamic environments, and that the caregiver’s neural 

responses to naming, not merely the child’s, can indicate whether learning is taking 

place. This approach opens avenues for future work that could explore how social 

networks directly contribute to learning early in development.  
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Appendix A. – Studies for Regions of Interest 
 

Network  No. Title  Authors  Year  Reference  
Visual Working Memory  1. Validating a new methodology for optical probe 

design and image registration in fNIRS studies  
  

Wijeakumar et al. 2015  Table 2  

Word Learning  1. Regional differences in the developmental 
trajectory of lateralization of the language network  

Berl et al.  2014  Table 3, mean 
group activation  

  2. Brain basis of communicative actions in language  Egorova, N., Shtyrov, Y. & 
Pulvermüller, F.  

2016  Table 4, naming > 
request  

  3. Automatic semantic facilitation in anterior 
temporal cortex revealed through multimodal 
imaging  
  

Lau, E.F. et al.   2013  Table 1  

  4. Word learning is mediated by the left arcuate 
fasciculus  

López-Barroso, D. et al.  2013  Table S5  

  5. Localising semantic and syntactic processing in 
spoken and written language comprehension: An 
Activation Likelihood Estimation meta-analysis  
  

Rodd, J.M. et al.  2015  Table 3, semantics  

  6. A 10-year longitudinal fMRI study of narrative 
comprehension in children and adolescents  

Szaflarski, J.P., et al.  2012  Table 2, decreases 
with age  

Social Interaction  1. The neural bases of social intention understanding: 
The role of interaction goals  

Canessa, N. et al.  2012  Table 1  

  2. A frontotemporoparietal network common to 
initiating and responding to joint attention bids  
  

Caruana, N., Brock, J. & Woolgar, A.  2015  Table 2, c  

  3. Theory of mind performance in children correlates 
with functional specialization of a brain region for 
thinking about thoughts  
  

Gewon, H. et al.  2012  Table 1, children  
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  4. Imaging social motivation: Distinct brain 
mechanisms drive effort production during 
collaboration versus competition  
  

Le Bouc, R. & Pessiglione, M.  2013  Table 1, 
competition and 
collaboration  

  5. Social In social out: How the brain responds to 
social language with more social language  
  

O'Donnell, M.B. et al.  2015  Table 4 and 6  

  6. Look into my eyes: Investigating joint attention 
using interactive eye tracking and fMRI in a 
developmental sample  
  

Oberwelland et al.  2016  Table 1  

  7. Perceived live interaction modulates the 
developing social brain  

Rice, K., Moraczewski, D. & Redcay, E.  2016  Table 2.A.1, Live > 
Social and 2.B. Live 
> Social  

  8. Interaction matters: The effect of a social partner 
on neural processing of speech  
  

Rice, K., Redcay, E.  2013  Table S2  

  9. Common brain areas engaged in false belief 
reasoning and visual perspective taking: A meta-
analysis of functional brain imaging studies  
  

Schurtz, M. et al.  2013  Table 2  

  10. Imagining triadic interactions simultaneously 
activates mirror and mentalizing systems  

Trapp, K. et al.  2014  Table 2, 
conjunction 
triad/self/other  

  11. The dorsal medial prefrontal cortex responds 
preferentially to social interactions during natural 
viewing  

Wagner, D. et al.  2016  Table 1  

  
Table A.1. The studies and review papers that were used to choose the fNIRS cap geometry for our study, arranged by the functional network for 
visual working memory, word learning and social interaction.
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Appendix B. – Regions of Interest 

 

Region of Interest Hemi MNI Centre of Mass 

x y z 

Prefrontal Cortex (PFC) Left -9 60 21 

  -3.6 55 21 

  -3 52 26 

  -16 39 40 

 Right 6 44 20 

  12 56 28 

Dorsolateral PFC Left -42 41 20 

  33 29 55 

Inferior Frontal Gyrus (IFG) Left -52 34 -6 

  -50 30 7 

  -48 30 9 

  -31 23 -1 

  -51 17 20 

  -46 15 32 

 Right 41 41 1 

  52 36 17 

  36 28 -8 

  35 22 4 

Anterior Cingulate Cortex (ACC) Left -2 29 27 

Superior Frontal Gyrus (SFG)  -47 25 -8 

  -2 16 52 

 Right 12 30 62 

  30 2 64 

Middle Frontal Gyrus (MFG) Left -42 22 46 

  -52 14 -4 

  -43 11 33 

  -40 11 51 

 Right 53 21 26 

  42 4 46 
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Middle Temporal Gyrus (MTG) Left -54 -26 -10 

Superior Temporal Gyrus (STG) Left -42 -30 8 

  -62 -48 18 

  -54 -47 7 

Superior Temporal Sulcus (STS) Right 58 -45 16 

Temporoparietal Junction (TPJ) Left -58 -49 28 

  -44 -63 35 

  -57 -64 40 

 Right 48 -44 42 

  62 -45 23 

  58 -54 35 

  55 -56 31 

Inferior Parietal Sulcus (IPS) Left -38 -43 44 

  -21 -65 46 

 Right 40 -36 38 

Inferior Parietal Lobe (IPL) Left -55 -52 22 

Superior Parietal Lobe (SPL) Left -22 -66 56 

 

Table A.2. The final selection of regions of interest.  
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Appendix  C.  --  Comprehension Test Examples for Three and Five 
Objects 
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