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a b s t r a c t 

Face and body orientation convey important information for us to understand other people’s actions, intentions 

and social interactions. It has been shown that several occipitotemporal areas respond differently to faces or 

bodies of different orientations. However, whether face and body orientation are processed by partially overlap- 

ping or completely separate brain networks remains unclear, as the neural coding of face and body orientation is 

often investigated separately. Here, we recorded participants’ brain activity using fMRI while they viewed faces 

and bodies shown from three different orientations, while attending to either orientation or identity information. 

Using multivoxel pattern analysis we investigated which brain regions process face and body orientation respec- 

tively, and which regions encode both face and body orientation in a stimulus-independent manner. We found 

that patterns of neural responses evoked by different stimulus orientations in the occipital face area, extrastri- 

ate body area, lateral occipital complex and right early visual cortex could generalise across faces and bodies, 

suggesting a stimulus-independent encoding of person orientation in occipitotemporal cortex. This finding was 

consistent across functionally defined regions of interest and a whole-brain searchlight approach. The fusiform 

face area responded to face but not body orientation, suggesting that orientation responses in this area are face- 

specific. Moreover, neural responses to orientation were remarkably consistent regardless of whether participants 

attended to the orientation of faces and bodies or not. Together, these results demonstrate that face and body 

orientation are processed in a partially overlapping brain network, with a stimulus-independent neural code for 

face and body orientation in occipitotemporal cortex. 
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. Introduction 

Human face and body orientation convey important cues about so-

ial interactions. The ability to process orientation information is there-

ore crucial for us to understand how other people interact with us and

he world around them. For example, we use face and body orienta-

ion to infer that a person intends to interact with us when they face

oward us, and does not when they turn their back to us. Person orien-

ation is primarily determined by information from the face and body,

hough eye gaze (which indicates direction of attention) is often taken

nto consideration in social interaction scenarios ( Nummenmaa and

alder, 2009 ). Psychological research has shown that these different

ources of information are not processed independently in the percep-
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ion of person orientation. For example, interactions have been found

etween face and body orientation information ( Moors et al., 2015 ) and

etween face orientation and gaze direction information ( Gibson and

ick, 1963 ; Wollaston, 1824 ). To what extent the neural processes un-

erlying face and body orientation may interact with each other remains

nclear. 

Neuroimaging and electrophysiology studies have investigated

hich brain regions process information about face and body orien-

ation in humans and macaque monkeys. For face orientation, human

euroimaging studies have found different patterns of response to dif-

erent face orientations in the face-responsive occipital face area (OFA),

usiform face area (FFA) and posterior superior temporal sulcus (pSTS),

s well as the object-responsive lateral occipital complex (LOC) and the
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arly visual cortex ( Axelrod and Yovel, 2012 ; Guntupalli et al., 2017 ;

ietzmann et al., 2012 ; Natu et al., 2010 ; Ramírez et al., 2014 ). Sim-

larly, for macaque monkeys, neurons in the middle lateral and mid-

le fundus face-responsive patches and the anterior superior tempo-

al sulcus (aSTS) have been shown to respond to specific face orien-

ations ( Dubois et al., 2015 ; Freiwald and Tsao, 2010 ; Perrett et al.,

985 ; Wachsmuth et al., 1994 ). For body orientation, human neu-

oimaging studies have shown that the body-responsive extrastriate

ody area (EBA) and fusiform body area (FBA) are sensitive to body

rientation ( Chan et al., 2004 ; Ewbank et al., 2011 ; Taylor et al., 2010 ;

angeneugden et al., 2014 ). Furthermore, recent studies have shown

hat the EBA also responds higher to interacting people as compared

o non-interacting people ( Abassi and Papeo, 2020 ; Walbrin and Kold-

wyn, 2019 ). In macaques, body orientation can be decoded from both

he middle and anterior STS body patches ( Kumar et al., 2019 ). Body

rientation responsive neurons have also been identified in the macaque

STS ( Wachsmuth et al., 1994 ). 

While the above studies suggest that many occipitotemporal regions

espond to face and/or body orientation, it remains unclear whether the

bserved neural responses reflect a high-level stimulus-independent en-

oding of orientation, or are driven by face- or body- specific features,

uch that the neural coding of a given face-orientation does not gener-

lise to the neural coding of the corresponding body-orientation. More-

ver, most previous studies have investigated the neural responses to the

rientation of faces and bodies separately, leaving it an open question re-

arding whether face and body orientation are processed in completely

eparate or partially overlapping brain regions. There is some evidence

hat face- and body-responsive regions form independent and separated

rain networks ( Peelen and Downing, 2007 ; Premereur et al., 2016 ).

owever, other studies have shown that some categorical information

e.g. gender or weight) shared by faces and bodies can be coded in an ab-

tract stimulus-independent manner ( Foster et al., 2019 ; Ghuman et al.,

010 ). While human face and body orientation are often aligned with

ach other, few studies have tested whether this orientation alignment

eads to a shared neural orientation code. Wachsmuth et al. (1994) found

eurons in the macaque aSTS that responded to the orientation of faces

nd bodies displayed alone, despite remarkable differences in the low-

evel visual features between face and body images. This finding sug-

ests that the neural coding of face and body orientation may be par-

ially overlapping. As the study only recorded neural activity in the

STS, whether other brain regions encode orientation in such a stimulus-

ndependent manner remains unknown. 

In this study, we investigated how face and body orientation infor-

ation is processed in face- and body-responsive brain regions and, in

articular, whether face and body orientation information is processed

n completely separate or partially overlapping brain regions. To ad-

ress this question, we recorded participants’ brain activity using fMRI

hile they viewed images of faces and bodies from three different ori-

ntations. We trained linear support vector machine (SVM) classifiers

o distinguish between patterns of neural activity evoked by the three

timulus orientations and then used them to predict stimulus orientation

n a separate set of test data. To directly compare which brain regions

espond to face and body orientation respectively, we performed mul-

ivoxel pattern analyses (MVPA) separately for neural activity evoked

y faces and bodies. To investigate which brain regions encode orienta-

ion in a stimulus-independent manner that can generalize across faces

nd bodies, we trained classifiers on neural activity evoked by faces and

ested them on neural activity evoked by bodies, and vice-versa. We

erformed these analyses in face- and body-responsive brain regions, as

ell as across the whole brain using searchlight analyses. 

We also investigated whether the neural coding of face and body

rientation was enhanced when participants attended to stimulus ori-

ntation in comparison to when they did not. Most studies that have

nvestigated the neural coding of face orientation used tasks that di-

ected attention away from orientation (e.g. detection of brightness

hange in Ramírez et al. (2014) , or detection of identity repetition
2 
n Axelrod and Yovel (2012) ; Guntupalli et al. (2017) ). These stud-

es suggested that processing of face orientation information is rela-

ively automatic (i.e. attending to stimulus orientation is not necessary).

n the other hand, attending to face identity or facial expression has

een shown to enhance the neural representation of these properties

 Dobs et al., 2018 ; Foster et al., 2021 ; Guntupalli et al., 2017 ). For in-

tance, Dobs et al. (2018) showed that decoding of face identities and

acial expressions from neural responses were selectively improved for

asks involving explicit attention to identity and expression respectively.

o test whether the neural coding of face and body orientation is modu-

ated by task requirements, we had our participants perform two differ-

nt behavioural tasks during fMRI scanning, one required attention to

timulus orientation, whereas the other required attention to stimulus

dentity. If the attention enhancement effect generalises to the process-

ng of orientation, we would expect better decoding performance for the

rientation task than the identity task. 

. Materials and methods 

Data analyses presented here were conducted using a dataset that

as collected as part of a larger study, with prior analyses focusing on

ace and body identity ( Foster et al., 2021 ). Here we present novel find-

ngs investigating behavioural and neural responses to face and body

rientation. 

.1. Participants 

20 participants (14 female, 6 male, 21–51 years old) completed the

xperiment. All participants provided written informed consent prior to

he experiment, and the experimental procedure was approved by the

ocal ethics committee of the University Clinic Tübingen. 

.2. Stimuli 

.2.1. Main experiment stimuli 

The experimental stimuli were images of faces and bodies shown

rom three different orientations, 0° (front), 45° (three-quarter view)

nd 90° (profile). Examples of the stimuli are shown in Fig. 1 A. Face

nd body stimuli were created using face and body scans of three fe-

ale individuals that were registered to a 3D facial shape and expres-

ion model for the face stimuli ( Li et al., 2017 ) and a 3D body shape

nd pose model for the body stimuli ( Loper et al., 2015 ). Body stimuli

ere shown in a standard A-pose (see Fig. 1 A) and faces had a neutral

xpression. We brightened the texture obtained from the original scans

nd filled in any missing texture. Stimuli were shown in colour, and

or body stimuli a grey rectangle was placed over the face, in order to

xclude any face information from the body images. During the experi-

ent face and body stimuli were shown at three different image sizes.

ace stimuli had mean widths and heights of 4.4° x 6.4° (large), 3.6° x

.2° (medium), and 2.8° x 4.0° (small) of visual angle, and body stimuli

ad mean widths and heights of 3.2° x 7.7° (large), 2.6° x 6.2° (medium),

nd 2.0° x 4.8° (small) of visual angle. 

.2.2. Localizer stimuli 

Stimuli for the localizer experiment consisted of grayscale images

f faces, headless bodies, objects and phase-scrambled images. Phase-

crambled images were Fourier-scrambled versions of a collage image

ontaining the face and headless body images. None of the localizer

timuli were used as stimuli for the main experiment. 

.3. Experimental design 

Participants lay supine in the MRI scanner and viewed the stimuli

n a screen positioned 92 cm behind their head, which they viewed

ia a mirror attached to the head coil. The stimuli were presented us-

ng a projector (resolution 1920 × 1080), and the screen spanned 25°
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Fig. 1. Experimental stimuli and example 

stimulus block. (A) Face and body images were 

shown from three different orientations: 0°

(front), 45° (three-quarter) and 90° (profile). 

(B) Stimuli were shown in a block design dur- 

ing the experiment, where stimuli within a 

block were all from one condition (i.e. face or 

body, one orientation, one identity) and varied 

in their image-size (three different image-sizes, 

each shown twice, presented in a random or- 

der). Each block was followed by 2 s fixation. 
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horizontal) x 14° (vertical) of visual angle. The experiment was pro-

rammed with Matlab 2017a using the Psychophysics Toolbox exten-

ions ( Brainard, 1997 ; Kleiner et al., 2007 ) and run on Ubuntu 17.10. 

.3.1. Main experiment procedure 

Each participant completed eight fMRI runs. Each run contained 18

ifferent experimental conditions, resulting from a 2 (Stimuli type: face

r body) x 3 (Orientation: 0°, 45°, or 90°) x 3 (Identity) factorial design.

timuli were presented in a block design ( Fig. 1 B). Each block lasted 6 s

ollowed by 2 s fixation before the next block began. This block length

as used to increase fMRI signal by blocking the stimuli whilst ensur-

ng runs did not become too long, and has been successfully used in

revious fMRI MVPA paradigms (e.g. Bannert and Bartels, 2017 , 2013;

oster et al., 2019 ). Each run contained 54 blocks (3 repetitions per con-

ition). These 54 blocks per run were presented in groups of 18 blocks

all conditions presented in random order), each group preceded by and

ollowed by 8 s of fixation. Thus, each condition was repeated at three

ime points spaced throughout the run. Each block contained 6 images

hat were all from the same condition (i.e. face or body, one orienta-

ion, one identity). Images within a block were shown at three different

mage-sizes with scale factors of 1, 1.3 and 1.6 (i.e. the largest image-

ize was 1.6 times both the width and height of the smallest image-size).

ach block contained 2 repetitions of each image-size, shown in a ran-

om order. Each image in the block was shown for 0.9 s followed by a

.1 s blank grey screen. 
3 
.3.2. Main experiment task 

We manipulated participants’ attention to orientation and identity

uring the experiment. In half of the fMRI runs participants were in-

tructed at the beginning of the run to respond at the end of each block

o which orientation (i.e. 0°, 45° or 90°) was presented in the block. In

he other half of the runs, participants were instructed to respond to

hich identity was presented in the block. Participants were trained to

ecognise the three identities prior to the fMRI experiment. Participants

ressed a button with one of three fingers to indicate the orientation or

dentity shown in the block. 

To maintain participants’ attention to the stimuli throughout the

lock, we asked participants to perform an additional attention task in

ll runs. Participants were instructed to respond by pressing a button

ith their thumb immediately whenever they saw an image belonging

o the smallest of our three image-sizes (scale factor 1, shown twice per

lock in a random order). 

.3.3. fMRI localizer experiment procedure 

Participants completed one run of a localizer experiment following

he main experiment. Data from this localizer experiment was used to

efine face- and body-responsive regions of interest (ROIs). The localizer

xperiment consisted of four stimulus conditions (faces, bodies, objects

nd phase-scrambled images) that were presented in a block design.

aces, bodies and objects were shown in front of the phase-scrambled

mages so that the size of the visual-field stimulation was the same for
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Table 1 

Average MNI coordinates and volume of each ROI ( ± standard deviations). N indicates the number of 

participants each ROI was identified in. ROI analyses were conducted in subject space and then ROIs 

were subsequently normalised to generate MNI coordinates. 

ROI hem x y z Volume (mm 

3 ) N 

OFA left − 35 ± 6.7 − 85 ± 5.7 − 11 ± 3.5 770 ± 379.9 20 

right 38 ± 4.0 − 81 ± 5.8 − 10 ± 3.3 1009 ± 378.6 20 

FFA left − 40 ± 2.8 − 55 ± 6.1 − 20 ± 2.9 771 ± 354.7 20 

right 43 ± 3.3 − 52 ± 4.2 − 18 ± 2.4 1073 ± 392.5 20 

pSTS left − 50 ± 6.4 − 62 ± 8.8 17 ± 10.2 519 ± 541.2 19 

right 53 ± 5.5 − 54 ± 10.0 12 ± 8.9 732 ± 403.1 20 

ATFA left − 34 ± 5.4 − 12 ± 6.5 − 33 ± 6.6 172 ± 117.4 15 

right 34 ± 5.8 − 8 ± 5.5 − 37 ± 5.8 335 ± 265.6 18 

EBA left − 44 ± 3.7 − 78 ± 5.3 3 ± 6.5 900 ± 473.3 20 

right 49 ± 2.3 − 70 ± 3.0 0 ± 4.6 1632 ± 503.2 20 

FBA left − 39 ± 4.2 − 50 ± 6.3 − 20 ± 2.9 680 ± 456.7 19 

right 41 ± 4.1 − 50 ± 5.5 − 18 ± 3.0 1105 ± 572.2 20 

LOC left − 41 ± 3.9 − 81 ± 4.4 − 2 ± 5.2 696 ± 284.0 20 

right 47 ± 3.0 − 74 ± 3.9 − 3 ± 4.7 746 ± 214.5 20 

EVC left − 12 ± 1.8 − 99 ± 1.8 − 2 ± 3.1 1120 ± 408.5 19 

right 19 ± 2.1 − 96 ± 2.0 − 1 ± 2.9 1262 ± 514.8 19 
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very image. Each block contained 8 images from one condition where

ach image was presented for 1.8 s followed by a 0.2 s blank grey screen.

ifferent stimulus conditions were presented in a carryover counterbal-

nced sequence, so that each condition was preceded by each condition

n equal number of times ( Brooks, 2012 ). 

During the localizer experiment, to ensure that participants kept

heir attention on the stimuli, they performed a one-back matching task

n the images. Image repetitions occurred once every 9 s on average. 

.4. Imaging parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-

hannel head coil (Siemens, Erlangen, Germany). Functional T2 ∗ echo-

lanar images (EPI) were acquired using a sequence with the following

arameters; multiband acceleration factor 2, GRAPPA acceleration fac-

or 2, TR 1.84 s, TE 30 ms, flip angle 79°, FOV 192 × 192 mm. Volumes

onsisted of 60 slices, with an isotropic voxel size of 2 × 2 × 2 mm.

he first 8 volumes of each run were discarded to allow for equilibra-

ion of the T1 signal. For each participant a high-resolution T1-weighted

natomical scan was acquired with the following parameters; TR 2 s,

E 3.06 ms, FOV 232 × 256 mm, 192 slices, isotropic voxel size of

 × 1 × 1 mm. 

.5. MRI data preprocessing 

MRI data was preprocessed with SPM12 ( http://www.fil.ion.ucl.

c.uk/spm/ ). All functional images were slice-time corrected, realigned

nd coregistered to the anatomical image. ROI and whole-brain search-

ight analyses were conducted on the unsmoothed data in subject space.

he resulting searchlight maps were normalised to MNI (Montreal Neu-

ological Institute) space, and spatially smoothed with a 6 mm Gaus-

ian kernel to allow for comparisons across participants. For the whole-

rain univariate analyses the data was normalized to MNI space and

patially smoothed with a 6 mm Gaussian kernel. Localizer data was

ept in subject-space and spatially smoothed with a 6 mm Gaussian ker-

el. 

.6. Definition of regions of interest 

We defined face- and body-responsive ROIs using fMRI data from our

ocalizer experiment ( Table 1 ). We defined four face-responsive ROIs the

FA, FFA pSTS and anterior temporal face area (ATFA) and two body-

esponsive ROIs, the EBA and FBA. For each participant, we initially

ttempted to define face-responsive ROIs using the contrast faces > ob-

ects and body-responsive ROIs using the contrast bodies > objects. If
4 
e could not define the ROIs using these contrasts then we attempted

o define them using the contrasts faces > scrambled images and bodies

 scrambled images. We first attempted to define ROIs using a thresh-

ld of p < .001 (uncorrected), and then reduced this threshold to p <

01 (uncorrected) if the ROI could not be reliably defined using the

rst threshold. This approach allowed us to localize smaller ROIs that

ere not possible to detect at higher thresholds, whilst avoiding that

arger ROIs became overly enlarged. We selected ROIs by selecting all

ctive voxels within a rectangle around the activated ROI cluster. Sup-

lementary Tables S1 and S2 provide further details for each ROI about

ow many participants we used each contrast and threshold for. Table

3 shows the mean overlap of ROI voxels across participants. We were

ble to define all ROIs in at least one hemisphere for every participant,

nd we combined right and left hemisphere ROIs into a single bilateral

OI for each participant. OFA, FFA and EBA ROIs were bilateral in all

articipants. pSTS and FBA ROIs were bilateral in 19 out of 20 partici-

ants and unilateral in the right hemisphere for 1 participant for each

OI. ATFA ROIs were bilateral in 13 participants, unilateral in the right

emisphere for 5 participants and unilateral in the left hemisphere for

 participants. 

We defined three additional ROIs, the LOC and the left and right

arly visual cortex (EVC). We defined the LOC using fMRI data from

ur localizer experiment and the contrast objects > scrambled images,

sing a threshold of p < .001 (uncorrected). We combined left and right

emisphere ROIs to form one bilateral LOC ROI for each of our 20

articipants. To define our EVC ROIs, we first defined an anatomical

asque of the EVC that included V1 and V2 from the Julich-Brain atlas

 Amunts et al., 2020 ). We then selected all EVC voxels that showed

igher activation during all experimental conditions as compared to

aseline, using a threshold of p < .001 (uncorrected). Thus, these left

nd right hemisphere EVC ROIs contained the portion of the EVC that

as activated by our experimental stimuli. 

As some of our ROIs overlapped, we additionally performed anal-

ses with the face-responsive OFA and FFA excluding body-responsive

verlapping voxels from the EBA and FBA respectively. Similarly, we

erformed additional analyses with the body-responsive EBA and FBA

xcluding face-responsive overlapping voxels from the OFA and FFA re-

pectively. The LOC also overlaps to some extent with the OFA and EBA.

able S4 gives details of the extent of the overlap between ROIs before

xclusion of voxels, and Table S5 gives details of overlap after exclusion

f overlapping face- and body-responsive voxels. 

We plotted the responses of our face-, body- and object-responsive

OIs to illustrate their category-selectivity to all conditions of the lo-

alizer (Fig. S1), and additionally plotted the responses of ROIs with

verlapping voxels removed (Fig. S2). These figures show that all face-

http://www.fil.ion.ucl.ac.uk/spm/
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esponsive ROIs showed highest responses to faces, and the EBA showed

ighest responses to bodies. The FBA showed highest responses to faces

ncluding all FBA voxels, but showed highest responses to bodies when

verlapping voxels from the FFA were removed. Surprisingly, the LOC

howed higher responses to bodies than to objects, even when overlap-

ing voxels from the EBA and OFA were removed (Fig. S2; t 18 = 4.47, p <

001). This trend was present in 18 out of 19 LOC ROIs with overlapping

oxels removed. The LOC is traditionally defined by its higher responses

o objects as compared to scrambled images ( Malach et al., 1995 ), how-

ver this finding suggests that it shows even stronger responses to bodies

han to general objects. 

.7. Behavioural analyses 

Participants were instructed to respond with a button press at the end

f each block to indicate which orientation or identity was presented in

he block (one half of blocks orientation task, the other half of blocks

dentity task). We measured participants’ behavioural performance us-

ng accuracy (% correct). To investigate whether detection of orientation

r identity was different between the three stimuli orientations, we per-

ormed one-way repeated-measures ANOVAs with three levels (0°, 45°

nd 90° stimulus orientation). We corrected for non-sphericity where

ecessary following a Mauchly’s test of sphericity. Following any signif-

cant ANOVA results, we performed follow-up paired t -tests between all

ombinations of the three orientation conditions to determine exactly

hich conditions showed differences in behavioural performance. 

.8. Univariate analyses 

We conducted univariate analyses to investigate if there were brain

egions that showed different mean levels of neural responses to faces

r bodies of different orientations and whether behavioural task modu-

ated these neural responses. Following preprocessing, we modelled the

MRI data with a GLM using SPM12, where the neural responses to each

ondition were modelled as separate regressors. We performed univari-

te analyses in ROIs and in whole-brain analyses. 

For ROIs, we first performed 3 (Orientation) x 9 (ROI) x 2 (Be-

avioural Task) repeated-measures ANOVAs to investigate whether

here were differences in the neural responses to different face/body

rientations and whether the orientation responses differed across ROIs

r behavioural task. We then conducted one-way repeated measures

NOVAs in each ROI to test which ROIs showed different responses to

he three face and body orientations (i.e. 0°, 45° and 90°). We assessed

ignificance using a threshold of p < .05, corrected for non-sphericity

here necessary following a Mauchly’s test of sphericity. In ROIs show-

ng significant differences in the ANOVA analyses, we performed follow

p paired t -tests to determine which stimulus orientations showed dif-

erences in neural activation. 

For whole-brain analyses, we performed 3 (Orientation) x 2 (Be-

avioural Task) ANOVAs separately for face and body orientations to

est which regions showed differences in responses to different orienta-

ions and whether these responses were modulated by behavioural task.

e assessed significance with a threshold of p < .05, FWE corrected. 

.9. Multivoxel pattern analyses (MVPA) 

We conducted multivoxel pattern analyses (MVPA) to investigate

hich brain regions contain different patterns of activity to faces and

odies of different orientations (0°, 45° and 90°). Following preprocess-

ng, fMRI data was modelled with a General Linear Model (GLM) using

PM12, where the neural responses to each block were modelled as sep-

rate regressors in the GLM. MVPA analyses were then performed on the

eta weight images with The Decoding Toolbox ( Hebart et al., 2015 ) us-

ng a linear support vector machine classifier (LIBSVM) and a one-vs.-

ne winner-takes-all multiclass classification approach. We performed

eature-scaling on the input data using z-score normalization and set
5 
ny outlier values (values that were greater than 2 standard deviations

rom the mean) to 2 or − 2. We estimated the mean and standard devi-

tion for feature-scaling using the training data and then applied these

alues to the test data. 

In the first set of MVPA analyses, we aimed to determine which brain

egions contain separable patterns of activity to faces of different orien-

ations and to bodies of different orientations. Thus, we analysed fMRI

ata evoked by face and body stimuli separately. We analysed fMRI data

rom the two behavioural tasks separately, thus we used 4 runs of fMRI

ata per analysis. In each analysis, we trained a linear SVM classifier to

istinguish between neural activity evoked by the three stimulus orien-

ations. We trained the classifier using neural activity data evoked by

 of the 3 stimulus identities and from 3 of the 4 runs of fMRI data.

e then tested the classifier on its ability to predict the three stimu-

us orientations from neural activity data evoked by the third stimulus

dentity from the 4th left-out run of fMRI data. Thus, if a brain region

hows higher-than-chance decoding performance it must contain sepa-

able patterns of neural activity evoked by the three different stimulus

rientations that can generalize across the stimulus identity. We used

 4-fold cross-validation procedure where we repeated the analysis 4

imes with each run used once as the held out test dataset. We also re-

eated the analysis 3 times with each stimulus identity used as the held

ut test identity once. The final decoding accuracy was determined by

veraging over the 4 cross-validation and 3 stimulus identity combina-

ions. 

In the second set of MVPA analyses, we aimed to determine which

rain regions contain separable patterns of neural activity to the three

timulus orientations that could generalize across face and body stim-

li. A region showing successful decoding in this analysis would suggest

t encodes orientation, regardless of the stimuli being faces or bodies.

e again analysed fMRI data from the two behavioural tasks separately

nd used 4 runs of data per analysis. We trained a linear SVM classifier

o distinguish between neural activity evoked by the three stimulus ori-

ntations, using neural activity data evoked by face stimuli from 3 of

he 4 runs of fMRI data. We then tested the classifier on its ability to

redict the three stimulus orientations from neural activity data evoked

y body stimuli from the 4th left out run of fMRI data. We again used

 4-fold cross-validation procedure where we repeated the analysis 4

imes with each run used once as the held out test dataset. In addition,

e repeated the analysis but using neural activity data evoked by body

timuli as the training set and neural activity data evoked by face stimuli

s the test dataset. The final decoding accuracy was determined by av-

raging over the 4 cross-validation and the two training and test dataset

ombinations. 

We conducted all MVPA analyses in ROIs and whole-brain search-

ight analyses. For ROI analyses, we first performed 9 (ROI) x 2 (Be-

avioural Task) repeated-measures ANOVAs to test whether there were

ifferences in orientation classification across ROIs or behavioural task.

e then used permutation testing to determine which ROIs showed

igher than chance classification performance. For each ROI we re-

eated each analysis 10,000 times with the condition labels assigned

n a random order, in order to generate a null distribution of classifica-

ion accuracies that would be expected by chance. We assessed signif-

cance by testing whether the actual mean decoding performance was

igher than the 95th percentile of the null distribution, i.e. a signifi-

ance threshold of p < .05 (see Schreiber and Krekelberg, 2013 for an

verview of permutation testing methods in MVPA). We additionally

sed a Bonferroni correction to adjust for multiple comparisons ( N = 9

OIs tested). Next, we performed paired t -tests between ROIs that did

nd did not show higher-than-chance decoding performance, in order

o test if there were significant differences in decoding performance be-

ween these pairs of ROIs. Corrections for multiple comparisons were

ot performed for follow-up tests. Lastly, we tested whether there were

ifferences between face and body orientation classification across ROIs

r behavioural task, with a 2 (Classification of Face or Body orientation)

 9 (ROI) x 2 (Behavioural Task) repeated measures ANOVA. 
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Fig. 2. Accuracy (% correct) in detection of 

orientation and identity for stimuli from the 

three different orientation conditions. (A) and 

(C) show participants accuracy in detecting the 

orientation of face (A) and body (C) stimuli. (B) 

and (D) show participants accuracy in detect- 

ing the identity of face (B) and body (D) stim- 

uli. Error bars indicate ± 1 SEM. ∗ indicates p < 

.05, paired t -test. 
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We performed whole-brain searchlight analyses in subject-space us-

ng 4-voxel radius spheres, which were centred around each voxel in

he brain once. Thus for each participant and each analysis we obtained

 whole-brain map of classification accuracies. These maps were then

ormalised to MNI space and smoothed with a 6 mm Gaussian kernel

o allow for comparisons across participants. First, we performed paired

 -test between searchlight results from the two behavioural tasks to test

hether there were differences in decoding performance across the two

asks, using a threshold of p < .05, family-wise error rate (FWE) to cor-

ect for multiple comparisons. If no significant differences were identi-

ed, we combined searchlight results from the two behavioural tasks.

ext, to test which regions showed higher than chance orientation de-

oding performance, we used SnPM13 ( http://warwick.ac.uk/snpm ) to

ssess significance using nonparametric permutation tests ( Nichols and

olmes, 2001 ) with 10,000 permutations and 6 mm FWHM variance

moothing. This method uses a nonparametric sign-flip method to gen-

rate a group null distribution ( Nichols and Holmes, 2001 ), and we

ested for significance using a one-sided t -test with a threshold of p <

05, family-wise error rate (FWE) corrected for multiple comparisons.

astly, we performed a 2 (Classification of Face or Body orientation) x 2

Task) whole-brain ANOVA to test if there were differences between face

nd body orientation classification, or any interaction between face and

ody orientation classification and behavioural task, and used a thresh-

ld of p < .05, family-wise error rate (FWE) to correct for multiple com-

arisons. 

.10. Data and code availability statement 

Data cannot be shared as participants were informed that their data

ould be stored confidentially, in accordance with the rules of the local

thics committee. Code is available at: https://osf.io/uwb48/ 

. Results 

.1. Behavioural results 

Participants’ mean accuracy in detecting the orientation and identity

f stimuli of the three different stimulus orientations (0°, 45° and 90°)

uring the fMRI experiment is shown in Fig. 2 . 

.1.1. Orientation detection 

For the orientation detection task, participants showed a high ac-

uracy for both face and body stimuli across all conditions (face stim-

li: 93.8%; body stimuli: 94.3%). A one-way repeated-measures ANOVA
6 
howed there were no differences in face orientation detection perfor-

ance between different orientations ( F 2,38 = 0.23, p = .79, 𝜂p 
2 = 0.012;

ig. 2A). In contrast, body orientation detection performance was differ-

nt between the three orientations ( F 2,38 = 3.54, p = .039, 𝜂p 
2 = 0.16;

ig. 2 C). Follow-up paired t -tests showed that detection accuracy was

ower for 90° body stimuli than for 45° ( M = − 2.9%, SE = 1.31,

 19 = − 2.2, p = .039, Cohen’s d z = 0.50) and 0° body stimuli ( M = − 2.8%,

E = 1.21, t 19 = − 2.3, p = .033, Cohen’s d z = 0.54). There was no differ-

nce in detection accuracy between 45° and 0° body stimuli ( M = 0.1%,

E = 1.18, t 19 = 0.12, p = .91, Cohen’s d z = 0.026). Note that over-

ll detection accuracy was very high for all three body orientations (0°:

5.1%, 45°: 95.3%, 90°: 92.4%), showing that participants could easily

etect all three body orientations. 

.1.2. Identity detection 

For the identity detection task, participants showed high accuracy

or both face (96.2%, Fig. 2 B) and body (92.5%, Fig. 2 D) stimuli. One-

ay repeated-measures ANOVAs showed no differences in identity de-

ection across the three orientations (face stimuli, F 2,38 = 0.68, p = .51,

p 
2 = 0.035; body stimuli, F 2,38 = 0.30, p = .74, 𝜂p 

2 = 0.016). This result

hows that participants could detect the stimulus identities equally well

egardless of the orientation of the stimuli. 

.2. Univariate fMRI analyses 

.2.1. Face orientation responses 

To investigate whether faces of different orientations evoked differ-

nt mean levels of neural activity, we first conducted a 3 (Orientation) x

 (ROI) x 2 (Task) repeated-measures ANOVA to investigate if there were

ifferences in the neural responses to different face orientations, and

hether any differences varied across ROIs or the behavioural task per-

ormed. We found a significant main effect of Orientation ( F 2,36 = 15.80,

 < .001, 𝜂p 
2 = 0.47), as well as a significant interaction between Ori-

ntation and ROI ( F 16,288 = 29.17, p < .001, 𝜂p 
2 = 0.62), but no inter-

ction between Orientation and Task ( F 2,36 = 0.66, p = .52, 𝜂p 
2 = 0.04)

r triple-interaction between Orientation, ROI and Task ( F 16,288 = 1.09,

 = .36, 𝜂p 
2 = 0.06). As we did not find any interaction with partic-

pant’s behavioural task, we combined results from the two tasks for

urther analyses exploring the univariate face orientation responses in

ur ROIs. 

To test which ROIs showed different overall levels of neural activ-

ty to faces of different orientations, we conducted one-way repeated

easures ANOVAs with 3 levels (0°, 45° and 90°). Results are shown

n Fig. 3 and results are shown for each participant in Fig. S3 and S4.

http://warwick.ac.uk/snpm
https://osf.io/uwb48/
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Fig. 3. Differences in mean BOLD responses (beta estimates) to faces of different 

orientations in face- and body-responsive ROIs (A) and EVC and LOC ROIs (B). 
∗ indicates p < .05, paired t -test. Error bars indicate ± 1 SEM. 
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Fig. 4. Differences in mean BOLD responses (beta estimates) to bodies of differ- 

ent orientations in face- and body-responsive ROIs (A) and EVC and LOC ROIs 

(B). ∗ indicates p < .05, paired t -test. Error bars indicate ± 1 SEM. 
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or face-responsive ROIs, we found a significant effect of face orienta-

ion in the face-responsive OFA ( F 2,38 = 8.00, p = .001, 𝜂p 
2 = 0.30)

nd ATFA ( F 2,38 = 4.36, p = .020, 𝜂p 
2 = 0.19), but not in the FFA

 F 2,38 = 2.62, p = .09, 𝜂p 
2 = 0.12) or pSTS ( F 2,38 = 0.29, p = .75,

p 
2 = 0.01). There was also a significant effect of face orientation con-

ition in the body-responsive EBA ( F 2,38 = 99.32, p < .001, 𝜂p 
2 = 0.84)

nd FBA ( F 2,38 = 11.92, p < .001, 𝜂p 
2 = 0.39), as well as the left and right

VC (lEVC: F 2,36 = 7.57, p = .010 Greenhouse-Geisser corrected for non-

phericity, 𝜂p 
2 = 0.30; rEVC: F 2,36 = 46.13, p < .001, 𝜂p 

2 = 0.72) and

bject-responsive LOC ( F 2,38 = 64.61, p < .001, 𝜂p 
2 = 0.77). Table S6

hows the results of follow-up paired t -tests investigating which orienta-

ions showed significant differences in ROIs that showed differences in

ace orientation responses. We additionally performed a 3 (Orientation)

 2 (Task) whole-brain ANOVA to investigate if any other brain regions

howed a significant effect of orientation or interaction between orien-

ation and behavioural task, but did not identify any significant regions

n this analysis. 

.2.2. Body orientation responses 

To test whether different body orientations evoked different mean

evels of neural activity, we conducted a 3 (Orientation) x 9 (ROI)

 2 (Task) repeated-measures ANOVA. This allowed us to investigate

hether there were differences in the neural responses to bodies of dif-

erent orientations, and whether responses varied across ROIs or across

he two behavioural tasks. We found a significant main effect of Orien-

ation ( F 2,36 = 22.59, p < .001, 𝜂p 
2 = 0.56) and a significant interaction

etween Orientation and ROI ( F 16,288 = 86.87, p < .001, 𝜂p 
2 = 0.83),

ut no interaction between Orientation and Task ( F 2,36 = 1.47, p = .24,

p 
2 = 0.08) or triple-interaction between Orientation, ROI and Task

 F 16,288 = 0.85, p = .62, 𝜂p 
2 = 0.05). As we did not find an interac-

ion with the behavioural task, we combined results from the two tasks

or further analyses exploring univariate body orientation responses in

ur ROIs. 

To investigate which ROIs showed different overall levels of neural

ctivity to bodies of different orientations, we conducted one-way re-
7 
eated measures ANOVAs with 3 levels (0°, 45° and 90°). The results

re shown in Fig. 4 and results are shown for each participant in Fig.

5 and S6. For the face and body-responsive ROIs, we found significant

ifferences in BOLD response to body orientation in the body-responsive

BA ( F 2,38 = 12.61, p < .001, 𝜂p 
2 = 0.40) and face-responsive OFA

 F 2,38 = 6.42, p = .004, 𝜂p 
2 = 0.25), but not in any other body- or face-

esponsive ROIs (FBA: F 2,38 = 2.01, p = .15, 𝜂p 
2 = 0.10; FFA: F 2,38 = 2.20,

 = .12, 𝜂p 
2 = 0.10; pSTS: F 2,38 = 0.13, p = .88, 𝜂p 

2 = 0.01; ATFA:

 2,38 = 1.00, p = .38, 𝜂p 
2 = 0.05). We also found significant differences in

esponses to different body orientations in the left and right EVC (lEVC:

 2,36 = 2.57, p < .001 Greenhouse-Geisser corrected for non-sphericity,

p 
2 = 0.80; rEVC: F 2,36 = 143.40, p < .001, 𝜂p 

2 = 0.89) and object-

esponsive LOC ( F 2,38 = 17.33, p < .001, 𝜂p 
2 = 0.48). Results of follow-

p paired t -tests to investigate which body orientations showed response

ifferences in the OFA, EBA, left and right EVC and LOC, are shown in

able S7. We also conducted a 3 (Orientation) x 2 (Task) whole-brain

NOVA to investigate if any other brain regions showed differences in

ody orientation responses or an interaction between body orientation

nd behavioural task, but we did not identify any significant regions in

his analysis. 

.3. Classification of face orientation 

We first investigated which brain regions show face orientation-

pecific patterns of neural activity that could generalize across face iden-

ity. We trained a linear SVM classifier to distinguish between patterns of

eural activity evoked by the three face orientations of two identities.

e then tested the classifier on its ability to decode the face orienta-

ion of the third identity, using neural activity data in a left out run of

ata. We used a leave one run out cross validation method, and also

epeated the analysis with each identity used once as the test identity.

e performed the analysis in face- and body-responsive ROIs as well as

n searchlight analyses across the whole brain. The results are shown in

ig. 5 and classifier confusion matrices are shown in Fig. S7. 
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Fig. 5. Classification of face orientation. Classification accuracies for face- and body responsive ROIs (A) and EVC and LOC ROIs (B) are shown as their % above 

chance-level (1/3). Grey scatter points show classification accuracies for individual participants, ∗ ∗ indicates p < .001, ∗ indicates p < .05, permutation test and 

Bonferroni corrected for N = 9 ROIs. (C) shows classification of face orientation in a whole-brain searchlight analysis. The scale bar shows –log 10 ( p values) between 

1.301 ( p = .05) and 4 ( p = 1 × 10 − 4 ), FWE corrected. 
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Fig. 6. Classification of face orientation in face- and body-responsive ROIs, with 

overlapping face- and body-responsive voxels excluded. Classification accura- 

cies are shown as their % above chance-level (1/3). Grey scatter points show 

classification accuracies for individual participants, ∗ ∗ indicates p < .001, ∗ in- 

dicates p < .05, permutation test and Bonferroni corrected for N = 9 ROIs. 
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.3.1. ROI analyses 

We first conducted a 9 (ROI) x 2 (Task) repeated-measures ANOVA

o test whether face orientation classification differed across ROIs or

as influenced by the behavioural task performed by the participants.

e found a significant main effect of ROI ( F 8,144 = 69.92, p < .001,

p 
2 = 0.80), but no main effect of Task ( F 1,18 = 0.03, p = .869,

p 
2 = 0.00) or interaction between the two factors ( F 8,144 = 1.69,

 = .106, 𝜂p 
2 = 0.09). Thus, decoding performance differed across our

OIs, but was unaffected by behavioural task. Therefore, we pooled re-

ults from the two behavioural tasks for further face orientation classi-

cation analyses. 

To test from which ROIs we could decode face orientation at higher

han chance-level (1/3), we conducted permutation tests in each ROI,

onferroni-corrected for N = 9 ROIs. Classification of face orienta-

ion was significantly above chance-level (1/3) in the face-responsive

FA (50.8%, p < .001 Bonferroni-corrected, Cohen’s d z = 2.35) and

FA (37.5%, p < .001 Bonferroni-corrected, Cohen’s d z = 1.26), but

ot in the pSTS (34.7%, p = .019 uncorrected, Cohen’s d z = 0.65) or

he ATFA (33.8%, p = .21 uncorrected, Cohen’s d z = 0.21). Interest-

ngly, both body-responsive ROIs also showed above chance classifica-

ion of face orientation (EBA: 41.9%, p < .001 Bonferroni-corrected,

ohen’s d z = 1.71; FBA: 35.7%, p < .001 Bonferroni-corrected, Co-

en’s d z = 0.81). Classification of face orientation was also signif-

cantly above chance in the left and right EVC (lEVC: 56.4%, p <

001 Bonferroni-corrected, Cohen’s d z = 2.28; rEVC: 56.4%, p < .001

onferroni-corrected, Cohen’s d z = 3.25) and the object-responsive LOC

44.1%, p < .001 Bonferroni-corrected, Cohen’s d z = 1.46). 

As face- and body-responsive ROIs can partially overlap

 Schwarzlose et al., 2005 ), we conducted a follow-up test to in-

estigate whether decoding performance was still significantly above

hance level if body-responsive voxels were excluded from OFA and

FA ROIs, and if face-responsive voxels were excluded from EBA and

BA ROIs ( Fig. 6 ). We found we could still decode face orientation
 F  

8 
ignificantly above chance level from the OFA, FFA and EBA (OFA:

0.5%, p < .001 Bonferroni-corrected, Cohen’s d z = 2.23; FFA: 37.0%,

 < .001 Bonferroni-corrected, Cohen’s d z = 0.85; EBA: 41.3%, p <

001 Bonferroni-corrected, Cohen’s d z = 1.62), but not from the FBA

34.3%, p = .057 uncorrected, Cohen’s d z = 0.26). Thus, it seems that

ace orientation decoding in the FBA was driven by overlapping voxels

rom the neighbouring FFA. 

To test whether face orientation classification performance was sig-

ificantly higher in the face- and body-responsive ROIs where we found

igher than chance classification performance (i.e. the OFA, FFA and

BA) as compared to face- and body-responsive ROIs that did not show

igher than chance face orientation classification (i.e. pSTS, ATFA and

BA excluding face-responsive voxels) we conducted paired t -tests be-
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Table 2 

Results of paired t -tests comparing differences in face orientation classification perfor- 

mance between face- and body-responsive ROIs. In these tests the FFA ROI included 

overlapping body-responsive voxels, but face-responsive voxels were excluded from 

the FBA ROI. 

Paired t -test Mean difference Standard error t value p value Cohen’s d z 

OFA vs. pSTS 16.96% 1.260 13.46 < 0.001 2.29 

OFA vs. ATFA 17.79% 1.566 11.36 < 0.001 3.09 

OFA vs. FBA 17.42% 1.825 9.55 < 0.001 2.19 

FFA vs. pSTS 3.02% 0.801 3.77 .001 0.87 

FFA vs. ATFA 3.85% 0.951 4.05 < 0.001 0.93 

FFA vs. FBA 3.48% 1.130 3.08 .006 0.71 

EBA vs. pSTS 7.50% 0.804 9.34 < 0.001 2.14 

EBA vs. ATFA 8.33% 1.221 6.82 < 0.001 1.57 

EBA vs. FBA 7.97% 1.391 5.73 < 0.001 1.31 
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x  
ween each pair of ROIs. These tests confirmed that face orientation

lassification was significantly higher in the OFA, FFA and EBA than

n the pSTS, ATFA and FBA ROI excluding face-responsive voxels. Full

esults of these paired t -tests are shown in Table 2 . 

.3.2. Searchlight analyses 

We conducted whole-brain searchlight analyses to investigate if any

dditional brain regions showed different patterns of responses to differ-

nt face orientations. First, we conducted a paired t -test between search-

ight face orientation decoding results from the orientation and identity

ecognition tasks, to test whether any regions showed differences in face

rientation responses depending on the behavioural task performed. We

ound a significantly higher activity in the left motor cortex during the

rientation recognition task compared to the identity recognition task.

his is due to participants’ responding using button presses with differ-

nt fingers to indicate which orientation was shown in the block during

he orientation recognition task. As no other regions showed any sig-

ificant differences in responses between the two recognition tasks, we

ombined results from the two behavioural tasks for further face orien-

ation searchlight analyses. 

Our searchlight analysis showed that face orientation could be de-

oded from a large area of occipitotemporal cortex ( Fig 5 C). Consistent

ith our ROI results, this region included both the face-responsive OFA,

he body-responsive EBA and object-responsive LOC, as well as the early

isual cortex, and spread to the posterior fusiform gyrus adjacent to the

FA. 

.4. Classification of body orientation 

We performed the same classification analyses to investigate the neu-

al responses to body orientation as we used to investigate the neural

esponses to face orientation in Section 3.3 . The results are shown in

ig. 7 and classifier confusion matrices are shown in Fig. S8. 

.4.1. ROI analyses 

To test whether body orientation classification differed across ROIs

r behavioural task, we conducted a 9 (ROI) x 2 (Task) repeated-

easures ANOVA. This revealed a significant main effect of ROI

 F 8,144 = 77.14, p < .001, 𝜂p 
2 = 0.81), but no main effect of Task

 F 1,18 = 0.11, p = .747, 𝜂p 
2 = 0.01) or interaction between the two fac-

ors ( F 8,144 = 1.20, p = .302, 𝜂p 
2 = 0.06). Thus, decoding performance

iffered across our ROIs, but was unaffected by behavioural task. There-

ore, as previously, we pooled results from the two behavioural tasks for

urther body orientation classification analyses. 

To test in which ROIs we could decode body orientation at a higher-

han-chance level (1/3), we conducted permutation tests in each ROI,

onferroni-corrected for N = 9 ROIs. Classification of body orientation

as significantly above chance-level (1/3) in the body-responsive EBA

40.8%, p < .001 Bonferroni corrected, Cohen’s d z = 2.61) and the

ace-responsive OFA (42.9%, p < .001 Bonferroni corrected, Cohen’s
9 
 z = 1.35). Classification of body orientation was not significantly higher

han chance in the body-responsive FBA (34.5%, p = .027 uncorrected,

ohen’s d z = 0.54) or face-responsive FFA (34.6%, p = .019 uncorrected,

ohen’s d z = 0.54), pSTS (32.4%, p = .92 uncorrected, Cohen’s d z = 0.36)

r ATFA (33.8%, p = .232 uncorrected, Cohen’s d z = 0.20). For early vi-

ual and object-responsive ROIs, classification of body orientation was

ignificantly above chance for both left and right EVC (lEVC: 52.9%, p

 .001 Bonferroni corrected, Cohen’s d z = 2.67; rEVC: 59.8%, p < .001

onferroni corrected, Cohen’s d z = 2.64) and the LOC (40.5%, p < .001

onferroni corrected, Cohen’s d z = 1.62). 

To test whether any overlapping voxels between the face-responsive

FA and body-responsive EBA might have contributed to body orien-

ation classification in these ROIs, we conducted a follow-up test to in-

estigate if decoding performance was still above chance-level if body-

esponsive voxels were excluded from OFA ROI, and face-responsive

oxels were excluded from the EBA ROI. We found that body orien-

ation decoding was still significantly above chance-level in both ROIs

EBA: 40.1%, p < .001 Bonferroni corrected, Cohen’s d z = 2.24; OFA:

3.4%, p < .001 Bonferroni corrected, Cohen’s d z = 1.40). 

To investigate whether body orientation classification performance

as significantly higher in the body-responsive EBA and face-responsive

FA, where we found higher than chance classification performance, as

ompared to face- and body-responsive ROIs that did not show higher

han chance body orientation classification, we conducted paired t -tests

etween these ROIs. These tests confirmed that body orientation classi-

cation was significantly higher in the EBA and OFA compared to the

BA, FFA, pSTS, and ATFA. Full results of these paired t -tests are shown

n Table 3 . 

.4.2. Searchlight analyses 

We conducted whole-brain searchlight analyses to investigate if any

dditional brain regions showed different patterns of responses to differ-

nt body orientations. First, we conducted a paired t -test between results

rom the orientation and identity recognition tasks, to test whether any

egions showed differences in body orientation responses depending on

he behavioural task performed. We did not find any significant regions

n this analysis, therefore we combined results from the two behavioural

asks for further body orientation searchlight analyses. We found that

e could decode body orientation from a large area of occipitotempo-

al cortex, including the early visual cortex ( Fig 7 C). This region also

verlapped with the mean coordinates of the EBA, OFA and LOC. 

.5. Comparison between face and body orientation classification 

We performed further analyses to investigate whether there were dif-

erences in the regions encoding face and body orientation information.

.5.1. ROI analyses 

First, we performed a 2 (Face/Body orientation responses) x 9 (ROI)

 2 (Task) repeated measures ANOVA to test whether there were signif-
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Fig. 7. Classification of body orientation. Classification accuracies for face- and body responsive ROIs (A) and EVC and LOC ROIs (B) are shown as their % above 

chance-level (1/3). Grey scatter points show classification accuracies for individual participants, ∗ ∗ indicates p < .001, ∗ indicates p < .05, permutation test and 

Bonferroni corrected for N = 9 ROIs. (C) shows classification of body orientation in a whole-brain searchlight analysis. The scale bar shows –log 10 ( p values) between 

1.301 ( p = .05) and 4 ( p = 1 × 10 − 4 ), FWE corrected. 

Table 3 

Results of paired t -tests comparing differences in body orientation classification per- 

formance between face- and body-responsive ROIs. 

Paired t -test Mean difference Standard error t value p value Cohen’s d z 

EBA vs. FBA 6.21% 0.772 8.05 < 0.001 1.85 

EBA vs. FFA 5.99% 0.720 8.33 < 0.001 1.91 

EBA vs. pSTS 8.38% 0.882 9.51 < 0.001 2.18 

EBA vs. ATFA 7.14% 0.771 9.26 < 0.001 2.12 

OFA vs. FBA 8.77% 1.507 5.82 < 0.001 1.34 

OFA vs. FFA 8.55% 1.607 5.32 < 0.001 1.22 

OFA vs. pSTS 10.94% 1.601 6.83 < 0.001 1.57 

OFA vs. ATFA 9.70% 1.744 5.56 < 0.001 1.28 
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Table 4 

Results of paired t -tests in ROIs comparing face vs. body orientation classifi- 

cation performance. 

ROI Mean difference Standard error t value p value Cohen’s d z 

OFA 7.96% 1.583 5.03 < 0.001 1.13 

FFA 2.94% 0.662 4.44 < 0.001 0.99 

pSTS 2.22% 0.753 2.95 .008 0.66 

ATFA 0.05% 0.740 0.06 .951 0.01 

EBA 1.06% 0.985 1.08 .293 0.24 

FBA 1.13% 0.734 1.55 .139 0.35 

lEVC 3.44% 1.633 2.10 .050 0.48 

rEVC − 3.46% 1.600 − 2.16 .044 0.50 

LOC 3.52% 1.284 2.74 .013 0.61 

t  

m  

t  

s  

c

cant interactions between face/body orientation decoding and ROI or

ehavioural task. We found a significant interaction between Face/Body

rientation and ROI ( F 8,144 = 7.18, p < .001, 𝜂p 
2 = 0.29), but no triple in-

eraction between the three factors ( F 8,144 = 1.96, p = .056, 𝜂p 
2 = 0.10).

Next, we performed follow-up paired t -tests between face and body

rientation decoding in each ROI to investigate which regions showed

ignificant differences in face and body decoding performance. We

ound that classification of face orientation was significantly higher than

lassification of body orientation in the OFA, FFA, pSTS, left EVC and

OC, and body orientation decoding was significantly higher than face

rientation decoding in the right EVC. The EBA, FBA and ATFA showed

o differences between classification of face and body orientation. Full

esults of these paired t -tests are shown in Table 4 . 

.5.2. Searchlight analyses 

To investigate whether any other regions showed differences in face

nd body orientation decoding or an interaction between face/body ori-

ntation decoding and behavioural task, we performed a 2 (Face/body

rientation classification) x 2 (Task) whole-brain ANOVA. This ANOVA

evealed a significant main effect of face/body orientation classifica-
10 
ion in the left somatosensory cortex, but no other regions. This finding

ay be due to a difference in participant’s responses during the orien-

ation recognition task for face and body stimuli. However, no regions

howed a significant interaction between face/body orientation classifi-

ation and behavioural task. 
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Fig. 8. Cross-classification of orientation across neural activity evoked by face and body stimuli. Classification accuracies for face- and body responsive ROIs (A) 

and EVC and LOC ROIs (B) are shown as their % above chance-level (1/3). Grey scatter points show classification accuracies for individual participants, ∗ ∗ indicates 

p < .001, ∗ indicates p < .05, permutation test and Bonferroni corrected for N = 9 ROIs. (C) shows cross-classification of orientation across neural activity evoked by 

face and body stimuli in a whole-brain searchlight analysis. The scale bar shows –log 10 ( p values) between 1.301 ( p = .05) and 4 ( p = 1 × 10 − 4 ), FWE corrected. 
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.6. Classification of orientation across face and body stimuli 

We performed classification analyses across neural activity evoked

y face and body stimuli to investigate whether any regions contain a

eural coding of orientation that could generalise across face and body

timuli. Specifically, we first trained a linear SVM classifier to distin-

uish between patterns of neural activity evoked by faces of different

rientations and then tested this trained classifier on its ability to classify

he orientation of neural activity evoked by body stimuli (and vice-versa

sing neural activity evoked by body stimuli for training the classifier

nd neural activity evoked by face stimuli for testing it). The results are

hown in Fig. 8 and classifier confusion matrices are shown in Fig. S9. 

.6.1. ROI analyses 

We first performed a 9 (ROI) x 2 (Task) repeated measures ANOVA to

nvestigate if orientation cross-classification differed across ROIs or be-

avioural task. We found a significant main effect of ROI ( F 8,144 = 26.05,

 < .001, 𝜂p 
2 = 0.59), but no main effect of behavioural task

 F 1,18 = 0.01, p = .915, 𝜂p 
2 = 0.00) or interaction between ROI and task

 F 8,144 = 0.35, p = .944, 𝜂p 
2 = 0.02). Thus, as previously we combined

esults from the two behavioural tasks for further analyses. 

Next, we conducted permutation tests to test which ROIs showed

igher than chance (1/3) cross-classification of orientation. Classifica-

ion of orientation across neural activity evoked by face and body stim-

li was significantly above chance-level (1/3) in the OFA (38.2%, p <

001 Bonferroni corrected, Cohen’s d z = 1.34) and the EBA (37.5%, p <

001 Bonferroni corrected, Cohen’s d z = 1.47), but not in any other face-

esponsive ROIs (FFA: 34.9%, p = .008 uncorrected, Cohen’s d z = 0.81;

STS: 34.7%, p = .015 uncorrected, Cohen’s d z = 0.62; ATFA: 33.7%,

 = .301 uncorrected, Cohen’s d z = 0.27) or in the FBA (34.4%, p = .044

ncorrected, Cohen’s d z = 0.48). We were also able to decode orientation

cross face and body stimuli from the right EVC (39.0%, p < .001 Bon-
11 
erroni corrected, Cohen’s d z = 1.07) and object-responsive LOC (38.2%,

 < .001 Bonferroni corrected, Cohen’s d z = 1.62), but not from the left

VC (29.1%, p = 1.00 uncorrected, Cohen’s d z = 1.26). 

To test whether any overlapping face-responsive voxels might have

ontributed to our decoding results in the EBA, or whether any over-

apping body-responsive voxels might have contributed to our decoding

esults in the OFA, we conducted follow-up classification analyses with

BA and OFA ROIs with these voxels excluded. We were still able to de-

ode orientation from both ROIs (EBA: 37.2%, p < .001 Bonferroni cor-

ected, Cohen’s d z = 1.34; OFA: 37.3%, p < .001 Bonferroni corrected,

ohen’s d z = 1.06). 

To test whether orientation cross-classification performance was sig-

ificantly higher in the face-responsive OFA and body-responsive EBA

s compared to face- and body-responsive ROIs that did not show higher

han chance orientation cross-classification, we conducted paired t -tests

etween these ROIs. These tests confirmed that orientation classifica-

ion across face and body stimuli was significantly higher in the OFA

nd EBA as compared to the FFA, pSTS, ATFA and FBA. Full results of

hese paired t -tests are shown in Table 5 . 

.6.2. Searchlight analyses 

We conducted whole brain searchlight analyses to see if any addi-

ional regions contained patterns of orientation responses that could

eneralise across face and body stimuli. We first performed a paired t -

est between searchlight maps from the orientation and identity recogni-

ion tasks, to test whether any regions showed differences in orientation

lassification depending on which behavioural task was performed. We

id not find any regions in this analysis, thus we combined results from

he two behavioural tasks for further analysis. 

Our whole-brain searchlight analysis revealed that bilateral regions

verlapping with the OFA, EBA and LOC were able to decode orienta-

ion across neural activity evoked by face and body stimuli ( Fig 8 C),
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Table 5 

Results of paired t -tests comparing differences in orientation classification across face 

and body stimuli between face- and body-responsive ROIs. 

Paired t -test Mean difference Standard error t value p value Cohen’s d z 

OFA vs. FFA 3.67% 0.785 4.67 < 0.001 1.07 

OFA vs. pSTS 3.86% 0.816 4.73 < 0.001 1.09 

OFA vs. ATFA 4.79% 0.931 5.14 < 0.001 1.18 

OFA vs. FBA 4.06% 0.904 4.49 < 0.001 1.03 

EBA vs. FFA 2.79% 0.629 4.44 < 0.001 1.02 

EBA vs. pSTS 2.98% 0.859 3.47 .003 0.80 

EBA vs. ATFA 3.91% 0.702 5.57 < 0.001 1.28 

EBA vs. FBA 3.18% 0.750 4.24 < 0.001 0.97 
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Fig. 9. Cross-classification of 45 ̊ vs.90 ̊ orientation across neural activity 

evoked by face and body stimuli. Classification accuracies for face- and body 

responsive ROIs (A) and EVC and LOC ROIs (B) are shown as their % above 

chance-level (1/2). Grey scatter points show classification accuracies for indi- 

vidual participants, ∗ ∗ indicates p < .001, ∗ indicates p < .05, permutation test 

and Bonferroni corrected for N = 9 ROIs. 
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onsistent with our ROI analyses. Interestingly, these regions were lo-

ated at a point where the LOC, EBA and OFA intersect. Supplemental

igure S10 illustrates the clusters for each participant in relation to the

ean locations of LOC, EBA and OFA for each participant. Orientation

ould also be decoded across face and body stimuli in the right early

isual cortex. 

.6.3. Classification of orientation across face and body stimuli separated 

y training and testing direction 

To investigate whether there was any asymmetry in our ability to

ecode orientation across neural activity evoked by face and body stim-

li depending on whether we trained on faces and tested on bodies, or

ice-versa, we performed classification analyses separated for these two

raining and testing directions (Fig S11). We were able to decode orien-

ation significantly above chance from both the OFA (orientation task,

rain on bodies test on faces: 38.9%, p < .001 Bonferroni corrected, Co-

en’s d z = 1.33; orientation task, train on faces, test on bodies: 38.2%,

 < .001 Bonferroni corrected, Cohen’s d z = 0.92; identity task, train

n bodies test on faces: 38.5%, p < .001 Bonferroni corrected, Cohen’s

 z = 1.01; identity task, train on faces, test on bodies: 37.3%, p < .001

onferroni corrected, Cohen’s d z = 0.76) and EBA (orientation task, train

n bodies test on faces: 36.6%, p < .001 Bonferroni corrected, Cohen’s

 z = 0.92; orientation task, train on faces, test on bodies: 37.8%, p < .001

onferroni corrected, Cohen’s d z = 1.10; identity task, train on bodies

est on faces: 37.7%, p < .001 Bonferroni corrected, Cohen’s d z = 1.08;

dentity task, train on faces, test on bodies: 37.7%, p < .001 Bonferroni

orrected, Cohen’s d z = 1.00) for both training and testing directions, but

ot from any other ROIs. Furthermore, we performed paired t- tests to in-

estigate if there were any differences in classification accuracy between

he two training/testing directions. We did not find any significant dif-

erences in classification accuracy between the two training/testing di-

ections for OFA (orientation task: t 19 = 0.67, p = .51, Cohen’s d z = 0.15;

dentity task: t 19 = 1.09, p = .29, Cohen’s d z = 0.24), EBA (orientation

ask: t 19 = 1.37, p = .19, Cohen’s d z = 0.31; identity task: t 19 = 0.04,

 = .97, Cohen’s d z = 0.01) or any other face- or body-responsive ROIs.

.7. No classification of orientation across face and body stimuli with 

ean signal 

As we found some differences in the mean BOLD responses to faces

nd bodies of different orientations ( Fig. 3 and Fig. 4 ), we performed

 control analysis to examine whether our classification results across

eural activity evoked by face and body stimuli were driven by the dif-

erences in the mean BOLD signal. To this aim, we repeated the same

lassification analyses but using only the mean BOLD signal in each ROI,

r in each searchlight sphere for training and testing the classifier. If the

ifferences in mean BOLD activation were driving the classification re-

ults, we would expect the identical classification results in these new

nalyses. This was not the case. Results showed that we could not decode

rientation in any ROIs using the mean BOLD activation (for details see

upplementary Fig S12A-B). Furthermore, whole-brain searchlight anal-

sis only revealed a cluster in the right early visual cortex, but not in
12 
ny other brain region (see supplementary Fig S12C-D). These results

uggest that our decoding of person orientation in EBA and OFA was

riven by different patterns of neural activity in these brain regions,

ather than by the differences in their overall level of activation. In con-

rast, classification of person orientation in the right early visual cortex

ay be partially driven by the differences in the mean BOLD signal. 

.8. Classification of 45 ̊vs. 90 ̊orientation across face and body stimuli 

As our 0 ̊orientation stimuli was symmetric, whereas our 45 ̊and 90 ̊

timuli were not, it might be possible that our cross-classification results

ere driven by these differences in symmetry. To address this question,

e performed a control analysis to test whether we could decode 45 ̊vs.

0 ̊orientation across neural activity evoked by face and body stimuli.

s both of these stimulus orientations were non-symmetric, successful

ecoding could not be driven by differences in stimulus symmetry/non-

ymmetry. Results are shown in Fig. 9 . 

First, we performed a 9 (ROI) x 2 (Task) repeated measures ANOVA

o test whether there were differences in 45 ̊ vs. 90 ̊ orientation cross-

lassification across ROIs or behavioural task. We found a significant

ain effect of ROI ( F 8,144 = 7.56, p < .001 Greenhouse-Geisser cor-
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Table 6 

Results of paired t -tests comparing differences in 45 ̊vs. 90 ̊orientation classification 

across face and body stimuli between face- and body-responsive ROIs. 

Paired t -test Mean difference Standard error t value p value Cohen’s d z 

OFA vs. FFA 1.49% 0.978 1.57 .134 0.35 

OFA vs. pSTS 1.82% 1.003 1.86 .078 0.42 

OFA vs. ATFA 1.63% 0.900 1.86 .078 0.42 

OFA vs. FBA 1.56% 0.995 1.61 .124 0.36 

EBA vs. FFA 1.80% 0.900 2.06 .054 0.46 

EBA vs. pSTS 2.13% 1.031 2.12 .047 0.48 

EBA vs. ATFA 1.94% 0.672 2.97 .008 0.66 

EBA vs. FBA 1.88% 0.907 2.12 .047 0.47 
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ected for non-sphericity, 𝜂p 
2 = 0.30), but no main effect of behavioural

ask ( F 1,18 = 0.72, p = .408 Greenhouse-Geisser corrected for non-

phericity, 𝜂p 
2 = 0.04) or interaction between ROI and behavioural task

 F 8,144 = 2.05, p = .081 Greenhouse-Geisser corrected for non-sphericity,

p 
2 = 0.10). Therefore, we combined data from the two behavioural

asks for further analyses. 

We next conducted permutation tests to determine which ROIs

howed higher than chancel-level (1/2) cross-classification of 45 ̊ vs

0 ̊orientation. Our results were the same as previously for orientation

ross-classification including all three orientations. Cross-classification

as significantly above chance-level (1/2) in the OFA (52.3%, p < .001

onferroni corrected, Cohen’s d z = 0.68) and the EBA (52.6%, p < .001

onferroni corrected, Cohen’s d z = 0.86), but not in any other face-

esponsive ROIs (FFA: 50.8%, p = .068 uncorrected, Cohen’s d z = 0.33;

STS: 50.5%, p = .188 uncorrected, Cohen’s d z = 0.16; ATFA: 50.7%,

 = .112 uncorrected, Cohen’s d z = 0.35) or in the FBA (50.8%, p = .091

ncorrected, Cohen’s d z = 0.27). As previously, cross-classification was

lso significantly higher than chancel-level in the right EVC (55.4%, p

 .001 Bonferroni corrected, Cohen’s d z = 0.95) and object-responsive

OC (52.2%, p < .001 Bonferroni corrected, Cohen’s d z = 0.61), but not

n the left EVC (48.1%, p = 1.00 uncorrected, Cohen’s d z = 0.50). 

To test whether any overlapping face- and body-responsive voxels

ight have driven our decoding results in the OFA and EBA, we con-

ucted follow-up 45 ̊vs. 90 ̊cross-classification analyses in the EBA and

FA ROIs with these voxels excluded. We were still able to decode 45 ̊

s. 90 ̊orientation from both ROIs (EBA: 52.9%, p < .001 Bonferroni cor-

ected, Cohen’s d z = 1.13; OFA: 52.5%, p < .001 Bonferroni corrected,

ohen’s d z = 0.78). 

To directly test whether 45 ̊ vs. 90 ̊ orientation cross-classification

erformance was higher in the OFA and EBA than other ROIs, we con-

ucted paired t -tests between these ROIs. These tests showed that 45 ̊vs.

0 ̊ orientation cross-classification was significantly higher in the EBA

han in the FBA, pSTS and ATFA, but not the FFA. The OFA, however,

howed similar cross-classification performance to that observed in the

FA, pSTS, ATFA or FBA. Full results of these paired t -tests are shown

n Table 6 . 

.9. Control analyses for low-level image properties 

As our stimuli consisted of natural images of faces and bodies, it

s possible that some low-level visual features were more similar across

mages of the same orientation than across different orientations. This is

ikely the case for images of face orientations across different identities,

nd body orientations across different identities, due to similarities in

hape. However, it might not be the case for orientations across face and

ody images, due to the large differences between the visual appearance

f faces and bodies. To test the potential influence of low-level visual

eatures on our decoding results, we performed two control analyses. 

.9.1. Pixel intensity correlations 

We performed correlations of red, green and blue pixel intensities

etween images of the same orientation and images varying in orien-
13 
ations, to test whether low-level image information was more similar

ithin the same orientation than across different orientations. 

First, we performed the above image-based correlation analysis sep-

rately for face and body images, and then we performed a two-sample

 -test to test whether correlations were significantly higher for images

ithin orientation as compared to across orientation. As expected, same-

rientation images showed higher correlations between pixel intensity

alues than across-orientation images for both face (red: t 24 = 7.61, p

 .001; green: t 24 = 10.72, p < .001; blue: t 24 = 11.26, p < .001) and

ody images (red: t 24 = 6.22, p < .001; green: t 24 = 6.40, p < .001; blue:

 24 = 6.50, p < .001). This result confirms that, within each stimulus

ategory (face or body image), low-level visual information was more

imilar for within- than across-orientation images. 

Second, we performed the image-based correlation analysis across

ace and body images of the same identity. As previously, we then per-

ormed a two-sample t -test to test whether correlations were signifi-

antly higher for images within orientation as compared to across orien-

ation. We found no significant difference between correlations for red

 t 16 = − 1.22, p = .240), green ( t 16 = 0.23, p = .823) or blue ( t 16 = 0.47,

 = .645) pixel intensity values, suggesting that low-level image infor-

ation was not more similar between face and body images of the same

rientation as compared to face and body images across different orien-

ations. 

.9.2. Decoding orientation from Gabor-filtered image properties 

We also tested whether low-level image properties could support

he decoding of orientation across different identities or across face

nd body images. To do this, we converted our stimulus images

nto grayscale and then filtered each image using a Gabor-jet model

 Lades et al., 1993 ; Yue et al., 2012 ). Each Gabor-jet consisted of 80

lters (5 scales x 8 orientations x 2 phases, sine and cosine), and the

odel consisted of a 10 × 10 uniform grid of nodes placed across each

mage. The responses from all Gabor-jets for each image thus formed

 high-dimensional feature vector containing 8000 features. We then

ssessed whether we could decode orientation across images when we

nput these feature vectors into a linear SVM classifier as in our MVPA

nalyses. 

First, we tested whether we could decode orientation across identity

rom the image feature vectors, separately for face and body stimuli. We

rained a classifier to distinguish between feature vectors of 0 ̊, 45 ̊and

0 ̊stimuli from two identities, and then tested the classifier on its ability

o decode 0 ̊, 45 ̊and 90 ̊stimuli from the third identity. We performed

his separately for feature vectors from the face and body images, and

erformed each classification analysis three times, with each identity

sed as the held-out test set once. We then averaged decoding results

cross the three identities. We found that decoding performance was

igher than chance-level (1/3) for both face (55.6%) and body (55.6%)

timuli, suggesting that low-level image information could aid face and

ody orientation classification across identities. 

Second, we tested whether we could decode orientation across face

nd body stimuli from the image feature vectors. To do this, we trained

 classifier to distinguish between feature vectors of 0 ̊, 45 ̊and 90 ̊face
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timuli and then tested the classifier on its ability to decode 0 ̊, 45 ̊and

0 ̊body stimuli, and vice-versa. We then averaged the decoding results

cross the two training and testing directions. Surprisingly, we found

e could decode orientation across face and body image feature vectors

61.1%) at higher than chance-level (1/3), suggesting that low-level im-

ge information could allow decoding across face and body stimuli. 

Finally, we tested whether the above higher than chance decoding

cross face and body images was driven by image differences between

he symmetric 0 ̊orientation and the non-symmetric 45 ̊and 90 ̊orienta-

ions. To test this hypothesis, we performed the same cross-classification

nalysis across face and body image feature vectors, but included only

he 45 ̊and 90 ̊orientation stimuli. In this case, decoding performance

as 25%, below the chance-level of 50%. This result suggests that

mage-based orientation cross-decoding was primarily driven by differ-

nces between symmetric and non-symmetric stimuli. In contrast to this,

ur MVPA results showed consistent cross-decoding of orientation even

hen only non-symmetric 45 ̊and 90 ̊orientations were included in the

lassification (see Section 3.8 ). Together, these results suggest that our

ross-decoding results in the occipitotemporal cortex cannot be solely

ttributed to low-level image properties. 

. Discussion 

In this study, we investigated how the brain encodes face and body

rientation information by exploring the neural responses to faces and

odies varying in orientation. Our results show that the OFA, EBA, LOC

nd early visual cortex contain different patterns of neural activity to

oth faces and bodies of different orientations. More importantly, we

ound that the OFA, EBA, LOC and right EVC encoded orientation in

 stimulus-independent manner. A classifier trained to distinguish pat-

erns of neural activity evoked by face orientations could decode orien-

ation from neural activity evoked by body orientations, and vice-versa.

ur study also shows that the FFA responds to face orientation but not

o body orientation, suggesting that orientation responses in the FFA

re face specific. All these results were consistently observed across two

ifferent behavioural tasks, with one requiring attention to the decoded

eature (orientation) and the other to identity. These findings highlight

oth similarities and differences in the neural coding of face and body

rientation, demonstrating that face and body orientation information

s processed in a partially overlapping brain network. 

.1. Neural coding of face and body orientation in the occipitotemporal 

ortex 

Our results demonstrate that both face and body orientation can

e consistently decoded from the neural activity in the face-responsive

FA and body-responsive EBA, as well as the object-responsive LOC

nd early visual cortex. Previous studies have often separately investi-

ated the neural coding of face and body orientation in face- and body-

esponsive brain regions respectively, leading to an illusory view that

he neural coding of orientation may be stimuli-dependant. For exam-

le, several studies have shown that the OFA responds to face orien-

ation ( Axelrod and Yovel, 2012 ; Flack et al., 2019 ; Guntupalli et al.,

017 ; Kietzmann et al., 2012 ), whereas other studies have found that

he EBA responds to body orientation ( Chan et al., 2004 ; Ewbank et al.,

011 ; Taylor et al., 2010 ; Vangeneugden et al., 2014 ). Here we show

hat these regions also encode orientation beyond their preferred stim-

li (i.e. the face-responsive OFA also encodes body orientation, and the

ody-responsive EBA also encodes face orientation), demonstrating that

he neural responses to face and body orientation in the OFA and EBA

re not face- or body-specific. Furthermore, we also show that the object-

esponsive LOC encodes both face and body orientation. This finding not

nly echoes previous research on the neural coding of object and face

rientation in the LOC ( Axelrod and Yovel, 2012 ; Ramírez et al., 2014 ),

ut also extends this region’s orientation sensitivity to body orientation.
14 
The sensitivity of the OFA, EBA, LOC and EVC to both face and body

rientation was also found in the mean BOLD response (e.g. Fig. 3 and

ig. 4 ). In both the EBA and LOC, we found responses progressively

ncreased from 0° to 90° faces and higher responses to 90° bodies com-

ared to 0° and 45° bodies, suggesting a preference for profile views of

 person in these regions. Higher neural responses in the LOC to the

rofile- than front-view faces have also been found in previous studies

 Axelrod and Yovel, 2012 ; Ramírez et al., 2014 , faces shown above the

xation condition). In contrast, in the OFA, we found higher responses

o 0° and 90° faces compared to 45° faces, and higher responses to 0°

odies compared to 90°bodies. This result is consistent with an earlier

tudy ( Axelrod and Yovel, 2012 ), suggesting a relative preference for

ront views of a person in the OFA. Similar to the OFA, we also observed

 general preference to front view faces and bodies in the EVC, which

uggests that the low-level visual features that affect EVC responses to

rientation may also influence neural responses in the OFA. Although

hese results show that the OFA, EBA and LOC respond to both face and

ody orientation, how these different tuning profiles emerged remains

o be elucidated. 

Our most remarkable finding was that we could cross-classify orien-

ation across neural responses evoked by faces and bodies in the OFA,

BA, LOC and right EVC, suggesting these regions encode orientation

n a stimulus-independent manner. In these brain regions, classifiers

rained to distinguish patterns of neural activity evoked by different face

rientations could decode patterns of neural activity evoked by body ori-

ntations, and vice-versa. Furthermore, our searchlight analyses showed

hat there was strong classification performance at the intersection of

he OFA, EBA and LOC ( Fig. 8 C), highlighting the contribution of these

ategory-specific brain areas (i.e. face-, body-, and object-responsive) to

 shared neural orientation code in the occipitotemporal cortex. 

.2. What processes underlie the shared coding of face and body 

rientation? 

The involvement of the LOC in the coding of orientation leads to

he question of whether our results are specific to face and body ori-

ntation or whether they would also extend to the coding of general

bject orientation. Previous work has demonstrated that the LOC is sen-

itive to object orientation ( Andresen et al., 2009 ; Ewbank et al., 2005 ;

rill-Spector et al., 1999 ), and that it contains patterns of activation to

oth face and object orientations that can generalise across visual field

ocation ( Ramírez et al., 2014 ). Nonetheless, whether faces and objects

hare the same neural orientation code remains unknown. Furthermore,

e note that LOC is traditionally defined by its higher responses to ob-

ects compared to scrambled images ( Malach et al., 1995 ), and we found

hat the LOC showed stronger responses to bodies than to objects, even

hen voxels overlapping with the EBA were removed (see Section 2.6 .).

verlap between the EBA and LOC has also been identified in previous

tudies ( Downing et al., 2007, 2001 ; Spiridon et al., 2006 ; Tootell et al.,

015 ). A recent topographical atlas of category-responsive regions in

ccipitotemporal cortex also showed face- and body-responsive lateral

ccipital regions are next to each other without a gap area where the

OC would be expected to be located ( Rosenke et al., 2021 ). Altogether,

hese results suggest that the LOC may also be involved in body process-

ng, in addition to general object processing. As we did not test objects

ogether with faces and bodies, we were unable to address this ques-

ion directly in the present study. We speculate that neural coding of

ace, body and object orientation may be supported by overlapping but

issociable neural mechanisms. Object orientation can be decoded from

esponses in the EVC and LOC, but not from the FFA ( Ramírez et al.,

014 ), whereas face orientation can be decoded from a broader net-

ork including the EVC, LOC, FFA and EBA ( Axelrod and Yovel, 2012 ;

amírez et al., 2014 ). Furthermore, some intrinsic differences between

ace, body and object orientation also suggest that face, body and ob-

ect orientation may be encoded differently to some extent. Both faces

nd bodies have an intrinsic orientation that often indicates the focus
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f attention of a person, whereas many objects either do not have an

ntrinsic orientation or do not have an attention-relevant orientation

 Foster, 2020 ; Xu and Franconeri, 2012 ). 

Our cross-classification of orientation in the right EVC suggests that

here may be low-level visual features shared by faces and bodies of

he same orientation that might contribute to the encoding of orienta-

ion. Consistent with this view, we were able to cross-decode orientation

ased on Gabor-filtered image properties ( Section 3.9.2 ). This decoding

eemed to be driven by differences between the symmetric (0 ̊) and non-

ymmetric orientations (45 ̊ and 90 ̊). When we only included the 45 ̊

nd 90 ̊ stimuli for the decoding analysis, image-based decoding failed

o classify orientation across faces and bodies. In contrast, we still found

obust neural decoding between these two non-symmetric orientations

n the OFA, EBA, LOC and right EVC. Moreover, we also tested whether

here was low-level RGB colour information that systematically varied

cross faces and bodies of the same orientation. Our results showed that

his was not the case. Together, these results suggest that our orien-

ation cross-decoding in the occipitotemporal cortex cannot be solely

ttributed to systematic low-level visual properties. 

What mechanisms might drive the shared coding of face and body

rientation? One possibility is that participants imagined a whole person

hen viewing face and body stimuli alone. Cox et al. (2004) found that

roviding a body context with a covered face activated the FFA similarly

o viewing an isolated face. Furthermore, imagery of faces and objects

as been shown to induce similar neural representations as visual per-

eption of faces and objects, thereby enabling cross-decoding between

magined and perceived categories ( Cichy et al., 2012 ; Reddy et al.,

010 ). 

Another possibility is that both face and body orientation provide

n efficient cue for social attention and interaction ( Nummenmaa and

alder, 2009 ; Vestner et al., 2020 ). Our cross-classification results might

e due to a shared neural representation of these attentional cues (e.g.

acing towards vs facing away). Consistent with this idea, the EBA shows

ifferent neural responses to interacting people than to non-interacting

eople ( Abassi and Papeo, 2020 ; Walbrin and Koldewyn, 2019 ). So-

ial orienting based on following the perceived direction of gaze, has

lso been found to involve a brain region in the occipitotemporal cortex

lose to the EBA ( Marquardt et al., 2017 ). Our results in EVC are also

n line with this possibility. The gradually decreased mean signal in the

ight EVC ( Fig. 3 B and 4 B), which could be used for cross-classification

 Section 3.7 ), might result from feedback signals of attending to the pro-

ressively leftwards direction of faces and bodies (see also Axelrod and

ovel, 2012 ). As we did not instruct participants to fixate during fMRI

canning, exactly how social attention and eye movements may con-

ribute to the shared coding of face and body orientation remains to be

lucidated. 

.3. Neural coding of face and body orientation in the fusiform and 

nterior temporal cortex 

In contrast to our findings in the OFA and EBA, we did not ob-

erve stimulus-independent coding of orientation in the face- and

ody-responsive areas in the fusiform and anterior temporal cortex

i.e. FFA, FBA, and ATFA). For face stimuli, we were able to de-

ode face orientation in the FFA, consistent with previous studies

 Axelrod and Yovel, 2012 ; Guntupalli et al., 2017 ; Kietzmann et al.,

012 ; Ramírez et al., 2014 ). Orientation responses in the FFA seem to

e face-specific, as the FFA showed no sensitivity to object orientation

n a previous study ( Ramírez et al., 2014 ) or to body orientation in the

resent study. Furthermore, face orientation classification was signifi-

antly higher than body orientation classification in the FFA. We could

lso decode face orientation from the body-responsive FBA, however,

his decoding was not possible when face-responsive voxels were re-

oved from the FBA, suggesting that this decoding was driven by over-

apping voxels from the FFA ( Schwarzlose et al., 2005 ). Removing body-

esponsive voxels from the FFA did not affect decoding performance. In
15 
ontrast to the FFA, we were unable to decode face orientation from the

TFA. Similar face orientation decoding results were also reported in a

revious study ( Guntupalli et al., 2017 ), and this result is consistent with

esearch showing this region is involved in encoding face identity in an

rientation-invariant manner ( Anzellotti et al., 2014 ; Guntupalli et al.,

017 ). However, it is possible that decoding may have been weaker from

his region due to the small size of this ROI, or that we could only define

t bilaterally in 13 of our 20 participants. Although the ATFA did not ex-

ibit separable patterns of neural activity to different face orientations,

t did show stronger responses to frontal faces as compared to 45° or

0° faces (in our univariate analysis). Interestingly, this result is consis-

ent with a finding that the most anterior face-responsive patch in the

acaque contains a higher proportion of neurons responding to frontal

aces than to other face orientations ( Dubois et al., 2015 ; Freiwald and

sao, 2010 ). 

For body stimuli, some studies have suggested that the FBA is sen-

itive to body orientation ( Ewbank et al., 2011 ; Taylor et al., 2010 ).

owever, using an MVPA approach, we did not find higher-than-chance

lassification of body orientation in any of our fusiform or anterior

emporal ROIs (i.e. FBA, FFA, and ATFA). Moreover, these areas also

howed equivalent mean BOLD responses to the three body orienta-

ions. These results suggest that the FBA, FFA and ATFA do not contain

nique patterns of neural activity to different body orientations. Our

nding that body orientation is encoded in the EBA, but not the FBA,

s in line with previous research ( Vangeneugden et al., 2014 ), which

howed that the EBA, but not the FBA, contains dissociable information

bout body facing direction. It is worth noting that while our decoding

f body orientation was found in the EBA, but not the FBA, we were

ble to decode body identity across changes in orientation in the FBA,

ut not the EBA ( Foster et al., 2021 ). This result suggests that our lack

f body orientation decoding in the FBA is not simply due to the small

ize of this ROI. Furthermore, this result is in line with a recent find-

ng in macaque monkeys. Kumar et al. (2019) found that neurons in the

iddle STS body patch are more sensitive to body orientation and less

ensitive to body identity, than neurons in the anterior STS body patch.

ogether, these results suggest that neural responses to bodies become

ncreasingly orientation-independent along posterior-anterior hierarchi-

al processing in the occipitotemporal cortex (see Anzellotti et al., 2014 ;

xelrod and Yovel, 2012 ; Freiwald and Tsao, 2010 for a similar argu-

ent for the neural processing of face orientation). 

.4. Neural responses of the STS to face and body orientation 

As to the involvement of the STS in representing face orientation,

revious fMRI studies have found mixed results (see Ramírez, 2018 ,

or a review). While some studies have suggested that the STS may en-

ode the orientation of faces ( Axelrod and Yovel, 2012 ; Flack et al.,

019 ), others found no evidence for face-orientation encoding in the

TS ( Guntupalli et al., 2017 ; Ramírez et al., 2014 ). For body orientation,

ne human study found that the pSTS did not encode information about

ody orientation, whereas the EBA did ( Vangeneugden et al., 2014 ). In

ontrast, in the monkey neurons have been found in the STS that re-

pond to body orientation ( Kumar et al., 2019 ), as well as to orientation

hown from both face and body stimuli ( Wachsmuth et al., 1994 ). 

With an MVPA approach, we did not find evidence for face or body

rientation coding in either our pSTS ROI, or any region of the STS in our

earchlight analyses. One possibility is that the STS is more sensitive to

ynamic faces and bodies ( Pitcher et al., 2011 ; Reinl and Bartels, 2014 ;

chultz et al., 2013 ), whereas we used static face and body stimuli in

his study. It has been shown that body walking motion, but not body

rientation, could be decoded from the pSTS, suggesting that this region

s more sensitive to the direction of biological motion than static orien-

ations ( Vangeneugden et al., 2014 ). Future research using dynamic face

nd body orientation stimuli may help differentiate the role of STS in

ncoding person orientation and human motion. Moreover, as the STS

s known to be involved in gaze processing ( Carlin and Calder, 2013 ;
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axby et al., 2000 ), our results suggest that direction of gaze and ori-

ntation of face and body might be processed in different brain regions.

n line with this conjecture, previous work has shown that the human

nterior STS responds to gaze direction in a head orientation invariant

anner ( Carlin et al., 2011 ). 

.5. Visual attention and the neural coding of face and body orientation 

Most previous studies that have investigated the neural coding of ori-

ntation used tasks that directed attention away from orientation (e.g.

rightness discrimination in Ramírez et al., 2014 , or detection of iden-

ity repetition in Axelrod and Yovel, 2012 ; Guntupalli et al., 2017 ). This

aises question of whether visual attention modulates the neural coding

f orientation. To address this question, we had our participants perform

wo different behavioural tasks during fMRI scanning, one required at-

ention to stimulus orientation, whereas the other required attention to

timulus identity. We found a remarkable consistence between the re-

ults observed under these two conditions, suggesting that attending to

rientation information does not necessarily enhance the neural coding

f face or body orientation. 

One possibility for this task-independent coding of orientation is that

ttending to identity might involve some automatic processing of face

rientation ( Axelrod and Yovel, 2012 ; Guntupalli et al., 2017 ) or body

rientation ( Taylor et al., 2010 ), which might reduce or eliminate the ef-

ect of our task manipulation. Note that we did find an attention enhanc-

ng effect on identity coding: the identity task produced consistently bet-

er decoding results for face and body identity than the orientation task

 Foster et al., 2021 ). Therefore, the lack of task-related neural differ-

nces in orientation coding is not due to our behavioural task being too

asy to evoke differences in neural responses. 

onclusion 

Our study reveals a shared neural coding of face and body orienta-

ion in the occipitotemporal cortex. A region located at the intersection

f the OFA, EBA and LOC contains separable patterns of neural activity

voked by different orientations, which can generalize across neural ac-

ivity evoked by faces and bodies. This finding suggests that this region

ncodes face and body orientation in a stimulus-independent manner.

uch stimulus-independent coding of orientation might not be specific

o faces and bodies and might also generalise to other objects. Further-

ore, we also show that the FFA encodes face orientation, but not body

rientation, suggesting that processing of face orientation involves more

istributed brain regions than processing of body orientation. Finally,

ur results demonstrate that visual attention to orientation information

oes not enhance the neural coding of orientation, suggesting that orien-

ation may be processed automatically. Together, these results not only

ffer new insights into how the brain encodes an important social inter-

ction cue, face and body orientation, but also provide new evidence for

 partially overlapping representation of faces and bodies in the human

rain. 
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