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Abstract 

Face and body orientation convey important information for us to understand other 

people’s actions, intentions and social interactions. It has been shown that several 

occipitotemporal areas respond differently to faces or bodies of different orientations. 

However, whether face and body orientation are processed by partially overlapping or 

completely separate brain networks remains unclear, as the neural coding of face and body 

orientation is often investigated separately. Here, we recorded participants’ brain activity 

using fMRI while they viewed faces and bodies shown from three different orientations, 

while attending to either orientation or identity information. Using multivoxel pattern 

analysis we investigated which brain regions process face and body orientation respectively, 

and which regions encode both face and body orientation in a stimulus-independent 

manner. We found that patterns of neural responses evoked by different stimulus 

orientations in the occipital face area, extrastriate body area, lateral occipital complex and 

right early visual cortex could generalise across faces and bodies, suggesting a stimulus-

independent encoding of person orientation in occipitotemporal cortex. This finding was 

consistent across functionally defined regions of interest and a whole-brain searchlight 

approach. The fusiform face area responded to face but not body orientation, suggesting 

that orientation responses in this area are face-specific. Moreover, neural responses to 

orientation were remarkably consistent regardless of whether participants attended to the 

orientation of faces and bodies or not. Together, these results demonstrate that face and 

body orientation are processed in a partially overlapping brain network, with a stimulus-

independent neural code for face and body orientation in occipitotemporal cortex.  

 

Keywords: orientation, viewpoint, body perception, face perception, fMRI 
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1. Introduction 

 Human face and body orientation convey important cues about social interactions. 

The ability to process orientation information is therefore crucial for us to understand how 

other people interact with us and the world around them. For example, we use face and 

body orientation to infer that a person intends to interact with us when they face toward us, 

and does not when they turn their back to us. Person orientation is primarily determined by 

information from the face and body, though eye gaze (which indicates direction of 

attention) is often taken into consideration in social interaction scenarios (Nummenmaa and 

Calder, 2009). Psychological research has shown that these different sources of information 

are not processed independently in the perception of person orientation. For example, 

interactions have been found between face and body orientation information (Moors et al., 

2015) and between face orientation and gaze direction information (Gibson and Pick, 1963; 

Wollaston, 1824). To what extent the neural processes underlying face and body orientation 

may interact with each other remains unclear.  

Neuroimaging and electrophysiology studies have investigated which brain regions 

process information about face and body orientation in humans and macaque monkeys. For 

face orientation, human neuroimaging studies have found different patterns of response to 

different face orientations in the face-responsive occipital face area (OFA), fusiform face 

area (FFA) and posterior superior temporal sulcus (pSTS), as well as the object-responsive 

lateral occipital complex (LOC) and the early visual cortex (Axelrod and Yovel, 2012; 

Guntupalli et al., 2017; Kietzmann et al., 2012; Natu et al., 2010; Ramírez et al., 2014). 

Similarly, for macaque monkeys, neurons in the middle lateral and middle fundus face-

responsive patches and the anterior superior temporal sulcus (aSTS) have been shown to 

respond to specific face orientations (Dubois et al., 2015; Freiwald and Tsao, 2010; Perrett 

et al., 1985; Wachsmuth et al., 1994). For body orientation, human neuroimaging studies 

have shown that the body-responsive extrastriate body area (EBA) and fusiform body area 

(FBA) are sensitive to body orientation (Chan et al., 2004; Ewbank et al., 2011; Taylor et al., 

2010; Vangeneugden et al., 2014). Furthermore, recent studies have shown that the EBA 

also responds higher to interacting people as compared to non-interacting people (Abassi 

and Papeo, 2020; Walbrin and Koldewyn, 2019). In macaques, body orientation can be 
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decoded from both the middle and anterior STS body patches (Kumar et al., 2019). Body 

orientation responsive neurons have also been identified in the macaque aSTS (Wachsmuth 

et al., 1994).  

 While the above studies suggest that many occipitotemporal regions respond to face 

and/or body orientation, it remains unclear whether the observed neural responses reflect a 

high-level stimulus-independent encoding of orientation, or are driven by face- or body- 

specific features, such that the neural coding of a given face-orientation does not generalise 

to the neural coding of the corresponding body-orientation. Moreover, most previous 

studies have investigated the neural responses to the orientation of faces and bodies 

separately, leaving it an open question regarding whether face and body orientation are 

processed in completely separate or partially overlapping brain regions. There is some 

evidence that face- and body-responsive regions form independent and separated brain 

networks (Peelen and Downing, 2007; Premereur et al., 2016). However, other studies have 

shown that some categorical information (e.g. gender or weight) shared by faces and bodies 

can be coded in an abstract stimulus-independent manner (Foster et al., 2019; Ghuman et 

al., 2010). While human face and body orientation are often aligned with each other, few 

studies have tested whether this orientation alignment leads to a shared neural orientation 

code. Wachsmuth et al., (1994) found neurons in the macaque aSTS that responded to the 

orientation of faces and bodies displayed alone, despite remarkable differences in the low-

level visual features between face and body images. This finding suggests that the neural 

coding of face and body orientation may be partially overlapping. As the study only 

recorded neural activity in the aSTS, whether other brain regions encode orientation in such 

a stimulus-independent manner remains unknown.  

In this study, we investigated how face and body orientation information is 

processed in face- and body-responsive brain regions and, in particular, whether face and 

body orientation information is processed in completely separate or partially overlapping 

brain regions. To address this question, we recorded participants’ brain activity using fMRI 

while they viewed images of faces and bodies from three different orientations. We trained 

linear support vector machine (SVM) classifiers to distinguish between patterns of neural 

activity evoked by the three stimulus orientations and then used them to predict stimulus 

orientation in a separate set of test data. To directly compare which brain regions respond 
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to face and body orientation respectively, we performed multivoxel pattern analyses 

(MVPA) separately for neural activity evoked by faces and bodies. To investigate which brain 

regions encode orientation in a stimulus-independent manner that can generalize across 

faces and bodies, we trained classifiers on neural activity evoked by faces and tested them 

on neural activity evoked by bodies, and vice-versa. We performed these analyses in face- 

and body-responsive brain regions, as well as across the whole brain using searchlight 

analyses.  

We also investigated whether the neural coding of face and body orientation was 

enhanced when participants attended to stimulus orientation in comparison to when they 

did not. Most studies that have investigated the neural coding of face orientation used tasks 

that directed attention away from orientation (e.g. detection of brightness change in 

Ramírez et al., (2014), or detection of identity repetition in Axelrod and Yovel, (2012); 

Guntupalli et al., (2017)). These studies suggested that processing of face orientation 

information is relatively automatic (i.e. attending to stimulus orientation is not necessary). 

On the other hand, attending to face identity or facial expression has been shown to 

enhance the neural representation of these properties (Dobs et al., 2018; Foster et al., 2021; 

Guntupalli et al., 2017). For instance, Dobs et al., (2018) showed that decoding of face 

identities and facial expressions from neural responses were selectively improved for tasks 

involving explicit attention to identity and expression respectively. To test whether the 

neural coding of face and body orientation is modulated by task requirements, we had our 

participants perform two different behavioural tasks during fMRI scanning, one required 

attention to stimulus orientation, whereas the other required attention to stimulus identity. 

If the attention enhancement effect generalises to the processing of orientation, we would 

expect better decoding performance for the orientation task than the identity task.   
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2. Materials and methods 

Data analyses presented here were conducted using a dataset that was collected as 

part of a larger study, with prior analyses focusing on face and body identity (Foster et al., 

2021). Here we present novel findings investigating behavioural and neural responses to 

face and body orientation.  

2.1. Participants  

 20 participants (14 female, 6 male, 21-51 years old) completed the experiment. All 

participants provided written informed consent prior to the experiment, and the 

experimental procedure was approved by the local ethics committee of the University Clinic 

Tübingen. 

2.2. Stimuli  

2.2.1. Main experiment stimuli 

The experimental stimuli were images of faces and bodies shown from three 

different orientations, 0° (front), 45° (three-quarter view) and 90° (profile). Examples of the 

stimuli are shown in Fig. 1A. Face and body stimuli were created using face and body scans 

of three female individuals that were registered to a 3D facial shape and expression model 

for the face stimuli (Li et al., 2017) and a 3D body shape and pose model for the body stimuli 

(Loper et al., 2015). Body stimuli were shown in a standard A-pose (see Fig. 1A) and faces 

had a neutral expression. We brightened the texture obtained from the original scans and 

filled in any missing texture. Stimuli were shown in colour, and for body stimuli a grey 

rectangle was placed over the face, in order to exclude any face information from the body 

images. During the experiment face and body stimuli were shown at three different image 

sizes. Face stimuli had mean widths and heights of 4.4° x 6.4° (large), 3.6° x 5.2° (medium), 

and 2.8° x 4.0° (small) of visual angle, and body stimuli had mean widths and heights of 3.2° 

x 7.7° (large), 2.6° x 6.2° (medium), and 2.0° x 4.8° (small) of visual angle.  
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Figure 1. Experimental stimuli and example stimulus block. (A) Face and body images were shown 

from three different orientations: 0° (front), 45° (three-quarter) and 90° (profile). (B) Stimuli were 

shown in a block design during the experiment, where stimuli within a block were all from one 

condition (i.e. face or body, one orientation, one identity) and varied in their image-size (three 

different image-sizes, each shown twice, presented in a random order). Each block was followed by 

2 s fixation.  
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2.2.2. Localizer stimuli 

Stimuli for the localizer experiment consisted of grayscale images of faces, headless 

bodies, objects and phase-scrambled images. Phase-scrambled images were Fourier-

scrambled versions of a collage image containing the face and headless body images. None 

of the localizer stimuli were used as stimuli for the main experiment. 

2.3. Experimental design 

Participants lay supine in the MRI scanner and viewed the stimuli on a screen 

positioned 92 cm behind their head, which they viewed via a mirror attached to the head 

coil. The stimuli were presented using a projector (resolution 1920x1080), and the screen 

spanned 25° (horizontal) x 14° (vertical) of visual angle. The experiment was programmed 

with Matlab 2017a using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et 

al., 2007) and run on Ubuntu 17.10.  

2.3.1. Main experiment procedure  

 Each participant completed eight fMRI runs. Each run contained 18 different 

experimental conditions, resulting from a 2 (Stimuli type: face or body) x 3 (Orientation: 0°, 

45°, or 90°) x 3 (Identity) factorial design. Stimuli were presented in a block design (Fig. 1B). 

Each block lasted 6 s followed by 2 s fixation before the next block began. This block length 

was used to increase fMRI signal by blocking the stimuli whilst ensuring runs did not become 

too long, and has been successfully used in previous fMRI MVPA paradigms (e.g. Bannert 

and Bartels, 2017, 2013; Foster et al., 2019). Each run contained 54 blocks (3 repetitions per 

condition). These 54 blocks per run were presented in groups of 18 blocks (all conditions 

presented in random order), each group preceded by and followed by 8 s of fixation. Thus, 

each condition was repeated at three time points spaced throughout the run. Each block 

contained 6 images that were all from the same condition (i.e. face or body, one 

orientation, one identity). Images within a block were shown at three different image-sizes 

with scale factors of 1, 1.3 and 1.6 (i.e. the largest image-size was 1.6 times both the width 

and height of the smallest image-size). Each block contained 2 repetitions of each image-

size, shown in a random order. Each image in the block was shown for 0.9 s followed by a 

0.1 s blank grey screen.  
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2.3.2. Main experiment task 

We manipulated participants’ attention to orientation and identity during the 

experiment. In half of the fMRI runs participants were instructed at the beginning of the run 

to respond at the end of each block to which orientation (i.e. 0°, 45° or 90°) was presented 

in the block. In the other half of the runs, participants were instructed to respond to which 

identity was presented in the block. Participants were trained to recognise the three 

identities prior to the fMRI experiment. Participants pressed a button with one of three 

fingers to indicate the orientation or identity shown in the block.  

To maintain participants’ attention to the stimuli throughout the block, we asked 

participants to perform an additional attention task in all runs. Participants were instructed 

to respond by pressing a button with their thumb immediately whenever they saw an image 

belonging to the smallest of our three image-sizes (scale factor 1, shown twice per block in a 

random order).   

2.3.3. fMRI localizer experiment procedure 

Participants completed one run of a localizer experiment following the main 

experiment. Data from this localizer experiment was used to define face- and body-

responsive regions of interest (ROIs). The localizer experiment consisted of four stimulus 

conditions (faces, bodies, objects and phase-scrambled images) that were presented in a 

block design. Faces, bodies and objects were shown in front of the phase-scrambled images 

so that the size of the visual-field stimulation was the same for every image. Each block 

contained 8 images from one condition where each image was presented for 1.8 s followed 

by a 0.2 s blank grey screen. Different stimulus conditions were presented in a carryover 

counterbalanced sequence, so that each condition was preceded by each condition an equal 

number of times (Brooks, 2012).  

During the localizer experiment, to ensure that participants kept their attention on 

the stimuli, they performed a one-back matching task on the images. Image repetitions 

occurred once every 9 seconds on average.  

2.4. Imaging parameters 
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Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, GRAPPA 

acceleration factor 2, TR 1.84 s, TE 30 ms, flip angle 79°, FOV 192x192 mm. Volumes 

consisted of 60 slices, with an isotropic voxel size of 2x2x2 mm. The first 8 volumes of each 

run were discarded to allow for equilibration of the T1 signal. For each participant a high-

resolution T1-weighted anatomical scan was acquired with the following parameters; TR 2 s, 

TE 3.06 ms, FOV 232x256 mm, 192 slices, isotropic voxel size of 1x1x1 mm.  

2.5. MRI data preprocessing 

MRI data was preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). All 

functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. ROI and whole-brain searchlight analyses were conducted on the unsmoothed data 

in subject space. The resulting searchlight maps were normalised to MNI (Montreal 

Neurological Institute) space, and spatially smoothed with a 6 mm Gaussian kernel to allow 

for comparisons across participants. For the whole-brain univariate analyses the data was 

normalized to MNI space and spatially smoothed with a 6 mm Gaussian kernel. Localizer 

data was kept in subject-space and spatially smoothed with a 6 mm Gaussian kernel.  

2.6. Definition of regions of interest 

 We defined face- and body-responsive ROIs using fMRI data from our localizer 

experiment (Table 1). We defined four face-responsive ROIs the OFA, FFA pSTS and anterior 

temporal face area (ATFA) and two body-responsive ROIs, the EBA and FBA. For each 

participant, we initially attempted to define face-responsive ROIs using the contrast faces > 

objects and body-responsive ROIs using the contrast bodies > objects. If we could not define 

the ROIs using these contrasts then we attempted to define them using the contrasts faces 

> scrambled images and bodies > scrambled images. We first attempted to define ROIs using 

a threshold of p < .001 (uncorrected), and then reduced this threshold to p < .01 

(uncorrected) if the ROI could not be reliably defined using the first threshold. This approach 

allowed us to localize smaller ROIs that were not possible to detect at higher thresholds, 

whilst avoiding that larger ROIs became overly enlarged. We selected ROIs by selecting all 

active voxels within a rectangle around the activated ROI cluster. Supplementary Tables S1 

http://www.fil.ion.ucl.ac.uk/spm/
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and S2 provide further details for each ROI about how many participants we used each 

contrast and threshold for. Table S3 shows the mean overlap of ROI voxels across 

participants. We were able to define all ROIs in at least one hemisphere for every 

participant, and we combined right and left hemisphere ROIs into a single bilateral ROI for 

each participant. OFA, FFA and EBA ROIs were bilateral in all participants. pSTS and FBA ROIs 

were bilateral in 19 out of 20 participants and unilateral in the right hemisphere for 1 

participant for each ROI. ATFA ROIs were bilateral in 13 participants, unilateral in the right 

hemisphere for 5 participants and unilateral in the left hemisphere for 2 participants.   

 We defined three additional ROIs, the LOC and the left and right early visual cortex 

(EVC). We defined the LOC using fMRI data from our localizer experiment and the contrast 

objects > scrambled images, using a threshold of p < .001 (uncorrected). We combined left 

and right hemisphere ROIs to form one bilateral LOC ROI for each of our 20 participants. To 

define our EVC ROIs, we first defined an anatomical mask of the EVC that included V1 and 

V2 from the Julich-Brain atlas (Amunts et al., 2020). We then selected all EVC voxels that 

showed higher activation during all experimental conditions as compared to baseline, using 

a threshold of p < .001 (uncorrected). Thus, these left and right hemisphere EVC ROIs 

contained the portion of the EVC that was activated by our experimental stimuli.  

 As some of our ROIs overlapped, we additionally performed analyses with the face-

responsive OFA and FFA excluding body-responsive overlapping voxels from the EBA and 

FBA respectively. Similarly, we performed additional analyses with the body-responsive EBA 

and FBA excluding face-responsive overlapping voxels from the OFA and FFA respectively. 

The LOC also overlaps to some extent with the OFA and EBA. Table S4 gives details of the 

extent of the overlap between ROIs before exclusion of voxels, and Table S5 gives details of 

overlap after exclusion of overlapping face- and body-responsive voxels.  

 We plotted the responses of our face-, body- and object-responsive ROIs to illustrate 

their category-selectivity to all conditions of the localizer (Fig. S1), and additionally plotted 

the responses of ROIs with overlapping voxels removed (Fig. S2). These figures show that all 

face-responsive ROIs showed highest responses to faces, and the EBA showed highest 

responses to bodies. The FBA showed highest responses to faces including all FBA voxels, 

but showed highest responses to bodies when overlapping voxels from the FFA were 

removed. Surprisingly, the LOC showed higher responses to bodies than to objects, even 
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when overlapping voxels from the EBA and OFA were removed (Fig. S2; t18 = 4.47, p < .001). 

This trend was present in 18 out of 19 LOC ROIs with overlapping voxels removed. The LOC 

is traditionally defined by its higher responses to objects as compared to scrambled images 

(Malach et al., 1995), however this finding suggests that it shows even stronger responses to 

bodies than to general objects.  
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Table 1 

Average MNI coordinates and volume of each ROI (± standard deviations). N indicates the number of 

participants each ROI was identified in. ROI analyses were conducted in subject space and then ROIs 

were subsequently normalised to generate MNI coordinates.  

 

 

ROI hem x y z Volume (mm3) N 

OFA left -35 ± 6.7 -85 ± 5.7 -11 ± 3.5 770 ± 379.9 20 

 right 38 ± 4.0 -81 ± 5.8 -10 ± 3.3 1009 ± 378.6 20 

FFA left -40 ± 2.8 -55 ± 6.1 -20 ± 2.9 771 ± 354.7 20 

 right 43 ± 3.3 -52 ± 4.2 -18 ± 2.4 1073 ± 392.5 20 

pSTS left -50 ± 6.4 -62 ± 8.8 17 ± 10.2 519 ± 541.2 19 

 right 53 ± 5.5 -54 ± 10.0 12 ± 8.9 732 ± 403.1 20 

ATFA left -34 ± 5.4 -12 ± 6.5 -33 ± 6.6 172 ± 117.4 15 

 right 34 ± 5.8 -8 ± 5.5 -37 ± 5.8 335 ± 265.6 18 

EBA left -44 ± 3.7 -78 ± 5.3 3 ± 6.5 900 ± 473.3 20 

 right 49 ± 2.3 -70 ± 3.0 0 ± 4.6 1632 ± 503.2 20 

FBA left -39 ± 4.2 -50 ± 6.3 -20 ± 2.9 680 ± 456.7 19 

 right 41 ± 4.1 -50 ± 5.5 -18 ± 3.0 1105 ± 572.2 20 

LOC left -41 ± 3.9 -81 ± 4.4 -2 ± 5.2 696 ± 284.0 20 

 right 47 ± 3.0 -74 ± 3.9 -3 ± 4.7 746 ± 214.5 20 

EVC left -12 ± 1.8 -99 ± 1.8 -2 ± 3.1 1120 ± 408.5 19 

 right 19 ± 2.1 -96 ± 2.0 -1 ± 2.9 1262 ± 514.8 19 
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2.7. Behavioural analyses 

Participants were instructed to respond with a button press at the end of each block 

to indicate which orientation or identity was presented in the block (one half of blocks 

orientation task, the other half of blocks identity task). We measured participants’ 

behavioural performance using accuracy (% correct). To investigate whether detection of 

orientation or identity was different between the three stimuli orientations, we performed 

one-way repeated-measures ANOVAs with three levels (0°, 45° and 90° stimulus 

orientation). We corrected for non-sphericity where necessary following a Mauchly’s test of 

sphericity. Following any significant ANOVA results, we performed follow-up paired t-tests 

between all combinations of the three orientation conditions to determine exactly which 

conditions showed differences in behavioural performance.  

2.8. Univariate analyses 

We conducted univariate analyses to investigate if there were brain regions that 

showed different mean levels of neural responses to faces or bodies of different 

orientations and whether behavioural task modulated these neural responses. Following 

preprocessing, we modelled the fMRI data with a GLM using SPM12, where the neural 

responses to each condition were modelled as separate regressors. We performed 

univariate analyses in ROIs and in whole-brain analyses.  

For ROIs, we first performed 3 (Orientation) x 9 (ROI) x 2 (Behavioural Task) 

repeated-measures ANOVAs to investigate whether there were differences in the neural 

responses to different face/body orientations and whether the orientation responses 

differed across ROIs or behavioural task. We then conducted one-way repeated measures 

ANOVAs in each ROI to test which ROIs showed different responses to the three face and 

body orientations (i.e. 0°, 45° and 90°). We assessed significance using a threshold of p < .05, 

corrected for non-sphericity where necessary following a Mauchly’s test of sphericity. In 

ROIs showing significant differences in the ANOVA analyses, we performed follow up paired 

t-tests to determine which stimulus orientations showed differences in neural activation.  

For whole-brain analyses, we performed 3 (Orientation) x 2 (Behavioural Task) 

ANOVAs separately for face and body orientations to test which regions showed differences 
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in responses to different orientations and whether these responses were modulated by 

behavioural task. We assessed significance with a threshold of p < .05, FWE corrected.  

2.9. Multivoxel pattern analyses (MVPA) 

 We conducted multivoxel pattern analyses (MVPA) to investigate which brain 

regions contain different patterns of activity to faces and bodies of different orientations 

(0°, 45° and 90°). Following preprocessing, fMRI data was modelled with a General Linear 

Model (GLM) using SPM12, where the neural responses to each block were modelled as 

separate regressors in the GLM. MVPA analyses were then performed on the beta weight 

images with The Decoding Toolbox (Hebart et al., 2015) using a linear support vector 

machine classifier (LIBSVM) and a one-vs.-one winner-takes-all multiclass classification 

approach. We performed feature-scaling on the input data using z-score normalization and 

set any outlier values (values that were greater than 2 standard deviations from the mean) 

to 2 or -2. We estimated the mean and standard deviation for feature-scaling using the 

training data and then applied these values to the test data.  

 In the first set of MVPA analyses, we aimed to determine which brain regions contain 

separable patterns of activity to faces of different orientations and to bodies of different 

orientations. Thus, we analysed fMRI data evoked by face and body stimuli separately. We 

analysed fMRI data from the two behavioural tasks separately, thus we used 4 runs of fMRI 

data per analysis. In each analysis, we trained a linear SVM classifier to distinguish between 

neural activity evoked by the three stimulus orientations. We trained the classifier using 

neural activity data evoked by 2 of the 3 stimulus identities and from 3 of the 4 runs of fMRI 

data. We then tested the classifier on its ability to predict the three stimulus orientations 

from neural activity data evoked by the third stimulus identity from the 4th left-out run of 

fMRI data. Thus, if a brain region shows higher-than-chance decoding performance it must 

contain separable patterns of neural activity evoked by the three different stimulus 

orientations that can generalize across the stimulus identity. We used a 4-fold cross-

validation procedure where we repeated the analysis 4 times with each run used once as 

the held out test dataset. We also repeated the analysis 3 times with each stimulus identity 

used as the held out test identity once. The final decoding accuracy was determined by 

averaging over the 4 cross-validation and 3 stimulus identity combinations.  
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 In the second set of MVPA analyses, we aimed to determine which brain regions 

contain separable patterns of neural activity to the three stimulus orientations that could 

generalize across face and body stimuli. A region showing successful decoding in this 

analysis would suggest it encodes orientation, regardless of the stimuli being faces or 

bodies. We again analysed fMRI data from the two behavioural tasks separately and used 4 

runs of data per analysis. We trained a linear SVM classifier to distinguish between neural 

activity evoked by the three stimulus orientations, using neural activity data evoked by face 

stimuli from 3 of the 4 runs of fMRI data. We then tested the classifier on its ability to 

predict the three stimulus orientations from neural activity data evoked by body stimuli 

from the 4th left out run of fMRI data. We again used a 4-fold cross-validation procedure 

where we repeated the analysis 4 times with each run used once as the held out test 

dataset. In addition, we repeated the analysis but using neural activity data evoked by body 

stimuli as the training set and neural activity data evoked by face stimuli as the test dataset. 

The final decoding accuracy was determined by averaging over the 4 cross-validation and 

the two training and test dataset combinations.   

 We conducted all MVPA analyses in ROIs and whole-brain searchlight analyses. For 

ROI analyses, we first performed 9 (ROI) x 2 (Behavioural Task) repeated-measures ANOVAs 

to test whether there were differences in orientation classification across ROIs or 

behavioural task. We then used permutation testing to determine which ROIs showed 

higher than chance classification performance. For each ROI we repeated each analysis 

10,000 times with the condition labels assigned in a random order, in order to generate a 

null distribution of classification accuracies that would be expected by chance. We assessed 

significance by testing whether the actual mean decoding performance was higher than the 

95th percentile of the null distribution, i.e. a significance threshold of p < .05 (see Schreiber 

and Krekelberg, 2013 for an overview of permutation testing methods in MVPA). We 

additionally used a Bonferroni correction to adjust for multiple comparisons (N = 9 ROIs 

tested). Next, we performed paired t-tests between ROIs that did and did not show higher-

than-chance decoding performance, in order to test if there were significant differences in 

decoding performance between these pairs of ROIs. Corrections for multiple comparisons 

were not performed for follow-up tests. Lastly, we tested whether there were differences 

between face and body orientation classification across ROIs or behavioural task, with a 2 
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(Classification of Face or Body orientation) x 9 (ROI) x 2 (Behavioural Task) repeated 

measures ANOVA.  

 We performed whole-brain searchlight analyses in subject-space using 4-voxel radius 

spheres, which were centred around each voxel in the brain once. Thus for each participant 

and each analysis we obtained a whole-brain map of classification accuracies. These maps 

were then normalised to MNI space and smoothed with a 6 mm Gaussian kernel to allow for 

comparisons across participants. First, we performed paired t-test between searchlight 

results from the two behavioural tasks to test whether there were differences in decoding 

performance across the two tasks, using a threshold of p < .05, family-wise error rate (FWE) 

to correct for multiple comparisons. If no significant differences were identified, we 

combined searchlight results from the two behavioural tasks. Next, to test which regions 

showed higher than chance orientation decoding performance, we used SnPM13 

(http://warwick.ac.uk/snpm) to assess significance using nonparametric permutation tests 

(Nichols and Holmes, 2001) with 10,000 permutations and 6 mm FWHM variance 

smoothing. This method uses a nonparametric sign-flip method to generate a group null 

distribution (Nichols and Holmes, 2001), and we tested for significance using a one-sided t-

test with a threshold of p < .05, family-wise error rate (FWE) corrected for multiple 

comparisons. Lastly, we performed a 2 (Classification of Face or Body orientation) x 2 (Task) 

whole-brain ANOVA to test if there were differences between face and body orientation 

classification, or any interaction between face and body orientation classification and 

behavioural task, and used a threshold of p < .05, family-wise error rate (FWE) to correct for 

multiple comparisons. 

2.10. Data and code availability statement 

Data cannot be shared as participants were informed that their data would be stored 

confidentially, in accordance with the rules of the local ethics committee. Code is available 

at: https://osf.io/uwb48/   

http://warwick.ac.uk/snpm
https://osf.io/uwb48/
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3. Results 

3.1. Behavioural results 

 Participants’ mean accuracy in detecting the orientation and identity of stimuli of the 

three different stimulus orientations (0°, 45° and 90°) during the fMRI experiment is shown 

in Figure 2.  

   

 

Figure 2. Accuracy (% correct) in detection of orientation and identity for stimuli from the three 

different orientation conditions. (A) and (C) show participants accuracy in detecting the orientation 

of face (A) and body (C) stimuli. (B) and (D) show participants accuracy in detecting the identity of 

face (B) and body (D) stimuli. Error bars indicate ±1 SEM. * indicates p < .05, paired t-test.  

 

3.1.1. Orientation detection 

 For the orientation detection task, participants showed a high accuracy for both face 

and body stimuli across all conditions (face stimuli: 93.8%; body stimuli: 94.3%). A one-way 

repeated-measures ANOVA showed there were no differences in face orientation detection 

performance between different orientations (F2,38 = 0.23, p = .79, ηp
2 = 0.012; Fig.2A). In 

contrast, body orientation detection performance was different between the three 
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orientations (F2,38 = 3.54, p = .039, ηp
2 = 0.16; Fig. 2C). Follow-up paired t-tests showed that 

detection accuracy was lower for 90° body stimuli than for 45° (M = -2.9%, SE = 1.31, t19 = -

2.2, p = .039, Cohen’s dz = 0.50) and 0° body stimuli (M = -2.8%, SE = 1.21, t19 = -2.3, p = .033, 

Cohen’s dz = 0.54). There was no difference in detection accuracy between 45° and 0° body 

stimuli (M = 0.1%, SE = 1.18, t19 = 0.12, p = .91, Cohen’s dz = 0.026). Note that overall 

detection accuracy was very high for all three body orientations (0°: 95.1%, 45°: 95.3%, 90°: 

92.4%), showing that participants could easily detect all three body orientations.  

3.1.2. Identity detection 

For the identity detection task, participants showed high accuracy for both face 

(96.2%, Fig. 2B) and body (92.5%, Fig. 2D) stimuli. One-way repeated-measures ANOVAs 

showed no differences in identity detection across the three orientations (face stimuli, F2,38 

= 0.68, p = .51, ηp
2 = 0.035; body stimuli, F2,38 = 0.30, p = .74, ηp

2 = 0.016). This result shows 

that participants could detect the stimulus identities equally well regardless of the 

orientation of the stimuli.  

3.2. Univariate fMRI analyses 

3.2.1. Face orientation responses 

To investigate whether faces of different orientations evoked different mean levels 

of neural activity, we first conducted a 3 (Orientation) x 9 (ROI) x 2 (Task) repeated-

measures ANOVA to investigate if there were differences in the neural responses to 

different face orientations, and whether any differences varied across ROIs or the 

behavioural task performed. We found a significant main effect of Orientation (F2,36 = 15.80, 

p < .001, ηp
2 = 0.47), as well as a significant interaction between Orientation and ROI (F16,288 

= 29.17, p < .001, ηp
2 = 0.62), but no interaction between Orientation and Task (F2,36 = 0.66, 

p = .52, ηp
2 = 0.04) or triple-interaction between Orientation, ROI and Task (F16,288 = 1.09, p = 

.36, ηp
2 = 0.06). As we did not find any interaction with participant’s behavioural task, we 

combined results from the two tasks for further analyses exploring the univariate face 

orientation responses in our ROIs.   

To test which ROIs showed different overall levels of neural activity to faces of 

different orientations, we conducted one-way repeated measures ANOVAs with 3 levels (0°, 



Face & Body Orientation  21 
 

45° and 90°). Results are shown in Fig. 3 and results are shown for each participant in Fig. S3 

and S4. For face-responsive ROIs, we found a significant effect of face orientation in the 

face-responsive OFA (F2,38 = 8.00, p = .001, ηp
2 = 0.30) and ATFA (F2,38 = 4.36, p = .020, ηp

2 = 

0.19), but not in the FFA (F2,38 = 2.62, p = .09, ηp
2 = 0.12) or pSTS (F2,38 = 0.29, p = .75, ηp

2 = 

0.01). There was also a significant effect of face orientation condition in the body-responsive 

EBA (F2,38 = 99.32, p < .001, ηp
2 = 0.84) and FBA (F2,38 = 11.92, p < .001, ηp

2 = 0.39), as well as 

the left and right EVC (lEVC: F2,36 = 7.57, p = .010 Greenhouse-Geisser corrected for non-

sphericity, ηp
2 = 0.30; rEVC: F2,36 = 46.13, p < .001, ηp

2 = 0.72) and object-responsive LOC 

(F2,38 = 64.61, p < .001, ηp
2 = 0.77). Table S6 shows the results of follow-up paired t-tests 

investigating which orientations showed significant differences in ROIs that showed 

differences in face orientation responses. We additionally performed a 3 (Orientation) x 2 

(Task) whole-brain ANOVA to investigate if any other brain regions showed a significant 

effect of orientation or interaction between orientation and behavioural task, but did not 

identify any significant regions in this analysis.  
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Figure 3. Differences in mean BOLD responses (beta estimates) to faces of different orientations in 

face- and body-responsive ROIs (A) and EVC and LOC ROIs (B). * indicates p < .05, paired t-test. Error 

bars indicate ±1 SEM. 

 

3.2.2. Body orientation responses 

To test whether different body orientations evoked different mean levels of neural 

activity, we conducted a 3 (Orientation) x 9 (ROI) x 2 (Task) repeated-measures ANOVA. This 

allowed us to investigate whether there were differences in the neural responses to bodies 

of different orientations, and whether responses varied across ROIs or across the two 

behavioural tasks. We found a significant main effect of Orientation (F2,36 = 22.59, p < .001, 

ηp
2 = 0.56) and a significant interaction between Orientation and ROI (F16,288 = 86.87, p < 

.001, ηp
2 = 0.83), but no interaction between Orientation and Task (F2,36 = 1.47, p = .24, ηp

2 = 

0.08) or triple-interaction between Orientation, ROI and Task (F16,288 = 0.85, p = .62, ηp
2 = 

0.05). As we did not find an interaction with the behavioural task, we combined results from 

the two tasks for further analyses exploring univariate body orientation responses in our 

ROIs.    

To investigate which ROIs showed different overall levels of neural activity to bodies 

of different orientations, we conducted one-way repeated measures ANOVAs with 3 levels 

(0°, 45° and 90°). The results are shown in Fig. 4 and results are shown for each participant 

in Fig. S5 and S6. For the face and body-responsive ROIs, we found significant differences in 

BOLD response to body orientation in the body-responsive EBA (F2,38 = 12.61, p < .001, ηp
2 = 

0.40) and face-responsive OFA (F2,38 = 6.42, p = .004, ηp
2 = 0.25), but not in any other body- 

or face-responsive ROIs (FBA: F2,38 = 2.01, p = 0.15, ηp
2 = 0.10; FFA: F2,38 = 2.20, p = .12, ηp

2 = 

0.10; pSTS: F2,38 = 0.13, p = .88, ηp
2 = 0.01; ATFA: F2,38 = 1.00, p = .38, ηp

2 = 0.05). We also 

found significant differences in responses to different body orientations in the left and right 

EVC (lEVC: F2,36 = 2.57, p < 0.001 Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 

0.80; rEVC: F2,36 = 143.40, p < .001, ηp
2 = 0.89) and object-responsive LOC (F2,38 = 17.33, p < 

0.001, ηp
2 = 0.48). Results of follow-up paired t-tests to investigate which body orientations 

showed response differences in the OFA, EBA, left and right EVC and LOC, are shown in 

Table S7. We also conducted a 3 (Orientation) x 2 (Task) whole-brain ANOVA to investigate if 
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any other brain regions showed differences in body orientation responses or an interaction 

between body orientation and behavioural task, but we did not identify any significant 

regions in this analysis.  

 

 

Figure 4. Differences in mean BOLD responses (beta estimates) to bodies of different orientations in 

face- and body-responsive ROIs (A) and EVC and LOC ROIs (B). * indicates p < .05, paired t-test. Error 

bars indicate ±1 SEM. 
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3.3. Classification of face orientation 

We first investigated which brain regions show face orientation-specific patterns of 

neural activity that could generalize across face identity. We trained a linear SVM classifier 

to distinguish between patterns of neural activity evoked by the three face orientations of 

two identities. We then tested the classifier on its ability to decode the face orientation of 

the third identity, using neural activity data in a left out run of data. We used a leave one 

run out cross validation method, and also repeated the analysis with each identity used 

once as the test identity. We performed the analysis in face- and body-responsive ROIs as 

well as in searchlight analyses across the whole brain. The results are shown in Fig. 5 and 

classifier confusion matrices are shown in Fig. S7. 

 

 

Figure 5. Classification of face orientation. Classification accuracies for face- and body responsive 

ROIs (A) and EVC and LOC ROIs (B) are shown as their % above chance-level (1/3). Grey scatter points 

show classification accuracies for individual participants, ** indicates p < .001, * indicates p < .05, 

permutation test and Bonferroni corrected for N = 9 ROIs. (C) shows classification of face orientation 

in a whole-brain searchlight analysis. The scale bar shows –log10(p values) between 1.301 (p = .05) 

and 4 (p = 1 x10-4), FWE corrected. 
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3.3.1. ROI analyses 

 We first conducted a 9 (ROI) x 2 (Task) repeated-measures ANOVA to test whether 

face orientation classification differed across ROIs or was influenced by the behavioural task 

performed by the participants. We found a significant main effect of ROI (F8,144 = 69.92, p < 

.001, ηp
2 = 0.80), but no main effect of Task (F1,18 = 0.03, p = .869, ηp

2 = 0.00) or interaction 

between the two factors (F8,144 = 1.69, p = .106, ηp
2 = 0.09). Thus, decoding performance 

differed across our ROIs, but was unaffected by behavioural task. Therefore, we pooled 

results from the two behavioural tasks for further face orientation classification analyses.  

 To test from which ROIs we could decode face orientation at higher than chance-

level (1/3), we conducted permutation tests in each ROI, Bonferroni-corrected for N = 9 

ROIs. Classification of face orientation was significantly above chance-level (1/3) in the face-

responsive OFA (50.8%, p < .001 Bonferroni-corrected, Cohen’s dz = 2.35) and FFA (37.5%, p 

< .001 Bonferroni-corrected, Cohen’s dz = 1.26), but not in the pSTS (34.7%, p = .019 

uncorrected, Cohen’s dz = 0.65) or the ATFA (33.8%, p = .21 uncorrected, Cohen’s dz = 0.21). 

Interestingly, both body-responsive ROIs also showed above chance classification of face 

orientation (EBA: 41.9%, p < .001 Bonferroni-corrected, Cohen’s dz = 1.71; FBA: 35.7%, p < 

.001 Bonferroni-corrected, Cohen’s dz = 0.81). Classification of face orientation was also 

significantly above chance in the left and right EVC (lEVC: 56.4%, p < .001 Bonferroni-

corrected, Cohen’s dz = 2.28; rEVC: 56.4%, p < .001 Bonferroni-corrected, Cohen’s dz = 3.25) 

and the object-responsive LOC (44.1%, p < .001 Bonferroni-corrected, Cohen’s dz = 1.46).  

 As face- and body-responsive ROIs can partially overlap (Schwarzlose et al., 2005), 

we conducted a follow-up test to investigate whether decoding performance was still 

significantly above chance level if body-responsive voxels were excluded from OFA and FFA 

ROIs, and if face-responsive voxels were excluded from EBA and FBA ROIs (Fig. 6). We found 

we could still decode face orientation significantly above chance level from the OFA, FFA 

and EBA (OFA: 50.5%, p < .001 Bonferroni-corrected, Cohen’s dz = 2.23; FFA: 37.0%, p < .001 

Bonferroni-corrected, Cohen’s dz = 0.85; EBA: 41.3%, p < .001 Bonferroni-corrected, Cohen’s 

dz = 1.62), but not from the FBA (34.3%, p = .057 uncorrected, Cohen’s dz = 0.26). Thus, it 

seems that face orientation decoding in the FBA was driven by overlapping voxels from the 

neighbouring FFA.  
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 To test whether face orientation classification performance was significantly higher 

in the face- and body-responsive ROIs where we found higher than chance classification 

performance (i.e. the OFA, FFA and EBA) as compared to face- and body-responsive ROIs 

that did not show higher than chance face orientation classification (i.e. pSTS, ATFA and FBA 

excluding face-responsive voxels) we conducted paired t-tests between each pair of ROIs. 

These tests confirmed that face orientation classification was significantly higher in the OFA, 

FFA and EBA than in the pSTS, ATFA and FBA ROI excluding face-responsive voxels. Full 

results of these paired t-tests are shown in Table 2.  

 

 

Figure 6. Classification of face orientation in face- and body-responsive ROIs, with overlapping face- 

and body-responsive voxels excluded. Classification accuracies are shown as their % above chance-

level (1/3). Grey scatter points show classification accuracies for individual participants, ** indicates 

p < .001, * indicates p < .05, permutation test and Bonferroni corrected for N = 9 ROIs.  
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Table 2 

Results of paired t-tests comparing differences in face orientation classification performance 

between face- and body-responsive ROIs. In these tests the FFA ROI included overlapping body-

responsive voxels, but face-responsive voxels were excluded from the FBA ROI.   

Paired t-test Mean 

difference 

Standard error t value p value Cohen’s dz 

OFA vs. pSTS 16.96% 1.260 13.46 < .001 2.29 

OFA vs. ATFA 17.79% 1.566 11.36 < .001 3.09 

OFA vs. FBA  17.42% 1.825 9.55 < .001 2.19 

FFA vs. pSTS 3.02% 0.801 3.77 .001 0.87 

FFA vs. ATFA 3.85% 0.951 4.05 < .001 0.93 

FFA vs. FBA 3.48% 1.130 3.08 .006 0.71 

EBA vs. pSTS 7.50% 0.804 9.34 < .001 2.14 

EBA vs. ATFA 8.33% 1.221 6.82 < .001 1.57 

EBA vs. FBA 7.97% 1.391 5.73 < .001 1.31 

  

3.3.2. Searchlight analyses 

 We conducted whole-brain searchlight analyses to investigate if any additional brain 

regions showed different patterns of responses to different face orientations. First, we 

conducted a paired t-test between searchlight face orientation decoding results from the 

orientation and identity recognition tasks, to test whether any regions showed differences 

in face orientation responses depending on the behavioural task performed. We found a 

significantly higher activity in the left motor cortex during the orientation recognition task 

compared to the identity recognition task. This is due to participants’ responding using 

button presses with different fingers to indicate which orientation was shown in the block 

during the orientation recognition task. As no other regions showed any significant 

differences in responses between the two recognition tasks, we combined results from the 

two behavioural tasks for further face orientation searchlight analyses.  

 Our searchlight analysis showed that face orientation could be decoded from a large 

area of occipitotemporal cortex (Fig 5C). Consistent with our ROI results, this region 

included both the face-responsive OFA, the body-responsive EBA and object-responsive 
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LOC, as well as the early visual cortex, and spread to the posterior fusiform gyrus adjacent 

to the FFA.  

3.4. Classification of body orientation 

We performed the same classification analyses to investigate the neural responses 

to body orientation as we used to investigate the neural responses to face orientation in 

Section 3.3. The results are shown in Fig. 7 and classifier confusion matrices are shown in 

Fig. S8. 

 

 

Figure 7. Classification of body orientation. Classification accuracies for face- and body responsive 

ROIs (A) and EVC and LOC ROIs (B) are shown as their % above chance-level (1/3). Grey scatter points 

show classification accuracies for individual participants, ** indicates p < .001, * indicates p < .05, 

permutation test and Bonferroni corrected for N = 9 ROIs. (C) shows classification of body 

orientation in a whole-brain searchlight analysis. The scale bar shows –log10(p values) between 1.301 

(p = .05) and 4 (p = 1 x10-4), FWE corrected. 
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3.4.1. ROI analyses 

 To test whether body orientation classification differed across ROIs or behavioural 

task, we conducted a 9 (ROI) x 2 Task) repeated-measures ANOVA. This revealed a 

significant main effect of ROI (F8,144 = 77.14, p < .001, ηp
2 = 0.81), but no main effect of Task 

(F1,18 = 0.11, p = .747, ηp
2 = 0.01) or interaction between the two factors (F8,144 = 1.20, p = 

.302, ηp
2 = 0.06). Thus, decoding performance differed across our ROIs, but was unaffected 

by behavioural task. Therefore, as previously, we pooled results from the two behavioural 

tasks for further body orientation classification analyses.  

To test in which ROIs we could decode body orientation at a higher-than-chance 

level (1/3), we conducted permutation tests in each ROI, Bonferroni-corrected for N = 9 

ROIs. Classification of body orientation was significantly above chance-level (1/3) in the 

body-responsive EBA (40.8%, p < .001 Bonferroni corrected, Cohen’s dz = 2.61) and the face-

responsive OFA (42.9%, p < .001 Bonferroni corrected, Cohen’s dz = 1.35). Classification of 

body orientation was not significantly higher than chance in the body-responsive FBA 

(34.5%, p = .027 uncorrected, Cohen’s dz = 0.54) or face-responsive FFA (34.6%, p = .019 

uncorrected, Cohen’s dz = 0.54), pSTS (32.4%, p = .92 uncorrected, Cohen’s dz = 0.36) or 

ATFA (33.8%, p = .232 uncorrected, Cohen’s dz = 0.20). For early visual and object-responsive 

ROIs, classification of body orientation was significantly above chance for both left and right 

EVC (lEVC: 52.9%, p < .001 Bonferroni corrected, Cohen’s dz = 2.67; rEVC: 59.8%, p < .001 

Bonferroni corrected, Cohen’s dz = 2.64) and the LOC (40.5%, p < .001 Bonferroni corrected, 

Cohen’s dz = 1.62). 

 To test whether any overlapping voxels between the face-responsive OFA and body-

responsive EBA might have contributed to body orientation classification in these ROIs, we 

conducted a follow-up test to investigate if decoding performance was still above chance-

level if body-responsive voxels were excluded from OFA ROI, and face-responsive voxels 

were excluded from the EBA ROI. We found that body orientation decoding was still 

significantly above chance-level in both ROIs (EBA: 40.1%, p < .001 Bonferroni corrected, 

Cohen’s dz = 2.24; OFA: 43.4%, p < .001 Bonferroni corrected, Cohen’s dz = 1.40).  

To investigate whether body orientation classification performance was significantly 

higher in the body-responsive EBA and face-responsive OFA, where we found higher than 
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chance classification performance, as compared to face- and body-responsive ROIs that did 

not show higher than chance body orientation classification, we conducted paired t-tests 

between these ROIs. These tests confirmed that body orientation classification was 

significantly higher in the EBA and OFA compared to the FBA, FFA, pSTS, and ATFA. Full 

results of these paired t-tests are shown in Table 3.  

 

Table 3 

Results of paired t-tests comparing differences in body orientation classification performance 

between face- and body-responsive ROIs.  

Paired t-test Mean 

difference 

Standard error t value p value Cohen’s dz 

EBA vs. FBA 6.21% 0.772 8.05 < .001 1.85 

EBA vs. FFA 5.99% 0.720 8.33 < .001 1.91 

EBA vs. pSTS  8.38% 0.882 9.51 < .001 2.18 

EBA vs. ATFA 7.14% 0.771 9.26 < .001 2.12 

OFA vs. FBA 8.77% 1.507 5.82 < .001 1.34 

OFA vs. FFA 8.55% 1.607 5.32 < .001 1.22 

OFA vs. pSTS 10.94% 1.601 6.83 < .001 1.57 

OFA vs. ATFA 9.70% 1.744 5.56 < .001 1.28 

 

3.4.2. Searchlight analyses 

 We conducted whole-brain searchlight analyses to investigate if any additional brain 

regions showed different patterns of responses to different body orientations. First, we 

conducted a paired t-test between results from the orientation and identity recognition 

tasks, to test whether any regions showed differences in body orientation responses 

depending on the behavioural task performed. We did not find any significant regions in this 

analysis, therefore we combined results from the two behavioural tasks for further body 

orientation searchlight analyses. We found that we could decode body orientation from a 

large area of occipitotemporal cortex, including the early visual cortex (Fig 7C). This region 

also overlapped with the mean coordinates of the EBA, OFA and LOC.  
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3.5. Comparison between face and body orientation classification 

We performed further analyses to investigate whether there were differences in the 

regions encoding face and body orientation information.  

3.5.1. ROI analyses 

First, we performed a 2 (Face/Body orientation responses) x 9 (ROI) x 2 (Task) 

repeated measures ANOVA to test whether there were significant interactions between 

face/body orientation decoding and ROI or behavioural task. We found a significant 

interaction between Face/Body orientation and ROI (F8,144 = 7.18, p < .001, ηp
2 = 0.29), but 

no triple interaction between the three factors (F8,144 = 1.96, p = .056, ηp
2 = 0.10).  

Next, we performed follow-up paired t-tests between face and body orientation 

decoding in each ROI to investigate which regions showed significant differences in face and 

body decoding performance. We found that classification of face orientation was 

significantly higher than classification of body orientation in the OFA, FFA, pSTS, left EVC and 

LOC, and body orientation decoding was significantly higher than face orientation decoding 

in the right EVC. The EBA, FBA and ATFA showed no differences between classification of 

face and body orientation. Full results of these paired t-tests are shown in Table 4.  

 

Table 4 

Results of paired t-tests in ROIs comparing face vs. body orientation classification performance.  

ROI Mean difference Standard error t value p value Cohen’s dz 

OFA  7.96% 1.583 5.03 < .001 1.13 

FFA 2.94% 0.662 4.44 < .001 0.99 

pSTS 2.22% 0.753 2.95 .008 0.66 

ATFA 0.05% 0.740 0.06 .951 0.01 

EBA 1.06% 0.985 1.08 .293 0.24 

FBA  1.13% 0.734 1.55 .139 0.35 

lEVC 3.44% 1.633 2.10 .050 0.48 

rEVC -3.46% 1.600 -2.16 .044 0.50 

LOC 3.52% 1.284 2.74 .013 0.61 
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3.5.2. Searchlight analyses 

 To investigate whether any other regions showed differences in face and body 

orientation decoding or an interaction between face/body orientation decoding and 

behavioural task, we performed a 2 (Face/body orientation classification) x 2 (Task) whole-

brain ANOVA. This ANOVA revealed a significant main effect of face/body orientation 

classification in the left somatosensory cortex, but no other regions. This finding may be due 

to a difference in participant’s responses during the orientation recognition task for face 

and body stimuli. However, no regions showed a significant interaction between face/body 

orientation classification and behavioural task.  

3.6. Classification of orientation across face and body stimuli 

We performed classification analyses across neural activity evoked by face and body 

stimuli to investigate whether any regions contain a neural coding of orientation that could 

generalise across face and body stimuli. Specifically, we first trained a linear SVM classifier 

to distinguish between patterns of neural activity evoked by faces of different orientations 

and then tested this trained classifier on its ability to classify the orientation of neural 

activity evoked by body stimuli (and vice-versa using neural activity evoked by body stimuli 

for training the classifier and neural activity evoked by face stimuli for testing it). The results 

are shown in Figure 8 and classifier confusion matrices are shown in Fig. S9. 
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Figure 8. Cross-classification of orientation across neural activity evoked by face and body stimuli. 

Classification accuracies for face- and body responsive ROIs (A) and EVC and LOC ROIs (B) are shown 

as their % above chance-level (1/3). Grey scatter points show classification accuracies for individual 

participants, ** indicates p < .001, * indicates p < .05, permutation test and Bonferroni corrected for 

N = 9 ROIs. (C) shows cross-classification of orientation across neural activity evoked by face and 

body stimuli in a whole-brain searchlight analysis. The scale bar shows –log10(p values) between 

1.301 (p = .05) and 4 (p = 1 x10-4), FWE corrected. 

 

3.6.1. ROI analyses 

 We first performed a 9 (ROI) x 2 (Task) repeated measures ANOVA to investigate if 

orientation cross-classification differed across ROIs or behavioural task. We found a 

significant main effect of ROI (F8,144 = 26.05, p < .001, ηp
2 = 0.59), but no main effect of 

behavioural task (F1,18 = 0.01, p = .915, ηp
2 = 0.00) or interaction between ROI and task (F8,144 

= 0.35, p = .944, ηp
2 = 0.02). Thus, as previously we combined results from the two 

behavioural tasks for further analyses.  

 Next, we conducted permutation tests to test which ROIs showed higher than 

chance (1/3) cross-classification of orientation. Classification of orientation across neural 
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activity evoked by face and body stimuli was significantly above chance-level (1/3) in the 

OFA (38.2%, p < .001 Bonferroni corrected, Cohen’s dz = 1.34) and the EBA (37.5%, p < .001 

Bonferroni corrected, Cohen’s dz = 1.47), but not in any other face-responsive ROIs (FFA: 

34.9%, p = .008 uncorrected, Cohen’s dz = 0.81; pSTS: 34.7%, p = .015 uncorrected, Cohen’s 

dz = 0.62; ATFA: 33.7%, p = .301 uncorrected, Cohen’s dz = 0.27) or in the FBA (34.4%, p = 

.044 uncorrected, Cohen’s dz = 0.48). We were also able to decode orientation across face 

and body stimuli from the right EVC (39.0%, p < .001 Bonferroni corrected, Cohen’s dz = 

1.07) and object-responsive LOC (38.2%, p < .001 Bonferroni corrected, Cohen’s dz = 1.62), 

but not from the left EVC (29.1%, p = 1.00 uncorrected, Cohen’s dz = 1.26).  

 To test whether any overlapping face-responsive voxels might have contributed to 

our decoding results in the EBA, or whether any overlapping body-responsive voxels might 

have contributed to our decoding results in the OFA, we conducted follow-up classification 

analyses with EBA and OFA ROIs with these voxels excluded. We were still able to decode 

orientation from both ROIs (EBA: 37.2%, p < .001 Bonferroni corrected, Cohen’s dz = 1.34; 

OFA: 37.3%, p < .001 Bonferroni corrected, Cohen’s dz = 1.06).  

To test whether orientation cross-classification performance was significantly higher 

in the face-responsive OFA and body-responsive EBA as compared to face- and body-

responsive ROIs that did not show higher than chance orientation cross-classification, we 

conducted paired t-tests between these ROIs. These tests confirmed that orientation 

classification across face and body stimuli was significantly higher in the OFA and EBA as 

compared to the FFA, pSTS, ATFA and FBA. Full results of these paired t-tests are shown in 

Table 5.  
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Table 5 

Results of paired t-tests comparing differences in orientation classification across face and body 

stimuli between face- and body-responsive ROIs.  

Paired t-test Mean 

difference 

Standard error t value p value Cohen’s dz 

OFA vs. FFA 3.67% 0.785 4.67 < .001 1.07 

OFA vs. pSTS 3.86% 0.816 4.73 < .001 1.09 

OFA vs. ATFA 4.79% 0.931 5.14 < .001 1.18 

OFA vs. FBA 4.06% 0.904 4.49 < .001 1.03 

EBA vs. FFA 2.79% 0.629 4.44 < .001 1.02 

EBA vs. pSTS  2.98% 0.859 3.47 .003 0.80 

EBA vs. ATFA 3.91% 0.702 5.57 < .001 1.28 

EBA vs. FBA 3.18% 0.750 4.24 < .001 0.97 

 

 

3.6.2. Searchlight analyses 

 We conducted whole brain searchlight analyses to see if any additional regions 

contained patterns of orientation responses that could generalise across face and body 

stimuli. We first performed a paired t-test between searchlight maps from the orientation 

and identity recognition tasks, to test whether any regions showed differences in 

orientation classification depending on which behavioural task was performed. We did not 

find any regions in this analysis, thus we combined results from the two behavioural tasks 

for further analysis.  

Our whole-brain searchlight analysis revealed that bilateral regions overlapping with 

the OFA, EBA and LOC were able to decode orientation across neural activity evoked by face 

and body stimuli (Fig 8C), consistent with our ROI analyses. Interestingly, these regions were 

located at a point where the LOC, EBA and OFA intersect. Supplemental Figure S10 

illustrates the clusters for each participant in relation to the mean locations of LOC, EBA and 

OFA for each participant. Orientation could also be decoded across face and body stimuli in 

the right early visual cortex.  
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3.6.3. Classification of orientation across face and body stimuli separated by training and 

testing direction 

 To investigate whether there was any asymmetry in our ability to decode orientation 

across neural activity evoked by face and body stimuli depending on whether we trained on 

faces and tested on bodies, or vice-versa, we performed classification analyses separated 

for these two training and testing directions (Fig S11). We were able to decode orientation 

significantly above chance from both the OFA (orientation task, train on bodies test on 

faces: 38.9 %, p < .001 Bonferroni corrected, Cohen’s dz = 1.33; orientation task, train on 

faces, test on bodies: 38.2 %, p < .001 Bonferroni corrected, Cohen’s dz =0.92; identity task, 

train on bodies test on faces: 38.5 %, p < .001 Bonferroni corrected, Cohen’s dz = 1.01; 

identity task, train on faces, test on bodies: 37.3 %, p < .001 Bonferroni corrected, Cohen’s 

dz = 0.76) and EBA (orientation task, train on bodies test on faces: 36.6 %, p < .001 

Bonferroni corrected, Cohen’s dz = 0.92; orientation task, train on faces, test on bodies: 37.8 

%, p < .001 Bonferroni corrected, Cohen’s dz = 1.10; identity task, train on bodies test on 

faces: 37.7 %, p < .001 Bonferroni corrected, Cohen’s dz = 1.08; identity task, train on faces, 

test on bodies: 37.7 %, p < .001 Bonferroni corrected, Cohen’s dz = 1.00) for both training 

and testing directions, but not from any other ROIs. Furthermore, we performed paired t-

tests to investigate if there were any differences in classification accuracy between the two 

training/testing directions. We did not find any significant differences in classification 

accuracy between the two training/testing directions for OFA (orientation task: t19 = 0.67, p 

= .51, Cohen’s dz = 0.15; identity task: t19 = 1.09, p = .29, Cohen’s dz = 0.24), EBA (orientation 

task: t19 = 1.37, p = .19, Cohen’s dz = 0.31; identity task: t19 = 0.04, p = .97, Cohen’s dz = 0.01) 

or any other face- or body-responsive ROIs.  

3.7. No classification of orientation across face and body stimuli with mean signal 

 As we found some differences in the mean BOLD responses to faces and bodies of 

different orientations (Fig. 3 and Fig. 4), we performed a control analysis to examine 

whether our classification results across neural activity evoked by face and body stimuli 

were driven by the differences in the mean BOLD signal. To this aim, we repeated the same 

classification analyses but using only the mean BOLD signal in each ROI, or in each 

searchlight sphere for training and testing the classifier. If the differences in mean BOLD 

activation were driving the classification results, we would expect the identical classification 
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results in these new analyses. This was not the case. Results showed that we could not 

decode orientation in any ROIs using the mean BOLD activation (for details see 

supplementary Fig S12A-B). Furthermore, whole-brain searchlight analysis only revealed a 

cluster in the right early visual cortex, but not in any other brain region (see supplementary 

Fig S12C-D). These results suggest that our decoding of person orientation in in EBA and OFA 

was driven by different patterns of neural activity in these brain regions, rather than by the 

differences in their overall level of activation. In contrast, classification of person orientation 

in the right early visual cortex may be partially driven by the differences in the mean BOLD 

signal.  

3.8. Classification of 45˚ vs. 90˚ orientation across face and body stimuli 

As our 0˚ orientation stimuli was symmetric, whereas our 45˚ and 90˚ stimuli were 

not, it might be possible that our cross-classification results were driven by these 

differences in symmetry. To address this question, we performed a control analysis to test 

whether we could decode 45˚ vs. 90˚ orientation across neural activity evoked by face and 

body stimuli. As both of these stimulus orientations were non-symmetric, successful 

decoding could not be driven by differences in stimulus symmetry/non-symmetry. Results 

are shown in Figure 9. 

 First, we performed a 9 (ROI) x 2 (Task) repeated measures ANOVA to test whether 

there were differences in 45˚ vs. 90˚ orientation cross-classification across ROIs or 

behavioural task. We found a significant main effect of ROI (F8,144 = 7.56, p < .001 

Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 0.30), but no main effect of 

behavioural task (F1,18 = 0.72, p = .408 Greenhouse-Geisser corrected for non-sphericity, ηp
2 

= 0.04) or interaction between ROI and behavioural task (F8,144 = 2.05, p = .081 Greenhouse-

Geisser corrected for non-sphericity, ηp
2 = 0.10). Therefore, we combined data from the two 

behavioural tasks for further analyses. 

 We next conducted permutation tests to determine which ROIs showed higher than 

chancel-level (1/2) cross-classification of 45˚ vs 90˚ orientation. Our results were the same 

as previously for orientation cross-classification including all three orientations. Cross-

classification was significantly above chance-level (1/2) in the OFA (52.3%, p < .001 

Bonferroni corrected, Cohen’s dz = 0.68) and the EBA (52.6%, p < .001 Bonferroni corrected, 
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Cohen’s dz = 0.86), but not in any other face-responsive ROIs (FFA: 50.8%, p = .068 

uncorrected, Cohen’s dz = 0.33; pSTS: 50.5%, p = .188 uncorrected, Cohen’s dz = 0.16; ATFA: 

50.7%, p = .112 uncorrected, Cohen’s dz = 0.35) or in the FBA (50.8%, p = .091 uncorrected, 

Cohen’s dz = 0.27). As previously, cross-classification was also significantly higher than 

chancel-level in the right EVC (55.4%, p < .001 Bonferroni corrected, Cohen’s dz = 0.95) and 

object-responsive LOC (52.2%, p < .001 Bonferroni corrected, Cohen’s dz = 0.61), but not in 

the left EVC (48.1%, p = 1.00 uncorrected, Cohen’s dz = 0.50).  

 To test whether any overlapping face- and body-responsive voxels might have driven 

our decoding results in the OFA and EBA, we conducted follow-up 45˚ vs. 90˚ cross-

classification analyses in the EBA and OFA ROIs with these voxels excluded. We were still 

able to decode 45˚ vs. 90˚ orientation from both ROIs (EBA: 52.9%, p < .001 Bonferroni 

corrected, Cohen’s dz = 1.13; OFA: 52.5%, p < .001 Bonferroni corrected, Cohen’s dz = 0.78).  

To directly test whether 45˚ vs. 90˚ orientation cross-classification performance was 

higher in the OFA and EBA than other ROIs, we conducted paired t-tests between these 

ROIs. These tests showed that 45˚ vs. 90˚ orientation cross-classification was significantly 

higher in the EBA than in the FBA, pSTS and ATFA, but not the FFA. The OFA, however, 

showed similar cross-classification performance to that observed in the FFA, pSTS, ATFA or 

FBA. Full results of these paired t-tests are shown in Table 6.  
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Figure 9. Cross-classification of 45˚ vs.90˚ orientation across neural activity evoked by face and body 

stimuli. Classification accuracies for face- and body responsive ROIs (A) and EVC and LOC ROIs (B) are 

shown as their % above chance-level (1/2). Grey scatter points show classification accuracies for 

individual participants, ** indicates p < .001, * indicates p < .05, permutation test and Bonferroni 

corrected for N = 9 ROIs.  
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Table 6 

Results of paired t-tests comparing differences in 45˚ vs. 90˚ orientation classification across face 

and body stimuli between face- and body-responsive ROIs.  

Paired t-test Mean 

difference 

Standard error t value p value Cohen’s dz 

OFA vs. FFA 1.49% 0.978 1.57 .134 0.35 

OFA vs. pSTS 1.82% 1.003 1.86 .078 0.42 

OFA vs. ATFA 1.63% 0.900 1.86 .078 0.42 

OFA vs. FBA 1.56% 0.995 1.61 .124 0.36 

EBA vs. FFA 1.80% 0.900 2.06 .054 0.46 

EBA vs. pSTS  2.13% 1.031 2.12 .047 0.48 

EBA vs. ATFA 1.94% 0.672 2.97 .008 0.66 

EBA vs. FBA 1.88% 0.907 2.12 .047 0.47 

 

 

3.9. Control analyses for low-level image properties 

As our stimuli consisted of natural images of faces and bodies, it is possible that 

some low-level visual features were more similar across images of the same orientation 

than across different orientations. This is likely the case for images of face orientations 

across different identities, and body orientations across different identities, due to 

similarities in shape. However, it might not be the case for orientations across face and body 

images, due to the large differences between the visual appearance of faces and bodies. To 

test the potential influence of low-level visual features on our decoding results, we 

performed two control analyses.  

3.9.1. Pixel intensity correlations  

We performed correlations of red, green and blue pixel intensities between images 

of the same orientation and images varying in orientations, to test whether low-level image 

information was more similar within the same orientation than across different 

orientations.  

First, we performed the above image-based correlation analysis separately for face 

and body images, and then we performed a two-sample t-test to test whether correlations 
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were significantly higher for images within orientation as compared to across orientation. As 

expected, same-orientation images showed higher correlations between pixel intensity 

values than across-orientation images for both face (red: t24 = 7.61, p < .001; green: t24 = 

10.72, p < .001; blue: t24 = 11.26, p < .001) and body images (red: t24 = 6.22, p < .001; green: 

t24 = 6.40, p < .001; blue: t24 = 6.50, p < .001). This result confirms that, within each stimulus 

category (face or body image), low-level visual information was more similar for within- 

than across-orientation images.  

Second, we performed the image-based correlation analysis across face and body 

images of the same identity. As previously, we then performed a two-sample t-test to test 

whether correlations were significantly higher for images within orientation as compared to 

across orientation. We found no significant difference between correlations for red (t16 = -

1.22, p = .240), green (t16 = 0.23, p = .823) or blue (t16 = 0.47, p = .645) pixel intensity values, 

suggesting that low-level image information was not more similar between face and body 

images of the same orientation as compared to face and body images across different 

orientations.  

3.9.2. Decoding orientation from Gabor-filtered image properties 

 We also tested whether low-level image properties could support the decoding of 

orientation across different identities or across face and body images. To do this, we 

converted our stimulus images into grayscale and then filtered each image using a Gabor-jet 

model (Lades et al., 1993; Yue et al., 2012). Each Gabor-jet consisted of 80 filters (5 scales x 

8 orientations x 2 phases, sine and cosine), and the model consisted of a 10x10 uniform grid 

of nodes placed across each image. The responses from all Gabor-jets for each image thus 

formed a high-dimensional feature vector containing 8000 features. We then assessed 

whether we could decode orientation across images when we input these feature vectors 

into a linear SVM classifier as in our MVPA analyses.  

 First, we tested whether we could decode orientation across identity from the image 

feature vectors, separately for face and body stimuli. We trained a classifier to distinguish 

between feature vectors of 0˚, 45˚ and 90˚ stimuli from two identities, and then tested the 

classifier on its ability to decode 0˚, 45˚ and 90˚ stimuli from the third identity. We 

performed this separately for feature vectors from the face and body images, and 

performed each classification analysis three times, with each identity used as the held-out 
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test set once. We then averaged decoding results across the three identities. We found that 

decoding performance was higher than chance-level (1/3) for both face (55.6%) and body 

(55.6%) stimuli, suggesting that low-level image information could aid face and body 

orientation classification across identities.  

 Second, we tested whether we could decode orientation across face and body 

stimuli from the image feature vectors. To do this, we trained a classifier to distinguish 

between feature vectors of 0˚, 45˚ and 90˚ face stimuli and then tested the classifier on its 

ability to decode 0˚, 45˚ and 90˚ body stimuli, and vice-versa. We then averaged the 

decoding results across the two training and testing directions. Surprisingly, we found we 

could decode orientation across face and body image feature vectors (61.1%) at higher than 

chance-level (1/3), suggesting that low-level image information could allow decoding across 

face and body stimuli.  

Finally, we tested whether the above higher than chance decoding across face and 

body images was driven by image differences between the symmetric 0˚ orientation and the 

non-symmetric 45˚ and 90˚ orientations. To test this hypothesis, we performed the same 

cross-classification analysis across face and body image feature vectors, but included only 

the 45˚ and 90˚ orientation stimuli. In this case, decoding performance was 25%, below the 

chance-level of 50%. This result suggests that image-based orientation cross-decoding was 

primarily driven by differences between symmetric and non-symmetric stimuli. In contrast 

to this, our MVPA results showed consistent cross-decoding of orientation even when only 

non-symmetric 45˚ and 90˚ orientations were included in the classification (see Section 3.8). 

Together, these results suggest that our cross-decoding results in the occipitotemporal 

cortex cannot be solely attributed to low-level image properties. 
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4. Discussion  

In this study, we investigated how the brain encodes face and body orientation 

information by exploring the neural responses to faces and bodies varying in orientation. 

Our results show that the OFA, EBA, LOC and early visual cortex contain different patterns of 

neural activity to both faces and bodies of different orientations. More importantly, we 

found that the OFA, EBA, LOC and right EVC encoded orientation in a stimulus-independent 

manner. A classifier trained to distinguish patterns of neural activity evoked by face 

orientations could decode orientation from neural activity evoked by body orientations, and 

vice-versa. Our study also shows that the FFA responds to face orientation but not to body 

orientation, suggesting that orientation responses in the FFA are face specific. All these 

results were consistently observed across two different behavioural tasks, with one 

requiring attention to the decoded feature (orientation) and the other to identity. These 

findings highlight both similarities and differences in the neural coding of face and body 

orientation, demonstrating that face and body orientation information is processed in a 

partially overlapping brain network.  

4.1. Neural coding of face and body orientation in the occipitotemporal cortex 

 Our results demonstrate that both face and body orientation can be consistently 

decoded from the neural activity in the face-responsive OFA and body-responsive EBA, as 

well as the object-responsive LOC and early visual cortex. Previous studies have often 

separately investigated the neural coding of face and body orientation in face- and body-

responsive brain regions respectively, leading to an illusory view that the neural coding of 

orientation may be stimuli-dependent. For example, several studies have shown that the 

OFA responds to face orientation (Axelrod and Yovel, 2012; Flack et al., 2019; Guntupalli et 

al., 2017; Kietzmann et al., 2012), whereas other studies have found that the EBA responds 

to body orientation (Chan et al., 2004; Ewbank et al., 2011; Taylor et al., 2010; 

Vangeneugden et al., 2014). Here we show that these regions also encode orientation 

beyond their preferred stimuli (i.e. the face-responsive OFA also encodes body orientation, 

and the body-responsive EBA also encodes face orientation), demonstrating that the neural 

responses to face and body orientation in the OFA and EBA are not face- or body-specific. 

Furthermore, we also show that the object-responsive LOC encodes both face and body 
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orientation. This finding not only echoes previous research on the neural coding of object 

and face orientation in the LOC (Axelrod and Yovel, 2012; Ramírez et al., 2014), but also 

extends this region’s orientation sensitivity to body orientation.  

The sensitivity of the OFA, EBA, LOC and EVC to both face and body orientation was 

also found in the mean BOLD response (e.g. Fig. 3 and Fig. 4). In both the EBA and LOC, we 

found responses progressively increased from 0° to 90° faces and higher responses to 90° 

bodies compared to 0° and 45° bodies, suggesting a preference for profile views of a person 

in these regions. Higher neural responses in the LOC to the profile- than front-view faces 

have also been found in previous studies (Axelrod and Yovel, 2012; Ramírez et al., 2014, 

faces shown above the fixation condition). In contrast, in the OFA, we found higher 

responses to 0° and 90° faces compared to 45° faces, and higher responses to 0° bodies 

compared to 90°bodies. This result is consistent with an earlier study (Axelrod and Yovel, 

2012), suggesting a relative preference for front views of a person in the OFA. Similar to the 

OFA, we also observed a general preference to front view faces and bodies in the EVC, 

which suggests that the low-level visual features that affect EVC responses to orientation 

may also influence neural responses in the OFA. Although these results show that the OFA, 

EBA and LOC respond to both face and body orientation, how these different tuning profiles 

emerged remains to be elucidated.  

 Our most remarkable finding was that we could cross-classify orientation across 

neural responses evoked by faces and bodies in the OFA, EBA, LOC and right EVC, suggesting 

these regions encode orientation in a stimulus-independent manner. In these brain regions, 

classifiers trained to distinguish patterns of neural activity evoked by different face 

orientations could decode patterns of neural activity evoked by body orientations, and vice-

versa. Furthermore, our searchlight analyses showed that there was strong classification 

performance at the intersection of the OFA, EBA and LOC (Fig. 8C), highlighting the 

contribution of these category-specific brain areas (i.e. face-, body-, and object-responsive) 

to a shared neural orientation code in the occipitotemporal cortex.  

4.2. What processes underlie the shared coding of face and body orientation? 

 The involvement of the LOC in the coding of orientation leads to the question of 

whether our results are specific to face and body orientation or whether they would also 
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extend to the coding of general object orientation. Previous work has demonstrated that 

the LOC is sensitive to object orientation (Andresen et al., 2009; Ewbank et al., 2005; Grill-

Spector et al., 1999), and that it contains patterns of activation to both face and object 

orientations that can generalise across visual field location (Ramírez et al., 2014). 

Nonetheless, whether faces and objects share the same neural orientation code remains 

unknown. Furthermore, we note that LOC is traditionally defined by its higher responses to 

objects compared to scrambled images (Malach et al., 1995), and we found that the LOC 

showed stronger responses to bodies than to objects, even when voxels overlapping with 

the EBA were removed (see Section 2.6.). Overlap between the EBA and LOC has also been 

identified in previous studies (Downing et al., 2007, 2001; Spiridon et al., 2006; Tootell et al., 

2015). A recent topographical atlas of category-responsive regions in occipitotemporal 

cortex also showed face- and body-responsive lateral occipital regions are next to each 

other without a gap area where the LOC would be expected to be located (Rosenke et al., 

2021). Altogether, these results suggest that the LOC may also be involved in body 

processing, in addition to general object processing. As we did not test objects together with 

faces and bodies, we were unable to address this question directly in the present study. We 

speculate that neural coding of face, body and object orientation may be supported by 

overlapping but dissociable neural mechanisms. Object orientation can be decoded from 

responses in the EVC and LOC, but not from the FFA (Ramírez et al., 2014), whereas face 

orientation can be decoded from a broader network including the EVC, LOC, FFA and EBA 

(Axelrod and Yovel, 2012; Ramírez et al., 2014). Furthermore, some intrinsic differences 

between face, body and object orientation also suggest that face, body and object 

orientation may be encoded differently to some extent. Both faces and bodies have an 

intrinsic orientation that often indicates the focus of attention of a person, whereas many 

objects either do not have an intrinsic orientation or do not have an attention-relevant 

orientation (Foster, 2020; Xu and Franconeri, 2012). 

Our cross-classification of orientation in the right EVC suggests that there may be 

low-level visual features shared by faces and bodies of the same orientation that might 

contribute to the encoding of orientation. Consistent with this view, we were able to cross-

decode orientation based on Gabor-filtered image properties (Section 3.9.2). This decoding 

seemed to be driven by differences between the symmetric (0˚) and non-symmetric 



Face & Body Orientation  46 
 

orientations (45˚ and 90˚). When we only included the 45˚ and 90˚ stimuli for the decoding 

analysis, image-based decoding failed to classify orientation across faces and bodies. In 

contrast, we still found robust neural decoding between these two non-symmetric 

orientations in the OFA, EBA, LOC and right EVC. Moreover, we also tested whether there 

was low-level RGB colour information that systematically varied across faces and bodies of 

the same orientation. Our results showed that this was not the case. Together, these results 

suggest that our orientation cross-decoding in the occipitotemporal cortex cannot be solely 

attributed to systematic low-level visual properties.  

What mechanisms might drive the shared coding of face and body orientation? One 

possibility is that participants imagined a whole person when viewing face and body stimuli 

alone. Cox et al., (2004) found that providing a body context with a covered face activated 

the FFA similarly to viewing an isolated face. Furthermore, imagery of faces and objects has 

been shown to induce similar neural representations as visual perception of faces and 

objects, thereby enabling cross-decoding between imagined and perceived categories (Cichy 

et al., 2012; Reddy et al., 2010).  

Another possibility is that both face and body orientation provide an efficient cue for 

social attention and interaction (Nummenmaa & Calder, 2009; Vestner et al., 2020). Our 

cross-classification results might be due to a shared neural representation of these 

attentional cues (e.g. facing towards vs facing away). Consistent with this idea, the EBA 

shows different neural responses to interacting people than to non-interacting people 

(Abassi and Papeo, 2020; Walbrin and Koldewyn, 2019). Social orienting based on following 

the perceived direction of gaze, has also been found to involve a brain region in the 

occipitotemporal cortex close to the EBA (Marquardt et al., 2017). Our results in EVC are 

also in line with this possibility. The gradually decreased mean signal in the right EVC (Fig. 3B 

and 4B), which could be used for cross-classification (Section 3.7), might result from 

feedback signals of attending to the progressively leftwards direction of faces and bodies 

(see also Axelrod and Yovel, 2012). As we did not instruct participants to fixate during fMRI 

scanning, exactly how social attention and eye movements may contribute to the shared 

coding of face and body orientation remains to be elucidated.  

4.3. Neural coding of face and body orientation in the fusiform and anterior temporal 

cortex 
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In contrast to our findings in the OFA and EBA, we did not observe stimulus-

independent coding of orientation in the face- and body-responsive areas in the fusiform 

and anterior temporal cortex (i.e. FFA, FBA, and ATFA). For face stimuli, we were able to 

decode face orientation in the FFA, consistent with previous studies (Axelrod and Yovel, 

2012; Guntupalli et al., 2017; Kietzmann et al., 2012; Ramírez et al., 2014). Orientation 

responses in the FFA seem to be face-specific, as the FFA showed no sensitivity to object 

orientation in a previous study (Ramírez et al., 2014) or to body orientation in the present 

study. Furthermore, face orientation classification was significantly higher than body 

orientation classification in the FFA. We could also decode face orientation from the body-

responsive FBA, however, this decoding was not possible when face-responsive voxels were 

removed from the FBA, suggesting that this decoding was driven by overlapping voxels from 

the FFA (Schwarzlose et al., 2005). Removing body-responsive voxels from the FFA did not 

affect decoding performance. In contrast to the FFA, we were unable to decode face 

orientation from the ATFA. Similar face orientation decoding results were also reported in a 

previous study (Guntupalli et al., 2017), and this result is consistent with research showing 

this region is involved in encoding face identity in an orientation-invariant manner 

(Anzellotti et al., 2014; Guntupalli et al., 2017). However, it is possible that decoding may 

have been weaker from this region due to the small size of this ROI, or that we could only 

define it bilaterally in 13 of our 20 participants. Although the ATFA did not exhibit separable 

patterns of neural activity to different face orientations, it did show stronger responses to 

frontal faces as compared to 45° or 90° faces (in our univariate analysis). Interestingly, this 

result is consistent with a finding that the most anterior face-responsive patch in the 

macaque contains a higher proportion of neurons responding to frontal faces than to other 

face orientations (Dubois et al., 2015; Freiwald and Tsao, 2010). 

For body stimuli, some studies have suggested that the FBA is sensitive to body 

orientation (Ewbank et al., 2011; Taylor et al., 2010). However, using an MVPA approach, we 

did not find higher-than-chance classification of body orientation in any of our fusiform or 

anterior temporal ROIs (i.e. FBA, FFA, and ATFA). Moreover, these areas also showed 

equivalent mean BOLD responses to the three body orientations. These results suggest that 

the FBA, FFA and ATFA do not contain unique patterns of neural activity to different body 

orientations. Our finding that body orientation is encoded in the EBA, but not the FBA, is in 
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line with previous research (Vangeneugden et al., 2014), which showed that the EBA, but 

not the FBA, contains dissociable information about body facing direction. It is worth noting 

that while our decoding of body orientation was found in the EBA, but not the FBA, we were 

able to decode body identity across changes in orientation in the FBA, but not the EBA 

(Foster et al., 2021). This result suggests that our lack of body orientation decoding in the 

FBA is not simply due to the small size of this ROI. Furthermore, this result is in line with a 

recent finding in macaque monkeys. Kumar et al. (2019) found that neurons in the middle 

STS body patch are more sensitive to body orientation and less sensitive to body identity, 

than neurons in the anterior STS body patch. Together, these results suggest that neural 

responses to bodies become increasingly orientation-independent along posterior-anterior 

hierarchical processing in the occipitotemporal cortex (see Anzellotti et al., 2014; Axelrod 

and Yovel, 2012; Freiwald and Tsao, 2010 for a similar argument for the neural processing of 

face orientation).  

4.4. Neural responses of the STS to face and body orientation 

As to the involvement of the STS in representing face orientation, previous fMRI 

studies have found mixed results (see Ramírez, 2018, for a review). While some studies have 

suggested that the STS may encode the orientation of faces (Axelrod and Yovel, 2012; Flack 

et al., 2019), others found no evidence for face-orientation encoding in the STS (Guntupalli 

et al., 2017; Ramírez et al., 2014). For body orientation, one human study found that the 

pSTS did not encode information about body orientation, whereas the EBA did 

(Vangeneugden et al., 2014). In contrast, in the monkey neurons have been found in the STS 

that respond to body orientation (Kumar et al., 2019), as well as to orientation shown from 

both face and body stimuli (Wachsmuth et al., 1994).  

 With an MVPA approach, we did not find evidence for face or body orientation 

coding in either our pSTS ROI, or any region of the STS in our searchlight analyses. One 

possibility is that the STS is more sensitive to dynamic faces and bodies (Pitcher et al., 2011; 

Reinl and Bartels, 2014; Schultz et al., 2013), whereas we used static face and body stimuli 

in this study. It has been shown that body walking motion, but not body orientation, could 

be decoded from the pSTS, suggesting that this region is more sensitive to the direction of 

biological motion than static orientations (Vangeneugden et al., 2014). Future research 

using dynamic face and body orientation stimuli may help differentiate the role of STS in 
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encoding person orientation and human motion. Moreover, as the STS is known to be 

involved in gaze processing (Carlin and Calder, 2013; Haxby et al., 2000), our results suggest 

that direction of gaze and orientation of face and body might be processed in different brain 

regions. In line with this conjecture, previous work has shown that the human anterior STS 

responds to gaze direction in a head orientation invariant manner (Carlin et al., 2011).  

4.5. Visual attention and the neural coding of face and body orientation  

Most previous studies that have investigated the neural coding of orientation used 

tasks that directed attention away from orientation (e.g. brightness discrimination in 

Ramírez et al., 2014, or detection of identity repetition in Axelrod & Yovel, 2012; Guntupalli 

et al., 2017). This raises question of whether visual attention modulates the neural coding of 

orientation. To address this question, we had our participants perform two different 

behavioural tasks during fMRI scanning, one required attention to stimulus orientation, 

whereas the other required attention to stimulus identity. We found a remarkable 

consistence between the results observed under these two conditions, suggesting that 

attending to orientation information does not necessarily enhance the neural coding of face 

or body orientation.  

One possibility for this task-independent coding of orientation is that attending to 

identity might involve some automatic processing of face orientation (Axelrod and Yovel, 

2012; Guntupalli et al., 2017) or body orientation (Taylor et al., 2010), which might reduce 

or eliminate the effect of our task manipulation. Note that we did find an attention 

enhancing effect on identity coding: the identity task produced consistently better decoding 

results for face and body identity than the orientation task (Foster et al., 2021). Therefore, 

the lack of task-related neural differences in orientation coding is not due to our 

behavioural task being too easy to evoke differences in neural responses.  

4.6. Conclusion 

Our study reveals a shared neural coding of face and body orientation in the 

occipitotemporal cortex. A region located at the intersection of the OFA, EBA and LOC 

contains separable patterns of neural activity evoked by different orientations, which can 

generalize across neural activity evoked by faces and bodies. This finding suggests that this 

region encodes face and body orientation in a stimulus-independent manner. Such stimulus-
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independent coding of orientation might not be specific to faces and bodies and might also 

generalise to other objects. Furthermore, we also show that the FFA encodes face 

orientation, but not body orientation, suggesting that processing of face orientation 

involves more distributed brain regions than processing of body orientation. Finally, our 

results demonstrate that visual attention to orientation information does not enhance the 

neural coding of orientation, suggesting that orientation may be processed automatically. 

Together, these results not only offer new insights into how the brain encodes an important 

social interaction cue, face and body orientation, but also provide new evidence for a 

partially overlapping representation of faces and bodies in the human brain.  
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