1	Soil bacterial community mediates the effect of plant material on methanogenic
2	decomposition of soil organic matter
3	
4	Quan Yuan ^{a, b, *} , Marcela Hernández ^b , Marc G. Dumont ^b , Junpeng Rui ^c , Ana Fernández
5	Scavino ^{b, d} , Ralf Conrad ^b
6	
7	^a State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese
8	Academy of Sciences, Guiyang, China
9	^b Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
10	^c Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology
11	Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of
12	Sciences, Chengdu, China
13	^d Departamento de Biociencias, Facultad de Quimica, Universidad de la Republica,
14	Montevideo, Uruguay
15	
16	* Corresponding author. State Key Laboratory of Environmental Geochemistry, Institute of
17	Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, 550081, Guiyang,
18	China. Phone: +86 851 8439 8533; Fax: +86 851 8589 1334.
19	E-mail: yuanquan@mail.gyig.ac.cn (Q. Yuan)

20 Abstract

Input of plant material may strongly change decomposition rates of soil organic matter (SOM), 21 i.e. causing priming effect (PE), but the underlying mechanisms are largely unknown. We 22 show that rice straw addition in anoxic Fuyang (F) rice field soil stimulated CH₄ production 23 from SOM at the expense of CO₂, whereas in Uruguay (U) soil it suppressed SOM 24 degradation to CO₂ plus CH₄ (negative PE). Reciprocal inoculation experiments with non-25 sterile and sterile soils showed that the soils always displayed the effect of rice straw 26 27 characteristic for the live microbial community rather than for the soil physicochemical properties. Pyrosequencing of 16S rRNA genes showed that bacterial communities in these 28 soil samples were separated into two clusters (F and U). Symbiobacterium was abundant or 29 dominant in microbiota from U soil, but negligible in those from F soil. Network analysis 30 indicated that the bacterial populations involved in SOM decomposition were different 31 between soils of F and U clusters; moreover, they were more tightly connected to 32 methanogens in U than in F clusters. Ultimately, our results suggested that the PE of rice 33 straw is mediated by the composition and activity of soil microbial community. 34 35 Keywords: Soil organic matter; Rice field soil; Anoxia; Priming effect; 16S rRNA gene; 36

37 Microbial community

1. Introduction

39	Incorporation of plant material, such as litter, dead roots or root exudates into the soil is
40	quite common in terrestrial ecosystems (Kramer et al., 2010; Yagi and Minami, 1990; Zhu
41	and Cheng, 2011), and it is important for maintaining soil fertility (Sass et al., 1991; Schütz et
42	al., 1989; Yagi and Minami, 1990). Moreover, input of fresh organic matter may accelerate or
43	suppress soil organic matter (SOM) decomposition, causing a positive or negative priming
44	effect (PE) (Guenet et al., 2010; Kuzyakov et al., 2000; Langley et al., 2009; Paterson et al.,
45	2008; Wolf et al., 2007). A positive PE increases the rate of SOM decomposition (Chen et al.,
46	2014; Paterson and Sim, 2013; Pausch et al., 2013; Zhu and Cheng, 2011). Negative PEs,
47	which decrease the rate of SOM decomposition, are not reported quite as often as positive PEs
48	(Cheng, 1996, 1999), but negative PEs are also of great significance to carbon balance, since
49	slower decomposition leaves more C sequestered and not released as CO2 (Kuzyakov et al.,
50	2000). Over long time scales, PEs are thought to be able to influence ecosystem C balance
51	(Wieder et al., 2013). In addition, soil C pools are larger than the pool of atmospheric CO ₂ , so
52	that small changes in the rate of soil C decomposition could cause a profound impact on
53	atmospheric CO ₂ concentration (Davidson and Janssens, 2006; Smith et al., 2008).
54	Underlying mechanisms of PEs remain largely elusive. Soil microorganisms, including
55	bacteria and fungi, are considered to play the key role in the process leading to PEs during
56	decomposition of upland SOM (Fontaine and Barot, 2005; Kuzyakov, 2010; Nottingham et al.,

57	2009). It is widely accepted that the growth of microorganisms utilizing fresh organic matter
58	(FOM degraders) is stimulated after substrate addition, followed by the gradual increase in the
59	abundance of microorganisms utilizing polymerized SOM (SOM degraders), thus resulting in
60	a positive PE (Fontaine and Barot, 2005; Fontaine et al., 2003; Perveen et al., 2014). In
61	contrast, it is assumed that SOM degraders would preferentially utilize fresh organic matter, if
62	it is available in excess, and thus lead to a negative PE, since competition between FOM and
63	SOM degraders is negligible under this condition (Blagodatskaya et al., 2007; Cheng, 1999;
64	Kuzyakov and Bol, 2006); however, experimental support remains ambiguous with some
65	reports being inconsistent with these explanations (Rousk et al., 2015; Wild et al., 2014; Wu
66	et al., 1993). Furthermore, recent studies suggest that there is a close correlation between PE
67	and the soil microbial community composition. For example, diversity and composition of the
68	soil microbial community were found to change in concert with negative or positive PE after
69	single or repeated substrate amendments (Mau et al., 2015), and the magnitude of positive PE
70	of fresh organic carbon on N mineralization from SOM increased in treatments with higher
71	fungal dominance (Rousk et al., 2016). Despite this, it is still unclear what role the microbial
72	community composition plays in causing a PE, in particular which microbial species are
73	involved.

Current reports on PE and the plausible mechanisms were mostly targeted at various upland
 soils where CO₂ is the only end product of organic matter decomposition (Kuzyakov and Bol,

76	2006; Zhu and Cheng, 2011), but the PE has rarely been studied in flooded soil, such as rice
77	field and wetland soils (Ye et al., 2015; Yuan et al., 2014), where both CO_2 and CH_4 are the
78	end products of anaerobic degradation of organic matter. Anaerobic degradation is
79	accomplished consecutively by a complex microbial community consisting of hydrolytic,
80	fermentative, syntrophic, homoacetogenic bacteria and methanogenic archaea (Conrad, 1999;
81	Glissmann et al., 2001). Anaerobic degradation of organic matter in rice fields is one of the
82	most important sources of atmospheric CH ₄ (Conrad, 2009), which has approximately 25
83	times the global warming potential of CO ₂ (Forster et al., 2007). Rice provides the staple food
84	for half the world population (Kalbitz et al., 2013). Input of plant material, such as rice straw
85	(RS) is common in the management of rice field soils (Sass et al., 1991; Yagi and Minami,
86	1990; Yuan et al., 2012). Consequently, an effect of rice straw on rice field SOM degradation
87	could influence the global budgets not only of CO ₂ , but also CH ₄ . While 80-90% of the RS is
88	decomposed within the first year (Neue and Scharpenseel, 1987), the SOM in rice field soils
89	is rather refractory, and was found to decrease only little (6-17%) within 120 days of anoxic
90	incubation (Yao et al., 1999). The RS applied might be of significance for the decomposition
91	rate of SOM in rice field soils exerting either a positive or negative PE. Previous studies
92	indeed reported either negative (Conrad et al., 2012) or positive (Ye et al., 2015; Yuan et al.,
93	2014) effects of RS on the production of CH ₄ from SOM, but largely neglected the production
94	of CO ₂ , which is an essential part of the PE on SOM in flooded soils.

95	In this study, we investigated the microbial mechanisms underlying the effect of RS on
96	methanogenic SOM decomposition in rice field soils. We used two rice soil samples (Fuyang
97	and Uruguay), which were selected based on the fact that they both had a relatively high CH ₄
98	production potential (Fernandez Scavino et al., 2013; Yuan and Lu, 2009), and since RS
99	additions resulted in different responses in SOM decomposition in the two soils. A 13 C-
100	labeling technique was applied to determine the PE of RS on SOM decomposition (Yuan et
101	al., 2014). Our hypothesis has been that microbial community composition is the key for the
102	PE, i.e. differences in PE between soils are dependent on their distinct soil microbial
103	community compositions rather than on their distinct soil physicochemical properties. To test
104	this hypothesis, we manipulated the soil microbial community through reciprocal inoculation
105	with non-sterile and sterile samples of Fuyang and Uruguay soils. In this way we intended to
106	create the same microbial community (e.g., from Fuyang) in a soil background with different
107	soil physicochemical characteristics (Fuyang versus Uruguay). Then, we analyzed the
108	bacterial and archaeal community composition and abundance in these soil samples.
109	Correlation-based co-occurrence networks analysis was employed to produce microbial
110	functional modules, aiming to reveal the differences in functional groups between soils with
111	and without PE.

2. Material and methods

115	Soils were collected from China (Fuyang) and Uruguay. The China soil (Fuyang) is a clay
116	loam (soil type: hydrargic anthrosol) collected in 2007 from a rice field (30.1°N, 119.9°E) at
117	the China National Rice Research Institute in Hangzhou (Rui et al., 2009). The Uruguay soil
118	is a clay soil (soil type: planosol) sampled in 2011 from a field (32.49°S, 53.49°W) 70 km
119	from the Instituto Nacional de Investigación Agropecuaria (INIA) at the city Treinta-y-Tres,
120	Uruguay (Fernandez Scavino et al., 2013). The fields in Uruguay had a history in rotation
121	management. The typical rotation is four consecutive years of cattle pasture followed by two
122	consecutive years of flooded rice fields. The soil sample used in this experiment was taken
123	after four years of cattle pasture prior to flooding. Nevertheless, the Uruguay soil can still be
124	considered as a paddy soil, since a previous study has concluded that a stable methanogenic
125	microbial community established in the Uruguay soil once pastures had been turned into
126	management by pasture-rice alternation (Fernandez Scavino et al., 2013). The sampling for
127	each soil was done by taking soil cores (0-10 cm depth) from the ploughing layer at three
128	locations in the field. Since we did not intend to assess site variability within the original
129	field sites, a composite sample was prepared by mixing the samples by hand from all the three
130	sites. These composite samples were termed Fuyang (F) or Uruguay (U), respectively. The
131	soil samples were air-dried and stored at room temperature (Frenzel et al., 1999; Ma et al.,
132	2010). The storage of dried soil at room temperature has no significant effect on soil methane

133	production capacity (Mayer and Conrad, 1990). The dry soil lumps were broken using a
134	mechanical grinder, and sieved through a 0.5-mm stainless steel sieve to homogenize sample
135	(Chidthaisong et al., 1999; Roy and Conrad, 1999). Chemical characteristics of the soil
136	samples are shown in Table S1. Part of each soil sample was sterilized by γ -irradiation (30
137	kGy; 60 Co) (McNamara et al., 2003; Philippot et al., 2013). The sterility of the γ -irradiated
138	soil was checked by following CH4 release upon flooding. No CH4 production was detected
139	during the whole experiment (62 days in total).
140	2.2. Preparation of the rice straw
141	Preparation of the ¹³ C-labeled rice straw (RSI and RSII) has been described previously
142	(Yuan et al., 2012). The RSI and RSII were prepared for calculating the relative contributions
143	of RS and SOM to CH ₄ and CO ₂ as described below. The δ^{13} C values of RSI (596.1‰) and
144	RSII (885.0‰) were obtained by mixing desired amount of ¹³ C-labeled (δ^{13} C=1859.9‰) and
145	unlabeled ($\delta^{13}C$ = -27.6‰) RS. All the RS derived from rice plants grown in the greenhouse,
146	¹³ C-labeled RS was prepared by labeling the rice plants with ¹³ CO ₂ (Yuan et al., 2012). These
147	rice plants were harvested at the late vegetative stage, then RS was dried and ground to
148	powder. In soil applied with RSI or RSII, the δ^{13} C values of the produced CH ₄ and CO ₂ were
149	always lower than that of the RS mixture even when both gases were almost exclusively (90-
150	100%) produced from the added RS. Therefore, the RS mixtures were sufficiently
151	homogeneous to prevent preferential decomposition of ¹³ C-labeled (and presumably labile)

152	components of RS (Yuan et al., 2014). The C/N ratio of labeled RS was 20. The
153	determination of the soil organic carbon content and the stable isotopic signatures of dried
154	plant (RS) were carried out at the Institute for Soil Science and Forest Nutrition (IBW) at the
155	University of Göttingen, Germany.
156	2.3. Soil incubation and analytical techniques
157	Waterlogged soil microcosms were prepared not only from original Fuyang and Uruguay
158	soil samples, but also from combinations of original and sterilized soils as follows: first, 5%
159	original Fuyang soil was inoculated into 95% sterilized Fuyang soil (5%F+sF) and sterilized
160	Uruguay soil (5%F+sU), respectively; also, 5% Uruguay soil was inoculated into 95%
161	sterilized Uruguay soil (5%U+sU) and sterilized Fuyang soil (5%U+sF), respectively. Two
162	further combinations were prepared as controls: 5% sterilized Uruguay soil was added into 95%
163	original Fuyang soil (5%sU+F), and 5% sterilized Fuyang soil was added into 95% Uruguay
164	soil (5%sF+U). For each soil microcosm, a total of 4 g dry weight soil was prepared and
165	flooded with 6 ml anoxic water in 26-ml pressure tubes as described before (Yuan et al.,
166	2014). Tubes were closed with butyl rubber stoppers, sealed with aluminum crimps, then
167	flushed with N_2 and incubated statically at 25°C in darkness. The CH ₄ and CO ₂ production
168	were measured during the incubation. The Fe (III) reduction was determined by measurement
169	of the production of Fe (II) during the incubation (Yao et al., 1999). The soils were
170	preincubated under anoxic conditions, in order to revive the microbial community and

171	establish relatively stable methanogenic conditions to mitigate handling effects (Teh and
172	Silver, 2006). After 40 days of preincubation, RS treatments I and II were prepared by adding
173	same amount (8 mg) of RSI or RSII powder into each tube. Immediately after RS addition,
174	the tubes were sealed again and flushed with N2, after shaking by vortexing, re-flushed with
175	N_2 to remove the residual CH ₄ and CO ₂ . Finally, the tubes were incubated statically at 25°C
176	for 22 days. All the treatments were prepared in triplicate.
177	2.4. CH_4 and CO_2 analyses
178	At regular time intervals (day 3, 5, 7, 10, 15, 20 and 22), gas samples from the headspace of
179	the tubes were analyzed for CH_4 and CO_2 using a gas chromatograph (GC) equipped with
180	flame ionization detector (FID). The CO_2 was measured after conversion to CH_4 using a
181	methanizer (nickel catalyst at 350°C) (Penning and Conrad, 2007). Total amounts of gases in
182	the headspace of the tubes were calculated from the partial pressures using the volume of the
183	gas space and the gas constant. The amounts of CH_4 dissolved in the liquid were less than 3%
184	of the total and were neglected. The tubes were opened at the end of the incubation, and the
185	liquid was analyzed for pH. Then the total amounts of CO ₂ dissolved (aq) in the liquid were
186	calculated from the solubility constant of CO ₂ ($1 \times 10^{-1.47}$ mol L ⁻¹ bar ⁻¹), those of bicarbonate
187	(HCO ₃ ⁻) were calculated from the solubility constant of CO ₂ , the pH, and the dissociation
188	constant (10 ^{-6.35}) of bicarbonate (Stumm and Morgan, 1981). The sum of gaseous, dissolved
189	and bicarbonate CO ₂ was defined as total inorganic carbon (TIC).

190	Stable isotopic analyses of CH4 and CO2 were performed as described in an earlier study
191	(Penning and Conrad, 2007) using GC-combustion-isotope ratio mass spectrometer (GC-C-
192	IRMS) (Finnigan, Bremen, Germany). The δ^{13} C values of dissolved CO ₂ ($\alpha_{CO2(aq)} = 0.9990$)
193	and HCO ₃ ⁻ (α_{HCO3} ⁻ = 1.0075) were calculated from the $\delta^{13}C$ of gaseous CO ₂ and the
194	corresponding fractionation factors α (Stumm and Morgan, 1981). The values of $\delta^{13}C_{CO2(g)}$,
195	$\delta^{13}C_{CO2(aq)}$ and $\delta^{13}C_{HCO3}$ were used to calculate $\delta^{13}C_{TIC}$ using the mole fractions of the
196	different CO ₂ species (Penning and Conrad, 2006).
197	2.5. Contribution of SOM and RS to CH_4 and CO_2 in soil slurries with RS application
198	The calculations were the same as described earlier (Yuan et al., 2014). In brief, since the
199	only difference between the treatments RSI and RSII is the $\delta^{13}C$ of the RS applied, the
200	fraction of CH ₄ produced from RS (f_{RS}) was calculated by:
201	$f_{\rm RS} = \left(\delta^{13} C_{\rm CH4-I} - \delta^{13} C_{\rm CH4-II}\right) / \left(\delta^{13} C_{\rm RS-I} - \delta^{13} C_{\rm RS-II}\right) $ (1)
202	of which the $\delta^{13}C$ values were determined experimentally. The $\delta^{13}C_{CH4\text{-I}}$ and $\delta^{13}C_{CH4\text{-II}}$ were
203	the δ^{13} C values of the CH ₄ produced in the RS treatment I and II, respectively; the δ^{13} C _{RS-I} and
204	$\delta^{13}C_{RS-II}$ are $\delta^{13}C$ of the RS carbon in treatment I (596.1‰) and II (885.0‰), respectively.
205	Next, the fraction of CH ₄ production from SOM (f_{SOM}) can be calculated, since in the RS
206	treatment
207	$f_{\rm RS} + f_{\rm SOM} = 1 \tag{2}$

208	Finally, the amount of CH ₄ production from SOM ($p_{SOM,CH4}$) and RS ($p_{RS,CH4}$) were
209	calculated from the total amount of CH ₄ produced (p_{CH4}) and the fractions of CH ₄ production
210	from SOM (f_{SOM}) and RS (f_{RS}), respectively:
211	$p_{\text{SOM,CH4}} = f_{\text{SOM}} p_{\text{CH4}}$ (3)
212	$p_{\rm RS,CH4} = f_{\rm RS} p_{\rm CH4} \tag{4}$
213	Analogous equations are valid for the fractions and amounts of CO ₂ produced from SOM
214	and RS in the rice soil microcosms.
215	2.6. DNA extraction and quantification of microbial abundance
216	DNA from the soil samples collected after the preincubation and at the end of incubation
217	was extracted according to the lysis protocol described in the FastDNA® Spin kit for soil
218	(Qbiogene, Germany). The quantitative PCR of bacterial 16S rRNA was performed following
219	a protocol described previously (Stubner, 2002); the quantitative PCR of archaeal methyl
220	coenzyme M reductase (mcrA) gene, which is characteristic and unique for methanogenic
221	archaea, was performed as described previously (Angel et al., 2011). The gene copy numbers
222	detected are a proxy for the abundance of the respective microbes.
223	2.7. Pyrosequencing of bacterial and archaeal communities
224	For tagged pyrosequencing of bacterial 16S rRNA gene fragments we used primers F515
225	and R806 (Bates et al., 2011), and primers Arch344F and Arch915 for archaeal 16S rRNA
226	gene fragments (Casamayor et al., 2002; Yu et al., 2008). The forward primer of each

227	combination contained a unique 6-bp barcode (Hernandez et al., 2015). The purified PCR
228	product of each sample was pooled in an equimolar concentration for pyrosequencing. The
229	454-pyrosequencing was carried out at the Max Planck Genome Centre in Cologne (Germany)
230	using a Roche 454 Genome Sequencer GS FLX+.
231	All raw sequences obtained from pyrosequencing were first analyzed with Mothur (v. 1.27)
232	software package (http://www.mothur.org/) (Schloss et al., 2009), and the OTU table was
233	created using the UPARSE pipeline (http://www.drive5.com/usearch/manual/uparse_cmds.
234	html) (Edgar, 2013). Within this pipeline, sequences were first sorted based on barcodes and
235	removed from further analysis if they were shorter than 200 bp, contained ambiguous bases or
236	homopolymers greater than 6 bp in length. Chimeras were removed using UCHIME (Edgar et
237	al., 2011). Operational taxonomic units (OTUs) were defined from the accepted sequences
238	with 97% sequence similarity. Taxonomic classification was carried out with the naïve
239	Bayesian classifier in Mothur using the Silva 16S rRNA reference database. Rarefaction
240	curves and diversity indices including microbial community richness (Chao1), diversity
241	(Shannon index) and coverage were calculated in Mothur. The OTU table was subsampled to
242	the minimum number of sequences obtained for a sample prior to downstream analysis. The
243	454 pyrosequencing reads (raw data) were deposited under the study number SRP058834 in
244	the NCBI Sequence Read Archive (SRA).

245 2.8. Heatmap analysis

246	The heatmap representation of the relative abundance of bacterial OTUs among samples
247	was built using R (http://www.r-project.org/), as described previously (Deng et al., 2014). The
248	OTU abundance table was Hellinger transformed (decostand function within the R vegan
249	package) to diminish the influence of zero values and to give low weights to rare species
250	(Legendre and Gallagher, 2001). Principal components analysis (PCA) was performed using
251	prcomp and the result indicated that for bacterial OTUs, PC1, PC2 and PC3 explained 40%,
252	18% and 13% of the variance, respectively. To select the OTUs explaining most of the
253	differences between samples, the 40 bacterial OTUs with highest loadings of PC1, 18 OTUs
254	of PC2 and 13 OTUs of PC3 were chosen to construct the heatmap. A total of 27 unique
255	OTUs were obtained because of the two reasons: first, some of the OTUs were selected from
256	more than one PC; second, OTUs with low averaged relative abundance (<1% in every
257	control or treatment) were removed (those removed OTUs also had relatively lower loading
258	values). The OTU abundances were converted to percentage of reads from each sample and
259	the heatmap constructed using the heatmap.2 function in gplots (Warnes et al., 2014). The
260	taxonomy of the selected OTUs was added separately.
261	2.9. Co-occurrence network analysis
262	The bacterial and archaeal OTU tables were randomly subsampled to the same sequence
263	depth using daisychopper.pl (http://www.festinalente.me/bioinf/downloads/daisychopper.pl).

264 These tables were combined so as to prepare the network analysis for prokaryotic OTUs in

265	soil samples. Cosmopolitan bacterial and archaeal OTUs, which occurred in more than half of
266	the selected samples were used for network analysis. We calculated all possible Spearman's
267	rank correlations between selected OTUs (Ju et al., 2014). We considered a valid co-
268	occurrence event to be a robust correlation if the Spearman's correlation coefficient (ρ)
269	was >0.6 and the P value was <0.01 (Barberan et al., 2012). Correlation networks were
270	constructed with the robust correlations as weighted edges and visualized with Gephi software
271	(https://gephi.github.io/). 10000 Erdös-Réyni random networks, which had the same number
272	of nodes and edges as the empirical networks, were generated using the R package igraph
273	(http://cran.rproject.org/web/packages/igraph/) (Ju et al., 2014).
274	2.10. Statistical analysis
275	To test the significance of the differences between control and RS treatment on various
276	variables, two-tailed independent t-tests were applied using Microsoft Excel 2007. The
277	significance of differences in relative abundance of OTU between treatments was determined
278	by one-way analysis of variance (ANOVA) using SPSS 13.0. P values below 0.05 were
279	considered statistically significant.
280	Overall structural changes of prokaryotic communities were evaluated by Principal
281	Coordinate Analyses (PCoA) with Fast UniFrac distances (Lozupone et al., 2006). The
282	statistical significance among datasets was assessed by PerMANOVA using the weighted

284	evaluate the correlations between prokaryotic communities with environmental variables
285	using the Mantel procedure in the R package Vegan. The Variance partitioning analysis (VPA)
286	was performed to quantify the relative contributions of environmental variables to changes in
287	the bacterial and archaeal community structures by the method described previously (Yao et
288	al., 2014).

```
3. Results
```

291 3.1. Differential response of methanogenic decomposition of SOM to RS addition

292	The paddy soils were preincubated for 40 days under anoxic conditions to ensure that soil
293	conditions were reduced and methanogenesis was the exclusive terminal decomposition
294	process of organic matter, which was confirmed by active CH ₄ production (Fig. S1) and
295	absence of Fe (III) reduction (data not shown). Subsequently, the soils were amended with 0.2%
296	(2 mg straw g dw ⁻¹ soil) 13 C-labeled RS, and the amount of CH ₄ and TIC produced from SOM
297	in the treatment were calculated using eq. (1-3). The results showed that RS treatment
298	enhanced the accumulation of SOM-derived CH ₄ in Fuyang (F) soil sample (Fig. 1a).
299	Nevertheless, there was no significant difference in the total amounts of SOM decomposition
300	(SOM-derived CH ₄ and CO ₂) between RS treatment and control at the end of incubation (Fig.
301	1g), since the accumulation of CO ₂ (quantified as TIC) was decreased (Fig. S2). In Uruguay
302	(U) soil sample, however, the SOM-derived CH4 was almost the same between treatment and

303	control (Fig. 1b), while SOM decomposition was significantly decreased in the RS treatment
304	(Fig. 1g). Besides, the total amount of SOM decomposition in F soil (>183 μ mol) was
305	substantially larger than that in U soil (<130 μ mol), which is consistent with the higher soil
306	organic carbon content in F (2.38%) than U soil (1.57%) (Table S1).
307	In both combinations of 5% non-sterilized F with sterilized soil (sF or sU), the effects of
308	RS addition on both SOM-derived CH_4 production and SOM decomposition (Fig. 1c, d, g)
309	were similar to that in original F soil, although the amount of SOM decomposition in
310	combination of 5%F with sU was similar with that in original U soil. For both combinations
311	of 5% U with sterilized soil (sF or sU), the effects of RS were consistent with that in original
312	U soil (Fig. 1e, f, g), although the amount of SOM decomposition in combination of 5%U
313	with sF was similar with that in original F soil. On the other hand, for the combination of 5%
314	sterilized U with original F, the effects of RS were consistent with that in original F soil (Fig.
315	S3a, c), and vice versa (Fig. S3b, c). The experiment of sterilization and inoculation had little
316	influence on the pH values of soil samples (Table S2). Besides, the amounts of RS
317	decomposition were not significantly different between original F soil and U soil, and
318	between sterilized soil inoculated with F and U (Fig. S4). However, CH ₄ production was
319	enhanced in sF inoculated with 5%F compared to the original F soil (Fig. 1a, c), while SOM
320	degradation was similar (Fig. 1g). Sterilization of the F soil apparently resulted in enhanced
321	production of CH4. This was probably caused by a side effect of gamma irradiation. It has

323	microbial community, were greater than in the un-irradiated controls (McNamara et al., 2003).
324	3.2. Abundance of bacterial and archaeal communities
325	The abundances of bacteria and methanogenic archaea in most of the soil samples were in
326	the similar range after preincubation before being used for the incubation experiments (Fig.
327	S5). This was also the case for the sterilized soils that had been inoculated with 5% non-
328	sterile soil, indicating that the microorganisms had increased in abundance during the
329	preincubation time. The microbial abundances were again determined at the end of the
330	incubation experiment using quantitative PCR. The abundance of the bacterial 16S rRNA
331	gene ranged from about 3×10^9 to 9×10^9 copies g ⁻¹ soil (Fig. 2a). RS addition significantly
332	stimulated the abundance of bacteria only in original F and in the combination of 5%U with
333	sterilized F. The abundance of methanogenic archaea was determined by targeting the methyl
334	coenzyme M reductase (mcrA) gene, which is characteristic and unique for methanogenic
335	archaea. The results indicated that original U soil had the lowest abundance of mcrA (5.6×10 ⁷)
336	copies g^{-1} soil) (Fig. 2b), while the highest abundances of <i>mcrA</i> were found in 5%F+sF with
337	RS treatment (3.3×10^8 copies g ⁻¹ soil). The RS treatment resulted in significant increase of the
338	mcrA abundance in the original U soil only.

been shown that decomposition rates in some γ -irradiated soils, after re-introduction of a

322

339 3.3. Bacterial and archaeal 16S rRNA genes diversity analysis

340	A similarity level of 97% was used to identify OTUs and to estimate diversity of bacterial
341	and archaeal 16S rRNA genes in soil samples. A total of 122201 bacterial sequences
342	corresponding to 7987 OTUs were obtained after quality filtering. In both control and RS
343	treatment of F soil and control of U soil, about 2000 OTUs were found at a sequencing depth
344	of about 7000 (Fig. S6a), while all other soil samples contained fewer than 900 OTUs at a
345	sequencing depth ranging from 1272 to 2611. Rarefaction curves of Shannon indices almost
346	approached plateaus (Fig. S6c) and the coverage was higher than 80% in each soil sample
347	(Fig. S6d), although the rarefaction curves of OTUs and Chao1 were not saturated in any
348	sample (Fig. S6a, b). The control and RS treatment of original F soil and the control of
349	original U soil were sequenced to greater depth, since they displayed a higher bacterial α -
350	diversity than the other samples. The dominant phyla were Firmicutes (39.9% on average)
351	and Proteobacteria (12.6% on average) (Fig. 3a). The major difference between the original F
352	and U soil was the relative abundance of Firmicutes being higher in F soil. The sterilization
353	and inoculation treatments increased the relative abundance of Firmicutes in each soil. RS
354	treatment increased the relative abundance of Acidobacteria and Firmicutes in original U soil,
355	while there was no major difference between control and RS treatment in other soil samples.
356	For the archaea, a total of 106220 sequences belonging to 424 OTUs were obtained after
357	quality filtering. The sequencing depths ranged from 1143 to 6123, and the sequences from
358	different samples clustered into 73 to 173 OTUs. The sequence sampling effort was sufficient

359	to obtain coverages higher than 97% for every sample (data not shown). The archaeal
360	communities were composed of both Crenarchaeota and Euryarchaeota phyla (Fig. 3b).
361	Euryarchaeota-affiliated sequences were dominant in most of the samples, accounting for
362	more than 90% of archaeal sequences except in the original Uruguay soil (82%).
363	3.4. OTU-level bacterial and archaeal diversity analysis
364	The bacterial communities in sterilized soils were highly correlated (79%) with the
365	inoculum sources (Table 1). Variance partitioning analysis (VPA) also showed that inoculum
366	source explained a higher ratio of the observed variation (37%) of bacterial communities
367	relative to other variables including soil type, etc (Table S3). Indeed, soil type affected the
368	soil bacterial community composition only little (17%) albeit significantly (Table S3). As a
369	result, bacterial communities of the soil samples were separated into two clusters (F and U) in
370	accordance with the inoculum sources based on Unifrac distances (PerMANOVA p=0.001)
371	(Fig. 4). One replicate of 5%U+sF apparently deviated from the others and was close to
372	cluster F. We assumed that this variation was caused by the treatment of sterilization and
373	inoculation. In contrast to the Bacteria, the archaeal communities did not cluster according to
374	the origin of the microbial communities (Fig. S7), and the inoculum source also explained less
375	of the variance (26%) of the archaeal communities (Table S3). Next, the heatmap analysis
376	was used to intuitively display the differences in relative abundances of bacterial OTUs
377	among samples (Fig. 5). The OTUs with the highest contribution to the PCA ordination were

378	selected. The results indicated that the relative abundance of OTU2 and OTU52 (both
379	belonging to Symbiobacterium) significantly increased in original U soil after RS addition
380	(Table S4); moreover, both these OTUs were also much higher in sterilized soils inoculated
381	with U than with F soil (Table S5). In contrast, the relative abundances of OTU8026
382	(Clostridium), OTU1 and OTU3 (both belonging to Sphingobacteriales) were significantly
383	higher in original F compared with original U soil. OTU3 in particular was notably more
384	abundant in sterilized soils inoculated with F than with U soil (Table S5).
385	3.5. Network analysis of cosmopolitan bacterial and archaeal OTUs in cluster F and U
386	Two positive correlation-based networks, named F and U (Fig. 6a, b), were constructed
387	with these cosmopolitan prokaryotic OTUs of samples in cluster F and U (Fig. 4),
388	respectively. The results showed that network F and U were similar in size and topology
389	(Table S6), sharing about 40% of the bacterial nodes and about 90% of the archaeal nodes
390	(Fig. S8). In each network, there were three major modules (Fig. 6 and Table 2). Among them,
391	two major modules were mainly composed of bacterial nodes, i.e. FM1 and FM2 in network F,
392	UM1 and UM2 in network U (Table 2), while another module in each network was almost
393	exclusively composed of methanogenic archaea (FM3 and UM3). In network F, bacterial
394	nodes in FM2 had numerous positive correlations with methanogens in FM3 (Fig. 6), the
395	same as between UM2 and UM3 in network U. The modules FM1, FM2, UM1 and UM2

396	exhibited positive correlation with soil organic carbon (SOC) content and soil pH value but
397	not with RS treatment (Table 3).
398	Symbiobacterium was dominant in network U but substantially lower in network F (32%
399	versus 3%) (Table S7). Besides, in network F, the number of positive correlations between
400	bacteria and hydrogenotrophic methanogens was similar with that between bacteria and
401	acetoclastic methanogens (Table S8). In network U, however, both these correlations were
402	more numerous, and in addition the number of positive correlations between bacteria and
403	acetoclastic methanogens exceeded that between bacteria and hydrogenotrophic methanogens.
404	
405	4. Discussion
406	Addition of fresh organic matter in form of RS to anoxic flooded soils affected SOM
407	degradation to CO ₂ plus CH ₄ . In F soil, RS input had no effect on SOM decomposition (no PE;
408	Fig. 1g). However, the relative amount of CH ₄ produced from SOM significantly increased
409	(Fig. 1a). Consequently, the production of CO ₂ from SOM must have decreased. This
410	observation is best explained by assuming that hydrogenotrophic methanogenesis from SOM-
411	derived CO ₂ was stimulated by H ₂ released from RS decomposition, similarly as it had been
412	observed in Italian rice field soil (Yuan et al., 2014). By contrast, stimulation of acetoclastic
413	methanogenesis should have increased production of both CO2 and CH4. In U soil, however,

414	RS addition resulted in	n suppression of SO	M degradation	(negative PE) to CO_2 and CH_4 (Fig.

415 1g) and thus, decreased greenhouse gas production from SOM.

416 Reciprocal inoculation of sterilized soil with non-sterile soil from the same or the different type showed that the PE on SOM degradation was predominantly determined by the soil 417 inoculum source. For example, both sterilized F and U soils showed negative PEs after 418 inoculation with 5% U but not with 5% F (Fig. 1g). Therefore, the observed PE was not 419 caused by the physicochemical soil characteristics but by the soil microbial community. This 420 conclusion is at least true for the soils studied. However, we cannot exclude that in other rice 421 cultivation areas soil physicochemical characteristics may be of greater importance for 422 causing PE. 423 RS treatment significantly increased the abundance of bacteria or methanogens only in 424 425 some of the soil samples, which did not necessarily have a PE (Fig. 2a, b). Hence, in our soils 426 it is unlikely that the observed PE was caused by the biomass of bacteria or methanogenic archaea. This finding does not rule out, however, that in other soils acceleration or retardation 427 of SOM decomposition may be due to the increase of soil microbial biomass after substrate 428 addition (Kuzyakov et al., 2000). 429 We conclude that in our experiments it was the composition of the soil microbial 430 communities rather than biomass abundance or physicochemical soil characteristics that did 431 432 or did not cause PE(Fig. 1, 2 and 4). In order to characterize the correlation of bacterial and

433	archaeal microorganisms in methanogenic soils with and without a PE, two positive
434	correlation-based networks were constructed with cosmopolitan prokaryotic OTUs for cluster
435	F and U, respectively (Fig. 6a, b). Correlation-based co-occurrence network analysis can
436	produce microbial functional modules, which allows the interactions between different
437	functional groups in complex systems to be revealed (Barberan et al., 2012; Deng et al., 2012;
438	Ju et al., 2014). The prokaryotic community in each network was organized by three major
439	functional modules (Fig. 6 and Table 2). Values of modularity, average clustering coefficient
440	and two other parameters in both empirical networks were higher than those in random
441	networks (Table S6), suggesting that the empirical networks had common network
442	characteristics, such as modularity and hierarchy properties (Deng et al., 2012; Watts and
443	Strogatz, 1998).
444	The important function of each module could be inferred based on the prokaryotic
445	composition and their known physiological functions (Rui et al., 2015). Our results suggested
446	that each network probably included a primary fermentation module (FM1 or UM1),
447	methanogenic fermentation module (FM2 or UM2) and methanogenic module (FM3 or UM3).
448	This was consistent with studies showing that anaerobic methanogenic systems consist of
449	well-organized, closely interacting bacterial and archaeal populations (Kim and Liesack, 2015;
450	Rui et al., 2015). Most of the nodes in FM1 and UM1 belonged to Firmicutes, Actinobacteria
451	and Acidobacteria (Table 2), which usually are involved in hydrolysis of complex organic

452	matter (Kim and Liesack, 2015; Rui et al., 2015; Wegner and Liesack, 2016). The numerous
453	positive correlations between bacteria and methanogens in FM2 and UM2 were probably
454	caused by the bacterial production of methanogenic substrates, e.g., H ₂ /CO ₂ , formate and
455	acetate (Kim and Liesack, 2015; Rui et al., 2015), or because of multiple syntrophic
456	interactions between bacteria and hydrogenotrophic methanogens (Schink, 1997). In general,
457	positive co-occurrence of prokaryotic populations within or between modules could reflect
458	their similar niche adaptation or interspecies cooperation (Rui et al., 2015).
459	The network analysis mainly reflected the correlation of prokaryotic populations during
460	degradation of SOM rather than degradation of RS because of two reasons. First, RS addition
461	did not substantially change the bacterial and archaeal community compositions and
462	abundances in most of the soil samples (Fig. 2, 3 and S4). Second, the two types of
463	fermentation modules in both networks were highly correlated with the SOC content but not
464	with the RS treatment in each soil (Table 3). Therefore, we suggest that the network analysis
465	is helpful in the elucidation of differences in the microbial community composition between
466	soils with and without PE during SOM decomposition.
467	For example, the primary fermentation module (FM1) of network F contained more than 20
468	nodes of Clostridia (Table 2). However, in network U, OTUs of Clostridia were solely found
469	in the methanogenic fermentation module (UM2). Clostridia are of importance for the
470	anaerobic breakdown of polymers in flooded paddy soil, but could also participate in

471	fermentation and utilization of sugar (Kim and Liesack, 2015; Rui et al., 2015). Therefore,
472	some major nodes of the Class Clostridia, such as the genus <i>Clostridium</i> (Fig. 6 and Table S7),
473	probably were involved in the primary fermentation and methanogenic fermentation during
474	consecutive degradation of SOM in soils of F and U clusters, respectively.
475	Analogously, Symbiobacterium was dominant in network U but substantially lower in
476	network F (Table S7), which was also consistent with the heatmap analysis of the bacterial
477	OTUs in soils of F and U clusters (Fig. 5). Symbiobacterium spp. are known as symbiotic
478	bacteria (Ohno et al., 2000; Rhee et al., 2002), but also exhibit marked mono-growth if CO ₂
479	or bicarbonate is available (Watsuji et al., 2006). S. thermophilum possesses a glucose
480	degradation pathway and carries the genes for metabolizing gluconate, cellobiose and others
481	(Ueda et al., 2004). Indeed, nodes of Symbiobacterium in network U had positive correlations
482	with numerous bacteria and methanogenic archaea (Fig. 6). Symbiobacterium was actively
483	involved in methanogenic fermentation in soils of U cluster, in accordance with its presence
484	in modules UM2 and UM3, while this was not the case in soils of F cluster. Finally, compared
485	with network F, bacteria in network U had more positive correlations with methanogens,
486	especially having many more edges with acetoclastic than with hydrogenotrophic
487	methanogens (Table S8). These results implied that the two networks probably differed in the
488	role of hydrogenotrophic methanogenesis versus acetoclastic methanogenesis, which
489	suggested that these soils of F and U clusters had different pathways of methanogenic

490	degradation of SOM (Conrad et al., 2009, 2010). Therefore, network analysis of prokaryotic
491	community composition indicated that bacterial communities involved in consecutive
492	anaerobic SOM decomposition were apparently different between soils of F and U clusters.
493	The reason why such difference in microbial community composition and network clustering
494	exists between F and U soils is unknown. In fact, it is generally not known how and why
495	differences in the individual microbial communities arise between different soils. Generation
496	of such knowledge needs much more research using a large variety of different soils.
497	The mechanism for the negative PE in soils of U cluster is not quite clear, but our results
498	allow some speculation. It has been proposed that a negative PE may be due to a switch of the
499	SOM-degrading microorganisms from degradation of SOM to degradation of the fresh
500	organic matter added (Blagodatskaya et al., 2007). We speculate that Symbiobacterium and
501	other Clostridia, which were prevalent in soils of U cluster and were probably involved in
502	methanogenic fermentation, were able to switch to FOM degradation, while the bacteria that
503	were characteristic for soils of F cluster were not able to do so. This interpretation is
504	consistent with the observation that the bacteria in network U had more positive correlations
505	with both hydrogenotrophic and acetoclastic methanogens than in network F (Table S8), so
506	that a switch from SOM to FOM would have immediate effects on production of both CH_4
507	and CO ₂ , now being produced from FOM instead SOM. This was consistent with the negative
508	PE in soils of U cluster after RS addition. In soils of F cluster, by contrast, FOM degradation

509	would only indirectly affect the methanogens in network F, resulting in stimulation of CH ₄
510	production but not of SOM degradation. Besides, it's not likely that the accumulated
511	intermediates inhibited decomposition of both RS and SOM in the soils of U cluster, since the
512	amount of decomposition of RS in soils of U cluster were almost the same with that in soils of
513	F cluster (Fig. S4).
514	In summary, the bacterial community composition (and its activity) was found to be crucial
515	for establishment of a negative PE on SOM degradation in Uruguay rice field soil. This result
516	is consistent with our hypothesis that the PE in a soil mainly depends on its soil microbial
517	community rather than its physicochemical properties. It is unclear, however, whether this
518	result is universal for rice field soils. Production of the greenhouse gas CH4 is always
519	considerably higher in the presence than in the absence of RS (Conrad and Klose, 2006;
520	Kimura et al., 2004; Peng et al., 2008). Nevertheless, large amounts of SOM would be
521	preserved and the emission of greenhouse gases (CH ₄ and CO ₂) reduced if the bacterial
522	community composition would be optimal for avoiding a stimulating and causing a
523	suppressing effect. Our results showed that tight networks between fermenting and
524	methanogenic microorganisms may facilitate a switch between the degradation of SOM to
525	degradation of fresh organic matter (e.g., RS) thus preserving SOM. Such tight methanogenic
526	networks seem to depend on the presence or absence of particular bacterial genera, e.g.
527	Symbiobacterium. On the other hand, previous studies in upland soils have shown that several

528	factors, including quality and quantity of SOM, do also matter for positive and negative PEs
529	(Kuzyakov et al., 2000). Similarly, there remain many unknowns regarding the PEs in rice
530	soils that cannot be understood from the two soils investigated for this study. Therefore,
531	further studies on more rice field soils are necessary for fully uncovering the mechanisms of
532	PE during methanogenic decomposition of SOM.
533	
534	Acknowledgements
535	We thank P. Claus and M. Klose for technical assistance, Y.L. Yuan for providing Fuyang
536	soil and J. Pump for providing labeled rice straw. Q.Y., M.H., and A.F.S. received a
537	fellowship from the Max Planck Society, Germany. This work was supported by the National
538	Key Research and Development Program of China through grant 2016YFA0601000; by the
539	LOEWE center for synthetic microbiology (SYNMIKRO), Germany; by the German
540	Research Foundation as part of the ICON consortium (CO 141/4-1). We are grateful for the
541	helpful comments of four anonymous reviewers.
542	
543	Conflict of Interest
544	The authors declare no conflict of interest.
545	
546	References

547	Angel, R., Matthies, D., Conrad, R., 2011. Activation of methanogenesis in arid biological
548	soil crusts despite the presence of oxygen. PLoS ONE 6, e20453.

- 549 Barberan, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to
- explore co-occurrence patterns in soil microbial communities. The ISME Journal 6, 343-
- 551 351.
- 552 Bates, S.T., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R., Fierer, N., 2011.
- 553 Examining the global distribution of dominant archaeal populations in soil. The ISME
- 554 Journal 5, 908-917.
- 555 Blagodatskaya, E.V., Blagodatsky, S.A., Anderson, T.H., Kuzyakov, Y., 2007. Priming
- ⁵⁵⁶ effects in Chernozem induced by glucose and N in relation to microbial growth strategies.
- 557 Applied Soil Ecology 37, 95-105.
- 558 Casamayor, E.O., Massana, R., Benlloch, S., Ovreas, L., Diez, B., Goddard, V.J., Gasol, J.M.,
- Joint, I., Rodriguez-Valera, F., Pedros-Alio, C., 2002. Changes in archaeal, bacterial and
- 560 eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting
- 561 methods in a multipond solar saltern. Environmental Microbiology 4, 338-348.
- 562 Chen, R.R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X.G.,
- 563 Blagodatskaya, E., Kuzyakov, Y., 2014. Soil C and N availability determine the priming
- ⁵⁶⁴ effect: microbial N mining and stoichiometric decomposition theories. Global Change
- 565 Biology 20, 2356-2367.

566	Cheng,	W.X.,	1996.	Measurement	of rl	hizosphere	respiration	and c	organic matter
	0,								0

- decomposition using natural C-13. Plant and Soil 183, 263-268.
- 568 Cheng, W.X., 1999. Rhizosphere feedbacks in elevated CO₂. Tree Physiology 19, 313-320.
- 569 Chidthaisong, A., Rosenstock, B., Conrad, R., 1999. Measurement of monosaccharides and
- 570 conversion of glucose to acetate in anoxic rice field soil. Applied and Environmental
- 571 Microbiology 65, 2350-2355.
- 572 Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen
- 573 concentrations in methanogenic soils and sediments. Fems Microbiology Ecology 28, 193574 202.
- 575 Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial
- 576 processes involved. Environmental Microbiology Reports 1, 285-292.
- 577 Conrad, R., Claus, P., Casper, P., 2009. Characterization of stable isotope fractionation during
- 578 methane production in the sediment of a eutrophic lake, Lake Dagow, Germany.
- 579 Limnology and Oceanography 54, 457-471.
- 580 Conrad, R., Claus, P., Casper, P., 2010. Stable isotope fractionation during the methanogenic
- degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse
- 582 Fuchskuhle. Limnology and Oceanography 55, 1932-1942.
- 583 Conrad, R., Klose, M., 2006. Dynamics of the methanogenic archaeal community in anoxic
- rice soil upon addition of straw. European Journal of Soil Science 57, 476-484.

585	Conrad, R., Klose, M., Yuan, Q., Lu, Y., Chidthaisong, A., 2012. Stable carbon isotope
586	fractionation, carbon flux partitioning and priming effects in anoxic soils during
587	methanogenic degradation of straw and soil organic matter. Soil Biology & Biochemistry
588	49, 193-199.
589	Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition
590	and feedbacks to climate change. Nature 440, 165-173.
591	Deng, Y., Jiang, Y.H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological
592	network analyses. Bmc Bioinformatics 13, 113.
593	Deng, Y.C., Cui, X.Y., Hernandez, M., Dumont, M.G., 2014. Microbial diversity in hummock
594	and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA
595	pyrosequencing. PLoS ONE 9, e103115.
596	Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads.
597	Nature Methods 10, 996.
598	Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves
599	sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.
600	Fernandez Scavino, A., Ji, Y., Pump, J., Klose, M., Claus, P., Conrad, R., 2013. Structure and
601	function of the methanogenic microbial communities in Uruguayan soils shifted between
602	pasture and irrigated rice fields. Environmental Microbiology 15, 2588-2602.
	32

603	Fontaine, S., Barot, S., 2005. Size and functional diversity of microbe populations control
604	plant persistence and long-term soil carbon accumulation. Ecology Letters 8, 1075-1087.
605	Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question
606	of microbial competition? Soil Biology & Biochemistry 35, 837-843.
607	Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J.,
608	Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Dorland,
609	R.V., 2007. Changes in atmospheric constituents and in radiative forcing, In: Solomon, S.,
610	Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.),
611	Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the
612	Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge
613	University Press, Cambridge, United Kingdom and New York, NY, USA., pp. 129-234.
614	Frenzel, P., Bosse, U., Janssen, P.H., 1999. Rice roots and methanogenesis in a paddy soil:
615	ferric iron as an alternative electron acceptor in the rooted soil. Soil Biology &
616	Biochemistry 31, 421-430.
617	Glissmann, K., Weber, S., Conrad, R., 2001. Localization of processes involved in
618	methanogenic degradation of rice straw in anoxic paddy soil. Environmental Microbiology
619	3, 502-511.

620	Guenet, B., Neill, C., Bardoux, G., Abbadie, L., 2010. Is there a linear relationship between
621	priming effect intensity and the amount of organic matter input? Applied Soil Ecology 46,
622	436-442.

- 623 Hernandez, M., Dumont, M.G., Yuan, Q., Conrad, R., 2015. Different bacterial populations
- associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Applied
 and Environmental Microbiology 81, 2244-2253.
- Ju, F., Xia, Y., Guo, F., Wang, Z.P., Zhang, T., 2014. Taxonomic relatedness shapes bacterial
- assembly in activated sludge of globally distributed wastewater treatment plants.
- Environmental Microbiology 16, 2421-2432.
- 629 Kalbitz, K., Kaiser, K., Fiedler, S., Kolbl, A., Amelung, W., Brauer, T., Cao, Z.H., Don, A.,
- Grootes, P., Jahn, R., Schwark, L., Vogelsang, V., Wissing, L., Kogel-Knabner, I., 2013.
- The carbon count of 2000 years of rice cultivation. Global Change Biology 19, 1107-1113.
- 632 Kim, Y., Liesack, W., 2015. Differential assemblage of functional units in paddy soil
- microbiomes. PLoS ONE 10, e0122221.
- 634 Kimura, M., Murase, J., Lu, Y.H., 2004. Carbon cycling in rice field ecosystems in the
- 635 context of input, decomposition and translocation of organic materials and the fates of their
- end products (CO₂ and CH₄). Soil Biology & Biochemistry 36, 1399-1416.

- 637 Kramer, C., Trumbore, S., Froberg, M., Dozal, L.M.C., Zhang, D.C., Xu, X.M., Santos, G.M.,
- Hanson, P.J., 2010. Recent (< 4 year old) leaf litter is not a major source of microbial
- carbon in a temperate forest mineral soil. Soil Biology & Biochemistry 42, 1028-1037.
- 640 Kuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter.
- 641 Soil Biology & Biochemistry 42, 1363-1371.
- 642 Kuzyakov, Y., Bol, R., 2006. Sources and mechanisms of priming effect induced in two
- grassland soils amended with slurry and sugar. Soil Biology & Biochemistry 38, 747-758.
- 644 Kuzyakov, Y., Friedel, J.K., Stahr, K., 2000. Review of mechanisms and quantification of
- 645 priming effects. Soil Biology & Biochemistry 32, 1485-1498.
- Langley, J.A., McKinley, D.C., Wolf, A.A., Hungate, B.A., Drake, B.G., Megonigal, J.P.,
- 647 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed
- to elevated CO₂. Soil Biology & Biochemistry 41, 54-60.
- 649 Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination
- of species data. Oecologia 129, 271-280.
- Lozupone, C., Hamady, M., Knight, R., 2006. UniFrac--an online tool for comparing
- microbial community diversity in a phylogenetic context. Bmc Bioinformatics 7, 371.
- 653 Ma, K., Qiu, Q.F., Lu, Y.H., 2010. Microbial mechanism for rice variety control on methane
- emission from rice field soil. Global Change Biology 16, 3085-3095.

655	Mau, R.L., Liu, C.M., Aziz, M., Schwartz, E., Dijkstra, P., Marks, J.C., Price, L.B., Keim, P.,
656	Hungate, B.A., 2015. Linking soil bacterial biodiversity and soil carbon stability. The
657	ISME Journal 9, 1477-1480.
658	Mayer, H.P., Conrad, R., 1990. Factors influencing the population of methanogenic bacteria
659	and the initiation of methane production upon flooding of paddy soil. Fems Microbiology
660	Ecology 73, 103-111.

- 661 McNamara, N.P., Black, H.I.J., Beresford, N.A., Parekh, N.R., 2003. Effects of acute gamma
- 662 irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology
 663 24, 117-132.
- Neue, H.U., Scharpenseel, H.W., 1987. Decomposition pattern of C-14-labeled rice straw in
- aerobic and submerged rice soils of the Philippines. Science of the Total Environment 62,431-434.
- 667 Nottingham, A.T., Griffiths, H., Chamberlain, P.M., Stott, A.W., Tanner, E.V.J., 2009. Soil
- 668 priming by sugar and leaf-litter substrates: A link to microbial groups. Applied Soil
- 669 Ecology 42, 183-190.
- 670 Ohno, M., Shiratori, H., Park, M.J., Saitoh, Y., Kumon, Y., Yamashita, N., Hirata, A., Nishida,
- H., Ueda, K., Beppu, T., 2000. Symbiobacterium thermophilum gen. nov., sp nov., a
- 672 symbiotic thermophile that depends on co-culture with a Bacillus strain for growth.
- International Journal of Systematic and Evolutionary Microbiology 50, 1829-1832.
| 674 | Paterson, E., Sim, A., 2013. Soil-specific response functions of organic matter mineralization |
|-----|---|
| 675 | to the availability of labile carbon. Global Change Biology 19, 1562-1571. |
| 676 | Paterson, E., Thornton, B., Midwood, A.J., Osborne, S.M., Sim, A., Millard, P., 2008. |
| 677 | Atmospheric CO ₂ enrichment and nutrient additions to planted soil increase mineralisation |
| 678 | of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. |
| 679 | Soil Biology & Biochemistry 40, 2434-2440. |
| 680 | Pausch, J., Zhu, B., Kuzyakov, Y., Cheng, W.X., 2013. Plant inter-species effects on |
| 681 | rhizosphere priming of soil organic matter decomposition. Soil Biology & Biochemistry 57, |
| 682 | 91-99. |
| 683 | Peng, J.J., Lu, Z., Rui, J., Lu, Y.H., 2008. Dynamics of the methanogenic archaeal community |
| 684 | during plant residue decomposition in an anoxic rice field soil. Applied and Environmental |
| 685 | Microbiology 74, 2894-2901. |
| 686 | Penning, H., Conrad, R., 2006. Carbon isotope effects associated with mixed-acid |
| | |

688 Acta 70, 2283-2297.

687

- 689 Penning, H., Conrad, R., 2007. Quantification of carbon flow from stable isotope
- 690 fractionation in rice field soils with different organic matter content. Organic Geochemistry691 38, 2058-2069.

fermentation of saccharides by Clostridium papyrosolvens. Geochimica Et Cosmochimica

692	Perveen, N., Barot, S., Alvarez, G., Klumpp, K., Martin, R., Rapaport, A., Herfurth, D.,
693	Louault, F., Fontaine, S., 2014. Priming effect and microbial diversity in ecosystem
694	functioning and response to global change: a modeling approach using the SYMPHONY
695	model. Global Change Biology 20, 1174-1190.
696	Philippot, L., Spor, A., Henault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.A.,
697	2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal 7,
698	1609-1619.
699	Rhee, S.K., Jeon, C.O., Bae, J.W., Kim, K., Song, J.J., Kim, J.J., Lee, S.G., Kim, H.I., Hong,
700	S.P., Choi, Y.H., Kim, S.M., Sung, M.H., 2002. Characterization of Symbiobacterium
701	toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6, 57-64.
702	Rousk, J., Hill, P.W., Jones, D.L., 2015. Priming of the decomposition of ageing soil organic
703	matter: concentration dependence and microbial control. Functional Ecology 29, 285-296.
704	Rousk, K., Michelsen, A., Rousk, J., 2016. Microbial control of soil organic matter
705	mineralization responses to labile carbon in subarctic climate change treatments. Global
706	Change Biology 22, 4150-4161.
707	Roy, R., Conrad, R., 1999. Effect of methanogenic precursors (acetate, hydrogen, propionate)
708	on the suppression of methane production by nitrate in anoxic rice field soil. Fems
709	Microbiology Ecology 28, 49-61.

710	Rui, J., Li, J., Zhang, S., Yan, X., Wang, Y., Li, X., 2015. The core populations and co-
711	occurrence patterns of prokaryotic communities in household biogas digesters.
712	Biotechnology for Biofuels 8, 1-15.
713	Rui, J.P., Peng, J.J., Lu, Y.H., 2009. Succession of bacterial populations during plant residue
714	decomposition in rice field soil. Applied and Environmental Microbiology 75, 4879-4886.
715	Sass, R.L., Fisher, F.M., Harcombe, P.A., Turner, F.T., 1991. Mitigation of methane
716	emissions from rice fields: Possible adverse effects of incorporated rice straw. Global
717	Biogeochemical Cycles 5, 275-287.
718	Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W., 1989. A 3-year
719	continuous record on the influence of daytime, season, and fertilizer treatment on methane
720	emission rates from an Italian rice paddy. Journal of Geophysical Research 94, 16405-
721	16416.
722	Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation.
723	Microbiology and Molecular Biology Reviews 61, 262-280.
724	Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,
725	Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B.,
726	Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: Open-source,
727	platform-independent, community-supported software for describing and comparing
728	microbial communities. Applied and Environmental Microbiology 75, 7537-7541.

- 729 Smith, P., Fang, C.M., Dawson, J.J.C., Moncrieff, J.B., 2008. Impact of global warming on
- soil organic carbon. Advances In Agronomy, Vol 97 97, 1-43.
- 731 Stubner, S., 2002. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil
- by real-time PCR with SybrGreen (TM) detection. Journal of Microbiological Methods 50,
- 733 155-164.
- 734 Stumm, W., Morgan, J.J., 1981. Aquatic chemistry. An introduction emphasizing chemical
- equilibria in natural waters. Wiley.
- 736 Teh, Y.A., Silver, W.L., 2006. Effects of soil structure destruction on methane production and
- 737 carbon partitioning between methanogenic pathways in tropical rain forest soils. Journal of
 738 Geophysical Research-Biogeosciences 111.
- 739 Ueda, K., Yamashita, A., Ishikawa, J., Shimada, M., Watsuji, T., Morimura, K., Ikeda, H.,
- 740 Hattori, M., Beppu, T., 2004. Genome sequence of Symbiobacterium thermophilum, an
- uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Research
 32, 4937-4944.
- 743 Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T.,
- 744 Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., 2014. gplots:
- 745 Various R programming tools for plotting data. The Comprehensive R Archive Network.
- 746 Available: <u>http://CRAN.R-project.org/package</u> = gplots. Accessed 2014 January 10.

747	Watsuji, T.O., Kato, T., Ueda, K., Beppu, T., 2006. CO2 supply induces the growth of
748	Symbiobacterium thermophilum, a syntrophic bacterium. Bioscience Biotechnology And
749	Biochemistry 70, 753-756.

- Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of 'small-world' networks. Nature 393,
 440-442.
- 752 Wegner, C.E., Liesack, W., 2016. Microbial community dynamics during the early stages of
- plant polymer breakdown in paddy soil. Environmental Microbiology 18, 2825-2842.
- 754 Wieder, W.R., Bonan, G.B., Allison, S.D., 2013. Global soil carbon projections are improved

by modelling microbial processes. Nature Climate Change 3, 909-912.

- 756 Wild, B., Schnecker, J., Alves, R.J.E., Barsukov, P., Barta, J., Capek, P., Gentsch, N., Gittel,
- A., Guggenberger, G., Lashchinskiy, N., Mikutta, R., Rusalimova, O., Santruckova, H.,
- 758 Shibistova, O., Urich, T., Watzka, M., Zrazhevskaya, G., Richter, A., 2014. Input of easily
- available organic C and N stimulates microbial decomposition of soil organic matter in
- arctic permafrost soil. Soil Biology & Biochemistry 75, 143-151.
- 761 Wolf, A.A., Drake, B.G., Erickson, J.E., Megonigal, J.P., 2007. An oxygen-mediated positive
- feedback between elevated carbon dioxide and soil organic matter decomposition in a
- simulated anaerobic wetland. Global Change Biology 13, 2036-2044.

764	Wu, J., Brookes, P.C., Jenkinson, D.S., 1993. Formation and destruction of microbial biomass
765	during the decomposition of glucose and ryegrass in soil. Soil Biology and Biochemistry 25,
766	1435-1441.

- 767 Yagi, K., Minami, K., 1990. Effect of organic matter application on methane emission from
- some Japanese paddy fields. Soil Science and Plant Nutrition 36, 599-610.
- 769 Yao, H., Conrad, R., Wassmann, R., Neue, H.U., 1999. Effect of soil characteristics on
- sequential reduction and methane production in sixteen rice paddy soils from China, the
- Philippines, and Italy. Biogeochemistry 47, 269-295.
- Yao, M., Rui, J., Li, J., Dai, Y., Bai, Y., Heděnec, P., 2014. Rate-specific responses of
- prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe.
- 574 Soil Biology & Biochemistry 79, 81-90.
- Ye, R., Doane, T.A., Morris, J., Horwath, W.R., 2015. The effect of rice straw on the priming
- of soil organic matter and methane production in peat soils. Soil Biology & Biochemistry81, 98-107.
- Yu, Z.T., Garcia-Gonzalez, R., Schanbacher, F.L., Morrison, M., 2008. Evaluations of
- different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens
- denaturing by Archaea-specific PCR and gradient gel electrophoresis. Applied and
- 781 Environmental Microbiology 74, 889-893.

782	Yuan, Q., Lu, Y., 2009. Response of methanogenic archaeal community to nitrate addition in
783	rice field soil. Environmental Microbiology Reports 1, 362-369.
784	Yuan, Q., Pump, J., Conrad, R., 2012. Partitioning of CH4 and CO2 production originating
785	from rice straw, soil and root organic carbon in rice microcosms. PLoS ONE 7, e49073.
786	Yuan, Q., Pump, J., Conrad, R., 2014. Straw application in paddy soil enhances methane
787	production also from other carbon sources. Biogeosciences 11, 237-246.
788	Zhu, B., Cheng, W.X., 2011. Rhizosphere priming effect increases the temperature sensitivity
789	of soil organic matter decomposition. Global Change Biology 17, 2172-2183.

Table 1. Spearman's correlation of environmental variables with bacterial and archaeal

communities of all soil samples treated with sterilization and inoculation. Mantel test was

793	applied in t	this analysis.	The relative abundances	of OTUs were	used as input. RS: rice straw.
	11	2			1

		Bacte	rial communi	ty	Archaeal community			
	Soil type	Inoculum source	RS treatment	Averaged CH ₄ production rate	Soil type	Inoculum source	RS treatment	Averaged CH ₄ production rate
Correlation	0.33	0.786	-0.001	0.055	0.118	0.384	-0.025	0.014
p value	0.003	0.001	0.352	0.146	0.033	0.001	0.617	0.363

Table 2. Taxonomic information of dominant modules in the networks of F and U, the
numbers of nodes affiliated with abundant class/order were shown in the table, the numbers in
the parentheses were the total numbers of nodes in each module. FM: major module in

		Network F			Network U	
Abundant Class/Order	FM1 (66)	FM2 (30)	FM3 (44)	UM1 (40)	UM2 (57)	UM3 (44)
Clostridia	28	9			21	4
Acidobacteria	7	4		9	3	1
Actinobacteria	8	2		9	1	
Bacilli	5	3		5	1	
Sphingobacteriales	2				3	
Methanocellales	2		12	2	9	8
Methanosarcinales		1	30		8	24
Methanobacteriales		2	1			4

network F, UM: major module in network U.

800 **Table 3.** Spearman's correlation of environmental variables to prokaryotic community

801 structures of dominant modules in networks tested by Mantel test (permutations: 9999). RS:

	pH	RS treatment	SOC content
(1) network F			
FM1	0.342**	-0.053	0.457**
FM2	0.482**	-0.035	0.694**
FM3	-0.03	-0.055	-0.016
(2) network U			
UM1	0.426**	-0.037	0.520**
UM2	0.405**	0.067	0.470**
UM3	-0.086	0.052	-0.099

802 rice straw, SOC: soil organic carbon.

* p<0.05, ** p<0.01

805 Figure legends

Figure 1. The SOM-derived CH₄ and total inorganic carbon (TIC) production in control and 806 807 RS amended soils. Development of SOM-derived CH₄ production from Fuyang (a), Uruguay soil (b), from the combinations of 5%F with sterilized F (5%F+sF) (c) or with sterilized U 808 (5%F+sU) (d), and from the combinations of 5%U with sterilized U (5%U+sU) (e) or with 809 sterilized F (5%U+sF) (f) in control and rice straw (RS) treatment. Total amount of SOM-810 derived CH₄ and TIC at the end of incubation (day 22) from Fuyang, Uruguay, and from the 811 812 combinations of original with sterilized soils in control and RS treatment (g). The data shown are from treatment RSI, which however was almost identical to the results from treatment 813 RSII. Data are means \pm SD (n=3). The differences between control and RS treatments were 814 tested by two-tailed independent t-tests, indicated by * when P<0.05. 815 816 Figure 2. Bacterial 16S rRNA gene (a) and mcrA gene (characteristic for methanogenic 817 archaea) (b) copy numbers in soils without and with RS application at the end of incubation (day 22); means \pm SD (n = 3). The difference between control and RS treatments of each soil 818 sample was examined by two-tailed independent t-tests, indicated by * when P<0.05. 819 Figure 3. Relative sequence abundances of bacterial phyla (a) and archaeal classes (b). Major 820 taxa detected with average relative sequence abundances >1% are displayed; means \pm SD (n = 821 3). Column "Bacteria-others" or "Archaea-others" indicate combined relative sequence 822 823 abundances of all the rare phyla or classes, candidate divisions and of the taxonomically

824	unclassified sequences; rare phyla or classes are defined as having average relative sequence
825	abundances between all samples of $<1\%$. The description of soil samples was the same as in
826	caption of Figure 1. There were control and RS treatment for each soil sample.
827	Figure 4. Principal coordinate analysis (PCoA) of bacterial communities based on weighted
828	UniFrac metrics. The description of soil samples was the same as in caption of Figure 1.
829	There were control and RS treatment for each soil sample.
830	Figure 5. Heatmap showing the relative abundance of selected bacterial OTUs. The colors
831	correspond to the relative abundance of the OTUs in the samples, as indicated by the color
832	legend. The samples are clustered according to Bray-Curtis distances. The taxonomy of each
833	OTU is provided to the lowest level obtained during the classification. Abbreviations are used
834	to indicate class (c), subclass (sc), order (o), suborder (so), family (f) and genus (g).
835	Figure 6. Networks of co-occurring prokaryotic OTUs in soil samples based on correlation
836	analysis. The network F (a) includes both the samples derived from original F soil and the
837	sterilized soils with 5% F, the network U (b) includes both the samples derived from original
838	U soil and the sterilized soils with 5% U. Nodes were colored by modularity class with
839	labeled taxonomic affiliation. The names of three major modules in each network are shown,
840	while those of other minor modules are neglected. A connection between two nodes (edge)
841	stands for a strong (Spearman's ρ >0.6) and significant (p<0.01) correlation. For each panel,
842	the size of each node is proportional to the number of connections (degree).