Spatiotemporal distribution of bacterial DMSP producing and 1 catabolic genes in the Changjiang Estuary 2 Hao Sun^{1,2}, Ji Liu¹, Siyin Tan¹, Yanfen Zheng¹, Xiaolei Wang¹, Jinchang Liang¹, Jonathan 3 D. Todd^{3*} and Xiao-Hua Zhang^{1,2,4*} 4 ¹College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres 5 6 and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China 7 ²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 8 9 ³School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK 10 11 ⁴Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 12 13 14 *Correspondence: 15 Xiao-Hua Zhang, xhzhang@ouc.edu.cn; Jonathan D. Todd, jonathan.todd@uea.ac.uk 16 17 18 Running title: Bacterial DMSP production and catabolism in Estuary 19

20

Summary

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram amounts by marine microorganisms. Estuaries provide natural gradients in salinity and nutrients, factors known to regulate DMSP production, yet there have been no molecular studies of DMSP production and cycling across these gradients. Here, we study the abundance, distribution and transcription of key DMSP synthesis (dsyB and mmtN) and catabolic (dddP and dmdA) genes along the salinity gradient of the Changjiang Estuary. DMSP levels did not correlate to Chl a across the salinity gradient. In contrast, DMSP concentration, abundance of bacterial DMSP producers and their dsyB and mmtN transcripts were lowest in the freshwater samples and increased abruptly with salinity in the transitional and seawater samples. Metagenomics analysis suggests that bacterial DMSP-producers were more abundant than their algal equivalents and were more prominent in summer than winter samples. Bacterial DMSP catabolic genes and their transcripts followed the same trend of being greatly enhanced in transitional and seawater samples with higher DMSP levels than freshwater samples. DMSP cleavage was likely the dominant catabolic pathway, with DMSP lyase genes being ~4.3-fold more abundant than the demethylase gene *dmdA*. This is an exemplar study for future research on microbial DMSP cycling in estuary environments.

- 39 Key words: DMSP production; DMSP catabolism; spatiotemporal distribution; the
- 40 Changiang Estuary, salinity gradient.

41 Introduction

- Dimethylsulfoniopropionate (DMSP) is one of the Earths most abundant organosulfur compounds synthesized by many marine phytoplankton (Ackman et al., 1966), macroalgae (Dickson et al., 1980; Van Alstyne and Puglisi, 2007), some angiosperms (Rhodes et al., 1997), corals (Raina et al., 2013) and heterotrophic bacteria (Curson et al., 2017) to petagram
- 46 quantities annually (Ksionzek et al., 2016; Zhang et al., 2019). Three pathways for DMSP

- 47 biosynthesis from methionine (Met) have been identified, the transamination pathway in
- 48 marine algae, corals and bacteria (Gage et al., 1997; Raina et al., 2013; Curson et al., 2017),
- 49 the methylation pathway in angiosperms and bacteria (Rhodes et al., 1997; Kocsis and Hanson,
- 50 2000; Williams et al., 2019), and the decarboxylation pathway in one dinoflagellate (Uchida et
- 51 al., 1996).
- Recent molecular studies have identified key S-methyltransferase encoding genes of the Met
- transamination (methylthiohydroxybutryrate (MTHB) S-methyltransferase, dsyB) and Met
- methylation (Met S-methyltransferase, mmtN) pathways for DMSP synthesis in marine bacteria
- (Curson et al., 2017; Williams et al., 2019). It is estimated that ~0.35 % of marine bacteria,
- mainly Alphaproteobacteria, contain dsyB (Curson et al., 2018), but mmtN, in some DMSP-
- 57 producing Alphaproteobacteria, Gammaproteobacteria and Actinobacteria, is far less (~13-
- fold) abundant (Williams et al., 2019). Functional DsyB-like enzymes, termed DSYB exist in
- 59 DMSP-producing eukaryotic algae (diatoms, haptophytes and dinoflagellates) and corals
- 60 (Curson et al., 2018). The presence of dysB, mmtN and/or DSYB genes are robust reporters of
- microbial DMSP synthesis (Curson et al., 2017; Curson et al., 2018; Williams et al., 2019). A
- 62 MTHB S-methyltransferase isoform enzyme, termed TpMMT, was identified and only ratified
- 63 in the diatom *Thalassiosira pseudonana* (Curson et al., 2018; Kageyama et al., 2018).
- When released into the environment, DMSP is imported by diverse marine bacteria and algae
- 65 (Simó and Pedrós-Alió, 1999; Sun et al., 2011), which can use it for its anti-stress properties
- 66 (Otte et al., 2004) or can catabolise it as a source of carbon, reduced sulfur and/or energy
- 67 (Kellogg et al., 1972; Tripp et al., 2008; Curson et al., 2011). Bacteria modify DMSP by three
- 68 known pathways the demethylation pathway, the cleavage pathway and a oxygenation
- 69 pathway generating dimethylsulfoxonium propionate (DMSOP) (Thume et al., 2018).
- 70 Most environmental DMSP (~75%) is thought to be transferred into the bacterial biomass via
- 71 DMSP demethylation that can generate the reactive gas methanethiol (Kiene and Linn, 2000).

The first and key step of DMSP demethylation is catalysed by the bacterial DMSP demethylase 72 encoded by dmdA (Howard et al., 2006), which is widely used as the reporter gene for DMSP 73 demethylating bacteria (Varaliay et al., 2010). Previous metagenomic studies predict dmdA to 74 be in ~60% of marine bacteria and widely distributed in marine environments (Howard et al., 75 2006; Howard et al., 2008). The dmdA gene is divided into five clades (clade A, B, C, D, E) 76 and fourteen subclades (Varaljay et al., 2010), with subclades C/2 and D/1 being most abundant 77 in marine samples (Varaliay et al., 2012; Cui et al., 2015b). 78 DMSP cleavage pathways are predicted to account for ~10% of DMSP catabolism (Kiene and 79 Linn, 2000). Eight DMSP lyase enzymes are known to cleave DMSP generating the climate 80 active gas dimethyl sulfide (DMS) and acrylate or 3-hydroxypropionate in taxonomically 81 diverse bacteria and algae (Curson et al., 2011; Alcolombri et al., 2015; Sun et al., 2016; 82 Bullock et al., 2017). The DMSP lyases including DddD, DddL, DddP, DddQ, DddW, DddY 83 and DddK from bacteria and fungi (DddP) and Alma1 from algae belong to distinct protein 84 families (Curson et al., 2011; Alcolombri et al., 2015; Johnston, 2015; Sun et al., 2016; Bullock 85 et al., 2017). Of these genes, dddP is the most frequently detected ddd gene in marine 86 metagenomes, predicted to be present in ~8% of marine bacteria (Todd et al., 2009; Raina et 87 al., 2010; Peng et al., 2012; Curson et al., 2018). Being the most abundant DMSP lyase gene, 88 dddP is widely used as a reporter of environmental DMSP cleavage (Liu et al., 2018; Sun et 89 al., 2020). 90 Culture-dependent and -independent microbial studies have investigated how environmental 91 factors impact the distribution and diversity of dddP and dmdA in varied marine environments 92 (Cui et al., 2015a; Kuek et al., 2016; Zeng et al., 2016; Liu et al., 2018). Such studies found 93 these two genes to be taxonomically diverse and widespread across almost all major oceans, 94 from tropical waters to the polar sea (Peng et al., 2012; Zeng et al., 2016). In comparison to 95 DMSP catabolism, there are few molecular studies on environmental DMSP production and 96

these showed bacterial DMSP production to be significant in surface coastal sediment, marine sediment and seawater, sea surface microlayer and deep ocean environments (Williams et al., 2019; Song et al., 2020; Sun et al., 2020; Zheng et al., 2020). No molecular genetic studies have investigated the changes in abundance and diversity of DMSP synthesis and catabolic potential across the salinity gradient of an estuary. This is important because many model bacteria and algae (Curson et al., 2017; Curson et al., 2018; Williams et al., 2019) are known to regulate DMSP production according to salinity and nutrient availability, properties that vary considerably in the gradients that exist along an estuary. Large-river estuaries are important interfaces between continents and oceans. They are biogeochemical hotspots due to the large inputs of particulate matter, organic carbon and nutrients from both continents and oceans, thus supporting high rates of metabolic and chemical reactions (Zhai et al., 2017). The Changjiang River, also known as the Yangtze River, is the longest river in the Euro-Asia continent, which plays an important role in global biogeochemical cycling (Hou et al., 2008). Nutrients carried by the river are essential sources for phytoplankton primary production, which influence the bacterial community (Zhou et al., 2007), as does the hydrological characteristics, especially the salinity gradient in different seasons (Zheng et al., 2016). Here we investigate microbial community and DMSP and DMS (in summer only) standing stock concentration changes associated with the transition from fresh to marine waters in the Changjiang Estuary and adjacent coastal areas in summer and winter. We also study the distribution and diversity of DMSP synthesis and catabolic (primarily dddP and dmdA) genes and the influence of environmental factors in different seasons and regions.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Results

Environmental parameters

Waters from 15 sites (Fig. 1) covering a transect from freshwater, through transition, to seawater, were sampled in winter and summer, and environmental parameters are summarized in Table S1 and S2. The primary productivity of the waters, reflected by Chl *a* levels, and water temperatures were generally lower in the winter than in the summer, especially for the transition and seawater region (Fig. S1, Table S1, S2 and S3). NH₄⁺ levels were also higher in the summer (mean of 6.69 μM) than winter (mean of 3.07 μM) samples (Table S1, S2 and S3). Many key nutrients (SiO₃²⁻, PO₄³⁻ and NO₃⁻) generally decreased in concentration moving away from the coast in both seasons.

Chl *a* levels decreased with the increased distance from coast (i.e. with increased salinity and decreased key nutrient concentrations) in winter, suggesting that the highest winter primary production was in freshwater samples (Fig. S1 and Table S1). In contrast, the transition region showed highest mean Chl *a* concentration in the summer, and consequently DO levels (Fig. S1 and Table S2).

DMSP concentration correlated with salinity

The DMSP standing stock concentration within size-fractionated water samples were measured (Table S1 and Table S2). Total DMSP concentration was generally lower in winter (3.15, 7.81 and 6.26 nM for freshwater, transition and seawater regions) compared to summer samples (6.48, 21.86 and 14.92 nM for freshwater, transition and seawater regions) (Fig. 2). As expected, the Changjiang Estuary fresh water samples showed the lowest average DMSP_t concentrations compared to those from transition and seawater regions in winter and summer. This is consistent with DMSP synthesis being upregulated by increased salinity in bacteria and algae

(Curson et al., 2017; Curson et al., 2018; Williams et al., 2019) and with it having a role as an osmoprotectant (Zhang et al., 2019). DMSP concentration increased abruptly reaching a maximum at the junction between transition and seawater regions, and then decreased (Fig. 2). Even though the freshwater samples had the lowest average DMSP stocks, their levels were still significant, being only 2.48 and 1.99-fold lower in winter, and 3.38 and 2.30-fold lower in summer, than those of transient and marine samples, respectively. In the winter samples DMSP concentration did not correlate to Chl a, likely due to the majority of phototrophs being present in the freshwater regions (Fig. 2 and Fig. S1). In the summer samples, Chl a levels were highest in the transition zone, but peaks in this indicator for primary production did not match well to spikes in DMSP concentration (Fig. 2 and Fig. S1). DMSP was mainly found within microorganisms or attached to particulate, with 46.1%-70.6% (in winter) and 64.6%-75.4% (in summer) of the total DMSP being captured in this form (DMSP_{p1} {>3 μm} and DMSP_{p2} {0.22-3 μm}, Fig. 2). DMSP_{p1} (considered to be in algae and particle-associated {PA} bacteria) accounted for 23.7%, 51.6% and 25.5% in winter and 36.1%, 54.0% and 57.0% in summer for freshwater, transition and seawater regions, respectively, implying the significant role of larger microorganisms in DMSP synthesis and/or storage, especially in the summer. However, the proportion of DMSP_{n2} (in free-living {FL}) bacterioplankton and picoeukaryotes) was not insignificant (Fig. 2), and in winter (19.0% and 31.6% of DMSP_t) was 1.21 and 4.14-fold higher for transition and seawater samples than in summer (15.7% and 7.6% of DMSP_t), implying that smaller microorganisms, e.g. bacteria, may also be important for DMSP production of the Changjiang Estuary, particularly in winter. Dissolved DMSP stocks, those which are available for uptake and catabolism by microorganisms, are consistently low (0.16-5.54 nM) throughout the freshwater, transition and seawater samples in winter, despite DMSP_t and DMSP_p levels being much higher in transition samples (Fig. 2A, 2B and 2C). The situation is very different in summer samples, with the

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

lowest levels being observed in the freshwater samples (0.09-4.37 nM), that increase to the highest levels in the transient zone (1.88-18.41 nM) before decreasing to the seawater levels (0.94-18.51 nM) (Fig. 2D, 2E and 2F). Thus, DMSP availability in the summer mirrors that of DMSP_t and DMSP_p, implying that more DMSP is available for catabolism in the summer transition zone.

surface and bottom waters. In contrast, the DMSP_t concentration of surface water samples were higher than those from the bottom water in summer transition region (1.9-fold). However, it should be noted that all samples were taken in the photic zones, thus, one might not necessarily expect a large divide that might result, e.g. from a lack of phototrophs in the deeper samples. The DMS concentration in summer samples, ranging from 0.71-8.62 nM, had a similar distribution pattern to DMSP. The peak DMS value was in the junction of transition (0.90-8.62 nM) and sea water regions (0.71-6.85 nM) (Fig. S2), and likely results from DMSP cleavage. Interestingly, the freshwater samples also had a considerable DMS levels, as with DMSP, in these summer samples, ranging from 1.77-5.63 nM. Summer DMS concentration was positively correlated with temperature, DO and Chl a (P = 0.001, 0.001 and 0.035, respectively), implying the close interrelation of DMS, DMSP and eukaryote algae. Unfortunately, we have

In the following sections we investigate the correlations between DMS, $DMSP_t$, $DMSP_{p1}$, $DMSP_{p2}$ and $DMSP_d$ concentrations in water samples and their microbial communities and genetic potential to both synthesise and catabolise DMSP.

Microbial community changes associated with salinity change

no DMS data for the winter samples.

16S rRNA amplicon sequencing was carried out on all samples (Table S4) and 7305 OTUs were assigned at cut-off level of 97% nucleotide identity. Generally, PA bacteria exhibited

higher OTU diversity than FL bacteria especially in winter (mean of 1318 and 705 OTUs. respectively, Table S4). Furthermore, the OTU diversity of bottom water samples was slightly higher (1.1 to 1.5-fold) than in surface water, most notably in the PA fraction with 1075 and 772 OTUs for surface and 1562 and 1006 OTUs for bottom water in winter and summer, respectively (Table S4). The Shannon and Chao 1 index were used as proxies for evaluating bacterial community diversity and richness, respectively. There were significant differences in bacterial diversity and richness among regions and/or between seasons for PA and FL bacteria (Fig. S3 and S4). It is generally thought that algae are the major producers of DMSP in photic marine environments. The prominence of eukaryotic plastid 16S rRNA genes and metagenomics were used to identify potentially key DMSP-producing algae in the samples. The dominant algae detected in the 16S rRNA data of all samples were Bacillariophyta (diatoms, 1.82% and 0.87%) of 16S rRNA sequences for the PA fraction while 0.97% and 0.70% for FL in winter and summer, respectively) and Cryptomonadaceae (0.96% and 0.47% of 16S rRNA sequences for PA while 0.35% and 0.23% for FL in winter and summer, respectively) (Fig. S5). The majority of Cryptomonadaceae phytoplankton tested in (Keller et al., 1989) did not produce DMSP nor do they have DSYB (Curson et al., 2018) and diatoms are generally known as low producers of DMSP (typically < 50 mM intracellular) (Keller et al., 1989). Metagenomics analysis found algal DNA (total amount of reads affiliated to microalgae) to represent ~ 0.012% of the metagenome data (Fig. S6). Metagenomics data did not support the 16S rRNA data well with the Pelagophyceae class, not Cryptomonadaceae or Bacillariophyta, generally dominating (Fig. S6). *Pelagomonas* spp. have been shown to contain moderate intracellular DMSP levels (15.4-31.4 mM) (M. Corn, 1996), and express the *Alma1* DMSP lyase (Vorobev et al., 2020). DMSP producers such as Emiliania of Prymnesiophyta, Ulvophyceae and Dinophyceae genera were detected but at much lower levels in the metagenome data. Given the larger size of these phytoplankton, particularly diatoms, in comparison to bacteria, it is likely they significantly

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

contribute to the DMSP production in these samples. This is especially likely in the PA fractions where they constitute a higher proportion of the 16S rRNA data (~2.1-fold and 1.5-fold higher in winter and summer samples) than in the FL fractions irrespective of the season. However, it is noteworthy that there was no significant difference in algal DNA abundance between FL and PA fraction of metagenomic data (P = 0.337). In the transitional summer samples with the highest DMSP levels, algae were ~2-fold more abundant than in the winter in the 16S rRNA data. However, this scenario was reversed for the seawater samples where diatoms were ~10-fold more abundant in the winter than in summer (Fig. S5). It should be noted that there is no strong correlation between diatom abundance and DMSP concentration in these samples, but diatom abundance was positively correlated with Chl a concentration in summer (P = 0.004 for FL and 0.006 for PA). Thus, although algae are likely important DMSP producers in these photic samples, heterotrophic organisms may also be important producers. To evaluate the potential importance of bacteria in DMSP production and cycling in these samples, the relative abundance of genera that are reported to produce and/or catabolise DMSP were analysed from the 16S rRNA amplicon data (Fig. S7 and S8). Generally, Alteromonas, Roseovarius, Thiobacimonas (Salipiger) and Marinobacter were the major observed bacterial genera predicted to make DMSP, besides the Nisaea genus in winter samples (Fig. S7). There was no significant difference in the relative abundance of predicted DMSP-producing genera in freshwater samples between seasons (P = 0.088 for FL and 0.175 for PA). In contrast, the relative abundance of DMSP-producing bacterial genera was generally higher in summer than winter in transition (P = 0.004 and 0.002, 2.8-fold and 5.3-fold for FL and PA fraction, respectively) and the PA seawater regions (P = 0.003, 3.2-fold for PA fraction) (Fig. S7). This contradicts the DMSP data that found ~1.21-fold (transitional samples) and 4.15-fold (seawater samples) higher DMSP levels in the winter bacterioplankton fraction compared to the summer,

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

and is consistent with Williams et al (2019) that proposes there are still many DMSP-producing bacterial genera that remain unidentified (Williams et al., 2019). Unsurprisingly, predicted DMSP-producing bacteria were least abundant in freshwater samples, with 0.31% and 0.24% in winter, and 0.50% and 0.10% in summer of FL and PA bacteria, respectively, predicted to have this capacity. These predicted levels of bacterial DMSP producers climbed to 0.60% and 0.32% in winter, and 1.71% and 1.69% in summer for the transition region, and are also high in the seawater samples from the winter (0.60% and 0.53% for FL and PA bacteria) and summer (mean of 1.49% and 1.69% for FL and PA fraction) (Fig. S7). Metagenomics analysis (Fig. S9) also predicted *Marinobacter* and *Roseovarius* to be major DMSP producing bacteria, but Alteromonas and Thiobacimonas (Salipiger) appeared less abundant than in the 16S rRNA amplicon analysis. Marinobacter was far more abundant in the tested winter metagenomes (different from 16S rRNA amplicon data which may due to the smaller sample size). In contrast, the relative abundance of Roseibacterium, Roseovarius, Ruegeria and Rhodobacter were significantly higher in summer samples than in winter (P =0.004, 0.006, 0.004 and 0.004, respectively. Fig. S9). Turning attention to DMSP catabolism, SAR11 (most abundant, 0-21.49%) and Roseobacter clade bacteria (0.01%-5.88%), both well known to demethylate and cleave DMSP (Curson et al., 2011; Sun et al., 2020), were very abundant in most samples, especially in winter (Fig. S8 and S10). There was no significant difference in the abundance of bacteria, principally SAR11, predicted to catabolise DMSP in the PA fraction of freshwater and transition regions, nor was there in freshwater of FL bacteria between seasons (P = 0.347, 0.191 and 0.834, respectively). However, the relative abundance of such FL DMSP consumers was higher in transition summer (5.49%) than in winter (2.76%) samples. Interestingly, the reverse was seen in the FL seawater samples (7.41% in summer and 13.2% in winter), a likely consequence of SAR11 bacteria being significantly more abundant in winter seawater than in the other two regions (P = 0.001,

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Fig. S8). In summer samples, there was no noteworthy difference in SAR11 relative abundance between the three regions, which may be due to the violent mixing of freshwater and seawater, but there was a peak in freshwater for SAR11 in PA form (P = 0.888, Fig. S8). Roseobacter clade genera (Nautella, Maribius, Sulfitobacter, Thalassobius, Shimia and Labrenzia that account for 3.91% and 26.39% in summer of total DMSP consumers, and 0.88% and 0.56% in winter for FL and PA fraction, respectively) were higher in summer than in winter (Fig. S8), indicating their potential contribution to DMSP catabolism. These Roseobacter bacteria were most prominent in the transition and seawater regions where the dissolved DMSP concentration of both seasons were highest (Fig. 2 and Fig. S8). Metagenomic data generally supports the 16S rRNA amplicon analysis, with SAR11 (Pelagibacter) and Roseobacter clade bacteria predicted to be the dominant DMSP consumers (Fig. S10). However, in contrast to the 16S rRNA amplicon data, metagenomics predicts there to be: more known DMSP consumers in FL than PA samples in both winter and summer; and greater diversity of known DMSP consumers in summer compared to winter samples. It seemed that SAR11 clade was dominant in winter samples and Roseobacter clade bacteria, e.g. Roseobacter, Roseibacterium, Roseovarius and Loktanella in summer samples (Fig. S10). The contrasting metagenome and 16S rRNA amplicon data may due to the smaller metagenomic sample size (Fig. S8 and S10). The methods used here to predict the importance of DMSP producers and consumers are likely inaccurate, since they assume that all members of the same genera have these phenotypes (overestimating the importance). Furthermore, there are many unknown genera that can produce and/or catabolise DMSP (underestimating the importance) (Liu et al., 2018). Analysis of marker genes for the individual processes in metagenomes and by qPCR/RT-qPCR is likely a better indicator of their importance due to direct gene quantification in the samples.

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Eukaryotic DMSP synthesis genes in samples

Metagenomics was carried out (Fig. 3) on representational FL and PA samples from transitional and marine sites taken in summer and winter that generally contained the highest DMSP stock concentrations. There were no detectable *TpMMT* genes within the metagenomic data which is surprising considering the 16S rRNA data implied that diatoms were the amongst the most abundant phytoplankton in the samples. In contrast, there were some algal *DSYB* sequences identified in 5 of 12 samples (mainly in FL fractions) comprising only 7 sequence reads (Fig. S11 and S12). These putative DSYB sequences, most similar to sequences from *Ochrophyta* and some green algae, were located in inshore sites, which may be due to the high nutrition concentrations in these regions (Fig. S12). Interestingly, the putative *DSYB* genes were far less abundant than the prokaryotic *dsyB* equivalents (Table S5), but because of the extremely low levels of algal DNA in the metagenomes (~0.012%) the percentage of algae predicted to contain DSYB in some samples was quite high (Fig. S11). Deeper metagenomics sequencing, to capture more of the larger eukaryotic genomic context, and metatranscriptomics and/or metaproteomics data would have been useful to better capture algal DMSP synthesis potential.

Prokaryotic DMSP synthesis genes in samples

To investigate the importance of bacterial DMSP production in our samples, qPCR was used to examine the abundance of the bacterial DMSP synthesis genes dsyB and mmtN. Although there were exceptions (e.g. WA6-3S and SA6-4B), the dsyB gene was more abundant in FL bacteria from winter and summer samples (~2.0-fold and 3.4-fold, respectively, Table 1) than PA bacteria (Fig. 4A and 4B). The fact that dsyB was detected in PA fraction signifies that fractionation is not an ideal methodology to distinguish bacteria from algae and their relative importance in processes, e.g. DMSP synthesis. Bacteria with dsyB were more abundant during

the summer rather than winter seasons in both freshwater (P = 0.014 and 0.009 for FL and PA) and seawater (P = 0.007 and 0.049 for FL and PA). There was more variability in dsyBabundance in the transition samples with the maximal levels being in higher salinity regions of the summer samples (from 5.11×10^0 and 1.26×10^0 copies ml⁻¹ to 1.40×10^3 and 3.68×10^2 copies ml⁻¹ for FL and PA fraction, respectively), but dvsB distribution was more unified in the transition sites of winter samples (ranging from 9.00×10^{-1} to 6.91×10^{2} copies ml⁻¹) (Fig. 4A and 4B). On average dsvB abundance (Table 1) and DMSP stocks (Fig. 2) were lowest in the freshwater samples $(0.61-6.96 \times 10^{1} \text{ copies ml}^{-1})$ and were increased in the transitional (0.87- 4.11×10^2 copies ml⁻¹) and seawater regions (0.62-8.60 × 10² copies ml⁻¹) with higher salinities in both summer and winter samples (Fig. 4, Table S6 and S7). This is again consistent with DMSP being an osmolyte produced as organisms encounter regions of increased salinity. Consistent with previous work (Williams et al., 2019; Sun et al., 2020), bacteria with mmtN were less abundant (<60 copies ml⁻¹ for most samples) than those with dsyB in all samples (Table 1, Fig. 4C and 4D). In winter samples *mmtN* abundance is lowest in freshwater samples (mean of 5.76×10^{-1} and 1.99×10^{0} copies ml⁻¹ for FL and PA bacteria, respectively) with higher levels detected in the transition and seawater samples (mean values with 2.99×10^{0} to 3.07×10^1 copies ml⁻¹, Table 1, Fig. 4C). This is not the case in the summer samples where *mmtN* abundance is universally low (Fig. 4D). Metagenomic data was also interrogated to predict the relative abundance of DsyB and MmtN in representational transitional and seawater samples. The dsyB gene was found in all samples with 0.63%-1.62% of bacteria in winter and 0.28%-1.45% in summer predicted to contain this gene (Fig. 3). The DsyB sequences were mostly homologous to Roseobacter clade bacteria such as Roseovarius, Thalassobaculum, Albimonas (Fig. S12). Consistent with qPCR analysis, the mmtN gene was far less abundant than dsyB in the tested transitional and marine samples (Fig. 3). mmtN was detected in 4 of 12 samples with a mean relative abundance of 0.19% and

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

the environmental MmtN sequences most closely aligned to Roseovarius, Labrenzia and 339 Rhodobacter MmtN (Fig. S13). There was no significant difference in the relative abundance 340 of dsyB (P = 0.423) and mmtN (P = 0.216) between the FL and PA metagenomes. This data 341 contradicts the more sensitive qPCR experiments, above, and is likely a consequence of the 342 limited sequencing in this study, but it does again highlight the message that fractionation does 343 not effectively separate bacteria from algae. 344 RT-qPCR analysis was also carried out on freshwater, transitional and seawater samples to 345 further predict the activity of DMSP-producing bacteria in our samples. dsvB transcripts were 346 undetectable in freshwater samples, but were universally transcribed in all tested transitional 347 $(1.47-7.68 \times 10^1 \text{ copies ml}^{-1} \text{ in winter and } 0.36-3.33 \times 10^1 \text{ copies ml}^{-1} \text{ in summer)}$ and seawater 348 samples $(1.64-5.67 \times 10^1 \text{ copies ml}^{-1} \text{ in winter and } 0.51-1.88 \times 10^1 \text{ copies ml}^{-1} \text{ in summer)}$ at 349 low levels (Fig. 5A, Table 2). This supports the hypothesis that bacteria are upregulating DMSP 350 production in response to increased salinity with DMSP acting as an osmoprotectant. dsvB 351 transcripts from FL bacteria in winter (5.44 × 10¹ copies ml⁻¹) were ~4.5-fold more abundant 352 than in summer $(1.20 \times 10^1 \text{ copies ml}^{-1})$ (P = 0.006, Table 2, Fig. 5A), which could be explained 353 by the higher salinity of transition water in winter (PSU 25.39) compared to the summer (PSU 354 21.99). There was no strong correlation between *dsvB* transcript level and DMSP concentration. 355 Much like dsyB, mmtN gene transcripts were not detected in any freshwater samples but were 356 found in 4 of 6 transitional and 3 of 6 seawater samples at very low levels (Fig. 5B). mmtN 357 transcripts were always less abundant than those for dsyB, again confirming the likely 358 dominance of the bacterial transamination pathway for DMSP synthesis over the methylation 359 360 pathway, which is thought to be more important in sediment environments (Williams et al., 2019). dsyB and mmtN gene abundance and transcription levels, much like DMSP 361 concentrations above, were not always higher in the marine versus the transition samples (Fig. 362 4, 5A and 5B), perhaps highlighting the greater need for DMSP under the stress of acclimating 363 to higher salinity in the transition zone compared to the seawater zones where organisms may

already be acclimated.

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

To better understand the bacteria likely producing DMSP in our samples, clone libraries were generated from FL dsyB qPCR products and 194 clones sequenced. The dsyB sequences clustered into 23 OTUs (Fig. 6) with all having >80 % nucleotide identity to ratified dsyB sequences. OTU1 and OTU2, homologous to Donghicola sp. and Salipiger bermudensis, respectively (Fig. 6), were most abundant and may be important DMSP producing FL bacteria in the Changjiang Estuary. Transition and seawater samples possessed a higher diversity of dsyB than freshwater samples (Fig. 6). All OTUs were grouped into 8 clusters, and cluster 1, which is not closely related to dsyB from any known bacterium, and cluster 2, closely related to Roseovarius indicus and Defluviimonas sp. dsyB, showed the highest diversity (Fig. 6). Cumulatively, qPCR and metagenomics work showed that the bacterial DMSP synthesis genes dsyB and mmtN were far more abundant than their algal equivalents, DSYB and TpMMT; and their bacterial transcripts were detected in most transitional and marine samples, indicating that bacteria may be important contributors to DMSP production in these photic samples (Fig. 3). Also, unlike other studies (Zhang et al., 2014a), Chl a (indicative of algae) showed no significant correlation with DMSP_t in winter (P = 0.078), but bacteria with dsyB gene had a significant positive correlation with DMSP_t (P = 0.011 and 0.042 for FL and PA bacteria, respectively, Table S6 and S7). However, there was no such significant correlation for Chl a or bacteria with dsyB (P = 0.582 and 0.175 for FL and PA fractions, respectively) to DMSP in the summer samples.

Abundance of DMSP-catabolic genes in eukaryotes and prokaryotes

Transitional and marine metagenomic data, above, was also analysed for known DMSP catabolic genes. No eukaryotic *Alma1* DMSP lyase sequences were found in the metagenome

data. In contrast the *dmdA* and *ddd* genes were very abundant in these samples leading to the hypothesis that bacteria were the major DMSP catabolisers and were responsible for the bulk of DMS detected in these waters (Fig. 3).

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

As the most abundant DMSP catabolic gene in seawater samples (Varaljay et al., 2010), the abundance and transcription of dmdA was analysed by qPCR and RT-qPCR. dmdA was significantly more abundant in FL than PA transitional and seawater dwelling bacteria in both seasons (P = 0.003 and 0.009, ~1.9 and 8.0-fold in winter while ~5.3 and 4.9-fold in summer, respectively, Table 1 and Fig. 7C and 7D). Indeed, dmdA transcripts follow the same trend in seawater samples (~1.8 in winter and 2.3 in summer of the seawater samples, Table 2 and Fig. 5D) and winter transitional samples (~1.1-fold), but not in summer transitional samples where dmdA transcripts is ~3.9-fold more abundant in the PA fractions (Fig. 5D). The abundance of bacteria with dmdA and their dmdA transcripts was lowest in the freshwater samples [(0.75- $4.08) \times 10^2$ copies ml⁻¹ for average] with the lowest DMSP_d levels, and there was no significant difference between FL and PA samples (P = 0.059, 0.294 for dmdA and P = 0.121, 0.439 for dmdA transcripts in winter and summer, Fig. 5D, 7C and 7D). In both seasons, dmdA abundance and DMSP concentration increased in the transitional $[(0.09-2.52) \times 10^4 \text{ copies ml}^{-1} \text{ for average}]$ and seawater samples [(0.23-1.83) × 10⁴ copies ml⁻¹] that had increased salinity and DMSP_d (Fig. 7 and Fig. S1). A very similar trend was also seen for the *dmdA* transcripts (Fig. 5D, 7C and 7D). dmdA abundance was significantly higher in summer (2.52 \times 10⁵ and 4.78 \times 10³ copies ml⁻¹ for FL and PA bacteria, respectively) than in winter $(1.68 \times 10^3 \text{ and } 8.98 \times 10^2 \text{ m})$ copies ml⁻¹ for FL and PA bacteria, respectively) for transitional water (P = 0.003 for FL bacteria) but was at similar levels in freshwater and seawater regions between seasons (Fig. 7C, 7D and Table 1). Also, *dmdA* transcript levels were higher in summer than in winter seawater

samples (Fig. 5D and Table 2). In summer samples, the peak value of *dmdA* abundance was located at the interface between transition and seawater (Fig. 7D).

Metagenomic analysis predicted DmdA to be in 3.24% - 4.96% and 1.98% - 16.83% of bacteria of the winter and of summer samples, respectively (Fig. 3). There were no significant differences between the relative abundance of dmdA between the seasons or the FL and PA fractionation (P = 0.200, Fig. 3). The metagenomic DmdA sequences were mainly homologous to Pelagibacter (SAR11 clade) and Rhodobacteraceae (e.g. Roseobacter, Roseovarius) enzymes (Fig. S14).

As the most environmentally abundant DMSP lyase gene, dddP was also analysed by qPCR and RT-qPCR. Bacteria with DddP and their dddP transcripts were least abundant in the freshwater samples [means of $(0.67\text{-}2.94) \times 10^2$ and 0 copies ml⁻¹, respectively] with the lowest DMSP levels. As expected, dddP levels increased with salinity in the transitional [means of $(0.05\text{-}1.44) \times 10^4$ and $(0.46\text{-}1.58) \times 10^2$ copies ml⁻¹, respectively] and seawater samples [means of $(0.04\text{-}1.63) \times 10^4$ and $(0.70\text{-}1.02) \times 10^2$ copies ml⁻¹, respectively] during both summer and winter seasons where DMSP is more available (Fig. 5C, 7A, 7B, Table 1 and Table 2). However, it was notable that there is no significant increase in DMS levels detected across all samples irrespective of DMSP levels or dddP and its transcript abundance (Fig. 5C, 7A and 7B). As no rate work was carried out in this study it is impossible to know the reason for this. dddP was significantly more abundant in the FL fractions of seawater in both seasons (P = 0.001 and 0.001, ~ 5.2 -fold in winter while ~ 28.4 -fold in summer, respectively, Table 1 and Fig. 7A and 7B) and the summer transition samples (P = 0.039, ~ 3.9 -fold, Table 1 and Fig. 7A and 7B) compared to the PA fraction. However, there were exceptions in both the summer and winter

samples (notably, WA6-1B and -2B in winter, and SA6-2B, -3S, -4S and -3B in summer) where 433 dddP was more abundant in PA fractions (Fig. 7A, 7B and Table 1). Within the transitional and 434 seawater (FL only) samples with the highest DMSP levels, bacteria with dddP were 435 significantly more abundant (P = 0.010 and 0.087, ~6.7 and 20.0-fold for FL and PA bacteria 436 in transitional; P = 0.001, ~7.8-fold for FL bacteria in seawater) in summer than in winter (Fig. 437 7A, 7B and Table 1). 438 Interestingly, metagenomics analysis shows that dddP is significantly more abundant than 439 dmdA in all tested samples (P = 0.001, Fig. 3). dddP is predicted to be present in 7.55% to 440 18.13% and 9.74% to 20.35% of bacteria in the winter and summer samples. It was slightly 441 more abundant in tested summer (13.50% and 18.32% for FL and PA bacteria) compared to 442 winter (10.43% and 14.32% for FL and PA fraction) samples, which was consistent with qPCR 443 assay (Fig. 3, Fig. 7A and 7B). Furthermore, *dddP* was the most abundant DMSP lyase genes 444 in the tested samples, being \sim 3.7-fold higher than dddQ, the second most abundant ddd gene 445 (Fig. 3). These dddP sequences were closely related to dddP genes from Rhodobacteraceae 446 (e.g. Roseovarius and Ruegeria) as well as some Alphaproteobacteria (e.g. Rhodobacterales) 447 and Fungi (e.g. Fusarium) (Fig. S15). Given their clustering with functionally ratified DddP 448 proteins, these environmental DddP sequences are expected to be functional DMSP lyase 449 enzymes (Fig. S15). 450 After DddP, the next most abundant DMSP lyase detected in our metagenomes was dddQ, 451 found in all samples and predicted to be in 2.07% to 5.43% and 2.39% to 8.84% of bacteria in 452 the winter and summer samples, respectively (Fig. 3). There was no obvious difference between 453

the abundance of dddQ in the winter and summer samples (Fig. 3). These dddQ sequences most

closely aligned to DddQ from Rhodobacteraceae (e.g. Roseovarius and Ruegeria) and Pelagibacteraceae (Fig. S16) as well as other Alphaproteobacteria (e.g. Rhodospirillaceae, Rhizobiales). dddL was the third most abundant DMSP lyase gene, again present in all metagenome samples, and predicted to be in 0.28% to 1.02% and 0.80% to 7.60% of bacteria in winter and summer samples, respectively (Fig. 3). dddL appeared to be more abundant in the summer (1.33% and 3.45% for FL and PA, respectively) than in winter samples (0.41% and 0.76% for FL and PA fraction, respectively). The DddL sequences were most homologous to Rhodobacteraceae (e.g. Oceanicola, Rhodobacter and Labrenzia) (Fig. S17) and other Proteobacterial DddL enzymes, including, Rhodospirillaceae and Marinobacter. The SAR11 DMSP lyase gene dddK was detected in 9 of 12 samples and was predicted to be in 0.06% to 1.43% of bacteria (Fig. 3), which represents ~11.34% of the SAR11 detected (Fig. S18). The dddD gene was detected in 4 of 12 metagenomic samples, and was predicted to be in 0.14% to 0.63% of bacteria (Fig. 3). Some of these putative DddD sequences were closely related to the functional enzymes (Fig. S19) and others were more closely related to DddD-like enzymes in Rhodobacteraceae (e.g. Ruegeria pomeroyii) that do not have DMSP lyase activity and their function unknown (Todd et al., 2011). Only one dddW sequence was found in summer sample SA6-3 of PA fraction and this was homologous to a putative *Rhodobacteraceae* DddW from Sagittula (Fig. 3). No dddY was found in this study, consistent with this enzyme being more abundant in sediment environments. It is clear in these tested samples that cumulatively the DMSP lyase genes are far more abundant than dmdA of the demethylation pathway, widely thought to be the most abundant DMSP catabolic gene in marine samples (Varaljay et al., 2010). Further work involving metatranscriptomics, metaproteomics, but most importantly detailed process measurements of DMSP lysis and demethylation are required to support our hypothesis

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

that the DMSP cleavage pathway may be more important in the Changjiang Estuary than DMSP demethylation.

Discussion

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

Recent molecular studies of environmental DMSP synthesis have suggested that bacteria have a significant role in DMSP production and cycling in marine surface waters (Liu et al., 2018; Sun et al., 2020) and sediments (Williams et al., 2019), and non-photic environments e.g. the deep ocean (Zheng et al., 2020) and hydrothermal sediments (Song et al., 2020), that had been previously ignored. Until now, no molecular studies had investigated DMSP production and cycling in estuarine environments. However, many studies have investigated DMSP catabolism via the analysis of microbial communities and their catabolic gene abundance, distribution and transcription in diverse marine samples (Howard et al., 2008; Levine et al., 2012; Kudo et al., 2018; Liu et al., 2018), including some focused on estuarine regions (Williams et al., 2019; Han et al., 2020). This molecular study of the Changjiang Estuary found the transition and seawater samples possessed higher DMSP and DMS levels and potential for bacterial DMSP production and catabolism and that this potential was more prominent in summer than winter seasons. It should be noted that this and most other published works on molecular DMSP/DMS cycling only consider the stocks of these compounds DMSP and these do not convey the flux through the relevant pathways. Furthermore, in such studies there also limitations due to the unavoidable time of sampling and filtration etc. in which rapid degradation of volatile organic sulfur compounds may occur (Wilkening et al., 2019).

Little evidence for algal DMSP production and cycling in the Changjiang Estuary

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

Algae, particularly haptophytes and dinoflagellates that can produce high intracellular levels of DMSP (10²-10³ mM) (Keller et al., 1989; Stefels, 2000), are largely thought to be responsible for the bulk of environmental DMSP in photic marine samples. However, in our tested estuary samples the only obvious link between algae and the observed DMSP levels was that the vast majority (23.7%-57%) of DMSP was found in the larger >3 µm PA fraction, which is most likely to contain algae. Note, metagenomics, qPCR and RT-qPCR showed that there can be significant levels of bacteria with the potential to produce DMSP and their dsyB and mmtN transcripts in the PA fractions. There was no correlation between DMSP levels and Chl a; observed algae in 16S rRNA data were previously shown not to produce DMSP (Keller et al., 1989) or be low producers in the case of diatoms (Curson et al., 2018); and finally, there were few detected DSYB and Alma1, and no TpMMT genes in the selected metagenomic data from transitional and seawater sites with the highest DMSP levels. It is likely that the metagenomic depth used in this study was insufficient to capture algal DMSP synthesis and catabolic potential, given their larger genome size and perhaps a meta-transcriptomic or -proteomic approach may have been more revealing. Thus, the data presented here does neither confirm or refute the importance of algal DMSP production and cycling in the Changjiang Estuary samples but it does however imply that bacteria could be significant DMSP-producers in the transition and seawater samples, and that they are most likely very significant DMSP catabolisers, see below.

Bacterial DMSP production and catabolism enrichment in transition and seawater

regions

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Unsurprisingly, this study showed freshwater, irrespective of seasonality, to possess the lowest DMSP levels, with the lowest proportion of bacteria capable of producing (with dsyB and mmtN) and catabolising (with dddP and dmdA) DMSP, and the lowest detected transcript levels for known DMSP cycling genes. Indeed, the highest levels of DMSP, predicted DMSP-producing and -catabolic bacteria and of their transcripts (dsyB, mmtN dmdA and dddP) were always found in the transitional and seawater regions of the Changjiang Estuary with increased salinities, irrespective of seasonality. This is consistent with: DMSP being produced as an osmoprotectant in marine environments (Zhang et al., 2019); DMSP levels and bacterial DMSP synthesis being upregulated by salinity (Williams et al., 2019); and bacteria with the potential to catabolise DMSP being found in environments with higher levels of their growth substrate (Curson et al., 2011). It is also consistent with Han et al. (2019) who found dmdA to be more prominent in in costal rather than less saline estuary samples from the Gwangyang bay in Korea Peninsula all year (Han et al., 2020). Alteromonas, Roseovarius, Thiobacimonas and Marinobacter bacteria, predicted to make DMSP and be more abundant in the transition and seawater than the freshwater region, were likely important DMSP producers in the Estuary samples (Fig. S7). For DMSP catabolism, Roseobacter clade bacteria (generally containing a ddd variant and dmdA), mainly located in transition and seawater region, and SAR11 in seawater, showed good correlation with DMSP_d levels (Fig. 2 and Fig. S8) and were likely important DMSP degraders in the Changjiang Estuary.

Bacterial DMSP production and catabolic potential was higher in the summer

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

The distribution of bacterial DMSP producers, e.g. *Thiobacimonas* and *Marinobacter* (Fig. S7), and their known DMSP synthesis genes and transcripts (Fig. 4A, 4B and 5A) was consistent with increasing DMSP concentration and salinity (Fig. 2 and Fig. S1), which were all generally highest in the summer transitional and seawater samples than winter. This implies that bacterial DMSP production potential in the Changjiang Estuary is higher during the summer than in the winter. Given, mmtN was >7.0-fold less abundant than dsyB, and that mmtN transcripts were also less abundant, we propose the transamination pathway as the dominant aquatic bacterial DMSP synthesis pathway, and this is consistent with the findings of Williams et al. (2019) and Sun et al. (2020) (Williams et al., 2019; Sun et al., 2020). The caveat to this is that there are other unknown S-methyltransferase enzymes of DMSP synthesis pathways in bacteria and algae, e.g. in Marinobacter and Crypthecodinium (Uchida et al., 1996), that could not be considered here. The relative abundance of DMSP consumers (e.g. Nautella, Maribius, Sulfitobacter, Thalassobius, Shimia and Labrenzia, Fig. S8) and their genes (dddP and dmdA, Fig. 3 and Fig. 7) in the transition region was higher in summer than in winter, which was consistent with the DMSP_d concentrations (Fig. 2). These results were also consistent with Kudo et al. (2018), who found dddP to be more abundant in summer compared to winter samples from Ofunato Bay (Kudo et al., 2018). dmdA seawater transcripts and dddP transitional transcripts (PA) were also higher in summer samples than in winter (Fig. 5C and 5D). Furthermore, metagenomics showed dddL and dddK genes to be more abundant in summer compared to winter samples (Fig. 3). Overall, these results suggested that bacterial DMSP production and catabolic

potential was higher in the summer than in winter.

Bacterial DMSP production may be more important in winter than summer of the

Changjiang Estuary

Even though DMSP levels and the abundance of bacteria with the potential to produce DMSP were generally greater in the summer than winter samples, the percentage of DMSPt in the 0.22-3µm fractions, apportioned to bacterioplankton, was higher in the winter transition and seawater samples (19.0% and 31.6% in winter; 15.7% and 7.6% in summer). It should be noted that due to rapid degradation of volatile organic sulfur compounds DMSP/DMS, it is important to minimize time between sampling in remote field locations and laboratory analysis (Wilkening et al., 2019). Furthermore, the proportion of plastid sequences to 16S rRNA data was lower in winter transition compared to the summer samples (Fig. S5), implying a reduced algal component in the winter samples. Thus, we hypothesise that bacteria may have a greater contribution to DMSPt levels in the winter when algae were less abundant. Further experiments are required to test this hypothesis in the Changjiang Estuary and other estuarine ecosystems.

Conclusions

This study highlights the transition and seawater regions of the Changjiang Estuary as hubs for the highest DMSP levels and bacterial DMSP synthesis and catabolic potential in both summer than winter samples. Algae are likely important DMSP producers in these transition and seawater regions but Chl *a*, metagenomics and 16S rRNA amplicon sequencing data do not support this hypothesis. Our data does support free-living bacteria as being important DMSP producers and consumers within the transition and seawater estuary samples. Changjiang Estuary bacterial DMSP production and cycling may be more prominent in summer, but bacterial DMSP synthesis likely contributes more to DMSP_t levels in the winter when algae were likely less abundant. Overall, this study revealed the spatiotemporal distribution pattern

of DMSP production and catabolic genes and their transcript levels in the Changjiang Estuary.

It provides an exemplar study for future estuarine research on microbial DMSP cycling.

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

586

587

Experimental Procedures

Sampling and environmental parameters

1 litre triplicate samples of surface (~1 m deep, the sample name ends with "S") and bottom (from 4 m to 62 m deep, the sample name ends with "B") water were collected aboard the R/V Runjiang I from 15 sites of the Changjiang Estuary in winter (February 2017, the sample name starts with "W") and summer (July 2017, the sample name starts with "S") using a Sealogger CTD (SBE25, Electronic Inc., USA) rosette water sampler (Fig. 1A). Here, we divided the Changiang Estuary into three regions, the freshwater region (salinities < 1 PSU), transition region (1-30 PSU) and seawater region (salinities \geq 30 PSU) according to (Liu et al., 2015). Four sites were in fresh water regions (C1, C3, C5 and C7 sites for surface and bottom water of winter and summer) whereas eleven sites were in transition areas (A6-1 to A6-4 sites for surface and bottom water in winter; A6-1 to A6-8 sites for surface water and A6-1 to A6-3 sites for bottom water in summer) and seawater regions (A6-5 to A6-11 for surface and bottom water in winter; A6-9 to A6-11 for surface water and A6-4 to A6-11 for bottom water in summer) (Fig. 1B and 1C). The samples were reordered by increasing of salinity regardless of the sampling depth to study the influence of salinity in the following analysis. One litre of seawater was pre-filtered through 3 µm polycarbonate membranes (Millipore Corporation, Billerica, MA, USA) to obtain PA bacteria, and then FL bacteria were collected using 0.22 µm polycarbonate membranes (Millipore Corporation, Billerica, MA, USA). Membranes were frozen in liquid nitrogen immediately, and then stored at -20°C on board ship before transfer to -80°C in the laboratory.

In situ hydrological parameters (temperature, salinity and depth) were monitored by CTD equipped on the water sampler. Chlorophyll *a* (Chl *a*) concentrations were measured essentially as Zhang et al. (2014) (Zhang et al., 2014b). Seawater was collected on 0.7 μm pore size GF5F filters (Whatman), and then Chl *a* was extracted with 90% (v/v) acetone for 24 h in the dark. The Chl *a* concentration was determined using a Turner-Designs Trilogy Laboratory[®] Fluorometer. DO was measured by Winkler method (Carpenter, 1965). Waters were filtered with 0.45 μm cellulose acetate membranes, and nutrients including PO₄³⁻, NO₂⁻, NO₃⁻, SiO₃²⁻ and NH₄⁺ were analyzed by a nutrient auto-analyzer (AA3, Seal Analytical Ltd, UK) (Liu et al., 2015). Enumeration of bacteria was estimated by the copy numbers of 16S rRNA genes which were quantified using qPCR.

DNA/RNA extraction and qPCR/RT-qPCR

Total DNA were extracted from 3 µm and 0.22 µm membranes using the Phenol-chloroform method (Sun et al., 2020). The extracted DNA was dissolved in 50 µl TE buffer (100 mM Tris-HCl, 10 mM EDTA, pH 8.0) and stored at -80°C for further use. RNA was also extracted from 3 µm and 0.22 µm membranes as in the previous study (Liu et al., 2019), and reverse transcription of RNA was performed as Williams et al. (2019) with some modifications (Williams et al., 2019). Absence of DNA in RNA samples was confirmed by PCR using primers 338F/518R (Table 3), and 9 µl RNA were mixed with 1 µl 10 µM random reverse primer for the RNA reverse transcription. Finally, resultant cDNA was stored at - 80°C until use. qPCR and RT-qPCR were performed using primers to the 16S rRNA gene, the DMSP biosynthesis genes dsyB and mmtN and catabolic genes dddP and dmdA (C/2, D/1 subclade). All primers and their annealing temperatures are shown in Table 3. The PCR reactions and melt curves were conducted as previous described in (Sun et al., 2020). qPCR standard curves were made using pUCm-T vector (Biotech, China) containing a single copy of the corresponding gene. Plasmids were extracted using Mini Plasmid Kits (TaKaRa, Tokyo, Japan), then

linearized by digestion with XhoI, purified by TIANgel Mini Purification Kit (TIANGEN Biotech, Beijing), and the concentrations of the products were quantified with a Nanodrop-1000 Spectrophotometer. The 10-fold serially diluted linearized plasmids were then used to generate standard curves with all liner correlations showing $R^2 > 0.99$. The amplification efficiencies were between 95% and 105% (dsyB and mmtN with 83% to 96%). Three technical replicates were set for each sample. All samples were run on StepOneTM Real-time PCR System (Applied Biosystems) and the acquired data were analyzed by StepOne software (version 2.2).

Clone library of dsyB gene and phylogenetic analysis

To sequence the *dsyB* amplicons from qPCR products above, *dysB* clone libraries were constructed from 21 samples of FL fractions (WA6-2S, WA6-2B, WA6-3B, WA6-6S, WA6-6B, WA6-7B, WA6-8B, WA6-11S, SC1B, SC3S, SA6-1S, SA6-3B, SA6-7S, SA6-8B, SA6-9S, SA6-9B, SA6-10S and SA6-11B). All PCR products were separated by electrophoresis in 1% agarose gels and then purified using a DNA gel extraction kit (Biomed, China). The purified *dsyB* gene amplicons were ligated into the pUCm-T vector (Sangon, China) and transformed into *Escherichia coli* JM109. Transformants with correct inserts detected by PCR were then sent for sequencing at the Sangon Biotech (Shanghai, China). The OTUs of *dsyB* were determined with nucleotide similarity of 80% by Mothur. Representative sequences of each OTU and other *dsyB* sequences were used to construct neighbor-joining phylogenetic trees using MEGA7 (Curson et al., 2017). The partial sequences of the *dsyB* gene from clone libraries are available in the GenBank database with accession numbers MZ297611-MZ297802.

The DMS and DMSP concentration measurements

In situ, DMS concentrations were measured by Gui-peng Yang's group but only for the summer samples (Yang et al., 2011). For the measurement of DMSP concentration, a gravity-filtration

method was applied to separate the different DMSP fractions. There are 4 DMSP fractions examined, DMSP_t (total DMSP in samples without filtration), DMSP_{p1} (DMSP captured on 3 μ m membrane, considered to contain algae and PA bacteria), DMSP_{p2} (DMSP prefiltered through a 3 μ m membrane, captured on a 0.22 μ m filter, considered to be mostly picoeukaryotes and/or free-living bacteria) and DMSP_d (dissolved DMSP present in filtrate that filtered through 0.22 μ m membrane, considered as cell-free DMSP available for the microbial community to take up and/or catabolise). All the water samples for DMSP measurement were stored in 4°C with 0.5% H₂SO₄. Two milliliters of seawater samples were transferred into a brown glass vial which contained 300 μ l 10 M KOH solution, covered with a PTFE stopper immediately and then sealed with an aluminum lid. Samples were incubated for at least 24 h in the dark. DMS derived from the alkaline lysis of DMSP was assayed by cryogenic purge-and-trap gas chromatography (Tan et al., 2017) on an Agilent GC-7890B machine.

Bacteria community structure analysis

The 16S rRNA gene of bacteria and plastids were amplified using primers 515modF and 806modR (Walters et al., 2016). The PCR reaction (20 μl) contained 1 × Fast Pfu Buffer, 0.25 mM of dNTPs, 0.2 μM of each primer, 1U of FastPfu Polymerase, 10 ng of template DNA, and 0.2 μl of BSA (bovine serum albumin). PCR cycling conditions were as follows: 35 cycles of 30 s at 95 °C, 30 s for annealing at 55 °C, and 45 s for elongation at 72 °C. Amplified PCR products were purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluorTM-ST (Promega, USA) according to the manufacturer's instruction. Purified amplicons were paired-end sequenced (2 × 300 bp) on Illumina MiSeq platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: SRP174876).

After subsampling each sample to an equal sequencing depth (minimum number of sample

sequences with 25006 for each sample), operational taxonomic units (OTUs) were clustered with 97% similarity cutoff using QIIME1.9.1 by usearch7.0 method. The taxonomic position of representative 16S rRNA gene sequence for each OTU was analyzed by RDP Classifier (http://rdp.cme.msu.edu/) against the RDP 11.5 (to obtain eukaryotic plastid 16S rRNA sequences) and Silva 132 16S rRNA database using confidence threshold of 70%. The abundance of genera containing DMSP producing or catabolism genes were calculated according to the relative abundance of genera and bacterial absolute abundance (indicated by gene copies of qPCR).

Metagenome sequencing and analysis

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

DNA for metagenomic sequencing was extracted from 12 samples (WA6-2S, WA6S-2B, WA6-6B, SA6-2S, SA6-2B and SA6-6S from PA bacteria; WA6-2S, WA6-2B, WA6-6S, SA6-2S, SA6-2B and SA6-6S from FL bacteria) using NucleoSpin® Soil Kit (Macherey-Nagel, Düren, Germany). The DNA samples were sent to BGI (BGI, Shenzhen, China) company for metagenome sequencing. Metagenome assembly, taxonomic assignment and functional characterization were performed as in Liu et al. (2019) (Liu et al., 2019). BLAST analysis was performed to identify homologs of DMSP synthesis (DSYB, TpMMT, dsvB and mmtN) and catabolic genes (Alma1, ddd^+ and dmdA) in the samples as described in (Song et al., 2020). The frequency of these prokaryote and eukaryote genes was normalised to the number of recA and β-Actin sequences, giving the relative abundance as a percentage (Curson et al., 2017). Reference recAsequences obtained from FunGene database were (http://fungene.cme.msu.edu/), β-Actin from SwissProt database, DSYB from Curson et al 2018 (Curson et al., 2018) and other DMSP synthesis and catabolic genes/proteins are listed in Table S8. dddD, dddL, dddQ, dddW, dddY and dddK were referring to (Song et al., 2020). Sequences

obtained metagenomic analysis were used to construct neighbor-joining phylogenetic trees using MEGA7 (Curson et al., 2018). The metagenome data has been deposited in the NCBI Sequence Read Archive under accession numbers PRJNA732822.

Statistical analysis

Correlation analyses was conducted to identify links between the different environmental factors, bacterial genera and the abundance of functional genes using the Spearman correlation tests. Differences in environmental factors and gene abundance between seasons and sampling areas were conducted using the Mann-Whitney tests and Kruskal-Wallis tests. Statistical analysis was performed by SPSS version 25.0 (SPSS Inc., Chicago, IL, USA) and the significant threshold for all tests was set with P < 0.05 and P < 0.01. Alpha diversity indices including Chao1 and Shannon were performed by Mothur to estimate the richness and diversity of the bacterial communities.

Acknowledgements

We appreciate all the scientists and crew members on the R/V Runjiang I during the expedition for their great efforts and help in sample collection. We also thank Gui-Peng Yang of Ocean University of China for providing pH, DMS data and facilities for Chl *a* measurement, Weidong Zhai of Shandong University for providing DO data and Lijun Hou of East China Normal University for providing nutrient data. This work was financially supported by the National Key Research and Development Program of China (2016YFA0601303) and the National Natural Science Foundation of China (91751202 and 41730530) in X-HZ's laboratory. The Natural Environment Research Council UK Standard grants (NE/P012671 and NE/S001352) supported the work in JDT's laboratory.

Originality-Significance Statement

- The authors confirm that the content of the manuscript is original, and the manuscript
- has neither been published previously, nor is being considered for publication elsewhere.

731 Conflicts of Interest

732 The authors declare no competing interests.

References

728

- Ackman, R.G., Tocher, C.S., and McLachlan, J. (1966) Occurrence of dimethyl-β-propiothetin
- in marine phytoplankton. *Journal of the Fisheries Research Board of Canada* **23**: 357-364.
- Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D.S., and Vardi, A. (2015)
- 737 Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine
- 738 sulfur cycle. *Science* **348**: 1466-1469.
- Bullock, H.A., Luo, H., and Whitman, W.B. (2017) Evolution of dimethylsulfoniopropionate
- metabolism in marine phytoplankton and bacteria. Front Microbiol 8: 637.
- 741 Carpenter, J.H. (1965) The accuracy of the Winkler method for dissolved oxygen analysis.
- 742 *Limnol Oceanogr* **10**: 135-140.
- Cui, Y., Suzuki, S., Omori, Y., Wong, S.K., Ijichi, M., Kaneko, R. et al. (2015a) Abundance and
- distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial
- community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.
- 746 *Appl Environ Microbiol* **81**: 4184-4194.
- Cui, Y., Suzuki, S., Omori, Y., Wong, S.K., Ijichi, M., Kaneko, R. et al. (2015b) Abundance
- and distribution of dimethylsulfoniopropionate degradation genes and the corresponding
- bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical
- pacific ocean. *Appl Environ Microbiol* **81**: 4184-4194.
- 751 Curson, A.R., Todd, J.D., Sullivan, M.J., and Johnston, A.W. (2011) Catabolism of
- dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9: 849-
- 753 859.
- Curson, A.R., Liu, J., Bermejo Martinez, A., Green, R.T., Chan, Y., Carrion, O. et al. (2017)
- 755 Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene
- 756 in this process. *Nat Microbiol* **2**: 17009.
- 757 Curson, A.R.J., Williams, B.T., Pinchbeck, B.J., Sims, L.P., Martinez, A.B., Rivera, P.P.L. et al.
- 758 (2018) DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many
- 759 phytoplankton. *Nat Microbiol* **3**: 430-439.

- Dickson, D.M., Jones, R.G., and Davenport, J. (1980) Steady state osmotic adaptation in Ulva
- 761 lactuca. *Planta* **150**: 158-165.
- Gage, D.A., Rhodes, D., Nolte, K.D., Hicks, W.A., Leustek, T., Cooper, A.J., and Hanson, A.D.
- 763 (1997) A new route for synthesis of dimethylsulphoniopropionate in marine algae. *Nature* **387**:
- 764 891-894.
- Han, D., Kang, H.Y., Kang, C.K., Unno, T., and Hur, H.G. (2020) Seasonal mixing-driven
- system in estuarine-coastal zone triggers an ecological shift in bacterial assemblages involved
- in phytoplankton-derived DMSP degradation. *Microb Ecol* **79**: 12-20.
- Hou, L.J., Liu, M., Ou, D.N., Yang, Y., and Xu, S.Y. (2008) Influences of the macrophyte
- 769 (Scirpus mariqueter) on phosphorous geochemical properties in the intertidal marsh of the
- 770 Yangtze Estuary. *J Geophys Res-Biogeo* **113**.
- Howard, E.C., Sun, S., Biers, E.J., and Moran, M.A. (2008) Abundant and diverse bacteria
- involved in DMSP degradation in marine surface waters. *Environ Microbiol* **10**: 2397-2410.
- Howard, E.C., Henriksen, J.R., Buchan, A., Reisch, C.R., Burgmann, H., Welsh, R. et al. (2006)
- Bacterial taxa that limit sulfur flux from the ocean. *Science* **314**: 649-652.
- 775 Johnston, A.W. (2015) Who can cleave DMSP? *Science* **348**: 1430-1431.
- Kageyama, H., Tanaka, Y., Shibata, A., Waditee-Sirisattha, R., and Takabe, T. (2018)
- 777 Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification
- of a gene encoding MTHB-methyltransferase. *Arch Biochem Biophys* **645**: 100-106.
- Keller, M., Bellows, W., and Guillard, R. (1989) Dimethyl sulfide production in marine
- 780 phytoplankton. In American Chemical Society (Symposium Series 393), pp. 167-182.
- Kellogg, W.W., Cadle, R.D., Allen, E.R., Lazrus, A.L., and Martell, E.A. (1972) The sulfur
- 782 cycle. Science 175: 587-596.
- Kiene, R.P., and Linn, L.J. (2000) The fate of dissolved dimethylsulfoniopropionate (DMSP)
- in seawater: tracer studies using 35S-DMSP. Geochim Cosmochim Acta 64: 2797-2810.
- Kocsis, M.G., and Hanson, A.D. (2000) Biochemical evidence for two novel enzymes in the
- biosynthesis of 3-dimethylsulfoniopropionate in Spartina alterniflora. *Plant Physiol* **123**: 1153-
- 787 1161.
- Ksionzek, K.B., Lechtenfeld, O.J., McCallister, S.L., Schmitt-Kopplin, P., Geuer, J.K., Geibert,
- 789 W., and Koch, B.P. (2016) Dissolved organic sulfur in the ocean: Biogeochemistry of a
- 790 petagram inventory. Science **354**: 456-459.
- Kudo, T., Kobiyama, A., Rashid, J., Reza, M.S., Yamada, Y., Ikeda, Y. et al. (2018) Seasonal
- changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism
- in seawater from Ofunato Bay revealed by metagenomic analysis. *Gene* **665**: 174-184.
- Kuek, F.W.I., Mujahid, A., Lim, P.T., Leaw, C.P., and Muller, M. (2016) Diversity and dMS(P)-
- 795 related genes in culturable bacterial communities in Malaysian coastal waters. Sains
- 796 *Malaysiana* **45**: 915-931.
- Levine, N.M., Varaljay, V.A., Toole, D.A., Dacey, J.W., Doney, S.C., and Moran, M.A. (2012)

- Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in
- 799 the Sargasso Sea. *Environ Microbiol* **14**: 1210-1223.
- Liu, J., Fu, B., Yang, H., Zhao, M., He, B., and Zhang, X.H. (2015) Phylogenetic shifts of
- bacterioplankton community composition along the Pearl Estuary: the potential impact of
- 802 hypoxia and nutrients. Front Microbiol 6: 64.
- Liu, J., Liu, J., Zhang, S.H., Liang, J., Lin, H., Song, D. et al. (2018) Novel insights into
- 804 bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front Microbiol 9:
- 805 3206.
- Liu, J., Zheng, Y., Lin, H., Wang, X., Li, M., Liu, Y. et al. (2019) Proliferation of hydrocarbon-
- degrading microbes at the bottom of the Mariana Trench. *Microbiome* **7**: 47.
- 808 M. Corn, S.B., F. Partensky, N. Simon and U. Christaki (1996) Origin and importance of
- 809 picoplanktonic DMSP: Springer, Boston, MA.
- Otte, M.L., Wilson, G., Morris, J.T., and Moran, B.M. (2004) Dimethylsulphoniopropionate
- 811 (DMSP) and related compounds in higher plants. J Exp Bot 55: 1919-1925.
- Peng, M., Xie, Q., Hu, H., Hong, K., Todd, J.D., Johnston, A.W., and Li, Y. (2012) Phylogenetic
- 813 diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide
- synthesis in mangrove soils. *Can J Microbiol* **58**: 523-530.
- Raina, J.B., Dinsdale, E.A., Willis, B.L., and Bourne, D.G. (2010) Do the organic sulfur
- compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18: 101-
- 817 108.
- Raina, J.B., Tapiolas, D.M., Foret, S., Lutz, A., Abrego, D., Ceh, J. et al. (2013) DMSP
- biosynthesis by an animal and its role in coral thermal stress response. *Nature* **502**: 677-680.
- Rhodes, D., Gage, D.A., Cooper, A., and Hanson, A.D. (1997) S-methylmethionine conversion
- to dimethylsulfoniopropionate: Evidence for an unusual transamination reaction. *Plant Physiol*
- 822 **115**: 1541-1548.
- 823 Simó, R., and Pedrós-Alió, C. (1999) Role of vertical mixing in controlling the oceanic
- production of dimethyl sulphide. *Nature* **402**: 396-399.
- 825 Song, D., Zhang, Y., Liu, J., Zhong, H., Zheng, Y., Zhou, S. et al. (2020) Metagenomic insights
- 826 into the cycling of dimethylsulfoniopropionate and related molecules in the eastern China
- marginal seas. Front Microbiol 11: 157.
- Stefels, J. (2000) Physiological aspects of the production and conversion of DMSP in marine
- 829 algae and higher plants. *J Sea Res* **43**: 183-197.
- 830 Sun, H., Zhang, Y., Tan, S., Zheng, Y., Zhou, S., Ma, Q.Y. et al. (2020) DMSP-producing
- bacteria are more abundant in the surface microlayer than subsurface seawater of the East China
- 832 Sea. *Microb Ecol* **80**: 350-365.
- 833 Sun, J., Todd, J.D., Thrash, J.C., Qian, Y., Qian, M.C., Temperton, B. et al. (2016) The abundant
- marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the
- gases dimethyl sulfide and methanethiol. *Nat Microbiol* 1: 16065.

- 836 Sun, L., Curson, A.R.J., Todd, J.D., and Johnston, A.W.B. (2011) Diversity of DMSP transport
- in marine bacteria, revealed by genetic analyses. *Biogeochemistry* **110**: 121-130.
- 838 Tan, T.-T., Wu, X., Liu, C.-Y., and Yang, G.-P. (2017) Distributions of dimethylsulfide and its
- related compounds in the Yangtze (Changjiang) River Estuary and its adjacent waters in early
- 840 summer. Cont Shelf Res 146: 89-101.
- Thume, K., Gebser, B., Chen, L., Meyer, N., Kieber, D.J., and Pohnert, G. (2018) The
- metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. *Nature* **563**:
- 843 412-415.
- Todd, J.D., Curson, A.R., Dupont, C.L., Nicholson, P., and Johnston, A.W. (2009) The dddP
- gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide,
- is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete
- 847 fungi. Environ Microbiol 11: 1376-1385.
- Todd, J.D., Curson, A.R., Kirkwood, M., Sullivan, M.J., Green, R.T., and Johnston, A.W. (2011)
- 849 DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and
- in uncultured marine bacteria. *Environ Microbiol* **13**: 427-438.
- Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W., Wilhelm, L.J., and Giovannoni, S.J.
- 852 (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. *Nature* **452**:
- 853 741-744.
- Uchida, A., Ooguri, T., Ishida, T., Kitaguchi, H., and Ishida, Y. (1996) Biosynthesis of
- dimethylsulfoniopropionate in Crypthecodinium Cohnii (Dinophyceae). *Planta* **199**: 433-438.
- 856 Van Alstyne, K.L., and Puglisi, M.P. (2007) DMSP in marine macroalgae and
- macroinvertebrates: Distribution, function, and ecological impacts. *Aguat Sci* **69**: 394-402.
- Varaljay, V.A., Howard, E.C., Sun, S., and Moran, M.A. (2010) Deep sequencing of a
- dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on
- the basis of marine metagenomic data. *Appl Environ Microbiol* **76**: 609-617.
- Varaljay, V.A., Gifford, S.M., Wilson, S.T., Sharma, S., Karl, D.M., and Moran, M.A. (2012)
- 862 Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic north pacific
- subtropical gyre. *Appl Environ Microbiol* **78**: 2775-2782.
- Vorobey, A., Dupouy, M., Carradec, Q., Delmont, T.O., Annamale, A., Wincker, P., and Pelletier,
- E. (2020) Transcriptome reconstruction and functional analysis of eukaryotic marine plankton
- see communities via high-throughput metagenomics and metatranscriptomics. Genome Res 30:
- 867 647-659.
- Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A. et al. (2016)
- 869 Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer
- marker gene primers for microbial community surveys. mSystems 1: e00009-00015.
- Wilkening, J.V., Turchyn, A.V., Redeker, K.R., Mills, J.V., Antler, G., Carrión, O., and Todd,
- 372 J.D. (2019) The production and fate of volatile organosulfur compounds in sulfidic and
- ferruginous sediment. *J Geophys Res-Biogeo* **124**: 3390-3402.
- Williams, B.T., Cowles, K., Bermejo Martinez, A., Curson, A.R.J., Zheng, Y., Liu, J. et al.

- 875 (2019) Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. *Nat*
- 876 *Microbiol* **4**: 1815-1825.
- Yang, G.-P., Zhang, H.-H., Zhou, L.-M., and Yang, J. (2011) Temporal and spatial variations of
- dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the
- 879 Yellow Sea. *Cont Shelf Res* **31**: 1325-1335.
- 880 Yin, Q., Fu, B., Li, B., Shi, X., Inagaki, F., and Zhang, X.H. (2013) Spatial variations in
- microbial community composition in surface seawater from the ultra-oligotrophic center to rim
- of the South Pacific Gyre. *PLoS One* **8**: e55148.
- 883 Zeng, Y.X., Qiao, Z.Y., Yu, Y., Li, H.R., and Luo, W. (2016) Diversity of bacterial
- dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Sci
- 885 *Rep* **6**: 33031.
- Zhai, W.-D., Yan, X.-L., and Qi, D. (2017) Biogeochemical generation of dissolved inorganic
- carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season. Estuar
- 888 *Coast Shelf Sci* **197**: 136-149.
- Zhang, S.H., Yang, G.P., Zhang, H.H., and Yang, J. (2014a) Spatial variation of biogenic sulfur
- in the south Yellow Sea and the East China Sea during summer and its contribution to
- atmospheric sulfate aerosol. Sci Total Environ 488-489: 157-167.
- 892 Zhang, X.H., Liu, J., Liu, J., Yang, G., Xue, C.X., Curson, A.R.J., and Todd, J.D. (2019)
- 893 Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle.
- 894 *Sci China Life Sci* **62**: 1296-1319.
- Zhang, Y., Zhao, Z., Dai, M., Jiao, N., and Herndl, G.J. (2014b) Drivers shaping the diversity
- and biogeography of total and active bacterial communities in the South China Sea. *Mol Ecol*
- **23**: 2260-2274.
- Zheng, Y., Jiang, X., Hou, L., Liu, M., Lin, X., Gao, J. et al. (2016) Shifts in the community
- structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity
- 900 gradient. *J Geophys Res-Biogeo* **121**: 1632-1645.
- Zheng, Y., Wang, J., Zhou, S., Zhang, Y., Liu, J., Xue, C.X. et al. (2020) Bacteria are important
- dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. *Nat*
- 903 *Commun* 11: 4658.

- 204 Zhou, J., Wu, Y., Kang, Q., and Zhang, J. (2007) Spatial variations of carbon, nitrogen,
- 905 phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuar
- 906 *Coast Shelf Sci* **71**: 47-59.

Table 1 The averaged genes abundance of FL and PA bacteria in freshwater, transition and seawater samples of winter and summer.

Cama			16S rRNA			dsyB			mmtN			dddP			dmdA	
Gene	S	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater
XX	FL	4.34 x 10 ⁴	9.90 x 10 ⁴	2.83 x 10 ⁴	1.34 x 10 ¹	2.16 x 10 ²	2.34 x 10 ²	5.76 x 10 ⁻¹	3.07 x 10 ¹	1.42 x 10 ¹	2.94 x 10 ²	7.22 x 10 ²	2.10×10^3	4.08 x 10 ²	1.68×10^3	1.83 x 10 ⁴
Winter	PA	4.01×10^4	6.16 x 10 ⁴	1.30 x 10 ⁵	6.07 x 10 ⁰	2.26×10^{2}	6.22×10^{1}	1.99 x 10 ⁰	2.99 x 10 ⁰	5.17×10^{0}	1.97×10^{2}	5.48×10^2	4.06×10^2	2.72 x 10 ²	8.98×10^{2}	2.30×10^3
	FL	3.63 x 10 ⁵	7.84 x 10 ⁴	5.92 x 10 ⁴	6.96 x 10 ¹	4.11 x 10 ²	8.60 x 10 ²	4.36 x 10 ⁰	2.85×10^{0}	2.45 x 10 ⁰	6.67 x 10 ¹	1.44 x 10 ⁴	1.63 x 10 ⁴	7.49 x 10 ¹	2.52 x 10 ⁴	1.55 x 10 ⁴
Summer	PA	1.68 x 10 ⁵	1.91 x 10 ⁵	1.20 x 10 ⁵	1.51 x 10 ¹	8.74×10^{1}	2.93×10^{2}	8.00 x 10 ⁻²	2.80×10^{0}	1.05 x 10 ⁰	1.20×10^2	3.69×10^3	5.74×10^2	2.48 x 10 ²	4.78×10^3	3.16×10^3

*FL, free-living. PA, particle-associated.

908

Table 2 The gene transcripts abundance of FL and PA bacteria in freshwater, transition and seawater samples of winter and summer.

Т			16S rRNA			dsyB			mmtN			dddP			dmdA	
Transcr	ıpıs	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater	Freshwater	Transition	Seawater
	FL	1.65 x 10 ⁷	1.36 x 10 ⁷	7.36 x 10 ⁷	0	6.38 x 10 ¹	4.50 x 10 ¹	0	3.67 x 10 ⁰	0	7.19 x 10 ⁰	1.58 x 10 ²	9.43 x 10 ¹	7.84 x 10 ⁰	1.79 x 10 ²	1.86 x 10 ²
Winter	PA	8.38×10^6	8.07×10^6	7.69×10^6	0	2.41 x 10 ¹	1.92 x 10 ¹	0	6.55 x 10 ⁻¹	8.62 x 10 ⁻²	8.31 x 10 ⁰	4.62 x 10 ¹	6.97 x 10 ¹	1.54 x 10 ⁰	1.59×10^2	9.91×10^{1}
	FL	7.18 x 10 ⁸	5.31 x 10 ⁸	3.11 x 10 ⁸	0	1.37 x 10 ¹	1.03 x 10 ¹	0	3.72 x 10 ⁻¹	1.34 x 10 ⁰	7.71 x 10 ⁰	1.52×10^2	1.02 x 10 ²	4.78 x 10 ⁰	7.75 x 10 ¹	5.49×10^2
Summer	PA	1.95 x 10 ⁸	3.09 x 10 ⁸	2.16×10^7	0	6.57×10^{0}	1.45 x 10 ¹	0	2.82 x 10 ⁻¹	0	8.80 x 10 ⁰	1.10×10^2	9.06 x 10 ¹	3.21 x 10 ⁰	2.99×10^{2}	2.39 x 10 ²

^{*}FL, free-living. PA, particle-associated.

Table 3 Primers and amplification conditions for qPCR detection and high-through sequencing of bacteria.

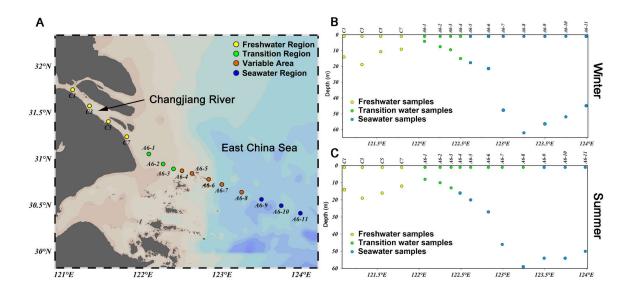
Target gene	Primers	Sequences (5'-3')	Amplicon length (bp)	Annealing temp (°C)	Usage	References
16S rRNA	338F	ACTCCTACGGGAGGCAGCAG	180	53		(Vin et al. 2012)
105 IKNA	518R	ATTACCGCGGCTGCTGG	100	33		(Yin et al., 2013)
dsyB	dsyBF	CATGGGSTCSAAGGCSCTKTT	246	61		(Williams et al., 2019)
usyb	dsyBR	GCAGRTARTCGCCGAAATCGTA	240	01		(Williams et al., 2019)
mmtN	mmtNF	CCGAGGTGGTCATGAAYTTYGG	301	54		(Williams et al., 2019)
MIMILIN	mmtNR	GGATCACGCACACYTCRTGRTA	301	34	qPCR	(Williams et al., 2019)
dddP	874F	AAYGAAATWGTTGCCTTTGA	97	41	qrck	(Lavino et al. 2012)
aaaP	971R	GCATDGCRTAAATCATATC	91	41		(Levine et al., 2012)
dm d 4(C/2)	291F	AGATGAAAATGCTGGAATGATAAATG	191	50		(Levine et al., 2012)
dmdA(C/2)	482R	AAATCTTCAGACTTTGGACCTTG	191	30		(Varaljay et al., 2010)
d d 4(D/1)	268F	AGATGTTATTATTGTCCAATAATTGATG	89	49		(Levine et al., 2012)
dmdA(D/1)	356R	ATCCACCATCTATCTTCAGCTA	89	49		(Varaljay et al., 2010)
160 aDN 4	515modF	GTGYCAGCMGCCGCGGTAA	201	50	Amplicon	(Walters et al. 2016)
16S rRNA	806modR	GGACTACNVGGGTWTCTAAT	291	50	sequencing	(Walters et al., 2016)

Tables and Figure Legends

Fig. 1 Sampling map in both winter and summer cruises. A, sampling sites. B and C, surface and bottom samples in winter and summer, respectively. Yellow, freshwater samples. Green, transition region water samples. Cyan, seawater samples. Orange in A, variable area that samples were different in summer and winter.

Fig. 2 DMSP concentrations of Changjiang Estuary winter and summer samples. A, B and C, the DMSP_t, DMSP_p and DMSP_d of Changjiang Estuary winter samples. D, E and F, the DMSP_t, DMSP_p and DMSP_d of Changjiang Estuary summer samples. DMSP_t, total DMSP. DMSP_p, particulate DMSP, including DMSP_{p1} and DMSP_{p2}. DMSP_{p1} was these captured on 3 μm membrane. DMSP_{p2} was these DMSP passed through 3 μm but was captured on the 0.22 μm filter. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples. The former "W" or "S" of the sample name represents winter or summer samples, while the latter "S" or "B" means surface or bottom water samples.

Fig. 3 DMSP producing and catabolic gene abundance in metagenomes from Changjiang Estuary winter and summer samples.


Fig. 4 The abundance of DMSP producing and catabolic genes and DMSP concentration in Changjiang Estuary winter and summer samples. A and B, *dsyB* gene abundance in winter and summer, respectively. C and D, *mmtN* gene abundance in

winter and summer, respectively. FL, free-living. PA, particle-associated. DMSP_{p1}, DMSP was these captured on 3 μ m membrane. DMSP_{p2}, DMSP passed through 3 μ m but was captured on the 0.22 μ m filter. F, freshwater samples; T, transition water samples; S, seawater samples.

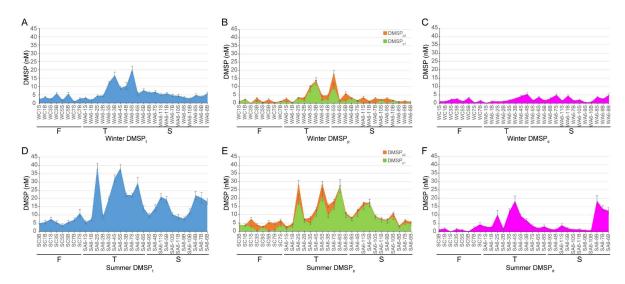
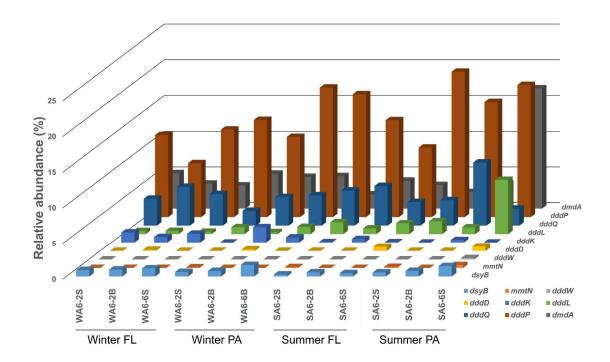
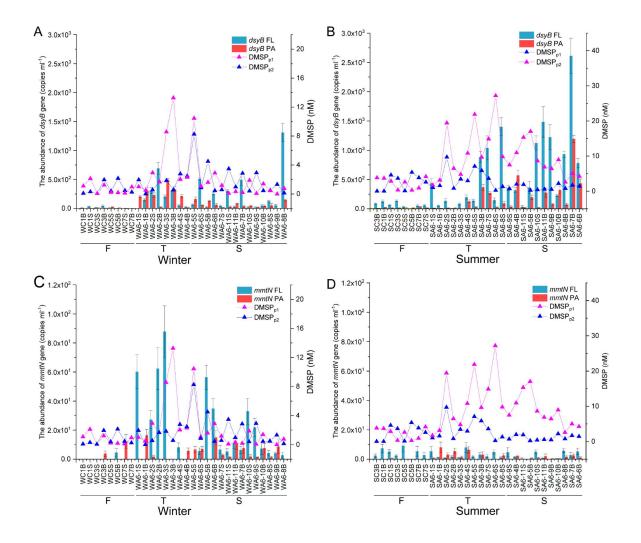
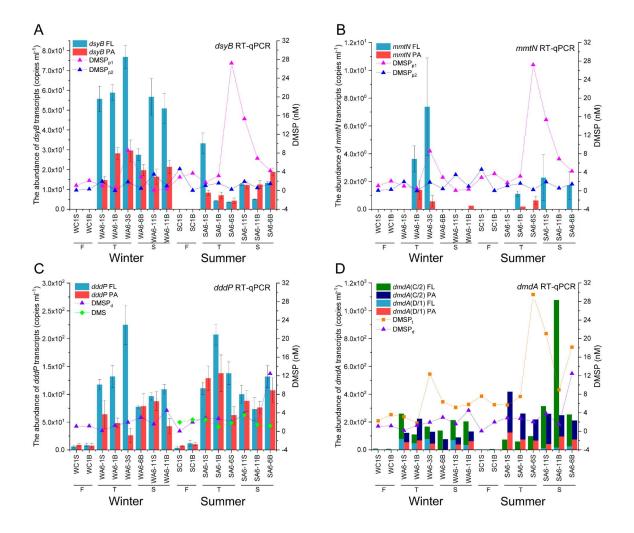
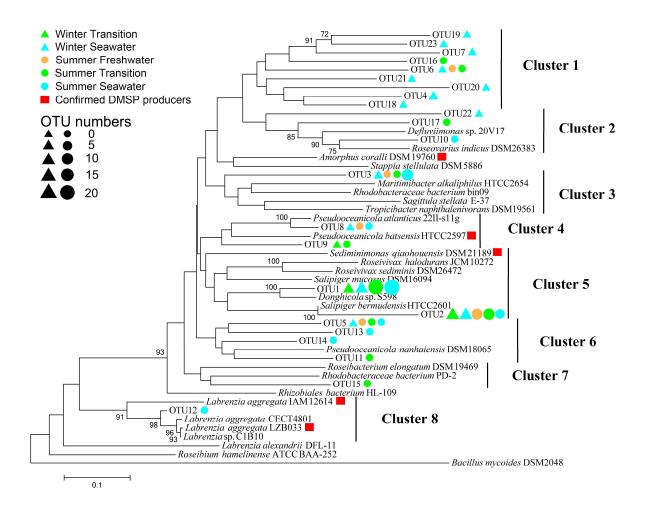

Fig. 5 The abundance of DMSP producing and catabolic gene transcripts and DMSP/DMS concentrations in Changjiang Estuary summer and winter samples. A, the abundance of *dsyB* transcripts. B, the abundance of *mmtN* transcripts. C, the abundance of *dddP* transcripts. D, the abundance of *dmdA* (C/2 and D/1 subclade) transcripts. FL, free-living. PA, particle-associated. DMSP_{p1}, DMSP was these captured on 3 μm membrane. DMSP_{p2}, DMSP passed through 3 μm but was captured on the 0.22 μm filter. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples.

Fig. 6 Neighbor-joining tree of representative *dsyB* OTU sequences in Changjiang Estuary winter and summer samples. 192 sequences were used to construct the nucleotide tree. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. OTUs of *dsyB* in winter samples were marked with triangle while summer samples were marked with circle. OTUs of *dsyB* in freshwater samples were dyed with orange, transition samples with green and seawater samples with cyan. The abundance of OTUs were indicated by triangle and circle size. Strains experimentally confirmed to produce DMSP are marked with a red square.


Fig. 7 The abundance of DMSP catabolic genes and DMS/DMSP concentrations in Changjiang Estuary winter and summer samples. A and B, the abundance of *dddP* genes in winter and summer samples, respectively. C and D, the abundance of *dmdA* (C/2 and D/1 subclade) genes in winter and summer, respectively. FL, free-living. PA, particle-associated. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples.


Fig. 1 Sampling map in both winter and summer cruises. A, sampling sites. B and C, surface and bottom samples in winter and summer, respectively. Yellow, fresh water samples. Green, transition region water samples. Cyan, seawater samples. Orange in A, variable area that samples were different in summer and winter.


Fig. 2 DMSP concentrations of the Changjiang Estuary in winter and summer. A, B and C, the DMSP_t, DMSP_p and DMSP_d in winter of the Changjiang Estuary. D, E and F, the DMSP_t, DMSP_p and DMSP_d in summer of the Changjiang Estuary. DMSP_t, total DMSP. DMSP_p, particulate DMSP, including DMSP_{p1} and DMSP_{p2}. DMSP_{p1} was these captured on 3 μm membrane. DMSP_{p2} was these DMSP passed through 3 μm but was captured on the 0.22 μm filter. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples. The former "W" or "S" of the sample name represents winter or summer samples, while the latter "S" or "B" means surface or bottom water samples.


Fig. 3 The DMSP producing and catabolic gene abundance in the metagenomes from winter and summer samples.

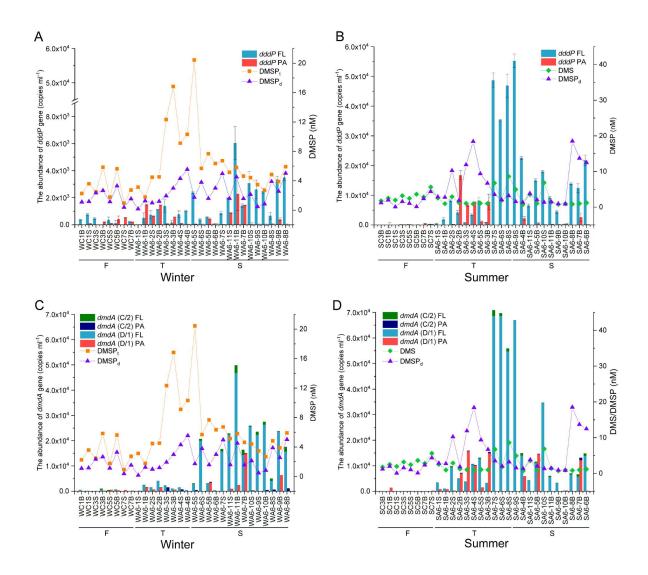

Fig. 4 The abundance of DMSP producing and catabolic genes and DMSP concentration in winter and summer Changjiang Estuary samples. A and B, *dsyB* gene abundance in winter and summer, respectively. C and D, *mmtN* gene abundance in winter and summer, respectively. FL, free-living. PA, particle-associated. DMSP_{p1}, DMSP was these captured on 3 μm membrane. DMSP_{p2}, DMSP passed through 3 μm but was captured on the 0.22 μm filter. F, freshwater samples; T, transition water samples; S, seawater samples.

Fig. 5 The abundance of DMSP producing and catabolic gene transcripts and DMSP/DMS concentrations in summer and winter Changjiang Estuary samples. A, the abundance of *dsyB* transcripts. B, the abundance of *mmtN* transcripts. C, the abundance of *dddP* transcripts. D, the abundance of *dmdA* (C/2 and D/1 subclade) transcripts. FL, free-living. PA, particle-associated. DMSP_{p1}, DMSP was these captured on 3 μm membrane. DMSP_{p2}, DMSP passed through 3 μm but was captured on the 0.22 μm filter. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples.

Fig. 6 Neighbor-joining tree of representative *dsyB* OTU sequences in winter and summer Changjiang Estuary samples. 192 sequences were used to construct the nucleotide tree. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. OTUs of *dsyB* in winter samples were marked with triangle while summer samples were marked with circle. OTUs of *dsyB* in freshwater samples were dyed with orange, transition samples with green and seawater samples with cyan. The abundance of OTUs were indicated by triangle and circle size. Strains experimentally confirmed to produce DMSP are marked with a red square.

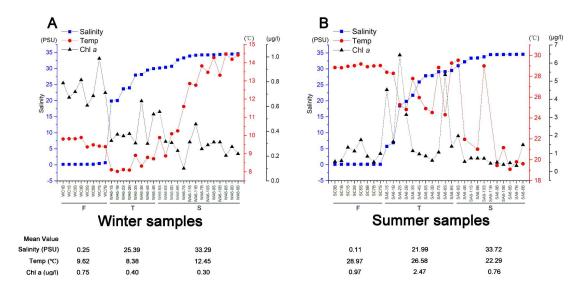
Fig. 7 The abundance of DMSP catabolic genes and DMS/DMSP concentrations in winter and summer Changjiang Estuary samples. A and B, the abundance of *dddP* genes in winter and summer samples, respectively. C and D, the abundance of *dmdA* (C/2 and D/1 subclade) genes in winter and summer, respectively. FL, free-living. PA, particle-associated. DMSP_d, dissolved DMSP. F, freshwater samples; T, transition water samples; S, seawater samples.

Spatiotemporal distribution of bacterial DMSP producing and catabolic genes in the Changjiang Estuary

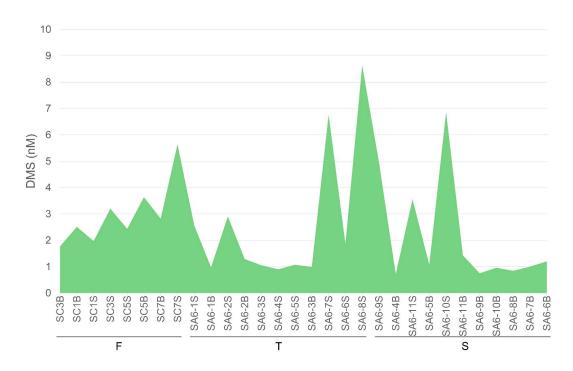
Hao Sun^{1,2}, Ji Liu¹, Siyin Tan¹, Yanfen Zheng¹, Xiaolei Wang¹, Jinchang Liang¹, Jonathan D. Todd^{3*} and Xiao-Hua Zhang^{1,2,4*}

¹College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China

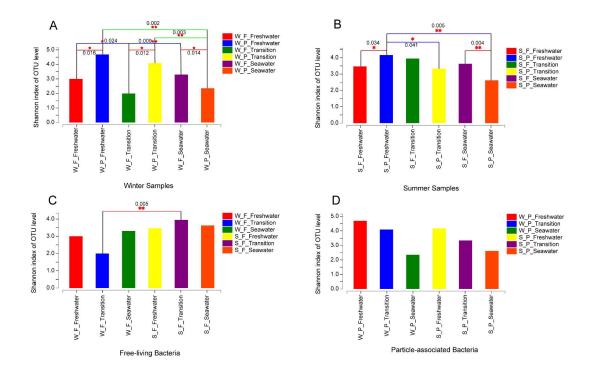
²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

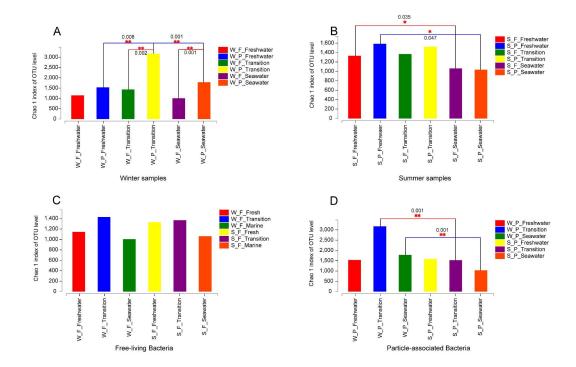

³School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK

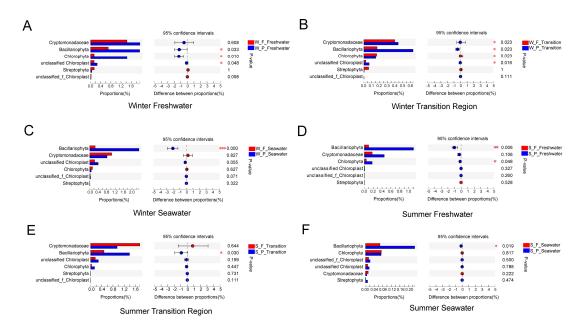
⁴Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China

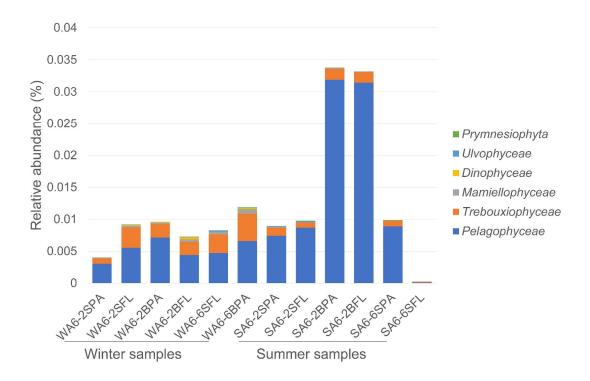

*Correspondence:

Xiao-Hua Zhang, xhzhang@ouc.edu.cn; Dr. Jonathan D. Todd, jonathan.todd@uea.ac.uk


Supplementary Figures


Fig. S1 The salinity, temperature and Chl *a* levels in Changjiang Estuary winter and summer samples. A, winter samples. B, summer samples. F, freshwater samples; T, transition water samples; S, seawater samples.


Fig. S2 DMS concentration from Changjiang Estuary summer samples. Yellow, fresh water samples. F, freshwater samples; T, transition water samples; S, seawater samples.


Fig. S3 The difference of Shannon index between seasons, among regions and between free-living and particle-associated bacteria. A, the difference between free-living and particle-associated bacteria and among regions of winter samples. B, the difference between free-living and particle-associated bacteria and among regions of summer samples. C, the difference between winter and summer samples of free-living bacteria in three regions. D, the difference between winter and summer samples of particle-associated bacteria in three regions. W, winter. S, summer. F, free-living. P, particle-associated. P < 0.05 was marked with "*". P < 0.01 was marked with "**".

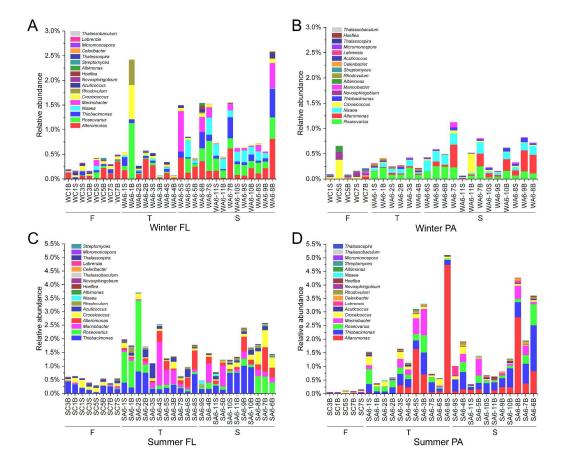
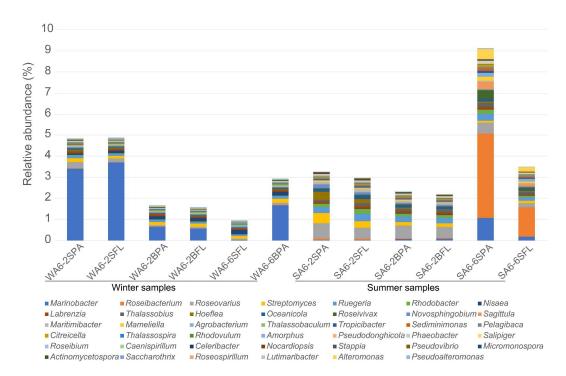
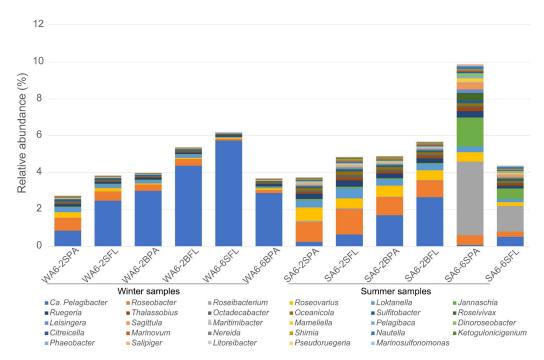
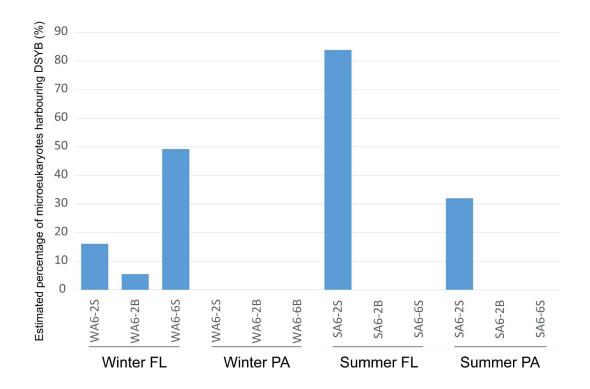
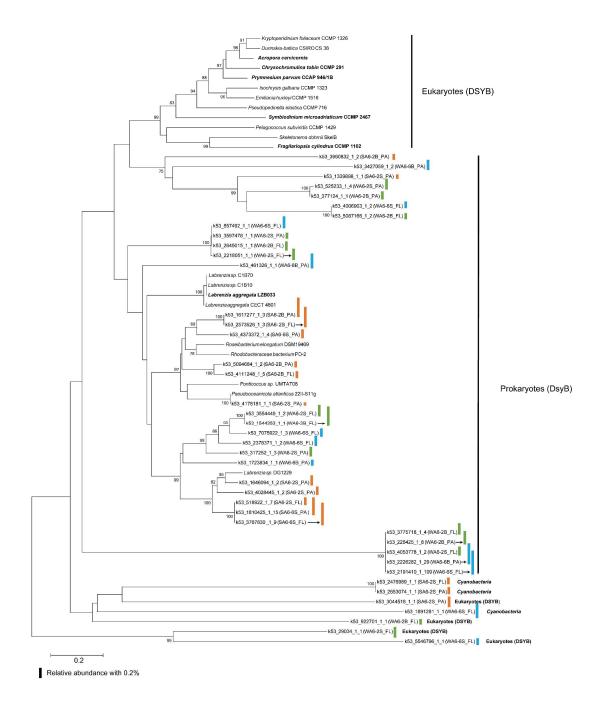

Fig. S4 The difference of Chao 1 index between seasons, among regions and between free-living and particle-associated bacteria. A, the difference between free-living and particle-associated bacteria and among regions of winter samples. B, the difference between free-living and particle-associated bacteria and among regions of summer samples. C, the difference between winter and summer samples of free-living bacteria in three regions. D, the difference between winter and summer samples of particle-associated bacteria in three regions. W, winter. S, summer. F, free-living. P, particle-associated. P < 0.05 was marked with "*". P < 0.01 was marked with "**".

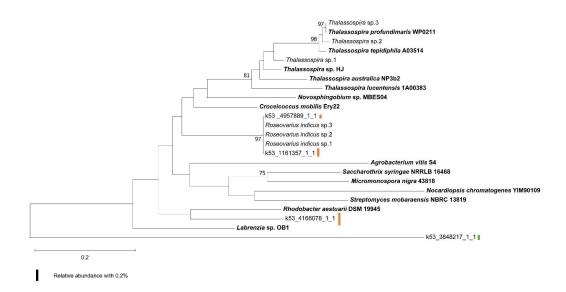
Fig. S5 The proportion of plastids sequences in 16S rRNA data from free-living and particle-associated fractions of winter and summer samples. A, freshwater samples in winter. B, transition region water samples in winter. C, seawater samples in winter. D, freshwater samples in summer. E, transition region water samples in summer. F, seawater samples in summer. W, winter. S, summer. F, free-living. P, particle-associated. P < 0.05 was marked with "*". P < 0.01 was marked with "*"


Fig. S6 The relative abundance of eukaryotic algae in metagenome data at the class level. SPA, surface particle-associated samples. SFL, surface free-living samples. BPA, bottom particle-associated samples. BFL, bottom free-living samples.


Fig. S7 The relative abundance of DMSP producing genera in winter and summer samples. A, Predicted DMSP producing bacterial genera in the free-living fractions of winter samples. B, Predicted DMSP producing bacterial genera in the particle-associated fractions of winter samples. C, Predicted DMSP producing bacterial genera in free-living fractions in summer samples. D, DMSP producing bacterial genera in particle-associated fractions of summer samples. FL, free-living. PA, particle-associated. The same genera are marked with the same color. F, freshwater samples; T, transition water samples; S, seawater samples.


Fig. S8 The relative abundance of DMSP catabolic bacteria in winter and summer samples. A, DMSP catabolic bacteria of free-living fractions in winter samples. B, DMSP catabolic bacteria of particle-associated fractions in winter samples. C, DMSP catabolic bacteria of free-living fractions in summer samples. D, DMSP catabolic bacteria of particle-associated fractions in summer samples. FL, free-living. PA, particle-associated. The same bacteria were marked with the same color. F, freshwater samples; T, transition water samples; S, seawater samples.


Fig. S9 The relative abundance of DMSP producing genera in metagenome data from the Changjiang Estuary. SPA, surface particle-associated samples. SFL, surface free-living samples. BPA, bottom particle-associated samples. BFL, bottom free-living samples.


Fig. S10 The relative abundance of DMSP catabolic genera in metagenome data from the Changjiang Estuary. SPA, surface particle-associated samples. SFL, surface free-living samples. BPA, bottom particle-associated samples. BFL, bottom free-living samples.

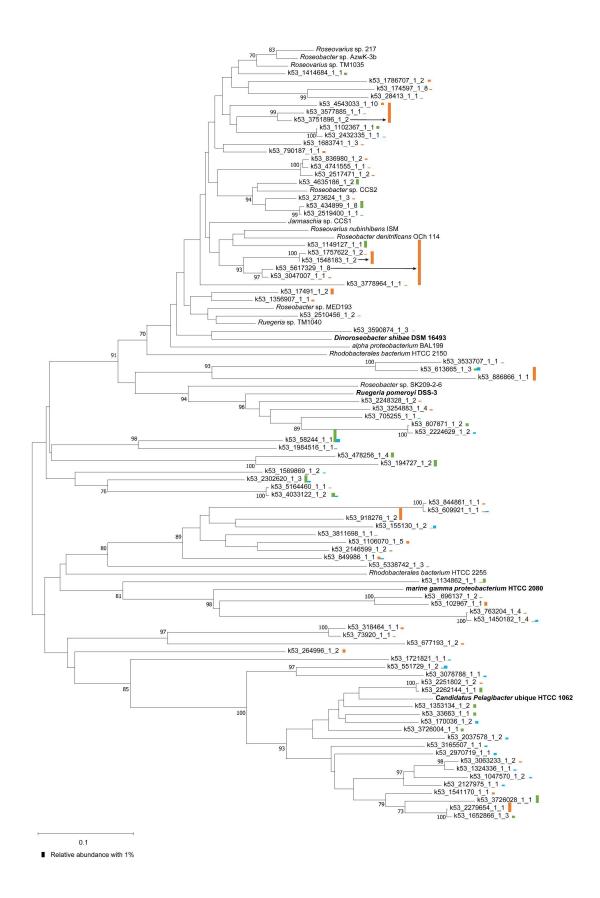

Fig. S11 The relative abundance of *DSYB* in metagenome data from the Changjiang Estuary. *DSYB* abundance was normalised to the number of β-Actin sequences. FL, free-living samples; PA, particle-associated samples.

Fig. S12 Neighbor-Joining phylogenetic tree of DsyB/DSYB proteins from metagenome data. 62 protein sequences were used to construct the protein tree. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The sample names were marked after the sequences. PA, particle-associated. FL, free-living. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

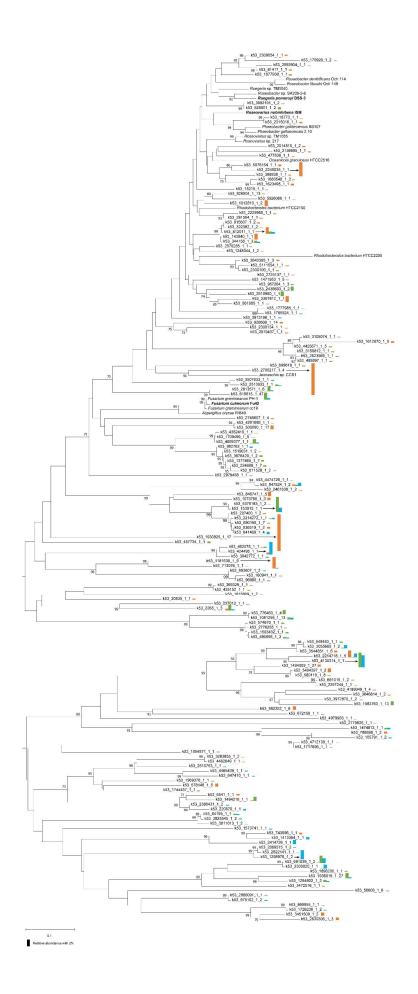


Fig. S13 Neighbor-Joining phylogenetic tree of MmtN proteins from metagenome data. 24 protein sequences were used to construct the protein tree. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

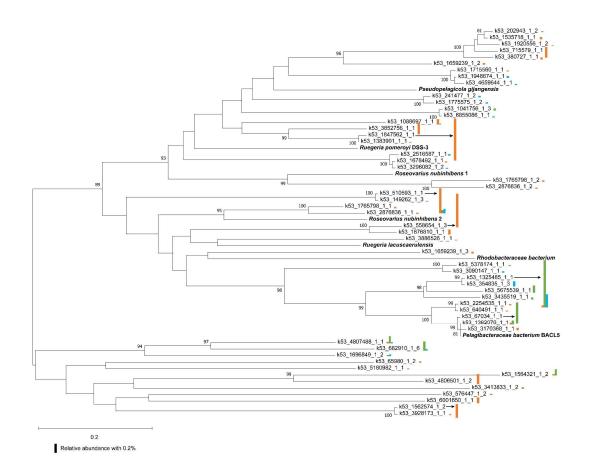
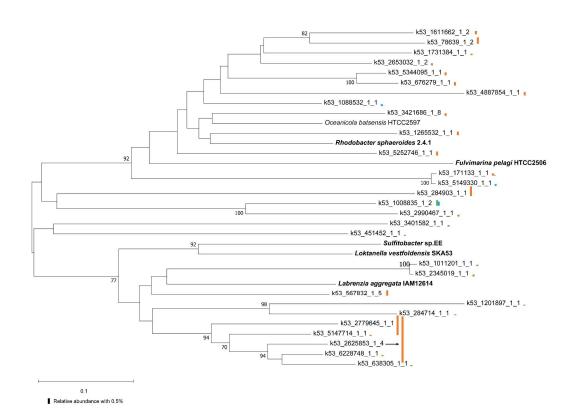
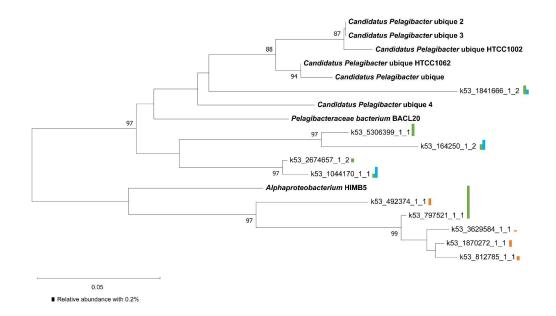


Fig. S14 Neighbor-Joining phylogenetic tree of DmdA proteins from metagenome data. 99 protein sequences were used to construct the protein tree. The topologies of


phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.


Fig. S15 Neighbor-Joining phylogenetic tree of DddP proteins from metagenome data. 182 protein sequences were used to construct the protein tree. The proteins shown to be functional marked with in bold. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

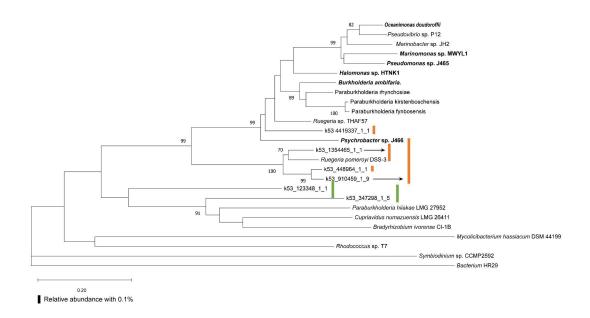

Fig. S16 Neighbor-Joining phylogenetic tree of DddQ proteins from metagenome data. 60 protein sequences were used to construct the protein tree. The proteins shown to be functional marked with in bold. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

Fig. S17 Neighbor-Joining phylogenetic tree of DddL proteins from metagenome data. 34 protein sequences were used to construct the protein tree. The proteins shown to be functional marked with in bold. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

Fig. S18 Neighbor-Joining phylogenetic tree of DddK proteins from metagenome data. 18 protein sequences were used to construct the protein tree. The proteins shown to be functional marked with in bold. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. Cyan bar, seawater samples of winter. The proteins shown to be functional were marked in bold.

Fig. S19 Neighbor-Joining phylogenetic tree of DddD proteins from metagenome data. 25 protein sequences were used to construct the protein tree. The proteins shown to be functional marked with in bold. The topologies of phylogenetic tree were evaluated based on the bootstrap resampling method with 1000 replicates. Bootstrap coefficients below 70% were not shown. The relative abundance of protein sequences was indicated by bars. Orange bar, transition samples of summer. Green bar, transition samples of winter. The proteins shown to be functional were marked in bold.

Supplementary Tables Table S1 Sampling sites and environmental factors of the Changjiang Estuary in winter

Station	Longitude	Latitude	Depth	Salinity	Temp	ТТ	DO	Chl a	SiO ₃ ² -	NO ₂ -	NH ₄ ⁺	PO ₄ ³⁻	NO ₃ -	DMS	DMSP _t	DMSP _{p1}	DMSP _{p2}	DMSP _d
Station	(°E)	(°N)	(m)	(PSU)	(°C)	pН	(mg/l)	$(\mu g/l)$	(µM)	(μM)	(μM)	(μM)	(μM)	(nM)	(nM)	(nM)	(nM)	(nM)
WC1S	121.11	31.75	1.01	0.16	9.82	8.06	11.33	0.67	106.65	2.30	0.16	1.81	129.08	-	2.26	1.09	0.08	1.10
WC1B	121.11	31.75	14.04	0.16	9.80	8.07	11.30	0.79	114.11	2.41	1.84	1.84	132.26	-	3.58	2.11	0.30	1.17
WC3S	121.32	31.57	1.01	0.16	9.82	8.00	11.24	0.72	109.66	2.24	N.D.	1.79	127.33	-	2.47	0.07	0.06	2.34
WC3B	121.32	31.57	18.86	0.17	9.88	8.00	11.25	0.81	112.12	2.46	0.13	1.97	141.12	-	5.83	1.21	1.95	2.66
WC5S	121.55	31.41	1.03	0.17	9.37	8.01	11.38	0.61	115.67	1.46	N.D.	1.82	144.05	-	1.77	0.22	0.42	1.14
WC5B	121.55	31.41	10.75	0.18	9.48	8.02	11.35	0.69	109.21	1.41	0.48	2.07	135.22	-	5.61	0.19	2.14	3.29
WC7S	121.79	31.24	1.01	0.39	9.41	7.77	10.90	0.99	98.45	2.55	3.26	1.86	165.09	-	0.95	0.11	0.46	0.38
WC7B	121.79	31.24	9.14	0.65	9.38	7.80	10.65	0.71	95.59	1.99	4.38	1.76	129.35	-	2.73	0.96	0.25	1.53
WA6-1S	122.07	31.06	1.01	19.86	8.11	7.98	10.98	0.32	40.24	0.31	6.12	0.82	56.57	-	3.12	1.00	1.95	0.16
WA6-1B	122.07	31.06	4.20	20.02	8.02	7.94	10.85	0.37	33.51	0.24	4.26	0.70	45.67	-	1.78	0.51	0.01	1.26
WA6-2S	122.25	30.95	1.01	23.66	8.12	7.94	10.62	0.36	44.20	0.23	5.32	1.13	51.23	-	4.47	2.93	0.55	0.99
WA6-2B	122.25	30.95	7.51	24.00	8.09	7.95	10.58	0.38	38.05	0.22	4.41	0.89	44.70	-	4.52	1.65	1.68	1.19
WA6-3S	122.38	30.90	1.03	27.93	8.90	8.03	10.19	0.30	23.84	0.15	3.08	0.71	26.71	-	12.33	8.56	1.84	1.94
WA6-3B	122.38	30.90	9.50	28.14	8.32	8.02	10.29	0.64	23.17	0.13	2.34	0.75	25.11	-	16.83	13.27	0.58	2.98
WA6-4S	122.50	30.87	1.01	29.52	8.79	8.08	10.05	0.30	17.73	0.21	7.30	0.60	19.37	-	9.11	2.02	2.78	4.31
WA6-4B	122.50	30.87	15.03	29.96	8.72	8.08	10.61	0.54	18.48	0.16	4.55	0.69	19.95	-	10.32	2.30	2.48	5.54

WA6-5S	122.61	30.84	1.03	30.17	9.88	8.02	N.D.	0.56	17.37	0.15	3.09	0.61	16.88	-	20.44	10.45	8.26	1.74
WA6-6S	122.83	30.78	1.01	30.37	8.87	8.08	10.03	0.32	16.65	0.17	3.46	0.60	17.25	-	5.68	1.05	0.86	3.78
WA6-5B	122.61	30.84	17.65	30.71	10.09	8.02	9.91	0.31	20.20	0.14	2.85	0.72	19.48	-	7.68	1.60	4.49	1.59
WA6-6B	122.83	30.78	21.42	32.67	10.25	8.10	9.46	0.24	12.85	0.12	3.71	0.57	11.12	-	6.34	2.89	0.45	3.00
WA6-7S	123.00	30.72	1.01	33.3	11.59	8.02	9.89	0.10	8.19	0.09	1.67	0.44	6.93	-	6.72	1.18	0.58	4.96
WA6-11S	123.99	30.41	1.05	33.90	12.85	8.07	9.06	0.31	6.62	0.32	1.71	0.39	4.56	-	5.14	0.09	3.47	1.58
WA6-11B	123.99	30.41	44.91	34.14	12.76	8.09	8.95	0.46	5.83	0.29	2.04	0.33	4.29	-	5.80	0.33	0.97	4.51
WA6-7B	123.00	30.72	47.72	34.25	13.82	8.02	8.74	0.26	8.18	0.16	2.64	0.43	6.17	-	4.62	0.19	2.86	1.57
WA6-10S	123.75	30.49	1.01	34.25	13.47	8.04	8.83	0.29	6.86	0.23	4.78	0.41	4.27	-	4.42	1.88	0.40	2.13
WA6-9S	123.50	30.56	1.05	34.29	14.28	8.06	8.68	0.31	5.91	0.13	1.75	0.36	4.05	-	3.47	0.07	2.92	0.48
WA6-10B	123.75	30.49	51.90	34.38	13.31	8.05	8.77	0.31	6.89	0.23	4.17	0.38	4.26	-	2.68	1.40	0.45	0.83
WA6-8S	123.25	30.64	1.01	34.49	14.48	8.07	8.61	0.20	5.66	0.16	4.59	0.36	3.65	-	4.84	0.45	0.51	3.88
WA6-9B	123.50	30.56	56.37	34.52	14.19	8.07	8.55	0.27	6.01	0.13	2.04	0.36	4.22	-	3.88	0.00	1.32	2.56
WA6-8B	123.25	30.64	62.01	34.62	14.42	8.07	8.55	0.22	4.68	0.14	4.53	0.32	3.31	-	5.91	0.76	0.13	5.02

^{*} Temp means temperature, N.D. means not detected, "W" means winter samples, "S" stands for surface seawater, "B" stands for bottom seawater.

^{*} DMSP_t, total DMSP. DMSP_{p1}, DMSP was these captured on 3 μ m membrane. DMSP_{p2}, DMSP passed through 3 μ m but was captured on the 0.22 μ m filter. DMSP_d, dissolved DMSP.

^{*} The freshwater (salinity < 1 PSU), transitional area (1 PSU \le salinity < 30 PSU) and seawater (salinity $\ge 30 \text{ PSU}$).

Table S2 Sampling sites and environment factors of the Changjiang Estuary in summer

Station	Longitude	Latitude	Depth	Salinity	Temp	рН	DO	Chl a	SiO ₃ ² -	NO ₂ -	NH ₄ ⁺	PO ₄ ³⁻	NO ₃ -	DMS	$DMSP_t$	DMSP _{p1}	DMSP _{p2}	DMSP _d
Station	(°E)	(°N)	(m)	(PSU)	(°C)	рп	(mg/l)	$(\mu g/l)$	(µM)	(μM)	(μM)	(μM)	(μM)	(nM)	(nM)	(nM)	(nM)	(nM)
SC3B	121.32	31.57	19.00	0.11	28.84	7.84	5.69	0.55	113.64	0.17	0.12	1.37	99.14	1.77	5.06	3.82	0.04	1.20
SC1B	121.11	31.75	14.00	0.11	28.82	7.76	5.77	0.60	112.93	N.D.	N.D.	1.34	93.29	2.51	5.72	3.69	0.04	1.99
SC1S	121.11	31.75	1.00	0.11	28.96	7.84	5.87	1.34	111.65	N.D.	N.D.	1.32	98.54	1.97	7.56	2.87	4.61	0.09
SC3S	121.32	31.57	1.00	0.11	29.02	7.86	6.10	1.13	111.17	0.15	0.13	1.33	102.35	3.2	5.57	0.34	3.68	1.56
SC5S	121.56	31.40	1.00	0.11	29.17	7.80	5.82	1.75	113.38	0.11	N.D.	1.44	98.38	2.43	3.82	2.61	0.15	1.06
SC5B	121.56	31.40	16.00	0.11	28.92	7.76	5.55	0.84	114.56	0.22	0.25	1.40	101.26	3.63	5.81	0.30	5.38	0.14
SC7B	121.79	31.24	12.00	0.12	28.99	7.77	5.48	0.53	113.21	0.27	0.22	1.57	105.03	2.82	7.12	0.92	3.85	2.35
SC7S	121.79	31.24	1.00	0.12	29.03	7.80	5.65	0.99	110.78	0.31	0.26	1.58	98.67	5.63	11.15	4.18	2.61	4.37
SA6-1S	122.07	31.05	1.00	5.71	28.38	7.81	6.38	4.52	106.14	0.50	0.21	1.68	91.35	2.55	5.66	1.72	1.06	2.88
SA6-1B	122.07	31.05	8.00	6.87	28.28	7.72	6.30	1.64	107.26	0.35	1.33	1.67	91.14	0.97	7.49	3.15	1.59	2.75
SA6-2S	122.25	30.94	1.00	18.42	25.27	8.10	7.32	6.44	80.64	1.03	3.26	1.05	59.79	2.90	39.4	19.45	9.72	10.24
SA6-2B	122.25	30.94	10.00	19.81	24.82	7.88	5.11	3.14	67.08	1.01	3.59	1.18	53.51	1.29	9.21	6.51	0.83	1.88
SA6-3S	122.38	30.89	1.00	21.75	27.78	7.98	6.58	1.14	46.65	1.19	4.69	1.20	46.16	1.05	20.13	4.78	3.46	11.89
SA6-4S	122.49	30.87	1.00	25.88	25.96	7.94	5.92	0.97	36.29	1.56	6.1	1.03	34.06	0.90	32.18	10.81	2.97	18.41
SA6-5S	122.62	30.84	1.00	27.84	24.91	7.97	6.15	0.86	37.22	1.60	4.80	0.89	31.19	1.07	38.37	21.88	7.11	9.37
SA6-3B	122.38	30.89	13.00	27.90	24.52	7.95	5.54	0.61	40.69	1.31	4.77	1.11	38.03	0.99	22.24	9.66	5.87	6.71
SA6-7S	122.99	30.72	1.00	29.09	28.84	8.23	7.07	1.07	11.22	N.D.	5.96	0.08	6.97	6.75	22.03	14.87	3.61	3.54

SA6-6S	122.83	30.78	1.00	29.10	24.32	7.99	5.47	5.35	21.20	0.61	6.00	0.23	14.11	1.85	29.49	27.20	0.25	2.04
SA6-8S	123.24	30.64	1.00	29.5	29.26	8.26	7.46	1.39	5.99	0.19	6.78	ND	6.56	8.62	14.28	9.79	1.30	3.19
SA6-9S	123.49	30.56	1.00	30.98	29.53	8.3	7.13	1.97	0.74	0.21	7.33	0.06	1.13	4.95	9.74	7.49	0.70	1.55
SA6-4B	122.49	30.87	16.00	32.22	21.96	7.91	4.8	0.55	31.92	1.45	5.52	0.98	26.98	0.71	14.29	10.94	2.00	1.35
SA6-11S	123.98	30.41	1.00	33.36	N.D.	8.13	6.95	0.74	1.25	N.D.	6.63	0.06	N.D.	3.55	21.07	15.33	1.91	3.82
SA6-5B	122.62	30.84	20.00	33.44	21.01	7.89	4.1	0.73	25.56	1.39	5.6	0.91	19.19	1.06	19.30	17.03	0.23	2.05
SA6-10S	123.74	30.49	1.00	33.79	28.99	8.2	7.16	0.72	1.26	0.18	7.19	N.D.	0.75	6.85	10.44	8.66	0.43	1.36
SA6-11B	123.98	30.41	50.00	34.48	N.D.	7.97	4.93	0.45	8.95	0.41	7	0.54	4.75	1.43	8.93	6.88	0.58	1.46
SA6-9B	123.49	30.56	54.00	34.49	19.45	7.9	4.17	0.51	15.11	0.35	7.05	0.96	10.51	0.75	7.87	6.43	0.49	0.94
SA6-10B	123.74	30.49	54.00	34.5	21.16	7.95	4.39	0.39	11.97	0.52	6.71	0.79	7.55	0.96	12.03	8.96	2.20	0.87
SA6-8B	123.24	30.64	59.00	34.54	19.09	7.89	4.04	0.48	16.19	0.36	6.93	0.95	10.35	0.84	21.90	2.59	0.80	18.51
SA6-7B	122.99	30.72	46.00	34.55	19.8	7.89	3.69	0.32	17.11	0.45	7.44	1.02	10.78	1.00	20.42	5.01	1.71	13.69
SA6-6B	122.83	30.78	27.00	34.57	19.62	7.91	3.93	1.48	18.36	0.58	6.19	0.77	11.48	1.20	18.14	4.23	1.45	12.46

^{*} Temp means temperature, N.D., not detected, the former "S" means summer samples, the latter "S" stands for surface seawater; "B" stands for bottom seawater.

^{*} DMSP_t, total DMSP. DMSP_{p1}, DMSP was these captured on 3 μ m membrane. DMSP_{p2}, DMSP passed through 3 μ m but was captured on the 0.22 μ m filter. DMSP_d, dissolved DMSP.

^{*} The freshwater (salinity < 1 PSU), transitional area (1 PSU \le salinity < 30 PSU) and seawater (salinity \ge 30 PSU).

Table S3 The P value of statistical tests for the differences between seasons and among regions of environmental parameters.

Environ	nmental parameters	Salinity	Temperature	pН	DO	Chl a	SiO ₃ ²⁻	NO ₂ -	$\mathrm{NH_4}^+$	PO ₄ ³⁻	NO ₃ -	$DMSP_t$	$DMSP_{p1}$	$DMSP_{p2}$	DMSP _d
	Freshwater region	0.000	0.000	0.015	0.000			0.001		0.000	0.000	0.012	0.036		
Seasons	Transition region		0.000		0.000	0.000		0.001				0.008	0.013		0.026
	Seawater region		0.000		0.000	0.000		0.000	0.000	0.026		0.000	0.000		
Daniana	Winter	0.000	0.000	0.020	0.000	0.000	0.000	0.000		0.000	0.000	0.031	0.031		
Regions	Summer	0.000	0.005	0.001	0.031	0.006	0.000	0.004	0.000	0.001	0.000	0.001	0.002		0.023

^{*} Mann-Whitney tests were used for the seasonal differences in each region, and Kruskal-Wallis tests were used for regional differences in each season.

.

^{*} DMSP_t, total DMSP. DMSP_{p1}, DMSP was these captured on 3 µm membrane. DMSP_d, dissolved DMSP.

^{*} Only significant correlations were shown in table. Bold, P < 0.01; regular, P < 0.05

Table S4 The original read numbers of all samples, OTU numbers and diversity after rarefication

WC1B N.D. N.D. N.D. N.D. 74136 681 2.69 1050.32 98.9% WC1S 71162 947 3.67 1386.05 98.6% 67660 733 3.65 1051.50 98.9% WC3S N.D. N.D. N.D. N.D. N.D. 34821 935 4.72 1352.05 98.6% WC3B N.D. N.D. N.D. N.D. 57059 661 2.76 994.78 99.0% WC5S 85684 543 5.34 554.00 99.9% 74403 646 3.48 1128.81 98.9% WC7S 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_1S 67134 1996 3.53 3126.15 96.3% 70472 799 2.04	G 1			FL			 		PA		
WC1S 71162 947 3.67 1386.05 98.6% 67660 733 3.65 1051.50 98.9% WC3S N.D. N.D. N.D. N.D. N.D. 34821 935 4.72 1352.05 98.6% WC3B N.D. N.D. N.D. N.D. S7059 661 2.76 994.78 99.0% WC5S 85684 543 5.34 554.00 99.9% 74403 646 3.48 1128.81 98.9% WC5B 73950 1299 4.30 1978.53 97.9% 52161 855 2.28 1190.13 98.7% WC7B 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC61 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_1S 67134 1996 3.53 3126.15 96.3% 70472 799 <td>Samples</td> <td>Original</td> <td>OTU</td> <td>Shannon</td> <td>Chao 1</td> <td>Coverage</td> <td>Original</td> <td>OTU</td> <td>Shannon</td> <td>Chao 1</td> <td>Coverage</td>	Samples	Original	OTU	Shannon	Chao 1	Coverage	Original	OTU	Shannon	Chao 1	Coverage
WC3S N.D. N.D. N.D. N.D. N.D. N.D. S7059 661 2.76 994.78 99.0% WC3B N.D. N.D. N.D. N.D. N.D. S7059 661 2.76 994.78 99.0% WC5S 85684 543 5.34 554.00 99.9% 74403 646 3.48 1128.81 98.9% WC5B 73950 1299 4.30 1978.53 97.9% 52161 855 2.28 1190.13 98.7% WC7S 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2B 74172 2285 3.95 3429.89 96.1% <td>WC1B</td> <td>N.D.</td> <td>N.D.</td> <td>N.D.</td> <td>N.D.</td> <td>N.D.</td> <td>74136</td> <td>681</td> <td>2.69</td> <td>1050.32</td> <td>98.9%</td>	WC1B	N.D.	N.D.	N.D.	N.D.	N.D.	74136	681	2.69	1050.32	98.9%
WC3B N.D. N.D. N.D. N.D. N.D. 57059 661 2.76 994.78 99.0% WC5S 85684 543 5.34 554.00 99.9% 74403 646 3.48 1128.81 98.9% WC5B 73950 1299 4.30 1978.53 97.9% 52161 855 2.28 1190.13 98.7% WC7B 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3B N.D. N.D. N.D. N.D. N.D. 117	WC1S	71162	947	3.67	1386.05	98.6%	67660	733	3.65	1051.50	98.9%
WC5S 85684 543 5.34 554.00 99.9% 74403 646 3.48 1128.81 98.9% WC5B 73950 1299 4.30 1978.53 97.9% 52161 855 2.28 1190.13 98.7% WC7B 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_18 67134 1996 3.53 3126.15 96.3% 70472 799 2.04 1317.06 98.5% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3B N.D. N.D. N.D. N.D. N.D.	WC3S	N.D.	N.D.	N.D.	N.D.	N.D.	34821	935	4.72	1352.05	98.6%
WC5B 73950 1299 4.30 1978.53 97.9% 52161 855 2.28 1190.13 98.7% WC7B 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_18 67134 1996 3.53 3126.15 96.3% 70472 799 2.04 1317.06 98.5% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_4B N.D. N.D. N.D. N.D. 1.0	WC3B	N.D.	N.D.	N.D.	N.D.	N.D.	57059	661	2.76	994.78	99.0%
WC7S 64377 1174 4.33 1852.59 98.1% 70530 721 2.25 1094.75 98.8% WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_18 67134 1996 3.53 3126.15 96.3% 70472 799 2.04 1317.06 98.5% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2S 54543 1854 2.97 3012.32 96.4% 49318 891 1.50 1692.81 97.9% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. N.D. 1877.1% 1887.4 566 1.29 1095.73 98.8% WA6_4B N.D. N.D. N.D. N.D.	WC5S	85684	543	5.34	554.00	99.9%	74403	646	3.48	1128.81	98.9%
WC7B 67745 1636 5.79 1900.93 98.5% 39064 785 2.14 1292.64 98.6% WA6_1S 67134 1996 3.53 3126.15 96.3% 70472 799 2.04 1317.06 98.5% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2S 54543 1854 2.97 3012.32 96.4% 49318 891 1.50 1692.81 97.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 <td>WC5B</td> <td>73950</td> <td>1299</td> <td>4.30</td> <td>1978.53</td> <td>97.9%</td> <td>52161</td> <td>855</td> <td>2.28</td> <td>1190.13</td> <td>98.7%</td>	WC5B	73950	1299	4.30	1978.53	97.9%	52161	855	2.28	1190.13	98.7%
WA6_1S 67134 1996 3.53 3126.15 96.3% 70472 799 2.04 1317.06 98.5% WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2S 54543 1854 2.97 3012.32 96.4% 49318 891 1.50 1692.81 97.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4B N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_5B N.D. N.D. N.D. N.D. N.D. 4411.3	WC7S	64377	1174	4.33	1852.59	98.1%	70530	721	2.25	1094.75	98.8%
WA6_1B 74268 2435 4.94 3445.06 96.2% 70058 256 4.70 280.00 99.9% WA6_2S 54543 1854 2.97 3012.32 96.4% 49318 891 1.50 1692.81 97.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4S N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_5S N.D. N.D. N.D. N.D. 495.12 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769	WC7B	67745	1636	5.79	1900.93	98.5%	39064	785	2.14	1292.64	98.6%
WA6_2S 54543 1854 2.97 3012.32 96.4% 49318 891 1.50 1692.81 97.9% WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4S N.D. N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771	WA6_1S	67134	1996	3.53	3126.15	96.3%	70472	799	2.04	1317.06	98.5%
WA6_2B 74172 2285 3.95 3429.89 96.1% 70067 1728 2.61 2802.68 96.7% WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4S N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_1B 47202 1870 3.12 2356.60 97.2% 43025 914 4.83	WA6_1B	74268	2435	4.94	3445.06	96.2%	70058	256	4.70	280.00	99.9%
WA6_3S 69803 1909 3.61 3046.24 96.5% 38791 704 1.58 1457.28 98.4% WA6_3B N.D. N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4S N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_7B 83771 974 2.72 2008.44 98.0% 31638 702 <	WA6_2S	54543	1854	2.97	3012.32	96.4%	49318	891	1.50	1692.81	97.9%
WA6_3B N.D. N.D. N.D. N.D. N.D. 30769 1361 1.82 2347.65 97.1% WA6_4S N.D. N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_11S 80817 465 0.76 951.45 98.9% 36510	WA6_2B	74172	2285	3.95	3429.89	96.1%	70067	1728	2.61	2802.68	96.7%
WA6_4S N.D. N.D. N.D. N.D. N.D. 48874 566 1.29 1095.73 98.8% WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 41900 1044 2.01 1720.84 97.9% 63447	WA6_3S	69803	1909	3.61	3046.24	96.5%	38791	704	1.58	1457.28	98.4%
WA6_4B 50104 2434 5.55 2955.04 97.3% 56365 166 0.44 441.13 99.5% WA6_5S N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_1B 41900 1044 2.01 1720.84 97.9% 63447	WA6_3B	N.D.	N.D.	N.D.	N.D.	N.D.	30769	1361	1.82	2347.65	97.1%
WA6_5S N.D. N.D. N.D. N.D. N.D. 49512 318 4.23 328.00 99.9% WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_10S 85172 714 1.23 1328.09 98.5%	WA6_4S	N.D.	N.D.	N.D.	N.D.	N.D.	48874	566	1.29	1095.73	98.8%
WA6_6S 89404 1076 2.57 2266.31 97.7% 44412 769 3.24 1504.69 98.5% WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S <	WA6_4B	50104	2434	5.55	2955.04	97.3%	56365	166	0.44	441.13	99.5%
WA6_5B 47202 1870 3.58 2881.94 96.5% 49771 868 1.70 1860.56 97.9% WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B <t< td=""><td>WA6_5S</td><td>N.D.</td><td>N.D.</td><td>N.D.</td><td>N.D.</td><td>N.D.</td><td>49512</td><td>318</td><td>4.23</td><td>328.00</td><td>99.9%</td></t<>	WA6_5S	N.D.	N.D.	N.D.	N.D.	N.D.	49512	318	4.23	328.00	99.9%
WA6_6B 38680 1469 3.12 2356.60 97.2% 43025 914 4.83 1047.69 99.3% WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_6S	89404	1076	2.57	2266.31	97.7%	44412	769	3.24	1504.69	98.5%
WA6_7S 83771 974 2.72 2008.44 98.0% 31638 702 3.86 1250.44 98.8% WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_5B	47202	1870	3.58	2881.94	96.5%	49771	868	1.70	1860.56	97.9%
WA6_11S 80817 465 0.76 951.45 98.9% 36510 526 3.36 835.04 99.2% WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_6B	38680	1469	3.12	2356.60	97.2%	43025	914	4.83	1047.69	99.3%
WA6_11B 41900 1044 2.01 1720.84 97.9% 63447 476 2.84 711.30 99.3% WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_7S	83771	974	2.72	2008.44	98.0%	31638	702	3.86	1250.44	98.8%
WA6_7B 56332 1249 3.27 2003.36 97.7% 74848 650 3.29 1075.01 98.9% WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_11S	80817	465	0.76	951.45	98.9%	36510	526	3.36	835.04	99.2%
WA6_10S 85172 714 1.23 1328.09 98.5% 42438 554 3.25 984.62 99.1% WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_11B	41900	1044	2.01	1720.84	97.9%	63447	476	2.84	711.30	99.3%
WA6_9S 83558 615 1.45 1263.31 98.6% 35799 571 3.25 831.68 99.2% WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_7B	56332	1249	3.27	2003.36	97.7%	74848	650	3.29	1075.01	98.9%
WA6_10B 30309 1017 2.45 1898.73 97.9% 50145 570 2.41 998.41 99.0%	WA6_10S	85172	714	1.23	1328.09	98.5%	42438	554	3.25	984.62	99.1%
	WA6_9S	83558	615	1.45	1263.31	98.6%	35799	571	3.25	831.68	99.2%
WA6 8S 83463 630 160 1264 34 08 704 28644 518 2.81 777 57 00 204	WA6_10B	30309	1017	2.45	1898.73	97.9%	50145	570	2.41	998.41	99.0%
WAU_00 00+00 000 1.07 120+.0+ 70.770 300+4 010 2.01 ///.07 99.570	WA6_8S	83463	630	1.69	1264.34	98.7%	38644	518	2.81	777.57	99.3%
WA6_9B 43509 1035 2.73 1638.19 98.1% 62144 489 2.49 745.20 99.3%	WA6_9B	43509	1035	2.73	1638.19	98.1%	62144	489	2.49	745.20	99.3%
WA6_8B 33607 971 3.01 1606.89 98.2% 70573 748 4.71 1132.57 99.0%	WA6_8B	33607	971	3.01	1606.89	98.2%	70573	748	4.71	1132.57	99.0%

SC3B	62758	875	3.56	1403.41	98.6%	41800	920	3.91	1290.74	98.7%
SC1B	73931	1006	4.13	1524.82	98.5%	37667	912	3.94	1418.36	98.6%
SC1S	N.D.	N.D.	N.D.	N.D.	N.D.	49684	902	3.89	1266.17	98.6%
SC3S	N.D.	N.D.	N.D.	N.D.	N.D.	43335	967	3.95	1541.55	98.5%
SC5S	74814	817	4.15	1146.39	98.9%	74434	847	3.15	1206.38	98.8%
SC5B	N.D.	N.D.	N.D.	N.D.	N.D.	63714	883	3.16	1324.50	98.6%
SC7B	58137	1237	4.20	1990.85	97.9%	43846	560	1.62	863.26	99.0%
SC7S	73131	1397	4.80	1859.37	98.0%	41719	1089	4.10	1736.60	98.2%
SA6_1S	89310	1489	5.14	2262.82	97.6%	34134	956	4.11	1488.79	98.5%
SA6_1B	66844	1229	2.74	2042.68	97.7%	62519	1427	5.06	2084.45	97.8%
SA6_2S	89909	949	3.29	1437.10	98.3%	35304	1040	4.38	1547.52	98.4%
SA6_2B	37770	1953	4.07	2954.87	96.6%	54826	1569	4.01	2639.82	97.0%
SA6_3S	86696	872	3.82	1421.43	98.5%	38887	746	3.70	1094.14	98.9%
SA6_4S	74397	832	2.89	1361.55	98.6%	59458	879	4.01	1350.30	98.6%
SA6_5S	87715	811	4.04	952.99	99.3%	38754	740	3.84	1137.07	98.8%
SA6_3B	64724	1297	4.09	2074.33	97.7%	47455	799	2.80	1261.31	98.6%
SA6_7S	94427	394	1.94	627.48	99.3%	59420	483	3.88	715.12	99.3%
SA6_6S	87932	610	2.29	970.62	98.9%	47999	619	3.60	996.37	99.0%
SA6_8S	88437	422	2.40	650.76	99.3%	50914	537	4.03	738.94	99.3%
SA6_9S	87649	516	1.74	676.58	99.3%	33862	383	3.53	515.22	99.5%
SA6_4B	32816	698	3.10	1173.26	98.8%	53371	716	3.15	1167.50	98.8%
SA6_11S	25418	507	1.99	571.68	99.6%	48787	529	3.34	698.47	99.4%
SA6_5B	55634	954	3.81	1533.57	98.4%	54515	772	3.29	1201.05	98.7%
SA6_10S	80615	423	1.58	690.99	99.2%	53039	560	3.48	835.31	99.2%
SA6_11B	70731	673	2.01	1103.68	98.7%	72541	763	3.90	1073.74	98.9%
SA6_9B	57422	643	1.88	745.03	99.3%	64059	866	4.10	1143.24	98.9%
SA6_10B	36588	798	2.85	1121.41	98.8%	50722	613	2.98	762.30	99.3%
SA6_8B	35438	878	3.65	1034.02	99.2%	69358	795	3.93	1180.03	98.9%
SA6_7B	84080	936	2.89	1457.95	98.3%	74175	955	3.98	1523.79	98.4%
SA6_6B	84684	909	3.29	1266.27	98.6%	70089	1068	4.23	1585.50	98.3%

^{* &}quot;W" means winter samples, the former "S" means summer samples, the latter "S" stands for surface seawater; "B" stands for bottom seawater.

^{*} N.D., not detected. FL, free-living. PA, particle-associated.

Table S5 The numbers of gene homologues in the metagenomic samples.

	recA	DSYB	dsyB	mmtN	Alma1	dddP	dmdA	ТрММТ	dddY	dddK	dddW	dddQ	dddL	dddD	β-Actin
SA6-2SFL	330	1	3	2	0	40	9	0	0	1	0	17	8	0	1
SA6-2BFL	319	0	3	0	0	30	13	0	0	2	0	14	6	0	3
SA6-6SFL	187	0	2	0	0	30	12	0	0	1	0	14	9	3	0
WA6-2SFL	241	1	5	0	0	34	11	0	0	4	0	8	4	1	5
WA6-2BFL	286	1	5	0	0	28	11	0	0	4	0	8	4	0	7
WA6-6SFL	220	2	7	0	0	35	9	0	0	2	0	15	3	0	5
SA6-2SPA	313	2	5	1	0	42	12	0	0	0	0	12	9	0	3
SA6-2BPA	325	0	5	0	0	38	10	0	0	2	0	19	6	0	0
SA6-6SPA	172	0	6	2	0	27	12	0	0	0	1	8	11	2	0
WA6-2SPA	308	0	4	1	0	40	13	0	0	0	0	6	8	0	0
WA6-2BPA	240	0	4	0	0	31	12	0	0	2	0	10	1	1	3
WA6-6BPA	261	0	9	0	0	40	17	0	0	2	0	11	4	0	6

FL, free-living. PA, particle-associated.

Table S6 Correlations between DMSP metabolic gene abundances in free-living bacteria and environmental factors.

Environment				Winter			1			Summe	r	_
Factors	dsyB	mmtN	dddP	dmdA	dmdA(C/2)	dmdA(D/1)	dsyB	mmtN	dddP	dmdA	dmdA(C/2)	dmdA(D/1)
Longitude	0.398	0.454	0.731	0.844	0.689	0.849	0.644		0.741	0.678	0.622	0.673
Latitude	-0.398	-0.454	-0.731	-0.844	-0.689	-0.849	-0.644		-0.741	-0.678	-0.622	-0.673
Salinity	0.450	0.406	0.707	0.808	0.691	0.807	0.722		0.736	0.644	0.689	0.640
Temperature			0.516	0.564	0.623	0.549	 				-0.437	
рН			0.425	0.399		0.422	0.507		0.749	0.764	0.641	0.766
DO	-0.492	-0.418	-0.716	-0.781	-0.649	-0.791						
Chl a	-0.494	-0.595	-0.525	-0.591	-0.498	-0.593	1 1 1 1					
SiO ₃ ³⁻	-0.451	-0.374	-0.729	-0.788	-0.666	-0.799	-0.688		-0.818	-0.746	-0.670	-0.742
NO_2^-	-0.491	-0.409	-0.417	-0.448		-0.467				0.394	0.476	0.402
$\mathrm{NH_4}^+$							0.692		0.691	0.603	0.559	0.595
PO_4^{3-}	-0.447		-0.766	-0.790	-0.676	-0.795	-0.522		-0.782	-0.733	-0.669	-0.730
NO_3^-	-0.475	-0.383	-0.766	-0.806	-0.661	-0.817	-0.807		-0.833	-0.781	-0.734	-0.777
$DMSP_t$	0.446						1 1 1 1		0.600	0.653	0.693	0.661
$DMSP_{p1}$					-0.394		1 1 1 1		0.660	0.717	0.643	0.719
DMSPd							 			0.374	0.461	0.383

^{*} DMSP, total DMSP. DMSP $_{p1}$, DMSP was these captured on 3 μm membrane. DMSP $_{d}$, dissolved DMSP.

^{*} Only significant correlations were shown in table. Red, positive; blue, negative. Bold, P < 0.01; regular, P < 0.05.

Table S7 Correlations between DMSP metabolic gene abundances of particle-associated bacteria and environmental factors.

Environment			,	Winter					S	Summer		
Factors	dsyB	mmtN	dddP	dmdA	dmdA(C/2)	dmdA(D/1)	dsyB	mmtN	dddP	dmdA	dmdA(C/2)	dmdA(D/1)
Longitude		0.432			0.445		0.601					
Latitude		-0.432			-0.445							
Salinity		0.391		0.378	0.462		0.752					
pН			-0.369				0.397					
DO				-0.394	-0.428		-0.484		-0.420		-0.374	
Chl a	-0.387				-0.460		-0.477				-0.363	
SiO ₃ ³⁻		-0.391					-0.612					
NO_2^-	-0.419						0.417	0.440	0.666	0.813	0.646	0.817
$\mathrm{NH_4}^+$	0.466				0.443		0.636					
PO ₄ ³ -		-0.387			-0.477		-0.637					
DMS	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.		-0.459	-0.595	-0.522	-0.435	-0.527
$DMSP_t$	0.460									0.398	0.428	0.391
$\mathrm{DMSP}_{\mathrm{p}1}$	0.476											
DMSPd										0.454	0.423	0.449

^{*} DMSP, total DMSP. DMSP $_{p1}$, DMSP was these captured on 3 μm membrane. DMSP $_{d}$, dissolved DMSP. N.D., no DMS data.

^{*} Only significant correlations were shown in table. Red, positive; blue, negative. Bold, P < 0.01; regular, P < 0.05.

Table S8 The reference DMSP producing and catabolic genes used in the metagenomic

2 analysis

anarysis			
Genes	Gene accession numbers	Protein accession numbers	Strains
dsyB	-	EEL96501	Bacillus mycoides DSM204
dsyB	-	CTQ43687	Labrenzia aggregata CECT
dsyB	-	AOR83342	Labrenzia aggregata LZB0
dsyB	-	ERP98606	Labrenzia sp. C1B10
dsyB	-	ERR00112	Labrenzia sp. C1B70
dsyB	-	WP_051644456	Labrenzia sp. DG1229
dsyB	-	WP_043143384	Mameliella alba UMTAT0
dsyB	-	WP_043748339	Pseudooceanicola atlantici
dsyB	-	WP_023852424	Rhodobacteraceae bacterii
dsyB	-	WP_025312975	Roseibacterium elongatum
dsyB	-	WP_030879264	Streptomyces varsoviensis
dsyB	2620496472		Antarctobacter heliothermi
dsyB	2517908241	-	Amorphus coralli DSM197
dsyB	2520173307	-	Caenispirillum salinarum A
dsyB	2616590712	-	Citreicella aestuarii DSM2
dsyB	2514595470	-	Citreicella sp. 357
dsyB	2579689465	-	Defluviimonas sp. 20V17
dsyB	2553022978	-	Donghicola sp. S598
dsyB	639943763	-	Labrenzia aggregata IAM1
dsyB	2517312627	-	Labrenzia alexandrii DFL1
dsyB	2616591799	_	Litorimicrobium taeanense
dsyB	648280724	-	Maritimibacter alkaliphilus
dsyB	2525377636	_	Nisaea denitrificans DSM1
dsyB	641429164	-	Nisaea sp. BAL199
dsyB	638883374	_	Pseudooceanicola batsensi
dsyB	2558678304	_	Pseudooceanicola nanhaie
dsyB	2541035415	-	Oceanicola sp. HL-35
dsyB	2527024186	_	Oceanicola sp. S124
dsyB	648285806	_	Salipiger bermudensis HTC
dsyB	2524485630	-	Pseudodonghicola xiamene
dsyB	2609135787	-	Rhizobiales bacterium HL1
dsyB	2609105254	_	Rhodobacteraceae bacterii
dsyB	2593183274	-	Rhodospirillales bacterium
dsyB	2597124009	_	Roseibium hamelinense AT
dsyB	2565720611	_	Roseivivax halodurans JCN
dsyB	2635168442	_	Roseivivax sediminis DSM
dsyB	2620334468	_	Roseovarius indicus DSM2
dsyB	640641694	-	Sagittula stellata E37
dsyB	2523510257	_	Salipiger mucosus DSM16
dsyB	2523943366	_	Sediminimonas qiaohouens
dsyB dsyB	2525928126	_	Stappia stellulata DSM588
			pp

dsyB	2523405058	-	Thalassobaculum salexigen
dsyB	2622865483	-	Thalassobius gelatinovorus
dsyB	2623181840	-	Tropicibacter naphthaleniv
dsyB	2617877652	-	Yangia pacifica CGMCC13
dsyB	2620103054	-	Yangia pacifica DSM26894
mmtN	-	WP_052321947	Novosphingobium sp. MBE
mmtN	-	WP_066775518	Croceicoccus mobilis strain
mmtN	-	WP_044830103	<i>Thalassospira</i> sp. HJ NODI
mmtN	-	WP_062957385	Thalassospira sp. MCCC 1.
mmtN	-	WP_064788038	Thalassospira indica strain
mmtN	-	WP_064780488	Thalassospira tepidiphila N
mmtN	-	WP_033070178	<i>Thalassospira australica</i> sti
mmtN	-	WP_022734010	Thalassospira lucentensis N
mmtN	-	WP_063085993	Thalassospira sp. MCCC 1.
mmtN	-	WP_008888945	Thalassospira profundimar
mmtN	-	WP_068409229	Labrenzia sp. OB1
mmtN	-	WP_064261696	Roseovarius indicus strain I
mmtN	-	WP_057814729	Roseovarius indicus strain I
mmtN	-	KRS18724	Roseovarius indicus strain I
mmtN	-	WP_076485456	Rhodobacter aestuarii straii
mmtN	-	WP_033429235	Saccharothrix syringae stra
mmtN	-	WP_091090849	Micromonospora nigra stra
mmtN	-	WP_071204336	Agrobacterium vitis strain N
mmtN	-	WP_017624909	Nocardiopsis chromatogene
mmtN	-	EME99407	Streptomyces mobaraensis 1
dddP	-	ZP_00959238	Roseovarius nubinhibens IS
dddP	-	ZP_01755203	Roseobacter sp. SK209-2-6
dddP	-	ZP_01741265	Rhodobacteraceae bacteriur
dddP	-	ZP_02144167	Phaeobacter gallaeciensis I
dddP	-	ZP_02150063	Phaeobacter gallaeciensis 2
dddP	-	ZP_01881042	Roseovarius sp. TM1035
dddP	-	ZP_01036399	Roseovarius sp. 217
dddP	-	YP_682809	<i>Roseobacter denitrificans</i> C
dddP	-	ZP_02139379	Roseobacter litoralis Och14
dddP	-	YP_167522	Ruegeria pomeroyi DSS-3
dddP	-	ZP 01156882	Oceanicola granulosus HT
dddP	-	ZP_01448542	Rhodobacterales bacterium
dddP	-	YP_509721	Jannaschia sp. CCS1
dddP	>XM_001823859	XP_001823911	Aspergillus oryzae RIB40
dddP	>EU_784955	ACF19794	Gibberella zeae strain cc19
dddP	>XM_389272	XP_389272	Gibberella zeae PH-1
dddP	- >EU_784956	ACF19795	Fusarium culmorum strain l
dddP	_ -	YP_613011	Ruegeria sp. TM1040
dmdA	-	AAV95190	Ruegeria pomeroyi DSS-3
dmdA	-	ABF64177	Ruegeria sp.TM1040
dmdA	-	ABD55296	Jannaschia sp. CCS1

dmdA	-	EAP76657	Roseovarius nubinhibens IS
dmdA	-	EAQ43549	Roseobacter sp. MED193
dmdA	-	EBA11882	Roseobacter sp. CCS2
dmdA	-	EAQ26389	Roseovarius sp. 217
dmdA	-	YP_001533657	Dinoroseobacter shibae DF
dmdA	-	EBA17661	Roseobacter sp. SK209-2-6
dmdA	-	EBA02880	Rhodobacteraceae bacteriu
dmdA	-	ABG31871	<i>Roseobacter denitrificans</i> C
dmdA	-	EDM32633	Roseovarius sp. TM1035
dmdA	-	EDM71141	Roseobacter sp. AzwK-3b
dmdA	-	EAU51039	Rhodobacterales bacterium
dmdA	-	AAZ21068	Pelagibacter ubique HTCC
dmdA	-	EAW42451	Gmmaproteobacterium HTG
dmdA	-	EDP61332	Alphaproteobacterium BAL
Alma1	-	XP_005784450	Emiliania huxleyi CCMP15
Alma1	-	XP 005763983	Emiliania huxleyi CCMP15
TpMMT	-	XP 002296942	Thalassiosira pseudonana (
TpMMT	-	XP 002286764	Thalassiosira pseudonana (