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>20%). Baseline GLS also demonstrated the strongest 
diagnostic performance in predicting adverse LV remod-
elling (AUC = 0.79; 95% CI 0.60–0.98; p = 0.03). Post-
reperfused STEMI, baseline GLS was most closely associ-
ated with the presence of MVO or IMH. Baseline GLS was 
more strongly associated with adverse LV remodelling than 
other CMR parameters.

Keywords Haemorrhage · Cardiovascular magnetic 
resonance · Myocardial infarction · Left ventricular 
function

Abbreviations
AAR  Area at risk
AMI  Acute myocardial infarction
AUC  Area under the curve
CMR  Cardiovascular magnetic resonance
EF  Ejection fraction
FT  Feature tracking
GCS  Peak global circumferential strain
GCSR  Peak global circumferential strain rate
GLS  Peak global longitudinal strain
GLSR  Peak global longitudinal strain rate
GRS  Peak global radial strain
GRSR  Peak global radial strain rate
IMH  Intramyocardial haemorrhage
LGE  Late gadolinium enhancement
LV  Left ventricle
LVEDVi  Left ventricular end diastolic volume indexed
LVESVi  Left ventricular end systolic volume indexed
MR  Magnetic resonance
MVO  Microvascular obstruction
PCI  Percutaneous coronary intervention
RF  Radiofrequency
ROC  Receiver operator characteristics

Abstract In the setting of acute ST-elevation myocardial 
infarction (STEMI), it remains unclear which strain param-
eter most strongly correlates with microvascular obstruc-
tion (MVO) or intramyocardial haemorrhage (IMH). We 
aimed to investigate the association of MVO, IMH and 
convalescent left ventricular (LV) remodelling with strain 
parameters measured with cardiovascular magnetic reso-
nance (CMR). Forty-three patients with reperfused STEMI 
and 10 age and gender matched healthy controls under-
went CMR within 3-days and at 3-months following rep-
erfused STEMI. Cine, T2-weighted, T2*-imaging and late 
gadolinium enhancement (LGE) imaging were performed. 
Infarct size, MVO and IMH were quantified. Peak global 
longitudinal strain (GLS), global radial strain (GRS), 
global circumferential strain (GCS) and their strain rates 
were derived by feature tracking analysis of LV short-
axis, 4-chamber and 2-chamber cines. All 43 patients and 
ten controls completed the baseline scan and 34 patients 
completed 3-month scans. In multivariate regression, GLS 
demonstrated the strongest association with MVO or IMH 
(beta = 0.53, p < 0.001). The optimal cut-off value for GLS 
was −13.7% for the detection of MVO or IMH (sensitiv-
ity 76% and specificity 77.8%). At follow up, 17% (n = 6) 
of patients had adverse LV remodeling (defined as an abso-
lute increase of LV end-diastolic/end-systolic volumes 
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SD  Standard deviation
STEMI  ST-elevation myocardial infarction
T2*  T2-star-weighted imaging
T2W  T2-weighted imaging

Introduction

Microvascular obstruction (MVO) and intra-myocardial 
haemorrhage (IMH) as detected by cardiovascular mag-
netic resonance (CMR) are established independent adverse 
prognostic markers following reperfused ST-elevation myo-
cardial infarction (STEMI). The presence of MVO has been 
associated with ‘no re-flow’ on coronary angiography after 
revascularisation [1]. IMH is invariably associated with 
MVO and is caused by endothelial dysfunction following 
prolonged ischaemia/reperfusion injury with disruption of 
inter-endothelial junctions and extravasation of erythro-
cytes [2].

Myocardial systolic function after STEMI is convention-
ally assessed by calculating left ventricular ejection frac-
tion (EF) from left ventricular volumes [3–5]. However, 
global EF is load-dependent and neglects regional func-
tion [6]. Myocardial deformation may be a more accurate 
parameter of LV function, but its assessment is more chal-
lenging, due in part to the complex spatial orientation and 
distribution of muscle fibres in the longitudinal and circum-
ferential direction [7]. Emerging technologies have made it 
possible to study myocardial deformation by CMR using 

myocardial tagging and feature tracking (FT) derived strain 
[8, 9]. Strain (S) and strain rate (SR) are already established 
as more accurate measures of both regional and the global 
left ventricular function when compared to ejection frac-
tion and allow quantitative assessment of myocardial defor-
mation [10]. From strain analysis, several parameters can 
be derived and it is currently not known which of these, if 
any, are associated with the presence of MVO, IMH and 
adverse LV remodelling.

This study aimed to investigate the association of FT 
derived peak global longitudinal strain (GLS), peak global 
circumferential strain (GCS), peak global radial strain 
(GRS), peak global longitudinal strain rate (GLSR), peak 
global circumferential strain rate (GCSR) and peak global 
radial strain rate (GRSR) with the presence of MVO, IMH 
and adverse LV remodelling in acute reperfused STEMI.

Methods

Study population

Fifty-three subjects were prospectively recruited from a 
single large UK tertiary centre. They included forty-three 
patients with acute STEMI and ten age and sex matched 
healthy volunteers serving as controls (Fig. 1). The inclu-
sion criteria for STEMI patients were: first-time acute 
STEMI revascularized by primary percutaneous coronary 
intervention (PPCI) within 12  h of onset of chest pain. 

Fig. 1  Flow chart of the study 
cohort
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Acute STEMI was defined as per the current European 
Society of Cardiology (ESC) guidelines [11]. Exclusion 
criteria included: previous MI or coronary artery bypass 
grafting, cardiomyopathy, estimated glomerular filtration 
rate <30  ml/min/1.73  m2, haemodynamic instability (Kil-
lip class III/IV requiring on-going intravenous therapy 
[12]) and contraindication to CMR imaging. After PPCI, 
all patients were considered for ESC guideline approved 
post-myocardial infarction secondary prevention therapy at 
the discretion of the treating physician, and were enrolled 
in a cardiac rehabilitation programme if they were deemed 
suitable [11]. Healthy volunteers had no history or symp-
toms of cardiovascular disease, were on no cardiovascular 
or other relevant medication and had no contraindications 
to CMR.

Ethics approval

The study protocol was approved by the National Research 
Ethics Service (12/YH/0169) and complied with the Dec-
laration of Helsinki and all patients gave written informed 
consent.

Cardiac catheterization

Coronary angiography and revascularisation were per-
formed in a standard fashion as per current best practice 
guidelines [13]. TIMI flow grades were assessed visually as 
described previously after coronary angioplasty [21].

CMR examination

All patients underwent CMR imaging at 3.0  T (Achieva 
TX, Philips Healthcare, Best, The Netherlands) within 3 
days (median 2 days) of their index presentation and were 
invited to attend a further CMR study at 3 months. CMR 
imaging used a dedicated 32-channel cardiac phased array 
receiver coil. Cine imaging was performed using a bal-
anced steady-state free precession (SSFP) pulse sequence 
with a spatial resolution of 1.6 × 2.0 × 10 mm and 40 phases 
per cardiac cycle. 4-chamber, 2-chamber and LV short axis 
stack cine imaging were acquired for strain analysis using 
the same spatial and temporal resolution.

T2 weighted (T2w) and T2* imaging were performed 
using the ‘3-of-5’ approach by acquiring the central 3 slices 
of 5 parallel short-axis slices spaced equally from mitral 
valve annulus to LV apical cap [14]. 0.1 mmol/kg gadolin-
ium-DTPA (gadopentetate dimeglumine; Magnevist, Bayer, 
Berlin, Germany) was administered using a power injec-
tor (Spectris, Solaris, PA). Late gadolinium enhancement 
(LGE) was performed in 10–12 short-axis slices 16–20 min 
after contrast administration using an inversion recovery-
prepared T1-weighted gradient echo-pulse sequence. For 

each pulse sequence, images with artefact were repeated 
until any artefact was removed or minimized. The highest 
quality images were used for analysis.

Image analysis

Cine, T2w, T2* and LGE images were evaluated offline 
using commercially available software (cvi42 v5.1, Circle 
Cardiovascular Imaging Inc., Calgary, Canada). Left ven-
tricular volumes and EF were analyzed from cine images 
using standard methods [15]. Infarct location was deter-
mined by LGE imaging, according to standard guidelines 
[16]. The presence and size of infarction and MVO were 
measured from LGE images. Infarcted myocardium was 
defined as an area of LGE ≥ 2 standard deviations (SD) 
above remote myocardium, and infarct volume estimation 
included any hypointense core. We used the 2SD method 
as there are prognostic data for the 2SD infarct size esti-
mation in similar populations [17], and for consistency 
with analysis of T2w images. MVO was defined visually 
as the hypointense core within the infarcted zone and plani-
metered manually. Volumes of infarct and MVO were cal-
culated from planimetered areas through the whole short-
axis LV LGE stack by the modified Simpson’s method. The 
presence and extent of intra-myocardial haemorrhage was 
assessed by combined analysis of T2w and T2* sequences 
[8]. On T2w images, areas with mean signal intensity less 
than 2 SD below the periphery of the area at risk (AAR) 
were considered to be haemorrhage [18]. On the T2* 
images, the presence of a dark core within the infarcted 
area by visual inspection of the images was used as con-
firmation of myocardial haemorrhage. Concordant results 
between T2w and T2* were needed to confirm haemor-
rhage. If there was inconsistency between them, agreement 
between two experts informed the results. Presence/absence 
of both MVO and IMH were scored in a binary manner.

Strain analysis

Strain analysis was performed in a semi-automated manner 
using Circle Cardiovascular Imaging Inc., Calgary, Canada 
cvi42 v5.1 (Fig.  2). The observer performing the strain 
analysis was blinded to the baseline CMR parameters and 
advanced tissue characterization. Left ventricular endo-
cardial and epicardial borders were manually contoured 
in end-diastole from both long-axis cines (4-chamber and 
2 chamber). Endocardial borders, epicardial borders and 
reference points at both RV insertion points (anterior/infe-
rior) were contoured manually for each slice at end-dias-
tole from the short axis LV cine stack. GLS and GLSR 
were derived from the long-axis images and GRS, GRSR, 
GCS and GCSR were derived from the short-axis LV cine 
stack using published methods [19, 20]. Peak GLS, peak 
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GLSR, GRS, peak GRSR, peak GCS and peak GCSR were 
quantified.

Follow‑up scans

Follow-up scans were planned at 3  months following the 
index event. Patients were divided into two groups based 
on the presence of LV remodelling. Adverse LV remodel-
ling was defined as an absolute increase of LV end-diastolic 
or end-systolic volumes >20% at 3 months follow-up [21–
23]. Analysis of all follow-up data was performed blinded 
to acute scans.

Statistical analysis

Statistical analysis was performed using IBM SPSS® 
Statistics 21.0. Continuous variables are expressed as 
mean ± SD. Normality for quantitative data was estab-
lished using the Kolmogorov-Smirnov test. Demographic 
comparisons were performed with an independent samples 
t-test. A repeated-measures analysis of variance (ANOVA) 
was performed on demographic and CMR parameters. 
Post-hoc univariate analysis was performed by using Tukey 
test [24]. Step-wise multivariate linear regression was used 
for parameters with statistical significance]from one-way 
analysis (p < 0.1). The accuracy of myocardial deforma-
tion parameters in predicting presence of MVO or IMH 

was examined using receiver-operator characteristic (ROC) 
curve analyses, using Medcalc (v15.8). All statistical tests 
were 2-tailed; p values < 0.05 were considered significant. 
To reduce transfer bias, baseline demographics and CMR 
parameters of the followed up patients were compared to 
patients who did not receive follow-up CMR by ANOVA.

Results

Forty-three acute STEMI patients met the inclusion criteria. 
Demographics of patients and ten healthy volunteers are 
shown in Table 1. Infarct characteristics on CMR are listed 
in Table 2. No gender and age based differences in charac-
teristics were present between patient groups (p > 0.1).

Baseline data

Left ventricular EF, left ventricular end-systolic vol-
ume (LVESV), GLS, GCS, GRS and GRSR were signifi-
cantly altered in infarct patients versus healthy volunteers 
(p < 0.001 for all parameters individually) (Fig. 3). Stroke 
volume was also reduced in the infarct subjects (p = 0.023 
versus controls). Among the 43 infarct patients, 25 patients 
(58%) had MVO and 24 patients (56%) had confirmed 
IMH. GRS was significantly lower in patients with MVO or 
IMH than those without (22.7 ± 7% vs. 29 ± 7%; p = 0.02). 

Fig. 2  Multi-parametric CMR examination of two patients with 
ST-elevation myocardial infarction. Case 1 (a–d): Anterior MI with-
out MVO. a Epicardial (green) and endocardial (red) contours on a 
4-chamber cine. b Voxel derived feature tracking (FT) of the myocar-
dium at end-systole. c Global longitudinal strain (GLS) curve dem-
onstrating a GLS of −16.5%. d LGE short-axis demonstrating infarct 

in anterior wall. Case 2 (e–h): e Demonstrates the contours and (f) 
shows the end-systolic FT-derived strain myocardial points in a case 
of lateral infarction with MVO. g Demonstrates a significantly lower 
GLS, −9%. h Demonstrates infarct and presence of MVO on LGE-
images
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Additionally, both GCS and GLS were significantly lower 
in patients with compared with those without MVO or 
IMH (GCS: −11.6 ± 3% vs. −15.6 ± 3%, p < 0.001, GLS: 
−11 ± 3% vs. −15.2 ± 3.3%, p < 0.001) (Fig. 3).

On linear regression analysis, using all the demograph-
ics and imaging variables including infarct size, GLS dem-
onstrated the strongest association with presence of MVO 
or IMH (beta = 0.53, p < 0.001) (Table  3). Additionally, 
GCS demonstrated stronger correlation to the volume of 
MVO than GLS (r = 0.57, p < 0.001 vs r = 0.46, p = 0.002) 
(Table 4). The area under the curve (AUC) for the diagnos-
tic performance of determining the presence of MVO or 
IMH by GLS was 0.82 (95% CI: 0.69–0.94; p < 0.001). The 
optimal cut-off value determined by Youden index for GLS 
was −13.7% for the presence of MVO or IMH (sensitivity 
76% and specificity 78%) [25].

Follow‑up data

Thirty-four of the 43 patients underwent 3 month follow up 
CMR; six patients declined further follow-up and in three 
patients the scan quality of cines on follow up was not suit-
able for FT analysis. Demographics parameters (age, gen-
der, hypertension, hypercholesterolaemia, smoking history, 
diabetes mellitus) and baseline CMR parameters (pres-
ence of MVO or IMH, LVEDVi, LVESVi and all strain 
parameters) were not significantly different in the nine 
patients who did not attend for follow-up scans compared 
with the overall study population (p > 0.1). All 34 follow 
up scans showed complete resolution of MVO and IMH. 
As compared to baseline, relative improvement in EF was 
19 ± 24.5%. Of all the baseline CMR parameters (LVEDVi, 
LVESVi, GLS, GCS, GRS, MVO, IMH), LVESVi (r = 0.99, 

Table 1  Study demographics

Data as mean ± SD or n(%) unless indicated
HV healthy volunteers, NA not-applicable, STEMI ST-elevation myocardial infarction
† p-value between first–second combined versus healthy volunteers
* p-value between first and second STEMI group

STEMI with MVO 
or IMH

STEMI without 
MVO or IMH

HV p value

N 25 18 10 –
Age (years) 59 ± 12 57 ± 10 62 ± 9 0.86*/0.30†

Male 22 (88%) 14 (78%) 3 (30%) 0.69*/0.35†

Body mass index (kg/m2) 29 ± 3 27 ± 3 27 ± 5 0.03*/0.28†

Current smoker 14 (32%) 9 (21%) 0 0.90*

Hypertension 7 (16%) 4(9%) 0 0.88*

Hypercholesterolemia 8 (18%) 5 (12%) 0 0.94*

Diabetes mellitus 5 (12%) 1(2%) 0 0.30*

Pain to balloon time (min) 286 ± 211 376 ± 386 NA 0.33*

TIMI flow grade 0/1 pre-PCI 22 (51%) 17 (39%) NA 0.78*

TIMI flow grade 3 post PCI 23 (53%) 18 (42%) NA 0.28*

Peak troponin I >30,000 ng/L 14 (32%) 24 (56%) NA 0.17
Anterior infarct 12 (28%) 8 (18%) NA 0.82*

Inferior infarct 10 (23%) 7 (16%) NA 0.94*

Lateral infarct 3 (7%) 3 (7%) NA 0.67*

Table 2  Imaging parameters at baseline

Data as mean ± SD. LV measurements are indexed to body surface 
area; infarct volumes are unindexed
LV EDVi left ventricular end diastolic volume (indexed), LV ESVi left 
ventricular end systolic volume (indexed), GCS peak global circum-
ferential strain, GCSR peak global circumferential strain rate, GLS 
peak global longitudinal strain, GLSR peak global longitudinal strain 
rate, GRS peak global radial strain, GRSR peak global radial strain 
rate

Characteristic MI (n = 43) Healthy volun-
teers (n = 10)

P value

Ejection fraction (%) 48 ± 10 63 ± 4 <0.001
LV EDVi (ml/m2) 82 ± 16 78 ± 20 0.47
LV ESVi (ml/m2) 42 ± 12 28 ± 8 <0.001
LV stroke volume (ml) 40 ± 11 49 ± 12 0.023
LGE infarct volume (ml) 15 ± 12 NA NA
LGE MVO volume (ml) 3 ± 5 NA NA
GRS (%) 25 ± 8 38 ± 7 <0.001
GRSR (%/s) 164 ± 50 268 ± 125 <0.001
GCS (%) −13 ± 4 − 20 ± 2 <0.001
GCSR (%/s) −106 ± 132 − 107 ± 12 0.99
GLS (%) −13 ± 4 − 20 ± 2 <0.001
GLSR (%/s) −128 ± 314 − 88 ± 13 0.68
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p < 0.002) and GLS (r = 0.97, p < 0.006) demonstrated the 
strongest correlation with improvement in EF at follow-up 
scan. GCS (r = 0.95, p = 0.01) and GRS (r = 0.91, p = 0.02) 
also demonstrated good correlations with improvement in 
EF at follow-up.

Adverse LV Remodelling

Out of 34 patients with follow-up data, 6 (17%) patients 
demonstrated adverse left ventricular remodelling. From all 
CMR baseline parameters, GLS demonstrated the strongest 
diagnostic performance in predicting adverse LV remodel-
ling (AUC = 0.79; 95% CI 0.60–0.98; p = 0.03) (Table 5).

Discussion

The main findings of this study are as follows: first, myo-
cardial deformation imaging by CMR reliably detects 
changes in acute infarct patients versus healthy controls. 
Second, the presence of MVO or IMH in acute reperfused 
STEMI is most strongly associated with GLS. Third, GLS 
showed modest association with adverse LV remodelling.

Our data complement the results of several previous 
investigations of the role of CMR-derived strain imaging 
in reperfused STEMI patients [18, 26–28]. Kidambi et al. 
studied the role of myocardial deformation using tissue tag-
ging derived strain in an acute reperfused infarct population 
[18]. They demonstrated that regional functional recov-
ery is poor in myocardial segments with MVO and IMH. 
Wong et  al. demonstrated that circumferential strain (CS) 
using tissue tagging correlates better than circumferential 
strain rate with regional functional recovery [29]. Both of 
these studies used tissue tagging, which has a relatively 
low temporal resolution (<30 frames/s), potentially lim-
iting its accuracy, especially in patients with higher heart 
rates. Moreover, acquisition of tissue tagged images often 
requires long series of breath holds, and tag fading during 
diastole limits the assessment of myocardial relaxation. FT 
analysis of cine loops may overcome these limitations. A 
study by Khan et al. compared tissue tagging to FT-derived 
strain in 24 acute reperfused STEMI patients. FT-derived 
strain was quicker to analyse, tracked the myocardium bet-
ter, had better inter-observer variability and stronger corre-
lations with infarct and oedema [27].

In a study of 74 patients, Buss et al. demonstrated that 
FT-derived GCS is strongly associated with infarct size and 
trans-murality of scar on LGE imaging [28]. This study 
also demonstrated that FT-derived GCS was more accurate 
than GLS for predicting preserved LV function at follow-
up. Notably, this study did not evaluate LV remodelling, 
presence of MVO, presence of IMH or functional recovery 
of LV defined by improvement in EF. Additionally, in this 

Fig. 3  Multiple comparison bars of myocardial strain in the study 
population (whiskers: standard deviations; SD)
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study, the FT-derived strain analysis algorithm tracked only 
the endo-/epi-myocardium to compute strain, and did not 
track pixels within the myocardium [30]. Tracking pixels 
within the myocardium is important, especially in the set-
ting of acute reperfused infarct where each layer of myo-
cardium (endo-, mid- and epi-) is going through different 
pathophysiological processes.

Our study adds to the growing body of literature on 
the ability of CMR to quantify left ventricular deforma-
tion with FT. We have shown that FT-derived myocardial 
deformation parameters (GCS, GRS and GLS) are altered 
significantly in patients with MVO or IMH (p < 0.05). 
MVO and IMH affect predominantly the sub-endocar-
dium, where most of the longitudinal myocardial fibres are 
located. It is thus plausible that GLS is the strongest pre-
dictor of MVO and IMH as shown in our study. GLS also 
demonstrated modest diagnostic performance to predict 

adverse LV remodelling at follow-up more than any other 
deformation parameter. In this study, the volume of MVO 
and infarct size were more strongly associated with GCS 
than GLS (Table  4). These results are not unexpected as 
larger infarcts with MVO will involve more myocardium 
transmurally.

Role of echocardiography

It is acknowledged that strain examination is more read-
ily available by echocardiography than CMR. All modern 
echocardiographic systems come with strain packages [31, 
32]. Early changes of microvascular obstruction (MVO) 
after AMI have been demonstrated by contrast echocardi-
ography [33–35]. In patients with AMI, echocardiographic 
studies can be performed at the bedside and GLS assess-
ment may be used as a ‘gatekeeper’ for further advanced 
imaging, for example, multi-parametric tissue characteriza-
tion on CMR. Further studies are needed to explore how 
echocardiography derived strain parameters compare to 
CMR-FT derived strain.

Clinical implications

Our findings have possible clinical implications as FT-
strain analysis can be performed rapidly from standard cine 
CMR images and allows the detection of the functional 
effects of MVO and IMH without the need for additional 
CMR tissue characterisation techniques (T2W and T2*) 
and analysis methods. From our one-center experience, the 
time for total left ventricular strain analysis by CMR FT is 
approximately 7 min. As demonstrated, a cut off value of 
−13.7% for GLS detects MVO or IMH with a sensitivity of 
76% and specificity of 77.8%. GLS can potentially predict 
the presence of MVO or IMH early after PPCI for STEMI. 
MVO and IMH are independent histopathological and car-
diac imaging markers of adverse prognosis and we specu-
late that their early detection from routinely acquired CMR 
cines may help tailor appropriate pharmacological inter-
ventions or guide stem cell therapy. Patients with known 
allergy to gadolinium-based contrast agents or patients with 
end-stage renal failure may also benefit from this technique.

Study limitations

In this study, we excluded patients who were unstable 
post-PPCI (higher Killip class, not able to lie flat because 
of shortness of breath and use of invasive monitoring). 
These patients are more likely to represent a higher risk 
group with an adverse prognosis. In our study population, 
the majority of patients with MVO had IMH and only one 
patient with MVO had no IMH. Hence, the data on GCS 
for IMH detection should be interpreted with caution.

Table 3  Univariate and multivariate analysis of longitudinal param-
eters of LV function to CMR derived clinical and prognostic markers

EF ejection fraction, LVEDVi left ventricular end-diastolic volume 
indexed, LVESVi left ventricular end-systolic volume indexed, GCS 
peak global circumferential strain, GCSR peak global circumferential 
strain rate, GLS peak global longitudinal strain, GLSR peak global 
longitudinal strain rate, GRS peak global radial strain, GRSR peak 
global radial strain rate
*Significant p-value
**Most significant p-value in multivariate

Microvascular obstruction and intra-myo-
cardial haemorrhage

Univariate Multi-variate (Step-
wise)

beta p-value beta p-value

Demographics
 Age 0.07 0.62
 Sex 0.13 0.38
 Smoking 0.06 0.70
 Hypertension 0.07 0.67
 Hypercholesterolemia 0.05 0.77
 Diabetes mellitus 0.21 0.19
 Pain-balloon time −0.15 0.33

CMR parameters
 LVEDVi 0.09 0.57
 LVESVi 0.38 0.01* 0.17 0.26
 EF −0.50 0.001* −0.27 0.13
 GRS −0.39 0.01* −0.07 0.67
 Infarct size 0.50 0.001* 0.36 0.01*
 GCS 0.52 <0.001* 0.29 0.16
 GLS 0.53 <0.001* 0.53 <0.001**
 GRSR −0.24 0.122
 GCSR −0.12 0.44
 GLSR 0.18 0.26
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Another important limitation of our study was that 9 of 
43 patients did not have follow-up CMR scans. This may 
have introduced transfer bias although the two groups 
were not different for demographic and standard CMR 
parameters.

In our study, at follow-up, only 6 (17%) patients had 
adverse LV remodelling and hence the demonstrated diag-
nostic performance of GLS to predict remodelling should 
be interpreted with caution.

In the present study, only global parameters of strain 
were investigated. Assessment of regional left ventricu-
lar strain parameters by CMR FT demonstrates regional 

variations and their clinical role remains very speculative 
[36].

Conclusions

Myocardial deformation changes adversely in patients with 
acute STEMI. Baseline GLS by FT-analysis of cine CMR 
is strongly associated with the presence of MVO or IMH 
and could be used as surrogate functional imaging marker 
of these acute myocardial pathological changes in patients 
with acute STEMI. Baseline GLS demonstrated stronger 
association with adverse LV remodelling than other CMR 
parameters.
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Table 4  Association of 
baseline CMR volumetric and 
strain parameters to size of 
microvascular obstruction

EF ejection fraction, GCS peak global circumferential strain, GCSR peak global circumferential strain rate, 
GLS peak global longitudinal strain, GLSR peak global longitudinal strain rate, GRS peak global radial 
strain, GRSR peak global radial strain rate, LVEDVi left ventricular end-diastolic volume indexed, LVESVi 
left ventricular end-systolic volume indexed; r Pearson correlation coefficient
Bold text represents most signifcant r value and it’s corresponding p-value

Location of infarct Infarct volume (%) Microvascular obstruc-
tion volume (%)

r p value r p value r p value

EF 0.29 0.06 −0.37 0.01 −0.37 0.02
LVEDVi −0.18 0.24 0.20 0.20 0.08 0.60
LVESVi −0.24 0.12 0.41 0.01 0.30 0.05
SVi 0.03 0.87 −0.19 0.23 −0.24 0.13
GRS 0.19 0.21 −0.32 0.03 −0.39 0.01
GRSR 0.04 0.79 −0.24 0.13 −0.13 0.41
GCS −0.18 0.25 0.54 <0.001 0.57 <0.001
GCSR 0.21 0.18 −0.01 0.94 − 0.30 0.06
GLS −0.33 0.03 0.34 0.02 0.46 0.002
GLSR 0.12 0.44 0.20 0.20 0.10 0.52

Table 5  Association of baseline CMR parameters to adverse LV 
remodelling at follow-up visit

AUC area under the curve, CI confidence interval, EF ejection frac-
tion, GCS peak global circumferential strain, GCSR peak global cir-
cumferential strain rate, GLS peak global longitudinal strain, GLSR 
peak global longitudinal strain rate, GRS peak global radial strain, 
GRSR peak global radial strain rate, LV left ventricle, LVEDVI left 
ventricular end-diastolic volume indexed, LVESVI left ventricular 
end-systolic volume indexed,r Pearson correlation coefficient

Adverse LV remodelling

LVEDVi AUC = 0.60; 95% CI 0.34–0.86; p = 0.44
LVESVi AUC = 0.60; 95% CI 0.32–0.87; p = 0.47
LV EF AUC = 0.26; 95% CI 0.00–0.52; p = 0.07
GLS AUC = 0.79; 95% CI 0.60–0.98; p = 0.03*
GLSR AUC = 0.68; 95% CI 0.42–0.95; p = 0.16
GRS AUC = 0.32; 95% CI 0.11–0.54; p = 0.18
GRSR AUC = 0.34; 95% CI 0.16–0.52; p = 0.22
GCS AUC = 0.71; 95% CI 0.48–0.87; p = 0.11
GCSR AUC = 0.57; 95% CI 0.35–0.78; p = 0.62

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


369Int J Cardiovasc Imaging (2017) 33:361–370 

1 3

References

 1. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Micro-
vascular obstruction and the no-reflow phenomenon after percu-
taneous coronary intervention. Circulation 117(24):3152–3156

 2. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van 
Royen N (2015) Intramyocardial haemorrhage after acute myo-
cardial infarction. Nat Rev Cardiol 12(3):156–167

 3. Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL 
et al (2002) The relationships of left ventricular ejection fraction, 
end-systolic volume index and infarct size to six-month mortality 
after hospital discharge following myocardial infarction treated 
by thrombolysis. J Am Coll Cardiol 39(1):30–36

 4. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS (2004) The quantifi-
cation of infarct size. J Am Coll Cardiol 44(8):1533–1542

 5. Møller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka 
PA (2006) Wall motion score index and ejection fraction for 
risk stratification after acute myocardial infarction. Am Heart J 
151(2):419–425

 6. Vartdal T, Brunvand H, Pettersen E, Smith H-J, Lyseggen E, 
Helle-Valle T et  al (2007) Early prediction of infarct size by 
strain Doppler echocardiography after coronary reperfusion. J 
Am Coll Cardiol 49(16):1715–1721

 7. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH 
(1981) Left ventricular fibre architecture in man. Br Heart J 
45(3):248–263

 8. Hor KN, Baumann R, Pedrizzetti G, Tonti G, Gottliebson 
WM, Taylor M et  al (2011) Magnetic resonance derived myo-
cardial strain assessment using feature tracking. J Vis Exp. 
doi:10.3791/2356

 9. Ibrahim E-SH (2011) Myocardial tagging by cardiovascular 
magnetic resonance: evolution of techniques–pulse sequences, 
analysis algorithms, and applications. J Cardiovasc Magn Reson 
13(1):36

 10. Shah AM, Solomon SD (2012) Myocardial deformation 
imaging: current status and future directions. Circulation 
125(2):e244–e248

 11. Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist 
C, Borger MA et al (2012) ESC Guidelines for the management 
of acute myocardial infarction in patients presenting with ST-
segment elevation. Eur Heart J 33(20):2569–2619

 12. Killip T, Kimball J (1967) Treatment of myocardial infarction in 
a coronary care unit. A two year experience with 250 patients. 
Am J Cardiol 20(4):457–464

 13. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, Falk V 
et  al (2014) ESC/EACTS Guidelines on myocardial revascu-
larization: the Task force on myocardial revascularization of the 
European Society of Cardiology (ESC) and the European Asso-
ciation for Cardio-Thoracic Surgery (EACTS) Developed with 
the special contribution o. Eur Heart J 35(37):2541–2619

 14. Messroghli DR, Bainbridge GJ, Alfakih K, Jones TR, Plein 
S, Ridgway JP et  al (2005) Assessment of regional left ven-
tricular function: accuracy and reproducibility of positioning 
standard short-axis sections in cardiac MR imaging. Radiology 
235(1):229–236

 15. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel 
MA, Friedrich MG et  al (2013) Standardized image interpreta-
tion and post processing in cardiovascular magnetic resonance: 
Society for Cardiovascular Magnetic Resonance (SCMR) board 
of trustees task force on standardized post processing. J Cardio-
vasc Magn Reson 15:35

 16. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, 
Laskey WK et  al (2002) Standardized myocardial segmenta-
tion and nomenclature for tomographic imaging of the heart. A 
statement for healthcare professionals from the Cardiac Imaging 

Committee of the Council on Clinical Cardiology of the Ameri-
can Heart Association. Circulation 105(4):539–542

 17. Kwon DH, Asamoto L, Popovic ZB, Kusunose K, Robinson M, 
Desai M et al (2014) Infarct characterization and quantification 
by delayed enhancement cardiac magnetic resonance imaging is 
a powerful independent and incremental predictor of mortality 
in patients with advanced ischemic cardiomyopathy. Circ Cardio-
vasc Imaging 7(5):796–804

 18. Kidambi A, Mather AN, Motwani M, Swoboda P, Uddin A, 
Greenwood JP et al (2013) The effect of microvascular obstruc-
tion and intramyocardial hemorrhage on contractile recovery in 
reperfused myocardial infarction: insights from cardiovascular 
magnetic resonance. J Cardiovasc Magn Reson 15(1):58

 19. Swoboda PP, McDiarmid AK, Erhayiem B, Haaf P, Kidambi A, 
Fent GJ et al (2016) A novel and practical screening tool for the 
detection of silent myocardial infarction in patients with type 2 
diabetes. J Clin Endocrinol Metab. doi:10.1210/jc.2016-1318

 20. Swoboda PP, Erhayiem B, McDiarmid AK, Lancaster RE, Lyall 
GK, Dobson LE et  al (2016) Relationship between cardiac 
deformation parameters measured by cardiovascular magnetic 
resonance and aerobic fitness in endurance athletes. J Cardiovasc 
Magn Reson 18(1):48

 21. Korosoglou G, Haars A, Humpert PM, Hardt S, Bekeredjian R, 
Giannitsis E et al (2008) Evaluation of myocardial perfusion and 
deformation in patients with acute myocardial infarction treated 
with primary angioplasty and stent placement. Coron Artery Dis 
19(7):497–506

 22. Warren SE, Royal HD, Markis JE, Grossman W, McKay RG 
(1988) Time course of left ventricular dilation after myocardial 
infarction: influence of infarct-related artery and success of coro-
nary thrombolysis. J Am Coll Cardiol 11(1):12–19

 23. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after 
myocardial infarction. Experimental observations and clinical 
implications. Circulation 81(4):1161–1172

 24. Tukey JW (1949) Comparing individual means in the analysis of 
variance. Biometrics 5(2):99–114

 25. Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) 
Youden Index and optimal cut-point estimated from observations 
affected by a lower limit of detection. Biom J 50(3):419–430

 26. Kidambi A, Mather AN, Swoboda P, Motwani M, Fairbairn 
TA, Greenwood JP et  al (2013) Relationship between myocar-
dial edema and regional myocardial function after reperfused 
acute myocardial infarction: an MR imaging study. Radiology 
267(3):701–708

 27. Khan JN, Singh A, Nazir SA, Kanagala P, Greenwood J, Ger-
shlick AH et  al (2015) Comparison of cardiovascular magnetic 
resonance feature tracking and tagging for the assessment of left 
ventricular systolic strain in acute myocardial infarction. Eur J 
Radiol 17(5):840–848

 28. Buss SJ, Krautz B, Hofmann N, Sander Y, Rust L, Giusca S et al 
(2015) Prediction of functional recovery by cardiac magnetic res-
onance feature tracking imaging in first time ST-elevation myo-
cardial infarction. Comparison to infarct size and transmurality 
by late gadolinium enhancement. Int J Cardiol 183:162–170

 29. Wong DTL, Leong DP, Weightman MJ, Richardson JD, Dun-
don BK, Psaltis PJ et al (2014) Magnetic resonance-derived cir-
cumferential strain provides a superior and incremental assess-
ment of improvement in contractile function in patients early 
after ST-segment elevation myocardial infarction. Eur Radiol 
24(6):1219–1228

 30. Garg P, Kidambi A, Plein S (2015) Relation of circumferential 
and longitudinal strain to other independent prognostic imaging 
markers in first time ST-elevation myocardial infarction. Int J 
Cardiol 186:202–203

 31. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, 
Fleming A, Guell-Peris FJ et al (1994) Color doppler myocardial 

http://dx.doi.org/10.3791/2356
http://dx.doi.org/10.1210/jc.2016-1318


370 Int J Cardiovasc Imaging (2017) 33:361–370

1 3

imaging: a new technique for the assessment of myocardial func-
tion. J Am Soc Echocardiogr. 7(5):441–458

 32. Heimdal A, Støylen A, Torp H, Skjaerpe T, Mirsky I, Parmley 
W et al (1998) Real-time strain rate imaging of the left ventricle 
by ultrasound. J Am Soc Echocardiogr 11(11):1013–1019

 33. Rinkevich D, Kaul S, Wang X-Q, Tong KL, Belcik T, Kalvaitis 
S et al (2005) Regional left ventricular perfusion and function in 
patients presenting to the emergency department with chest pain 
and no ST-segment elevation. Eur Heart J 26(16):1606–1611

 34. Senior R, Moreo A, Gaibazzi N, Agati L, Tiemann K, Shivalkar 
B et  al (2013) Comparison of sulfur hexafluoride microbubble 
(SonoVue)-enhanced myocardial contrast echocardiography with 

gated single-photon emission computed tomography for detec-
tion of significant coronary artery disease: a large European mul-
ticenter study. J Am Coll Cardiol 62(15):1353–1361

 35. Gibson PH, Becher H, Choy JB (2014) The current state of myo-
cardial contrast echocardiography: what can we read between the 
lines?. Eur Hear J Cardiovasc Imaging 15(3). doi:10.1093/ehjci/
jet247

 36. Pedrizzetti G, Claus P, Kilner PJ, Nagel E, Singh A, Barron J 
et  al (2016) Principles of cardiovascular magnetic resonance 
feature tracking and echocardiographic speckle tracking for 
informed clinical use. J Cardiovasc Magn Reson 18(1):51

http://dx.doi.org/10.1093/ehjci/jet247
http://dx.doi.org/10.1093/ehjci/jet247

	The role of left ventricular deformation in the assessment of microvascular obstruction and intramyocardial haemorrhage
	Abstract 
	Introduction
	Methods
	Study population
	Ethics approval
	Cardiac catheterization
	CMR examination
	Image analysis
	Strain analysis
	Follow-up scans
	Statistical analysis

	Results
	Baseline data
	Follow-up data
	Adverse LV Remodelling

	Discussion
	Role of echocardiography
	Clinical implications
	Study limitations

	Conclusions
	Acknowledgements 
	References


