Research Paper

PII:

DOI:

Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China

Arfan Ali, Muhammad Bilal, Yu Wang, Zhongfeng Qiu, Janet E. Nichol, Gerrit de Leeuw, Song Ke, Alaa Mhawish, Mansour Almazroui, Usman Mazhar, Birhanu Asmerom Habtemicheal, M. Nazrul Islam

S1674-9871(21)00189-4 https://doi.org/10.1016/j.gsf.2021.101325 Reference: GSF 101325

To appear in: Geoscience Frontiers

Received Date: 24 June 2021 **Revised Date:** 4 November 2021 Accepted Date: 8 November 2021

Please cite this article as: A. Ali, M. Bilal, Y. Wang, Z. Qiu, J.E. Nichol, G. de Leeuw, S. Ke, A. Mhawish, M. Almazroui, U. Mazhar, B. Asmerom Habtemicheal, M. Nazrul Islam, Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China, Geoscience Frontiers (2021), doi: https://doi.org/10.1016/j.gsf.2021.101325

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

1 Research Paper

2	F	Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis
3		AOD against Satellite observations from 2000 to 2014 over China
4		
5	N	Id. Arfan Ali ^a , Muhammad Bilal ^a , Yu Wang ^a , Zhongfeng Qiu ^{a,*} , Janet E. Nichol ^b , Gerrit
6	de	e Leeuw ^{c,d,e,f} , Song Ke ^g , Alaa Mhawish ^a , Mansour Almazroui ^{h,i} , Usman Mazhar ^j , Birhanu
7		Asmerom Habtemicheal ^{k,l} , M. Nazrul Islam ^h
8 9	a	Lab of Environmental Remote Sensing (LERS), School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.
10 11	b	Department of Geography, School of Global Studies, University of Sussex, Brighton BN19RH, UK.
12 13	с	Royal Netherlands Meteorological Institute (KNMI), R & D Satellite Observations, 3730AE De Bilt, The Netherlands.
14 15	d	School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China.
16 17	e	Aerospace Information Research Institute, Chinese Academy of Sciences (AirCAS), No.20 Datun Road, Chaoyang District, Beijing 100101, China.
18 19	f	School of Environment Science and Spatial Informatics, University of Mining and Technology, Xuzhou, Jiangsu 221116, China
20	g	Geological Survey of Jiangsu Province, Nanjing 210018, China
21 22	h	Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
23 24	i	Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK.

25 26	j	School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
27 28	k	School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
29	¹ D	epartment of Physics, Wollo University, Dessie P.O. Box 1145, Ethiopia
30		
31		* Corresponding author's email: <u>zhongfeng.qiu@nuist.edu.cn</u>
32		
33	Ha	andling Editor: R. Palin
34		

36 Abstract

37	Rapid industrialization and urbanization along with a growing population are contributing
38	significantly to air pollution in China. Evaluation of long-term aerosol optical depth (AOD)
39	data from models and reanalysis, can greatly promote understanding of spatiotemporal
40	variations in air pollution in China. To do this, AOD (550 nm) values from 2000 to 2014
41	were obtained from the Coupled Model Inter-comparison Project (CIMP6), the second
42	version of Modern-Era Retrospective analysis for Research, and Applications (MERRA-2),
43	and the Moderate Resolution Imaging Spectroradiometer (MODIS; flying on the Terra
44	satellite) combined Dark Target and Deep Blue (DTB) aerosol product. We used the Terra-
45	MODIS DTB AOD (hereafter MODIS DTB AOD) as a standard to evaluate CMIP6
46	Ensemble AOD (hereafter CMIP6 AOD) and MERRA-2 reanalysis AOD (hereafter
47	MERRA-2 AOD). Results show better correlations and smaller errors between MERRA-2
48	and MODIS DTB AOD, than between CMIP6 and MODIS DTB AOD, in most regions of
49	China, at both annual and seasonal scales. However, significant under- and over-
50	estimations in the MERRA-2 and CMIP6 AOD were also observed relative to MODIS
51	DTB AOD. The long-term (2000–2014) MODIS DTB AOD distributions show the highest
52	AOD over the North China Plain (0.71) followed by Central China (0.69), Yangtse River
53	Delta (0.67), Sichuan Basin (0.64), and Pearl River Delta (0.54) regions. The lowest AOD
54	values were recorded over the Tibetan Plateau (0.13 \pm 0.01) followed by Qinghai (0.19 \pm
55	0.03) and the Gobi Desert (0.21 \pm 0.03). Large amounts of sand and dust particles emitted
56	from natural sources (the Taklamakan and Gobi Deserts) may result in higher AOD in
57	spring compared to summer, autumn, and winter. Trends were also calculated for
58	2000–2005, for 2006–2010 (when China introduced strict air pollution control policies

59	during the 11 th Five Year Plan or FYP), and for 2011–2014 (during the 12 th FYP). An
60	increasing trend in MODIS DTB AOD was observed throughout the country during
00	increasing trend in MODIS DTB AOD was observed throughout the country during
61	2000–2014. The uncontrolled industrialization, urbanization, and rapid economic
62	development that mostly occurred from 2000 to 2005 probably contributed to the overall
63	increase in AOD. Finally, China's air pollution control policies helped to reduce AOD in
64	most regions of the country; this was more evident during the 12 th FYP period (2011–2014)
65	than during the 11th FYP period (2006–2010). Therefore this study strongly advises the
66	authority to retain or extend these policies in the future for improving air quality.
67	Keywords: AOD, CMIP6, MERRA-2, MODIS, Trends
68	
69	1. Introduction
70	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere,
70 71	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 μ m. Aerosols are of great interest to the
70 71 72	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 μ m. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality,
70 71 72 73	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and
70 71 72 73 74	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You
70 71 72 73 74 75	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over
70 71 72 73 74 75 76	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over different regions around the world to understand aerosol behavior (Che et al., 2009, 2015a,
70 71 72 73 74 75 76 77	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over different regions around the world to understand aerosol behavior (Che et al., 2009, 2015a, 2015b; Zhang et al., 2012; Bilal and Nichol, 2015, 2017; Kong et al., 2016; Ma et al., 2016;
70 71 72 73 74 75 76 77 78	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over different regions around the world to understand aerosol behavior (Che et al., 2009, 2015a, 2015b; Zhang et al., 2012; Bilal and Nichol, 2015, 2017; Kong et al., 2016; Ma et al., 2016; Xin et al., 2016; Bilal et al., 2017a, 2017b, 2018; Ali et al., 2019, 2020; Zhang et al., 2020;
70 71 72 73 74 75 76 77 78 79	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over different regions around the world to understand aerosol behavior (Che et al., 2009, 2015a, 2015b; Zhang et al., 2012; Bilal and Nichol, 2015, 2017; Kong et al., 2016; Ma et al., 2016; Xin et al., 2016; Bilal et al., 2017a, 2017b, 2018; Ali et al., 2019, 2020; Zhang et al., 2020; Su et al., 2021). Even so, aerosol optical properties remain an important source of
70 71 72 73 74 75 76 77 78 79 80	Aerosols are mixtures of tiny solid and liquid suspended particles in the atmosphere, having a standard radius from 0.001 to 100 µm. Aerosols are of great interest to the scientific community due to their impact on global climate, radiative balance, air quality, human health, cloud microphysical properties, hydrological cycle, ecosystems, and agriculture (Charlson et al., 1992; Xia et al., 2006; Yu et al., 2009; Wang et al., 2015; You et al., 2015; Shao et al., 2017). Several studies on this topic have been conducted over different regions around the world to understand aerosol behavior (Che et al., 2009, 2015a, 2015b; Zhang et al., 2012; Bilal and Nichol, 2015, 2017; Kong et al., 2016; Ma et al., 2016; Xin et al., 2016; Bilal et al., 2017a, 2017b, 2018; Ali et al., 2019, 2020; Zhang et al., 2020; Su et al., 2021). Even so, aerosol optical properties remain an important source of uncertainty in climate projection and assessment (IPCC, 2013). Aerosol optical depth

principal factor for climate change research (Pan et al., 2010). Therefore, AOD evaluation
at local to global scales, its long-term spatiotemporal variations, and trend calculations, are
necessary, and especially in China which has severe air pollution.
Such analysis requires multiple datasets (e.g., ground measurements, satellite remote
sensing, reanalysis, and model simulation) for a comprehensive understanding of the nature
and effects of aerosols. National Aeronautics and Space Administration (NASA) Aerosol
Robotic Network (AERONET) (Holben et al., 1998), in 2001. Complementary to
AERONET, and in part shared with AERONET, Chinese networks have been developed
(Xia et al., 2021), such as CARSNET (China Aerosol Remote Sensing Network),
established by the China Meteorological Administration (CMA) (Che et al., 2009, 2015a)
(50 sites), and SONET (Sun-Sky Radiometer Observation Network) established by the
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (RADI/CAS),
Beijing (Li et al., 2018) (16 sites). CARE China (Campaign on Atmospheric Aerosol
Research network of China) (Xin et al., 2015) includes 36 sites where handheld sun
photometers are used. The limitation of these networks is their sparse spatial distribution
(Holben et al., 2001). This limitation can be overcome by satellite remote sensing
techniques and Global Climate Models (GCMs), which provide wide spatial coverage of
AOD at local to global scales. AOD retrievals are available from several satellite-based
instruments such as the Total Ozone Monitoring Instrument (TOMS) (Torres et al., 2002),
Advanced Very High-Resolution Radiometer (AVHRR) (Hauser, 2005), the Along Track
Scanning Radiometers (ATSR-2 and AATSR) (Holzer-Popp et al., 2013; de Leeuw et al.,
2015; Popp et al., 2016), Ozone Monitoring Instrument (OMI) (Torres et al., 2007), Multi-
angle Imaging Spectroradiometer (MISR) (Kahn et al., 2010), the Sea-Viewing Wide-field
of View Sensor (SeaWiFS) (Sayer et al., 2012), the Visible Infrared Imaging Radiometer
Suite (VIIRS) (Liu et al., 2014), and the Moderate Resolution Imaging Spectroradiometer

107	(MODIS) (Remer et al., 2005; Hsu et al., 2006, 2013; Levy et al., 2010, 2013; Sayer et al.,
108	2014). In addition, reanalysis data such as from Copernicus Atmosphere Monitoring
109	Services (CAMS) (Flemming et al., 2017), the second Modern-Era Retrospective analysis
110	for Research and Applications (MERRA-2) (Randles et al., 2017), and Global Climate
111	Models (GCMs) such as the Coupled Model Intercomparison Project Phase6 (CMIP6)
112	(Eyring et al., 2016) also provide long-term spatial AOD data.
113	MODIS, onboard the Terra and Aqua satellites is one of the most widely appraised
114	instruments in retrieving AOD (Levy et al., 2013; Sayer et al., 2014; Bilal and Nichol,
115	2015; Mhawish et al., 2017). The satellite-based MODIS sensor provides global AOD
116	distributions using the dark target (DT) and deep blue (DB) algorithms, which have been
117	widely evaluated over vegetated and bright reflecting surfaces (Kaufman et al., 1997; Hsu
118	et al., 2013). In addition, several researchers evaluated the MODIS DT, DB, and their
119	combined DTB AOD products over different regions (Chu et al., 2002; Bilal et al., 2016,
120	2017b, 2018, 2021a; Georgoulias et al., 2016; Nichol and Bilal, 2016; Ali et al., 2017; Butt
121	et al., 2017; Mhawish et al., 2017; Wang et al., 2017; de Leeuw et al., 2018; Sogacheva et
122	al., 2018, 2020; Ali and Assiri, 2019; Almazroui, 2019; Bright and Gueymard, 2019; Mei et
123	al., 2019; Tian and Gao, 2019; Filonchyk and Hurynovich, 2020; Wei et al., 2020). Apart
124	from these, several studies also evaluated MODIS AOD products against ground
125	measurements in different regions of China. For example, Wang et al. (2019) evaluated
126	MODIS collection (C6.1) DT and DB AOD against 20 AERONET sites over different
127	regions in China and reported that DB performed well to estimate AOD in terms of
128	correlation coefficient (r = 0.931), root mean squared error (RMSE = 0.18), relative mean
129	bias ($RMB = 1.02$), and an acceptable percentage of retrievals within the expected error
130	(EE = 63.49%). The corresponding DT values were $r = 0.946$, RMSE = 0.19, RMB = 1.17,
131	and EE = 54.03%. The MODIS C6.1 DB AOD performed better against AERONET AOD

132	measurements over Beijing, XiangHe, and Xinglong sites as indicated by r (0.92), RMSE
133	(0.22), and EE (68.3%) compared to the DT algorithm (Bilal et al., 2019). Huang et al.
134	(2020) evaluated Terra and Aqua based MODIS C6.1 DT and DB AOD against SONET
135	sites in the westernmost city (Kashi region, Xinjiang Uygur Autonomous Region) in China
136	and reported that DB showed better results for both satellites in terms of r (Terra/Aqua =
137	0.896/0.907), RMSE (0.283/0.203), RMB (0.337/0.388), and EE (82.35/84.06%) compared
138	to the DT algorithm. In addition, Che et al. (2019a) validated MODIS C6 and C6.1 DT
139	AOD over 18 AERONET and CARSNET sites in China for the period 2002 to 2014. They
140	found that DT C6.1 obtained better results in retrieving AOD in terms of r (0.901), RMSE
141	(0.171), RMB (0.998), and EE (59.03%) compared to the C6 DT algorithm ($r = 0.890$,
142	RMSE = 0.185, RMB = 1.039, EE = 54.94%). Huang et al. (2019) validated MODIS C006
143	and 61 DT AOD 3km products against AERONET sites in China, and they reported that
144	C6.1 DT performed better in terms of R^2 (0.87), RMSE (0.23), RMB (1.41), and EE (45%)
145	than did C6 DT (0.81, 0.31, 1.57, and 39%). Apart from these, Li et al. (2020) reported that
146	the C6.1 MODIS DTB AOD product produced better results over 12 AERONET sites in
147	China as indicated by R^2 (Terra/Aqua = 0.81/0.79), RMSE (0.15/0.17), and EE
148	(66.63/65.32%) compared to the DT and DB algorithms. The DTB AOD product also has
149	good spatial coverage over multilayer surfaces in China. Filonchyk et al. (2019) used this
150	product for a local study and found that the combined C6.1 MODIS DTB AOD performed
151	better over four AERONET sites (Beijing, XiangHe, Taihu, and SACOL), as indicated by r
152	(0.885–0.902), RMSE (0.097–0.302), RMB (0.97–1.17), and EE (76.3%–78.3%). Based
153	on the good performance of the DTB AOD retrievals over China, as reported by previous
154	studies, the present study used the combined Terra-MODIS C6.1 DTB AOD as the
155	reference data to evaluate CMIP6 and the MERRA-2 AOD.

156	Very few studies were found that evaluated CMIP5/CMIP6 models and MERRA-2
157	reanalysis-based AOD against satellite observations from local to global scales. Mortier et
158	al. (2020) calculated AOD trends using the CMIP6 and AeroCom models at a global scale
159	and reported decreasing trends in AOD over Europe, North and South America, and North
160	Africa. Li et al. (2020) evaluated the CMIP5 model-based AOD against MODIS AOD over
161	East Asia from 2001 to 2005 and reported an underestimation in CMIP5 AOD. Similar
162	studies were conducted by Misra et al. (2016) and Sockol and Small Griswold (2017) over
163	the USA and India, respectively. In China, Sun et al. (2019) evaluated the MERRA-2
164	reanalysis AOD against Aqua-based MODIS AOD from 1980 to 2010 and Liu et al. (2021)
165	evaluated CAMS and MERRA-2 AOD against MODIS AOD over the Sichuan Basin of
166	China. However, no comprehensive evaluation of MERRA-2 and CMIP6 AOD data was
167	found over China. Due to the unprecedented social and economic developments of China in
168	recent decades, the country now suffers from intense aerosol pollution (Wang et al., 2021).
169	In 2015, a total of 1710 days of severe and above pollution, and 154 heavy pollution
170	weather warnings were observed across 70 cities in the BTH region. In 2016, Yale
171	University published the Environmental Performance Index (EPI) report, which ranked
172	China as having the second worst air quality globally, before Bangladesh (Song et al.,
173	2019; Qiu et al., 2021). For the use of MERRA-2 reanalyses and CMIP6 AOD for air
174	quality assessments, a comprehensive evaluation of the model results is required to see
175	how well they represent the local to regional spatio-temporal AOD scenarios and trends
176	over China. In this contribution, the model results are evaluated against MODIS AOD. The
177	main objectives of this study are: (1) to evaluate CMIP6 Ensemble AOD and MERRA-2
178	reanalysis AOD against Terra-MODIS AOD; (2) investigate the long-term spatiotemporal
179	discrepancy of AOD at annual and seasonal scales; and (3) to estimate the effect of
180	China's air pollution control policies on AOD.

182 2. Data and methods

183 2.1 Study area

In this study, AOD from multiple sources was investigated over China. China is 184 characterized by having a diverse climate and broad geography, and is located at 3°51'-53° 185 33' N latitudes and 73°33'-135° 05' E longitudes (Fig. 1). China's regions have a large 186 landmass with a complex topography and aerosol heterogeneity. Climatologically, China's 187 188 climate varies from south and southeast (humid) to north and northwest (dry), with an uneven pattern of precipitation, which is mainly due to the distance from the sea. The 189 northern and western regions of the country are dominated by the Gobi and Taklamakan 190 191 Deserts with plateaus and massifs, whereas the southern regions comprise hilly and 192 mountainous terrain. The southern coastal and eastern plains are composed of fertile lowlands and foothills, and so the largest number of people live in these regions. The 193 country has four distinct seasons. December to February (DJF) represent a harsh cold 194 winter with a very dry climate in most of China, except for southern China, which remains 195 just cool. A more moderate climate occurs in spring from March to May (MAM), while the 196 summer months June to August (JJA) brings are very hot and humid. The autumn lasts 197 from September to November (SON) and is characterized by warm weather with strong 198 199 winds and infrequently heavy rain.

In China, aerosol distribution varies over time and from region to region; therefore a region-based study is more effective in distinguishing the long-term changes in aerosols compared to the national scale (Zhao et al., 2008). Emissions from different industries located in different regions are key sources of aerosol in China. Industrial aerosols are emitted mostly from the Eastern (Pan et al., 2010; Deng et al., 2012; He et al., 2016; Kang

205	et al., 2016a, 2016b) and Central (Wang et al., 2015; Liu et al., 2016) part of China. In
206	addition, dust aerosols across the Northern and Northwestern regions of China are triggered
207	by wind erosion (Tan et al., 2015; Yu et al., 2016). Marine aerosols found over the Eastern
208	and Southern parts of China are generated from the Yellow Sea and the South China Sea
209	(Kang et al., 2016a). In light of the above, ten major regions (see Fig.1) were selected
210	across China. Results for the ten regions are amalgamated to calculate results for an 11th
211	region "Entire China", representing the whole of China.

212

213 2.2 Aerosol products

214 2.2.1 CMIP6 based AOD datasets

In this study, we used multi-model historical simulations from the latest CMIP6 archive, which extend up to 2014. Trends in AOD at 550 nm for the 10 selected regions in China were investigated for the 2000–2014 simulation period. In this regard, we used AOD data from 15 CMIP6 up-to-date global climate models (GCMs). Based on the availability of required data, output from those 15 models was downloaded from the CMIP6 website. Some details of the selected 15 GCMs are summarized in Table 1.

221

222 2.2.2 MERRA-2 reanalysis AOD datasets

In this study, the reanalysis AOD from MERRA-2 at a spatial resolution of 0.5° ×
0.625° was used. MERRA-2 is the updated version of the original MERRA reanalysis
datasets (Rienecker et al., 2011). The inclusion of the Goddard Earth Observing System
(GEOS) model, as well as the assimilation of observation types, is the fundamental
enhancement in this upgraded version (Molod et al., 2015; Georgoulias et al., 2016; Gelaro

et al., 2017). MERRA-2 is recognized as the first satellite reanalysis product to assimilate

229	aerosol information for the earth system. It represents the interaction between aerosols and
230	climate system variables on the Earth. The aerosol model is developed based on the
231	assimilation of AOD products from the Advanced Very High-Resolution Radiometer
232	(AVHRR), MISR (Multi-angle Imaging Spectroradiometer), and MODIS satellite-based
233	sensors, as well as from ground-based observations such as provided by AERONET
234	(Aerosol Robotic Network). For more details about MERRA-2 and the evaluation of
235	aerosol assimilation, see Gelaro et al. (2017), Randles et al. (2017), and Shi et al. (2019).
236	2.2.3 MODIS AOD datasets
237	This study also used the MODIS aerosol products, as they have the greater availability
238	of effective AOD pixels (de Meij et al., 2012; de Leeuw et al., 2018). To explore the
239	spatiotemporal features of aerosols, MODIS was launched in 1999 onboard the Terra
240	(descending orbit, local crossing time: 10:30 AM) satellite and in 2002 onboard the Aqua
241	(ascending orbit, local crossing time: 01:30 PM) satellite as part of NASA's Earth
242	Observing System (EOS) mission. This sensor measures the upwelling Earth radiation in 36
243	spectral channels from 0.4–14.4 μ m and with three different spatial resolutions (e.g., 250 m
244	for bands 1–2, 500 m for bands 3–7, 1 km for 8–36) with a swath viewing of 2330 km (for
245	details see https://modis.gsfc.nasa.gov/about/specifications.php; accessed date: 22 Feb
246	2021). To retrieve MODIS AOD, three different algorithms, i.e. the dark target (DT) land
247	algorithm, the dark target (DT) ocean algorithm, and the deep blue (DB) land algorithms
248	are used (Hsu et al., 2013; Levy et al., 2013; Remer et al., 2013). The DT algorithm is
249	applicable for vegetated surfaces, whereas the DB algorithm is used for both bright
250	reflecting (desert surface) and vegetated surfaces. However, based on upgrades to the
251	algorithms, MODIS AOD datasets are stored at different levels and versions (known as

252	collections). The collection (C6.1) is the latest version of DT and DB algorithms, where
253	significant improvements and modifications were implemented from the previous C51 and
254	C6 versions (Levy et al., 2013; Bilal and Nichol, 2015; Bilal et al., 2016; Georgoulias et al.,
255	2016; Nichol and Bilal, 2016), as described in Sayer et al. (2019) and initially validated
256	over China by Sogacheva et al. (2018). This study used combined MODIS AOD products,
257	considering their reliability and extended coverage in terms of the enormous number of
258	valid pixels and their quality in retrieving AOD over both land and ocean surfaces (Levy et
259	al., 2013; Sayer et al., 2014). The MODIS C6.1 combined DT and DB (DTB) monthly
260	AOD (at 550 nm), from the Terra satellite with a spatial resolution of $1^{\circ} \times 1^{\circ}$, was obtained
261	from NASA Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/; accessed date: 20
262	December 2020). Several studies were also used level 3 MODIS DTB AOD with a spatial
263	resolution of $1^{\circ} \times 1^{\circ}$ to investigate air pollution scenario (Ali and Assiri, 2016; Ali et al.,
264	2017, 2019; de Leeuw et al., 2018; Nichol et al., 2020; Qiu et al., 2021). More detailed
265	statistics about MODIS, its products, calibration process, retrieval algorithms, and
266	associated uncertainties have been discussed elsewhere (Levy et al., 2015; Sayer et al.,
267	2015; Georgoulias et al., 2016; Bilal et al., 2017b, 2018; Bilal and Nichol, 2017; de Leeuw
268	et al., 2018; Ali and Assiri, 2019). Henceforth, the Terra MODIS C6.1 combined DTB
269	product is referred to as MODIS DTB AOD.

270 2.3 Research Methodology

271 We followed these step-by-step methods to achieve our objectives:

The AOD obtained from 15 CMIP6 models, MERRA-2 reanalysis, and Satellite (Terra MODIS DTB) was interpolated onto the same geographical grid (0.5° × 0.5°) using the bilinear interpolation technique (Yousefi et al., 2020; Wang et al., 2021) in the Climate Data Operators (CDO) tool.

276	• To reduce the differences among the 15 CMIP6 models and ensure the accuracy of
277	AOD changes, a new AOD dataset (i.e., CMIP6 Ensemble) was generated from the
278	combination of 15 CMIP6 models using the CDO tool. The study used a nearest
279	interpolation technique using MATLAB software to remove the data gaps that affect
280	the results and analysis of the MODIS AOD products (Yang and Hu, 2018).
281	• Several statistical methods were used to evaluate the CMIP6 and MERRA-2 AOD
282	against MODIS DTB AOD. The methods are as follow:
283	The linear regression technique (Wilks, 2007) was used to calculate slope, intercept, and
284	significance (Eq. (1)):
285	$Y = mx + c \tag{1}$
285 286	Y = mx + c (1) where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x),
285 286 287	Y = mx + c (1) where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the
285 286 287 288	Y = mx + c (1) where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based
285 286 287 288 289	Y = mx + c (1) where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based on the p-value (a null hypothesis) (Ali et al., 2019). A p-value less than or equal to (≤ 0.05)
285 286 287 288 289 290	$Y = mx + c \tag{1}$ where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based on the p-value (a null hypothesis) (Ali et al., 2019). A p-value less than or equal to (≤ 0.05) is defined as significant with a 95% confidence level, while p > 0.05 indicates statistically
285 286 287 288 289 290 291	$Y = mx + c \tag{1}$ where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based on the p-value (a null hypothesis) (Ali et al., 2019). A p-value less than or equal to (≤ 0.05) is defined as significant with a 95% confidence level, while p > 0.05 indicates statistically insignificant. In addition, to calculate the uncertainty of CMIP6 and MERRA-2 AOD, we
285 286 287 288 289 290 291 291 292	$Y = mx + c \tag{1}$ where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based on the p-value (a null hypothesis) (Ali et al., 2019). A p-value less than or equal to (≤ 0.05) is defined as significant with a 95% confidence level, while p > 0.05 indicates statistically insignificant. In addition, to calculate the uncertainty of CMIP6 and MERRA-2 AOD, we used the Pearson's correlation (r), root mean squared error (RMSE), mean absolute error
285 286 287 288 289 290 291 291 292 293	$Y = mx + c \tag{1}$ where Y is the linear estimate, m defines the slope (a change of Y per unit changes of x), and c indicates the intercept or constant. The slope value is defined as the trend of the CMIP6, MERRA-2, and MODIS-DTB based AOD. Trend significance is estimated based on the p-value (a null hypothesis) (Ali et al., 2019). A p-value less than or equal to (≤ 0.05) is defined as significant with a 95% confidence level, while p > 0.05 indicates statistically insignificant. In addition, to calculate the uncertainty of CMIP6 and MERRA-2 AOD, we used the Pearson's correlation (r), root mean squared error (RMSE), mean absolute error (MAE), relative mean bias (RMB) (Bilal et al., 2016, 2021a, 2021b; Ali and Assiri, 2019;

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$
(2)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Model AOD - MODIS DTB AOD)^2}$$
(3)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |(Model AOD - MODIS DTB AOD)|$$
(4)

$$RMB = \left(\frac{Model AOD - MODIS DTB AOD}{MODIS DTB AOD}\right)$$
(5)

295	where Model = CMIP6 and MERRA-2, RMB = 1 defines the normal estimation of CMIP6
296	and MERRA-2, and positive and negative values represent over- and underestimations,
297	respectively.
298	• Spatial and area-averaged maps of mean annual and seasonal AOD were generated from
299	monthly CMIP6, MERRA-2, and MODIS DTB AOD from 2000–2014.
300	
301	
302	3. Results and discussion
303	3.1 Evaluation of CMIP6 and MERRA-2 AOD against MODIS DTB AOD
304	Figure 3 shows that the better performance of the MERRA-2 AOD with respect to the
305	MODIS DTB AOD, than that of the CMIP6 Ensemble AOD. The MERRA-2 statistical
306	measures showed higher correlation (r = $0.71-0.89$) and lower error (RMSE = $0.07-0.23$,
307	MAE = $0.05-0.17$) than that of the CMIP6 Ensemble AOD with a lower correlation (r =
308	0.38-0.66) and higher error (RMSE = 0.05-0.28, MAE = 0.04-0.23) over all regions as
309	well as for Entire China. In terms of RMB, both datasets underestimated AOD (MERRA-2
310	= -0.05 to -0.22 , CMIP6 = -0.05 to -0.30) over the Northeast, North China Plain, and
311	Pearl River Delta and overestimate AOD (MERRA- $2 = 0.11$, CMIP $6 = 0.53$) over the Gobi
312	Desert except for the Tibetan Plateau. MERRA-2 performed better than CMIP6, with
313	moderate correlations (r = $0.51-0.64$) and errors (RMSE = $0.11-0.20$, MAE = $0.08-0.15$)
314	over the Yangtse River Delta, Central, Qinghai, and Tarim Basin of China. The RMB
315	values demonstrate that both datasets underestimated AOD over the Yangtse River Delta
316	and the Central region (MERRA-2 by -0.08 to -0.19 , CMIP6 by -0.02 to -0.16) and

317	overestimated AOD (MERRA-2 by 0.01, CMIP6 by 0.60) over the Tarim Basin. However,
318	MERRA-2 underestimated (-0.36) and CMIP6 overestimated AOD (0.17) over Qinghai.
319	Over the Sichuan Basin, both datasets performed poorly due to significant overestimation
320	of lower AOD values, and underestimation of higher ones, which can explain the lower
321	correlations and higher errors.

323	Seasonally, the evaluation results show that MERRA-2 provides more accurate AOD
324	results at local scales than CMIP6 (Figs. 4 and 5). Specifically, over the Gobi Desert, for
325	MERRA-2 the correlation is higher ($r = 0.77$) and the error metrics are lower (RMSE =
326	0.06, MAE = 0.05) in the summer than in the winter, autumn, and spring, whereas for
327	CMIP6 the correlation is highest ($r = 0.30$) and the error metrics are smaller (RMSE = 0.11,
328	MAE = 0.10) in the summer than in the spring, winter, and autumn. CMIP6 tends to
329	overestimate AOD more than MERRA-2. In addition, in Northeast China, MERRA-2 has a
330	very good correlation ($r = 0.91$) and lower errors (RMSE = 0.07, MAE = 0.06) in the
331	summer than in the spring, winter, and autumn, while for CMIP6 the highest correlation (r
332	= 0.58) and lowest errors (RMSE = 0.12, MAE = 0.09) occur in the summer, followed by
333	spring, winter and autumn (Figs. 4 and 5). Over the North China Plain, MERRA-2 obtained
334	better AOD results in terms of r (0.86), RMSE (0.09), and MAE (0.07) during the autumn
335	than in the spring, winter, or summer, whereas in comparison the correlation ($r = 0.60$) and
336	errors (RMSE = 0.42 , MAE = 0.38) for the CMIP6 AOD were comparatively higher in the
337	summer than in the spring, winter, or autumn. In the Yangtse River Delta, MERRA-2 AOD
338	compares best with the MODIS DTB AOD during the autumn as indicated by the high
339	correlation ($r = 0.81$) and the lower error metrics (RMSE = 0.11, and MAE = 0.10),
340	followed by summer, winter, and spring, whereas CMIP6 had inconsistent results. In

341	contrast, across Central China, consistent results between MERRA-2 AOD and MODIS
342	DTB AOD are obtained in the winter ($r = 0.82$, RMSE = 0.14, MAE = 0.11), followed by
343	summer, autumn, and spring, whereas overall CMIP6 had inconsistent results in all
344	seasons. However, for CMIP6 the correlation is higher and lower errors smaller in the
345	winter (r = 0.61, RMSE = 0.18, MAE = 0.16) than in the autumn, summer, or spring. In the
346	Sichuan Basin, MERRA-2 AOD and MODIS DTB AOD are well correlated in the summer
347	(r = 0.77, RMSE = 0.21, MAE = 0.19), but not in other seasons, while for CMIP6 the AOD
348	is not in good agreement with the MODIS DTB AOD in any season. In addition, both
349	MERRA-2 and CMIP6 significantly overestimate AOD during winter and autumn and
350	underestimates the AOD for the other two seasons (spring and summer), which contributes
351	to the inconsistent results over this area. Like for the North China Plain, the MERRA-2
352	AOD and MODIS DTB AOD across the Pearl River Delta region compare favorably in the
353	autumn (r = 0.89, RMSE = 0.09, MAE = 0.07) followed by spring, winter, and summer,
354	whereas for CMIP6 the AOD compare reasonably with the MODIS DTB AOD only for the
355	spring (r = 0.79, RMSE = 0.18, MAE = 0.15), rather than winter, autumn, or summer. Over
356	Qinghai, both MERRA-2 AOD and CMIP6 AOD are not in good agreement with the
357	MODIS DTB AOD for all seasons. Notably, CMIP6 overestimates the AOD in autumn and
358	summer and underestimates the AOD in the spring and winter, whereas MERRA-2
359	significantly underestimates the AOD in all seasons. The Tibetan Plateau is another low
360	AOD area in China, where MERRA-2 AOD is in good agreement with the MODIS DTB
361	AOD in the winter ($r = 0.81$, RMSE = 0.09, MAE = 0.09) followed by the spring, autumn,
362	and summer, whereas CMIP6 AOD compares well with the MODIS DTB AOD only in the
363	winter (r = 0.79, RMSE = 0.04, MAE = 0.03) and not for the other three seasons. In
364	addition, CMIP6 overestimates the AOD from spring to autumn and underestimates the
365	AOD in the winter, while MERRA-2 underestimates the AOD in all seasons. The Tarim

366	Basin is the biggest desert in China; here MERRA-2 AOD is in good agreement with the
367	MODIS DTB AOD in the summer ($r = 0.82$, RMSE = 0.14, MAE = 0.13) followed by the
368	autumn, winter, and spring, whereas CMIP6 AOD did not provide reasonable results in all
369	seasons. In comparison with MERRA-2, CMIP6 significantly overestimated the AOD in
370	the autumn, summer, and winter and underestimates the AOD in the winter. Across all
371	China, MERRA-2 AOD is in good agreement with the MODIS DTB AOD in the autumn (r
372	= 0.86, $RMSE = 0.02$, $MAE = 0.02$) followed by summer, winter, and spring, whereas
373	CMIP6 did not perform well in all seasons. CMIP6 significantly overestimates the AOD in
374	the autumn and winter and underestimates in the spring and summer, whereas MERRA-2
375	underestimates the AOD in all seasons. The underestimation of the AOD by MERRA-2 on
376	both annual and seasonal scales has been reported to probably be due to the uncertainty of
377	the emission inventory used in the GOES models (Buchard et al., 2017; Che et al., 2019b;
378	Shi et al., 2019). In contrast, the significant overestimation of the AOD by CMIP6 probably
379	results from the uncertainty of the Community Emissions Data System (CEDS) inventory
380	adopted by the CMIP6 models (Wang et al., 2021). Overall, MERRA-2 AOD performs
381	better over most regions of China than CMIP6, as concluded from the comparison with
382	MODIS DTB AOD data because of the high correlation and the low error metrics (RMSE
383	and MAE) for MERRA-2.

384 *3.2 Annual and seasonal mean spatial AOD patterns over China*

Figure 6 shows the spatial distributions of the annual and seasonal mean AOD,
obtained from CMIP6, MERRA-2, and MODIS DTB over China, averaged over the period
2000–2014. Between these three data sets, the annual mean MODIS DTB AOD is highest
(> 0.8) over the Central (Henan, Hubei, Hunan), East (Anhui, Jiangsu, Shanghai,

389 Shangdong), North (Tianjin and Hebei), and Southwest (the eastern part of the Sichuan

390	Basin and the western part of Chongqing) regions of China, whereas the CMIP6 and
391	MERRA-2 over these regions are lower $(0.6 - 0.8)$ (Fig. 6). The second-highest mean
392	MODIS DTB AOD $(0.6 - 0.8)$ is observed over parts of Anhui, Hunan, Jiangxi, Zheijiang,
393	Guandong, Guangxi, and Shanxi. Also in these regions, the CMIP6 and MERRA-2 mean
394	AOD is lower $(0.5 - 0.6)$ than the MODIS DTB AOD. These areas are all low altitude
395	regions (< 500 m above sea level), characterized by high population density and high
396	anthropogenic aerosol emissions owing to rapid urbanization and industrialization (Luo et
397	al., 2014). Besides, Cao et al. (2014) reported that large amounts of coarse particles (soot
398	and dust) were emitted from industrial activities and coal fuel combustion, which constitute
399	a major contribution to the total aerosol loadings over these regions. The high AOD over
400	North China mainly results from the emission of coarse particles (desert dust) from the
401	Taklamakan Desert (Yu et al., 2016; Proestakis et al., 2018). Figure 6 shows that MODIS
402	DTB detected moderate levels of AOD $(0.4 - 0.5)$ over parts of the Northeast (Liaoning,
403	Jilin, Heilongjiang), Fujian, Zheijiang, the Southwest province of Guizhou, the Northwest
404	province of Shanxi, and the Tarim Basin (Xinjiang), with the MERRA-2 AOD close to
405	MODIS DTB AOD and CMIP6 AOD higher than MODIS DTB AOD, especially over the
406	Tarim Basin (Xinjiang). The lowest AOD (< 0.30) was observed by MODIS DTB AOD
407	over high altitude areas with sparse populations such as the North (Inner Mongolia),
408	Northwest (Gansu, Qinghai, Ningxia), and West (Tibetan Plateau) of China. For these
409	regions, MERRA-2 again performed close to MODIS DTB AOD, but CMIP6
410	overestimated AOD (Fig. 6). Several previous studies also found the lowest AOD over
411	Inner Mongolia, Gansu, Qinghai, Ningxia, and the Tibetan Plateau (Liu et al., 2016; de
412	Leeuw et al., 2018). In conjunction with the above spatial information, seasonally, the
413	MODIS DTB AOD is highest in spring followed by summer, winter, and autumn
414	throughout China, where CMIP6 and MEERA-2 also show similar seasonal scenarios with

415	higher and lower AOD values than MODIS DTB AOD. It is likely that widespread
416	biomass-burning activities, less vegetation, and large amounts of sand and dust lifted from
417	their natural source (the Taklamakan and Gobi Desert) result in high AOD in spring. These
418	results are supported by previously published studies (Luo et al., 2014; He et al., 2016; Liu
419	et al., 2016). As more photochemical reactions occur during the summer, this might be
420	considered as another important possible factor for the second-highest aerosol loadings
421	over the study area (Dickerson et al., 1997). Li and Wang (2014) also documented that the
422	summertime AOD may be influenced by the abundant water vapor and droplets suspended

423 in the atmosphere during the summer season over China.

424

425 3.3 Annual and Seasonal mean AOD variability using regional average

426 Aerosol Optical Depth (AOD) obtained from CMIP6, MERRA-2, and MODIS DTB 427 was averaged from 2000 to 2014 at annual and seasonal scales over the ten major regions selected across China (see Fig.1), for each of the years included in this study (2000-2014). 428 The results are plotted as time series as shown in Figs. 7 and Supplementary Data Figs. S1-429 S4. The 15-year annual mean high AOD from MODIS DTB was 0.71 ± 0.08 in the North 430 China Plain, where comparatively lower AOD from CMIP6 (0.50 ± 0.04) and MERRA-2 431 (0.56 ± 0.07) was observed than MODIS DTB (Fig. 7). High AOD values probably result 432 433 from anthropogenic aerosols produced by industrial and vehicular emissions over these regions, as was also reported by Hu et al. (2018). Due to the nature of the topography and 434 the sparse population, the lower annual mean AOD from MODIS DTB was 0.13 ± 0.01 in 435 436 the Tibetan Plateau, where CMIP6 (0.16 ± 0.01) and MERRA-2 (0.06 ± 0.005) also show their lowest AOD than MODIS DTB AOD, signifying over- and -underestimation of AOD 437 (Fig. 7 and Table 2). 438

439	Seasonal patterns in the AOD were obvious over different regions of China
440	(Supplementary Data Figs. S1–S4 and Table 2). Seasonal mean MODIS DTB AOD was
441	highest in the spring in most regions of China except for North China Plain, where AOD
442	peaked in the summer than other seasons. In the spring, MODIS DTB AOD was highest in
443	Central China (0.81 ± 0.06), where the comparable result was observed from CMIP6 (0.81
444	\pm 0.09) and MERRA-2 underestimates AOD (0.72 \pm 0.09) compared to MODIS DTB AOD
445	(Table 2). It is important to mention that MODIS DTB AOD was lowest in the autumn over
446	the North China Plain, Yangtse River Delta, Tarim Basin, Northeast, Gobi Desert, Qinghai
447	as well as Entire China. In the autumn, MODIS DTB AOD was highest in the North China
448	Plain (0.57 \pm 0.07), where both CMIP6 (0.48 \pm 0.05) and MERRA-2 underestimate AOD
449	(0.50 ± 0.06) than MODIS DTB AOD (Table 2). Several earlier studies also found the
450	highest AOD in the spring and lowest in the autumn (Pan et al., 2010; Deng et al., 2012;
451	Luo et al., 2014; Cheng et al., 2015; Wang et al., 2015; He et al., 2016; De Leeuw et al.,
452	2018). Furthermore, across Central China, the Sichuan Basin, and the Tibetan Plateau of
453	China, MODIS DTB reported low seasonal mean AOD in the winter season. In the winter,
454	MODIS DTB AOD was highest in Central China (0.59 \pm 0.08), where both CMIP6 (0.75 \pm
455	0.08) and MERRA-2 underestimate AOD (0.69 ± 0.11) than MODIS DTB AOD (Table 2).
456	Apart from the above-mentioned areas of China, across the Pearl River Delta, MODIS DTB
457	reported low AOD in the summer (0.46 ± 0.08), where both CMIP6 (0.38 ± 0.03) and
458	MERRA-2 underestimate AOD (0.32 ± 0.04) than MODIS DTB AOD (Table 2). Overall,
459	the study concludes that both CMIP6 and MERRA-2 substantially over- and under-
460	estimate AOD across China compared to MODIS DTB AOD, therefore, in section 3.4, the
461	study has calculated AOD trends using MODIS DTB AOD.

463 *3.4 Trends in AOD*

464	Figure 8 shows the spatial distributions of annual and seasonal trends of AOD
465	obtained from MODIS DTB over China for the period 2000 to 2014. It is evident from Fig.
466	8 and Table 3 that not all regions have statistically significant trends. However, a
467	substantial spatial contrast in AOD trends (both increasing and decreasing) was evident
468	over the study area at annual and seasonal scales (Fig. 8). Annually, decreasing AOD trends
469	from MODIS DTB were evident over the Gobi Desert (-0.004/year) and Qinghai
470	(-0.001/year). Guo et al. (2011) and Li (2020) also found a decreasing AOD trend over the
471	Gobi Desert. In addition, MODIS DTB reported increasing AOD trends from 0.0002/year
472	to 0.014/year across the Northeast, North China plain, Yangtse River Delta, Central,
473	Sichuan Basin, Pearl River Delta, Tarim Basin, and Tibetan Plateau, as well as over Entire
474	China. The increasing AOD trends may be due to the rapid increase in industrial and
475	anthropogenic activities over these regions, resulting in abundant aerosols emitted into the
476	atmosphere; similar results were documented in Zhang et al. (2013) and Gui et al. (2017).
477	Wang et al. (2015) reported that sulfate aerosols from industry were mainly responsible for
478	the increasing AOD trends.

479

In the winter season, increasing AOD trends from MODIS DTB were observed which varied between 0.0003/year and 0.020/year over most regions of China, except for the Gobi Desert and Tibetan Plateau (Table 3). The increasing AOD trends during the winter may be associated with meteorological conditions in China. Yin et al. (2017) reported that meteorological conditions play a significant role in transporting pollutants and mixing aerosols with local emissions from anthropogenic activities, resulting in an increase in wintertime haze aerosols over China over the last few decades. Wind alone can explain

487	about 10% of the historical rise of regional aerosols (Gu et al., 2018). Liu et al. (2016)
488	documented that different anthropogenic activities linked with biomass and fossil fuel
489	burning were mainly responsible for enhancing AOD levels over Central China, East, and
490	Northeast during the autumn and winter, resulting in increasing AOD trends there. During
491	the spring, MODIS DTB AOD trends were decreasing with values varying from
492	0.00002/year to 0.009/year over the Gobi Desert, Northeast, Sichuan Basin, Qinghai, as
493	well as across Entire China (Table 3). The decreasing trends indicate a large decrease in
494	coarse-mode aerosol particles generated from natural sources in China. A similar result was
495	reported by Hu et al. (2018). Apart from this, the increasing AOD trends from MODIS
496	DTB from 0.001/year to 0.011/year were observed over the North China Plain, Yangtse
497	River Delta, Central, Pearl River Delta, Tibetan Plateau, and Tarim Basin (Table 3). The
498	increasing AOD trends over South China (Yangtse River Delta) during the spring were
499	attributed to the increased fine-mode particles from large anthropogenic emissions and
500	coarse-mode particles (sea-salt aerosols) from the coast of South China (Dong et al., 2013;
501	Qi et al., 2013; Luo et al., 2014). In the summer, the MODIS DTB AOD trends were
502	decreasing AOD by 0.002–0.007 (per year) over the Gobi Desert, Pearl River Delta,
503	Qinghai, and Tarim Basin (Table 3). Apart from this, the MODIS DTB AOD trends were
504	increasing from 0.0003/year to 0.022/year over the Northeast, North China Plain, Yangtse
505	River Delta, Central, Sichuan Basin, Tibetan Plateau, and Entire China (Table 3). Hu et al.
506	(2018) also found increasing AOD trends over the highly populated and industrialized
507	regions of Central, East, and Northeast of China. The increasing trends reflect the
508	dominance of fine-mode non-absorbing aerosols due to industrial emissions of SO ₄ aerosol
509	(Wang et al., 2015). The decreasing AOD trend over the Pearl River Delta was also
510	documented by (Li, 2020). In the autumn, the MODIS DTB AOD trends were increasing
511	and varied from 0.0001/year to 0.010/year over the Northeast, North China Plain, Yangtse

512	River Delta, Central, Pearl River Delta, Qinghai, Tibetan Plateau, Tarim Basin, and Entire
513	China except for the Gobi Desert and Sichuan Basin, where trends were decreasing with
514	-0.0002 to -0.006 (per year) (Table 3).

In light of the above, AOD increased annually over most regions of China between 515 2000 and 2014, except for the Gobi Desert and Qinghai, where AOD was found to have 516 517 reduced. Seasonal deviations in AOD trends were also evident and are different between different parts of China. The SO₂ and primary aerosol emissions increased substantially, 518 relative to dust from 2000 to 2005 due to rapid economic and industrial development, 519 which led to increased AOD (Zhao et al., 2017). The change (increase or decrease) in AOD 520 from 2000 to 2014 can be associated with changes in both meteorology and emissions (Li, 521 522 2020). In the next section, we further investigate if there were any co-benefits from China's strict air pollution control policies on AOD during the 11th and 12th Five-Year Plan (FYP) 523 periods. Therefore, we calculated AOD linear trends for 2000-2005, 2006-2010 (11th 524 FYP), and 2011–2014 (12th FYP) (Figs. 9–12). 525

MODIS DTB AOD trends over China were noticeably decreasing at annual and 526 seasonal scales during the 12th FYP period, following the 11th FYP period and 2000-2005, 527 which was probably due to the implementation of strict air pollution control policies (Figs. 528 9-11). On the annual scale, MODIS DTB AOD trends were strongly decreasing with 529 -0.003/year to -0.074/year during the 12th FYP period throughout the whole country, 530 except for Northeast, Qinghai, and Tibetan Plateau. These decreasing trends were stronger 531 during the 12th FYP period than during the 11th FYP period and 2000–2005 (Fig. 12). On a 532 seasonal scale, MODIS DTB AOD also strongly decreased during the 12th FYP period 533 across different parts of China as compared to the 11th FYP period and 2000-2005 (Fig. 534 12). Although China's air pollution control policies during the 11th and 12th FYP periods 535

536	were not designed for AOD control and prevention, they still had co-benefits as AOD was
537	subsequently found to decrease at both annual and seasonal scales over China.

538 Several reasons might be considered for the increase and decrease in AOD over the 539 study area. For example, due to rapid economic and industrial development from 2000 to 2005, the emissions of SO_2 and primary aerosols increased substantially relative to dust, 540 541 resulting in increased AOD over China (Zhao et al., 2017). The reduction of SO₂ and PM_{2.5} 542 (contains: sulfate, nitrate, organic carbon, elemental carbon), and the control of industrial dust with soot (Zhou et al., 2015; Jin et al., 2016; Ma et al., 2019) may have contributed to 543 a decrease in AOD during the 11th FYP period. The effective reduction in anthropogenic 544 emissions could lead to AOD reduction (Sogacheva et al., 2018). The Environmental 545 546 protection, Energy Conservation and Emissions Reduction (ECER), and Air Pollution Prevention and Control Key Regions (APPC-KR) policies during the 12th FYP period 547 reduced SO₂, NO_x, PM_{2.5}, PM₁₀, industrial dust, and soot emissions (Wang et al., 2018), 548 549 which contributed to decreasing AOD over China. Liu et al. (2021) reported that anthropogenic aerosol species (black carbon, organic carbon, and sulfate) were reduced 550 over the Sichuan Basin because of strict implementation of the air pollution control policies 551 in China during the 12th FYP period, resulting in AOD also reduced in this regions. 552

553

554

555 4. Conclusion

In the current study, CMIP6 and MERRA-2 AOD were evaluated against MODIS DTB AOD for the years 2000–2014, its long-term spatiotemporal variations were scrutinized and the effectiveness of air pollution control policies to control AOD over China from 2000 to 2014 was considered.

560 •	The evaluation results show higher correlation ($r = 0.71-0.89$) and lower error
561	(RMSE = $0.07-0.23$, MAE = $0.05-0.17$) for MERRA-2 than for CMIP6 (r = $0.38-$
562	0.66, $RMSE = 0.05-0.28$, $MAE = 0.04-0.23$) over the Gobi Desert, Northeast,
563	North China plain, Pearl River Delta, Tibetan Plateau, and Entire China. Likewise,
564	over the Yangtse River Delta, Central, Qinghai, and Tarim Basin, MERRA-2
565	correlation and error (r = 0.51–0.64, RMSE = 0.11–0.20, MAE = 0.08–0.15) are
566	better than that of CMIP6 (0.06–0.45, 0.13–0.36, 0.09–0.29). Over the Sichuan
567	Basin, poor comparison results were obtained for both MERRA-2 (0.19, 0.23, 0.19)
568	and the CMIP6 (-0.02, 0.24, 0.18). MERRA-2 underestimated AOD, which might
569	result from the uncertainty of the emission inventory used in the Goddard Earth
570	Observing System (GEOS) models. CMIP6 overestimated AOD over most regions,
571	possibly due to the uncertainty of the Community Emissions Data System (CEDS)
572	inventory adopted by CMIP6 models. In any case, it is clear that the CMIP6 and
573	MERRA-2 both need significant improvement in how they simulate AOD.
574 •	During the study period from 2000 to 2014, AOD fromTerra-MODIS DTB was
575	high across the low altitude regions characterized by highly populated,
576	economically, and industrially developed regions of the North China Plain (0.71 \pm
577	0.08) followed by Central China (0.69 \pm 0.06), Yangtse River Delta (0.67 \pm 0.05),
578	Sichuan Basin (0.64 \pm 0.06), and Pearl River Delta (0.54 \pm 0.05). AOD levels were
579	lowest over the Tibetan Plateau (0.13 ± 0.01) followed by Qinghai (0.19 ± 0.03) and
580	the Gobi Desert (0.21 \pm 0.03), due to the role of topography and sparse population.
581	Seasonally, the highest AOD over China occurred in spring, followed by summer,
582	winter, and autumn. Widespread biomass-burning activities, less vegetation, and the
583	lifting of large amounts of sand and dust particles from natural sources (the
584	Taklamakan and Gobi deserts) may result in high AOD in spring. Moreover, 25

585	increased photochemical reactivity, and abundant water vapor and droplets in the
586	atmosphere may all contribute to the secondary AOD maximum during the summer.
587 •	AOD trends were shown by Terra-MODIS DTB to be increasing throughout most
588	of the country during 2000–2014 and 2000–2005. Uncontrolled industrialization,
589	urbanization, and strong economic development mostly occurred from 2000 to 2005
590	in China, which may have led to the overall increasing AOD trends. AOD levels
591	decreased substantially from -0.003 /year to -0.074 /year, throughout the whole
592	country except for the Northeast, Qinghai, and Tibetan Plateau (here AOD
593	increased by 0.001/year to 0.0.002/year); these trends were greater than during the
594	11th FYP period. Seasonally, Terra-MODIS DTB AOD showed a prominent
595	decreasing trend in the summer season during the 12th FYP period across different
596	parts of China; stronger than during the 11th FYP period. During the 12th FYP
597	period, strict implementation of China's air pollution control policies may have
598	reduced the anthropogenic emissions of primary aerosols, SO_2 , NOx , $PM_{2.5}$ (a
599	combination of sulfate, nitrate, organic carbon, elemental carbon), industrial dust,
600	and soot, which may be possible reasons for the AOD reduction. Evidently, the air
601	pollution control policies had the co-benefit of reducing AOD, resulting in
602	improved air quality over China. Overall, the size of the errors found in CMIP6 and
603	MERRA-2 AOD output suggests that they still cannot be effectively used for air
604	quality monitoring at regional and local scales within a country like China.

605

606 CRediT authorship contribution statement

607 Md. Arfan Ali: Conceptualization, Data curation, Methodology, Formal analysis,

608 Investigation, Validation, Visualization, Writing - original draft. Muhammad Bilal:

609 Conceptualization, Supervision, Investigation, Visualization, Writing - review & editing.

610 Yu Wang: Data curation, Methodology, Formal analysis, Investigation, Validation,

- 611 Visualization. Zhongfeng Qiu: Supervision, Writing review & editing. Janet E. Nichol,
- 612 Gerrit de Leeuw, Alaa Mhawish, Mansour Almazroui, M. Nazrul Islam, Usman
- 613 Mazhar: Writing review & editing. Birhanu Asmerom Habtemicheal: Formal analysis
- 614 & Visualization, **Song Ke:** Data curation.
- 615

616 Acknowledgments

- 617 The authors are grateful to NASA for providing satellite and MERRA-2 based aerosol
- optical depth (AOD). We would like to give special thanks to the Earth Systems and Grid
- 619 Federation (ESGF) for making CMIP6-based AOD data available. The National Key
- 620 Research and Development Program of China (2016YFC1400901), Jiangsu Technology
- 621 Project of Nature Resources (KJXM2019042), the Jiangsu Provincial Department of
- 622 Education for the Special Project of Jiangsu Distinguished Professor (R2018T22), the
- 623 National Natural Science Foundation of China (Grant No. 41976165), and the Startup
- 624 Foundation for Introduction Talent of NUIST (2017r107). The foremost author (Md. Arfan
- Ali) is highly grateful to the China Scholarship Council (CSC) and NUIST for granting his
- 626 fellowship and providing the required supports. The study contributes to the ESA / MOST
- 627 cooperation project DRAGON5, Topic 3 Atmosphere, sub-topic 3.2 Air-Quality.
- 628 Supplementary data to this article can be found online at XXXXX

631 References

- Ali, M.A., Assiri, M.E., 2019. Analysis of AOD from MODIS-Merged DT–DB Products
- 633 Over the Arabian Peninsula. Earth Syst. Environ. 3, 625–636.
- 634 https://doi.org/10.1007/s41748-019-00108-x.
- Ali, M.A., Assiri, M.E., 2016. Spatio-temporal analysis of aerosol concentration over Saudi
 Arabia using satellite remote sensing techniques. Geogr. Malaysian J. Soc. Sp. 12, 1–
 11.
- Ali, M.A., Assiri, M.E., Dambul, R., 2017. Seasonal Aerosol Optical Depth (AOD)
- 639 Variability Using Satellite Data and its Comparison over Saudi Arabia for the Period
- 640 2002–2013. Aerosol Air Qual. Res. 17, 1267–1280.
- 641 https://doi.org/10.4209/aaqr.2016.11.0492.
- Ali, M.A., Islam, M.M., Islam, M.N., Almazroui, M., 2019. Investigations of MODIS AOD
- and cloud properties with CERES sensor based net cloud radiative effect and a NOAA
- 644 HYSPLIT Model over Bangladesh for the period 2001–2016. Atmos. Res. 215, 268–
- 645 283. https://doi.org/10.1016/j.atmosres.2018.09.001.
- Ali, M.A., Nichol, J.E., Bilal, M., Qiu, Z., Mazhar, U., Wahiduzzaman, M., Almazroui, M.,
- 647 Islam, M.N., 2020. Classification of aerosols over Saudi Arabia from 2004–2016.
- 648 Atmos. Environ. 241, 117785. https://doi.org/10.1016/j.atmosenv.2020.117785.
- 649 Almazroui, M., 2019. A comparison study between AOD data from MODIS deep blue
- 650 collections 51 and 06 and from AERONET over Saudi Arabia. Atmos. Res. 225, 88–
- 651 95. https://doi.org/10.1016/j.atmosres.2019.03.040.

652	Bilal, M., Mhawish, A., Nichol, J.E., Qiu, Z., Nazeer, M., Ali, M.A., de Leeuw, G., Levy,
653	R.C., Wang, Y., Chen, Y., Wang, L., Shi, Y., Bleiweiss, M.P., Mazhar, U., Atique, L.,
654	Ke, S., 2021a. Air pollution scenario over Pakistan: Characterization and ranking of
655	extremely polluted cities using long-term concentrations of aerosols and trace gases.
656	Remote Sens. Environ. 264, 112617. https://doi.org/10.1016/j.rse.2021.112617.
657	Bilal, M., Nazeer, M., Nichol, J., Qiu, Z., Wang, L., Bleiweiss, M., Shen, X., Campbell, J.,
658	Lolli, S., 2019. Evaluation of Terra-MODIS C6 and C6.1 Aerosol Products against
659	Beijing, XiangHe, and Xinglong AERONET Sites in China during 2004-2014.
660	Remote Sens. 11, 486. https://doi.org/10.3390/rs11050486.
661	Bilal, M., Nazeer, M., Nichol, J.E., 2017a. Validation of MODIS and VIIRS derived
662	aerosol optical depth over complex coastal waters. Atmos. Res. 186, 43-50.
663	https://doi.org/10.1016/j.atmosres.2016.11.009.
664	Bilal, M., Nazeer, M., Qiu, Z., Ding, X., Wei, J., 2018. Global Validation of MODIS C6
665	and C6.1 Merged Aerosol Products over Diverse Vegetated Surfaces. Remote Sens.
666	10, 475. https://doi.org/10.3390/rs10030475.
667	Bilal, M., Nichol, J.E., 2017. Evaluation of the NDVI-Based Pixel Selection Criteria of the
668	MODIS C6 Dark Target and Deep Blue Combined Aerosol Product. IEEE J. Sel. Top.
669	Appl. Earth Obs. Remote Sens. 10, 3448–3453.
670	https://doi.org/10.1109/JSTARS.2017.2693289.
671	Bilal, M., Nichol, J.E., 2015. Evaluation of MODIS aerosol retrieval algorithms over the
672	Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys.
673	Res. Atmos. 120, 7941–7957. https://doi.org/10.1002/2015JD023082.

Journal	Dro_	nro	ofi
JUUIIIAI	110-	μιυ	

- Bilal, M., Nichol, J.E., Nazeer, M., 2016. Validation of Aqua-MODIS C051 and C006
- 675 Operational Aerosol Products Using AERONET Measurements Over Pakistan. IEEE
- J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 2074–2080.

677 https://doi.org/10.1109/JSTARS.2015.2481460.

- Bilal, M., Nichol, J.E., Wang, L., 2017b. New customized methods for improvement of the
- 679 MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sens.

680 Environ. 197, 115–124. https://doi.org/10.1016/j.rse.2017.05.028.

- Bilal, M., Qiu, Z., Nichol, J.E., Mhawish, A., Ali, M.A., Khedher, K.M., de Leeuw, G., Yu,
- 682 W., Tiwari, P., Nazeer, M., Bleiweiss, M.P., 2021b. Uncertainty in Aqua-MODIS
- 683 Aerosol Retrieval Algorithms During COVID-19 Lockdown. IEEE Geosci. Remote

684 Sens. Lett. 1–5. https://doi.org/10.1109/LGRS.2021.3077189.

685 Bright, J.M., Gueymard, C.A., 2019. Climate-specific and global validation of MODIS

686 Aqua and Terra aerosol optical depth at 452 AERONET stations. Sol. Energy 183,

687 594–605. https://doi.org/10.1016/j.solener.2019.03.043.

- Buchard, V., Randles, C.A., da Silva, A.M., Darmenov, A., Colarco, P.R., Govindaraju, R.,
- 689 Ferrare, R., Hair, J., Beyersdorf, A.J., Ziemba, L.D., Yu, H., 2017. The MERRA-2
- 690 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 30,

691 6851–6872. https://doi.org/10.1175/JCLI-D-16-0613.1.

- Butt, M.J., Assiri, M.E., Ali, M.A., 2017. Assessment of AOD variability over Saudi
- Arabia using MODIS Deep Blue products. Environ. Pollut. 231, 143–153.
- 694 https://doi.org/10.1016/j.envpol.2017.07.104.

695	Cao, C., Zheng, S., Singh, R.P., 2014. Characteristics of aerosol optical properties and
696	meteorological parameters during three major dust events (2005-2010) over Beijing,
697	China. Atmos. Res. 150, 129–142. https://doi.org/10.1016/j.atmosres.2014.07.022.
698	Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E.,
699	Hofmann, D.J., 1992. Climate Forcing by Anthropogenic Aerosols. Science (80).
700	255, 423–430. https://doi.org/10.1126/science.255.5043.423.
701	Che, H., Gui, K., Xia, X., Wang, Y., Holben, B.N., Goloub, P., Cuevas-Agulló, E., Wang,
702	H., Zheng, Y., Zhao, H., Zhang, X., 2019a. Large contribution of meteorological
703	factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys.
704	19, 10497–10523. https://doi.org/10.5194/acp-19-10497-2019.
705	Che, H., Yang, L., Liu, C., Xia, X., Wang, Y., Wang, Hong, Wang, Han, Lu, X., Zhang, X.,
706	2019b. Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products
707	over China using CARSNET and AERONET. Chemosphere 236, 124268.
708	https://doi.org/10.1016/j.chemosphere.2019.06.238.
709	Che, H., Zhang, XY., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, XC.,
710	Wang, H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi,
711	B., Zhu, J., Yu, J., Chen, Q., Shi, G., 2015a. Ground-based aerosol climatology of
712	China: aerosol optical depths from the China Aerosol Remote Sensing Network
713	(CARSNET) 2002–2013. Atmos. Chem. Phys. 15, 7619–7652.
714	https://doi.org/10.5194/acp-15-7619-2015.
715	Che, H., Zhang, Xiaoye, Chen, H., Damiri, B., Goloub, P., Li, Z., Zhang, Xiaochun, Wei,
716	Y., Zhou, H., Dong, F., Li, D., Zhou, T., 2009. Instrument calibration and aerosol
717	optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys.
718	Res. 114, D03206. https://doi.org/10.1029/2008JD011030.

719	Che, H., Zhao, H., Wu, Y., Xia, X., Zhu, J., Dubovik, O., Estelles, V., Ma, Y., Wang,
720	Yangfeng, Wang, H., Wang, Yaqiang, Zhang, X., Shi, G., 2015b. Application of
721	aerosol optical properties to estimate aerosol type from ground-based remote sensing
722	observation at urban area of northeastern China. J. Atmos. Solar-Terrestrial Phys. 132,
723	37-47. https://doi.org/10.1016/j.jastp.2015.06.015.
724	Cheng, T., Xu, C., Duan, J., Wang, Y., Leng, C., Tao, J., Che, H., He, Q., Wu, Y., Zhang,
725	R., Li, X., Chen, J., Kong, L., Yu, X., 2015. Seasonal variation and difference of
726	aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmos.
727	Environ. 123, 315-326. https://doi.org/10.1016/j.atmosenv.2015.05.029.
728	Chu, D.A., Kaufman, Y.J., Ichoku, C., Remer, L.A., Tanré, D., Holben, B.N., 2002.
729	Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett.
730	29, 8007. https://doi.org/10.1029/2001GL013205.
731	de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G.,
731 732	de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P.,
731 732 733	de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz,
731 732 733 734	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von
731 732 733 734 735	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European
731 732 733 734 735 736	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ.
731 732 733 734 735 736 737	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 162, 295–315. https://doi.org/10.1016/j.rse.2013.04.023.
 731 732 733 734 735 736 737 738 	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 162, 295–315. https://doi.org/10.1016/j.rse.2013.04.023. de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A.K., Alexandri,
 731 732 733 734 735 736 737 738 739 	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 162, 295–315. https://doi.org/10.1016/j.rse.2013.04.023. de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A.K., Alexandri, G., Amiridis, V., Proestakis, E., Marinou, E., Xue, Y., van der A, R., 2018. Two
 731 732 733 734 735 736 737 738 739 740 	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 162, 295–315. https://doi.org/10.1016/j.rse.2013.04.023. de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A.K., Alexandri, G., Amiridis, V., Proestakis, E., Marinou, E., Xue, Y., van der A, R., 2018. Two decades of satellite observations of AOD over mainland China using ATSR-2,
 731 732 733 734 735 736 737 738 739 740 741 	 de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M., Pinnock, S., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 162, 295–315. https://doi.org/10.1016/j.rse.2013.04.023. de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A.K., Alexandri, G., Amiridis, V., Proestakis, E., Marinou, E., Xue, Y., van der A, R., 2018. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns. Atmos.

- de Meij, A., Pozzer, A., Lelieveld, J., 2012. Trend analysis in aerosol optical depths and
- pollutant emission estimates between 2000 and 2009. Atmos. Environ. 51, 75–85.

745 https://doi.org/10.1016/j.atmosenv.2012.01.059.

- 746 Deng, X., Shi, C., Wu, B., Chen, Z., Nie, S., He, D., Zhang, H., 2012. Analysis of aerosol
- characteristics and their relationships with meteorological parameters over Anhui
- 748 province in China. Atmos. Res. 109–110, 52–63.
- 749 https://doi.org/10.1016/j.atmosres.2012.02.011.
- 750 Dickerson, R.R., Kondragunta, S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G.,
- Holben, B.N., 1997. The Impact of Aerosols on Solar Ultraviolet Radiation and
- 752 Photochemical Smog. Science 278(5339), 827–830.
- 753 https://doi.org/10.1126/science.278.5339.827.
- Dong, Z., Yu, X., Li, X., Dai, J., 2013. Analysis of variation trends and causes of aerosol

optical depth in Shaanxi Province using MODIS data. Chinese Sci. Bull. 58, 4486–

756 4496. https://doi.org/10.1007/s11434-013-5991-z.

- 757 Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E.,
- 758 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)

experimental design and organization. Geosci. Model Dev. 9, 1937–1958.

760 https://doi.org/10.5194/gmd-9-1937-2016.

761 Filonchyk, M., Hurynovich, V., 2020. Validation of MODIS Aerosol Products with

- AERONET Measurements of Different Land Cover Types in Areas over Eastern
- Europe and China. J. Geovisualization Spat. Anal. 4, 10.
- 764 https://doi.org/10.1007/s41651-020-00052-9.

765	Filonchyk, M., Yan, H., Zhang, Z., Yang, S., Li, W., Li, Y., 2019. Combined use of
766	satellite and surface observations to study aerosol optical depth in different regions of
767	China. Sci. Rep. 9, 6174. https://doi.org/10.1038/s41598-019-42466-6.
768	Flemming, J., Benedetti, A., Inness, A., Engelen, R.J., Jones, L., Huijnen, V., Remy, S.,
769	Parrington, M., Suttie, M., Bozzo, A., Peuch, VH., Akritidis, D., Katragkou, E.,
770	2017. The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for
771	2003–2015. Atmos. Chem. Phys. 17, 1945–1983. https://doi.org/10.5194/acp-17-
772	1945-2017.
773	Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A.,
774	Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R.,
775	Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, GK.,
776	Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman,
777	W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B., 2017. The Modern-Era
778	Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J.
779	Clim. 30, 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1.
780	Georgoulias, A.K., Alexandri, G., Kourtidis, K.A., Lelieveld, J., Zanis, P., Amiridis, V.,
781	2016. Differences between the MODIS Collection 6 and 5.1 aerosol datasets over the
782	greater Mediterranean region. Atmos. Environ. 147, 310–319.
783	https://doi.org/10.1016/j.atmosenv.2016.10.014.
784	Gu, X., Bao, F., Cheng, T., Chen, H., Wang, Y., Guo, H., 2018. The impacts of regional
785	transport and meteorological factors on aerosol optical depth over Beijing, 1980–2014.
786	Sci. Rep. 8, 5113. https://doi.org/10.1038/s41598-018-22803-x.
787	Gui, K., Che, H., Chen, Q., Zeng, Z., Zheng, Y., Long, Q., Sun, T., Liu, X., Wang, Y.,
788	Liao, T., Yu, J., Wang, H., Zhang, X., 2017. Water vapor variation and the effect of

- aerosols in China. Atmos. Environ. 165, 322–335.
- 790 https://doi.org/10.1016/j.atmosenv.2017.07.005.
- 791 Guo, J.-P., Zhang, X.-Y., Wu, Y.-R., Zhaxi, Y., Che, H.-Z., La, B., Wang, W., Li, X.-W.,
- 792 2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in China
- 793 during 1980–2008. Atmos. Environ. 45, 6802–6811.
- 794 https://doi.org/10.1016/j.atmosenv.2011.03.068.
- Hauser, A., 2005. NOAA AVHRR derived aerosol optical depth over land. J. Geophys.

796 Res. 110, D08204. https://doi.org/10.1029/2004JD005439.

797 He, Q., Zhang, M., Huang, B., 2016. Spatio-temporal variation and impact factors analysis

of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos.

799 Environ. 129, 79–90. https://doi.org/10.1016/j.atmosenv.2016.01.002.

800 Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan,

J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998.

AERONET—A Federated Instrument Network and Data Archive for Aerosol

803 Characterization. Remote Sens. Environ. 66, 1–16. https://doi.org/10.1016/S0034-

804 4257(98)00031-5.

- 805 Holben, B.N., Tanré, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb,
- 806 W.W., Schafer, J.S., Chatenet, B., Lavenu, F., Kaufman, Y.J., Castle, J. Vande, Setzer,
- 807 A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N.T.,
- 808 Pietras, C., Pinker, R.T., Voss, K., Zibordi, G., 2001. An emerging ground-based
- aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos.
- 810 106, 12067–12097. https://doi.org/10.1029/2001JD900014.

- 811 Holzer-Popp, T., de Leeuw, G., Griesfeller, J., Martynenko, D., Klüser, L., Bevan, S.,
- B12 Davies, W., Ducos, F., Deuzé, J.L., Graigner, R.G., Heckel, A., von Hoyningen-Hüne,
- 813 W., Kolmonen, P., Litvinov, P., North, P., Poulsen, C.A., Ramon, D., Siddans, R.,
- Sogacheva, L., Tanre, D., Thomas, G.E., Vountas, M., Descloitres, J., Griesfeller, J.,
- 815 Kinne, S., Schulz, M., Pinnock, S., 2013. Aerosol retrieval experiments in the ESA
- 816 Aerosol_cci project. Atmos. Meas. Tech. 6, 1919–1957. https://doi.org/10.5194/amt-6-
- 817 1919-2013.
- Hsu, N.C., Jeong, M.-J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang,
- J., Tsay, S.-C., 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second
- generation. J. Geophys. Res. Atmos. 118, 9296–9315.
- 821 https://doi.org/10.1002/jgrd.50712.
- Hsu, N.C., Tsay, S.-C., King, M.D., Herman, J.R., 2006. Deep Blue Retrievals of Asian
 Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 44, 3180–
 3195. https://doi.org/10.1109/TGRS.2006.879540.
- Hu, K., Kumar, K.R., Kang, N., Boiyo, R., Wu, J., 2018. Spatiotemporal characteristics of
- aerosols and their trends over mainland China with the recent Collection 6 MODIS

and OMI satellite datasets. Environ. Sci. Pollut. Res. 25, 6909–6927.

828 https://doi.org/10.1007/s11356-017-0715-6.

- 829 Huang, G., Chen, Y., Li, Z., Liu, Q., Wang, Y., He, Q., Liu, T., Liu, X., Zhang, Y., Gao, J.,
- 830 Yao, Y., 2020. Validation and Accuracy Analysis of the Collection 6.1
- 831 <scp>MODIS</scp> Aerosol Optical Depth Over the Westernmost City in China
- Based on the Sun-Sky Radiometer Observations From SONET. Earth Sp. Sci. 7.
- 833 https://doi.org/10.1029/2019EA001041.

- 834 Huang, Y., Zhu, B., Zhu, Z., Zhang, T., Gong, W., Ji, Y., Xia, X., Wang, L., Zhou, X.,
- 835 Chen, D., 2019. Evaluation and Comparison of MODIS Collection 6.1 and Collection
- 6 Dark Target Aerosol Optical Depth over Mainland China Under Various Conditions
- 837 Including Spatiotemporal Distribution, Haze Effects, and Underlying Surface. Earth
- 838 Sp. Sci. 6, 2575–2592. https://doi.org/10.1029/2019EA000809.
- 839 IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working
- 840 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
- 841 Change, in: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung,
- A. Nauels, Y. Xia, V.B. and P.M.M. (Ed.), IPCC. Cambridge University Press,
- 843 Cambridge, United Kingdom and New York, NY, USA, p. 1535.
- Islam, M.N., Ali, M.A., Islam, M.M., 2019. Spatiotemporal Investigations of Aerosol
 Optical Properties Over Bangladesh for the Period 2002–2016. Earth Syst. Environ. 3,

846 563–573. https://doi.org/10.1007/s41748-019-00120-1.

347 Jin, Y., Andersson, H., Zhang, S., 2016. Air Pollution Control Policies in China: A

848 Retrospective and Prospects. Int. J. Environ. Res. Public Health 13, 1219.

- 849 https://doi.org/10.3390/ijerph13121219.
- 850 Kahn, R.A., Gaitley, B.J., Garay, M.J., Diner, D.J., Eck, T.F., Smirnov, A., Holben, B.N.,

851 2010. Multiangle Imaging SpectroRadiometer global aerosol product assessment by

comparison with the Aerosol Robotic Network. J. Geophys. Res. 115, D23209.

- 853 https://doi.org/10.1029/2010JD014601.
- 854 Kang, N., Kumar, K.R., Hu, K., Yu, X., Yin, Y., 2016a. Long-term (2002–2014) evolution
- and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and
- MISR sensors over the Chinese Yangtze River Delta. Atmos. Res. 181, 29–43.
- 857 https://doi.org/10.1016/j.atmosres.2016.06.008.

	urnal	Dra_	nro	of
JU	uman	110-	μυ	\mathbf{U}

858	Kang, N., Kumar, K.R., Yu, X., Yin, Y., 2016b. Column-integrated aerosol optical
859	properties and direct radiative forcing over the urban-industrial megacity Nanjing in
860	the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 23, 17532–17552.
861	https://doi.org/10.1007/s11356-016-6953-1.
862	Kaufman, Y.J., Tanré, D., Remer, L.A., Vermote, E.F., Chu, A., Holben, B.N., 1997.
863	Operational remote sensing of tropospheric aerosol over land from EOS moderate
864	resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 102, 17051–17067.
865	https://doi.org/10.1029/96JD03988.
866	Kong, L., Xin, J., Zhang, W., Wang, Y., 2016. The empirical correlations between PM2.5,
867	PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions
868	retrieved by MODIS. Environ. Pollut. 216, 350–360.
869	https://doi.org/10.1016/j.envpol.2016.05.085.
870	Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Patadia, F., Hsu, N.C.,
871	2013. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas.
872	Tech. 6, 2989–3034. https://doi.org/10.5194/amt-6-2989-2013.
873	Levy, R.C., Munchak, L.A., Mattoo, S., Patadia, F., Remer, L.A., Holz, R.E., 2015.
874	Towards a long-term global aerosol optical depth record: applying a consistent aerosol
875	retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 8,
876	4083-4110. https://doi.org/10.5194/amt-8-4083-2015.
877	Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., Eck, T.F.,
878	2010. Global evaluation of the Collection 5 MODIS dark-target aerosol products over
879	land. Atmos. Chem. Phys. 10, 10399-10420. https://doi.org/10.5194/acp-10-10399-
880	2010.

- Li, J., 2020. Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from
- 882 Space. Remote Sens. 12, 208. https://doi.org/10.3390/rs12020208.
- Li, L., Wang, Y., 2015. What drives the aerosol distribution in Guangdong the most
- developed province in Southern China? Sci. Rep. 4, 5972.
- 885 https://doi.org/10.1038/srep05972.
- Li, R., Ma, X., Xiong, F., Jia, H., Sha, T., Tian, R., 2020. Comparisons and evaluation of
- aerosol burden and optical depth in CMIP5 simulations over East Asia. J. Atmos.
- 888 Solar-Terrestrial Phys. 206, 105315. https://doi.org/10.1016/j.jastp.2020.105315.
- Li, Y., Shi, G., Sun, Z., 2020. Evaluation and improvement of MODIS aerosol optical
- depth products over China. Atmos. Environ. 223, 117251.
- 891 https://doi.org/10.1016/j.atmosenv.2019.117251.
- 892 Li, Z.Q., Xu, H., Li, K.T., Li, D.H., Xie, Y.S., Li, L., Zhang, Y., Gu, X.F., Zhao, W., Tian,
- 893 Q.J., Deng, R.R., Su, X.L., Huang, B., Qiao, Y.L., Cui, W.Y., Hu, Y., Gong, C.L.,
- 894 Wang, Y.Q., Wang, X.F., Wang, J.P., Du, W.B., Pan, Z.Q., Li, Z.Z., Bu, D., 2018.
- 895 Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of
- 896 Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky
- 897 Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc.
- 898 99, 739–755. https://doi.org/10.1175/BAMS-D-17-0133.1.
- Liu, H., Remer, L.A., Huang, J., Huang, H.-C., Kondragunta, S., Laszlo, I., Oo, M.,
- 900 Jackson, J.M., 2014. Preliminary evaluation of S-NPP VIIRS aerosol optical
- 901 thickness. J. Geophys. Res. Atmos. 119, 3942–3962.
- 902 https://doi.org/10.1002/2013JD020360.

- 903 Liu, H., Yan, R., Yang, J., 2021. Credibility and statistical characteristics of CAMSRA and
- 904 MERRA-2 AOD reanalysis products over the Sichuan Basin during 2003–2018.
- 905 Atmos. Environ. 244, 117980. https://doi.org/10.1016/j.atmosenv.2020.117980.
- 906 Liu, X., Chen, Q., Che, H., Zhang, R., Gui, K., Zhang, H., Zhao, T., 2016. Spatial
- 907 distribution and temporal variation of aerosol optical depth in the Sichuan basin,
- 908 China, the recent ten years. Atmos. Environ. 147, 434–445.
- 909 https://doi.org/10.1016/j.atmosenv.2016.10.008.
- 910 Luo, Y., Zheng, X., Zhao, T., Chen, J., 2014. A climatology of aerosol optical depth over
- 911 China from recent 10 years of MODIS remote sensing data. Int. J. Climatol. 34, 863–
- 912 870. https://doi.org/10.1002/joc.3728.
- Ma, X., Wang, J., Yu, F., Jia, H., Hu, Y., 2016. Can MODIS AOD be employed to derive
 PM2.5 in Beijing-Tianjin-Hebei over China? Atmos. Res. 181, 250–256.

915 https://doi.org/10.1016/j.atmosres.2016.06.018.

- 916 Mei, L., Zhao, C., de Leeuw, G., Che, H., Che, Y., Rozanov, V., Vountas, M., Burrows,
- 917 J.P., 2019. Understanding MODIS dark-target collection 5 and 6 aerosol data over
- 918 China: Effect of surface type, aerosol loading and aerosol absorption. Atmos. Res.

919 228, 161–175. https://doi.org/10.1016/j.atmosres.2019.05.023.

- 920 Mhawish, A., Banerjee, T., Broday, D.M., Misra, A., Tripathi, S.N., 2017. Evaluation of
- 921 MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain:
- 922 Implications of aerosols types and mass loading. Remote Sens. Environ. 201, 297–
- 923 313. https://doi.org/10.1016/j.rse.2017.09.016.

	111	mal	D.	re-	nr		of
5	յա	.1141			$-p_1$	U	

924	Misra, A., Kanawade, V.P., Tripathi, S.N., 2016. Quantitative assessment of AOD from 17
925	CMIP5 models based on satellite-derived AOD over India. Ann. Geophys. 34, 657-
926	671. https://doi.org/10.5194/angeo-34-657-2016.
927	Molod, A., Takacs, L., Suarez, M., Bacmeister, J., 2015. Development of the GEOS-5
928	atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci.
929	Model Dev. 8, 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015.
930	Mortier, A., Gliß, J., Schulz, M., Aas, W., Andrews, E., Bian, H., Chin, M., Ginoux, P.,
931	Hand, J., Holben, B., Zhang, H., Kipling, Z., Kirkevåg, A., Laj, P., Lurton, T., Myhre,
932	G., Neubauer, D., Olivié, D., von Salzen, K., Skeie, R.B., Takemura, T., Tilmes, S.,
933	2020. Evaluation of climate model aerosol trends with ground-based observations over
934	the last 2 decades – an AeroCom and CMIP6 analysis. Atmos. Chem. Phys. 20,
935	13355–13378. https://doi.org/10.5194/acp-20-13355-2020.
936	Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth
936 937	Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328.
936 937 938	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during
936 937 938 939	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100.
936 937 938 939 940	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010.
936 937 938 939 940 941	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010. Aerosol optical properties based on ground measurements over the Chinese Yangtze
936 937 938 939 940 941 942	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 44, 2587–2596.
936 937 938 939 940 941 942 943	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 44, 2587–2596. https://doi.org/10.1016/j.atmosenv.2010.04.013.
936 937 938 939 940 941 942 943 944	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 44, 2587–2596. https://doi.org/10.1016/j.atmosenv.2010.04.013. Popp, T., de Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A., Clarisse, L.,
936 937 938 939 940 941 942 943 944 945	 Nichol, J., Bilal, M., 2016. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 8, 328. https://doi.org/10.3390/rs8040328. Nichol, J.E., Bilal, M., Ali, M.A., Qiu, Z., 2020. Air Pollution Scenario over China during COVID-19. Remote Sens. 12, 2100. https://doi.org/10.3390/rs12132100. Pan, L., Che, H., Geng, F., Xia, X., Wang, Y., Zhu, C., Chen, M., Gao, W., Guo, J., 2010. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 44, 2587–2596. https://doi.org/10.1016/j.atmosenv.2010.04.013. Popp, T., de Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A., Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kosmale,

- 947 Robert, C., Schulz, M., Sogacheva, L., Stebel, K., Stein Zweers, D., Thomas, G.,
- 948 Tilstra, L., Vandenbussche, S., Veefkind, P., Vountas, M., Xue, Y., 2016.
- 949 Development, Production and Evaluation of Aerosol Climate Data Records from
- 950 European Satellite Observations (Aerosol cci). Remote Sens. 8, 421.
- 951 https://doi.org/10.3390/rs8050421.
- 952 Proestakis, E., Amiridis, V., Marinou, E., Georgoulias, A.K., Solomos, S., Kazadzis, S.,
- 953 Chimot, J., Che, H., Alexandri, G., Binietoglou, I., Daskalopoulou, V., Kourtidis,
- 954 K.A., de Leeuw, G., van der A, R.J., 2018. Nine-year spatial and temporal evolution of
- 955 desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem.
- 956 Phys. 18, 1337–1362. https://doi.org/10.5194/acp-18-1337-2018.
- Qi, Y., Ge, J., Huang, J., 2013. Spatial and temporal distribution of MODIS and MISR
 aerosol optical depth over northern China and comparison with AERONET. Chinese
 Sci. Bull. 58, 2497–2506. https://doi.org/10.1007/s11434-013-5678-5.
- 960 Qiu, Z., Ali, M.A., Nichol, J.E., Bilal, M., Tiwari, P., Habtemicheal, B.A., Almazroui, M.,
- 961 Mondal, S.K., Mazhar, U., Wang, Y., Sarker, S., Mustafa, F., Rahman, M.A., 2021.
- 962 Spatiotemporal Investigations of Multi-Sensor Air Pollution Data over Bangladesh
- 963 during COVID-19 Lockdown. Remote Sens. 13, 877.
- 964 https://doi.org/10.3390/rs13050877.
- 965 Randles, C.A., da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R.,
- 966 Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J., 2017. The
- 967 MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data
- 968 Assimilation Evaluation. J. Clim. 30, 6823–6850. https://doi.org/10.1175/JCLI-D-16-
- 969 0609.1.

970	Remer, L.A., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J. V., Li, RR.,
971	Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., Holben, B.N., 2005.
972	The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 62, 947-
973	973. https://doi.org/10.1175/JAS3385.1.
974	Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., 2013. MODIS 3 km aerosol product:
975	algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844.
976	https://doi.org/10.5194/amt-6-1829-2013.
977	Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich,
978	M.G., Schubert, S.D., Takacs, L., Kim, GK., Bloom, S., Chen, J., Collins, D.,
979	Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A.,
980	Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R.,
981	Ruddick, A.G., Sienkiewicz, M., Woollen, J., 2011. MERRA: NASA's Modern-Era
982	Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648.
983	https://doi.org/10.1175/JCLI-D-11-00015.1.
984	Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, MJ., Holben, B.N., Zhang, J., 2012.
985	Global and regional evaluation of over-land spectral aerosol optical depth retrievals
986	from SeaWiFS. Atmos. Meas. Tech. 5, 1761–1778. https://doi.org/10.5194/amt-5-
987	1761-2012.
988	Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, MJ., Meister, G., 2015. Effect of
989	MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue
990	aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos.
991	120. https://doi.org/10.1002/2015JD023878.

Sayer, A.M., Hsu, N.C., Lee, J., Kim, W. V., Dutcher, S.T., 2019. Validation, Stability, and
 Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data 43

- 994 Over Land. J. Geophys. Res. Atmos. 124, 4658–4688.
- 995 https://doi.org/10.1029/2018JD029598.
- 996 Sayer, A.M., Munchak, L.A., Hsu, N.C., Levy, R.C., Bettenhausen, C., Jeong, M.-J., 2014.
- 997 MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue,
- 998 Dark Target, and "merged" data sets, and usage recommendations. J. Geophys. Res.
- 999 Atmos. 119, 13,965-13,989. https://doi.org/10.1002/2014JD022453.
- 1000 Shao, P., Xin, J., An, J., Kong, L., Wang, B., Wang, J., Wang, Y., Wu, D., 2017. The
- 1001 empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River
- 1002 Delta. Atmos. Pollut. Res. 8, 233–243. https://doi.org/10.1016/j.apr.2016.09.001.
- 1003 Shi, H., Xiao, Z., Zhan, X., Ma, H., Tian, X., 2019. Evaluation of MODIS and two
- reanalysis aerosol optical depth products over AERONET sites. Atmos. Res. 220, 75–
 80. https://doi.org/10.1016/j.atmosres.2019.01.009.
- 1006 Sockol, A., Small Griswold, J.D., 2017. Intercomparison between CMIP5 model and
- 1007 MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-
- aerosol interactions. Earth Sp. Sci. 4, 485–505.
- 1009 https://doi.org/10.1002/2017EA000288.
- 1010 Sogacheva, L., de Leeuw, G., Rodriguez, E., Kolmonen, P., Georgoulias, A.K., Alexandri,
- 1011 G., Kourtidis, K., Proestakis, E., Marinou, E., Amiridis, V., Xue, Y., van der A, R.J.,
- 1012 2018. Spatial and seasonal variations of aerosols over China from two decades of
- 1013 multi-satellite observations Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–
- 1014 2017). Atmos. Chem. Phys. 18, 11389–11407. https://doi.org/10.5194/acp-18-11389-
- 1015 2018.

1016	Sogacheva.	L	Popp.	Τ	Saver.	A.M.	Dubovik.	0.	Garay	M.L	Heckel	A	Hsu	NC
TOTO	boguene ru,	·,	r opp,	±.,	Suyer,	1 1.1111.	$, \mathbf{D}$ accorne		, Guiuj	, _, _, , , , , , , , , , , , , , , , ,	, 11001001	,	, 1100	$, \pm \cdots $

- 1017 Jethva, H., Kahn, R.A., Kolmonen, P., Kosmale, M., de Leeuw, G., Levy, R.C.,
- 1018 Litvinov, P., Lyapustin, A., North, P., Torres, O., Arola, A., 2020. Merging regional
- and global aerosol optical depth records from major available satellite products.
- 1020 Atmos. Chem. Phys. 20, 2031–2056. https://doi.org/10.5194/acp-20-2031-2020.
- 1021 Song, R., Yang, L., Liu, M., Li, C., Yang, Y., 2019. Spatiotemporal Distribution of Air
- Pollution Characteristics in Jiangsu Province, China. Adv. Meteorol. 2019, 1–14.
 https://doi.org/10.1155/2019/5907673.
- 1024 Su, B., Wu, D., Zhang, M., Bilal, M., Li, Y., Li, B.-L., Atique, L., Zhang, Z., Howari, F.M.,
- 1025 2021. Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central
- 1026 Line Project of China's South-North Water Diversion in Henan Province (China).
- 1027 Atmosphere (Basel). 12, 225. https://doi.org/10.3390/atmos12020225.
- 1028 Sun, E., Xu, X., Che, H., Tang, Z., Gui, K., An, L., Lu, C., Shi, G., 2019. Variation in
- 1029 MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from
- 1030 1980 to 2017. J. Atmos. Solar-Terrestrial Phys. 186, 8–19.
- 1031 https://doi.org/10.1016/j.jastp.2019.01.019.
- 1032 Tan, C., Zhao, T., Xu, X., Liu, J., Zhang, L., Tang, L., 2015. Climatic analysis of satellite
- aerosol data on variations of submicron aerosols over East China. Atmos. Environ.

1034 123, 392–398. https://doi.org/10.1016/j.atmosenv.2015.03.054.

- 1035 Tian, X., Gao, Z., 2019. Validation and Accuracy Assessment of MODIS C6.1 Aerosol
- 1036 Products over the Heavy Aerosol Loading Area. Atmosphere (Basel). 10, 548.
- 1037 https://doi.org/10.3390/atmos10090548.

1038	Torres, O., Bhartia, P.K., Herman, J.R., Sinyuk, A., Ginoux, P., Holben, B., 2002. A Long-
1039	Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to
1040	AERONET Measurements. J. Atmos. Sci. 59, 398-413. https://doi.org/10.1175/1520-
1041	0469(2002)059<0398:ALTROA>2.0.CO;2.
1042	Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.K., Veefkind, P.,
1043	Levelt, P., 2007. Aerosols and surface UV products from Ozone Monitoring
1044	Instrument observations: An overview. J. Geophys. Res. 112, D24S47.
1045	https://doi.org/10.1029/2007JD008809.
1046	Wang, L., Gong, W., Xia, X., Zhu, J., Li, J., Zhu, Z., 2015. Long-term observations of
1047	aerosol optical properties at Wuhan, an urban site in Central China. Atmos. Environ.
1048	101, 94–102. https://doi.org/10.1016/j.atmosenv.2014.11.021.
1049	Wang, L., Li, P., Yu, S., Mehmood, K., Li, Z., Chang, S., Liu, W., Rosenfeld, D., Flagan,
1050	R.C., Seinfeld, J.H., 2018. Predicted impact of thermal power generation emission
1051	control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing,
1052	China. Sci. Rep. 8, 934. https://doi.org/10.1038/s41598-018-19481-0.
1053	Wang, Q., Sun, L., Wei, J., Yang, Y., Li, R., Liu, Q., Chen, L., 2017. Validation and
1054	Accuracy Analysis of Global MODIS Aerosol Products over Land. Atmosphere
1055	(Basel). 8, 155. https://doi.org/10.3390/atmos8080155.
1056	Wang, Y., Ali, M.A., Bilal, M., Qiu, Z., Ke, S., Almazroui, M., Islam, M.M., Zhang, Y.,
1057	2021. Identification of Aerosol Pollution Hotspots in Jiangsu Province of China.
1058	Remote Sens. 13, 2842. https://doi.org/10.3390/rs13142842.
1059	Wang, Y., Yuan, Q., Li, T., Shen, H., Zheng, L., Zhang, L., 2019. Evaluation and

1060 comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over

- 1061 regions in China with multifarious underlying surfaces. Atmos. Environ. 200, 280–
- 1062 301. https://doi.org/10.1016/j.atmosenv.2018.12.023.
- 1063 Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Zhang, H., Dong, W., Wang, C., Gui, K.,
- 1064 Xie, B., 2021. Incorrect Asian aerosols affecting the attribution and projection of
- regional climate change in CMIP6 models. npj Clim. Atmos. Sci. 4, 2.
- 1066 https://doi.org/10.1038/s41612-020-00159-2.
- 1067 Wei, J., Li, Z., Sun, L., Peng, Y., Liu, L., He, L., Qin, W., Cribb, M., 2020. MODIS
- 1068 Collection 6.1 3 km resolution aerosol optical depth product: global evaluation and
- uncertainty analysis. Atmos. Environ. 240, 117768.
- 1070 https://doi.org/10.1016/j.atmosenv.2020.117768.
- 1071 Wilks, D.S., 2007. Statistical methods in the atmospheric sciences, second edition,
- 1072 Meteorological Applications.
- 1073 Xia, X., Che, H., Shi, H., Chen, H., Zhang, X., Wang, P., Goloub, P., Holben, B., 2021.
- 1074 Advances in sunphotometer-measured aerosol optical properties and related topics in
- 1075 China: Impetus and perspectives. Atmos. Res. 249, 105286.
- 1076 https://doi.org/10.1016/j.atmosres.2020.105286.
- 1077 Xia, X.A., Chen, H.B., Wang, P.C., Zhang, W.X., Goloub, P., Chatenet, B., Eck, T.F.,

1078 Holben, B.N., 2006. Variation of column-integrated aerosol properties in a Chinese

- 1079 urban region. J. Geophys. Res. 111, D05204. https://doi.org/10.1029/2005JD006203.
- 1080 Xin, J., Gong, C., Liu, Z., Cong, Z., Gao, W., Song, T., Pan, Y., Sun, Y., Ji, D., Wang, L.,
- 1081 Tang, G., Wang, Y., 2016. The observation-based relationships between PM 2.5 and
- 1082 AOD over China. J. Geophys. Res. Atmos. 121, 10701-10716.
- 1083 https://doi.org/10.1002/2015JD024655.

- 1084 Xin, J., Wang, Yuesi, Pan, Y., Ji, D., Liu, Z., Wen, T., Wang, Yinghong, Li, X., Sun, Y.,
- 1085 Sun, J., Wang, P., Wang, G., Wang, X., Cong, Z., Song, T., Hu, B., Wang, Lili, Tang,
- 1086 G., Gao, W., Guo, Y., Miao, H., Tian, S., Wang, Lu, 2015. The Campaign on
- 1087 Atmospheric Aerosol Research Network of China: CARE-China. Bull. Am. Meteorol.
- 1088 Soc. 96, 1137–1155. https://doi.org/10.1175/BAMS-D-14-00039.1.
- 1089 Yang, J., Hu, M., 2018. Filling the missing data gaps of daily MODIS AOD using
- spatiotemporal interpolation. Sci. Total Environ. 633, 677–683.
- 1091 https://doi.org/10.1016/j.scitotenv.2018.03.202.
- 1092 Yin, Z., Wang, H., Chen, H., 2017. Understanding severe winter haze events in the North
- 1093 China Plain in 2014: roles of climate anomalies. Atmos. Chem. Phys. 17, 1641–1651.
 1094 https://doi.org/10.5194/acp-17-1641-2017.
- 1095 You, W., Zang, Z., Pan, X., Zhang, L., Chen, D., 2015. Estimating PM2.5 in Xi'an, China
- using aerosol optical depth: A comparison between the MODIS and MISR retrieval
- 1097 models. Sci. Total Environ. 505, 1156–1165.
- 1098 https://doi.org/10.1016/j.scitotenv.2014.11.024.
- Yousefi, R., Wang, F., Ge, Q., Shaheen, A., 2020. Long-term aerosol optical depth trend
 over Iran and identification of dominant aerosol types. Sci. Total Environ. 722,
- 1101 137906. https://doi.org/10.1016/j.scitotenv.2020.137906.
- 1102 Yu, X., Lü, R., Kumar, K.R., Ma, J., Zhang, Q., Jiang, Y., Kang, N., Yang, S., Wang, J., Li,
- 1103 M., 2016. Dust aerosol properties and radiative forcing observed in spring during
- 1104 2001–2014 over urban Beijing, China. Environ. Sci. Pollut. Res. 23, 15432–15442.
- 1105 https://doi.org/10.1007/s11356-016-6727-9.

- 1106 Yu, X., Zhu, B., Zhang, M., 2009. Seasonal variability of aerosol optical properties over
- 1107 Beijing. Atmos. Environ. 43, 4095–4101.
- 1108 https://doi.org/10.1016/j.atmosenv.2009.03.061.
- 1109 Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., Xu, W., 2013. Variability of SO₂ in
- an intensive fog in North China Plain: Evidence of high solubility of SO_2 .
- 1111 Particuology 11, 41–47. https://doi.org/10.1016/j.partic.2012.09.005.
- 1112 Zhang, X. Y., Wang, Y.Q., Niu, T., Zhang, X.C., Gong, S.L., Zhang, Y.M., Sun, J.Y.,
- 1113 2012. Atmospheric aerosol compositions in China: spatial/temporal variability,
- 1114 chemical signature, regional haze distribution and comparisons with global aerosols.
- 1115 Atmos. Chem. Phys. 12, 779–799. https://doi.org/10.5194/acp-12-779-2012.
- 1116 Zhang, Z., Zhang, M., Bilal, M., Su, B., Zhang, C., Guo, L., 2020. Comparison of MODIS-
- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin
- 1118 (China) from 2007 to 2015. Earth Syst. Environ. 4, 535–550.
- 1119 https://doi.org/10.1007/s41748-020-00181-7.
- 1120 Zhao, B., Jiang, J.H., Gu, Y., Diner, D., Worden, J., Liou, K.-N., Su, H., Xing, J., Garay,
- 1121 M., Huang, L., 2017. Decadal-scale trends in regional aerosol particle properties and
- their linkage to emission changes. Environ. Res. Lett. 12, 054021.
- 1123 https://doi.org/10.1088/1748-9326/aa6cb2
- 1124 Zhao, T.X.P., Laszlo, I., Guo, W., Heidinger, A., Cao, C., Jelenak, A., Tarpley, D.,
- 1125 Sullivan, J., 2008. Study of long-term trend in aerosol optical thickness observed from
- operational AVHRR satellite instrument. J. Geophys. Res. 113, D07201.
- 1127 https://doi.org/10.1029/2007JD009061.

- 1128 Zhou, K., Yang, S., Shen, C., Ding, S., Sun, C., 2015. Energy conservation and emission
- reduction of China's electric power industry. Renew. Sustain. Energy Rev. 45, 10–19.
- 1130 https://doi.org/10.1016/j.rser.2015.01.056.
- 1131
- 1132 1133 1134 1135 1136 1137 1138 1139 1140 List of Figures
- 1141 Fig. 1. Elevation map of China with ten major regions examined in this study.
- 1142 Fig. 2. Methodology of the present study.
- 1143 Fig. 3. Evaluation of CMIP6 and MERRA-2 AOD with respect to MODIS DTB AOD over
- different areas of China from 2000–2014. The normalized data density is shown in color.
- 1145 The black dash line is the identity (1:1) line and the red solid line is the regression line.
- 1146 Fig. 4. Seasonal evaluation of CMIP6 AOD with respect to MODIS DTB AOD over
- 1147 different areas of China from 2000–2014. The normalized data density is shown in color.
- 1148 The black dash line = 1:1 and red solid line = regression line.

- 1149 Fig. 5. Seasonal evaluation of MERRA-2 AOD with respect to MODIS DTB AOD over
- different areas of China from 2000–2014. The normalized data density is shown in color.
- 1151 The black dash line = 1:1 and red solid line = regression line.
- 1152 Fig. 6. Annual and seasonal mean spatial distribution of AOD obtained from CMIP6,
- 1153 MERRA-2, and MODIS DTB over China during 2000–2014.
- 1154 Fig. 7. Annual variabilities in AOD acquired from CMIP6, MERRA-2, and MODIS DTB
- 1155 for major areas of China during the years 2000–2014.
- 1156 Fig. 8. Annual and seasonal spatial trends in AOD were obtained from MODIS DTB over
- 1157 China for the period 2000–2014.
- 1158 Fig. 9. Annual and seasonal spatial trends in AOD were obtained from the MODIS DTB
- 1159 AOD data over China for the period 2000–2005.
- 1160 Fig. 10. Annual and seasonal spatial trends in AOD were obtained from the MODIS DTB
- 1161 AOD data over China for the period 2006–2010.
- 1162 Fig. 11. Annual and seasonal spatial trends in AOD were obtained from the MODIS DTB
- 1163 AOD data over China for the period 2011–2014.
- 1164 Fig. 12. Annually and seasonally AOD trends were obtained from MODIS DTB AOD data
- 1165 over China for the period 2000–2005, 11th FYP (2006–2010), and 12th FYP (2011–2014).
- 1166

List of Tables

- **Table 1** Summary of the 15 CMIP6 models used in the study.
- 1168 Table 2 Mean annual and seasonal AOD obtained from CMIP6 Ensemble, MERRA-2
- reanalysis, and Terra-MODIS over major areas of China for the period 2000–2014.

- 1170 Table 3 Trends in AOD derived from the MODIS DTB AOD data over major areas of
- 1171 China for the period 2000–2014. The asterisk (*) indicates significance at 95% confidence
- 1172 level.
- 1173

1174 Supplementary Data

- 1175 Fig. S1. Variabilities in wintertime AOD acquired from CMIP6, MERRA-2, and MODIS
- 1176 DTB for major areas of China during the years 2000–2014.
- 1177 Fig. S2. Variabilities in springtime AOD acquired from CMIP6, MERRA-2, and MODIS
- 1178 DTB for major areas of China during the years 2000–2014.
- 1179 Fig. S3. Variabilities in summertime AOD acquired from CMIP6, MERRA-2, and MODIS
- 1180 DTB for major areas of China during the years 2000–2014.
- 1181 Fig. S4. Variabilities in autumn AOD acquired from CMIP6, MERRA-2, and MODIS DTB
- 1182 for major areas of China during the years 2000–2014.
- 1183

Table 1 Summary of the 15 CMIP6 models used in the study.

S.L.	Models	Modelling Country	Variant Label	Spatial Resolution (°)
1	AWI-ESM-1-1-LR	Germany	rlilplfl	0.9×0.9
2	BCC-ESM1	China	rlilplfl	1.125×1.125
3	CanESM5	Canada	rlilplfl	2.8×2.8
4	CESM2	USA	rlilplfl	0.9×1.3
5	CESM2-FV2	USA	rlilplfl	2.5×1.9
6	CESM2-WACCM	USA	rlilplfl	1.3×0.9
7	CESM2-WACCM-FV2	USA	rlilplfl	2.5×1.9
8	CMCC-CM2-SR5	Italy	rlilplfl	1.0×1.0
9	E3SM-1-0	USA	rlilplfl	1.0×1.0
10	GISS-E2-1-G	USA	rlilp5fl	2.0×2.5
11	HadGEM3-GC31-LL	UK	rlilplf3	1.25×1.85
12	MPI_ESM_1_2_HAM	Germany	rlilplfl	1.875×1.875
13	MPI_ESM1_2_HR	Germany	r5i1p1f1	1.0×1.0
14	NorESM2-LM	Norway	rlilplfl	2.0×2.0
15	UKESM1-0-LL	UK	rlilplfl	1.9×1.3

1184

1186 Table 2 Mean annual and seasonal AOD obtained from CMIP6 Ensemble, MERRA-2

reanalysis, and Terra-MODIS over major areas of China for the period 2000–2014.

1188

Areas	AOD	Winter	Spring	Summer	Autumn	Annual
	CMIP6	0.22 ± 0.02	$0.40{\pm}0.02$	0.33 ± 0.02	$0.33 {\pm} 0.02$	$0.32{\pm}0.01$
Gobi Desert	MERRA-2	$0.16{\pm}0.02$	$0.29{\pm}0.03$	0.28 ± 0.03	$0.19{\pm}0.02$	$0.23 {\pm} 0.01$
	MODIS DTB	0.15 ± 0.02	0.31 ± 0.06	$0.24{\pm}0.05$	$0.13 {\pm} 0.02$	$0.21 {\pm} 0.03$
	CMIP6	$0.20{\pm}0.01$	$0.34{\pm}0.05$	0.35 ± 0.03	$0.27{\pm}0.02$	$0.29{\pm}0.02$
Northeast	MERRA-2	0.16±0.03	$0.39{\pm}0.11$	0.38 ± 0.08	$0.23{\pm}0.04$	0.29±0.09
	MODIS DTB	0.24 ± 0.06	$0.42{\pm}0.11$	$0.34{\pm}0.08$	0.23±0.06	0.31 ± 0.08
	CMIP6	$0.40{\pm}0.04$	$0.55 {\pm} 0.04$	0.58 ± 0.05	$0.48{\pm}0.05$	$0.50{\pm}0.04$
North China Plain	MERRA-2	0.41 ± 0.07	0.58 ± 0.09	0.73 ± 0.11	0.50±0.06	$0.56{\pm}0.07$
	MODIS DTB	$0.60{\pm}0.11$	0.72 ± 0.09	0.96±0.17	$0.57{\pm}0.07$	$0.71{\pm}0.08$
	CMIP6	0.55 ± 0.05	0.66 ± 0.06	0.51±0.05	$0.52{\pm}0.04$	$0.56{\pm}0.05$
Yangtse River Delta	MERRA-2	0.55 ± 0.09	$0.63 {\pm} 0.06$	0.52±0.08	$0.47{\pm}0.08$	$0.54{\pm}0.07$
	MODIS DTB	0.61 ± 0.07	0.77 ± 0.05	$0.74{\pm}0.10$	$0.56 {\pm} 0.06$	$0.67{\pm}0.05$
	CMIP6	0.75 ± 0.08	0.81 ± 0.09	$0.54{\pm}0.06$	$0.64{\pm}0.06$	$0.68{\pm}0.07$
Central	MERRA-2	$0.69{\pm}0.11$	0.72 ± 0.09	0.52±0.08	0.62 ± 0.10	$0.64{\pm}0.09$
	MODIS DTB	$0.59{\pm}0.08$	0.81 ± 0.06	0.73±0.12	$0.64{\pm}0.09$	$0.69{\pm}0.06$
	CMIP6	$0.70{\pm}0.07$	0.71 ± 0.08	0.51±0.06	$0.66 {\pm} 0.09$	$0.65 {\pm} 0.08$
Sichuan Basin	MERRA-2	$0.74{\pm}0.12$	0.71 ± 0.10	$0.48{\pm}0.07$	0.63 ± 0.10	$0.64{\pm}0.09$
	MODIS DTB	0.48 ± 0.17	0.80 ± 0.07	0.67 ± 0.08	$0.60{\pm}0.08$	$0.64{\pm}0.06$
	CMIP6	0.50±0.04	0.58±0.06	0.38 ± 0.03	$0.46 {\pm} 0.04$	$0.48{\pm}0.04$
Pearl River Delta	MERRA-2	$0.49{\pm}0.08$	0.64±0.12	0.32 ± 0.04	$0.46{\pm}0.09$	$0.48{\pm}0.07$
	MODIS DTB	0.48 ± 0.07	0.71 ± 0.07	0.46 ± 0.08	$0.52{\pm}0.09$	$0.54{\pm}0.05$
	CMIP6	0.14±0.01	0.24±0.01	0.23 ± 0.02	0.25 ± 0.03	0.22 ± 0.01
Qinghai	MERRA-2	0.06 ± 0.01	0.18±0.01	$0.14{\pm}0.051$	$0.08{\pm}0.01$	$0.12{\pm}0.01$
	MODIS DTB	0.16±0.03	0.31 ± 0.06	0.16 ± 0.06	$0.12{\pm}0.02$	$0.19{\pm}0.03$
	CMIP6	0.12±0.01	$0.16{\pm}0.01$	0.18 ± 0.02	0.15 ± 0.02	$0.16{\pm}0.01$
Tibetan Plateau	MERRA-2	0.03±0.004	$0.10{\pm}0.01$	0.08 ± 0.01	0.04 ± 0.005	0.06 ± 0.005
	MODIS DTB	0.09±0.01	$0.20{\pm}0.02$	0.13±0.02	$0.10{\pm}0.01$	0.13±0.01
	CMIP6	0.31 ± 0.04	0.68 ± 0.04	0.69 ± 0.06	0.68 ± 0.03	$0.59{\pm}0.03$
Tarim Basin	MERRA-2	0.21±0.03	0.47 ± 0.04	0.48 ± 0.05	$0.34{\pm}0.05$	0.37 ± 0.02
	MODIS DTB	0.20 ± 0.05	0.73 ± 0.12	0.36 ± 0.06	0.19±0.05	0.37±0.04
	CMIP6	0.30±0.03	0.43±0.03	0.38±0.02	0.38±0.03	0.37±0.02
Entire China	MERRA-2	$0.24{\pm}0.03$	0.37 ± 0.04	0.32 ± 0.03	0.26±0.03	$0.30{\pm}0.03$
	MODIS DTB	0.31±0.03	0.47 ± 0.04	0.40 ± 0.04	0.27 ± 0.02	0.36 ± 0.02

1189

1190

1191 Table 3 Trends in AOD derived from the MODIS DTB AOD data over major areas o	f China
--	---------

1192 from 2000–2014. The asterisk (*) indicates significance at 95% confidence level.

Areas	Winter	Spring	Summer	Autumn	Annual
 Gobi Desert	-0.002	-0.006	-0.007*	-0.0002	-0.004*
Northeast	0.008*	-0.009	0.007	0.008*	0.003
North China Plain	0.020*	0.005	0.022*	0.010*	0.014*
Yangtse River Delta	0.012*	0.001	0.008	0.005	0.006*
Central China	0.014*	0.003	0.011	0.005	0.008*
Sichuan Basin	0.008	-0.0003	0.006	-0.006	0.001
Pearl River Delta	0.003	0.011*	-0.002	0.0001	0.003
Qinghai	0.0003	-0.00002	-0.005	0.001	-0.001
Tibetan Plateau	-0.0002	0.001	0.0003	0.0002	0.0002
Tarim Basin	0.0004	0.003	-0.004	0.006*	0.001
 Entire China	0.002	-0.0003	0.002	0.003*	0.002

- 1197 In the authors declare that they have no known competing financial interests or personal
- relationships that could have appeared to influence the work reported in this paper.

1200 The authors declare the following financial interests/personal relationships which may be

- 1201 considered as potential competing interests:

Area-Weighted Mean AOD

1224

1225 Highlights:

The CMIP6 and MERRA-2 were not in line with Terra-MODIS DTB AOD upward trends were found during 2000–2014 and 2000–2005 China's strict air pollution control policies had co-benefits to reduce AOD AOD reduction was more prominent during the 12th FYP than the 11th FYP period Seasonally, AOD decrease was more prominent in summer during the 12th FYP period