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A generative network model of
neurodevelopmental diversity in structural brain
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The formation of large-scale brain networks, and their continual refinement, represent crucial

developmental processes that can drive individual differences in cognition and which are

associated with multiple neurodevelopmental conditions. But how does this organization

arise, and what mechanisms drive diversity in organization? We use generative network

modeling to provide a computational framework for understanding neurodevelopmental

diversity. Within this framework macroscopic brain organization, complete with spatial

embedding of its organization, is an emergent property of a generative wiring equation that

optimizes its connectivity by renegotiating its biological costs and topological values con-

tinuously over time. The rules that govern these iterative wiring properties are controlled by a

set of tightly framed parameters, with subtle differences in these parameters steering net-

work growth towards different neurodiverse outcomes. Regional expression of genes asso-

ciated with the simulations converge on biological processes and cellular components

predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular

processes and protein transport. Together, this provides a unifying computational framework

for conceptualizing the mechanisms and diversity in neurodevelopment, capable of inte-

grating different levels of analysis—from genes to cognition.
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The human brain is highly organized at multiple scales. At
the broadest scale, neuronal populations are structurally
connected across large anatomical distances with white-

matter fiber bundles, forming a set of interconnected networks.
This macroscopic organization can be studied via diffusion-
weighted magnetic resonance imaging (MRI), which measures the
direction of water diffusion in vivo1–3. During childhood the
emergence and continual refinement of these large-scale brain
networks allows for increasing functional integration and
specialization4,5. This process is thought crucial for the growth of
complex cognitive processes such as language6 and executive
function7–12. However, there are individual differences in the
organization of these networks across children, and these differ-
ences mirror important developmental outcomes. Indeed, dif-
ferences in macroscopic networks have been implicated across
multiple neurodevelopmental conditions13, including ADHD14,
autism15,16, and language disorders17.

But what mechanisms drive the diversity of macroscopic brain
networks? And how do these mechanisms give rise to individual
differences in children’s outcomes? There are numerous
descriptive theories18–22 that speculate about how different levels
of analysis (e.g., genes, brain structure, and function) interact to
produce these neurodevelopmental differences. However, to date
no theories are sufficiently specified that they can simulate
individual-level brain networks. In the absence of computational
models, it is difficult to establish mechanistic links between
individual differences in observations (e.g., gene expression,
biological pathways, system wide organization). This theory gap
represents a major limitation for understanding neurodevelop-
mental diversity. The purpose of this study is to address precisely
this gap, by modeling the generative wiring properties of a large
sample of children at heightened neurodevelopmental risk of
poor outcomes. The computational model we implemented is
guided by a simple principle: the brain’s structural organization is
shaped by an economic trade-off between minimizing wiring
costs and adaptively enhancing valuable topological features23.
We hypothesize that the emergence of whole-brain organization
reflects the continual trade-off of these factors over time and that
tiny differences in the parameters governing the trade-off can
produce the neurodiverse outcomes we observe. Somewhat
counterintuitively, tight parameter constraints likely enable
macroscopic neurodiversity, because large changes in these
parameters would produce networks with configurational states
that are not observed in reality. Instead, narrow boundaries reflect
parameter conditions within which networks can be different, but
still maintain adequate structural properties to be functional.

Our work utilizes generative network modeling24,25, in which
connections within a physically embedded network are formed
probabilistically over time according to a wide range of potential
mathematical constraints. Varying the parameters and wiring
rules that govern network formation provides a way of estab-
lishing which statistics likely create real networks—in this case
structural brain networks in our large heterogeneous sample of
children. Specifically, we: (1) tested which topological features
should be valued in the wiring trade-off to produce highly accurate
individual child connectomes; (2) tested how small changes in
these parameters alter the organizational properties of the result-
ing networks; (3) established relationships between these different
wiring parameters and cognitive outcomes; (4) identified genes
with expression profiles that were spatially co-located with those
topological features; and (5) established the biological pathways
that are enriched in these gene lists. Together, this provides a
computational framework that mathematically specifies the for-
mation of a network over time, captures individual differences in
brain organization and cognition, and incorporates the genetic
and biological pathways that likely constrain network formation.

Results
The generative network model. The generative network model
(GNM) can be expressed as a simple wiring equation24,25

(Fig. 1a). If you imagine a series of locations within the brain, at
each moment in time the wiring equation calculates which two
locations will become connected. It calculates this wiring prob-
ability by trading-off the cost of a connection forming, against the
potential value of the connection being formed. The equation can
be expressed as:

Pi;j / ðDi;jÞηðKi;jÞγ; ð1Þ
where Di,j represents the Euclidean distance between nodes i and j
(i.e., “costs”), and Ki,j reflects the value (i.e., “attractiveness”) in
forming a connection. Pi,j represents the wiring probability as a
function of the product of the parameterized costs and value. The
end result is a wiring probability matrix which updates over time
as new connections are added.

Di,j is parameterized by the scalar η, which changes how node-
to-node distances influence their probability of connecting. For
example, when η is negative, wiring probabilities decline when
distances increase, and this reflects the costliness of forming
connections with nodes that are distant. This is traded-off against
Ki,j, which represents some relationship between nodes, which
can be thought of as a topological value (or “rule”) driving the
intention for node i to connect with node j. Ki,j is parameterized
by a distinct scalar γ. Ki,j can take a range of different forms and
can, in principle, be selected from any non-geometric growth rule
used to model social and economic networks26–28. One simple
example is the “matching” rule24: nodes form connections with
other nodes on the basis of their normalized overlap in
neighborhood—i.e., whether nodes are connected to similar
nodes to themselves (also termed homophily).

To make this more concrete, imagine the following scenario: a
network is growing according to the matching rule, preferentially
attaching to nodes which are both similarly connected and
spatially proximal. In the wiring equation, this would be
represented as η being negative (e.g., η=−1), Ki,j represented
as normalized neighborhoods between nodes (i.e., matching) and
its parameter γ being positive (e.g., γ= 1). In short, a node being
far away makes it less likely that a new connection will be formed,
but it having a similar a neighborhood increases the likelihood.
Suppose that the right caudal anterior cingulate (Node 2, n2) is
going to wire to one of its six nearest neighbors. Initially, due to
an absent network topology, spatial proximity has a great
influence in the formation of new connections—it will wire to
its nearest neighbor (Fig. 1b). However, gradually over time, the
network’s developing structural topology means that Ki,j (i.e., the
relationships between nodes) may now have a greater influence
on wiring probabilities. Indeed, the right caudal anterior cingulate
may later wire with a node that, although further away than other
available nodes, has a greater value (i.e., matching) than the
others (Fig. 1c). As the wiring equation separately parameterize
costs and value, the presence of a single connection can heavily
influence the topology of the network and thus the future updated
wiring probabilities. This is because new connections can lead to
entirely new overlapping neighbors, which may include distant
nodes. As a result, wiring probabilities can change considerably
from moment to moment, despite costs remaining fixed (Fig. 1d).

The GNM simulates this process across the whole brain, until
the overall number of connections matches those found in the
observed brain network. Subsequently, to test the accuracy of the
simulation, an energy function, E, must be defined which
measures the dissimilarity between simulated and observed
networks24,25:

E ¼ maxðKSk;KSc;KSb;KSeÞ; ð2Þ
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Fig. 1 Updating wiring probabilities within the generative network model iteratively, based on dynamically changing graphical structures. a The brain’s
structural connectivity is modeled as a generative network which grows over time according to parametrized connection costs, (Di,j)η and values, (Ki,j)γ. In
this illustration, we use subject one’s optimal model. b Early in network development, the absence of a topology leads to proximal nodes being much more
likely to form connections. The displayed distances and probabilities are from the right caudal anterior cingulate (n2), which corresponds to row (D2,:)η and
(P2,:). We display it’s six nearest cortical regions. c Later, the relative values (Ki,j) between nodes influence connection probabilities, such that nodes which
are more distant (e.g., left rostral anterior cingulate, n59 in red) may be preferred to nodes which are closer (e.g., right superior frontal cortex, n27 in cyan).
d As costs and values are decoupled, the wiring probability can be rapidly recomputed when dynamic changes in graphical structure occur over
developmental time.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24430-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4216 | https://doi.org/10.1038/s41467-021-24430-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where KS is the Kolmogorov–Smirnov statistic comparing degree
k, clustering coefficient c, betweenness centrality b, and edge
length e distributions of simulated and observed networks.
Minimizing E finds parameters η and γ which generate networks
most closely approximating the observed network.

The four measures in the energy equation are good candidates
for evaluating the plausibility of simulated networks. They are
critical statistical properties of realistic networks and have
featured within the most well-documented simulated network
models29–31. Moreover, these statistical properties have been
implicated in a number of neuropsychiatric conditions32,33 in
addition to being shown to be heritable34.

Small variations in GNM parameter combinations produce
accurate and spatially embedded networks. From a basic seed
network common to all participants (for detail, see Supplemen-
tary Fig. 1 and Methods), we computed the subject-wise optimal
GNM (i.e., network with lowest energy) over a range of 10,000
evenly spaced parameter combinations (−7 ≤ η ≤ 7, −7 ≤ γ ≤ 7)
using 13 different generative rules (for rule formulae, see Sup-
plementary Table 1) across our large sample of children (N= 270,
178 males, 92 females, mean age= 9 years 10 months, SD age= 2
years 2 months; full sample details can be found at Holmes
et al.35). In each case, we computed energy landscapes to con-
textualize how they perform (Fig. 2a–d). Mirroring findings in
adult samples24,25,35, we found that models driven by geometry
and topology outperform the pure geometric spatial model and
homophily-based models achieve the lowest energy for our
pediatric sample (Fig. 2e). In other words, when one combines the
distance penalty with the “matching rule” we described in our
concrete example (as shown in Fig. 1), it produces the most
plausible simulated brain networks. This difference between
generative rules is extremely robust. A post hoc power calculation
revealed that the homophily-based rules could be distinguished
from the next best class with near-perfect statistical power (t=
−10.210, p= 6.705 × 10−21; N= 270, power > 0.99), and that this
difference could be detected with around 70 participants.

It is notable that across the matching energy landscape, these
plausible networks exist within an extremely narrow window of
parameter solutions. That is, as a proportion of the parameter
space, the matching rule (and the other homophily-based model
“neighbors”) contain the least number of low-energy networks
relative to other rules. But as Fig. 2e shows, these networks are the
closest to real networks. Thus, varying homophily-based para-
meters produces the most realistic networks, yet has the lowest
variability in the space (Supplementary Fig. 2).

While small, variability within this narrow matching window
determines inter-individual differences in brain network growth.
This is because small changes in parameters (i.e., the magnitude
and direction in which costs and values influence wiring
probabilities) can lead to networks which are diverse yet include
basic structural properties common to all subjects. To derive
more precise estimations of optimal generative parameter
combinations, we subsequently generated a new set of 50,000
evenly spaced simulated networks over this narrow low-energy
matching window (−3.606 ≤ η ≤ 0.354, 0.212 ≤ γ ≤ 0.495). Focus-
ing on this energy crevasse allows us to detect individual
differences in optimal parameter combinations with much greater
specificity. In other words, we resampled the parameter
combinations focusing within the low-energy window, to make
sure we have the most precise estimate of each individual child’s
optimal parameters.

In Fig. 2f, we show the spatial distribution of these top
performing parameter combinations and Supplementary Table 2
documents their summary statistics. These finely calibrated

networks are even more low energy than in the previous analysis.
In Supplementary Fig. 3a–d we detail how KS statistics vary
across the same space. Importantly, due to the stochastic nature
of GNMs, the energy of optimal parameter combinations varies
with an average standard deviation (SD) of 0.045 across the
sample (1000 independent runs). Therefore, for the rest of this
study, we quote our parameter analyses averaged across a variable
number of wiring parameters which achieved networks with the
lowest energy in the space: N= 1 (equating to 0.002% of the
space) N= 10 (0.02%), N= 100 (0.2%), and N= 500 (1.0%).

The optimal η and γ parameters are significantly negatively
correlated with each other, such that subjects with large γ
parameters tend to have larger negative η (Best N= 1 network: r
=−0.284, p= 2.07 × 10−6; N= 10 networks: r=−0.403, p=
6.08 × 10−12; r=−0.460, p= 1.58 × 10−15; N= 100 networks: p
=−0.460, p= 1.58 × 10−15, N= 500 networks: r=−0.497, p=
3.21 × 10−18) (Supplementary Fig. 3f). Optimally simulated
networks, using this simple wiring equation, are so similar to
the actual networks that a support vector machine is unable to
distinguish them using the parameters from the energy Eq. (2)
(mean accuracy= 50.45%, SD= 2.85%).

Replicating previous work, we find that our simulated
networks, optimized via the statistical properties included in the
energy Eq. (2) via homophily generative mechanisms, accurately
capture these properties in observed networks24,25,36. But do
these capture crucial network properties not included in the
energy equation, like their spatial embedding? We next examined
if the spatial patterning of these network properties arises simply
from the generative model.

Averaged across the sample, optimally performing generative
models (i.e., those using the “matching” rule) produce networks
which significantly correlate with observed networks in terms of
their degree (r= 0.522, p= 4.96 × 10−5), edge length (r= 0.686, p
= 1.11 × 10−11), and betweenness centrality (r= 0.304, p= 0.012)
but not clustering coefficient (r=−0.054, p= 0.663) (Fig. 3). That
is, the spatial embedding of these network properties seemingly
emerges, to mirror those of the observed networks, despite this not
being specified in the growth process. We extended this analysis to
new measures outside of the energy equation (Supplementary
Fig. 4). While local efficiency and assortativity cannot be
significantly predicted across the sample (r= 0.211, p= 0.084
and r=−0.096, p= 0.116, respectively), optimally performing
simulated and observed networks correlate positively in terms of
their global number of rich clubs (r= 0.316, p= 1.11 × 10−7),
maximized modularity (r= 0.349, p= 3.84 × 10−9), and transitiv-
ity scalar (r= 0.411, p= 2.11 × 10−12). In short, despite not being
specified in the growth process, the simple homophily rule
generates many properties of observed brain networks.

One criticism of our simulations is that their embedding may be
an artifact of the seed network (which is on average 10.8% the
density of the observed/simulated networks). In short, if by chance
the seed network mirrors the final network, it could be inevitable
that spatial embedding would emerge, in terms of node degree,
betweenness centrality and edge length. If so, one would expect
initial local statistical properties of the seed to be significantly
associated with regional accuracy of the simulation. To determine if
this is the case, we analyzed the regional accuracy of our homophily
simulations by determining their regional generative error (as a
mismatch between observed and simulated outcome, depicted in
Supplementary Fig. 5). Importantly, the average ranked error
(Supplementary Fig. 5e) is not correlated with the seed network’s
connectivity (r=−0.0711, p= 0.5643). Furthermore, seed features
do not correlate with their own feature’s resultant error (Degree, r=
−0.0408, p= 0.7410; Betweenness, r= 0.1833, p= 0.1345; Edge
length, r= 0.1114, p= 0.3659).
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The large heterogenous sample we chose is ideal for this
computational approach to understanding diversity, but it is
highly likely that this approach will work for more standard
typically developing cohorts of children. In Supplementary Figure
6 we replicate our key findings in an independent sample of N=
140 children recruited from local primary schools in the same

area (for more details about the cohort, see “Methods”;
“Participants” and Johnson et al.37).

Individual differences in wiring parameters mirror con-
nectome organization, gray matter morphology, and cognitive
scores. A critical benefit of a generative modeling approach is that
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it allows us to probe the underlying mechanisms occurring over
the development of the network38. As one explicitly specifies the
generative mechanisms involved, the statistical properties which
“fall out” of the network can be considered as spandrels39; epi-
phenomena of the network’s development according to the much
simpler economical trade-off (in this case, according to the
homophily principle). If the generative model is indeed capturing
biologically relevant processes, one would expect the wiring
equation—at a minimum—to reduce the network’s dimension-
ality simply into the two wiring parameters used to construct it.

Under this view, individual differences in wiring parameters
should (1) map to wide-ranging statistical properties of the
observed network, which may be considered spandrels and (2)
appropriately reduce dimensionality of the connectome such that,
for example, one can equivalently predict cognitive scores from
parameters as one would be able to from the network properties.

To explore this, we first examined how wiring parameters
reflect observed features of brain organization by quantifying how
a subject’s η and γ relate to global measures of their observed
connectome. Furthermore, for all 270 subjects, cortical

Fig. 2 Sample-averaged energy landscape visualization and generative rule comparisons. a Homophily-based methods. Matching and neighbors
algorithms calculate a measure of shared neighborhood between nodes. b The spatial method. This ignores γ entirely, judging networks only on the basis of
their spatial relationship. c Clustering-based methods. These calculate a summary measure between two nodes in terms of their clustering coefficients. d
Degree-based methods. These calculate a summary measure between two nodes in terms of their degree. e Energy statistics from the best performing
simulation across 13 generative rules, showing that matching can achieve the lowest energy networks given the appropriate parameter combination. In
total, there are N= 270 data points for each of the 13 boxplots. A tabulated form of this figure is provided in Supplementary Table 1. The boxplot presents
the median and IQR. Outliers are demarcated as small black crosses, and are those which exceed 1.5 times the interquartile range away from the top or
bottom of the box. f A further 50,000 simulations were undertaken in the refined matching window, as these defined boundary conditions for which low-
energetic networks were consistently achieved. Each cross represents a subject’s individually specific wiring parameters that achieved their lowest energy
simulated network.

Fig. 3 Spatial embedding of simulated networks grown via optimized homophily generative mechanisms. For each network measure, we present the
cumulative density functions across all observed versus simulated nodes within each network. Each point in the scatter plot shows one of the 68 across-
subject average nodal measures from the observed and optimally simulated networks. We also show a visualization of these measures. All statistics were
computed via two-tailed linear correlations, quoting the Pearson’s correlation coefficient. a Degree between observed and simulations are significantly
positively correlated (r= 0.522, p= 4.96 × 10−5). b Clustering between observed and simulations at not correlated (r=−0.054, p= 0.663). c
Betweenness centrality between observed and simulations are significantly positively correlated (r= 0.304, p= 0.012). d Edge length (as a summation of
all edges from each node) between observed and simulations are significantly positively correlated (r= 0.686, p= 1.11 × 10−11). Boldened values are
significant correlations at p < 0.05. In Supplementary Fig. 4, we present a parallel analysis including local and global measures not included in the energy
equation. In Supplementary Fig. 5, we demarcate for each measure the generative error in spatial embedding, and show the ranked performance for each
region.
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morphology data were available. In Fig. 4, we document how
global network and morphological measures (most of which are
not included in the energy equation) relate to each other, in
addition to their reasonably stable association with a varying
number of high performing η and γ wiring parameters (specific
results are provided in Supplementary Table 3), and their
associations with age. Figure 4b shows that η is significantly
associated with age—the network parameters needed to form
optimal networks over time need to favor longer distance
connections for older participants, relative to younger
participants25. To disentangle age-related parameter differences
from individual differences, we repeated all of our correlations
across measures whilst partialling out age (Supplementary Fig. 7).
Associations remain when age has been controlled for, demon-
strating that age-related changes in optimal parameters are
relatively independent of the individual differences in those

parameters. This is not only an important step in demonstrating
that these parameters generalize to distinct measures (e.g.,
morphological observations) not used to train the generative
models, but also demonstrates that the generative approach is
consistent with the notion that wiring parameters themselves
have significant associations with numerous statistical properties
in a network.

Next, we tested the ability of the wiring equation to reduce the
dimensionality of the connectome. Specifically, if wiring para-
meters are accurate decompositions of an individual’s structural
network they should predict cognitive outcomes equivocally to
observed features of the connectome. For all 270 subjects we had
data from a battery of cognitive tasks, including measures of
executive function, phonological awareness, working memory,
fluid reasoning and vocabulary (for details of the tasks see
“Methods”; “Cognitive and learning assessments”).

Fig. 4 Statistical properties of the connectome and cortical morphology, and their relationships with wiring parameters and age. a The correlation
matrix of connectome and morphological findings show how each measure correlates with every other measure. Measures 3–6 were included in the energy
equation. Measures 7–11 are connectome measures not included in the energy equation. Measures 12–19 are cortical morphological measures. η and γ are
each significantly correlated with a range of measures, both inside and outside of the energy equation. Correlation coefficient matrices are shown, the
bottom row of which is highlighted and is reflected in the above radar plots (middle), in addition to the significance matrix (bottom), across varying
numbers of top performing parameters, for each of the 19 measures investigated. b Radar plots depict the correlations between all measures and η (left)
and γ (right) averaged across the top N= 500 parameters in the parameter space. All statistics were computed via two-tailed linear correlations, quoting
the Pearson’s correlation coefficient. The asterisk, *, reflects significant correlations at p < 0.05. Note, the inner edge of the radar plot reflects negative
correlations and the outer edge reflects positive correlations. Specific results for variable top performing parameters are provided in Supplementary
Table 3. Further scatter plots are provided highlighting the relationship of wiring parameters with age. η has a significantly positive relationship with age (r
= 0.325, p= 4.518 × 10−8) while γ has a weak non-significant negative relationship with age (r=−0.117, p= 0.054).
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We tested the relationship between a subject’s age-standardized
cognition and (1) their optimal wiring parameters and (2) global
measures of their structural connectome (using measures
included in the energy equation). This was done using partial
least squares (PLS), a multivariate statistical technique which
extracts optimally covarying patterns from two data domains40.
We undertook two separate PLS analyses, which correlated (1)
optimal wiring parameter combinations or (2) global connectome
measures across our sample, with cognitive performance in the
nine tasks, respectively (Fig. 5a). For both analyses, PLS1 was
significant in the amount of explained covariance (pcov= 0.009
and pcov= 0.049, respectively). PLS1 score predictions, and their
cognitive loadings, are extremely similar between wiring para-
meters and connectome features (r= 0.191, p= 1.63 × 10−3, pcorr
= 7 × 10−4 and r= 0.210, p= 5.29 × 10−4; each pcorr= 7 × 10−4

and pcorr 4 × 10−4, respectively, from 10,000 permutations of
scores) (Fig. 5b, c).

Variability in neurodevelopmental trajectories arises through
value-updating over time. While small generative parameter
differences result in differential network properties, we have yet
to show how this variability may occur over the development of
the networks. That is, how do differences in parameter combi-
nations across subjects manifest themselves when the network is
developing? To address this, we examined how between-subject
variability in optimal GNMs emerge at the level of cortical nodes
and their connections. This is possible by simply decomposing
the optimal simulation into its constituent parametrized costs (Di,

j)η, values (Ki,j)γ, and wiring probabilities (Pi,j) at each time point,
for each subject (Fig. 6a, b). This allows us to quantify growth
trajectories and thus establish which aspects of network emer-
gence vary most in the sample.

For each subject, we computed the coefficient of variation (CV,
σ/μ) of their parameterized costs, matching values and wiring
probabilities to compare subject-specific variability, as it emerges

Fig. 5 Covarying patterns of wiring parameters and connectome features with cognitive performance across nine cognitive tasks. a A visual
representation of the two PLS analyses undertaken. b There is a significant positive correlation (two-tailed linear correlation, quoting the Pearson’s
correlation coefficient) between parameter scores and PLS-derived cognitive scores. PLS1 was statistically significant (pcorr= 7 × 10−4 and pcorr= 4 × 10−4,
respectively) for both analyses using n= 10,000 permutations. Each parameter loads with similar magnitude onto PLS1. c There is an analogous significant
positive correlation between connectome scores and PLS-derived cognition scores, using the same statistical procedure.
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throughout the simulated growth of connectomes. While subjects
exhibit some variability in how parameterized costs influence
wiring probabilities (mean CV 2.27), this is dwarfed by their
parameterized values over time (mean CV 33.02). This is because

the matching value is dynamic, changing at each iteration (as in
Fig. 1d), unlike relative Euclidean distance between nodes which
is static. The result is that significant inter-individual variability
arises in the probability of connections forming (mean CV 53.08),
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leading to the emergence of divergent brain organization
(Fig. 6c–f). Furthermore, the regional patterning of costs and
values is not random (Fig. 6g). Nodes and edges with high
matching values decline in their variability, suggesting a
consistency across subjects in highly “attractive” nodal structures
and their connections. Across the sample, cheaper regions occupy
the medial aspects of the cortex while highly valuable regions
generally reside in the temporal cortex.

Genomic patterning of network growth. Underlying these
macroscopic changes in brain organization across time are a
series of complex molecular mechanisms. These are partly gov-
erned by genetically coded processes that vary across individuals.
We next tested whether these processes may steer the brain
network toward a particular growth trajectory within our GNMs.

Nodal cost and nodal “matching” value patterning alongside
regional gene expression profiles of 10,027 genes using human
adult brain microarray data41,42 were integrated into two PLS
analyses for each subject. For all analyses, gene expression scores
at each node were used as the predictor. For each subject’s first
analysis, their parameterized nodal costs (calculated as the
subject’s ∑ (Di,:)η, as visualized Fig. 6g; fourth row, right) was
used as the response variable. For each subject’s second analysis,
their mean parameterized values (calculated as the subject’s (∑
(Ki,:)γ averaged over time, as visualized in Fig. 6g; second row,
right) was used as the response variable. Each analysis defined
PLS components independently which were linear combinations
of the weighted gene expression scores at each node (predictor
variables) that were most strongly correlated with the subject’s
nodal costs and nodal values of their simulated growth trajectory.
To limit the variability across regions in terms of the samples
available, only left hemispheric gene data were analyzed42.

Across our sample, the first PLS component (PLS1) explained
on average 65.0% (SD 1.3%) and 56.9% (SD 9.2%) of the
covariance between genetic expression and nodal costs, and nodal
values, respectively. The average nodal costs PLS1 score sig-
nificantly correlates with average nodal costs (r= 0.794, p=
2.07 × 10−8, pcorr= 2 × 10−4). Similarly, the average nodal values
PLS1 score significantly correlates with average nodal values (r=
0.718, p= 1.71 × 10−6, pcorr= 1 × 10−4) (Fig. 7a, b). To then
characterize the genetic profiles associated with each PLS analysis,
we permuted the response variable 1000 times to form a null
distribution for the loading of each gene, across each subject’s
PLS1. This provides an estimate of how strong the loading would
be by chance, and thus which genes exceed pcorr < 0.05. Across
subjects, PLS1 provided an average of 581.5 significant genes (SD
101.4) for nodal costs and 437.6 significant genes (SD 167.4) for
nodal values (Supplementary Fig. 8a).

Genes do not act in isolation, but instead converge to govern
biological pathways across spatial scales. To move from individual
genes to biological processes (BPs) and cellular components
(CCs), we performed a pathway enrichment analysis43. Pathway
enrichment analysis summarizes large gene sets as a smaller list of
more easily interpretable pathways that can be visualized to
identify main biological themes. Genes were ordered according to
their frequency in being significantly associated with connectome

growth across subjects for that component. For example, for
nodal values PLS1, top of the list was the gene associated with
connectome growth in the most subjects (CHI3L1; significant for
49.4% of our sample), the next was the second most frequent gene
(PRKAB2; 36.4% of our sample) and so on. Our list stopped when
genes were significant for <10% of the sample. This left the nodal
costs PLS1 with a list of 1427 genes and the nodal values PLS1
with a list of 1584 genes ordered in terms of importance, which
were submitted to pathway enrichment analysis in g:Profiler
(https://biit.cs.ut.ee/gprofiler/gost) (Supplementary Fig. 8b)43. g:
Profiler searches a collection of gene sets representing GO terms.
In the ordered test, it repeats a modified Fisher’s exact test on
incrementally larger sub-lists of the input genes and reports the
sub-list with the strongest enrichment. Multiple-test correction is
applied to produce an adjusted p value (padj) for each
enrichment43,44 (as visualized in Supplementary Fig. 8c, d, which
can be accessed via the links presented in Supplementary
Table 4).

The genes identified within the subject-wise PLS are not
random, but instead converge on particular BPs and CCs. The
nodal costs PLS1 was most prominently enriched for genes
associated with BPs including catabolic processes and protein
localization (32 BPs; all padj < 9.58 × 10−3), cell projection (14
BPs; all padj < 4.39 × 10−2), immunological processes (34 BPs; all
padj < 4.82 × 10−2), regulation of metabolic processes (8 BPs; all
padj < 4.75 × 10−2), and regulation of cell development and
differentiation (4 BPs; all padj < 3.87 × 10−2). In terms of CCs,
nodal costs PLS1 was enriched for genes associated with the
ribosome (14 CCs; all padj < 2.15 × 10−2), vesicular and endo-
plasmic membranes (19 CCs; all padj < 4.90 × 10−2) and intracel-
lular organelles (8 CCs; all padj < 4.97 × 10−2) (Fig. 7c).

The nodal values PLS1 was most prominently enriched for
genes associated with BPs including synaptic signaling (29 BPs; all
padj < 3.96 × 10−2), neuronal projection and development (26 BPs;
all padj < 4.21 × 10−2), and synapse organization (2 BPs; all padj <
2.92 × 10−2). In terms of CCs, nodal values PLS1 was enriched for
genes associated with synaptic membranes (60 CCs; all padj <
3.15 × 10−2) and ion channel complexes (7 CCs; all padj < 1.18 ×
10−2) (Fig. 7d).

In Supplementary Table 4 we provide links so that readers can
run our precise gene ontology (GO) queries within a browser and
in Supplementary Fig. 8c, d we show a visualization of these
enriched gene sets.

Discussion
Diversity in macroscopic human brain organization can be
modeled using a generative network. The generative framework
does not include time itself as an explicit parameter, but instead
models it as a sequence of processes, optimizing its connectivity
by renegotiating its costs and value24,25 continuously over itera-
tions. Despite the simplicity of this equation, it results in the
dynamic updating of wiring probabilities over time, with multiple
network properties, like spatial embedding, being an emergent
property of this dynamic updating. This resonates with theore-
tical perspectives that implicate dynamic interactions between
brain systems over development in progressive, integrative,

Fig. 6 Wiring Eq. (1) decomposition and the subsequent variability across subjects in our heterogeneous sample. a For each subject, a simulated
network is produced by minimizing the energy between the observed and simulated network. Here, we present visualizations for subject one (red). b Costs
(Di,j) are static, while values (Ki,j) dynamically update according to the matching rule, which enables the computation of wiring probability (Pi,j). c The mean
and standard deviation for each subject of their edge-wise parameterized costs, d parameterized values and e wiring probabilities. f Histograms of each
subject’s coefficient of variation (CV) showing that subjects are more variable in their value-updating compared to costs, leading to large wiring probability
variability. g Regional patterning of sample-averaged nodal parameterized costs and values, showing highly “valuable” patterning in the left temporal lobe
and “cheap” regions generally occupying medial aspects of the cortex. Variability declines as value increases, but increases for costs.
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Fig. 7 Over expressed genes which explain variance in brain wiring across subjects. Both PLS1 components across subjects are enriched for functionally
specific biological processes and cellular components. Node size represents the number of genes in the set. The edges relate to gene overlap. a Sample-
averaged parameterized costs significantly correlates with sample-averaged PLS1 nodal gene scores, explaining on average 65.0% covariance. Statistics
were computed via two-tailed linear correlations, quoting the Pearson’s correlation coefficient, followed by n= 10,000 permutations. b Sample-averaged
parameterized values significantly correlates with sample-averaged PLS1 nodal gene scores explaining on average 56.9% covariance. Statistics were
computed via two-tailed linear correlations, quoting the Pearson’s correlation coefficient, followed by n= 10,000 permutations. c Nodal costs PLS1 is
enriched for genes predominantly associated with protein localization, catabolic processes, and ribosomal/membrane cellular components. d Nodal values
PLS1 is enriched for genes predominantly associated with synaptic signaling, neuronal projection and synaptic membranes.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24430-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4216 | https://doi.org/10.1038/s41467-021-24430-z | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


specialization45. We have formalized this process in the context of
neurodevelopmental diversity; offering a new perspective on the
formation of organized macroscopic networks, their possible
biological underpinnings, and their association with functional
outcomes like cognitive performance. This reflects a theoretical
step-change in understanding diversity in neurodevelopment,
being sufficiently well-specified to generate macroscopic brain
networks. In turn, this formalization allows for the unpacking of
the computational and/or biological constraints that shape the
trajectories of networks. Indeed, we anticipate that GNMs may be
a powerful tool to model real and biologically feasible artificial
networks across many scales.

Small changes in wiring parameters of the GNM lead to
divergent macroscopic brain networks, with systematically dif-
ferent network properties. Within the model, the key factor that
drives individual differences in growth trajectory is the dynamic
nature of updating preferences over time. Specifically, as nodes
form new connections this dynamically changes their neighbor-
hoods, and in turn this quickly changes which nodes become
“attractive” for subsequent connections. Importantly, individual
differences in this process correspond significantly to indepen-
dent structural data of the same individuals.

Why do the homophily-based generative rules approximate
whole-brain networks so well? We propose that the superordinate
goal of any developing brain network is to achieve the optimal
computational capacity required of it, given finite biological
resources. In this light, we suggest that matching produces the
lowest-energetic networks precisely because it provides the closest
heuristic estimate (compared to those tested here and in other
works24,25,36) of the genuine dynamic reappraisals that occur over
developmental time.

This is because by virtue of preferentially wiring with nodes
with shared neighborhoods modular architectures emerge46, and
this reflects the brain’s overarching structure. The modular
architecture of the brain has been well studied, and has numerous
properties enabling effective flexible computations likely impor-
tant for functional integration47. By virtue of only requiring
knowledge of neighborhood overlap, homophily-based methods
may incur less informational costs48 relative to other methods
which require global information, and therefore may be more
biologically plausible. It is of note that homophily is a measure
somewhat akin to network communicability—another locally
knowable measure containing information that closely relates to
the shortest path49. Finally, a tentative explanation for homophily
at the neuronal level can also be provided in terms of Hebbian-
like plasticity24,50 This opens up the exciting possibility for these
generative models to model developing neuronal cultures51 to
explore whether similar wiring principles may operate across
scales.

Our current GNMs operate at a whole-brain level—i.e., a global
set of rules governing network formation. But with more biolo-
gically realistic information about regional differences it is pos-
sible that an alternative growth model could be fitted52. Unlike a
generative model, a growth model captures the graded changes of
an established network over time. This would allow for time itself
to be incorporated as a parameter within the model, making
regionally and temporally sensitive modifications to network
growth and therefore encompass multiple longitudinal measure-
ments of the same individual over a biologically meaningful
timescale. The only work we know of to have done this is by
Nicosia et al.52 in which data from Caenorhabditis elegans (with
birth times of ~300 neurons) where integrated into a growth
model to reproduce the developing C. elegans network and it is
bi-phasic growth rate. With sufficient detailed information it may
be possible in future to take a similar growth modeling approach
in humans. Regional variation in nodal costs and values closely

mirrored the expression profiles for different sets of genes, which
in turn govern different BPs and CCs. Since the advent of
genome-wide association studies (GWAS), a huge number of
genes have been implicated in developmental disorders, including
schizophrenia53 and autism54, but also general cognitive
functioning55. It has been challenging to interpret the con-
sequences of these individual implicated genes. The enrichment
analysis that accompanied our GNM takes a very different
approach. As far as we are aware, this is the first study aiming to
bridge models of whole brain organizational emergence and
genetics in this way (for work utilizing various generative models,
see24,25,36,50,56 and for work that integrates Allen Human Brain
Atlas gene data with functional and structural brain imaging,
see57–61). Nodal costs covaried with genes enriched for highly
costly metabolic processes, including catabolic processes, protein
transport and CCs centered around the ribosome and endo-
plasmic membranes. On the other hand, nodal values covaried
with genes enriched for trans-synaptic signaling, neuronal pro-
jection and the synaptic membrane. This aligns with recent
findings that synaptic genes also colocalize with highly synergistic
regions of the brain, which have been suggested to be crucial for
human cognitive evolution61.

The omnigenic model62 suggests that complex traits are driven
by genes that do not have direct effects on the trait per se, but
instead propagate through regulatory networks on much smaller
numbers of core genes, with more direct effects. This model
explains the vast number of GWAS hits for complex traits, as
“peripheral” genes necessarily outnumber “core” genes and thus
the sum of their small effects exceeds the contribution of core
genes. We suggest the omnigenic model may apply to some
aspects of gene-development relationships. That is, the many
genes that contribute to each PLS1 may not directly contribute to
developmental processes themselves, but in the regulation of
activity and growth within brain areas that are particularly
important for neurodevelopment. Crucially there is variability in
enriched genes across subjects (Supplementary Fig. 8a).

Our sample is a large mixed cohort of children, the majority of
whom were referred from specialists in children’s educational and
clinical services. This was the ideal testbed for exploring diverse
trajectories. The varied referral routes for the cohort makes its
composition more reflective of children at heightened neurode-
velopmental risk, relative to a more standard case-control design
recruited according to strict diagnostic inclusion and exclusion
criteria, via a single referral route63. But it is important to note
that the modeling also works well in a more typical sample
recruited from classrooms in the same area. So, whilst the CALM
cohort is ideal for exploring the mechanisms of heterogeneity,
these same mechanisms are likely at play in more typical samples.
Indeed, this work presents a challenge to the long history of
categorizing neurodevelopment into discrete groupings based on
observed cognitive and/or behavioral traits. Instead, we suggest
divergent outcomes may arise via slight trajectory changes that
fall out of the continual negotiation of brain connectivity opti-
mization. While likely that generative preferences are initialized
via an individual’s genetic preprograming, small changes in wir-
ing preferences over time—possibly via complex interactions of
their time course, endocrinological exposure, learning and
environment—have profound effects on the emergence of the
developmental trajectory. What results is a continual interaction
between network growth preferences and the dynamically
developing brain, leading to neurodiverse outcomes.

Whilst our sample is designed to capture children at risk, the
findings generalized to a more typical sample, with an even split
of boys and girls, recruited in local schools. This suggests that this
computational approach could be a powerful tool for develop-
mental scientists more generally. The advent of larger datasets is
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allowing the study of the developing brain at unprecedented scale
and across multiple levels64,65. Computational frameworks that
allow the integration of different datatypes (e.g., multiple imaging
modalities, genetic variability) could provide a valuable tool for
building developmental theory that goes beyond correlating dif-
ferent datatypes over time, and fully capitalizes on the scale and
complexity of those datasets. In the future, this approach could be
used to test different theoretical accounts of developmental
change, and to make longitudinal predictions where multiple
waves of data are available. To realize these opportunities, a
crucial next step is to deploy this type of computational modeling
to capture the diversity present in larger population-level neu-
roimaging datasets, with longitudinal data64–66 spanning
multiple sites.

This computational framework has a number of limitations
that provide scope for future improvements. Our generative
models are limited to the binary connections which are assumed
to be anatomical. This is inevitably a gross simplification of the
complex weighted structure of the connectome. Devising ways in
which network connections can change in a more graded fashion
is a necessary next step to modeling more complete develop-
mental processes. In the future we will need to capture both the
strengthening and weakening of connections that has been shown
to occur in human brain development67,68. Secondly, we cur-
rently use one rule, but it is conceivable that different rules govern
growth at different points in the trajectory. It may be possible to
accurately approximate the rules governing the remodeling of
networks over time, modeled either by changing heuristic esti-
mates (e.g., changing of generative rules over time) or attempting
to optimize a superordinate goal (e.g., computational efficiency
and/or flexibility). Thirdly, our gene enrichment results are cor-
relational, not causative. There remains an explanatory gap in
determining whether and how these specific gene profiles support
the sensitivity to connection formation. And crucially, the
expression data are derived for a microarray analysis of post-
mortem tissue samples from human adults41,42. Moreover, while
RNA-seq data were used to cross-validate gene expression mea-
sures by removing probes with a correlation <0.2, it was not
possible to externally validate the data with an independent
dataset. Caution is therefore required when interpreting our
enrichment analysis due to this lack of external validation69. The
next steps will involve validating these findings in large-scale
developmental cohorts with available gene data, and forming
casual links by applying GNMs to individuals with neurodeve-
lopmental disorders of known genetic origin58,59,70. Fourthly, we
have used a parcellation widely used in developmental
studies71–75, which aids the comparability of our findings with the
wider literature. Previous work has shown that parcellation choice
is not a big determent of optimal wiring parameters25. But within
the context of a developmental sample there could be subtle
differences in the optimal parcellation across participants, and
thus the production of individually optimized parcellations76,77

would allow us to test whether and how developmental change in
the parcellation itself influence wiring properties. Finally, as in
previous studies24,25,36, our models utilize Euclidean distance as
measures of cost in connection formation. While a simplification,
this selection removes any a priori constraints to the generative
model that a more biologically specified cost measure may pro-
vide (e.g., fiber lengths, which are sparse and thus limit potential
connections). A number of studies have shown relatively incon-
sistent findings in terms of how much Euclidean distance
accounts for fiber length, with findings ranging from 22% (RED,
in this work) to 79% (Human Connectome Project (HCP)) of
variance explained. There may be cohort, parcellation, and trac-
tography effects influencing these relationships. Whilst inter-
polated fiber lengths have been shown to perform equivalently to

Euclidean distances25 within GNMs, it is important to consider
that in our modeling these two measures only partially overlap. A
crucial next step is to test whether microstructural informed
tractography78, which may provide a more direct measure of
biological cost, improves model performance.

In conclusion, we provide a unifying computational framework
for conceptualizing the emergence of structural brain networks
and their diversity. The emergence of brain networks can be
understood as occurring via continual renegotiations of costs and
values, but individuality emergences from their slightly different
parameterization.

Methods
The methodological workflow is summarized in Fig. 8.

Participants. The sample were made up of children referred by practitioners
working in specialist educational or clinical services in the East of England (UK) to
the Centre for Attention Learning and Memory (CALM), a research clinic at the
MRC Cognition and Brain Sciences Unit, University of Cambridge (see Holmes
et al.35 for the full protocol of assessment, and refs. 9–13 for prior work using the
same cohort). The composition of this cohort is design to be broadly reflective of
children at heightened neurodevelopmental risk for poor developmental outcomes.
Consent was obtained from parents and assent was obtained from all youngsters.
The study protocol was approved by, and data collection proceeded under the
permission of, the local NHS Research Ethics Committee (reference: 13/EE/0157).
This cohort of children is intentionally heterogenous. Referrers were asked to
identify children with cognitive problems related to learning, with primary referral
reasons including difficulties with ongoing problems in “language”, “attention”,
“memory”, or “learning/poor school progress”. Exclusion criteria were uncorrected
problems in vision or hearing, English as a second language, or a causative genetic
diagnosis. Children could have single, multiple, or no formally diagnosed learning
difficulty or neurodevelopmental disorder. Most referrals were made from Special
Educational Needs Coordinators (57.0%), followed by Pediatricians (24.1%) and
Speech and Language Therapists (4.2%) (Supplementary Fig. 9a, b). Subsequently
the CALM team supplemented the cohort with a smaller set of unreferred children,
recruited from the same schools and neighborhoods, so that the cohort captures the
full ability spectrum. The CALM cohort contains n= 967 total children (N= 805
referred; N= 162 unreferred). Of these, N= 299 undertook MRI scanning of which
N= 279 had usable MRI data (see “MRI acquisition and preprocessing”). N= 270
of these had cognitive data available (see “Cognitive and learning assessments”)
(see Supplementary Fig. 9c for a visualization of the cognitive variability across the
cohort). This sample includes 65.9% boys, mean age 117.8 months, age range was
66–223 months and 78 that came from the non-referred comparison sample. The
increased ratio of boys to girls is what we would expect from epidemiology studies
of children at neurodevelopmental risk of poor learning or clinical outcomes79.

To validate our modeling, we also included a second cohort of n= 140 typically
developing children, who had been recruited from local schools (the RED cohort;
mean age 9.34 years, SD age 1.41 years, range 6.82–12.8 years, 45.7% boys). These
data were collected under the permission of the Cambridge Psychology Research
Ethics Committee (references: Pre.2013.34; Pre.2015.11; Pre.2018.53). Parents/legal
guardians provided written informed consent and all children provided verbal
assent. This second dataset was previously reported by Johnson et al.37. In
Supplementary Table 5, we provide all demographic information of the cohorts
used in the study. Race and ethnicity data for the CALM and RED cohorts are not
yet available, but are to be published35.

MRI acquisition and preprocessing. MRI data were acquired at the MRC Cog-
nition and Brain Sciences Unit in Cambridge, on the Siemens 3 T Prisma-fit system
(Siemens Healthcare) using a 32‐channel quadrature head coil. T1‐weighted
volume scans were acquired using a whole brain coverage 3D Magnetization
Prepared Rapid Acquisition Gradient Echo sequence acquired using 1 mm iso-
metric image resolution. Echo time was 2.98 ms, and repetition time was 2250 ms.
Diffusion scans were acquired using echo‐planar diffusion‐weighted images with
an isotropic set of 68 noncollinear directions, using a weighting factor of b= 1000
s mm−2, interleaved with 4 T2‐weighted (b= 0) volume. Whole brain coverage was
obtained with 60 contiguous axial slices and isometric image resolution of 2 mm.
Echo time was 90 ms and repetition time was 8500 ms. Both CALM and RED
samples underwent the same scanning protocol. N= 299 CALM and N= 167 RED
children underwent MRI scanning. Twenty (CALM) and 27 (RED) scans were not
useable due to excessive motion (>3 mm movement during the diffusion sequence
estimated through FSL eddy), leaving an MRI sample of N= 279 CALM and N=
140 RED children, respectively.

Connectome construction and cortical morphology. MRI scans were converted
from the native DICOM to compressed NIfTI‐1 format. Next, correction for
motion, eddy currents, and field inhomogeneities was applied using FSL eddy.
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Furthermore, we submitted the images to nonlocal means de‐noising80 using DiPy
v0.1181 to boost signal‐to‐noise ratio. A constant single angle model was fitted to
the 60‐gradient‐direction diffusion‐weighted images using a maximum harmonic
order of 8 using DiPy. Whole‐brain probabilistic tractography was performed with
8 seeds on all voxels. The step size was set to 0.5 and the maximum number of
crossing fibers per voxel to 2. For ROI definition, T1‐weighted images were sub-
mitted to nonlocal means denoising in DiPy, robust brain extraction using ANTs
v1.982, and reconstruction in FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu).
Regions of interest (ROIs) were based on the Desikan–Killiany parcellation of the
MNI template83 with 34 cortical ROIs per hemisphere. FreeSurfer v5.3 was used for
tissue classification and anatomical labeling. The technical details of these proce-
dures are described elsewhere84–86. FreeSurfer morphology statistics were com-
puted for each ROI.

To construct the connectivity matrix, the number of streamlines intersecting
both ROIs was estimated and transformed into a density map for each pairwise
combination of ROIs. A symmetric intersection was used so that streamlines
starting and ending in each ROI were averaged. Self-connections were removed. To
produce binarized connectomes from the resulting 68-by-68 streamline matrix, we
enforced an average connectome density of ρ= 10% (as in Betzel et al.25), resulting
in a streamline threshold of 27 streamlines (i.e., a minimum of 27 streamlines must
have connected two regions for us to consider the presence of an anatomical
connection).

Generative network models. Starting with a sparse seed network (25 bi-
directional edges that were common across all N= 270 subjects), edges were added
one at a time over a series of steps until a total number of connections were placed
that equaled that of the target observed connectome (group level connections,
mean= 231.4 and SD= 19.1) (As shown in Supplementary Fig. 1d). The same
process was separately done for the validation cohort. Each step allows for the
possibility that any pair of unconnected nodes will be connected. Connections are
formed probabilistically, where the relative probability of connection formation,
between nodes i and j, is given by Eq. (1). We used 13 previously studied non-
geometric rules24,25 to produce energy landscapes. Di,j was defined as the Euclidean
distance between node centroids. (Di,j)η was computed as a power-law, as shown
previously to have better performance than exponentials24. Euclidean distance
accounts for 24 and 22% of the variance in fiber length in the CALM and RED
samples respectively. These estimates are relatively low by comparison with other
cohorts, with previous studies showing Euclidean distance to account for 32%
(Nathan Kline Institute, Rockland, New York), 66% (CHUV; University Hospital
Center and University of Lausanne), and 79% (HCP) of the variance in fiber

length25. Topological parameters were computed using our own internally devel-
oped functions adapted from the Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/)87.

To evaluate the fitness of synthetic networks and optimize models, we defined
an energy function that measures how dissimilar a synthetic network is to the
observed network as defined by Betzel et al.25. This is given in Eq. (2). Initially, we
ran simulations across a defined a parameter space of 10,000 evenly spaced
combinations (−7 ≤ η ≤ 7, −7 ≤ γ ≤ 7), for each generative rule (Fig. 2a–d).
Parameter ranges were based on approximate values that had been evaluated in
previous work24,25,36. This was to capture their respective energy landscapes and to
estimate their relative effectiveness at generating plausible networks. We then
computed a further a set of 50,000 simulations within a much narrower low-energy
window (−3.606 ≤ η ≤ 0.354 and 0.212 ≤ γ ≤ 0.495) of the matching algorithm
(Fig. 2f) for all subsequent analysis. This is because the matching algorithm
attained the lowest-energy networks and therefore best approximated individual-
level connectomes. In Supplementary Fig. 2, we computed the SD of the top n=
500 performing (lowest energy) wiring parameters to determine how variable the
solutions are.

Cognitive and learning assessments. A large battery of cognitive, learning, and
behavioral measures was administered in the CALM clinic35. N= 9 CALM chil-
dren did not have available cognitive data (of the N= 279 MRI sample) and were
therefore excluded, leaving the final sample N= 270 children. These children had
no missing data. All cognitive scores were age-standardized, controlling for age. For
full details of the processing of cognitive data, see Siugzdaite et al.13.

The following nine measures of fluid and crystallized reasoning were included:
Matrix Reasoning, a measure of fluid intelligence88 (Wechsler Abbreviated Scale of
Intelligence); Peabody Picture Vocabulary Test89. Phonological processing was
assessed using the Alliteration subtest of the Phonological Awareness Battery90.
Verbal and visuo‐spatial short‐term and working memory were measured using
Digit Recall, Dot Matrix, Backward Digit Recall, and Mr X subtests from the
Automated Working Memory Assessment91,92. Learning measures (literacy and
numeracy) were taken from the Wechsler Individual Achievement Test II93 and the
Wechsler Objective Numerical Dimensions94, apart from 78 of controls for which
we used multiple subtests from the Woodcock Johnson for Verbal ability95.

Gene expression data. Regional microarray expression data were obtained from
six postmortem brains provided by the Allen Human Brain Atlas (http://human.
brain-map.org/)41,42 which, as far as we are aware, is the only publicly available

Fig. 8 Schematic of the methodological workflow. The basic workflow involved (i) Recruitment of the CALM cohort, a heterogeneous referred sample
from the East of England (UK) with wide inclusion criteria; (ii) MRI diffusion tensor imaging; (iii) Estimation of structural connectivity within the
Desikan–Killiany parcellation; (iv) Binarization of the connectome; (v) Initial run of the GNM for all 13 generative rules as outlined in Supplementary Table 1;
(vi) More specific run of the homophily “matching” GNM in the narrow parameter window; (vii) Further analysis of simulations in terms of spatial
embedding, parameter associations and variability; (viii) Combination of Allen Human Brain Atlas data and the generative model findings.
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human 3D brain map of the transcriptome which covers the full cortex. Of note,
other datasets such as the BrainSpan Atlas for the Developing Human Brain
(http://brainspan.org) are available, although currently covering 16 ROI.

The Allen Human Brain Atlas dataset is based on microarray analysis of
postmortem tissue samples from six human donors aged between 18 and 68 years
with no known history of neuropsychiatric or neurological conditions. Data were
imported from Arnatkevičiūtė et al.42. Since only two of the six brains included
samples from the right hemisphere, analyses were conducted on the left
hemisphere only. Probes where expression measures do not exceed the background
in >50% samples were removed and genes that did not have a corresponding RNA-
seq measure were removed. To improve validity of the gene dataset by cross-
validating expression measures, probes with a Spearman’s correlation <0.2 with
external RNA-seq data were removed, and a representative probe with the highest
correlation to RNA-seq data was selected for each gene. Sample assignment was
computed by applying a 2 mm distance threshold. In total, a mean of 37.8 ± 22.5
(SD) samples were assigned to each ROI (min= 5; max= 92)42.

The fully preprocessed gene data comprised of a 34 by 10,027 matrix of
microarray array gene expression data. These data were used for a subsequent PLS
analysis (see “Statistics”; “PLS analysis”) and pathway enrichment analysis (see
“Gene enrichment analysis and visualization”).

Statistics
Predictions of spatial embedding. To assess the performance of the optimal
matching GNMs to produce networks with spatial embedding of topological
characteristics, we averaged across each subject’s best performing simulation
(which achieved the lowest energy; descriptive statistics shown in the top row of
Supplementary Table 2) to produce a single 68 (ROIs) by one vector for each
measure. We did the same for their observed connectomes. Figure 3 shows their
linear correlations. In Supplementary Fig. 4a, we run the same process for local
efficiency (not included in the energy equation). For Supplementary Fig. 4b–e, we
correlate the same networks, but not for spatial embedding as these are global
network measures outside of the energy equation. Subsequently, we determined the
generative error (i.e., mismatch) for the simulations in terms of each statistical
network property within the energy equation at the node-level. This was done as a
simple subtraction of the observed from the simulated network (as shown in
Supplementary Fig. 5). The absolute mean ranked error was then calculated by
taking the modulus of the generative error, averaging across the four statistical
properties, and taking the rank order. All network measures were calculated using
functions from the Brain Connectivity Toolbox87.

Global associations of parameters with graphical and morphological measures. In
Fig. 4 and Supplementary Table 3, we present group level correlational analysis
between η, γ and observed global graph theory and cortical morphology measures.
In each case, the observed connectome and morphological measures were averaged
across the whole cortex.

PLS analysis. We used PLS regression to address two distinct aspects of the study.
First, we used PLS to determine the latent components of the wiring equation and
connectome features which best explain cognitive task performance (Fig. 5a). The
pcov and pcorr significance values of each component were determined by permuting
the cognitive data 10,000 times and comparing the observed covariance (pcov) and
coefficient of determinations (pcorr) relative to their null distributions. Figure 5b, c
shows the correlation of predictor and response scores and response and predictor
loadings of the significant PLS1 component (pcov= 0.009 and pcov= 0.049 in terms
of covariance explained and pcorr= 7 × 10−4 and pcorr= 4 × 10−4 in terms of
correlation coefficient) for each analysis, respectively. Second, we used PLS to
identify the linear combinations of genes that best predicted average nodal costs
and values each subject’s optimal simulation (as outlined previously). For this
analysis, subject 162 was removed from as they were the only subject to have an
optimally performing γ that was positive, which biased results due to being an
outlier (as parametrized values are calculated as (Ki,j)γ), leaving a sample of N=
269. For each of the N= 269 subjects, two PLS analyses were performed, providing
538 separate PLS analyses. We performed permutations of the correlations between
average scores and costs/values in the same way as previously to determine sig-
nificance of the PLS modeling across the sample. To assess the significance of each
gene in terms of its loading, we ran N= 1000 permutations of the response variable
for each PLS. This allowed us to compute a gene loading pcorr for each component
of the PLS which was collapsed across subjects (as visualized in Supplementary
Fig. 8b) for gene enrichment analysis (see “Gene enrichment analysis and
visualization”).

Variability in the decomposed wiring equation. To determine where variability
arises in the growth of the networks, we decomposed the wiring equation for each
subject. This was achieved by first running the optimal wiring equation for each
subject and taking their cost (a static Euclidean distance matrix), matching and
wiring probability matrices at each step in the network growth model. For each
subject, we took all edges that existed within the simulation and computed their
mean and SD (Fig. 6c–e) and then determined their CV (Fig. 6f shows their
distributions). To then explore within-connectome variability, we performed the

same analysis but collapsing across subjects to determine how nodes (summed
rows of the matrix) and edges (elements of the matrix) vary (Fig. 6g).

Gene enrichment analysis and visualization. We next aimed to elucidate the BPs
and CCs for which our gene lists converged on. A BP is defined as representing a
specific objective that the organism is genetically programmed to achieve. A BP is
accomplished by a particular set of molecular functions carried out by specific gene
products (or macromolecular complexes), often in a highly regulated manner and
in a particular temporal sequence (https://www.ebi.ac.uk/QuickGO/term/
GO:0008150) On the other hand, a CC is defined as a location, relative to cellular
compartments and structures, occupied by a macromolecular machine when it
carries out a molecular function. There are two ways in which the GO describes
locations of gene products: (1) relative to cellular structures (e.g., cytoplasmic side
of plasma membrane) or compartments (e.g., mitochondrion), and (2) the stable
macromolecular complexes of which they are parts (e.g., the ribosome) (https://
www.ebi.ac.uk/QuickGO/term/GO:0005575).

To elucidate BPs and CCs across the sample, genes with a pcorr < 0.05 following
permutation testing on each component were deemed significant. This provided an
individual-level vector of genes that were significant for an individual for each of
the nodal costs and nodal values PLS1. To collapse across subjects, genes were then
ordered according to their frequency in being significantly associated with
connectome growth across subjects for that component. The list stopped when
genes were significant for <10% of the sample. For each subject, PLS1 provided an
average of 581.5 significant genes (SD 101.4) for nodal costs and 437.6 significant
genes (SD 167.4) for nodal values (Supplementary Fig. 8a). When collapsed across
subjects as described, the nodal costs PLS1 had 1427 genes and the nodal values
PLS1 had 1584 genes ordered in terms of importance, which were then submitted
to a pathway enrichment analysis.

For all information as to the enrichment and visualization pipeline, please refer
to Reimand et al.43. In short, GO annotations are the most commonly used
resource for pathway enrichment analysis. g:Profiler44 (https://biit.cs.ut.ee/
gprofiler/gost) searches a collection of gene sets representing GO terms and, in the
ordered test, repeats a modified Fisher’s exact test on incrementally larger sub-lists
of the input genes and reports the sub-list with the strongest enrichment. Multiple-
test correction is applied to produce an adjusted p value (padj)43,44 (as visualized in
Supplementary Fig. 8c, d, which can be accessed via the links presented in
Supplementary Table 4). To visualize enriched pathways, we used
“EnrichmentMap” within Cytoscape v3.8.0 (http://www.cytoscape.org)43,96. All
default parameters were used. Pathways are shown as nodes (representing enriched
BPs) that are connected by edges if the pathways share genes. Nodes are colored by
their padj and edges are sized on the basis of the number of genes shared by the
connected pathways. To then identify clusters of themes, AutoAnnotate v1.3.3 was
used before manually curating the suggested theme names to accurately reflect all
pathways within each theme.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets supporting the current study have not been deposited in a public repository
because of restrictions imposed by NHS ethical approval, but are available from the
corresponding author on request. Requests for access can be made by research-based
institutions for academic purposes. A response can be expected within 1 week.
Unidentifiable simulated data can be found at https://osf.io/h9px4/?
view_only=984260dcff444b59819961ece9c724ec.

Code availability
Results were generated using code written in R, Python and MATLAB. All code is
available at https://github.com/DanAkarca/generativenetworkmodel97.
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