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Abstract

This study aimed to compare the results of distinct state-of-the-art phylogenetic
tree-building methodologies for a key yeast NGS dataset, with the ultimate goal
of establishing a yeast tree of life. Draft genome assemblies of seventy-five species
from the Saccharomyces complex, a well-studied group of species of academic and
industrial importance, first underwent a stringent quality control process, along
with a dataset from an outgroup species. This process uncovered a vast amount
of genomic information. New, good quality genome assemblies were introduced
for six Saccharomyces complex species and for four strains.

Key genomic differences were found in a quality-controlled subset of this
dataset including varying genome sizes (8-29Mbp), coding genome proportions
(54-77%) and number of genes (4,131-11,243). The total GC content was also
found to vary significantly across the dataset, ranging from 31.7% in a Tetrapi-
sispora blattae strain to 52% in a representative of Torulaspora globosa. The core
genome of forty Saccharomyces complex species was also identified in this study
and it was found that 591 genes with >50% amino-acid sequence identity were
present across all strains.

Phylogenetic trees were then built from the full 76 species dataset, compris-
ing Maximum Likelihood approaches for a seven-region Multi-Locus Sequence
Typing and 1,711 BUSCO gene datasets along with three variations of a recently
developed NGS alignment-free approach - Feature Frequency Profiles (FFP). The
resulting trees were then compared, with all trees found to be different, though
with the BUSCO and FFP 20-letter amino acid trees highly superior to the other
approaches. Despite the success of the FFP 20-letter amino acid approach for the
Saccharomyces complex dataset, simulation studies confirmed a sequence length
bias with the FFP two-letter RY alphabet and a GC bias with the FFP four-
letter DNA alphabet approaches. In an effort to overcome the biases within the
current FFP approach, a new software tool, jellyphy, was developed. Further
development of tools such as this will undoubtedly lead to new methods capable

of accurate phylogenetic estimation from yeast NGS datasets.
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Chapter 1

Introduction

Numerous scientific studies, from evolutionary analyses to industrially-focused
trait improvement programs, are enabled by having an accurate tree of life
that describes the relationships between organisms. The estimation of such
a tree of life depends on the availability of rigorous analytical methods and
good quality datasets. Ideally, such methods should be able to take advan-
tage of new genomic datasets that are becoming ever more prevalent. This
study is focused on the goal of achieving a tree of life for yeasts. It describes
work to compare different phylogenetic tree-building approaches with use of
a large new dataset of sequenced yeast genomes, as well as taking a closer
look at the genomic differences between such datasets. Here, we begin by
touching upon the diversity of yeast species and the current computational

methods for showing their phylogenetic relationships.

1.1 Yeast

Yeasts are defined as predominantly unicellular organisms of the kingdom of
Fungi, found within the phyla of Ascomycota and Basidiomycota (see Fig-
ure . At present there are around 1,500 recognised species distributed
between the two phyla. Although yeasts are predominantly unicellular or-
ganisms, they evolved from multicellular ancestors, with some species able

to develop multicellular characteristics by forming strings of connected bud-
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Figure 1.1: Fungal phyla and approximate number of species in each group,
shown with the Animal kingdom outgroup. Yeasts are found in the Ascomycota

and Basidiomycota at the bottom of the figure. Taken from Blackwell| (2011).

ding cells known as pseudohyphae (Knop| (2011))). Most yeasts reproduce
asexually by mitosis and many do so by the asymmetric division process
known as budding. Budding yeasts (‘true yeasts’) are classified in the order

Saccharomycetales within the Ascomycota phylum.

Yeasts are an ancient group of microorganisms and are believed to have
originated around 500 million years ago (Liicking et al. (2009)). Extant
yeast species use a plethora of organic compounds as a source of energy.
Yeast species can be obligate aerobes or facultative anaerobes and survive
under a variety of temperatures and conditions. As a result, yeast can be
found in a multitude of environments from the human gut (Huffnagle and

Noverr| (2013)) to deep-sea environments (Kutty and Philip| (2008)).



The subphylum Saccharomycotina of the Ascomycota phylum comprises
most of the ascomycete yeasts which includes the well-known baker’s yeast
Saccharomyces cerevisiae as well as opportunistic human pathogens such as
Candida albicans (Thompson et al. (2011)) and Eremothecium gossypii, an
agriculturally important plant pathogen (Wendland and Walther| (2005)).
Saccharomyces cerevisiae in particular has long been exploited for its capac-
ity to convert sugars to ethanol and desirable flavour compounds (Michel
and McGovern (1992)). Brewers, winemakers and bakers have been ferment-
ing alcohol well before Louis Pasteur demonstrated that yeast were responsi-
ble for this process (Pasteur| (1857)). Recent phylogenetic research into the
domestication and divergence of Saccharomyces cerevisiae beer yeasts has
shown the domestication of some yeast strains before 1857 (Gallone et al.
(2016)). The oldest known vessel for alcohol storage was found in China in

2005 and has been dated at around 7,000 years old (McGovern et al.[ (2004)).

Several species of the Saccharomycotina subphylum are of economic im-
portance and have been of great benefit to human society and quality of
life for a long time. In industry, yeasts have been used to produce more
than just beer and bread but also insulin, vaccines, food products, food
supplements, ethanol for the biofuel industry and to generate electricity in
microbial fuel cells. Yeasts have been acknowledged as amongst the most
important organisms in biotechnology for some time. They have small com-
pact genomes and thirty one percent of Saccharomyces cerevisiae genes have
homologs in the human genome which has led to them being used in genetic
studies. Academic yeast research is a very fast-moving field as, despite sev-
eral Noble prizes involving yeast research in recent years, much is still to be

learned from these extremely diverse organisms and their genomes.
Understanding the relationships between species of yeast can be highly

important, for example in enabling the leveraging of information across

closely related organisms and visualising evolutionary patterns of trait nov-
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elty amongst species and strains. Evolutionary analyses and the generation
of family trees of yeast species for academic and industrial reasons have
been a focus of study for some time. Early methods of understanding rela-
tionships between yeast species were phenotype-based or single-gene based
(usually a conserved ribosomal gene). In 2003, Kurtzman and Robnett
improved upon this by conducting a multi-gene approach to building a phy-
logenetic tree of the ‘Saccharomyces complex’ species. It must be noted
that this term, used for convenience in this thesis, is not in common use
today as it infers a large degree of similarity between this set of species to
Saccharomyces cerevisiae although this group of genera are quite divergent
from the model yeast. The approach used in the study resolved 75 species
into 14 clades (Figure Kurtzman and Robnett| (2003))). This same ap-
proach led to the circumscription of species and the proposal of new genera
(Kurtzman (2003)). In 2013, Kurtzman and Robnett once again took a
multi-gene approach to tree building in Ascomycota using Maximum Likeli-
hood techniques (Kurtzman and Robnett|(2013))). The results again showed
the limited congruence between a system of classification based on pheno-

type and a system based on DNA sequence.

More recently, this multi-gene approach has been expanded to include
1,233 protein-coding genes from 86 yeast genomes to reconstruct the back-
bone of the Saccharomycotina yeast phylogeny (Shen et al.[(2016)). In 2017,
Choi and Kim (Choi and Kim| (2017)) reconstructed the phylogeny of 244
fungal species (including a number of Saccharomycotina species) from whole
proteome sequences by use of an alignment-free approach called Feature
Frequency Profiles (FFP) (Sims et al|(2009a)). A phylogenetic tree of the
largest set of budding yeast species to date was constructed by Shen et al.,
in 2018 which took a concatenation-based Maximum Likelihood approach
using 2,408 amino acid orthologous groups (Shen et al. (2018)). Three hun-
dred and thirty two species from 12 major clades of the Saccharomycotina

subphylum were included in this genus-level phylogeny (See Figure .
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Figure 1.2: Kurtzman and Robnett Multi-locus Sequence Typing tree of seventy-

five Saccharomyces complex species and outgroup Wickerhamomyces anomalus

(formerly Pichia anomala; Kurtzman and Robnett| (I2003|)).
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There are number of yeast culture collections around the world, the Na-
tional Collection of Yeast Cultures (NCYC) is one of the largest and contains
some 4,000 strains from around 530 different species. The collection origi-
nally consisted of brewing strains but now also contains genetically-defined
yeast (used in many applications including cancer research), yeast asso-
ciated with food spoilage and yeast of medical and industrial importance.
Phylogenetic analysis of the NCYC strains has been highly useful for species
identification and historically, such analysis of selected species from the col-
lection has been based upon the use of ribosomal RNA sequences (Stratford
et al. (2002), West et al.| (2014])). More detailed analyses involving whole
genome datasets could help in learning more about the extensive biodiver-
sity of the NCYC collection, alongside other yeast datasets from around the

world.

1.2 Introduction to Phylogenetic Analysis

Phylogenetic analysis, or phylogenetics, is the study of evolutionary rela-
tionships among biological entities such as species, individuals or genes. The
development of an evolutionary tree helps us to think more clearly about
the differences between species and allows us to analyse them in a statis-
tical sense. Phylogenetic inferences generally involve finding homologous
characters - characters in different organisms that are similar because they
were inherited from a common ancestor that also had that character - and
comparing them using tree reconstruction methods (Delsuc and Brinkmann

(2005)).

The first known evolutionary tree was drawn by Charles Darwin in a
notebook in 1937 and later illustrated in his famous book On The Origin of
Species in 1859 (Figure[1.4] [Darwin| (1859)). This simple tree was soon after
elaborated on by the German scientist Ernst Haeckel, who coined the term

phylogeny and developed trees that looked more like those we seek to esti-
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Green: Fragmented; Blue: Missing).
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Figure 1.4: The first published illustration in 1859 of a phylogenetic tree, from

Charles Darwin’s famous book ‘On The Origin of Species’.

mate today (see Figure . As the homologous characters used for phylo-
genetic inference moved from phenotypic to molecular, with the rise of DNA
sequencing, our understanding of the relationships between species began to
change. The work done by Carl Woese and collaborators in 1990, which used
DNA sequences to construct a tree of life, enabled the definition of three
domains of life: Bacteria, Archaea, and Eukaryotes (Woese et al. (1990))).
More recently, a tree built from the genomic data of over 1,000 species
has led to questions regarding the validity of the three-domain topology,
with eukaryotes potentially relocated into the archael domain (Hug et al.
(2016))). Whilst there is yet to be a definitive tree of life consisting of all

lifeforms, great progress has been been made in quite a short period of time.

Phylogenetic trees can be used in different ways. They can help us to un-
derstand how genes, genomes and species have evolved. We not only learn
about how sequences have evolved in the past but can predict how they

may change in the future. As mentioned previously, phylogenetics based
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Figure 1.5: Ernst Haeckel’s Tree of Life in Generelle Morphologie der Organismen,
published in 1866. This is the first depiction of a comprehensive Tree of Life,

showing the kingdoms of Plantae, Protista and Animalia.
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on DNA sequence data can provide us with more accurate information re-
garding classification of species than traditional phenotype-based methods
(Kurtzman and Robnett| (2003))). They can also help to inform conservation
policy and forensics as well as being an important area of research within
the fields of bioinformatics and computing through the development of new

algorithms.

In recent years we have also seen the application of phylogenetics in infec-
tious disease surveillance and control. Molecular sequencing technology and
phylogenetic approaches can be used to learn more about a new pathogen
outbreak. This includes finding out about which species the pathogen is
related to and subsequently the likely source of transmission. This can lead
to a new recommendation for public health policy or new disease control
measures. [t can also be used in tracking of disease spread over time and
space during an outbreak, such as was done during the 2015 Ebola outbreak
in West Africa (Carroll et al. (2015]), Holmes et al.|(2016))) and more recently
in 2020 for the Coronavirus outbreak (Shereen et al. (2020), Hamilton et al.
(2020))).

A phylogenetic tree is comprised of nodes and branches (See Figure .
A node represents a taxonomic unit which can be either an existing species
or strain, or an ancestor. A branch defines the relationship between the
taxa in terms of descent and ancestry. The topology of a tree refers to the
branching patterns of the tree and branch length can be used to represent
the number of changes that have occurred along the branch. Where a tree is
rooted, the root represents the common ancestor of all taxa. A tree will also
have a distance scale which represents the number of differences between
organisms or sequences. The term clade refers to a group of two or more
taxa or DNA sequences that includes both their common ancestor and all

of their descendants.
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Figure 1.6: Basic structure of a phylogenetic tree, showing the key concepts of
taxon-representing nodes connected by branches that can be scaled relative to
the rate of evolutionary change. A tree may be unrooted or be rooted by various
algorithmic means. Clades represent taxonomically-meaningful groups of taxa.
In this example, human and mouse are more closely related to one another than
either is to fly, with the depicted clade representing the common taxonomic class

of Mammalia.

1.2.1 Rooted and unrooted trees

Trees constructed by computational means can be rooted or unrooted de-
pending on the input data and the algorithm used. A tree can be rooted
by using a species distantly related to the species of interest called an out-
group. It can also be rooted with the use of a molecular clock that defines
that changes that happen on tree branches arise at a constant rate across
all branches. This assumption can be unrealistic in cases where the species
are more distantly related and the circumstances under which they evolved

may have changed considerably throughout the tree (see below).

1.2.2 Characters and defining homology

Reconstruction of a phylogenetic tree involves the identification of homol-
ogous characters that are shared between different organisms, and the in-
ference of phylogenetic trees from the comparison of these characters using

reconstruction methods. Originally morphological or ultrastructural char-
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acters were used to distinguish different groups but such features are limited
in microorganisms. With access to DNA sequence since the 1980’s, the num-
ber of homologous characters has greatly increased. RNA and amino acid
sequences can also be used. Some genes are commonly used as reference
markers, for example the I'TS region of the ribosomal DNA gene in yeast
is used as a type of DNA barcode (Schoch et al.| (2012)). The reason for
such choices is because of the considerable degree of conservation in these
regions across organisms, although it must be noted that information from
a single gene can often be insufficient to obtain firm statistical support for
a node of a phylogeny. Using multiple genes or whole genomes can help
alleviate this problem by expanding the number of characters and reducing

biases caused by genes that evolve differently from the species as a whole.

In sequence-based phylogenetic reconstruction, we typically align DNA
or amino acid sequences of homologous genes from different organisms, such
that many of the characters match across most of the sequences (see Figure
. For some datasets this can be both computationally difficult and time
consuming as deletions and insertions in the sequence make it difficult to
decide where to put gaps. Software is available to construct these multiple
sequence alignments (e.g. MUSCLE (Edgar| (2004))) but with large numbers
of sequences with much variation the result may not seem optimal upon
human inspection and thus additional time will be required to manually

adjust the alignment.

1.2.3 Phylogenetic Methods

There are two main approaches for phylogenetic inference, distance-based
approaches and character-based approaches. Distance-based approaches
first convert a character matrix into a distance matrix that represents the
evolutionary distances between all pairs of species. The phylogenetic tree is
then inferred from this distance matrix using algorithms such as Neighbor-

Joining (Saitou and Nei (1987)) and UPGMA (Unweighted Pair Group
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Figure 1.7: Example of a Multiple Sequence Alignment of homologous amino
acid sequences from 23 species across the tree of life, and a phylogenetic tree

derived from it, taken from the iTOL website (https:// itol.embl.de/ help.cgi).

Method with Arithmetic mean) (Sokal and Michener (1958)). Character-

based approaches involve the simultaneous estimation of the tree topology
and other evolutionary parameters. These methods include Maximum Par-
simony (1983)), originally developed as a computationally tractable
method at a time when computing resources were limited. This method
selects the tree that requires the minimum number of character changes
along all branches of the tree to explain the observed data. With today’s

better computational resources the character-based method of Maximum

Likelihood (Felsenstein| (1981)), rooted in statistical theory, has become

more widely used. This method is based on a function that calculates the
probability that the given tree could have been produced from the observed
data. This function allows the incorporation of the processes of charac-
ter evolution (e.g. nucleotide substitution) into the model. A more recent
approach to phylogenetic reconstruction is Bayesian inference
). Bayesian methods derive the distribution of trees according to
their posterior probability, using Bayes’ Theorem to combine the likelihood
function with prior probabilities on trees and other tree parameters. Unlike
the Maximum Likelihood approach, which optimizes model parameters by
finding the highest peak in the parameter space, Bayesian approaches inte-

grate model parameters across all possible values.
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1.2.4 Models of evolution

Within a Maximum Likelihood or Bayesian analysis, a model of sequence
evolution (DNA, RNA or amino acid) is required to generate a phylogenetic
tree from a multiple sequence alignment, as the rate at which nucleotides
are substituted in a given sequence must be taken into account to get the
best possible tree estimate. The theory of a molecular clock was proposed
in 1965 (Zuckerkandl and Pauling| (1965)) and received backing by Motoo
Kimura in 1987 (Kimura| (1987)). This approach considered the rate of
molecular evolution to be approximately constant over time in all lineages.
This meant that times of divergence between genes, proteins or lineages
could be dated by measuring the number of differences between sequences.
A stochastic evolutionary model for DNA sequences was proposed by Jukes
and Cantor in 1969 (Jukes and Cantor| (1969)) followed by more complex
models such as the HKY (Hasegawa Kishino Yano) model (Hasegawa et al.
(1985))) and the GTR (General Time Reversible) model (Tavaré (1986))).
These models take into account the unequal rates of nucleotide change in
sequences leading, in many cases, to a better estimate of distances between
two DNA sequences. A range of evolutionary models also exist for RNA

and amino acid sequences.

1.2.5 Evaluating tree support

Bootstrapping and jackknifing are statistical techniques for assessing the
accuracy of almost any statistical estimate. Bootstrap and jackknife tests
on phylogenies started with the work of Mueller and Ayala (Mueller and Ay-
alal (1982))), Felsenstein (Felsenstein| (1985)) and Penny and Hendy (Penny
and Hendy] (1985)), Penny and Hendy| (1986)). The bootstrap involves in-
ferring variability in an unknown distribution from which a dataset was
drawn by resampling from the data with replacement and the creation of a
new dataset of the same size (see Figure [1.8). This new dataset is termed
a pseudoreplicate and statistical support involves evaluating whether the

original dataset is similar in a defined way to a set of pseudoreplicates. In
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process is repeated — usually 1,000 times. Branching patterns within the original tree
are compared to those within the trees derived from the random samples (circle) (Figure

taken from (2003)). Here, two of the three trees built from pseudoreplicate

datasets match the original tree.

phylogenetic analysis, this similarity is measured in the similarity of the
phylogenetic trees derived from the pseudoreplicate and original datasets.
The bootstrapping process randomly samples and replaces columns from a
species character matrix (species are the rows, characters are the columns,
for example from a multiple sequence alignment), whilst jackknifing does
so without replacement. A phylogeny is then constructed from each pseu-
doreplicate and a consensus tree can be built to summarise the number of

nodes that are shared among the set of trees.

When taking the Bayesian inference approach to phylogeny reconstruc-

tion, a posterior distribution of highly probable trees are generated given the

32



data and evolutionary model. The statistical support at a node in this case
reflects the probability that a clade exists given the data and evolutionary
model. Whilst using Bayesian inference takes an evolutionary model into
account and so may be more biologically realistic than bootstrapping, both
measures have their weaknesses. Smaller and larger clades tend to attract
larger support than a mid-sized clade as a result of the number of taxa they
contain (Prevosti and Chemisquy| (2010)). Also, bootstrap support can pro-
vide high estimates of node support as a result of noise in the data rather

than the true existence of a clade (Phillips et al.| (2004))).

1.2.6 Tree comparison metrics and dataset generation

There is quite a variety of approaches to phylogenetic tree building which
can make choosing the most appropriate method for one’s question and data
challenging. There is also no way to measure whether a particular tree is
accurate or not unless the true relationships among taxa are known from
another source of evidence. One method of assessing the most appropriate
tree building method to use would be the simulation of datasets which al-
lows the researcher to know the true or expected topology a method should
produce in a certain evolutionary scenario (Hall (2005)). There are also dif-
ferent tree comparison metrics which look at similarities in topology alone,

branch lengths or both.

The Robinson-Foulds distance metric (Robinson and Foulds (1981))) was
designed as a way to measure the distance between unrooted trees. This
method counts the number of branch partitions (or splits) that occur in one
tree but not in the other, scoring 1 for each non-matched partition (Figure
. The metric can either be unweighted or weighted, where the weighted
version takes branch lengths into account. The Mantel test (Mantel| (1967)))
tests the correlation between two distance matrices. It is non-parametric
and computes the significance of the correlation through permutations of

the rows and columns of one of the input distance matrices. The test statis-
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Tree 1 Tree 2

Figure 1.9: Robinson-Foulds distance (Figure taken from Mantel (1967)). This
method counts the number of branch partitions that occur in one tree but not
in the other, scoring 1 for each non-matched partition. Tree 1 contains the splits
AB|CD (obtained by bisecting the branch between nodes 1 and 2) and ABC|D
(between nodes 2 and 3) that are not seen in Tree 2. Conversely, Tree 2 contains

the unique splits AC|BD and ACD|B.

tic is the Pearson product-moment correlation coefficient r. The coefficient
r falls in the range of -1 to +1, where being close to -1 indicates a strong
negative correlation and 41 indicates a strong positive correlation. A value
of r = 0 indicates no correlation. Another more recently developed metric
is the Kendall-Colijn metric which measures the distance between rooted
trees (Jombart et al| (2015)), Figure [1.10). The metric records the distance
between the most recent common ancestor (MRCA) of a pair of tips and

the root, in each tree. The metric can either be unweighted or weighted.

Tree comparison methods were evaluated by Kuhner and Yamato in their
2015 study (Kuhner and Yamato (2015)). Here they evaluated the perfor-
mance of nine tree distance measures on two tasks; distinguishing trees
separated by lesser versus greater numbers of recombination events and dis-
tinguishing trees inferred with lower versus higher quality data. When com-
paring trees of similar topology, measures that make use of branch lengths

were found to be superior (the Robinson-Foulds metric performed best in
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Figure 1.10: Kendall-Colijn metric (Figure taken from Jombart et al.| (2015)).
A tree is characterized by the vectors m and M, which are calculated as shown.

These are used to calculate the distance between the trees for any A € [0, 1].

Here, d0(T1, T2) = 2 and d1(T1, T2) = 1.96.

this study). For dissimilar trees the topology-only measures are superior
(the Align metric of Nye et al.| (2006) proved optimal in this case). The
authors concluded that the best metric depends on whether branch-length

information is of interest.

1.3 Phylogenetics in the Next Generation Sequencing

era

Past methods used for phylogenetic analysis have had their limitations when
affected by confounding biological phenomena such as horizontal gene trans-
fer, hybridisation and missing data although these can often be combated by
increasing taxon sampling, the number of genes analysed or whole genome
analysis. Many phylogenetic tree building approaches were developed in a
time where we only had access to sequences of relatively short length, like a
single gene. In the space of a few years there has been a drastic reduction in
sequencing prices. This has allowed us to sequence whole genomes at scale.
As a result large whole genome datasets have become available for analysis.

With this though comes challenges in tree building and new approaches are
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being explored.

Next-generation sequencing (NGS) has resulted in much larger datasets
which can make the alignment step in tree building extremely difficult. As
a result, new alignment-free approaches have started to be developed which
essentially compare ‘word’ frequencies in sequences. These methods are
much more efficient as aligning two sequences takes time proportional to
their total sequence length whilst word frequencies, which most alignment-
free methods use, can be calculated in linear time (Vinga and Almeida
(2003)). Comparisons of the different approaches were made by Vinga and
Almeida in 2003 and since then many more improved approaches have been
developed which use word (or k-mer) frequency in alignment and assem-
bly (Flicek and Birney (2009)). In 2013, Roychowdury et al., generated
accurate trees with an assembly-free method using short sequence reads
(Roychowdhury et al. (2013)). In the same year Yin and Jin developed an
assembly-free method that created micro-alignments (Yi and Jin| (2013)).
More recently, the use of spaced-words instead of contiguous words to esti-

mate distances for trees has been proposed (Leimeister et al.| (2014)).

These alignment-free methods of sequence comparison are becoming in-
creasingly popular for genome analysis and phylogeny reconstruction as they
avoid the various difficulties of alignment-based approaches. One particular
method, FFP (Feature Frequency Profiles), has become widely used in the
last decade and will be discussed next. (Sims et al.| (2009al)).

1.4 Feature Frequency Profiles

The Feature Frequency Profiles (FFP) approach compares k-mer frequen-
cies between whole genomes and is particularly well suited to analysing
large whole-genome datasets as a result of its efficiency and the ability of
this method to capture phylogenetic signal(s) across entire genomes (Sims

et al.| (2009a))). This alignment-free method can and has been used with
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Figure 1.11: The Feature Frequency Profile (FFP) approach is used to A) create
a tree of books of literature based on word frequencies, showing that books of a
common genre tend to group together. Graphs in B) and C) indicate that the

optimal word length for discrimination of these books is [ = 9. Figure taken from

|Sims et a1.| (I20093{).

viral, bacterial, fungal and mammalian sequences in the past (Wu et al.
(2009)), |Sims and Kim| (2011]), |Choi and Kim| (2017))/Choi and Kim| (2020))).

FFP calculates the frequencies of features (e.g. DNA strings such as
‘AATT’) of a suitable length in one genome and compares them to those
frequencies observed in other genomes, using either a 4-letter DNA alpha-
bet (ACGT), a 2-letter RY alphabet (where R is Purines - A or G - and
Y is Pyrimidines - C or T) or a 20-letter amino acid alphabet. Then the
relative frequency of each feature is calculated and a distance matrix cre-
ated using the Jensen-Shannon distance (1991))). The distance matrix
can then be used to create a phylogenetic tree, either using early versions of
the FFP program (versions up to 3.19) or using third-party software such
as PHYLIP’s neighbor program (Felsenstein| (1989)) or BIONJ
(1997)). Figure illustrates the use of the FFP software to show rela-

tionships - in terms of common words - between books of literature.
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1.5 Sequencing Technology

In 2001 the full sequence of the human genome was released to the public.
This was the result of 15 years of work by scientists across the world and 3
billion dollars in funding. Since then the price and time required for genome
sequencing has been reduced significantly (Wetterstrand (2016))). Today
a high quality draft of the human genome costs around $1,500 and the
whole exome can be sequenced for less than $1,000 (Wetterstrand (2016))).
There has been a sequencing technology explosion since the Human Genome
Project ended that has allowed a multitude of questions about the genome

to be asked and answered at unprecedented speed and resolution.

Sequencing of DNA has evolved from 2D chromatography in the 1970’s
to the Sanger chain termination method which drove the Human Genome
Project and most recently the advances in next generation sequencing tech-
nologies (Metzker|(2010),|Glenn|(2011)). The “first generation” instruments
which employed the automated capillary electrophoresis based sequencing
were considered high throughput at the time but by 2005 the Genome An-
alyzer by Illumina took sequencing runs from 84Kb/run to 1GB/run (Il-
lumina (2016)). This was a fundamentally different approach which used
short reads and was done in a massively parallel fashion. This technology
revolutionised sequencing capabilities and launched the “next-generation”
in genomic science. Other technologies include SMRT sequencing (single
molecule real-time) which produces longer reads with an average read length
of around 10,000bp, modified base detection, high accuracy from unampli-
fied molecules and can even detect methylation (Roberts et al. (2013)).
Most recently, the extremely long lengths of Nanopore sequencing (Branton
et al. (2010)) are revolutionising the field. Once the cost and accuracy of
these long reads achieve levels similar to those of short-read sequencing,
genome sequencing and assembly will undoubtedly gain a further foothold

in modern biological research.
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The data output from NGS has more than doubled every year since its
inception (Wetterstrand (2016)). By 2014, the rate of data production had
climbed to 1.8 terabases of data in a single sequencing run. With this mas-
sive increase in data output at reduced time and cost, the ability to sequence
the whole genomes of many related organisms allows large-scale compara-
tive and evolutionary studies to be performed that were unimaginable a
few years ago. Within the yeast community, the genomes of thousands of
strains have now been sequenced, though as many of these were in popu-
lation genomics studies, the number of sequenced species is still relatively
low. Recently, the NCYC sequenced ~1,000 strains, approximately a quar-
ter of the collection, from ~200 of its species. This project aims to take full
advantage of these revolutionary technologies and massive datasets to re-
veal the genetic interrelationships of extant yeast species in the most precise

detail possible.

1.6 Aims and Objectives

The ultimate goal of the project is to contribute to the computation of a
yeast tree of life from whole genome sequences. However, several data and
technology gaps stand in the way of achieving this goal. It was noticed that
the NCYC sequenced genomes encompass almost all of the 75 species (and
outgroup) included in the seminal study of Saccharomyces complex species
shown in Figure 5.3l Consequently, an achievable aim of this project is
to use this new dataset as a basis to compare state-of-the-art phylogenetic
methodologies. No comparisons of phylogenetic methods have yet encapsu-
lated the broad range of techniques on offer to resources such as the NCYC,
for which no whole collection tree yet exists. Also, current choices may
not be optimal for large NGS datasets and potentially result in errors in
downstream analyses that rely on a high quality tree (e.g. convergent trait
evolution). Two additional aims of the project are to explore the genomic
diversity within the dataset and to assess the composition of and phyloge-

netic signal within the core genome of a subset of the dataset.
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The objectives of the project are to:

e undertake stringent quality control of the 76 species draft genome as-

semblies for use in the project.

e compare the results of five different phylogenetic tree-building ap-

proaches on the full dataset.

e investigate a hypothesised GC bias in the FFP four-letter DNA alpha-
bet approach through a simulation study.

e begin an effort to improve the current FFP approach by writing a new

piece of alignment-free software.
e assess the genomic similarities and differences within the dataset.
e test different approaches of core genome identification.

e compare phylogenetic trees built from yeast core genomes of varying

levels of sequence identity.

1.7 Summary of Thesis

In Chapter 2, generation of this new NGS dataset for the Saccharomyces
complex yeasts is discussed and measures to ensure that its quality is suffi-
cient for further analysis are examined. Chapter 3 discusses concepts such
as yeast core, pan and accessory genomes and looks at the composition
of, and phylogenetic signal within, a range of core genome estimated from
a subset of the Saccharomyces complex dataset. Chapter 4 takes a first
look at some global differences between the genome assemblies, examining
statistics such as gene count and GC content. In Chapter 5, phylogenetic
trees are generated from the new NGS datasets using five different method-
ologies, comparing them to one another and to the tree in Figure us-
ing two computational measures (the Robinson-Foulds and Kendall-Colijn

metrics). Chapter 6 examines the GC content within the Saccharomyces
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complex dataset and investigates a hypothesised GC bias with a simulation
study. Finally, Chapter 7 discusses the project as a whole and looks at the

next steps that could be taken in pursuit of a yeast tree of life.
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Chapter 2

Quality Control for a classic
Saccharomyces complex

dataset

2.1 Introduction

Laboratory quality control or analytical quality control, refers to the pro-
cesses and procedures designed to ensure that the results of laboratory
analysis are consistent, comparable, accurate and within specified limits
of precision. The high quality of biological data is crucial for achieving an
accurate outcome to a research question. With whole genome sequencing
(WGS) data, it is imperative to confirm the identity of a given genome
sequence when making biological inferences about a specific strain. In phy-
logenetic studies, an incorrectly identified strain or a contaminated sequence
can lead to an inaccurate conclusion being drawn regarding evolutionary re-
lationships. A whole genomic sequence should also be of good quality so as
to cover the full genome and thus give sufficient phylogenetic signal. Data
quality becomes even more important when making inferences regarding
gene counts and annotating a novel genome. Errors in an early publication

are then more likely to snowball through the scientific literature.
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There are a number of steps prior to obtaining a whole genome sequence
where issues may arise that could lead to a poor quality, misclassified or
contaminated sequence. Within the laboratory, there can be issues with
the original sample which is grown up prior to DNA extraction. In some
cases, particularly if working with old collections, like the NCYC, strains
could have been historically misclassified as a result of outdated classifi-
cation approaches or human error. A quality control step of sequencing a
DNA barcode such as the I'TS, 26S or 18S rDNA regions could be carried out
here prior to sending the whole genome for sequencing. Although, as DNA
sequencing has become more affordable this step may not be done. During
the strain growing process and DNA extraction, although done aseptically,
there is potential for human contamination which includes the microbes
that live on us. The subsequent library preparation and DNA sequencing
steps introduce further risk. These steps are usually done with more than
one strain on a plate which could result in sample mix up or contamination

from other strains.

If indeed all of these steps go according to plan and the strain is as
expected, quality control of the sequence must still be undertaken to assess
if there is sufficient genome coverage to make a reasonably accurate contig
or scaffold assembly, should these be required. A wide range of software
tools are now available for pre-processing of sequence read datasets and
their subsequent analysis. Here, outlines of the main third-party software

tools used in this project are given.

2.1.1 Sequence read pre-processing

Different software tools are available for the quality control of raw sequenc-
ing data. Programs such as FastQC (Andrews et al.| (2010)) are commonly
used to assess a range of sequence quality statistics such as read depth and
base quality measures. Sequencing reads can also be pre-processed prior to

genome assembly with tools such as Trimmomatic.

43



Trimmomatic Bolger et al. (2014). This software includes a variety of
processing steps for read trimming and quality filtering, including the re-
moval of read substrings where base quality is low. Trimmomatic also uses
two approaches to detect technical sequences within the reads. The first
mode searches for an approximate match between each sequence read and
user-supplied technical sequences such as sequence adapters and polymerase
chain reaction (PCR) primers, or fragments thereof. The second mode is
specifically aimed at detecting the common ‘adapter read-through’ scenario,
whereby the sequenced DNA fragment is shorter than the read length, which

results in adapter contamination at the ends of reads.

2.1.2 Read mapping

BWA |Li and Durbin| (2009), Li and Durbin| (2010) and |Li (2013). The
Burrows-Wheeler Alignment tool (BWA) is a read alignment package that
is based on backward search with Burrows-Wheeler Transform (BWT), to
efficiently align short or long sequencing reads against a large reference se-
quence, allowing mismatches and gaps. Read mappers that use the Burrows-
Wheeler transform, such as BWA, are very fast but tend to be less sensitive

than the best hash-based mappers.

Stampy Lunter and Goodson| (2011). This is a package for the mapping
of short reads onto a reference genome and which uses a hybrid mapping
algorithm and a detailed statistical model to achieve both speed and sensi-
tivity, particularly when reads include sequence variation. To achieve good
sensitivity Stampy uses a hash table, representing the location of selected
k-mers in the reference genome. To increase speed, the hybrid mode can be
selected which uses BWA to map the majority of reads that have a close

representative in the reference.
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2.1.3 Genome assembly

ABySS Simpson et al.| (2009). ABySS (Assembly By Short Sequencing) is
a parallelized sequence assembler for reference-based and de novo genome
assembly. In the first stage of this approach, all possible substrings of length
k (k-mers) are generated from the sequence reads. The k-mer data set is
then processed to remove read errors and initial contigs are built. In the
second stage, mate-pair information - should this be available - is used to
extend contigs by resolving ambiguities in contig overlaps. The primary
innovation in ABySS is a distributed representation of a de Bruijn graph,
which allows parallel computation of the assembly algorithm across a net-

work of commodity computers.

SPAdes Bankevich et al.| (2012)). This approach was originally designed for
single- and multi-cell bacterial data sets, although it can also be used for
the assembly of fungal and other small genomes. SPAdes uses k-mers for
building an initial de Bruijn graph and performs graph-theoretical opera-
tions which are based on graph structure, coverage and sequence lengths.

This approach can be used for short, long and hybrid assemblies.

2.1.4 Genome assembly quality

There are a number of ways to assess genome assembly quality, contamina-

tion or completeness, three of which are described below.

N50. The number of contigs and a statistic known as the N50 can in-
dicate the quality of a genome assembly. The N50 score is the sequence
length of the shortest contig at 50% of the total assembly length. While a
widely-used statistic, if a set of N50 values are derived from assemblies of
significantly different lengths they are usually not informative, even if for
the same genome. An alternative statistic is the NG50 statistic, which is
calculated in a similar way to N50, except that here 50% of the known or

estimated genome size must be of the NG50 length or longer. This would
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depend on having prior knowledge, or a good estimate, of the genome size.

Jellyfish Margais and Kingsford| (2011). This software looks at various
k-mer counts in sequence data such as draft genome assemblies and has
the potential to identify contamination in a sequencing dataset. Jellyfish
is an efficient k-mer counting tool which can count the number of features
which occur within a genome only once (‘Unique’), the number of features
not counting multiplicity (‘Distinct’), the total number of features includ-
ing multiplicity (‘Total’), the maximum number of occurrences of a feature
(‘Max count’) and the frequency of features of length & (e.g. 100 = features
of length k£ which appear at a frequency of 100 or more).

BUSCO Simao et al. (2015)). One quality control approach which measures
both genome assembly quality and annotation completeness is the identi-
fication of Benchmark Universal Single Copy Orthologous genes (BUSCO
genes), based on expectations of gene content within the assembly informed
by its implied evolutionary history. Protein coding genes that make up
the BUSCO datasets are defined as evolving under “single-copy control”
(Waterhouse et al| (2011)), and are selected from OrthoDB (Kriventseva
et al. (2019)) orthologous groups that contain genes present as single-copy
orthologs in at least 90% of the species included in the group. This es-
tablishes an evolutionarily informed expectation that these genes should
be found as single-copy orthologs in any newly sequenced genome or gene
set from that group. Therefore, if there are many BUSCO genes from the
appropriate clade that cannot be identified in a genome assembly or anno-
tated gene set, it is possible that the sequencing and/or assembly and/or
annotation approaches have failed to fully capture the complete expected

gene content (Seppey et al.| (2019)).
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2.1.5 Species identification

Whilst factors such as high read coverage and a good genome assembly are
optimal for many downstream analyses, they may not be necessary for a
phylogenetic study. A mediocre assembly may still be sufficient to give the
phylogenetic signal needed to infer the correct evolutionary relationships
during tree-building. More important in this case is that the correct species
has been confirmed for a given sequencing dataset. Inclusion of a misiden-
tified strain is a major problem in phylogenetic tree estimation. Species
identification can be confirmed through the genome assembly step, if the
sequence reads map very closely to a selected reference genome. Further-
more, the two approaches described below can be used where the species’

identity is unknown.

Kraken Wood and Salzberg (2014). Kraken is a system for assigning tax-
onomic labels to short DNA sequences, usually obtained through metage-
nomic studies. This approach utilizes exact alignments of k-mers and a
novel classification algorithm. If the expected species’ genome is in the
database then the query genome’s sequence reads will map to it. It also has
the potential to show contamination and even hybrid samples as the pro-
portion of reads mapping to different species or genera in a database can
be shown. One highly illustrative example of contamination detection with
Kraken, as well as a cautionary tale with regards to using publicly available
genomes, was shown in a 2014 study (Merchant et al. (2014))). Here, cow
and sheep DNA was found in the Neisseria gonorrhoeae TCDC-NG08107
genome that had been submitted to GenBank as complete. Kraken comes
with a standard database which consists of bacterial, archaeal, and viral Ref-
Seq genomes, along with the human genome and a collection of known vec-
tors. Additional databases including all RefSeq fungal genomes can also be
downloaded as of 2020. There is also an option to build a custom database

if required.
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BLAST |Altschul et al. (1990)). Although thousands of genomes are now
publicly available, there are a number which are misclassified or contami-
nated and even more which have yet to be sequenced. Where this is the
case a BLAST approach to species identification can be used. This is a rela-
tively simple and efficient test of species identification which finds regions of
similarity between biological sequences. The program compares nucleotide
or protein sequences to sequence databases and calculates the statistical
significance of each match. When taking this approach to species identifi-
cation, one must decide which or how many conserved genes to test and the
identity threshold or e-value at which to accept or reject identity. Different
conserved genes, usually rTDNA genes are assessed. The 26S, 18S and ITS
regions of the rDNA are commonly tested for yeast species, of which a large
number have been made publicly available within the GenBank database. In
2016, yeast ITS and LSU (large subunit or D1/D2 domain of the 26S gene)
sequences from 4,730 yeast strains (of 1,351 yeast species) from the CBS col-
lection were sequenced and submitted to GenBank (Vu et al.| (2016)). The
taxonomic threshold to discriminate the Ascomycete CBS yeast species was
found to be 98.31% using ITS barcodes and 99.41% when using LSU bar-
codes. The authors found that only 6 and 9.5% of CBS yeast species could
not be distinguished by ITS and LSU, respectively. Among them, 3% were
indistinguishable by both loci.

To conclude, quality control of sequence data is essential. There are
many ways in which one can receive sequencing data which is misclassified,
contaminated or of too poor a quality to give an accurate representation of a
genome. As a result, there are a range of different approaches and software
available for just this issue. Setting high thresholds for sequence quality and
species identification is very important. Unfortunately, even with a strin-
gent quality control step minor contamination can still occur. Depending
on how the sequence is to be used (e.g. for a phylogenetic tree comparison

project) this may be acceptable, whilst genome annotation would not.
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This project aimed to compare the accuracy of different phylogenetic
methods for a common dataset. To ensure fairness of findings and infer-
ences made, a high quality dataset was required. The aim of the quality
control step was therefore to prevent the construction of an incorrect phy-
logenetic tree and thus a misinterpretation of the relationships between
species. The identity and sequence quality of a dataset consisting of 75
Saccharomyces complex strains and an outgroup were assessed by different
methods. Assembly quality was assessed using metrics such as the N50
score, number of contigs and k-mer distribution (using Jellyfish, Margais
and Kingsford| (2011))). Species identity was confirmed with BLAST (blast+
2.2.30, Altschul et al.| (1990))) and in some cases a custom Kraken database.
Genome sizes, gene counts and BUSCO gene counts were also assessed to
aid in contamination detection or poor genome assembly. These steps re-
sulted in the removal of a number of misclassified or likely contaminated

genome sequences.

2.2 Data and methods

2.2.1 Data selection

Whole genome sequence reads from one strain of each of the 75 Saccha-
romyces complex species seen in (Kurtzman and Robnett| (2003))) plus those
from the outgroup species, were obtained. Of these 76 species representa-
tives (See Table [2.1]), 63 datasets were within the NCYC laboratory (See
Section for more details). Fifty datasets were derived from NCYC
strains, 12 were from CBS strains and 1 was from a DBVPG strain. The
remaining fourteen datasets were obtained from either the NCBI GenBank
(9 strains) or RefSeq (5 strains) databases. All strains selected were type
strains where possible and all underwent stringent quality control, including

the publicly available genomes.
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The species identity of twenty-five of these datasets were confirmed us-
ing both BLAST and the Kraken QC approach and the remaining fifty-one
were confirmed using the BLAST QC approach alone (See Section [2.2.5).
The N50 score, genome size and BUSCO gene counts were also taken into
consideration when confirming species identity. These combined approaches
aided in determining whether contamination or a sequencing or assembling
issue may have occurred during dataset generation. Several strain datasets

were rejected during this iterative process, resulting in a final 76 strain set.

2.2.2 DNA extraction

Of the 63 NCY C-derived datasets, 48 were achieved within a BBSRC-funded
whole genome sequencing project. The remainder were achieved within this
project, following the same DNA extraction protocol used in the earlier
project. All strains were grown in YM media at 25°C for approximately
three days. DNA was extracted with the Epicentre MasterPure Yeast DNA
purification kit. 1mL was taken from each of the 15 samples and placed in
labelled 1.5mL Eppendorf tubes. The cells were pelleted in 14K rpm for 5
minutes. The supernatant was discarded and pellets were frozen at —20°C
overnight. 100uL of Zymolyase (10mg/mL) was added to defrosted samples.
The samples were incubated for 30 minutes at 37°C then centrifuged for 5
minutes at 14K rpm. The supernatant was discarded and 300uL of Cell
Lysis Solution and 5uL of RNAse A were added. Cells were resuspended by
gentle vortexing and incubated at 65°C for 15 minutes. Samples were then
cooled on ice for 5 minutes. 150l of MPC Protein Precipitation Reagent
was added followed by vortexing. Cell debris was pelleted by centrifugation
at 14K rpm for 5 minutes. Supernatant was transfered to a clean Eppendorf
tube and 500uL of ice cold isopropanol was added. Samples were centifuged
at 14K rpm for 10 minutes to get DNA pellets. Supernatant was discarded
and 500uL of ice cold ethanol was added. Samples were centrifuged at 14K
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for 5 minutes. Supernatant was removed and tubes were left open for 5
minutes to allow any residual ethanol to evaporate. 35uL of TE buffer was
added and the samples were left in the fridge overnight for the DNA to
dilute. A Qubit fluorometer was used for DNA concentration estimation,

to ensure a sufficient quantity was present for whole genome sequencing.

2.2.3 Sequence read generation and pre-processing

All strains were sequenced using Illumina HiSeq or NextSeq short-read se-
quencers. The raw sequencing reads of the 62 datasets produced within
QIB (the 48 NCYC sequencing project datasets plus the 14 datasets gener-
ated here) were pre-processed by Dr Jo Dicks. For the 48 NCYC sequencing
project datasets, regions of low quality and any remaining adapter sequences
were removed using Trimmomatic v0.32 (Bolger et al. (2014); default pa-
rameters and adapter sequence files relevant to the sequencing library used
for each strain). Draft genome assemblies were subsequently estimated from
the paired trimmed reads using ABySS v1.9.0 (Simpson et al.| (2009)), with
the -k = 80 option. For a small number of datasets with poor assembly
statistics, genome assemblies were also generated using the SPAdes soft-
ware (Bankevich et al|(2012)) v3.13.1, with k = 30,40,50,60,70 and 80 to
see if improvements could be achieved. For the 15 datasets generated here, a
similar data processing regime was used, differing only in the use of BBTools
v38.47 (Bushnell B. — sourceforge.net/projects/bbmap/) with the clumpify

option prior to Trimmomatic in order to remove PCR duplicates.

Datasets for each of these strains were made available to this project
in three formats: a) raw sequence paired-end reads (FASTQ), b) trimmed
paired-end reads (FASTQ) following quality and adapter trimming, and c)

sequence contigs (FASTA) following assembly of trimmed reads.
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2.2.4 Sequence quality

The N50 scores and the number of contigs for each assembled genome
were assessed (See Table of the Appendix for all assembly results).
The average N50 of the final dataset was 217,552 with the highest being
1,398,029 (ATCC58844, publicly available genome) and the lowest being
2,328 (CBS106.43). The average number of contigs/scaffolds/chromosomes
was 3,075, with the lowest being 7 chromosomes (again ATCC58844) and
the highest count being 28,870 for NCY(C2450. Although some strains had
lower than expected scores, this was taken into account along with other
quality control measures such as k-mer distribution, BUSCO gene count
and BLAST species identity score, for the final decision on inclusion in this

dataset.

Jellyfish k-mer counting was carried out on the contigs, looking for the
number of k-mers of length 14. The k-mer length of 14 was determined
through the use of the FFP phylogenetic tree-building method (Sims et al.
(20092)) and the Robinson-Foulds metric (Robinson and Foulds (1981)),
explained in full detail in Chapter 5. For all analyses 10 threads, a hash
size of 100M and the counting on both strands option was selected. The
average counts for this dataset were: Unique k-mers: 8,343,675; Distinct k-
mers: 10,133,967; Total k-mers: 13,440,181; Max count for a k-mer: 3,868.
Strains particularly far above or below these counts were noted (See Table

of the Appendix for all assembly results).

2.2.5 Species identification

The BLAST quality control step was undertaken with BLAST version 2.2.30
(Altschul et al. (1990)) (blastn). This involved downloading the gene se-
quence of the relevant 26S (or 28S where this was available) and 18S rDNA
genes from GenBank (see Accession numbers in Table of the Appendix)

to use as query sequences. BLAST databases were created from the contig
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files of all strains, which were then queried. Strains were kept if the identity
score was above 95% for both regions. All BLAST results can be found in
Table 2.1l

Kraken was used to further confirm the identity of 25 datasets. A custom
database was built with the publicly available whole genomes of 30 Saccha-
romyces complex species and two outgroup species (as of early 2018) with
the Kraken v1.0 software (Wood and Salzberg (2014)). Eight other pub-
licly available genomes were originally selected for the database but failed
to pass the BLAST quality control step (i.e. failed to match their expected
species TDNA regions). Each strains’ trimmed paired read dataset was used
to test identity with the appropriate reference sequence. Strains with iden-
tity above 70% were kept, with the exception of hybrids (See Table of

the Appendix for Accession numbers).

2.2.6 BUSCO assessment

BUSCO v.3 (Simao et al.| (2015))) was used as both a QC tool and a means
of assessing differences between the genomes, including gene duplications.
The Saccharomycetales (odb9) lineage was used to generate the gene set
from the 76 species datasets, with contigs used as input. This resulted in
a total of 1,711 core genes across these species. Results were recorded as
‘Complete’; ‘single-copy complete’, ‘duplicated complete’, ‘fragmented’ or

‘missing’.

2.3 Results

The identities of 75 of the 76 species dataset were confirmed with the BLAST
step. The results of this process are shown in Table 2.1 For the 26S or
28S region, 71 of the 76 species had scores of 99% or 100% sequence iden-
tity. For the 18S region, 70 of the 76 had 99% or 100% sequence identity.
All strains had above 95% sequence identity to their respective rDNA re-
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gions with the exception of CBS8763. This strain, which was expected to
be Tetrapisipora nansiensis, had 91% sequence identity to the relevant 26S
query sequence and 98% to the 18S gene. This strain was re-sequenced but
the newer dataset appeared to be contaminated. The first assembly was
maintained in the dataset although it seems possible that this dataset does
not in fact derive from a Tetrapisispora nansiensis strain. The strain would

have been re-sequenced again if time had permitted.

The BUSCO analysis (shown in Table[2.2)) found 64 out of 76 strains had
more than 90% complete BUSCO genes (n = 1,711) present in their genome
assemblies. Irregardless of their low BUSCO gene counts, the remaining 12
datasets were kept for the phylogenetic comparison study as they passed
the BLAST QC and had relatively average k-mer distributions and genome
sizes. The BUSCO results of a subset of these genomes were investigated

further in Chapter [4]

Clade Strain ID Species name 26S 18S
1 CRS85 Saccharomyces kudriavzevii™ 100 100
1 NCY(C2578 Saccharomyces bayanus®T 100 100
1 NCY(C2888 Saccharomyces mikatae®T 100 100
1 NCY(C2890 Saccharomyces cariocanus®T 100 100
1 NCY(C3662 Saccharomyces paradozus® 99 100
1 NCYC392 Saccharomyces pastorianus®T 100 100
1 NCYCT78 Saccharomyces cerevisiae? 100 100
2 DBVPG7206  Kazachstania turicensis® 99*  99*
2 NCYC1417 Kazachstania lodderae®T 99 99
2 NCY(C2449 Kazachstania telluris™" 96 95
2 NCYC2450  Candida humilis” 100 99
2 NCY(C2483 Kazachstania piceae® 99 99
2 NCYC2560 Kazachstania sinensis® 99 99
2 NCYC2693 Kazachstania servazzii® 99 100
2 NCYC2701  Kazachstania viticola®" 100 100
2 NCYC2702 Kazachstania kunashirensis®" 100 100
2 NCYC2703 Kazachstania martiniae™ ™ 100 100
2 NCYC2729 Kazachstania africana® 100 99
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Clade Strain ID Species name 26S 18S
2 NCYC2827  Kazachstania rosinii® 99 100
2 NCYC2878  Kazachstania barnettii®" 100 100
2 NCY(C2991 Kazachstania spencerorum®T 100 99
2 NCYC3853 Kazachstania bulderi® 100 100
2 NCYC814 Kazachstania exigua™” 100 100
2 NRRLY1556  Kazachstania unispora™T 99 100
2 NRRLY17245 Kazachstania transvaalensis™ ™ 100 100
3 CBS421 Naumovozyma dairenensis™ T 100 100
3 NCY(C2898 Naumovozyma castellii®T 100 100
4 CBS4332 Candida castellii®" 100 99
4 CBST7729 Nakaseomyces bacillisporus®T 100 99
4 NCYC388  Candida glabrata® 100 100
4 NCYC768 Nakaseomyes delphensis®™ 100 99
5 CBS4417 Tetrapisispora phaffii®T 99 100
5 CBS6284 Tetrapisispora blattae™'T 100 100
5 CBS8762 Tetrapisispora arboricola®T 100 96
5 CBS8763 Tetrapisispora nanseiensis®T 91 98
5 NRRLY27309  Tetrapisispora iriomotensis™" 100 99
6 NCYC2754 Vanderwaltozyma yarrowii™T 100 100
6 NCYC523 Vanderwaltozyma polyspora® 99 100
7 NCYC1495 Zygosaccharomyces bisporus®T 100 99
7 NCYC2403 Zygosaccharomyces mellisTT 100 100
7 NCYC2789 Zygosaccharomyces lentus™T 99 99
7 NCYC3000 Zygosaccharomyces kombuchaensis® 100 100
7 NCYC568 Zygosaccharomyces rouzii > 100 99
7 NCYC573 Zygosaccharomyces bailii® 100 99
8 NCYC2489 Zygotorulaspora mrakii® T 100 99
8 NCYC2513 Zygotorulaspora florentinus®T 100 99
9 NCYC4020 Torulaspora delbrueckii® 100 100
9 NCYCh24 Torulaspora pretoriensis® 100 99
9 NCYC820 Torulaspora globosa™ T 100 99
9 NRRLY 1549 Torulaspora microellipsoides™ T 100 99
9 NRRLY17532  Torulaspora franciscae™ 100 99
10 CBS6340 Lachancea thermotolerans™ T 99 99
10 NCYC2508  Lachancea fermentati®T 100 99
10 NCYC2644  Lachancea waltii®" 100 99
10 NCYC2875  Lachancea cidri®" 100 99
10 NCYCb543 Lachancea kluyveri®T 100 100
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Clade Strain ID Species name 26S 18S
11 CBS4438 Kluyveromyces aestuarii®™ 100 99
11 CBS8778 Kluyveromyces nonfermentans®T 99 98
11 NCY(C2559 Kluyveromyces dobzhanskii® 100 98
11 NCYC2791 Kluyveromyces marzianus®T 99 99
11 NCYC416 Kluyveromyces lactis®™ 100 99
11 UCDb54210 Kluyveromyces wickerhamii™T 100 99
12 ATCC58844  Eremothecium sinecaudum™ T 100 100
12 CBS106.43 Eremothecium ashbyi® 96 97
12 CBS109.51 Eremothecium gossypii® 100 99
12 DBVPGT7215  Eremothecium cymbalariae 99 100
12 NCYC1563 Eremothecium coryli®T 100 100
13 AWRI3580 Hanseniaspora uvarum®™ 100 100
13 CBS2592 Hanseniaspora occidentalis™" 100 99
13 CBS285 Hanseniaspora lindneri®T 95 100
13 NCYC31 Hanseniaspora osmophila®™’ 100 100
13 NCYC36 Hanseniaspora vineae® 99 99
13 NCYC4006 Hanseniaspora valbyensis® 100 100
13 UTAD222 Hanseniaspora guilliermondii™ 100 99
14 NCYC3345 Saccharomycodes ludwigii® 99 99

Outgroup NCYC18 Wickerhamomyces anomalus® 100 99

Table 2.1: Results of BLAST querying of species-specific 26S and 185 rDNA gene

sequences for 75 Saccharomyces complex species and outgroup. Superscripts: B

- strains sequenced within a BBSRC-funded project to the NCYC; P - strains

sequenced within this project; N - NCBI-sourced genomes; and T - Type strains.
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2.4 Discussion

The quality control steps used were highly necessary for this project and shed
light on a crucial but sometimes overlooked part of working with biological data.
Many in-house sequenced and publicly available genome assemblies were, upon
investigation, found to be misclassified or extensively contaminated. This ex-
tended quality control analysis identified 75 of the 76 genomes as the expected

species, with uncertainty surrounding the final species dataset.

With regard to sequence quality, some genomes were found to have assembled
poorly which, although this can affect downstream inferences such as identifying
genes, were accepted for further analysis as the phylogenetic signal was likely to
be strong enough for this study. However, this would only be acceptable were

signal-weakening factors such as contamination to be ruled out first.

Whilst poor assembly quality can be the result of low read coverage or con-
tamination, it can also be the use of an inappropriate assembly parameter (e.g.
k-mer size) for a specific genome. Testing different assembly software can also be
the solution to a more accurate assembly. In this project the ABySS assembly
software was used for all genomes with an additional assembly with the SPAdes
software for some of the more recently sequenced genomes which failed to assem-
ble well with ABySS. SPAdes did not always increase the assembly quality, so
testing different approaches to find the best option for one’s data is the optimal

choice.

Assessing the assembly quality involved checking the number of contigs, the
N50 statistic and the k-mer distribution. A number of genomes had lower than
expected N50 scores and high contig counts. After passing other methods of QC,
such as having relatively normal k-mer distributions, reasonable genome sizes and
having identified as the correct species with BLAST, these genomes were deter-
mined to be sufficient for the phylogenetic study. Any further inferences derived
from poorly assembled or potentially contaminated species’ genomes were made

with great caution.

61



Identifying the species provenance of each dataset was carried out with BLAST
rDNA gene alignment and, in some cases, Kraken database mapping. BLAST
alignment of fundamental conserved genes is the most common approach to
species identification when a reference genome is not available. The decision
was made to use 26S (28S) and 18S regions of the rDNA as query sequences to
match against target genome assemblies. The additional I'TS region would have
added further to confirming or rejecting species identity in this project and is
recommended. However while there is a large number of ITS gene sequences
available on GenBank, some of the older ones must be used with caution as mis-

classification of species and strains via phenotypic identification is a possibility.

One of the issues with using such a BLAST approach includes selecting an
appropriate sequence identity cut-off for a match. Ideally species identity would
be indicated by a 99-100% identity score between query and target sequences,
although in some cases this could be too high or low. A 2016 large scale barcode
sequencing project found 9.5% of species’ LSU regions were indistinguishable and
so a second region, the ITS, was added which brought down the proportion of
unidentified strains to 3% (Vu et al| (2016])). In the study presented here, the
18S region was used instead of the ITS region as it is a longer gene and although
it is more highly conserved than the ITS region it was hoped this would add
to the ability to distinguish between species with very similar rDNA genes. A
lower limit of 99% sequence identity, however, does not allow for much varia-
tion in these regions. These are highly conserved genes but there can still be
higher than expected variation between strains within a species. Lowering the
species threshold below 99% may help identify a species but it must be done with
caution. In this study a threshold of 95% was selected, with the vast majority
matching 99% or 100% to the expected species. One species matched 91% to the
268 region which is believed to be too low a threshold but was kept in the dataset
and noted as likely misclassified. At present the source of the missclassification is
unknown. If time had permitted this strain or another, which was re-sequenced

unsuccessfully, would have been ordered from another collection and sequenced.
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The BLAST approach requires prior knowledge of the identity of a given
species. If a high quality match to expected species’ genes is not achieved then
one must take another approach to identify the species. Mapping one’s genome
to a large genome database is becoming a popular approach, as exemplified by
software such as Kraken. At the time of Kraken quality control on an initial
species set a fungal database was unavailable, hence the generation of one here.
As of 2020, a fungal database was recently made available with all RefSeq fungal
genomes. This could be further added to with GenBank assembled genomes if
more yeast species were needed. Doing so would require some form of species iden-
tity check (such as the BLAST process used here) as a number of these genomes
are misclassified as was found personally. With a high quality database one can at
the very least classify by genus and possibly even identify contaminated samples.
Kraken also has the potential to be used for identifying hybrid species and to give
their proportional make up. Preliminary findings testing hybrid genomes Saccha-
romyces pastorianus and Saccharomyces bayanus highlighted this potential use
(data not shown). There is confidence in the identity of all but one of the species
in this dataset through the use of the BLAST and/or Kraken approach. With
regard to contamination, it is noted that minor contamination of some assemblies
is still possible, as is also possibly the case with many assemblies in the public
domain. Going forward, taking a metagenomics approach to genome assembly

may be an interesting way to proceed.

The lower confidence in the species identity and possible contamination of
a subset of strains led to the gathering of information on k-mer distributions,
genome size, gene counts, GC content and BUSCO gene counts. It would be
expected that a mixed species sequence dataset would, depending on the pro-
portion of each species’ DNA present, have a larger than expected genome size
and more genetic words or k-mers. The genome sizes of all 76 datasets were
all recorded along with k-mer distributions with the intention of identifying any
contaminated samples. Genome size alone is not sufficient to do so as yeast are

known to undergo hybridisation and whole genome duplication events. Further-
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more, strain representatives of some species had not been sequenced before, so
reliable size estimates were not available. The k-mer counting tool Jellyfish was
used to assess k-mer distribution, including unique, distinct, total k-mers as well
as the max count of a k-mer. No correlation was found between unique k-mer or
max count of a k-mer and increasing genome size (data not shown). A correlation
between distinct k-mers and genome size and total k-mers and genome size was,
however found (r? = 0.6248 and 72 = 0.8553 respectively) (See Figures and
of the Appendix). The plot of total k-mers and genome size showed one clear
outlier, NCYC3345 (Saccharomycodes ludwigii, clade 14) with more than double
the number of total k-mers compared to genome size. One hypothesis for this

finding is contamination, which would require further investigation.

Although Jellyfish has the potential to detect contamination, when the ex-
pected genome size and breadth of k-mer/genetic diversity is unknown for a
species, it can be hard to definitively prove contamination. The effects of poor
assemblies on k-mer measures were also assessed by comparing N50 scores to the
various k-mer measures, with no correlations found (data not shown here). Ide-
ally, a study with known mixed sample sequences would be undertaken to more

clearly show the usefulness of this approach in detecting contaminated sequence.

The BUSCO analysis showed that 64 out of 76 species had more than 90% of
complete BUSCO genes. The assemblies with particularly low complete BUSCO
gene counts may be so for a number of different reasons. One factor is a poor
genome assembly, which can result in fragmented and even missing BUSCO genes,
particularly for low coverage datasets where contigs have not spanned, or spanned
fully, all gene sequences in a genome. The proportion of fragmented genes or miss-
ing genes and number of contigs or N50 was assessed here again but showed no
correlation in this dataset. Another possibility is that the BUSCO geneset does
not reflect a common core of all species of the group Saccharomycetales. For some
low BUSCO gene count strains, including publicly available ones (Hanseniaspora
wvarum and Hanseniaspora guilliermondii), many genes were missing although

the genome assemblies appeared of a good quality. This leads one to question
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what findings are a data issue and what are real biological signals. The BUSCO
approach did add confidence to datasets with lower scores for other QC statistics
but also raised questions regarding the genomes of these low gene count species.

The BUSCO data was explored further in the Comparative Genomics chapter
(Chapter [4).

2.5 Conclusions

Quality control of sequencing data is extremely important in order to make ac-
curate biological inferences. There are many places along the DNA sequencing
pipeline where error can occur. Taking a multi-pronged stringent approach to
quality control, as shown here, can greatly reduce the chance of the incorpo-
ration of a contaminated or incorrect strain. The steps taken here identified a
number of misclassified, contaminated and low quality sequencing datasets from
in-house sequenced and publicly available datasets, reflecting the need for this
crucial step. Ultimately, this approach identified 75 of the 76 genomes as the
expected species, with uncertainty surrounding the final species dataset. In the
next chapter, entitled Core Genome of a Saccharomyces complex dataset, we look
in greater detail at the genes which have been conserved across such a diverse

dataset.
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Chapter 3

Core Genome of a
Saccharomyces complex

dataset

3.1 Summary

The core genome of forty NCYC Saccharomyces complex species is investi-

gated.

Different sequence read mapping and assembly approaches are assessed.

Core proteins at varying thresholds of similarity are identified.

Phylogenetic signal between different core protein sets are assessed.

3.2 Introduction

Since the proliferation of genome sequencing in the biological sciences, the con-
cepts of core genome, pan genome and accessory genome have become frequently
discussed and analysed. What is the difference between them? The core genome
represents the genes present in all strains of a species or taxonomic grouping (e.g.
clade) (See Figure[3.1). It typically includes housekeeping genes for cell envelope

or regulatory functions. The pangenome is the entire gene set of all strains of a
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Figure 3.1: Pan, core and accessory genome. The pan genome is all genes present
in all strains (Union of all genomes). The core genome is the genes shared in all
strains (Intersection of all genomes). The accessory genome is the genes not

present in all strains.

species. Where genes are present only in some strains of a species this is con-
sidered the variable or accessory genome. These genes include those present in
two or more strains or genes unique to a single strain only, for example, genes for

strain specific adaptation such as antibiotic resistance in bacteria.

What is the advantage of identifying the core, pangenome or accessory genome
of a group of strains? This can aid in characterizing strains or species by their in-
dividual gene set (e.g. detecting virulence factors or commercially advantageous
traits only present in one particular strain of a species) which may help with
developing vaccines or anti-fungal drugs for that specific strain or species. The

accessory genome in particular was found to be an important contributor to pro-
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tein antigens in bacteria (Mora et al.| (2006)). This implies that for many bacterial
species, a protein-based universal vaccine would only be possible by including a
combination of antigens from the core and the accessory genomes. It can also
be useful for detection, identification and tracking of new strains in metagenomic

samples based on their individual gene subset of the species pangenome.

Looking at the core genome may also shed light on questions such as what
are the types of core genes shared by eukaryotic species? One may be inter-
ested in the size of a species pangenome, of a clade core genome, or of the eu-
karyotic pangenome. There are complications when estimating these gene sets
for eukaryotes including the abundance of transposable elements, hybridisation,
whole genome duplication, the presence of large gene families and the relative
incompleteness of genomic sequences, particularly of those containing numerous

repeats.

A few studies on fungal core and pangenomes have been undertaken to date.
Hsiang and Baille in 2005 compared Saccharomyces cerevisiae to distant fungal
species (and non-fungal species) and found that 17 of the core genes appeared
to be unique among the fungi studied (Hsiang and Baillie| (2005)). Of these 17
genes, two were found to be involved in protein biosynthesis, two in transport,
and one in sporulation. A more recent study looked at the pangenome of within
and across fungal species including S.cerevisiae, Candida albicans, Cryptococcus
neoformans var. grubii and Aspergillus fumigatus (McCarthy and Fitzpatrick
(2019))). Using Gene Ontology enrichment to look at the fungal core genomes of
this set of species, the authors showed that many housekeeping biological pro-
cesses, such as translation, nucleic acid metabolism and oligopeptide metabolism,
were significantly over-represented in each species (P<0.05). Furthermore, molec-
ular function terms for enzymatic and nucleic acid binding activity were also sig-

nificantly over-represented.

Among all eukaryotes presently sequenced, ascomycetous yeasts are arguably

one of the most well-described phyla with the pangenomes of Saccharomyces cere-
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visiae, Candida glabrata, Candida albicans as well as Schizosaccharomyces species
having been studied (Peter et al. (2018)), Carreté et al. (2018), Rhind et al.| (2011)),
Gabaldon and Fairhead (2019)). In 2018, Peter et al. identified 4,940 core open
reading frames (ORFs) across 1,011 S. cerevisae genomes. These isolates were
sourced from around the world and were from domesticated, wild, or human
origin (mainly clinical). This sequencing effort enabled the determination that
Chinese and Taiwanese strains were closer to Saccharomyces paradozxus and to
the root of the Saccharomyces genus than strains from any other origin, strongly
supporting a single out-of-China origin for S. cerevisiae, that subsequently spread
all over the planet (See Figure . As mentioned previously, eukaryotic genomes
may harbour introgressed genomic segments and undergo horizontal gene transfer
(HGT), both of which were indeed seen in |Peter et al.| (2018) with 913 and 183
cases found of these two phenomena respectively. Half of the HGT ORFs could be
traced to other Saccharomyces complex species belonging to the Torulaspora or
Zygosaccharomyces clades. These yeasts are known to share similar environmen-
tal fermentative niches, which likely favored frequent transfer of genetic material

between species.

Defining the core, pan and accessory genomes of a group of organisms relies
on establishing the orthologs amongst them. Orthologous genes diverge from
a most recent common ancestor (MRCA) due to speciation. Parologous genes
diverge from MRCA due to duplication. There are three types of methods for
identifying orthologs: tree-based, graph-based and hybrid methods. Tree-based
methods infer orthologs and paralogs by comparing phylogenetic trees estimated
from homologous (common ancestry) gene sequences to species trees. Graph-
based methods use pairwise alignments of genes to determine similarity between
proteins. Hybrid methods use a combination of tree- and graph-based methods
and are the most frequently used. In core or pan-genome analysis, the sequence
unit for the modeling could be for example genes, clusters of orthologous groups
(COGsS) (Tatusov et al|(1997)), coding sequences (CDS), proteins, concatenated
genes etc. There are a number of software approaches available to identify the

core genome depending on the desired input or output and model parameters.
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BPGA (Chaudhari (2016])), Roary (Page et al.| (2015))), PanOCT (Fouts et al.
(2012))) and PGAP (Zhao et al. (2012)) are just some commonly used software

for identifying orthologous gene clusters in microbial genomes.

In the past, bacterial comparative genomic analyses started by exploiting
~0.07% of a genome (16S rRNA) (Woese (1987)), later on using up to ~0.2% of
the genomic information (Multi Locus Sequence Typing) (Maiden et al. (1998)),
and more recently up to 100% of the information exploiting the pangenome (Tet-
telin et al.| (2005)). The largest amount of genomic information (whole genome)
is potentially ideal for estimating an accurate phylogenetic tree, but could a core
genome be sufficient when the computational resources are not available? If so,
what threshold of ortholog identity should be chosen? These questions are inves-

tigated in this chapter.

These prior studies collectively show that identifying the core genome of a
large and diverse group of species has many uses. It can aid in understanding the
phylogenetic history of a group of intra- or inter-species strains. In yeasts it also
has the potential for identifying essential genes which have uses within industry
or within medicine as anti-fungal targets. There are a number of approaches
to identifying core genes, depending on the input data, but a surprisingly small
number of studies have been carried out on a diverse yeast dataset to date. The
aim of this chapter was to shed light not just on the diversity of Saccharomyces
complex species but also the genomic similarities across the species. Forty species
across 11 clades and an outgroup were used for this study. Different sequence
read mapping and assembly approaches were assessed to help identify the number
and identity of the core genes. A clustering algorithm, BPGA was also used to
identify core genes at varying thresholds of similarity. Finally, these genesets
were used to build phylogenetic trees and were compared to a whole proteome

tree to assess differences in phylogenetic signal.
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3.3 Methods

3.3.1 Dataset

Whole genome sequences from forty Saccharomyces complex yeast species across
11 clades and one outgroup species (NCYC18: Wickerhamomyces anomalus)
from within the National Collection of Yeast Cultures (NCYC) were selected for
the analysis (See Figure of Appendix for species list). All of these genomes
are included in the larger 76 species dataset described in the previous chapter,
with the exception of NCYC2739 (Hanseniaspora wvarum). This genome was
later removed from the full dataset as it had an unacceptably low 26S identity
match of 87% to the reference genes from this species and was replaced by a

publicly available version of the species (AWRI3580; GCA001747055.1).

3.3.2 Mapping-based core genome prediction

Trimmed sequence reads (see previous chapter for details) from each of the forty-
one strains were mapped to two different reference genomes, Saccharomyces cere-
visiae (S288c; Accession: GCA000146045.2) and Candida glabrata (CBS138; Ac-
cession: GCF000002545.3) with Stampy (Lunter and Goodson| (2011))) v1.0.31
(default settings) and NextGenMap (Sedlazeck et al| (2013)) v0.5 (default set-
tings). Different divergence parameters were tested with Stampy (default =
0.001), ranging from 0.001 to 0.1, to see whether this affected the proportion
of reads mapping to the reference genome. However, little difference in the num-
bers of mapped reads was observed between parameter settings (data not shown),
so a final value of 0.001 was used. Samtools (Li et al. (2009))) v1.9 was used to

extract the mapped reads for counting and further processing.

The genome assembler software ABySS (Simpson et al.| (2009)) v1.9.0, with
the -k = 64 option was used to assemble the trimmed and sorted paired-end reads
which had mapped to the Candida glabrata and Saccharomyces cerevisiae refer-
ence genomes into gene-based contigs. The Trinity RNA-Seq assembler (Grab-
herr et al. (2011)) v2.6.5 was also used to assemble gene-based contigs from

the same paired-end reads due to its focus on shorter genomic segments. The
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align and estimate abundance Perl script was used following Trinity RNA-Seq
assembly, with kallisto selected as the estimation method. The AUGUSTUS
gene prediction software was used to extract and translate coding genes from
these gene-based contigs. The identities and locations of annotated proteins
within the reference genomes were obtained from the Saccharomyces Genome
Database (https://www.yeastgenome.org/) and the Candida Genome Database
(http://www.candidagenome.org/) respectively. The predicted protein sequences
from the gene-based contigs were then queried against these reference protein se-

quence sets using blastp and the number of unique protein hits counted.
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Figure 3.3: A depiction of the BGPA workflow, showing the various input format,

clustering algorithm and output choices. Taken from |Chaudhari| (I2016|) Figure 1.

3.3.3 BPGA-based core genome prediction

The AUGUSTUS gene prediction software was used to estimate and translate
coding sequences from the 40 Saccharomyces complex species. This dataset was

subsequently used as input to the Bacterial Pan Genome Analysis (BPGA) toolkit

(Chaudhari (2016)) v1.3 for core genome estimation. BPGA is a Perl software

tool that performs clustering between genes or proteins in the individual input
strains or species using third-party software. Clustering can be performed by one
of three dependant tools (OrthoMCL, USEARCH or CD-HIT) and at a chosen

level of sequence identity (default value 50%). The output of the clustering
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step is presented as a tab delimited gene or protein presence/absence matrix
(the pan-matrix) which can then be used for a range of downstream analyses,
including pan genome phylogeny estimation and COG/KEGG gene assignment.
Figure [3.3] illustrates the BGPA analytical workflow. Within this study, the
USEARCH clustering tool was selected for inter-protein sequence comparison
and five different sequence identity cut-offs - 50%, 75%, 80%, 85% and 90% -

were assessed.

3.3.4 BLAST annotation of core proteins

Both the assembled mapped reads and BPGA ‘core’ proteins from the two core
genome prediction pipelines were queried against the relevant coding annotation
database using blastp (Altschul et al.| (1990))) v2.2.30 in order, where possible, to
determine their identity and putative function. All accepted matches had e-values

<0.

3.3.5 Core protein tree-building

Five phylogenetic trees were built with FFP (Sims et al. (2009a))) v3.19 (k =
14, amino acid alphabet) of the 40 species dataset and outgroup with varying
numbers of ‘core proteins’. The choice of k-mer length is explained in detail in
the Phylogenetic comparison chapter (Chapter |5, section . Each dataset
comprised one of the BPGA ‘core’ protein sets, corresponding to the chosen
sequence identity cut-off, with the exception of the outgroup which contained
the full proteome (n = 6,043). Trees were viewed with Figtree (Rambaut and
Drummond| (2009)) v1.4.2 and compared to an FFP amino acid alphabet tree
which used the full proteome (average n = 5,438).

3.3.6 Tree comparison metrics

The Robinson-Foulds distance metric (see Introduction chapter), both weighted
and unweighted, were obtained for each pairwise comparison of the FFP pro-
teome and core protein set Newick trees using the dendropy library (Suku-

maran and Holder| (2010)) in Python (v.2.7.12). The Kendall-Colijn metric,
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both weighted and unweighted, was obtained with the treescape package (Jom-
bart et al.| (2015),v.1.10.18) in R (R Development Core Team| (2008),v.3.3.2).

3.4 Results

3.4.1 Read mapping

As part of the phylogenetic method comparison discussed in Chapter 5, a SNP
tree approach was undertaken, where SNPs were identified by mapping sequence
reads to a common reference genome, with the resulting variable sites used to
estimate a phylogeny. The results indicated that a large number of sequence
reads were unable to map to the S288c reference genome. Because of that obser-
vation, the reads in this analysis were also mapped to a second reference genome,
Candida glabrata CBS138. Initially, reads were mapped with Stampy using the
default settings. Five genomes from across the Saccharomyces complex as well as
the outgroup species were assessed. As shown in Table a significant drop in
the proportions of sequence reads mapping to the reference genome was observed,
for the most part decreasing with evolutionary divergence from Saccharomyces
cerevisiae. To make sure the read mapping software used was not partly or mainly
responsible for the poor mapping, the diversity setting of the mapper (Stampy)
was tested, with very little difference found (data not shown), even when account-
ing for a greater potential evolutionary distance from the reference species. A
second mapper was also assessed, NextGenMap, but yielded similar results (data
not shown). A closer examination of the reads of one strain, NCYC388 (Candida
glabrata), that mapped to the S288c genome showed that the largest proportions
of reads mapped to the mitochondrial chromosome (40%) and to chromosome 12
(13.6%), indicating a variable conservation of the genome among chromosomes

between the two species, and potentially across the species set.

3.4.2 Assembler comparison

Next, the identities of the reference proteins to which the various sequence read

datasets mapped were assessed, plus how the choice of genome assembler affected
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Species ID Clade | % Reads mapped

to S288c genome
Saccharomyces cerevisiae NCYC78 1 98.3
Kazachstania lodderae NCYC1417 2 25.5
Naumovozyma castellii NCY(C2898 3 214
Candida glabrata NCYC388 4 15.7
Zygosaccharomyces mrakii NCY(C2489 8 12.3
Hanseniaspora osmophila NCYC31 13 17.3
Wickerhamomyces anomalus | NCYC18 | Outgroup 10.5

Table 3.1: Percentage of sequence reads of six Saccharomyces complex strains and
outgroup (NCYC18) mapped to the Saccharomyces cerevisiae S288c reference
genome with Stampy (Lunter and Goodson| (2011)) v1.0.31.

the results. Once again using the clade 4 species Candida glabrata (NCYC388) as
an example, the mapped reads were assembled into contigs using the ABySS and
Trinity RNA-Seq assemblers. Both assemblers were tested to assess if one would
assemble a greater number of genes than the other. Putative identities of the
proteins within the assembled contigs were found using AUGUSTUS and blastp
comparison to annotated protein databases. Similar, but not identical, numbers
of nuclear-encoded proteins resulted from both approaches. Trinity RNA-Seq
resulted in 533 proteins, of which 509 were nuclear-encoded proteins and ABySS
resulted in 460 proteins, of which 443 were nuclear-encoded proteins. Four hun-
dred and eleven nuclear-encoded proteins (81% of Trinity RNA-Seq- and 93% of
ABySS-predicted nuclear-encoded proteins respectively) were found to share a

protein name between both sets (See Figure [3.4)).

3.4.3 BPGA core proteins

A different approach to looking at the number and identity of core proteins in
the 40 Saccharomyces complex species dataset was also undertaken. BPGA, a
pan-genome pipeline, was used to find proteins present in all species at a specified

sequence identity level. The program took the AUGUSTUS-predicted amino acid
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Figure 3.4: Total protein counts and shared protein names of three ‘core’ protein
sets. A. ABySS- and Trinity RNA-Seq-assembled proteins shared 411 protein
names. B. BPGA and ABySS-assembled proteins shared 171 protein names. C.
BPGA and Trinity RNA-Seg-assembled proteins shared 174 protein names.

sequences of each species’ whole genome as input and clustered proteins between
datasets at 50%, 75%, 80%, 85% and 90% sequence identities, resulting in 591,
82, 38, 19 and 5 core proteins respectively. The 591 proteins found at the 50%
sequence identity level within the NCYC78 genome (S. cerevisiae) were then an-
notated with blastp, as described in the Methods section. This number does not
account for core proteins encoded by the mitochondrial genome as AUGUSTUS
predicts only nuclear genes. Theses 591 proteins were then compared to the 443
ABySS-assembled and 509 Trinity RNA-Seq-assembled nuclear-encoded proteins
which had been identified from the S288c mapped reads. The BPGA proteins
had 171 proteins in common with ABySS-assembled reads and 174 with Trinity
RNA-Seg-assembled reads (See Figure (3.4)).

The BLAST-predicted identities of the 591 proteins found by BPGA can be
found, by chromosome, annotated according to the S. cerevisiae S288c reference
genome, within Table A closer look at the 19 proteins found at the 85%
sequence identity level showed that these proteins are predicted to be involved

in fundamental cellular processes including protein synthesis, cell structure and

metabolism (See Table [3.3)).
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3.4.4 Core proteins and phylogenetic tree building

The effects of varying numbers of core proteins on phylogenetic tree accuracy was
then investigated. This was done by building FFP amino acid trees of the 40 species
with the proteins found at the five levels of sequence identity (50%: 591, 75%: 82,
80%: 38, 85%: 19 and 90%: 5 proteins) and comparing them to the tree estimated
using the full protein set (average n = 5,438). The full proteome (6,043 proteins) of
NCYC18 was used as an outgroup for all trees. As shown in Figure [3.5]and Table
a tree built with all proteins (amino acid sequences excluding mitochondria) results
in the same topology as a tree built with 591 or 82 ‘core’ proteins, indicating that the
phylogenetic signal remains down to inclusion of only ~1.5% of the number of refer-
ence proteins. However, when also taking branch length into account, the distance
from the full protein set tree grows as the number of proteins used is reduced. As
the number of proteins is reduced below 82, both the topology-only and tree-based
metrics increase, though the relationship is not monotonic (See Table .

Tree Topology
Topology only measure

comparison metric and Branch length measure
Trees RF-Unweighted | KC-Unweighted | RF-Weighted | KC-Weighted
Core 591 vs proteome 0 0 4.862 0.9816
Core 82 vs a.a 0 0 8.782 1.664
Core 38 vs a.a 10 17.292 9.838 1.736
Core 19 vs a.a 8 2.646 12.236 1.921
Core 5 vs a.a 30 68.007 11.432 1.869

Table 3.4: Tree comparison metrics; Robinson-Foulds (RF) Unweighted and
Weighted, Kendall-Colijn metric (KC) Unweighted and Weighted. FFP 20-letter
amino acid alphabet trees of 40 Saccharomyces complex strains and outgroup with
varying protein content. Proteome tree (average n = 5,438), BPGA identified core
protein set trees; 591 (50% sequence identity), 82 (75% sequence identity), 38 (80%

sequence identity), 19 (85% sequence identity), 5 (90% sequence identity) proteins.
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3.5 Discussion

Whilst the comparative genomics chapter (Chapter [4]) will highlight the sometimes
vast genomic differences between species of the Saccharomyces complex, this chapter
identifies the similarities. Core protein sets were identified both by mapping strain-

specific reads to two reference genomes and by using a third-party software pipeline.

In the first analysis, Stampy was the initial software of choice for mapping se-
quence reads to a reference genome due to its prior successful use in projects within the
NCYC. However, a SNP-based tree produced for the Phylogenetic comparison study
contained a subset of taxa with very long branches, requiring further investigation
here. The proportion of S288¢c mapped reads from a Candida glabrata (NCYC388,
clade 4 species) genome was assessed at different divergence settings with a very low
number being mapped. A second mapper was also tested, NextGenMap, which re-
sulted in a similar number of mapped reads. Even when repeating the analysis with
a different reference genome, the number of NCYC78 (S. cerevisiae) reads which
mapped to the C. glabrata reference genome (CBS138), a highly similar proportion
of mapped reads was observed. These results indicated strongly that the observed
mapping bias was simply a reflection of the evolutionary diversity of the Saccha-

romyces complex rather than a software issue.

The next question was if this low mapping was repeated across the dataset. The
proportion of mapped reads from five genomes from across the complex, as well as the
outgroup species, were assessed. A maximum of 25.5% of sequence reads from clades
other than clade one were found to map to the S288c reference genome. Whilst this
is a small set of species which does not cover the majority of the Saccharomyces com-
plex species it seemed reasonable to hypothesise that these results would be reflective
of those in the full dataset, particularly in light of the phylogenetic trees built. The
observed gradual decrease in mapping as the evolutionary distance from the reference
genome increased also makes biological sense. A closer look at the locations of the
mapped reads on the S288c genome was made next for the C. glabrata (NCYC388)
representative. This examination found that the largest proportions of reads mapped
to the mitochondrial chromosome (40%) and chromosome 12 (13.6%). Conserved

genes are known to be found on both chromosomes. The genes present on the mi-
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tochondrial genome of S.cerevisiae include those related to energy production such
as ATP synthase subunits and cytochrome ¢ oxidase subunits. There are also two
rRNAs (218 and 15S) and 24 tRNAs (Foury et al.| (1998)) present within this genome.
Chromosome 12 of §.cerevisiae is also known to harbour essential genes including 22

nuclear tRNA.(Johnston et al.| (1997)).

The next step was to find the identities of those proteins to which these reads were
mapping. This was done by assembling the mapped reads into contigs, predicting the
proteins with Augustus and using blastp to count the number of proteins. Two dif-
ferent assembly tools were tested, Trinity RNA-Seq and ABySS, to see if there would
be a difference in the resulting number of proteins identified by the two pieces of soft-
ware. ABySS-assembled contigs resulted in fewer unique proteins being identified by
blastp than Trinity RNA-Seq (460 and 533 respectively). While the two approaches
were found to share 411 common proteins, using Trinity RNA-Seq appeared to offer

superior results, likely due to the gene-based nature of the datasets.

Next, these core protein sets were compared to the 591 proteins identified by
BPGA resulting in a much lower than expected number of common proteins (ABySS-
assembled: 171 proteins, Trinity RNA-Seg-assembled: 174). One would expect a
much higher match between the protein sets but one explanation for the low match-
ing may be the BLAST annotation step. The approach chose the first protein match
to confer a protein name which is not always the correct match. Variation in protein
names could also account for further differences. A future comparison should involve

a more sophisticated approach to account for this issue.

The BPGA program identified proteins present in all species at a specified se-
quence identity (50%: 591, 75%: 82, 80%: 38, 85%: 19 and 90%: 5 proteins). A closer
look at the 19 proteins found at the 85% sequence identity level showed that these
proteins are involved in fundamental cellular processes including protein synthesis,
cell structure and metabolism. The five essential proteins conserved at 90% sequence
identity were EFT1, RPL15B, GSP2, HHF2 and TCP1. EFT1 is an elongation factor
which catalyses ribosomal translocation during translation. RPL15B is the the large
60S ribosomal protein which, along with the 40S subunit, makes up a ribosome and

performs protein synthesis in yeast. GSP2 is a GTP binding protein which is involved
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in the maintenance of nuclear organization, RNA processing and transport. HHF2,
or Histone H4, is a core histone protein required for chromatin assembly and chro-
mosome function. Finally, TCP1 is a subunit of chaperonin-containing T-complex.
Chaperonin is a heat-shock protein and the T-complex mediates protein folding and

is also involved in actin cytoskeleton maintenance.

For a phylogenetic tree topology to reflect true evolutionary relationships as ac-
curately as possible, the dataset from which it is inferred requires the correct balance
of conservation and divergence. A core of conserved proteins ensures the backbone
of the tree will likely reflect the true organismal relationship. More variable proteins
ensure that different taxa can be properly distinguished from one another. The af-
fects of varying numbers of core proteins on phylogenetic tree accuracy was assessed
here by building phylogenetic trees of the 40 species with the BPGA core protein sets
found at the five levels of sequence identity (50%: 591, 75%: 82, 80%: 38, 85%: 19
and 90%: 5 proteins). The resulting FFP phylogenetic trees were then compared to
the full protein set tree (average n = 5,438). As the number of proteins was increased
and decreased the phylogenetic trees changed. The lowest number of proteins, 5 pro-
teins at 90% sequence identity, gave the least topologically similar tree to the full
proteome tree. As those five proteins are highly conserved, the sequences are likely
not different enough to provide enough data and therefore phylogenetic signal for
the FFP algorithm to provide accurate results. However, including just 82 proteins
(75% sequence identity) led to a tree topology identical to that achieved from the full

proteome.

3.6 Conclusions

Studies of the core genome(s) of yeast are lacking and have the potential to highlight
academically interesting and industrially- and clinically-relevant proteins. There are
many challenges in correctly identifying the core genome of a species or a clade of
species. When looking at a clade, how representative a strain is of that species and
are there sufficient species or diversity of species to make the correct inferences are
all questions that require further investigation. Choosing the most appropriate and

accurate software or pipeline for the study as well as being able to take account of the
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complications inherent in eukaryotic genomes such as transposons and hybridisations

for example is also required.

Here, core protein sets from 41 Saccharomyces complex yeast datasets were iden-
tified both by mapping strain-specific reads to two reference genomes and by using a
third-party software pipeline. These different approaches, as shown in this study, can
result in differing core protein sets which highlights the need for testing a number of
approaches. Given the current uncertainty in the overlap of results obtained by the
BPGA and ABySS/Trinity approaches, a BPGA analysis would be recommended. A
75% sequence identity threshold would likely achieve a dataset that was both repre-
sentative of the evolutionary signal within the genome(s) while also optimising speed
of analysis. As expected, the proteins identified here were found to undertake func-
tions which are essential to the survival of the species. Also, the affect that different
numbers of these core proteins had on phylogenetic tree topology was clearly shown
in this study and shows the need for deep consideration of which datasets to use
for phylogenetic studies. The next chapter delves further into the genomic diversity

contained within the Saccharomyces complex dataset.
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Chapter 4

Comparative genomics of a

Saccharomyces complex dataset

4.1 Summary

e The seventy-five Saccharomyces complex species and outgroup are quality fil-

tered for this comparative genomics study.

e The genome statistics, including genome size, gene counts, BUSCO gene counts,

proportion coding genome and GC content of the filtered dataset are compared.

4.2 Introduction

Comparative genomics can provide a highly detailed view of how organisms are re-
lated to one other at the genetic level and more generally how they are similar or
differ in terms of their genomic organisation, composition and features. The evolution
of genome content, traits and phylogenetic patterns can be uncovered in such stud-
ies. One may compare genome size, number of chromosomes or genomic ploidy, the
number of genes and the GC content, for example, of a number of strains or species.
This approach has been used to compare and contrast species from across the tree of
life from vertebrates to yeast and has highlighted conserved elements present in all
(Siepel et al.| (2005])). Comparison of the fruit fly genome with the human genome re-
vealed that about sixty percent of genes are conserved, including two-thirds of human
cancer-related genes (Myers et al.| (2000))). As such, the fruit fly has been used as a

model organism for cancer research showing the usefulness of comparative genomics
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studies (Mirzoyan et al.|(2019)).

As sequencing technology is growing easier and less expensive, it is being used for
a whole range of applications in agriculture, biotechnology, and zoology as a tool to
tease apart the often subtle differences among animal and plant species. The first
eukaryote whole genome to be sequenced was Saccharomyces cerevisiae in 1996 (Gof-
feau et al.| (1996)), followed by a number of academically and industrially important
species (Dujon and Louis (2017)). In the Saccharomycotina clade, a number of the
Saccharomyces species including ones used in the food and alcohol industry were se-
quenced next. This helped distinguish new clades and species as well as the large
scale of hybridisation in these species (Kellis et al.| (2004]), Gabaldén| (2020))). Since
then the number of yeast genomes being sequenced has continued to increase. One
of the first population genomics studies in yeast (55 Saccharomyces cerevisiae and
Saccharomyces paradozus strains) was published in 2009 (Liti et al. (2009)) followed,
in 2018, by a study with 1,011 Saccharomyces cerevisiae strains (Peter et al. (2018)).
These genomic analyses revealed a history of yeast domestication and the mechanisms

that have contributed to these species’ adaptation to anthropogenic environments.

Today, more than 1,500 yeast species have been described within two phyla (the
Ascomycetes and Basidiomycetes) and classied in a variety of lineages (Kurtzman
et al.| (2011))), of which only a subset has been studied at the genomic level so far
(Spencer and Spencer| (2013)). Whole genome sequences of distantly related yeast
species from across the Saccharomycotina have become available and much has been
learned by comparing these species. The depth of genomic diversity across the Sac-
charomycotina is much deeper than was initially expected and, as shown in Figure
is on par with levels seen in animals and plants (Shen et al.| (2018))). An early
yeast comparative genomics studies was performed in 2000 with 13 different species
which had been sequenced at low coverage, as permitted by the technology of the
time, and compared to S.cerevisiae (Souciet et al. (2009)). This work gave the first
quantitative estimates of the evolutionary spectrum covered by the Saccharomycotina
based on sequence divergence between orthologous genes (Malpertuy et al. (2000]))
and loss of microsynteny (Llorente et al, (2000)). In 2009, a comparison of the
complete genomes of five Saccharomyces complex species (Lachancea thermotolerans,

Lachancea kluyveri, Zygosaccharomyces rouzii, Kluyveromyces lactis and Eremothe-
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shows levels of evolutionary sequence

divergence within the budding yeast subphylum are on par with levels observed in ani-

mals and plants. The phylogenetic distance (in terms of amino acid substitutions/site)

between iconic species in budding yeasts (Saccharomyces cerevisiae), animals (Homo

sapiens), and plants (Arabidopsis thaliana) and other representative species in each

lineage is shown. For each lineage, the phylogenetic distance was estimated from

a concatenated Maximum Likelihood tree inferred from analysis of 295 single-copy

BUSCO genes.

89



cium gossypii) was undertaken (Souciet et al.|(2009)). This study found 3,300 protein
families were shared between the species and there was also a high degree of conserved
synteny. By 2010, more than 20 Saccharomycotina species had been fully sequenced
(Dujon| (2010))). This number has now risen to more than 100 (ignoring the many
hybrids) completely assembled sequences and permanent drafts with sufficiently lim-

ited numbers of scaffolds.

Yeast have a very broad range of ecologies with diverse metabolisms that have
yet to be exploited by the biotechnology industry or explored by science. In recent
years even more non-model yeast species have begun to be sequenced and compar-
ative genomics studies have been undertaken (Hittinger et al. (2015), Wolfe et al.
(2015)), Riley et al.|(2016), Dujon and Louis (2017))). These studies of diverse species
have shown the similarities at the genetic level and the wide-scale prevalence of gene
sharing through hybridisation, introgression and horizontal gene transfer, especially

in domesticated yeast.

The aim of this study was to get an overall genomic picture of 75 Saccharomyces
complex strains (and an outgroup), some of which have no publicly available genome
to date. Genomic statistics assessed include: genome size, gene counts, the proportion
of coding genome, whole genome GC content and BUSCO gene counts. The study
highlights a number of ‘genomic outliers’” which may have particularly interesting

evolutionary histories.

4.3 Methods

4.3.1 Dataset selection

The genomes of a set of 75 Saccharomyces complex yeast strains plus an outgroup
strain were sequenced as described in Chapter [2l This 76 species genome dataset was
then filtered to avoid potentially spurious conclusions being formed about a species
dataset as a result of its poor genome assembly. Two datasets were created, a) one
where the proportion of fragmented BUSCO genes was less than 4% and b) one where
the proportion was less than 2%. CBS8763 was also removed from both datasets as
the species identity was at the time unknown. This process resulted in a dataset of

size 67 genomes and another of size 58 genomes. The strains removed from the 67
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species set (bar CBS8763) also had N50 scores less than 20,000bp (See Figure
in the Appendix). In the more conservative 58 species set, the ten removed strains

included those with relatively average N50 scores amongst the full dataset.

4.3.2 Genomic profile

The genomic profile of each genome was assessed in different ways including, with
the use of a custom Python script, assessing the size of the genome, number of genes,
proportion of coding genome and GC content. Different k-mer count measures were
assessed with Jellyfish (Marcais and Kingsford (2011))) v.2.0. BUSCO (Simao et al.

(2015)) v.3 gene counts were also compared for each genome.

4.3.3 Tree annotation

The 18 taxa not included in the final 58 species dataset were deleted from the 76
species BUSCO gene tree generated for the phylogenetic comparison study in Chapter
using iTOL (Letunic and Bork| (2006)) v5.7. The removed taxa and nodes are
represented as dots on the resulting tree. The tree was then annotated according to

various genomic features using iTOL.

4.4 Results

4.4.1 The dataset

The number of fragmented BUSCO genes was taken as a measure of assembly quality.
Eight of the nine grey-shaded strains seen in Table were removed from the dataset
for this comparative genomics study as they have more than four percent fragmented
BUSCO genes (chosen quality cut-off threshold) (See Figure in the Appendix).
The ninth removed strain was CBS8763, which was believed to be misclassified. The
nine yellow-shaded strains are those included in the sixty-seven species dataset which
have between two and four percent fragmented BUSCO genes. The unshaded strains

are the fifty-eight species which all have less than 2% fragmented BUSCO genes.
Next, the average genome statistics of both datasets were compared (See Table

4.2). The average genome size, number of genes and GC content was found to be

highly similar between the two datasets whilst the coding genome measure was iden-
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tical (68%). The BUSCO gene information varied to a degree which likely reflects

the removal of the nine datasets with higher fragmented gene counts.
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Finally, the k-mer statistics (unique and distinct) found with the Jellyfish software
also differed between the two datasets. These initial findings indicated that although
gross genomic statistics varied between the two datasets, more fine-grained counts,
such as DNA k-mers were more strongly influenced by genome choice. As a conse-
quence, the more conservative 58 species dataset was chosen for a closer comparative

genomics study.

4.4.2 BUSCO statistics

The first annotated phylogenetic tree of the final 58 species dataset shows the pro-
portion of complete (single-copy and duplicated), fragmented and missing BUSCO
genes for each individual strain (Figure . Whilst the number of fragmented gene
counts were used to aid in the removal of potentially poorly assembled genomes for
this dataset, the number of complete and missing genes is also often assessed to
the same end. These counts can also highlight variations from the expected num-
ber of orthologous genes in a genome. Due to dataset filtering, all genomes have
less than 2% fragmented genes but a small number of the genomes are missing more
than 3% of the expected 1,711 BUSCO genes (Average = 1.7%). These four strains
are NRRLY17245 (Kazachstania transvaalensis, clade 2), ATCC58844 (Eremothe-
cium sinecaudum, clade 12), CBS7729 (Nakaseomyces bacillisporus, clade 4) and
NCYC1563 (Eremothecium coryli, clade 12). See Table of the Appendix for
all BUSCO counts.

Next, the complete BUSCO genes were investigated in more detail looking into
those present in single-copy and duplicated states (See Figure . The average
number of duplicated BUSCO genes for this set was 5.8% (median = 0.6) (See Table
of Appendix). Seven strains in this set had more than 11% of BUSCO genes
in duplicate with the remaining 51 below 3.9%. The highest numbers of duplicated
genes in this dataset was 77% from CBS4417 ( Tetrapisispora phaffii, clade 5) followed
closely by NCYC814 (Kazachstania ezxigua, clade 2) at 72.6%.
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Genomic statistics

Dataset | Genome size | No. of genes | Coding (%) GC (%)
67 species 12941378 5875 68 39.10
58 species 12882114 5785 68 39.32
BUSCO statistics

Dataset Complete Single Duplicated | Fragmented | Missing
67 species 95.10% 89.1% 6.00% 3.70% 1.24%
58 species 97.34% 91.53% 5.80% 1.711% 0.96%
Jellyfish k-mer statistics

Dataset Unique Distinct Max count
67 species 8439817 10037733 3476
58 species 8602693 10159861 2663

Table 4.2: Average genome statistics of two Saccharomyces complex species datasets,

of sizes 67 and 58 strains respectively.

4.4.3 Key genome statistics

The average genome size was found to be 12,848,934bps and ranged from 8,783,618bps
to 29,850,499bps (See blue bars in Figure . Four strains were found to have
genome sizes above 20Mbps including NCYC2449 (Kazachstania telluris, clade 2)
at the top of this list with 29,850,499bps, NCYC814 (Kazachstania exigua, clade
2) with 26,437,421bps, CBS4417 ( Tetrapisispora phaffii, clade 5) with 23,960,103bps
and NCYC2875 (Lachancea cidri, clade 10) with 21,335,293bps. At the other end of
the spectrum lies the smallest genomes of CBS109.51 (Eremothecium gossypii, clade
12) with 8,783,618bps and ATCC58844 (Eremothecium sinecaudum, clade 12) with
8,922,988bps.

The average number of genes was found to be 5,785 with numbers ranging from
as high as 11,243 down to 4,131 (See green bars in Figure . Four genomes
were found to be well above the average with the highest (11,243 genes) being
NCYC2449 (Kazachstania telluris, clade 2), followed by NCYC2875 (Lachancea cidri,
clade 10) which had 11,001, CBS4417 (Tetrapisispora phaffii, clade 5) with 10,479
and NCYC814 (Kazachstania exigua, clade 2) with 10,380 - the four longest genomes

listed above. The three genomes with the lowest number of genes were clade 12
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species including CBS109.51 (Eremothecium gossypii) with 4,131 genes, ATCC58844
(Eremothecium sinecaudum) with 4,299 genes and DBVPGT7215 ( Eremothecium cym-
balariae) with 4,531 genes. These three low gene-count genomes included the two

shortest genomes noted above.

Unsurprisingly, a strong positive correlation between genome size and the number
of genes was found (r? = 0.918, see Figure in the Appendix) and is reflected in
the resulting genome and gene statistics. A sizeable but weaker positive correlation
was also found between genome size and the number of distinct k-mers (72 = 0.7206,
see Figure in the Appendix). For both plots, the variance in the gene/ k-mer

count statistic increased as genome size increased.
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The percentage of each genome which is coding was assessed next (See Figure [4.5)).
The average was 68% and ranged from 77.33% down to 54.5%. NCYC4020 (Toru-
laspora delbrueckii, clade 9) had the highest proportion (77.33%) followed closely
by NRRLY17532 (Torulaspora franciscae, clade 9) at 76.86%. NCYC2754 ( Vander-
waltozyma yarrowii, clade 6) had the lowest proportion of coding genome (54.5%)
followed by NCYC2789 (Zygosaccharomyces lentus, clade 7) with 55%. Nonetheless,
these proportions are all high for eukaryotic genomes, highlighting the general stream-

lining of yeast genomes.

The average GC content in the dataset was 39.3% and ranged from 31.73% to
51.96% (See Figure [5.11)). NCYC820 (Torulaspora globosa, clade 9) had the high-
est GC content with CBS109.51 (Eremothecium gossypi, clade 12) and NCYC2789
(Zygosaccharomyces lentus, clade 7) close behind at 51.81% and 51.73% respectively.
The lowest value of 31.73% was seen in CBS6284 ( Tetrapisispora blattae, clade 5). In
general, GC content can be seen to vary quite significantly across the Saccharomyces

complex tree and even within individual clades.

4.5 Discussion

This study has helped uncover new information about the genomes of strains and/or
species for which no genomic details have yet been made publicly available. This
information may be of interest from an evolutionary biology point of view as well as
potentially highlighting new species for industrial application. Some of the species
with particularly interesting genomic features include Zygosaccharomyces lentus, Er-
emothecium gossypii and Eremothecium sinecaudum as well as species of the Hanse-

niaspora clade which will be discussed in further detail below.

Choosing the strains and genome assemblies to include in this analysis proved
challenging. The number of fragmented BUSCO genes was chosen as a proxy mea-
sure of assembly quality. First, a dataset excluding strains with more than four
percent of the BUSCO genes fragmented was assessed. Then an even more conser-
vative dataset which excluded strains with more than two percent was assessed. The
average genome statistics of both datasets were compared and the 58 species set was

selected for further analysis. This conservative approach was necessary while dealing
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Figure 4.5: Maximum likelihood phylogenetic tree of 58 Saccharomyces complex
species estimated from 1,711 BUSCO genes and annotated with percentage coding
genome (blue bars). Clade annotation is given compared to the clade ordering seen

in |Kurtzman and Robnettl (|2003|}.
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with low-cost high-throughput assemblies. When long-read sequencing can be done
more cheaply and with high accuracy in all genomic regions the true genomic char-
acteristics of all 76 species could be unearthed. Until this time, this low-cost short
read approach was undertaken with estimates of key genomic parameters made with

the resulting data.

Within the conservative 58 species dataset there is still reason to believe that a
number of the genomes may indeed be contaminated, particularly when looking at
gene duplication. Seven genomes showed a particularly large number of BUSCO gene
duplications (>11%). Whilst genome duplication or hybridisation could explain these
findings in theory, such events are rare and are usually followed by quite rapid gene
loss (Gao and Innan (2004), |[Naseeb et al.| (2017)). Another genome statistic which
requires further inquiry is the proportion of coding genome in each dataset. This
ranged from 77.33% down to 54.5% in this study, with the average being 68%. Yeast
genomes are compact and this study reflects that fact with the exception of a few. It
is biologically unlikely that these few yeast have such a large amount of non-coding

DNA but the genomes would need to be re-sequenced to confirm this hypothesis.

Zygosaccharomyces lentus (NCYC2789), a clade 7 species, is one of the higher
quality genome assemblies (N50 = 97,590) in this dataset and also has one of the
largest genome lengths at 16.94Mbps. The strain also has some other interesting
genome statistics including a large number of genes (7,399), a smaller than average
coding genome of 55% and a high GC content of 51.7% (third highest in the set).
This strain also has the third highest GC content at the third codon position in this
58 species set at 38%. This genome assembly is for a species which has no known
publicly available genome to date. The strain was isolated from spoiled orange juice
and deposited in the NCYC collection in 1996. This is a species which is important to
the food industry because of its resistance to commonly used food preservatives and
its ability to grow well at 4°C (Steels et al.| (1999)). In future, it will be interesting to
investigate genes potentially underlying these useful traits. Many industrial traits are
thought to be driven by gene copy number expansion, particularly in sub-telomeric
regions of the genome. The high observed gene count may provide useful candidates

for such an analysis.
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At the other end of the genome size spectrum lies a clade 11 species, Eremothe-
cium gossypii (CBS109.51). This strain was found to have the smallest genome at
8.8Mbps, 74% coding and the least number of genes at 4,131. This compact genome
is also reflected in the k-mer statistics with it having the second lowest number of
Distinct k-mers and fourth lowest maximum count for a k-mer. This strain also has
the second highest percentage of GC content at 51.8% and highest percentage of
which is at the third codon position (39%). A representative of this species was also
sequenced in a recent study |Shen et al. (2018]), in that case the strain ATCC10855.
The genome there was found to be 9Mbps in length, with 4,327 genes and 51.79%
GC content, statistics highly similar to those found in this study. Using a custom
Kraken database, CBS109.51 was found to be 97.14% identical to ATCC10855 at the
read level. Eremothecium gossypii, also known as Ashbya gossypii, is a filamentous
fungus which was first described in 1929 as a cotton pathogen transmitted by sucking
insects. In addition to cotton, it infects other agricultural crops such as citrus fruits.
The species is also used as a model to study filamentous growth due to its small hap-
loid genome and is used in industry for the production of riboflavin (Dietrich et al.

(2004).

A group of species which collectively appears to have lost a large proportion of its
genes lie within the Hanseniaspora clade (seven species in this study). Whilst these
strains were not included in the 58 species dataset, five out of seven were included
in the 68 species dataset and are nonetheless worthy of note. The proportions of
missing BUSCO genes within these five Hanseniaspora strains were found to range
from 11.9% to 46.2%. The proportions of fragmented genes ranged from 2.6% to 3.9%
and duplicated genes ranged from 0.1% to 1.7%. The proportions of BUSCO genes
along with the values of the other genome statistics were similar to those found for

the same species sequenced in a recent study (Shen et al.| (2018))).

Recently, multiple genome-scale phylogenies of species in the budding yeast sub-
phylum Saccharomycotina showed that certain species in the yeast genus Hansenias-
pora are characterized by very long branches [Shen et al.| (2016)), Riley et al.| (2016),
Shen et al. (2018))], which are reminiscent of the very long branches of fungal hy-
permutator strains (Rhodes et al|(2017)). If indeed these strains are high mutators

then perhaps this could explain the large loss of genes. Hanseniaspora species are
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found in high abundance on mature fruits and in fermented beverages (Albertin et al.
(2016)), especially on grapes and in wine must (Jordao et al. (2015), [Montero et al.
(2004)). It has been found that even with the use of S. cerevisiae starter cultures
in wine production, Hanseniaspora species, particularly Hanseniaspora uvarum, can
achieve very high cell densities, in certain cases comprising greater than 80% of the
total yeast population, during early stages of fermentation (Hendler et al.| (2017)),

suggesting exceptional growth capabilities in this environment.

A genomic study of Hanseniaspora genus species by Steenwyk et al., (Steenwyk
et al. (2019))) found that compared to S. cerevisiae, 748 genes were lost from two-
thirds of Hanseniaspora genomes examined, with a lineage dubbed the fast evolving
lineage (FEL) of yeasts (including H. wvarum) having lost an additional 661 genes.
In contrast, a slow evolving lineage (SEL) were found to have lost only an additional
23 genes. Both lineages were found to have lost major cell cycle regulators and DNA
damage checkpoint genes. Also, the average GC contents for FEL yeasts (33.10%),
SEL yeasts (37.28%), and all other Saccharomycotina yeasts (40.77 + 5.58%) were
found to be significantly different. Given the findings in these prior studies, the ex-
ceptional numbers of missing BUSCO genes within the strains sequenced in this study

should be investigated further.

This study has presented ten genomes in the conservative 58 species dataset that
are of relatively good assembly quality (N50> 30,000) and for which no genome se-
quence is known to be publicly available to date (See strain list in Table of the Ap-
pendix). Furthermore, six of these assemblies are the first sequenced representative of
a species. The assemblies of one new species and two new strains are of a particularly
high quality (N50> 100,000) - the species Saccharomyces cariocanus (NCYC2890)
and new strains of Torulaspora globosa (CBS820) and Kluyveromyces nonfermentans
(CBS8778). The new species genome, Saccharomyces cariocanus, is a Saccharomyces
sensu stricto (clade 1) species with similar genome statistics to other species in the
complex. The genome is of length 12Mbps, the coding genome proportion is 69.6%,
the estimated GC content is 38.22% and 5,526 genes were predicted for this dataset.
It also has 98% of the expected BUSCO genes present, of which 97.5% are in single
copy. NCYC2890 is the type strain for the species and was first described in 2000. It

was isolated originally from a fruit-fly in Brazil and is very closely related to North
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American Saccharomyces paradozus species (Naumov et al. (2000), Liti et al. (2006)).

4.6 Conclusions

Much information learned from comparative studies of yeast is applicable across eu-
karyotic organisms. More analyses such as these are increasing with the burgeoning
of genome sequencing and will likely answer even more questions about evolution as
well as have implications for industry. This analysis has given some first insights into
the wide genomic diversity within this set of species as well as highlighted a number of
particularly unusual yeast genomes. Also, new information about the genomes of 10
strains and /or species, for which no genomic details have yet been made publicly avail-
able, has been uncovered here. This study has also clearly shown the need for high
quality sequencing data for these types of studies in order to tell apart real biological
phenomena, such as whole genome duplication events, and contaminated sequences.
Many questions remain about the genomes of the Saccharomyces complex species and
this will require high quality sequencing data and large-scale comparisons, which is
very evident from this study. In the next section, the full 76 Saccharomyces complex

species dataset is used to compare different phylogenetic tree building approaches.
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Chapter 5

Comparison of phylogenetic
methods for a Saccharomyces

complex dataset

5.1 Summary

e Five phylogenetic trees are built from a dataset of seventy-five Saccharomyces

complex species and an outgroup using different approaches.

e The resulting trees are compared to each other and the tree in Figure |5.3| using

two computational measures (the Robinson-Foulds and Kendall-Colijn metrics).

e The FFP method is investigated further for potential biases in the approach.

5.2 Introduction

The reconstruction of an evolutionary tree helps us to think more clearly about the
differences between species and allows us to analyse them in a statistical sense. Phy-
logenetic trees can be built from different types of homologous biological data such as
conserved genes (e.g. ribosomal DNA), Single Nucleotide Polymorphisms (SNPs) and
more recently whole genomes. As discussed in the Introduction chapter, there are two
approaches for phylogenetic inference, character-based approaches and distance-based
approaches. Character-based approaches typically involve aligning the sequences of

one or more homologous genes and use methods such as Maximum Parsimony (Sober
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(1983)), Maximum Likelihood (Felsenstein (1981)) or Bayesian inference (Huelsen-
beck et al. (2001)) for tree building. Distance-based approaches convert a character
matrix into a distance matrix that represents the evolutionary distances between all
pairs of species. The phylogenetic tree is then inferred from this distance matrix using

an algorithm such as Neighbor-Joining (Saitou and Nei| (1987))).

Whilst character-based approaches require a sequence-alignment step, distance-
based methods could use gene, SNP or k-mer frequencies for example. A comparison
of these different types of phylogenetic inference methods was carried out in 2018 by
Lees et al., (Lees et al. (2018))). Four approaches, alignment-based, partial-alignment,
distance-based with alignment and distance-based without alignment, were compared.
Phylogenetic trees were built from simulated bacterial genome datasets and, as shown
in Figure [5.1] found RAXML (Stamatakis (2014)) and IQ-Tree (Nguyen et al| (2015))
along with a close reference alignment to be the most accurate and efficient ap-

proaches.

5.3 Alignment-free phylogenetic approaches

Next Generation Sequencing (NGS) has resulted in very large datasets (e.g. whole
genome sequences rather than sequences of just one or a few genes) for thousands of
species and strains across the tree of life. This data quantity can make the sequence
alignment step required by character-based phylogenetic approaches extremely diffi-
cult, both in computational and human time. As a result, new alignment-free ap-
proaches have started to be developed which compare word frequencies in sequences.
These methods are much more efficient than alignment-based methods (as indicated
in Figure as aligning two sequences takes time proportional to their total se-
quence length whilst word frequencies, which most alignment-free methods use, can
be calculated in linear time (Vinga and Almeidal (2003)). Many different alignment
free sequence comparison tools have been developed for phylogenetics as well as for
mapping, assembly and metagenomics (Zielezinski et al. (2017), |Zielezinski et al.

(2019)).

A recent comparison of alignment-free (AF) sequence comparison tools was carried
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Figure 5.1: Figure from |Lees et al.|(2018) (Figure 2). Plot shows ordered accuracies,
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out in 2019, showing the large number of approaches being developed as an alternative
to traditional methods for handling large datasets (Zielezinski et al.| (2019))). Some
variation in accuracy of the different software was found. To test the genome-based
phylogenetic analysis approaches, the authors used both assembled and unassembled
sequence (read) datasets as well as datasets of varying size and species. Twenty two
AF tools (70 tool variants in total) had their performance tested in phylogenetic
inference using complete mitochondrial genomes from 25 fish species, with the great-
est accuracy being achieved by nine AF tools which generated almost identical tree
topologies (normalised Robinson-Foulds (nRF) = 0.05) and 39 other tool variants
held joint second position with nRF = 0.09. These results indicate that most AF
methods tested infer trees in general agreement with the reference tree of mitochon-

drial genomes.

The authors also tested the performance of 16 tools (61 tool variants) on the
larger bacterial genomes of Escherichia coli/Shigella and nuclear genomes of plant
species (Zielezinski et al.| (2019)). This resulted in a lower performance than was
seen for the mitochondrial genome trees and differences in top performing tools for
the bacterial versus plant datasets. Some of the software tested were developed for
closely related organisms and so were found to be the best performing tools for the
bacterial dataset, yet performed poorly for the plant dataset. One such example is
the Phylonium (Fabian and Bernard (2019))) software which achieved an nRF value
of 0.04 for the bacterial dataset but an nRF value of only 0.64 for the plant genomes.
The best-performing tools for the plant data were found to be co-phylog (Yi and Jin
(2013)), mash (Ondov et al|(2016)) and Multi-SpaM (Dencker et al. (2018)), all of
which had an nRF value of 0.09. Overall, across the two datasets, the best performing
tools were co-phylog, mash, Skmer (Sarmashghi et al.| (2019)), FSWM (Leimeister
et al. (2017)) and FFP (Sims et al.| (2009a))). In addition, previous testing of co-
phylog on NCYC sequence datasets (Dr Jo Dicks, pers. comm.) found that while
the software ran well on a small strain dataset, there was an exponential increase in

computation time, with a 94-strain dataset taking ~6 weeks to run.
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5.3.1 Feature Frequency Profiles

One highly popular method of alignment-free phylogenetic analysis is Feature Fre-
quency Profiles (FFP). The FFP software is a collection of utilities for implementing
the FFP methods of phylogenetic comparison, it is suitable for viral to mammalian-
scale genomes and has been used successfully with viral, bacterial, fungal and mam-
malian sequences in the past (Wu et al| (2009)), Sims and Kim| (2011), Choi and Kim
(2017)) JChot and Kim| (2020)). FFP calculates the frequencies of features (e.g. DNA
‘words’ such as ‘AATT’) of a suitable length in one genome and compares them to
the analogous frequencies in other genomes. The distance between word frequency
distributions can be calculated using the Jensen-Shannon distance (Lin (1991)) and
this can then be used to build a phylogenetic tree by third-party software such as
PHYLIP’s neighbor program (Felsenstein| (1989)) or BIONJ (Gascuel (1997)). Fea-
ture filtering can be done if one wanted to remove features of low or high frequency

from the comparison.

The first step in building a phylogenetic tree with FFP is creating a feature fre-
quency profile of each genome. The ideal k-mer/feature length will differ from species
to species and can be discovered by running the FFP program with a range of k-mer
lengths, plotting the Robinson-Foulds distances of k-mer vs k-mer +1 trees and then
picking one of the k-mers within a range of topological convergence. Once a k-mer
length has been decided upon, a feature frequency profile can be created (Figure
Step 1). This can be done for a given DNA sequence using an RY alphabet where
R is Purines (A or G) and Y is Pyrimidines (C ot T) or using the four letter ACGT

alphabet. A 20 letter alphabet can also be used if working with amino acid sequences.

To count the frequencies of each feature in the genome, a sliding window of length
[ is run through the sequence from position 1 ton - [ 4+ 1, with a step of size 1. Large
genomes, which consist of multiple chromosomes, are represented by a collection
of assembled chromosomes and others are just a collection of unassembled contigs.
When counting, [-mers continue over the whole genome, but the sliding window is
not allowed to span over sequencing gaps. For nucleotide sequences, the counts are

tabulated in the vector Cj for all possible features of length [,
Ci =<C1..Crg~
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where K, the number of all possible features, is 4 and 4 is the alphabet size. A similar
process is adopted for amino acid sequences, the only difference being the alphabet
size (20) and the potential number of features (20¥). The next step of the algorithm
removes the feature labels and aligns features by column (Figure Step 2). Then
the relative frequency of each feature is calculated (Figure Step 3). The raw

frequency counts are normalized to form a probability distribution vector or FFP,

F = CZ/ZCM

giving the relative abundance of each [-mer. This normalization procedure removes
small genome length differences as a factor in the comparison. Next, a distance
matrix can be created with Jensen—-Shannon Divergence (Figure Step 4) which
can then be used to create a phylogenetic tree with PHYLIP’s neighbor program or
BIONJ (Figure Step 5). The Jensen-Shannon Divergence (JSD) is a method
of comparing two or more probability distributions, producing finite and symmetric

values. For a series of probability distributions P, Ps, ..., P,,, JSD is defined as:

n n
JSDry (P, Poy...,Py) = H (Z mB») —> mH(P)
=1 =1

where 7y, ..., T, are weights selected for the probability distributions Py, Ps, ..., P,
and H(P) is the Shannon entropy for distribution P. For the two-distribution case
used here:

1
P1:P7P2:Q77r1:7r2:§
The Shannon entropy is defined as:

n

H(X) =Y P(x;)log, P(x;)
=1

The efficiency of the software varies depending on which alphabet (2, 4 or 20-
letter) is being used. A tree built from the two letter alphabet is the most efficient
in computational terms but has less precision and is missing information compared
to a four letter or twenty letter alphabet. The four letter DNA alphabet uses the
most information from within the input sequences but early analyses indicate has
less precision than use of the 20 letter amino acid alphabet which may make the
amino acid alphabet preferable where such datasets are available. Also, previous
analyses of NCYC genomes have indicated a key potential problem with the FFP

4-letter method: a phenomenon termed “GC-attraction” (similar to the well-known
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Step 1: Create a Feature Frequency Profile

RRR 182 RRY 130 YRR 130 YRY 110
RRR 175 RRY 139 YRR 138 YRY 116
RRR 191 RRY 134 YRR 134 YRY 131

pu

Step 2: Remove labels and put the same features in the same columns

182 130 130 110
175 139 138 116
151 134 134 131

Step 3: Get the relative frequency of the features

3.30e-01 2.36e-01 2.36e-01 1.99=-01
3.08e-01 2.45e-01 2.43e-01 2.04e-01
3.24e-01 2.27e-01 2.27e-01 2.22e-01

e

Step 4: Get a distance matrix

Sp1  0.00e+00 3.94e-04 5.9%-04
Sp2  3.94e-04 0.00e+00 8.65e-04
5p3  5.99%-04 8.65e-04 0.00e+00

Step 5: Construct a phylogenetic tree

1

Figure 5.2: The five steps of Feature Frequency Profile (FFP) phylogenetic tree es-
timation: Step 1) Count the occurrences of distinct ‘words’ in the input sequences;
Step 2) Remove word labels; Step 3) Normalise the word frequencies; Step 4) Calcu-
late a pairwise distance matrix from the word frequency distributions (e.g. using the

Jensen-Shannon Divergence); Step 5) Estimate a phylogenetic tree from the pairwise

distance matrix.
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long-branch attraction (Carmean and Crespi (1995), Bergsten| (2005)))) in situations
where GC content differs markedly between taxa. The present FFP algorithms are
essentially written for any type of string data, whether words in a book or sequences
in a genome, as long as the alphabets are of a certain type. Taking biology more

explicitly into account in these algorithms may result in a more accurate tree.

As mentioned previously, the FFP approach has been used for comparing mam-
malian, prokaryote and fungal genomes in the past (Sims et al. (2009b)), |[Jun et al.
(2010)), |Sims and Kim| (2011), Wang and Ash (2015)), |Chot and Kim| (2017)). The
resulting topologies were found to be highly similar to those of established trees. The
mammalian study used the RY-alphabet approach and also included a comparison
of the evolutionary signal from genic and non-genic sequence (Sims et al.| (2009b)).
The authors found that the non-genic portion of the mammalian genomes contained
evolutionary information that is similar to their genic counterparts. A phylogenetic
study of 884 prokaryotes which used the 20-letter amino acid alphabet was under-
taken in 2010 (Jun et al|(2010)). In 2011, the RY-alphabet approach was used again
to build a tree from 38 FEscherichia coli/Shigella group species. More recently, in
2017 a fungal tree of life analysis was published which used the FFP 20-letter amino
acid alphabet approach to build a tree which consisted of the whole proteomes of 244
unique fungal species and 71 protozoan species (Choi and Kim| (2017)). The study
compared findings from a gene-tree approach to that of the FFP approach. Similar,
but not identical, trees resulted. One of the most recent studies using the FFP 20-
letter amino-acid alphabet approach was in 2020 which used the whole-proteomes of
4,023 taxa to build a tree of life (Choi and Kim| (2020)). The findings of this study,
which challenged the previous consensus view of the tree of life, was followed by a
phylogenetic tree comparison study by Li et al., (Li et al.| (2020)). The FFP approach
was compared to concatenation and coalescence approaches using a real dataset and
a simulated dataset. The simulated dataset consisted of one-hundred genes which
were simulated under a 50-taxon balanced tree. The comparison found that the FFP
approach did not perform as well as the standard approaches. Consequently, there is

no current consensus view of the efficacy of the FFP approach.

As there is a wide variety of approaches to phylogenetic tree building, choosing

the most appropriate method for one’s question and data can be challenging. As
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discussed in the Introduction chapter, there are also different tree comparison met-
rics which look at similarities in topology alone or both topology and branch length.
The Mantel test (Mantel (1967)) and the Euclidean metric take both topology and
branch lengths into account whilst the Robinson-Foulds (Robinson and Foulds| (1981]))
and Kendall-Colijn (Jombart et al. (2015)) metrics have both a weighted (including
branch lengths) and an unweighted (topology only) option. A 2015 study which eval-
uated tree comparison metrics concluded that the best metric depends on whether

branch-length information is of interest (Kuhner and Yamato| (2015))).

In conclusion, phylogenetic tree building is key to uncovering the evolutionary
history of a taxonomic group of organisms. There are a number of different ap-
proaches and software available to date. Choosing the most appropriate approach
will depend on the data available as well as computational resources. In the age of
big-data, large numbers of whole genome sequences are becoming widely available.
With this, building trees by traditional approaches that involve an alignment step
becomes challenging if not infeasible. This problem has given rise to a number of
alignment-free approaches. The FFP method, an efficient k-mer based approach, is
both computationally straightforward and widely-used. While FFP has been used
successfully in many real data analyses, there have been suggestions of poor perfor-

mance or systematic biases for some datasets.

The aim of this chapter is to compare different phylogenetic approaches for a
key yeast dataset. FFP, SNP and BUSCO phylogenetic trees were constructed from
a 75 Saccharomyces complex genome (plus outgroup) dataset. The results of these
analyses were compared using the Robinson-Foulds and Kendall-Colijn metrics. The
FFP approach was investigated further to see whether a hypothesised GC bias for
the 4-letter alphabet was present in this dataset and whether genome length affected

the accuracy of results.
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5.4 Methods

5.4.1 Dataset

Three datasets for each strain of 75 Saccharomyces complex species plus outgroup
strains were used in this analysis: a) sequence reads, b) genome assemblies, c)
AUGUSTUS-predicted coding gene sets. All methods for dataset generation were
described in previous chapters with the exception of the pseudo-read generation of

seven datasets which is described in Section [5.4.4]

5.4.2 Kurtzman and Robnett tree estimation

Sequence files from a classic study of Saccharomyces complex yeast species (Kurtz-
man and Robnett| (2003)) were input to PAUP (Swofford| (2001))) v4.0168 to generate
a maximum parsimony tree with 100 bootstrap replicates, a process mirroring that
conducted by the authors. The tree was generated from all 76 species (including out-

group) which consisted of 4,962 characters, of which 929 were parsimony informative.

5.4.3 FFP tree estimation

First, the optimal feature (i.e. word or k-mer) length of a pilot dataset of 11 yeast
strain genome assemblies was established using the ffpvprof and ffpreprof options in
the FFP v3.19 program (not available in 2v3.0). The ffpvprof option counted the
usage of words of length 3 to 30 that occurred a minimum of three times. This was
used to determine the lower limit for word length. The ffpreprof option calculated
the relative entropy between observed and expected frequencies of words for a range
3 to 30 using an [-2 Markov Model. This was used to determine the upper limit for
word lengths. The optimal feature length range was found to be between 11 and 26.
This was followed by the generation of six two-letter DNA (RY) FFP trees ranging
from a k-mer length of 10 to 15. The trees were visually assessed to see when the tree
topologies converged. An optimal k-mer length of 14 was decided for further analysis
(See Appendix Figure [D.1]).

FFP trees of the full 76 yeast species dataset were then constructed using the
Jensen-Shannon Divergence matrix between feature frequency profiles of word length

14 for all 3 alphabets with FFP (Sims et al.| (2009a))) 2v3.0. The FFP amino acid tree
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was produced with the 20-letter alphabet (no classing selected) from AUGUSTUS-
predicted and translated coding gene datasets. The FFP four- and two-letter DNA
alphabet trees were constructed with default settings from genome assembly datasets.
The output matrices were converted to phylogenetic trees with the neighbor program
of PHYLIP (Felsenstein| (1989)) v3.695 (default settings). All trees were viewed
and annotated with iTOL (Letunic and Bork| (2006)) v5.7. A bootstrap option was

available in FFP v3.19 but failed to run on a yeast dataset of this size.

5.4.4 MLST SNP tree estimation

Single Nucleotide Polymorphism (SNP) trees were generated for the same 76 species
dataset. Of the 14 publicly available genomes used in this dataset seven had sequence
read datasets in addition to genome assemblies. For the remaining seven datasets, for
whom only assemblies were available, pseudo read datasets were generated with pIRS
(Hu et al. (2012))) v2 with parameters -x 50 (sequence coverage), —no-subst-errors (no
substitution errors) and —no-indels (no indels). Forward and reverse paired trimmed
reads for each strain were mapped to the Saccharomyces cerevisiae S288c reference
genome (Accession number: GCF000146045.2) with Stampy (Lunter and Goodson
(2011))) v1.0.31. Samtools (Li et al.| (2009)) v1.9 was used to order and index the
Stampy produced SAM files. Picard (Broad-Institute| (2018])) v2.9.4 with parameter
AddOrReplaceReadGroups was used to assign all the reads in a file to a single new
read-group. This was followed by running FreeBayes (Garrison and Marth (2012]))

v1.2.0-4 for variant prediction against the S. cerevisiae reference, output in vef format.

SNP calling was completed using a custom R (R Development Core Team (2008]))
script. High quality binary SNPs were identified across the whole genome first, fol-
lowed by the filtering of SNPs to just those present in Multi-Locus Sequence Typing
(MLST) genomic regions, genes and other genomic elements used to unambiguously
determine the taxonomic identity of an organism. In yeast, the MLST regions include
rDNA genes (18S, 26S, Internal Transcribed Spacer, 5.8S), a protein-encoding gene
(EF-1a) and Mitochondrially-encoded genes (158 rDNA, COX2). A bootstrapped
SNP tree was generated with the PHYLIP (v3.695) SeqBoot program (1,000 boot-
strap replicates), Gendist program (all alleles option), Neighbor program (neighbour

joining option, multiple dataset option) and consense (default setting). The tree was
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viewed and annotated with iTOL v5.7.

5.4.5 BUSCO tree estimation

A phylogenetic tree of 1,711 BUSCO genes across the 76 species dataset was con-
structed as described in the previous chapter using the Saccharomycetales lineage
option. This approach largely followed that used in [Shen et al. (2018). Initially all
potential paralogs or additional spurious genes which were the result of a bug in the
BUSCO software (also acknowledged by another user) were removed using a custom
Python script. Each gene was then aligned for all species using the MAFFT multiple
sequence alignment software (Katoh et al. (2002)) v7.529 (E-INS option, which allows
for large unalignable regions), followed by trimming of alignments with the trimAl
(Capella-Gutiérrez et al. (2009)) v3 software (gappy out option). Next, all genes of
length less than 167 amino acid sites and genes which were present in less than 50%
of strains were removed, again with a custom Python script. Species’ genes were
also removed if the length of the gene was less than half the size of the average for
that gene across the dataset. The resulting dataset consisted of 1,541 genes. 1Q-Tree
(Nguyen et al.| (2015)) v1.7 was used to construct a maximum-likelihood phylogenetic
tree under a single-partition LG4+G4 model (options used: subtree prune regraft 4,
mlacc 2slownni) which was found optimal for a similar dataset in a recent study (Shen
et al.|(2018)). Next the tree was bootstraped 1,000 times to assess the statistical sup-
port for the tree and concatenated with IQ-Tree (-nt AUTO, -m LG+G4). iTOL v5.7

was again used for tree annotation.

5.4.6 Tree comparison metrics

The Robinson-Foulds distance metric, both weighted and unweighted, were obtained
for each comparison to the Kurtzman and Robnett tree for all FFP generated and
BUSCO Newick trees using the dendropy library (Sukumaran and Holder| (2010]))
in Python v.2.7.12. The Kendall-Colijn metric, both weighted and unweighted, was
obtained with the treescape package (v.1.10.18, Jombart et al.| (2015)) in R (v.3.3.2,
R Development Core Team| (2008)). Topology measures alone of both metrics were
obtained for the MLST SNP tree as the consensus tree did not have branch lengths

but rather consensus/bootstrap values in the Newick tree.
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5.4.7 Data simulation

A short simulation project was undertaken to assess any correlation between FFP
tree accuracy and sequence length. The Saccharomyces cerevisiae S288c reference
genome (RefSeq Accession number: GCF000146045.2) was split into 17 individual
chromosomes. Each chromosome was used as the ancestral sequence to simulate 41
sequences over a given phylogenetic tree with the Seq-Gen software (Rambaut and
Grass| (1997))) v.1.3.4. The General-Time-Reversible model of evolution (Waddell and
Steel| (1997)) and a random seed number of 13 were selected for all runs. A previously
constructed MLST SNP tree consisting of 40 Saccharomyces complex strains and an
outgroup was used as the true tree over which to generate the sequences. Seventeen
FFP trees were built using each alphabet approach with the 17 chromosome simulated
datasets. The FFP amino acid tree approach required an AUGUSTUS prediction and
translation step prior to tree building. The Robinson-Foulds distance between each
chromosome tree and the true tree was assessed. A k-mer length of 14 was used for

all FFP trees.

5.5 Results

Phylogenetic trees estimated from 75 Saccharomyces complex species (plus outgroup)
using five different computational approaches were compared to the 2003 Kurtzman
and Robnett tree topology. Figure shows the original tree from the 2003 paper.
While the original Newick tree was unavailable for this study, the PAUP files from
which the tree was originally generated were provided by a colleague (Dr. K. T.
Huber, pers. comm.). The tree resulting from the process described in the Methods
section can be seen in Figure 5.4 The newly estimated tree consisted of the same
number of characters and parsimony informative characters as the published tree
(4,962 and 929 respectively). While the clading and clade ordering are highly similar
to those of the published tree, the topology, tree length and other measures varied
slightly from the original. In the original, the tree length was 5135, the consistency
index (CI) was 0.329, the retention index (RI) was 0.63 and rescaled consistency index
(RC) was 0.208. For the newly generated tree, tree length was 5245, CI was 0.322,
RI was 0.62 and RC was 0.2. One explanation for these differences could be the use
of a different version of the PAUP software to generate the tree. The original tree

used version 4.063 whilst version 4.0168 was used for this study.
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Metric RF- RF- KC- KC-
Unweighted  Weighted Unweighted Weighted
FFP-2 vs KR 125 12957 541 10095.5
FFP-4 vs KR 109 12931 344 10094.9
MLST wvs KR 77 - 258 -
FFP-20 vs KR 63 12928 93 10094.6
BUSCO vs KR 49 12939 78 10084

Table 5.1: Comparison between five phylogenetic trees and the newly estimated Kutz-
man and Robnett tree for 75 Saccharomyces complex species plus outgroup. Trees:
Kurtzman and Robnett tree (KR); FFP 2-letter RY alphabet (FFP-2), FFP four-
letter DNA alphabet (FFP-4), FFP 20-letter amino acid alphabet (FFP-20), BUSCO
core gene (BUSCO) and MLST SNP (MLST). Tree comparison metrics: Robinson-
Foulds (RF - Unweighted and Weighted) and Kendall-Colijn (KC - Unweighted and
Weighted).

The trees resulting from FFP (2-, 4- and 20-letter alphabets), BUSCO alignment
and MLST SNP tree approaches were compared to the Kurtzman and Robnett tree in
Figure The trees can be seen in Figures to and the measures of similarity
to the KR topology are shown in Table[5.1] The least similar to the original tree on all
measures was the tree estimated by the FFP RY-alphabet approach (RF-unweighted
= 125, KC-unweighted = 541) whilst the BUSCO tree was most similar in three out
of the four measures (RF-unweighted = 49, KC-unweighted = 78, KC-weighted =
10,084). There were 6,300 SNPs in the MLST dataset. The MLST SNP tree was
the third most similar tree topologically to the original tree (RF-unweighted = 77,
KC-unweighted = 258), behind the FFP amino acid alphabet tree. The FFP amino
acid tree was found to be the most similar FFP alphabet tree with an RF unweighted
distance of 63 and KC unweighted distance of 93.

While similarities to the Kurtzman and Robnett tree for the same taxa can be
seen in varying degrees across all three FFP alphabet trees (See Figures and
, the different alphabet choices have resulted in distinct tree topologies. The 20-
letter amino acid alphabet tree (See Figure was found to be the most similar to
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Figure 5.3: Originally published Kurtzman and Robnett tree of seventy-five Saccha-
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Figure 5.4:

saccharomyces unisporus
Arxiozyma telluris
Saccharomyces transvaalensis
Kluyveromyces sinensis
Kluyveromyces africanus
Kazachstania viticola
Saccharomyces martiniae
Saccharomyces rosinii
Kluyveromyces lodderae
Kluyveromyces piceae
Saccharomyces spencerorum
Saccharomyces kunashirensis

exiguus

turicensis
Saccharomyces bulderi

100

barnettii
Candida humilis
saccharomyces castellii
Saccharomyces dairenensis
Candida glabrata
Kluyveromyces delphensis
Kluyveromyces bacillisporus
Candida castellii
Saccharomyces pastorianus
Saccharomyces bayanus
Saccharomyces kudriavzevii
Saccharomyces cariocanus
Saccharomyces cerevisiae
Saccharomyces paradoxus

mikatae
Kluyveromyces blattae
Tetrapisispora phal

arboricola

Tetrapisispora iriomotensis
Kluyveromyces polysporus
Kluyveromyces yarrowii

Zygosaccharomyces rouxii
Zygosaccharomyces mel
Zygosaccharomyces bai
Zygosaccharomyces bisporus

Zygosaccharomyces lentus
Zygosaccharomyces florentinus
Zygosaccharomyces mrakii
Torulaspora globosa
Torulaspora franciscae
Torulaspora pretoriensis
Torulaspora delbrueckii

Eremothecium gossypii
Eremothecium ashbyi

Kluyveromyces aestuarii
Kluyveromyces nonfermentans
Kluyveromyces wickerhamii
Kluyveromyces lactis
Kluyveromyces marxianus
Kluyveromyces dobzhanskii
Zygosaccharomyces cidri
Zygosaccharomyces fermentati
Kluyveromyces thermotolerans
Kluyveromyces waltii
Saccharomyces kluyveri
Hanseniaspora valbyensis
Kloeckera lindneri
Hanseniaspora guilliermondii
Hanseniaspora uvarum
Hanseniaspora vineae
Hanseniaspora osmophila
Hanseniaspora occidentalis
Saccharomycodes ludwigii
Pichia anomala

Newly estimated Kurtzman and Robnett tree of seventy-five Saccha-

romyces complex species and outgroup Wickerhamomyces anomalus (formally Pichia

anomala) (Kurtzman and Robnett| (2003)). Clade annotation is given compared to

Figure F)E}
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Figure 5.5: FFP 2-letter RY alphabet tree (Purines and Pyrimidines) of seventy-
five Saccharomyces complex species and outgroup Wickerhamomyces anomalus
(NCYC18). Clade annotation is given compared to Figure Whole genome sizes

are shown alongside each species as blue bars.
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Figure 5.6: FFP 4-letter ACGT alphabet tree of seventy-five Saccharomyces complex
species and outgroup Wickerhamomyces anomalus (NCYC18). Clade annotation is

given compared to Figure
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Figure 5.7: FFP 20-letter amino acid alphabet tree of seventy-five Saccharomyces
complex species and outgroup Wickerhamomyces anomalus (NCYC18). Clade anno-

tation is given compared to Figure
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Figure 5.8: MLST SNP tree of seventy-five Saccharomyces complex species and out-

group Wickerhamomyces anomalus (NCYC18). Clade annotation is given compared

to Figure @
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Figure 5.9: BUSCO gene tree of seventy-five Saccharomyces complex species and out-
group Wickerhamomyces anomalus (NCYC18). Clade annotation is given compared

to Figure Log-likelihood of consensus tree is -38964070.90.
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Figure 5.10: A plot of sequence length vs Robinson-Foulds unweighted distance
for seventeen FFP two-letter alphabet (RY) trees shows a clear positive correlation

between these two factors.

the Kurtzman and Robnett clading and clade ordering, whilst the RY-alphabet tree
(See Figure has the least congruence. Also, long branches were highly frequent
within the FFP 20-letter amino acid and 4-letter DNA alphabet trees.

The variation in FFP tree topology was investigated further. An initial assess-
ment of the affect of sequence length on tree accuracy was undertaken through a
simulation study. Seventeen FFP trees were estimated using each of the three alpha-
bet approaches, one for each of seventeen simulated chromosomal datasets evolved
over a known phylogenetic tree, and were then compared to the true tree with the
Robinson-Foulds distance. The resulting 4-letter DNA and amino acid alphabet trees
showed no correlation between sequence length and tree accuracy (See Figures
and of the Appendix) but a clear positive correlation was found for the RY-
alphabet tree (R? = 0.8882) (See Figure . The genome size annotation of the 76
species FFP RY-alphabet tree in Figure also appears to show moderate signs of

clustering between genome size and tree topology.

Next, the association between genomic GC content and FFP tree topology were

assessed with the full 76 species set as shown in Figure (BUSCO and GC), Figure
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(FFP AA and GC) and Figure (FFP ACGT and GC). Both the BUSCO
and FFP AA trees indicate that the distribution of GC content among strain genomes
is essentially random (i.e. is not correlated with the tree topology). In contrast, the
topology of the FFP ACGT trees appears highly influenced by GC content, with

clusters of species with similar GC values.

5.6 Discussion

The results of all five tree building approaches investigated here showed some sim-
ilarity to the expected Kurtzman and Robnett topology but there was significant
variation between them. The complex BUSCO approach, which takes a longer time
to perform compared to the other approaches tested here, estimated the tree found
to be the most similar to the expected topology. The second most similar tree topol-
ogy was that seen within the FFP amino acid alphabet tree. The two approaches
are highly different (k-mer based vs concatenated genes) as well as the data used.
The BUSCO tree was built from 1,541 aligned orthologous genes whilst the amino
acid tree used word frequencies extracted from the full unaligned proteomes. As dis-
cussed in the Core genome chapter, deciding on what number of genes is best for
building the most accurate tree can be crucial. The BUSCO approach examined or-
thologous genes filtered by steps to remove spurious sequences. As noted previously,
the assembly quality of a number of genomes was low and this in turn can affect
the genes predicted by AUGUSTUS. With the full proteome, spurious sequences may
have played a part in the tree mislocation of at least one case, that of CBS106.43. In
the BUSCO tree the signal was likely sufficient to place the strain in the expected
clade but in the amino acid tree, which relied upon a larger and potentially more
divergent dataset than the BUSCO tree, the noise of spurious genes likely affected
its correct position in the tree. This is another benefit to the BUSCO concatenated

gene approach along with the highest similarity scores to the expected topology.

Interestingly, the observed poor assembly of CBS106.43, which is indeed likely
Eremothecium ashbyi, was found beside or close to NCYC2827 (Kazachstania rosinii
of clade 2) in all trees other than the BUSCO tree. One hypothesis for grouping with
NCY(C2827 could be contamination of NCYC2827 with CBS106.43, as they were se-
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Figure 5.12: FFP tree using the twenty-letter amino acid alphabet of seventy-five Sac-
charomyces complex species and outgroup Wickerhamomyces anomalus (NCYC18).

Whole genome GC contents are shown alongside each species as orange bars.
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five Saccharomyces complex species and outgroup Wickerhamomyces anomalus
(NCYC18). Whole genome GC contents are shown alongside each species as orange

bars.

135



quenced on the same plate. The FFP approaches in particular may be sensitive to
contamination due to the broad and largely unfiltered dataset they use. Conversely, a
strain found to be ‘out of place’ in the BUSCO tree was CBS8763. This strain, which
was originally thought to be the species Tetrapisispora nansiensis has recently been
identified as CBS8733 Hanseniaspora opuntiae (Carmen Nueno Palop, pers. comm.),

the likely result of a strain mixup.

The MLST SNP tree was built from single nucleotide differences within the seven
MLST regions of the 76 species. The resulting tree had clear similarities to the
Kurtzman and Robnett tree but less than would be expected. One explanation for
a greater than expected divergence could be missing genes. Of the 14 publicly avail-
able genomes included in the dataset, seven had no mitochondrial genomes. Of those
seven strains, two mitochondrial genomes were successfully sourced from GenBank
and merged with the corresponding nuclear genomes. Irregardless, with five species
missing their mitochondrial genome, the phylogentic signal in this tree was almost
certainly affected. Two out of the six MLST genes are mitochondrial (COXII and
ssRNA) which will have biased the tree to some degree, with further potential ef-
fects from the misclassified CBS8763 sequence and the poorly assembled CBS106.43

genome.

The three FFP methods each resulted in trees with quite different taxon ordering,
as seen in Figures and The distance metrics also reflected this difference.
The amino acid tree is the most similar FFP alphabet tree topologically to the clade
ordering in the Kurtzman and Robnett tree (which used multiple conserved gene
sequences). The observed difference between the FFP DNA and amino acid alpha-
bet trees is perhaps because the amino acid code masks many differences observed
at the DNA level, including all inter-genic regions, and therefore is more conserva-
tive. The FFP alphabet tree which was most dissimilar to the original tree was that
derived using the RY alphabet. The large topology-only measures seen for the RY
alphabet full genome tree may be partly explained when considering the study on
accuracy (using the Robinson-Foulds unweighted metric as the measure of accuracy)
and sequence length. Using this approach, topological accuracy clearly decreased as
sequence length increased, which may at least partly explain why the topology of the

RY full genome tree was divergent. The underlying reason for such a bias is yet to
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be understood but could be a result of the smaller alphabet, which would likely lead
to a weakening of the phylogenetic signal. Finally, the FFP 4-letter alphabet showed

a genome clustering that appears to correlate with GC content.

5.7 Conclusions

The main aim of this project was to compare the accuracies of a number of state-of-
the-art phylogenetic methodologies using a large, exemplar yeast NGS dataset. This
aim was achieved here by comparing five different tree building approaches using a
76 species yeast dataset. All trees constructed using the same yeast dataset were
found to be different. The BUSCO approach estimated the tree found to be the
most similar to the expected topology and despite it being more complex and time
consuming than the other approaches it would be the recommended choice for future

yeast phylogenetic studies.

The study showed that there are clear algorithmic differences in how these meth-
ods generate trees, highlighting the need for comparative studies of different ap-
proaches. Comparing and testing the accuracy of different methods is very important
as an incorrect taxonomy can greatly affect down-stream inferences. The causes for
these differences may be the result of the vastly different amounts and types of data
used. Datasets can range from whole genomes to a small number of conserved genes,
whilst the type of data used could include coding, non-coding or amino acid sequence.
Alignment free approaches have great potential when it come to dealing with large
whole genome datasets which are becoming more common in phylogenetic studies.
Using whole genomes can also harness a large amount of phylogenetic signal, which
can aid in building the most accurate trees. However, issues have been identified in
this study with the FFP software, which appears to have a sequence length bias with
the two-letter RY alphabet and a GC bias with the four-letter DNA alphabet. As a re-

sult, neither of these FFP alphabet approaches can currently be recommended for use.

The next chapter discusses GC content within genomes and investigates this GC
bias further with a simulation study. The early stages of a new alignment-free software

tool for phylogenetic analysis, which will aim to overcome such biases, is also touched
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upon.
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Chapter 6

Testing for a GC bias in the
FFP software

6.1 Summary

e GC bias seen in the FFP four-letter DNA alphabet tree building approach is

investigated with a simulation study.
e GC content by codon position is assessed.

e A new piece of alignment-free software is developed.

6.2 Introduction

Guanine and Cytosine (G4C) are two of the four nucleic acids of DNA and are found
at varying levels in the genomes of species across the tree of life. GC composition
may be described at three levels: 1) Overall GC content, which in living organ-
isms varies from 25% to 75% (Sueokal (1988))); 2) Local GC composition, which is
mostly defined based on the positions within the genetic codon triplets - GC1, GC2
and GC3 denote the GC composition at the first, second and third site of codons, re-
spectively - but with additional definitions for exonic fourfold-redundant sites (GC4)
and intronic GC content (GCi); 3) The ratio of G/C or A /T within a single strand
of DNA.

Complementary G+C pairs within the DNA double helix have three hydrogen

bonds connecting them whereas A+T (Adenine and Thyamine) have two. This addi-
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tional bond plays a role in the stability and secondary structure of DNA, as seen with
the higher melting points needed for GC-rich sequences in PCR reactions. As a re-
sult, GC content was initially thought to be an indicator of the thermal environments
in which an organism could survive, but bendability of the DNA structure rather
than thermostability was found to correlate with higher GC content. This feature is
thought to be related to active transcription in gene-rich genomic regions (Hurst and
Merchant| (2001)), Vinogradov| (2003)). Conversely, GC content in structural RNA was

found to be correlated with optimal growth temperature. (Galtier and Lobry, (1997)).

High GC content in yeast is often found in compact genomes as genes are GC-
rich but it has also previously been linked to recombination (Bradnam et al.| (1999),
Birdsell (2002), Marsolier-Kergoat and Yeramian (2009), Lynch et al.| (2010))). Re-
combination involves DNA repair, a process which is known to be biased toward
GC-richness in mammals (Brown and Jiricny| (1988))). Gene conversion is another
process thought to be biased by GC content in yeast and in other eukaryotes (Pessia
et al.| (2012), Marais| (2003))).

As shown in the previous chapter, species within the Saccharomyces complex ap-
pear to cluster together, within an FFP nucleotide-generated tree, by GC content
rather than evolutionary relationship. This observation suggests a potential bias in
the software. This “GC-attraction” is reminiscent of the well-known long-branch
attraction (Carmean and Crespi| (1995), Bergsten (2005)) phenomenon in phyloge-
netic studies. Long-branch attraction is the erroneous grouping of two or more long
branches as sister groups due to methodological artifacts. However, it remains to be
seen whether this observation is limited to the dataset in question or whether it is a
more widespread methodological bias. The aim of this chapter was therefore to con-
firm or refute the presence of a GC bias in the FFP software by means of a controlled

simulation study.
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Clade Strain Species name GC content
1 NCYC78 Saccharomyces cerevisiae 39.7%
2 NCYC2701  Kazachstania viticola 33.9%
3 NCYC2898  Naumovozyma castellii 37.6%
4 NCYC388 Candida glabrata 40.5%
4 NCYCT768*  Nakascomyces delphensis 41.8%
5 CBS4417 Tetrapisispora phaffii 37.3%
6 NCYC523 Vanderwaltozyma polyspora  34.5%
7 NCYC568 Zygosaccharomyces rourii 40.1%
8 NCYC2489  Zygotorulaspora mrakii 40.6%
9 NCYC4020  Torulaspora delbrueckii 43.0%
10 NCYC2875  Lachancea cidri 42.4%
11 NCYC2791  Kluyveromyces marxianus 41.6%
12 ATCC58844  Eremothecium sinecaudum — 41.5%
12 CBS109.51  Eremothecium gossypii 51.9%
13 NCYC31 Hanseniaspora osmophila 39.5%

Table 6.1: Clade information, Strain ID, Species name and GC content for 15 Sac-
charomyces complex species used in a GC simulation study (*= NCYC768, the GC-

mutated strain).

6.3 Methods

6.3.1 Dataset

Previous chapters have introduced a 76 species dataset (one strain for each of 75
Saccharomyces complex species plus outgroup). A further assessment of the GC
content of this dataset was made. A subset of this dataset was subsequently chosen for
a GC-focused simulation study. This smaller dataset consisted of 15 Saccharomyces
complex genomes chosen so that it contained a minimum of one strain from each
genus and encapsulated a broad range of genome-wide GC contents (See Table .
A custom bash script was used to extract genes and remove introns from the contigs

of these strains. This script included the use of the BEDtools (Quinlan and Hall
(2010)) v2.25 software for Gene Feature Format (GFF) file generation.
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6.3.2 GC simulation

A custom Python script, co-written by Dr Jo Dicks, was used to change the GC
content of the genes of NCYC768 without altering the encoded amino acid sequence.
For simplicity, GC content was increased or decreased at random, exclusively at the
third codon position only where it led to a neutral mutation. The original GC content
of this strains’ genic dataset was 41.8%. The script decreased this total GC content
value to 40%, 35% and 30% and increased it to 45% and 50%. All mutation scenarios
were run 10 separate times to ensure results were not artefactual. Gene sequences of

the remaining 14 strains were left unaltered.

6.3.3 Tree building

FFP (Sims et al.| (2009a)) 2v.3.0 (k=14, four-letter DNA alphabet) was used to
generate distance matrices from the 50 simulated datasets (10 replicates for each of
5 GC contents). PHYLIP’s (Felsenstein (1989)) v3.695 neighbor program was used
to generate neighbor-joining trees from the distance matrices. The consense program
was used to build consensus trees from the ten replicate trees resulting from each
mutated GC percentage. iTol (Letunic and Bork| (2006)) v5.7 was used to view and

annotate the trees.

6.3.4 Software development

A custom version of the FFP approach was developed within this study, with the
intention of developing an unbiased strand of the approach. The software, which was
still in development by the end of this study, consisted of a bash script and a Python
script calling the third-party Jellyfish software (Marcais and Kingsford (2011)) v2.0

for the k-mer counting step. All code can be found at https://github.com/aKeaneScien

tist /jellyphy.

6.4 Results

6.4.1 GC content by codon position

An assessment of GC content was undertaken on the full 76 species dataset. The total
coding region GC content and GC content at each codon position was checked for

correlation (See Figure. There is clearly a strong positive correlation (R%?= 0.758)
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Figure 6.1: Relationships between GC content at first, second and third codon
positions (blue, orange and grey points respectively) and overall coding GC content,

for each of 75 Saccharomyces complex species and outgroup.

between GC at codon position 3 and coding region GC and negative correlations
between GC at codon positions 2 (R?= 0.822) and 3 (R?= 0.603) and coding region
GC. The relationships are likely to be the result, at least in part, of the redundancy

in the amino acid code whereby changes at position 3 are often synonymous.

6.4.2 GC content and FFP trees

The GC content of the extracted genes (without introns) from each strain is shown
in Table The first tree (See Figure was built with this initial, unmu-
tated dataset. As has been seen in the previous chapter, the branches are long and
there appears to be a clustering of strains by GC content. However, phylogenetically,

NCYCT768 sits where expected, beside a strain of the same clade (NCYC388).
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The other five trees seen in Figure show the same datasets with decreased or
increased GC content in NCYC768. Each tree is a consensus tree of 10 trees built
from independently mutated NCYC768 gene sequences. While the trees all had the
same topologies (See Figures to of the Appendix for all 50 trees), there were
clear differences between most of the trees. First, the GC content of NCYC768 was
reduced from 41.8% to 40% and as shown in Figure there was no topological
difference between this tree and that seen in Figure The only difference in this
tree to the original is branch length, which is an artefact of the ‘mutant’ trees being
consensus trees, as mentioned above. The next tree includes NCYC768 with a GC
content of 35% (See Figure . Here the strain can be seen to move away from the
original position, closer to lower GC content strains. The tree including the lowest
GC version of NCYC768 (30%) can be seen in Figure The strain moved to the

bottom of the tree, more distal than the lowest GC content strains.

The GC content of NCYC768 was also increased to 45% and 50%. The tree with
the mutated 45% GC content is shown in Figure |6.2¢l Here the strain can be seen
to move a large distance away from its original position adjacent to NCYC38S, in-
stead grouping with the two highest GC content genomes CBS109.51 (51.9%) and
NCYC4020 (43%). Finally, the last tree (Figure shows the GC content of
NCYC768 increased to 50%. The strain now sits as a sister strain to the highest
GC strain in the set, CBS109.51.
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6.5 Discussion

GC content varies within genomes across the tree of life and has been shown to vary
significantly within the Saccharomyces complex. In the previous chapter, the GC con-
tent of each strain was annotated on the FFP four-letter DNA alphabet tree where an
apparent GC-clustering was seen (See Figure . This unexpected finding shows
species clustering together by GC content rather than evolutionary relationship, sug-
gesting a significant bias in the methodological approach. This observation led to
the undertaking of a simulation study to confirm or refute this finding. The study

confirmed that a clear GC bias is present in phylogenetic tree building with the FFP
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approach used with the four-letter nucleotide alphabet. As the GC content of a cho-
sen strain was increased and decreased at random, but with its corresponding amino
acid sequence fixed, the position of the strain (NCYC768) within the resulting tree

moved in the direction of strains with similar GC content.

This is the first known study uncovering a GC bias in the FFP four-letter ap-
proach. The impact of this bias may lead to the building of inaccurate phylogenetic
trees which can greatly affect downstream inferences. Although the alignment-free
FFP approach to phylogenetic inference has great potential as it uses the full genomes
of strains, and thus the maximum amount of information available to aid in accu-
rate tree building, use of the nucleotide-based method would not be recommended at
present. More thought is required regarding how to account for this variation in GC
content when using k-mer based approaches. Potential ideas to account for GC vari-
ation in such an approach would be weighting of a genome’s GC content depending

on the average GC content of all genomes undergoing analysis.

A second issue with both the four-letter DNA and amino acid alphabet ap-
proaches, which was not investigated closely here, was the particularly long branches
as shown in Chapter 5| It is hypothesised that this may be the result of the k-mer dis-
tance used. In the current FFP schema, two distinct k-mers are considered different
to the same degree, irregardless of their similarity. This means, for example, that the
k-mer ACCTGATTGAAC is considered as different from ACCTGCTTGAAC
(one nucleotide difference) as it is from CTAGCCAGTGTA (twelve nucleotide dif-
ferences), which is likely counter to their biological relationship and would potentially
inflate pairwise distances. Using k-mer distance measures that did not require exact
matching, is one possible way to account for this (e.g. binning of ‘close’ rather than
exact k-mers). Generally speaking, the distance measure is currently too weak and

cannot extract enough of the evolutionary signal within the data.

Aside from the long branching of the amino acid alphabet tree, the topology in
the previous chapter (See Figure in Chapter |5)) was very similar to that expected.
This appears to be the optimal FFP alphabet choice, but is it truly accurate? The ac-
curacy of this alphabet approach was tested recently in a simulation study and shown

to be less accurate than standard alignment-based approaches (Li et al.| (2020])). Once
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again, this may be the result of the degree of similarity between two k-mers which
may not only affect the length of branches but also the phylogenetic relationship be-

tween two datasets.

These results highlight the importance of further investigation into the accura-
cies of different phylogenetic approaches. In an effort to improve the current FFP
approach, both with regards to the accuracy and computational efficiency of the algo-
rithm, a new piece of alignment-free software written in Python and wrapping the Jel-
lyfish software for efficient k-mer counting, was under construction towards the end of
this project. The base program was successfully built and tested with small datasets,
with resulting phylogenies then compared to FFP tree topologies. The total computa-
tion time taken to generate a distance matrix from 22 full yeast genomes was 3 hours
on a single thread of the NCYC compute server. This is significantly faster than the
original FFP software (v3.19) which would take days for the same dataset to run but
slower than the new FFP software (2v3.0), which is multi-threaded. The next step in
the process would be to improve the distance measure, currently the Jensen-Shannon
divergence measure to account for both GC bias and long branches. The current ver-
sion of the software can be found at https://github.com/aKeaneScientist/jellyphy. If
time had permitted the new software would have been completed but more time was
required on strain sequencing and quality control than had been anticipated. Further

development of the new software will be a priority for future work.

6.6 Conclusions

Alignment-free phylogenetic approaches have much potential in this era of big data.
But as highlighted here, there are current issues with the FFP software. A key
objective of this study was to investigate a previously hypothesised GC bias in the
FFP four-letter DNA alphabet approach. This bias was clearly illustrated with a
simulation study and as such this approach would not be recommended for future
use. A further objective for this study which was successfully undertaken was to
begin an effort to improve the current FFP approach by writing a new piece of
alignment-free software. Finally, more investigations into alignment-free approaches
and the development of unbiased and accurate trees built from these approaches is

highly necessary.
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Figure 6.2: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without
introns) from 15 Saccharomyces complex species annotated with GC content (orange
bars). The GC content of the genic regions of NCYC768 was synonymously increased
or decreased in all datasets except (d) (mutated sequence termed NCYC768b). All
trees except (d) are consensus trees derived from 10 simulations. GC content of
NCYC768 in all trees: (a) GC= 30%, (b) GC= 35%, (c) GC= 40%, (d) Original
GC= 41.8%, (e) GC= 45% and (f) GC= 50%. Legend is Saccharomyces complex

clade ordering.
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Chapter 7

Discussion

7.1 Main goals

The ultimate goal of the project was to contribute to the computation of a yeast
tree of life from whole genome sequences. The main aim of this project was to use
a large, exemplar yeast dataset as a basis to compare state-of-the-art phylogenetic
methodologies. Two further aims were to explore the genomic diversity within the
dataset and to assess the composition of and phylogenetic signal within the core
genome of a subset of the dataset. The key objectives of the project were: (1) to
undertake stringent quality control of the 76 species draft genome assemblies for
use in the project; (2) to assess the composition of and phylogenetic signal within
the core genome of a subset of the dataset; (3) to assess the genomic similarities and
differences within the dataset; (4) to compare the results of five different phylogenetic
tree-building approaches on the full dataset; (5) to investigate a hypothesised GC bias
in the FFP four-letter DNA alphabet approach through a simulation study and (6)
to begin an effort to improve the current FFP approach by writing a new piece of

alignment-free software, jellyphy.

7.2 QOutcomes

Quality control

Generating the dataset for this project proved challenging and highlighted the im-
portance of stringent quality control measures in genomic and phylogenetic studies.
Many in-house sequenced and publicly available genome assemblies were, upon in-

vestigation, found to be misclassified or contaminated in the 76 species dataset. The
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BLAST quality control step confirmed the identity of 75 out of the 76 chosen species,
28 of which were also confirmed with use of a custom Kraken database. Assem-
bly quality was also assessed by statistics such as the N50 score, k-mer counts and

BUSCO gene counts.

Core genome

The 41 species dataset in the core genome study was found to be highly diverse,
as exemplified by the low proportions of sequence reads that mapped to a refer-
ence genome. Of the 15% of sequence reads of Candida glabrata strain CBS388 that
mapped to the Saccharomyces cerevisiae S288c reference genome, a significant pro-
portion were shown to map to the mitochondrial genome (40%) and to chromosome
12 (13.6%), likely a combination of a high proportion of conserved genes within these
structures and multiple mitochondrial chromosomes within the sequenced sample.
The mapped reads were assembled into contigs with two different assembly tools
and the number of genes, gene names and chromosomal location were identified with
BLAST, with only little variation observed between the results of the two assembly
tools. The ortholog-finding BPGA pipeline identified a core set of genes from the
amino acid sequences of 40 Saccharomyces complex species, at varying degrees of se-
quence identity, resulting in 591 genes at 50%, 82 genes at 75%, 38 genes at 80%, 19
genes at 85% and 5 genes at the 90% identity level. A BLAST process identified these
genes and showed that the top 19 essential genes were involved in crucial processes
such as protein synthesis, cell structure and metabolism. Phylogenetic trees were also
built (FFP 20-letter amino acid alphabet) from these gene sets which showed clearly
the effects different numbers of core genes have on phylogenetic accuracy. Perhaps
surprisingly, only 82 core genes (75% sequence identity level) were required to pro-

duce the same tree topology as that achieved through use of the full proteome.

Comparative genomics of the Saccharomyces complex

For the goal of comparing the genomic information of strains from across the Sac-
charomyces complex, filtering out poor quality assemblies was crucial. The chosen
filtering process resulted in a 58 species dataset which was nonetheless shown to be
genomically diverse. A number of strains were found to be particularly unusual with
larger or smaller than average genome sizes, gene counts, coding genome proportions

and/or GC contents. In particular, global genome statistics were uncovered for ten
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new draft genome assemblies (6 new species, 4 new strains) of relatively good quality.

Comparison of Phylogenetic methods

The main aim of this project was to compare phylogenetic methods using a key 76
species yeast dataset, which was achieved here. Whilst two strains unfortunately later
proved to be misclassified and a number had poor quality assemblies, the study was
still capable of showing the differences between the approaches. Of the five approaches
tested, the BUSCO gene tree approach gave results most similar to the Kurtzman
and Robnett tree topology, closely followed by the FFP 20-letter amino acid alphabet
approach and more distantly by the SNP MLST, FFP 4-letter DNA alphabet and
FFP 2-letter RY alphabet approaches. A sequence length bias was shown to affect
the FFP 2-letter RY alphabet approach. Also, and most crucially, a potential GC
bias was identified in the FFP 4-letter DNA alphabet approach.

GC simulation study

The goal of this study involved testing the hypothesis of a GC bias within the FFP
4-letter DNA alphabet approach, as identified in the previous chapter. A simulation
study was conducted and entailed mutating the GC content of a single strain chosen
from a 15-species dataset, followed by assessing the effects of the GC changes on the
strain’s true placement within the resulting phylogenetic tree. The hypothesised bias
was clearly shown in this simulation. The study also showed a positive correlation
between increasing coding genome GC content and GC content at the third codon
position and a negative correlation at the other two codon positions. Finally, a new
Python software tool named jellyphy was built in an effort to improve the current
FFP approach, both in accuracy and computational efficiency, with the basic pro-

gram completed at the end of this project.

7.3 Future directions

Quality control
Re-assembly of a number of poor quality genomes within the 76 species Saccharomyces
complex dataset could be undertaken with different software and different k-mer op-

tions to find the best assembly for a genome. If this process still failed to produce
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a good quality genome assembly, re-sequencing the strain or a different strain of the
same species could be carried out. The k-mer Analysis Toolkit could also be used to
take a closer look at the k-mer distributions of all sequence read datasets, with the
potential to identify contaminated samples (Mapleson et al. (2017)). One interesting
finding in this study was the high total number of k-mers found in the NCYC3345
genome relative to its genome assembly size. Further investigation into this genome
could be made by generating a high quality sequence for the strain, perhaps using
an alternative approach such as PacBio long-read sequencing. Species identification
was key to dataset quality and depended on BLAST matching using species-specific
26S and 18S rDNA query templates. Assessing the I'TS region could also be done, to
add an additional layer of confidence to a species identification. The newly available
Kraken fungal database could also be used to improve species identification and to

look for the presence of dataset contamination.

Core genome

The percentage of sequence reads mapping to a reference genome was shown for six
species only in this study. Assessing and comparing the percentages of sequence reads
from the full species-confirmed 76 species dataset that mapped to a reference genome
could show in more detail the diversity of the dataset. Adding more than one strain
per species to the dataset could also be carried out to allow for the diversity within
a species. A closer look at the putative gene names of the sequences identified by
the different ‘core’ gene approaches (ABySS and Trinity RNA-Seq assembly or BPGA
pipeline) could be taken to see if more genes were in common than recorded as a result
of different gene aliases being found in the BLAST process. Repeating the BLAST
annotation step to show more than the top hit may also show more similarities be-
tween the gene sets. One could also test different ortholog-identifying approaches to
confirm or refute these findings. Finally, a closer look at non-coding core genes could

be very interesting.

Comparative genomics of the Saccharomyces complex

This study could be repeated after re-sequencing a number of strains in the full 76
species dataset including those with poor assembly quality and replacing the two
misclassified strains. This would give a clearer genomic picture of the Saccharomyces

complex. Re-sequencing ‘unusual’ genomes could also be done to confirm or refute

152



these findings. One could also compare all strains present in this dataset and also
in the Shen et al. (2018) dataset, not just the Eremothecium clade. Once again, the
addition of more than one strain per species could give a more accurate description of
species similarities and differences. Finer-scaled comparisons, such as the examina-
tion of genome organisation, patterns of heterozygosity and estimation of evolutionary

rates, could also be made.

Comparison of Phylogenetic methods

Following the re-sequencing of all poor assemblies and replacement of misclassified
strains, as mentioned previously, the five phylogenetic trees could be re-built using
the new higher quality dataset. All good quality sequencing datasets used in a further
recent study [Shen et al.| (2018]) could also be added to the new dataset, increasing its
scale and depth of diversity. To improve the SNP MLST tree approach, all publicly
available genomes with no mitochondrial genome present could be removed from the
dataset and the tree re-built. Another way to further confirm the differences be-
tween the five tree-building approaches is through a simulation study using a known
tree topology, as was done for the FFP RY alphabet approach to show a sequence
length bias. The sequence length bias could also be explored further by simulating
more sequences to confirm the findings, as well as testing the different k-mer filtering
options within the FFP software to see the effect of filtering out highly repetitive
k-mers. The FFP amino acid alphabet approach was not investigated in detail here
but, as mentioned in Chapter 6, was recently investigated by means of a simulation
study (Li et al. (2020)). Repeating said simulation could be carried out to confirm
the observed inaccuracy of this alphabet approach and to investigate further if this
inaccuracy is the result of the distance measure used, as hypothesised in this study
regarding the observed long branches. Testing other alignment-free approaches could
also be carried out using resources such as the AF-Project, an online alignment-free

benchmarking tool (Zielezinski et al.| (2019)).

GC simulation study

The correlation shown between the coding GC content and GC at the different codon
positions was made with the 76 species dataset. Ideally, this would be repeated with
the high quality 58 species dataset or a new, higher quality 76 species dataset to give

the most accurate indication of these relationships. Further development and testing
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of the new jellyphy software built in this study could also be carried out, concentrat-
ing on identifying the most appropriate distance measure(s) to prevent long branches

and GC bias.

7.4 Final conclusions

Working with biological datasets requires stringent quality control of sequencing data
as shown in this study. Exploring a large, well-studied yeast species dataset, such
as for the Saccharomyces complex, has shown how diverse these species really are.
Higher quality datasets would show this in even further clarity. The identification of
the composition of the core genome of a subset of this dataset can also contribute to
our understanding regarding their evolutionary relationships to one other which in
turn can also highlight interesting findings for both academia and industry. The affect
that different numbers of core proteins had on phylogenetic tree topology was also
shown in this study highlighting the need for deep consideration of which datasets to
use for phylogenetic studies. The main aim of this project was successful in showing
that different phylogenetic tree-building approaches do vary in their accuracy, com-
putational intensity and ease of use. Whilst one widely-used alignment-free approach
has been shown here to have biases which affect the accuracy of the phylogenetic
trees estimated, the ability of these approaches to handle large NGS datasets with
ease means they will undoubtedly continue to be used and hopefully improved upon.

A comprehensive yeast tree of life will then be achievable.
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Appendix A

Strain choice and quality control
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Species name

26S Accession

18S Accession

Saccharomyces kudriavzevii
Saccharomyces bayanus
Saccharomyces mikatae
Saccharomyces cariocanus
Saccharomyces paradoxus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Kazachstania turicensis
Kazachstania lodderae
Kazachstania telluris
Candida humilis
Kazachstania piceae
Kazachstania sinensis
Kazachstania servazzii
Kazachstania viticola
Kazachstania kunashirensis
Kazachstania martiniae
Kazachstania africana
Kazachstania rosinii
Kazachstania barnettit
Kazachstania spencerorum
Kazachstania bulderi
Kazachstania exigua
Kazachstania unispora
Kazachstania transvaalensis
Naumovozyma dairenensis
Naumovozyma castellii
Candida castellii
Nakaseomyces bacillisporus
Candida glabrata
Nakaseomyes delphensis
Tetrapisispora phaffii
Tetrapisispora blattae
Tetrapisispora arboricola
Tetrapisispora nanseiensis
Tetrapisispora iriomotensis
Vanderwaltozyma yarrowis
Vanderwaltozyma polyspora
Zygosaccharomyces bisporus
Zygosaccharomyces mellis

Zygosaccharomyces lentus

AB040995.1
AF113892.1
AB040996.1
AF399761
EU669466.1
AF113893.1
EU884435.1
NG_058312.1
AY048161
U72158.1
U69878.1
AF399767
FJ527186
KM454442.1
AF398482
AF399769
AF399766
NG_055030.1
KY107943.1
AJ508590
AY048162
AF398486
FJ153135.1
NG_055027.1
NG_055026.1
275579.1
AY007888.1
NG_055072.1
NG_055071.1
JQO70154.1
U69576.1
NG_055035.1
NG_055034.1
NG_058391
EF460662.1
AF399781.1
D83441.1
EF460663.1
Ur2162
AB302837.1
AF399792.1
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NG_064874.1
AY046227.1
NG_064875.1
AY 046224
NG_063106.1
X97805.1
NR_132213.1
AB086237.1
X83824
AY046236.1
AB054678.1
AY 046233
AY046238
NG_064888.1
AY046234
AY 046235
AY046231
NG_063237.1
KY103665.1*
AY 046242
X97807
AY046241
AY007905.1
NG_063236.1
NG_063238.1
JQ689019.1
XR-002431960.1
NG_063514.1
NG_063246.1
AY083230.1
X83823.1
NG_063245.1
NG_063244.1
NG_065576
AB016509.1
NG_064805.1
AB054674.1
JQ698890.1
X91084
AF339891.1
Y16814.1



Zygosaccharomyces kombuchaensis  AF339904 AF339890
Zygosaccharomyces rouzii KF002711.1 NG_065155.1
Zygosaccharomyces bailii DQ872869.1 NG_065158.1
Zygotorulaspora mrakii U72159 X90757
Zygotorulaspora florentinus AF399774 X91086
Torulaspora delbrueckii KM434245.1 NG_061300.1
Torulaspora pretoriensis U72157 X84638
Torulaspora globosa AF399782.1 X84639.1
Torulaspora microellipsoides NG_055074.1 NG_062443.1
Torulaspora franciscae U73604.1 NG_063354.1
Lachancea thermotolerans NG_042626.1 NG_061071.1
Lachancea fermentati NG_055076.1 NG_062442.1
Lachancea waltii U69582.1 D83422.1
Lachancea cidri U84236 X91085
Lachancea kluyveri NG_055066.1 NG_062650.1
Kluyveromyces aestuarii NG_055069.1 X89520.1
Kluyveromyces nonfermentans NG_058314.1 AB012264.1
Kluyveromyces dobzhanskii NG_055067.1 D83430.1
Kluyveromyces marzianus NG_042627.1 NG_062653.1
Kluyveromyces lactis U94922.1 AB054673.1
Kluyveromyces wickerhamii NG_055068.1 NG_063255.1
Eremothecium sinecaudum NG_055065.1 NG_063258.1
Eremothecium ashbyi AB294409.1 AY046269.1
Eremothecium gossypii NG_063967.1 AY046265.1
Eremothecium cymbalariae NG_042628.1 NG_063259.1
Eremothecium coryli NG_055064.1 NG_063257.1
Hanseniaspora vvarum NG_055419.1 NG_063250.1
Hanseniaspora occidentalis NG_055416.1 NG_063253.1
Hanseniaspora lindneri NG_055417.1 NG_063248.1
Hanseniaspora osmophila U84228.1 AY046259.1
Hanseniaspora vineae NG_055415.1 NG_063251.1
Hanseniaspora valbyensis U73596.1 NG_063247.1
Hanseniaspora guilliermondii DQ872868.1 NG_063249.1
Saccharomycodes ludwigii U73601.1 NG_063254.1
Wickerhamomyces anomalus JN562717 DQ520880

Table A.3: Database accession IDs for all 26S/28S and 18S rRNA gene sequences for the
76 species analysed in this study. The sequences were used in a BLAST analysis to confirm

species identities of draft genome assemblies of strains believed to derive from these species.

(*==ITS-5.8 as 18S unavailable)
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Kraken database species Accession number Strain ID Kraken QC (%)
Candida castellii GCA_001046935.1

Candida glabrata GCF_000002545.3 NCYC388 97.50
Eremothecium gossypii GCF_000091025.4 CBS109.51 97.14
Hanseniaspora osmophila GCA_001747045.1 NCYC31 94.77
Hanseniaspora uvarum GCA_001747055.1

Hanseniaspora vineae GCA_002141495.1 NCYC36 95.68
Kazachstania africana GCF_000304475.1 NCYC2729 85.67
Kazachstania servazzii GCA_002214935.1 NCYC2693 96.84
Kluyveromyces aestuarii GCA_000179355.1 CBS4438 94.79
Kluyveromyces dobzhanskii GCA_000820885.1 NCY(C2559 93.47
Kluyveromyces lactis GCF_000002515.2 NCYC416 96.39
Kluyveromyces marxianus GCA_001417885.1 NCYC2791 93.95
Lachancea fermentati GCA_900074765.1 NCY(C2508 95.17
Lachancea kluyveri GCA_000149225.1 NCYC543 93.33
Lachancea thermotolerans GCF_000142805.1

Lachancea waltii GCA_000167115.1 NCYC2644 95.06
Nakaseomyes delphensis GCA_001039675.1 NCYC768 97.15
Naumovozyma castellii GCA_000237345.1 NCYC2898 94.08
Saccharomyces bayanus GCA_000167035.1

Saccharomyces cerevisiae GCA_000146045.2 NCYC78 86.38
Saccharomyces mikatae GCA_000166975.1 NCYC2888 78.55
Torulaspora delbrueckii GCA_000243375.1 NCY(C4020 86.58
Torulaspora franciscae GCA_003705175.2

Torulaspora pretoriensis GCA_003706005.1 NCYC5h24 73.50
Vanderwaltozyma polyspora GCF_000150035.1 NCYC523 92.82
Wickerhamomyces anomalus GCF_001661255.1 NCYC18 82.37
Zygosaccharomyces kombuchaensis GCA_00370595.1 NCYC3000 97.00
Zygosaccharomyces rouxii GCA_000026365.1 NCYC568 77.14
Zygotorulaspora florentinus GCA_003671575.2 NCYC2513 97.17
Zygotorulaspora mrakii GCA_00367156.1 NCYC2489 96.49

Table A.2: Kraken database of 30 publicly available genomes generated for this project.
Species names and GenBank/RefSeq accessions are given for each genome used, along with
accession IDs of the 25 strains (of the same species) that were identified using this database,
along with the percentage of k-mers that matched to the database. The species designations
of five genomes used within the database were not included in the 76 species dataset and

therefore no matches were found.
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Core genome strain choice
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Clade NCYC ID | Species name

2600 Saccharomyces paradoxus
2888 Saccharomyces mikatae
2890 Saccharomyces cariocanus
392 Saccharomyces pastorianus
2578 Saccharomyces bayanus

1 78 Saccharomyces cerevisiae
2560 Kazachstania sinensis
2729 Kazachstania africana
2701 Kazachstania viticola
2703 Kazachstania martiniae
2991 Kazachstania spencerorum
1417 Kazachstania lodderae
2483 Kazachstania piceae
2702 Kazachstania kunashirensis
3853 Kazachstania buldert
2878 Kazachstania barnettii

2 2693 Kazachstania servazzii

3 2898 Naumovozyma castellii
768 Nakaseomyes delphensis

4 388 Candida glabrata

6 523 Vanderwaltozyma polyspora
568 Zygosaccharomyces rourit
573 Zygosaccharomyces bailii
3000 Zygosaccharomyces kombuchaensis

7 1495 Zygosaccharomyces bisporus
2513 Zygotorulaspora florentinus
2489 Zygotorulaspora mrakii
524 Torulaspora pretoriensis
4020 Torulaspora delbrueckii
2875 Lachancea cidri
2508 Lachancea fermentati
2433 Lachancea thermotolerans
543 Lachancea kluyveri

10 2644 Lachancea waltii
2791 Kluyveromyces marzianus
2559 Kluyveromyces dobzhanskii

11 416 Kluyveromyces lactis
2739 Hanseniaspora uvarum
36 Hanseniaspora vineae

13 31 Hanseniaspora osmophila

Outgroup 18 Wickerhamomyces anomalus

Table B.1: Forty NCYC Saccharomyces complex species and outgroup included in the core

genome analysis.
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Appendix D

FFP phylogenetic analyses
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(e) k-mer length 14 (f) k-mer length 15

Figure D.1: Converging topologies of 14-species FFP trees with k-mer lengths ranging from
10 to 15. The topology of the tree remains identical for £ > 13.
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Figure D.2: A plot of sequence length vs Robinson-Foulds unweighted distance for seventeen
FFP four-letter alphabet (ACGT) trees shows no significant correlation between these two

factors.

Length vs RF-unweighted distance

80

70 ‘
60
50
40
30
20 .

R T

.....
.....
e,

RF Unweighted distance

R?=0.3367

0 500000 1000000 1500000 2000000
Nucleotides (bps)

Figure D.3: A plot of sequence length vs Robinson-Foulds unweighted distance for seventeen
FFP twenty-letter amino acid alphabet (AA) trees shows no significant correlation between

these two factors.
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Appendix E

GC simulations
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Figure E.1: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without introns)
from 15 Saccharomyces complex species annotated with GC content (orange bars). The GC

content of the genic regions of NCYC768 was changed in each underlying dataset to GC =
30%.
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Figure E.2: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without introns)
from 15 Saccharomyces complex species annotated with GC content (orange bars). The GC

content of the genic regions of NCYC768 was changed in each underlying dataset to GC =
35%.
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Figure E.3: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without introns)
from 15 Saccharomyces complex species annotated with GC content (orange bars). The GC
content of the genic regions of NCYC768 was changed in each underlying dataset to GC =
40%.
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Figure E.4: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without introns)
from 15 Saccharomyces complex species annotated with GC content (orange bars). The GC

content of the genic regions of NCYC768 was changed in each underlying dataset to GC =
45%.
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Figure E.5: FFP (four-letter DNA alphabet) phylogenetic trees of genes (without introns)
from 15 Saccharomyces complex species annotated with GC content (orange bars). The GC
content of the genic regions of NCYC768 was changed in each underlying dataset to GC =
50%.
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