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About the IEU 
The IEU was established by the GCF Board as an independent unit, to provide objective 
assessments of the results of the Fund, including its funded activities, its effectiveness, and its 
efficiency. The IEU fulfils this mandate through four main activities: 
Evaluation: Undertakes independent evaluations at different levels to inform GCF’s strategic result 
areas and ensure its accountability. 
Learning and communication: Ensures high-quality evidence and recommendations from 
independent evaluations are synthesized and incorporated into GCF’s functioning and processes. 
Advisory and capacity support: Advises the GCF Board and its stakeholders of lessons learned from 
evaluations and high-quality evaluative evidence, and provides guidance and capacity support to 
implementing entities of the GCF and their evaluation offices. 
Engagement: Engages with independent evaluation offices of accredited entities and other GCF 
stakeholders. 
 
About IEU Working Paper series 
The IEU’s Working Paper series is part of a larger effort to provide open access to the IEU’s work 
and to contribute to global discussion on climate change. The series disseminates the findings of 
work in progress and encourages an exchange of ideas about climate change. Their intention is to 
promote discussion. The findings, interpretations and conclusions are entirely those of the authors. 
They do not necessarily reflect the views of the IEU, the GCF or its affiliated organizations or of the 
governments associated with it. 
 
About this Working Paper 
This paper conducts a scoping study of the contemporary uses of machine learning for the 
evaluation of climate interventions. To this end, the paper reviews the current applications of 
machine learning within climate impact evaluation and evidence reviews, as well as possible 
applications within the work of the GCF and the IEU. 
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ABSTRACT 
This paper explores the extent to which and how machine learning can support the evaluation 
function of the Independent Evaluation Unit (IEU) and, more broadly, how it can support project 
development at the Green Climate Fund (GCF). The paper suggests machine learning can be an 
effective tool for optimizing the identification and selection of beneficiaries, generating necessary 
data and information for proposal development that can be used within feasibility studies, and 
identifying the factors most relevant for project approval. The paper also suggests that machine 
learning can contribute to the measurement of outcomes from GCF investments, by monitoring 
outcomes during project implementation and filling data gaps when measuring outcomes. In 
addition, machine learning can improve the accuracy of specific counterfactual evaluation 
techniques. The paper explains the increasing role of machine learning in evidence reviews and 
illustrates the variety of text-mining approaches for document screening and synthesis, that can 
expedite the review of evidence on a specific thematic area. The paper concludes by highlighting the 
vital ethical dimensions of using machine learning for evaluation, and how the IEU can learn from 
the existing approaches to machine learning used by other multilateral agencies. 
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A. INTRODUCTION 
The Independent Evaluation Unit (IEU) was established to provide objective assessments of the 
performance and results of the Green Climate Fund (GCF), thereby ensuring that the GCF is 
effective and is held accountable. The Updated Strategic Plan for the Green Climate Fund: 2020–
2023, adopted at the twenty-seventh meeting of the Board (B.27) in November 2020, states that one 
upcoming priority of the GCF is to “advance as a digital organization by seeking to improve key 
work processes through automation” (Green Climate Fund, 2020). In this respect, this scoping study 
aims to contribute to two converging organizational objectives: for the IEU to become a thought 
leader in the evaluation of climate change interventions and for the GCF to become a digital 
organization. This learning product aims to inform the upcoming processes and programming within 
the GCF by responding to the following question: to what extent and how can machine learning 
support the evaluation function of the IEU and the work of the GCF? 
Often used interchangeably with artificial intelligence, which is a broader term for systems that are 
programmed to mimic human intelligence, the term machine learning can be defined as a form of 
artificial intelligence that enables a system to learn from data rather than through explicit 
programming (Hurwitz & Kirsch, 2018). The dialogic and iterative feature of machine learning 
differentiates it from other multivariate statistical techniques that solely use a static data source 
(whether cross-sectional, time series, or panel). It is commonly categorized into (ibid.): 

• Supervised learning: There is an existing set of data and understanding of how the data is 
classified, so the user provides the algorithm with example data and corresponding target 
responses that it learns from. 

• Unsupervised learning: The algorithm learns by itself from example data without any 
corresponding data responses with the aim of understanding the meaning based on the 
patterns and clusters it finds. 

• Reinforcement learning: The algorithm is not trained with any external datasets but learns 
by reacting to its own environment through trial and error. 

In the past, the use of machine learning has been limited due to technological constraints. Recent 
advances in processing power and data storage capacity have resulted in growing applications across 
many spheres (Huntingford, et al., 2019). The increase in the quantity and quality of data has been 
conducive to the growth of machine learning as the algorithms are more effective when trained upon 
or applied to larger datasets (ibid.).1 Such growth has been observed in both developed and 
developing countries, where it is utilized in a range of applications from data collection and 
processing (e.g. supervised learning of satellite data) to data analyses (e.g. making model-based 
predictions) and in a range of disparate areas, from determining credit scores to measuring job 
performance and predicting the likelihood of crime. 
The growth in machine learning applications has also been observed in the area of climate change, 
which is particularly data-intensive (ibid.). The emergence of this nascent field has been buoyed 
through recent advances in technology2 and data storage capacity.3 Machine learning sets itself apart 

 
1 Training refers to the process by which the algorithm learns from the data and subsequently builds a model to provide the 
necessary output, usually in the form of regression or classification. 
2 For example, neural network algorithms have been around for decades, yet it is only the recent improvements in 
computational architecture and power that have led to its growth in practical applications. Similarly, climate science has 
also benefited from recent technological advancements which have resulted in high resolution weather forecasting and 
climate projection models (Huntingford, et al., 2019). 
3 The rise of big data (large amounts of digitally generated data from social media, online searches, financial transactions, 
etc.) has allowed for the efficient collection of data that would otherwise be very costly or time consuming to collect for 
impact evaluations (Rathinam, et al., 2020). 
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from traditional statistical methods by its ability to model complex data across scales, as well as to 
model the fundamental uncertainty typical of climate change. It is likely to be more accurate than 
traditional statistical methods and computationally less costly (Rolnick, et al., 2019). Moreover, 
recent research has demonstrated the use of machine learning methods for “targeting, monitoring, 
and evaluating efforts to mitigate climate change” (Leo, et al., 2020). Machine learning can be 
useful for evaluations of climate change interventions, with the availability of extremely large and 
granular satellite data and the replicability of the approach across regions or scales. In addition, the 
immobility brought about by the ongoing COVID-19 pandemic presents an opportune time to 
explore new ways of analysing and making sense of existing data for climate change interventions 
and evaluations. 
This paper presents the potential applications of machine learning in four areas of the work of the 
GCF, including project development, results measurement, evaluations and evidence reviews. Each 
section describes potential applications and their existing examples taken from both peer-reviewed 
and grey literature. It should be noted that many of the examples discussed are at the proof-of-
concept stage, but they still show how machine learning in principle could be applicable to the work 
of the GCF and the IEU. The last section concludes the paper and discusses the ethical dimensions 
of using machine learning. 

B. USE OF MACHINE LEARNING IN PROJECT DEVELOPMENT 
We now turn to the first section, which discusses the potential use of machine learning in project 
development before implementation, which takes up a large portion of the GCF’s work. The GCF 
puts great emphasis on the preparation and development of the projects to ensure, ex ante, the 
climate change relevance and success of the projects. 
Machine learning could be an effective tool in optimizing the identification and selection of 
beneficiaries to be supported by the intervention of a potential project (Mckenzie, 2018). When 
information on the characteristics of potential beneficiaries or regions is missing, which is a 
determining factor for inclusion in the project intervention, machine learning and predictive 
modelling in particular, could generate the missing information based on other existing relevant 
information. This also applies to data in the future which can be extrapolated from current 
information sources. 
In such predictive modelling, it is important to identify the most relevant variables pertaining to the 
potential beneficiaries as predictors for the variable that is missing or not available. When 
information on the determining factor is not readily available, the related variables can act as either 
predictors or proxies for the determining factor. An example of this is found in a case study from 
Malawi, where a linear regression and a “random forest” algorithm4 were used to identify that, 
among existing factors, living in the flood plain and distance to drinking water were consistently 
good predictors for food insecurity (Knippenberg, Jensen, & Constas, 2018). In other words, food 
insecurity can be predicted using the two variables and the predictive models aiding the selection of 
beneficiaries. 
Next, in addition to optimizing the selection of beneficiaries, machine learning could help provide 
the information and data required for the development of projects that are otherwise too costly for 

 
4 Random forest is a machine-learning algorithm that fits multiple decision trees to input data using a random subset of the 
input variables for each tree constructed; the mode (or average) of these trees is used to create an “ensemble” tree that is 
used for prediction. In this study, multiple trees were created from a randomly selected subset of variables, and each tree 
was a binary tree where each pair of branches was defined by finding a variable (among the selected variables) and a value 
(of the variable) that minimize the mean-squared error of the dependent variable (which in this case is the Coping Strategy 
Index used as a measure of food insecurity). The branches are then defined such that one consists of observations whose 
value of the chosen variable is greater or less than the chosen value. 
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developing countries to obtain. It holds in many cases that “countries which are disproportionately 
affected by climate change are often the world’s data-poor as well” (Leo, et al., 2020). The recent 
IEU evaluation of the GCF portfolio in small island developing states highlighted the high human 
resource and financial costs of preparing a successful funding proposal. For many organizations in 
small island developing states, the submission of mandatory feasibility studies within project 
proposals is challenging due to limited data availability, human resources, and the time and financial 
costs of completing this requirement. Machine learning could play a role in situations like this. For 
example, a recent study in Bangladesh showed how machine learning helped facilitate the 
identification of the climate-related agricultural vulnerabilities of individual households for 
vulnerability assessments (Jakariya, et al., 2020). The study used machine learning algorithms to 
identify the most relevant factors to measure vulnerability and develop a predictive model. Then, 
using a mobile application with an easy-to-use user interface, they collected the inputs from 
smallholder farmers, which were uploaded to a server where the regression model calculated the 
vulnerability score for each individual household.5 
Another way in which the GCF could benefit from using machine learning for feasibility studies and 
climate change vulnerability assessments is by studying textual data from local and social media. 
Methods of text analytics could be applied to online discussions on climate risks and vulnerabilities, 
to identify which factors are consistently negatively mentioned, For example, a study from Italy 
used tweets (textual data) gleaned from Twitter to train a supervised sentiment analysis classifier to 
analyse active users’ opinions on certain public administration decisions in the country (Corallo, et 
al., 2015). Similarly, the GCF could take advantage of the existing information in the local and 
social media of a country to contextualize the extent of the country’s climate vulnerabilities, the 
needs of potential beneficiaries, or even public perception of the GCF and relevant accredited and 
executing entities, without physically visiting or interviewing the country’s stakeholders. Such an 
undertaking would imply the existence of active local and social media that frequently discuss the 
country’s climate issues. 
Lastly, predictive modelling in machine learning could be used to identify predictors for the success 
of GCF funding proposals, based on the data of previously approved and implemented funding 
proposals. Potential features or predictors of such models include any quantifiable characteristic of 
the project, be it geographical or financial, including its size, amount of GCF funding and co-
financing, co-financers, its accredited entity (AE) and duration. Once the most relevant predictors 
are identified and the predictive models developed, they could be used to predict the likelihood that 
a potential project is approved by the Board. This could be applicable to the GCF project pipeline, 
which would allow GCF staff to advise project developers to course-correct, and to adjust their 
proposals. A range of options for such predictive models exist, such as those which use maximum 
likelihood estimates based on a probit or logit model. However, for any of the models to be effective 
in use, a considerable amount of training data would be necessary (which would detail the project 
proposals that have been developed, and show which of these have been submitted to and approved 
by the Board). Due to the relative youth of the GCF as an institution, it may be the case that an 
insufficient number of project proposals are available. If this is the case, one alternative may be to 
use the project information from a comparable climate institution where project proposals may have 
the same information (predicators) as for GCF projects. 

 
5 Namely, linear regression and Bayesian ridge regression. The study also tested random forest, extreme gradient boosting, 
and extremely randomized tree regressions, but eventually selected the aforementioned two due to their simplicity (and 
lack of necessity for hyperparameter tuning). 
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C. USE OF MACHINE LEARNING IN IMPACT EVALUATION AND THE 
MEASUREMENT OF OUTCOMES 

We now discuss the potential use of machine learning in impact evaluation, including in the 
measurement of project outcomes. The IEU’s Learning Oriented Real-Time Impact Assessment 
(LORTA) programme embeds impact evaluation techniques within projects’ monitoring and 
evaluation activities, to measure the impact of GCF projects on the ground. A growing body of 
research is showing that machine learning could “revolutionize impact evaluations” and is 
“especially powerful [in] evaluating efforts to mitigate climate change” (Leo, et al., 2020, p. 24). 
Impact evaluations measure the changes created by interventions. They take the form of either 
experimental or quasi-experimental designs. Experimental designs involve evaluating the impact of 
a treatment or intervention through randomizing the selection of beneficiary and comparison groups. 
This controls for confounding factors such as selection bias. Impact is ascertained by comparing the 
outcomes of both these groups. Given that randomization should ensure that both populations share 
the same observable and unobservable characteristics, the difference between the outcomes of the 
two populations can be attributed to the impact of the intervention. However, in many instances, it is 
not possible to implement such an experimental design for ethical, practical, or technical reasons. In 
the absence of a control population, a counterfactual comparison group may be generated through 
the use of quasi-experimental designs. Such designs use statistical means to replicate the conditions 
generated through randomization.6 
Given that most machine learning techniques are predictive in nature, they could be perceived as 
being unsuitable for causal inference and consequently are underutilized in quasi-experimental 
designs, with econometric models traditionally being the preferred choice for evaluators (Dance & 
Hawksworth, 2017). However, recent work on the use of machine learning to optimize one quasi-
experimental technique, namely propensity score matching, illustrates the application of machine 
learning in this area. Propensity score matching is a counterfactual technique that generates the 
probability of participation in the project intervention by generating a propensity score for each 
observation (individual or group) in the total population based on selected predictor variables. The 
generation of the propensity score is typically done with a logit or probit model, but it could also 
benefit from using more complex machine learning algorithms such as random forest and neural 
networks (Cannas & Arpino, 2019). Treated observations are then matched (using a variety of 
matching approaches) with non-treated counterparts who share very similar propensity scores.7 
Another counterfactual matching technique that is simpler and commonly used is a form of direct 
matching, called “direct nearest neighbour matching”. Instead of calculating another metric such as 
a propensity score from observations, direct nearest neighbour matching simply matches the 
observations that are closest to each other (using n-dimensional Euclidean distance). This approach 
does have some downsides. For example, its precision declines with the dimensionality of the 
covariates (in other words, the number of predictor variables). Hence, its accuracy could be 
improved by employing dimensionality reduction (Li, Vlassis, Kawale, & Fu, 2016). Dimensionality 
reduction is the transformation of high-dimensional data into a meaningful representation of reduced 
dimensionality (van der Maaten, Postma, & van den Herik, 2009). It is important and widely used 

 
6 For example, difference-in-difference designs use panel data to control for confounding factors, while propensity score 
matching creates an artificial comparison group using maximum likelihood estimations. These are then twinned with 
beneficiary units. Two further approaches are regression discontinuity designs, which use the threshold for eligibility to 
compare units just either side of the cut-off point, and instrumental variable regression, which uses a variable that ‘cleans’ 
the treatment variable of any bias. 
7 Observations are matched between those who are within the range of common support – that is, the range of propensity 
scores which feature in both treatment and control groups. More detailed explanation and application can be found in 
(Berhane & Prowse, 2013). 
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because it mitigates the requirement of having enormously big training data for the high 
dimensionality of features (Jimenez & Landgrebe, 1999). A range of dimensionality reduction 
techniques exist, such as principal component analysis and locality preserving projection, and they 
could be employed through machine learning.8 
Machine learning could also be applied to measuring the outcomes or impact of an intervention, 
which is an integral part of impact evaluation. When direct outcome measurements are difficult or 
insufficient, predictive modelling could play a role in filling the gap or replacing direct 
measurements. For example, in order to measure the impact of infrastructure investments that 
support urbanization, predictive models could be used to analyse the urbanization rates from satellite 
imagery (after being trained together with another separate dataset that indicates urban versus non-
urban areas) (Goldblatt, You, Hanson, & Khandelwal, 2016). A further example concerns measuring 
changes in socioeconomic indicators such as wealth. A predictive model based on deep learning 
could be developed using nightlight satellite imagery and a manually constructed geographical 
wealth index to generate geospatial distribution of wealth in the area of interest (Yeh, et al., 2020). 
In both examples, predictive models could support the measurement of outcomes such as 
urbanization rates or changes in the level of wealth from satellite data, when ground measurements 
prove difficult or insufficient. 
Moreover, machine learning could be used to enable the measurement of outcomes that would 
otherwise be difficult to ascertain (Mckenzie, 2018). Textual analytics using machine learning could 
allow for automatic detection of patterns and trends within large volumes of textual data that are 
difficult to systematically analyse using traditional means. For example, sentiment analysis could be 
applied to large amounts of unstructured textual data – such as transcripts from radio show 
discussions – to understand the effects of recently implemented policies (UN Global Pulse, 2017). 
For the effective measurement of outcomes, it is vital to track and monitor the project during 
implementation. Here, image processing techniques using machine learning coupled with remote 
sensing technologies could again play a role. For example, a mitigation project may require carbon 
mapping for forestry monitoring and tracking of carbon emissions. Machine learning could be 
employed in such monitoring (Mascaro, 2014). Measuring the amount of carbon stored in a patch of 
forest is, in theory, relatively straightforward, but traditional means of measurement have proved 
inadequate for estimating the spatial distribution of carbon stocks at a larger scale. Hence, remote 
sensing technologies such as LiDAR have been used to capture forest geospatial data and 
subsequently estimate the spatial variation of the carbon stocks, sometimes more accurately than 
traditional methods. However, their application is also limited by cost and logistical considerations, 
and as such they are often only used on a limited geographical scale. Here, Mascaro (2014) applied 
random forest algorithms9 to a variety of remote sensing data (such as Landsat) with greater 
geographical coverage to spatially upscale (i.e. increase the geographic coverage of) the smaller-
scaled LiDAR-based carbon maps. It found that while there were some drawbacks, random forest 
offers a viable way to upscale carbon mapping over a larger geographic area. 
Given that accurate carbon mapping is essential for the monitoring and evaluation of forestry-related 
mitigation projects, such application may be highly pertinent to the GCF. Currently, GCF projects 
are monitored through the submission of annual performance reports, which are provided by the 
AEs of the projects. Much of the project monitoring data found within the annual performance 
reports are self-reported by the entities. Recent evaluative work by the IEU found that the use of 

 
8 An example of a traditional approach to using principal components analysis in relation to climate adaptation can be seen 
in Mahmud & Prowse (2012). 
9 In this paper’s case, the input variables used were geographic properties (e.g. coordinates and elevation) and land use 
estimations (e.g. percentage cover of soil or vegetation) for each pixel in different satellite images (after resampling to the 
carbon map’s resolution). 
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such data makes it difficult to draw substantive conclusions on the realized results of the GCF’s 
projects, due to lack of guidance on the methodology as well as the GCF’s due diligence on the 
reporting standards of entities. Predictive modelling as described above could prove to be a more 
accurate and standardized way to monitor the carbon stocks of GCF project sites and verify the 
resulting emission reductions. 

D. USE OF MACHINE LEARNING IN SYSTEMATIC EVIDENCE AND 
LITERATURE REVIEWS 

We now turn to the potential use of machine learning in evidence and literature reviews, which are a 
critical component of not only the IEU’s ongoing evaluation work, but also the knowledge 
management of the GCF as a thought leader in climate change actions. 
An evidence review is a comprehensive, systematic and rigorous collation, analysis and presentation 
of evidence. It may be either qualitative or quantitative in nature and is often thematic with the aim 
of assessing the evidence base on a topic. It provides a concise overview of available findings 
dispersed across numerous disciplines and sources, and is based on a structured literature search 
guided by a protocol. It offers an appraisal of the quality of evidence based on clear criteria and 
provides an analytical synthesis of the evidence base. The evidence itself can take a myriad of forms 
and may include both peer-reviewed journal articles and grey literature (e.g. reports published by 
not-for-profit organizations and international development organizations). Products from evidence 
reviews include evidence gap maps or systematic reviews. 
An evidence gap map graphically depicts a collection of evidence across a range of interventions 
and outcome categories in a thematic area. Its overarching framework is guided by a theory of 
change, predefined inclusion and exclusion criteria, and the generation of an intervention/outcome 
framework. Both impact evaluations and systematic reviews (which we come to below) may be 
mapped onto an evidence gap map in addition to individual articles and papers. Evidence gap maps 
highlight the existing evidence base, or lack thereof, on the effectiveness of interventions towards 
different outcomes. Importantly, they highlight gaps in evidence, which may take one of three 
forms. First, there may be little evidence of any type on the contribution of a particular intervention- 
outcome combination. Second, there may be evidence but few causal designs (such as experimental 
or quasi-experimental approaches) which are able to attribute change within outcome areas to 
specific interventions. These gaps provide clear areas within which impact evaluations are needed. 
Third, there may be a wealth of impact evaluations for a particular intervention/outcome cell, but 
few systematic reviews that aggregate salient findings from the available evidence base. In this way, 
evidence gap maps can be used as a precursor for systematic reviews (which we turn to shortly). 
Ultimately, evidence gap maps can meaningfully inform policy decisions and strategically utilize 
finite research funding. 
Systematic reviews attempt to synthesize available evidence on a given topic. Their scope is 
necessarily narrow, and they almost exclusively focus on causal studies. They are always guided by 
a strict protocol. As with evidence gap maps, systematic reviews are subject to a set of inclusion and 
exclusion criteria which determine the scope of studies that are included. A search strategy guides 
study selection, which is subsequently screened for quality. Articles are assessed and categorized 
independently by reviewers and subsequently analysed. Where possible, quantitative evidence is 
subject to meta-analysis, while qualitative evidence is subject to theory-based analysis. At 
completion, the report is subject to a peer-review process, which ensures that the methodology is 
valid and relevant conclusions are sound. Systematic reviews are often assessed using the Specialist 
Unit for Review Evidence (SURE) model, and are subsequently coded in line with the level of 
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confidence associated with their conclusions and the effects of particular interventions (low, 
medium, or high). 
The ever-expanding pool of research and data in many academic fields, both natural and social, is 
surpassing the capacities of researchers and scientists to thoroughly examine, manage and utilize the 
evidence (Hey & Trefethen, 2003). This can put a strain on producing a review of the literature in a 
field, and it becomes harder and harder to check every relevant article or publication. The fields of 
interest of the IEU, such as climate evaluation, low-emission pathways and climate-resilient 
development, are no exception to this phenomenon. Put simply, there are often just too many 
relevant studies for evaluators to keep up to date with. 
The conventional practice when completing a literature review is to use keyword searches to gather 
a volume of potentially relevant studies, and then manually screen them. This is time-consuming as 
it may include tens of thousands of titles and abstracts. For a more efficient literature review to take 
place, it is now becoming more common to consider employing a range of text mining tools based 
on natural language processing (NLP) that can automate the process of dealing with large amounts 
of textual data, thereby saving time and improving the effectiveness and efficiency of these types of 
reviews. One of the clearest examples is systematic reviews. These consist of the following three 
steps: searching, screening, and then synthesizing (Ananiadou et al., 2009). Searching involves 
using a query in an electronic database or online to locate as many potentially relevant studies and 
references as possible. Screening narrows down the resources collected from searching to a smaller 
list that is relevant to a specific topic. Synthesizing combines the key elements and results from the 
narrowed-down list to produce a summarized review. The application of text mining to systematic 
literature reviews can support all the three steps described above in different ways (ibid.). 
First, searching can be improved using query expansion techniques (ibid.). Query expansion 
indicates the process of expanding a given query in a search to include more relevant terms that can 
lead to better matching search results. Query expansion involves automated techniques that aim to 
find synonyms, acronyms, semantically related words, various orthographic and morphological 
forms of words, and spelling corrections. Developing a query expansion model to map technical 
terms to their variants and other relevant terms, could enhance the search results for the initial search 
procedures within the IEU’s systematic reviews.10 
Second, screening can be improved by employing document clustering (ibid.). Document clustering 
is the application of an unsupervised learning algorithm for grouping documents’ textual data. It 
creates clusters, each of which represents a topic independent of one another. Documents that are 
considered to have similar contents will be grouped together. Once the topics (clusters) are 
identified through visualization, they serve as indicators for relevance and priority in document 
screening, thereby reducing the overall workload. Clusters act as categories for document 
classification which can be employed by a supervised learning algorithm for classification, with the 
training dataset as the documents and their identified clusters. The classification model can be used 
to classify new documents, expediting the review of new documents. Document classification 
categories can also be manually created according to the reviewer’s interest. While manually 
creating a training dataset may take a long time and be a project in its own right, it may prove 
effective in building a classification model that caters to the specific needs of the reviewer. 
Document clustering can also provide a way for screening prioritization. Screening prioritization 
provides an ordered list of items, with the most likely relevant items at the top of the list (O’Mara-
Eves et al., 2015). Given a document that is most relevant to the reviewer’s interest, document 
clustering can provide an ordered list of documents based on their resemblance (or computed 

 
10 This would require the IEU to maintain its own database of literature and develop a search engine of its own for the 
database. 
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distance) to the initial document. Several benefits exist with this method when compared to random 
document screening. One is that the reviewer encounters more relevant examples earlier, which 
speeds up determining which documents to dive into for more in-depth screening and information 
retrieval. This can also help with document searching, because identifying relevant bibliographies 
early on leads to faster searching for more relevant new external documents. Another benefit is that, 
if a threshold for the number of items to be screened exists, screening prioritization is a good 
criterion by which to enforce the threshold, thereby saving workload. This also prevents a common 
problem of over-inclusiveness that researchers face, trying to review as many documents as possible 
through the fear of missing critically relevant studies. 
Third, synthesizing can be improved by employing automatic summarization (Ananiadou et al., 
2009). Single-document text summarization has two general approaches: extraction-based 
summarization and abstract-based summarization (Hovy & Lin, 1999). Extract-based summarization 
identifies and extracts key, important sentences and phrases from the original text. Abstract-based 
summarization involves using semantic representation of words in the original text to create a new, 
paraphrased summary. Abstract-based summarization requires first developing a library of semantic 
linkages for technical terms, which may require specific, expert knowledge in the reviewer’s topic. 
For the purpose of a systematic review, multi-document summarization can be employed using 
sentence-ordering algorithms combined with text summarization techniques (Barzilay, Elhadad, & 
McKeown, 2001). In multi-document summarization, the key is to produce a coherent arrangement 
of summary sentences and phrases from the individual documents. The benefit of multi-document 
summarization is that, ideally, the key information is already present in the resulting summary, 
reducing the need to manually examine the original individual documents. 
Developing a text-mining model as described above would entail the following steps, which are 
common to many NLP applications (Ng, n.d.): 
1) Tokenization: Parsing textual data from documents into smaller tokens such as words or short 

phrases. Example methods include the bag-of-words model and n-gram model. 
2) Stemming/lemmatization: Processing tokens such that they are reduced to either their stems 

(the least common spelling denominator) or lemmas (the base dictionary form for a group of 
word inflections). 

3) Removing stop words (such as “the”, “a”, “this”, etc.) and punctuation. 
4) Generating features: A common way to generate features of text data is computing the term 

frequency of the tokens. Sometimes the frequencies are weighted using techniques such as 
term frequency-inverse document frequency (tf-idf in short) to give greater emphasis on 
technical or topic-specific terms and less on general terms that frequently appear throughout 
different documents. 

One common issue in developing a machine learning model for information retrieval or 
classification is the trade-off between precision and recall (Ng, n.d.). Considering a test dataset with 
items marked as either positive or negative and a model predicting a positive or a negative for each 
input item, precision is the percentage of true positives in the predicted positives, while recall is the 
percentage of true positives in the actual positives in the test dataset. Having a higher threshold in 
the classifier tends to result in higher precision and lower recall, while having a lower threshold in 
the classifier tends to result in lower precision and higher recall. This trade-off would be determined 
depending on the purpose of the model. In document classification, if the purpose is to precisely 
narrow down the collected literature to a very specific topic, having a higher precision may be 
favoured. However, if the purpose is to secure as many relevant documents to a topic as possible, 
however vague, then having a higher recall may be preferred. If both precision and recall are 
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concerned, then the harmonic mean of precision and recall, known as the “F1” score, could also be 
used to gauge the effectiveness of the model. 
The IEU has already employed existing software in one of its evidence reviews, namely EPPI-
Reviewer 4 (Thomas, et al., 2020), to reduce the workload in identifying relevant documents for the 
evidence review’s inclusion criteria. The EPPI-Reviewer 4 provides a “priority screening” function, 
which employs a machine learning algorithm to prioritize a given number of studies according to 
relevance based on titles and abstracts. It uses “active learning”, an iterative process where the 
machine’s accuracy for prioritization is improved at each iteration with manual screening. At the 
first iteration, a number of studies are manually screened for inclusion versus exclusion and then fed 
into the machine as the training dataset, which then prioritizes the remaining studies by assigning a 
score to each one using a support vector machine algorithm. At each subsequent iteration, reviewers 
manually screen the documents for inclusion versus exclusion (~25 studies), which are then added to 
the training dataset, and the machine then prioritizes the remaining documents. This process repeats 
until a desired number of studies are included or the rate of inclusion of studies reaches a de facto 
plateau. Hence, the machine’s prioritization helps the reviewers identify the relevant documents 
faster than manually screening all of them. While this may improve the speed and accuracy of 
conducting evidence reviews, a human element should be retained for quality assurance, available to 
“come in when discretion or expert judgement is needed” (White, 2019). 
Much of IEU’s work in evaluating the GCF’s performance and processes requires references to the 
relevant Fund documentation literature and comparable documentation within similar climate funds, 
such as the Global Environment Facility (GEF), the Adaptation Fund (AF), and the Climate 
Investment Funds (CIF). In this respect, employing a text-mining tool such as document clustering, 
prioritization, and/or classification for better document screening would be beneficial for the IEU 
when benchmarking against other climate funds. Moreover, given the IEU’s commitment to 
producing data-driven evaluations, it is only natural that data extraction and updates are common 
processes within the IEU. During each evaluation, raw data is extracted from unstructured sources 
such as the GCF’s funding proposals. This data is subsequently coded, stored, and updated in a 
dataset. The use of machine learning algorithms can help alleviate the manual, time-extensive 
aspects of the extraction process by automating it. 
One example where the GCF employed text mining on the funding proposals is found within the 
work of the Independent Integrity Unit (IIU). The IIU employed machine learning in the ranking of 
projects within the GCF’s portfolio as part of Integrity Due Diligence, one of many reasonable steps 
which might be taken by an anti-fraud unit, especially in support of a decision to select projects for a 
Proactive Integrity Review (PIR)11. The IIU created a ranking system based on sentence-level red-
flag detection operating on two layers: A “relevance” layer in which a machine learning model was 
trained to distinguish control-related sentences from sentences unrelated to controls, followed by a 
“performance” layer, in which a separate machine learning model was trained to distinguish 
sentences indicating “weak” control performance from sentences indicating “strong/normal” control 
performance. This system is now used to assess GCF funded activities. Following a human review 
of these outputs, a set of red flags is produced. 

E. CONCLUSION AND FURTHER CONSIDERATIONS 
In this scoping study, we have described the potential applications of machine learning for the GCF 
and the IEU. Considering that climate change interventions and impact evaluations are data-

 
11 A PIR, which is not an investigation, contributes toward enhanced disclosure on the control performance of a 
counterparty with respect to a funded activity, offering the Fund a risk-reduction (or loss-control) option for fraud risk and 
reputation risk. Personal communication: Liam O’Dea. 
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intensive, machine learning is an innovative tool to supplement or replace parts of the processes in 
order to achieve better automation and accuracy. 
First, in relation to GCF project development, machine learning was suggested as an effective tool 
for optimizing the identification and selection of beneficiaries, generating the data and information 
necessary for proposal development (such as feasibility studies), and identifying factors most 
relevant to project success and the prediction of pipeline project success. Next, in impact evaluation 
and measurement of outcomes that are of great interest to the IEU, machine learning was suggested 
as a way of improving counterfactual approaches, for filling data gaps in outcome measurements, 
enabling outcome measurements themselves, and as a method for monitoring outcomes during 
project implementation with a focus on carbon stocks. Lastly, in systematic evidence and literature 
review, a variety of text mining methods in document screening and synthesis could expedite review 
processes. 
The examples and insights illustrated so far have the potential to contribute to the future of the GCF 
and the IEU. For the IEU especially, machine learning may be the beginning of a new and exciting 
journey, pushing the boundaries of how climate change impact evaluations are conducted. Moving 
forward, this may require the IEU to strengthen collaboration with data scientists and enhance 
partnerships with experienced data hubs, bringing in more experts to guide on best practices and 
formulate case studies far beyond this paper’s discussion. 
Before proceeding to invest in implementing the machine learning applications, however, 
consideration must be given to the ethical issues that surround the use of machine learning. Given 
that machine learning models are often complex and opaque, they can be seen as “black box” 
models. In the most extreme cases, even the developers of the models may be at a loss as to how to 
explain the way they function (which is precisely what occurred with the securitization of mortgage 
bonds which precipitated the financial crisis of 2008/2009). This can lead to a lack of transparency 
and subsequently a lack of accountability for decisions that are made based on such models. For 
example, if a machine learning algorithm was used to determine the targeting of a population or 
location to receive a treatment or intervention, groups that are excluded may feel aggrieved at not 
only their omission but also not knowing the grounds for their omission (Andini et al., 2018). 
Concerns over transparency and accountability are particularly applicable to the GCF’s works 
because it is a publicly funded organization. Use of overly complex models to inform its decision 
making may be seen as an attempt to obfuscate its internal processes and shirk away from its 
responsibility to operate transparently. 
The machine learning community is aware of the unfairness and opaqueness that could arise from 
using these algorithms and has made efforts to alleviate them, one of which is developing explainer 
libraries. A popular example is the Local Interpretable Model-agnostic Explanations (LIME) library 
(Lundberg & Lee, 2017). This library aims to enable an understanding of the rationale behind the 
model’s predictions by providing insight into a machine learning model’s internal workings. This 
may involve identifying features that had the most significant impact in predicting the result of the 
model, as well as sensitive features that bring about the unfairness of the model. 
Another way to ensure transparency is to use models that are compiled in open-source software – to 
allow numerous eyes to verify the models and flag problems – and for developers to fix them early 
on, eventually building confidence in the audience. Similarly, any application of machine learning 
within the GCF could be based on comprehensive consultations with Board members and 
stakeholders, including civil society organizations and members of the broader climate community, 
to ensure that the purpose and inner workings of the models are well understood even before 
development. A further and tried-and-tested route to ensuring the robustness of machine learning 
models with social and environmental data is triangulating their findings with a range of further 
sources of data, such as focus groups, key informant interviews, and further qualitative methods. 
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Ground truthing the results from such models with the knowledge and expertise of participants, 
stakeholders and wider actors, is a vital aspect of validating the results from such models. 
In addition to ethical issues, capacity concerns also need to be addressed before embarking on the 
use of machine learning. In many instances, evaluators are not necessarily machine learning experts 
and machine learning experts are not necessarily evaluators. However, expertise of both is essential 
in coming up with practical applications of machine learning for climate change initiatives and 
workflows. Therefore, institutional capacity building in machine learning (e.g. training current staff 
based on resources - see USAID, 2021), or collaboration with external practitioners (e.g. partnership 
with research labs, universities, firms) is an important next step. 
The IEU can also learn from the work of comparator organizations that are already employing 
machine learning to complement their processes. In 2016, the Independent Evaluation Office of the 
GEF, in partnership with geospatial specialists from AidData at the College of William & Mary, 
conducted a study to evaluate the impact of the GEF’s land degradation projects (Independent 
Evaluation Office, 2016). Central to this study was the use of a machine learning algorithm trained 
upon copious amounts of satellite imagery to assess land degradation at a very fine geospatial 
resolution. Land degradation of an area was calculated by applying the United Nations Convention 
to Combat Desertification monitoring framework, which is based on indicators such as forest cover 
change and vegetation productivity. The GEF’s project sites were geocoded and then assessed using 
this algorithm, where the algorithm provided a counterfactual through predicting the land 
degradation in the absence of the GEF’s interventions. The study found overall that GEF projects 
have a positive impact on “vegetative productivity and forest cover”, thereby helping to mitigate 
land degradation. Furthermore, while the average GEF project costs USD 4.2 million, they sequester 
around USD 7.5 million worth of carbon. This study was the first of its kind to adopt a multi-
disciplinary approach, combining machine learning, geospatial analysis, and econometric modelling 
to ensure a robust data-driven impact evaluation of environmental protection projects (Patterson & 
Custer, 2017). 
A further example is the International Fund for Agricultural Development (IFAD), where a 
multidisciplinary team used machine learning to extract insights by applying text mining and 
modelling to documents accumulated for its entire investment portfolio (IFAD, 2021). With this 
approach, they were able to extract words associated with the Sustainable Development Goals 
(SDGs), and use them to visualize a time trend for the presence of the SDGs in IFAD’s documents 
against project approval dates. They were also able to text mine and detect the main interventions 
mentioned for their top five sectors. These visualizations were especially helpful in relaying a 
comprehensive picture of IFAD’s portfolio to enable targeted interventions and strategic objectives. 
This paper aims to contribute to two converging organizational GCF objectives, the first of which is 
for the IEU to increase its use of machine learning to support its desire to become a thought leader in 
the evaluation of climate change interventions. The paper also aims to contribute to the goal of the 
GCF becoming a digital organization. The paper has found that there is ample scope for machine 
learning to support the IEU and the GCF, and that through appropriate capacity building and 
learning, the IEU and the GCF could implement these measures in the current GCF–1 programming 
period and support the replenishment of the Fund for the GCF–2 programming period. 
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