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Abstract –We study the relaxation dynamics of quantum turbulence in a two-component Bose-
Einstein condensate containing half-quantum vortices. We find a temporal scaling regime for the
number of vortices and the correlation lengths that at early times is strongly dependent on the
relative strength of the inter-species interaction. At later times we find that the scaling becomes
universal, independent of the inter-species interaction, and approaches that numerically observed
in a scalar Bose-Einstein condensate.

Introduction. – Since the realization of superflu-1

idity, quantum turbulence (QT) has been studied in2

systems ranging from superfluid liquid Helium [1, 2] to3

quasi-particle condensates in solid-state systems [3]. Due4

to their unprecedented experimental accessibility, QT in5

Bose-Einstein condensates (BECs) in dilute, ultracold6

atomic gases have attracted considerable theoretical [4–9]7

and experimental [10–15] interest in both 2D and 3D con-8

figurations. In a scalar BEC, the QT state is made up of a9

large number of vortices with quantised circulation. The10

collective behaviour of the vortices plays a key role in the11

hydrodynamics, recovering features of classical turbulence12

that can exhibit the characteristic Kolmogorov power-law13

spectrum [16].14

In contrast to the scalar superfluids, multicomponent15

and spinor BECs are described by multicomponent order16

parameters and allow for a wider range of topological de-17

fects, which give rise to novel dynamics [17–20]. Conse-18

quently, there has been increasing interest in the prop-19

erties of QT and non-equilibrium dynamics in such sys-20

tems [21–25]. The simplest non-scalar topological excita-21

tion appears in a two-component BEC, described by two22

complex fields, as the appearance of a phase singularity23

in only one component. When the atomic mass and mean24

density of the components are equal, such vortices are of-25

ten referred to as half-quantum vortices (HQVs), due to26

their similarities with vortices carrying half a quantum of27

superfluid circulation in superfluid 3He [26,27] and spin-1 28

BECs [28,29]. The study of QT in BECs can be separated 29

into two distinct categories: 1) forced turbulence where 30

a statistically stationary state is established; 2) decay- 31

ing turbulence where a non-equilibrium initial condition, 32

typically involving vortices, relaxes towards equilibrium. 33

Here, we numerically investigate the spatial and temporal 34

properties of the relaxation dynamics of a non-equilibrium 35

initial state in a two-dimensional two-component system 36

containing HQVs. Using a pseudospin interpretation, we 37

compute the temporal scaling of the correlation functions 38

associated with the spin- and mass-superfluid ordering. 39

We relate these to the vortex decay rate and analyse how 40

this depends on the intra-component interaction strength. 41

We contrast our observations for this system with similar 42

simulations that have been performed for scalar BECs and 43

reported in [30–32]. 44

The two-component BEC. – We consider an un- 45

trapped two-component BEC described by the Gross- 46

Pitaevskii (GP) mean-field theory subject to periodic 47

boundary conditions. The dynamics of the condensate is 48

described by the two coupled GP equations 49

i~
∂ψ1,2

∂t
=

(
− ~2

2m1,2
∇2 + g1,2|ψ1,2|2 + g12|ψ2,1|2

)
ψ1,2

(1)

p-1
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M. T. Wheeler et al.

where ψj is the condensate wavefunction and mj (j =
1, 2) is the atomic mass for the jth component. The
strength of inter- and intra-component interactions are
described by gj and g12, respectively. We consider a con-
densate where m1 = m2 = m, as is the case, e.g., when
the two components are different hyperfine states of the
same atomic species, and also assume g1 = g2 = g. The
key parameter is then the ratio of intra- to inter-species
interactions

γ =
g12

g
, (2)

which in experiment could be tuned using magnetic [33]50

or microwave-induced [34] Feshbach resonances. Here we51

consider 0 < γ < 1, such that all interactions are repulsive,52

while keeping the condensate stable against separation of53

the components.54

The vortex states of the two-component BEC may be
understood as follows: We write the two-component wave-
function as the vector (ψ1, ψ2)T . Taking θj = Arg(ψj),
this may be decomposed as(

ψ1

ψ2

)
=

(
|ψ1|eiθ1
|ψ2|eiθ2

)
= eiΘ

(
|ψ1|eiΦ
|ψ2|e−iΦ

)
, (3)

where

Θ = (θ1 + θ2)/2, Φ = (θ1 − θ2)/2. (4)

Gradients in Φ can then be interpreted in terms of pseu-55

dospin currents, while gradients in Θ may be associated56

with a total, superfluid mass current.57

Now consider a vortex state consisting of a phase singu-
larity in ψ1, around which θ1 winds by 2π while θ2 remains
unchanged, such that(

ψ1

ψ2

)
=

(
|ψ1|eiφ
|ψ2|

)
= eiφ/2

(
|ψ1|eiφ/2
|ψ2|e−iφ/2

)
, (5)

where φ is the azimuthal angle around the vortex. The58

vortex is thus equivalently described by a π change in Θ59

(and a simulateous π change in Φ) along a closed path60

encircling the vortex. Since Θ can be associated with a61

total mass current in the two components together, these62

vortex states are often referred to as HQVs and we adopt63

this language from here on. However, the two-component64

vortices are topologically distinct from HQVs in the A and65

polar phases of superfluid 3He [26,27] and in the uniaxial66

nematic phase of spin-1 BECs [28,29].67

A pseudospin picture also allows us to understand the
size of HQV cores in terms of an energetic hierarchy of
length scales arising from the inter- and intra-component
interactions. These length scales are associated, respec-
tively, with variations of the total superfluid density and
of the density difference between the components. We thus
define the density and spin healing lengths as [35]

ξd =
~√

2mgn0
, ξs = ξd

(
1 + γ

1− γ

)1/2

, (6)

where n0 is the number density of each component in a 68

uniform system. Since a HQV consists of a phase singu- 69

larity in only one condensate component, the remaining 70

component is free to fill the vortex core. This can be 71

interpreted as a variation of the pseuodspin z-component, 72

whose size is determined by the spin healing length. When 73

ξs & ξd, the vortex core can thus expand, lowering the to- 74

tal energy. Therefore, γ directly determines the sizes of the 75

vortex cores in the system. A similar energetic hierarchy 76

of length scales leads to dramatic defect-core deformations 77

in spinor BECs [36], including splitting of singly quantised 78

vortices into HQVs [29,37]. 79

Numerical method. – To study the dynamics of
vortices in a turbulent regime we numerically evolve the
time-dependent two-component Gross-Pitaevskii equa-
tions using a split-step algorithm [38]. We write eq. (1) in
terms of the dimensionless variables: r̃ = r/as, t̃ = t/τ ,
g̃ = 2mg/~2 and ψ̃j = asψj , where as is the lattice spac-
ing and τ = 2ma2

s/~ is the lattice time. The resulting
equations then become

i
∂ψ1,2

∂t
=
(
−∇2 + g|ψ1,2|2 + γg|ψ2,1|2

)
ψ1,2, (7)

where we have dropped the tildes for notational conve- 80

nience. Our simulations were performed on a periodic do- 81

main of non-dimensional area L2 with side length L = Ns 82

where N2
s is the number of grid points. We solve eq. (7) 83

on a grid of 10242 points with as = 1. Motivated by sim- 84

ilar work in a scalar BEC [32], we take N = 3.2 × 109
85

atoms per component and dimensionless g = L2/4N . 86

The non-dimensional density healing length is thus fixed 87

at Ns/(gN)1/2 = 2. We now explore the role of the 88

inter-component interaction by varying γ within the range 89

0 < γ < 1. 90

The initial condition for the GP evolution is constructed 91

as a grid of vortex positions containing 482 vortices in 92

each component with the grids of each component offset 93

in both x and y to avoid overlapping positions. We then 94

add a small, random displacement to each position to cre- 95

ate an irregular distribution of vortices. This facilitates 96

the development of an initially chaotic and subsequently 97

turbulent vortex evolution during the relaxation dynam- 98

ics. The phase of each component is subsequently con- 99

structed as an alternating 2π winding around each vortex 100

position using the method described in ref. [5] that also 101

accounts for the periodic boundary conditions. An ini- 102

tial short period of imaginary-time propagation, keeping 103

the phase profile fixed, allows the vortex cores to form. 104

The resulting HQVs consist of a density depletion in one 105

component at the position of the phase singularity, which 106

is then filled with atoms of the other component, as il- 107

lustrated in fig. 1. From this initial state, the system is 108

evolved according to eq. (7). HQVs with opposite circula- 109

tion but with the phase singularity in the same component 110

may annihilate which leads to a decay of the total vortex 111

number. 112

p-2

Page 2 of 7AUTHOR SUBMITTED MANUSCRIPT - EPL-21-100216.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Relaxation Dynamics of Two-Component BEC
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Fig. 1: Density |ψ1|2 in a 100ξd×100ξd subdomain of the initial
state after a short imaginary-time evolution. We can identify
the vortices in this component by the density depletion (blue).
Density peaks (red) form in ψ1 at the positions of vortices in
the ψ2 component.

Results. – We first investigate the effect of γ on the113

relaxation dynamics of HQVs. Fig. 2(a)–(c) shows the114

density of the ψ1 component for γ = 0.1, 0.6, 0.8. HQVs115

with a phase singularity in this component are readily ap-116

parent by the corresponding density depletion, and have a117

core size that grows with increasing γ. For γ ≥ 0.6, high118

density peaks also become noticeable and correspond to119

the positions of HQVs with phase singularity in ψ2. This120

can be understood from the healing lengths, eq. (6). For121

small γ, ξs ∼ ξd. As γ increases, the spin healing length122

also increases. Consequently, the cores of the HQVs fill123

with atoms from the other component as the resulting124

lowering of the kinetic energy offsets the cost in interac-125

tion energy. This causes the vortex cores to expand to a126

size similar to the spin healing length, as borne out by our127

simulations.128

To track the vortex positions, we evaluate the pseudo-
vorticity [39,40]

ωpj =
1

2
∇× (nv)j , (8)

where

(nv)j =
1

i

[
ψ∗j (∇ψj)− (∇ψ∗j )ψj

]
, (9)

is the mass current of component j = 1, 2. The pseudo-129

vorticity remains regular and non-zero within the core of130

each vortex, and relaxes to zero away from the vortex131

singularity (at length scales exceeding the spin-healing132

length, ξs), as shown in fig. 2(d)–(f). The sign of the133

pseudo-vorticity also determines the charge of the vortex.134

The pseudo-vorticity shows the vortex positions particu-135

larly sharply for small γ, where the vortex cores are small.136

We now investigate the spatial properties of our turbu-
lent system. We split the kinetic energy, Ekin = Ev +Eq,
into classical (Ev), and quantum-pressure (Eq) contribu-
tions. These are given by

Ev =
1

4

∫
d2x

(
|
√
n1v1|2 + |

√
n2v2|2

)
, (10)

Eq =

∫
d2x

(
|∇
√
n1|2 + |∇

√
n2|2

)
, (11)

where nj = |ψj |2 for j = 1, 2. 137

The energy spectra for these contributions involve the
Fourier transforms of the generalised velocities for the in-
compressible (i), compressible (c), and quantum pressure
(q) parts [21], defined as

wi,c =
√
n1v

i,c
1 +

√
n2v

i,c
2 ,

wq = 2 (∇
√
n1 +∇

√
n2) .

(12)

The incompressible and compressible components of the
velocity field are recovered from a Helmholtz decomposi-
tion into a divergence free, incompressible part ∇·vi = 0,
and an irrotational, compressible part ∇ × vc = 0. The
kinetic energy spectrum can then be calculated by inte-
grating the corresponding Fourier transforms over the full
k-space angle

Eδ(k) =
1

4

∫ 2π

0

dΩk |w̃δ(k)|2, (δ = i, c, q), (13)

for wave number k = |k|. The total kinetic energy is given
by integrating over all k and summing over the different
contributions: Ekin =

∑
δ

∫
dkEδ(k) for δ = (i, c, q). The

occupation numbers corresponding to the different energy
contributions are then

nδ(k) = k−2Eδ(k), (δ = i, c, q). (14)

Fig. 3 shows the occupation number for each energy 138

contribution along with the total occupation number n(k) 139

for the case of γ = 0.6 at a time t = 2 × 105τ . The 140

total single-particle spectrum obeys the predicted scaling 141

n(k) ∼ k−4 in the infrared (IR) region and n(k) ∼ k−2 in 142

the ultraviolet (UV) seen for some turbulent, 2D, scalar 143

BEC systems [31,32,42]. Decomposing the kinetic energy 144

into its constituent parts, we see that the incompressible 145

contribution dominates in the IR and is responsible for 146

the change in scaling to k−4 in this region. This incom- 147

pressible contribution is associated with the vortices in the 148

system [24]. At large k, the spectrum is dominated by the 149

compressible and quantum pressure contributions exhibit- 150

ing the weak-wave-turbulence scaling k−2. This scaling of 151

the energy is qualitatively insensitive to variations in γ. 152

Next, we consider the time-dependent properties of the
turbulent dynamics. For this purpose, we will concentrate
on the correlation functions for the spin and mass parts
of the pseudospinor order parameter. For a homogeneous

p-3
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Fig. 2: Density (a)–(c) and pseudo-vorticity (d)–(f) of the ψ1 component in a 256ξd × 256ξd subregion at time t = 2.5× 104ξ2d,
for γ = 0.1 (left), γ = 0.6 (middle) and γ = 0.8 (right). Vortices in ψ1 appear as a density depletion. For γ ≥ 0.6, bright density
peaks show where ψ1 atoms fill the cores of HQVs with the phase singularity in ψ2. Vortices with positive (blue) and negative
(red) circulation are identifiable in the pseudo-vorticity field.
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Fig. 3: Occupation numbers for different fractions of the sys-
tem with γ = 0.6 at t = 5× 104ξ2d: single particle spectrum for
quantum pressure (purple diamonds), incompressible (red dia-
monds) and compressible (blue diamonds) contributions. The
total occupation number (black diamonds) for the single par-
ticle spectrum is obtained by summing the corresponding frac-
tions from each condensate component. The single particle
spectrum obeys a k−2 scaling (dotted line) in the ultra-violet
and a k−4 scaling (dashed line) in the infrared regions.

turbulent system these are defined, respectively, as [43]

GΦ(r, t) =
2

n2
Tr [〈Q(0)Q(r)〉] , (15)

GΘ(r, t) =
1

n2
〈α∗(0)α(r)〉 , (16)

where 〈·〉 denotes ensemble averaging. Here, the matrix

Q =

(
Qxx Qxy
Qxy −Qxx

)
, (17)

where Qxx = Re{ψ∗1ψ2} and Qxy = Im{ψ∗1ψ2}, is associ-
ated with spin ordering in the system, while α = −2ψ1ψ2

is an alignment parameter. Exploiting the fact that our
turbulent system is homogeneous, we can replace ensem-
ble averages with spatial averages. The spin correlation
function is then equivalently defined as [43]

GΦ(r, t) =

∫
dΩr

∫
d2x′

L2

2Tr [Q(x′)Q(x′ + r)]

n2
, (18)

where
∫

dΩr denotes angular integration. We perform the 153

same averaging for the superfluid correlation function. 154

In fig. 4(a) we plot the results for the spin correlation 155

function at different times for γ = 0.6. As the time in- 156

creases, the correlation function decays over a larger dis- 157

tance, indicating the emergence of long-range order within 158
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Fig. 4: (a): Spin-correlation function as a function of time for
γ = 0.6. The spin order decays more slowly as time increases,
indicating domain growth within the system. Inset: collapse of
the spin correlation function when scaled by the spin correla-
tion length. (b): Correlation lengths corresponding to the spin
and superfluid correlation functions as a function of time for
γ = 0.3, 0.6, 0.8. Larger γ give a faster initial growth, with a
universal scaling appearing for t & 2.5×103ξ2d. The t1/5 scaling
predicted from the scalar BEC is indicated for comparison.

the system. We verify the same behaviour for the mass-159

correlation function. From these correlation functions we160

obtain the correlation length, Lδ(t) for δ = {Φ,Θ}, which161

we take as the distance at which the corresponding corre-162

lation function decays to a quarter of its value at r = 0:163

Gδ(Lδ, t) = 1
4Gδ(0, t). The correlation functions are said164

to exhibit dynamical scaling when their form at different165

times remains self similar. This means that they collapse166

to a universal, time-independent function when scaled by167

the correlation lengths, i.e. Hδ(r) = Gδ(r/Lδ(t), t). The168

inset in fig. 4 shows this collapse of the spin correlation169

function in our system, indicating that GΦ(r, t) does in-170

deed exhibit dynamical scaling. We again verify the same171

behaviour for GΘ(r, t).172

103 104 105

t/ [ 2
d]

101

102

d
[

d]

Grid
Random
Random w/ noise
t1/2

t1/5

Fig. 5: Mean vortex distance in a scalar BEC for three different
initial conditions using the same parameters as in ref. [32]. The
t1/5 early-time as well as the t1/2 late-time scaling regimes are
recovered.

Fig. 4(b) shows both correlation lengths LΦ,Θ(t) as a 173

function of time for γ = 0.3, γ = 0.6 and γ = 0.8. After 174

the initial evolution the temporal scaling of the correlation 175

lengths becomes universal for all values of γ. However, the 176

effect of γ is apparent in the early time evolution where a 177

larger γ leads to a faster growth of the correlation lengths. 178

This is indicative of a difference in the decay rate of the 179

vortices in the early-time dynamics. 180

We can investigate this behaviour by considering the 181

total number of vortices in the system as a function of 182

time. We extract the mean distance between vortices as 183

`d = 1/
√
Nvort, where Nvort is the total number of vortices 184

in the system. As a point of reference, in a scalar BEC ini- 185

tially containing a large number of vortices, `d ∼ tβ [32], 186

where β characterises the vortex annihilation rate. In par- 187

ticular, after some (possibly short) period of evolution, a 188

β = 1/5 scaling is observed. For comparison, we have in- 189

dicated this theoretically expected scaling in fig. 4(b) for 190

our two-component BEC. At late times, a β = 1/2 scaling 191

appears in the scalar BEC, whose onset is delayed if the 192

initial vortex distribution is highly clustered [32]. In fig. 5 193

we reproduce this late-time scaling using the parameters 194

of ref. [32] for an initial grid of elementary vortices anal- 195

ogous to our two-component initial state, as well as for a 196

random vortex distribution with and without noise added 197

to the energy spectrum. In all cases we recover both the 198

t1/5 scaling after initial evolution and the t1/2 late-time 199

scaling, indicating that this behavior is robust and quali- 200

tatively insensitive to details of the initial condition. 201

Motivated by this previous work, we perform a sim- 202

ilar analysis to establish how these results extend to a 203

two-component system with HQVs and how the vortex 204

annihilation rate depends on γ. We focus on the early 205

vortex evolution, where fig. 4(b) suggests that the γ- 206
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Fig. 6: Total vortex number in both components (red) as a function of time for γ = 0.3, 0.7, 0.9. Larger γ leads to a steeper decay
due to the rapid annihilation of opposite-signed vortices in the same component. Overlaid for comparison is twice the vortex
number (black) from a corresponding scalar-BEC simulation (equivalent to γ = 0) with the same initial vortex distribution,
atom number, and interaction strength g as ψ1.

0.2 0.4 0.6 0.8

2

3

4

z

Fig. 7: Exponent z as a function of γ in the interval 2.5 ×
102ξ2d < t < 2.5 × 103ξ2d. A rapid decrease of the exponent
arises for γ & 0.6.

dependence is significant. Fig. 6 shows Nvort as a func-207

tion of time for three different values of γ. For γ = 0.7208

and 0.9, a new scaling regime emerges at early times209

(2.5 × 102ξ2
d . t . 2.5 × 103ξ2

d), where Nvort(t) decays210

as t−1 (γ = 0.7) and t−1.5 (γ = 0.9). For t & 2.5× 103ξ2
d,211

Nvort(t) approaches a universal t−2/5 scaling correspond-212

ing to `d ∼ t1/5, similar to the scalar BEC also shown.213

These results imply a better agreement with the theoreti-214

cal t1/5 scaling than indicated from the correlation lengths215

[fig. 4(b)]. This suggests that although their growth is216

driven by vortex annihilation, the length scales LΦ,Θ(t)217

are not fully equivalent to `d(t). The region of interest in218

fig. 6 only extends up to t = 5×104ξ2
d and we therefore ex-219

pect a universal transition to `d ∼ t1/2 at times extending220

beyond the time interval of our simulations.221

Previous work has demonstrated that, for a sufficiently222

high γ & 0.6, a dipole consisting of HQVs with opposite223

phase winding in the same component will shrink in size as224

the vortices move toward one another and annihilate [17].225

We therefore attribute the different scaling regime at early226

times, when the mean inter-vortex separation is small, to 227

this behaviour. This is further supported by the fact that 228

we do not see such scaling for γ . 0.6, where such rapid 229

annihilation rate is not prevalent. Within that range of 230

values for γ, the vortex dynamics begins to recover the 231

behavior observed in a scalar BEC. 232

We can model the vortex decay rate by a kinetic-like
equation of the form

∂tNvort ∼ Nη
vort, (19)

where η > 1. The dependence of Nvort on the right-hand
side of the equation indicates that the decay rate is a func-
tion of the number of vortices that are involved in facili-
tating the annihilation. Using this simple model, we can
derive temporal scaling of the total vortex number as [44]

Nvort ∼ t−2/z, (20)

where z = −2(1− η). We note that an exponent of z = 2 233

corresponds to a two-body collision process whereas z = 5 234

corresponds to three-body collisions [32]. In fig. 7, we 235

quantify the γ dependence of the early-time scaling by 236

considering the exponent z in the region 2.5 × 102ξ2
d < 237

t < 2.5× 103ξ2
d. We see a rapid decrease of the exponent 238

after γ > 0.6, when the more rapid annihilation becomes 239

prevalent. The observed decrease in the value of z with γ 240

in our simulations signals an additional interaction effect 241

not present in the scalar system. 242

Conclusions. – We have investigated spatial and 243

temporal aspects of a decaying turbulent two-component 244

BEC containing HQVs. The occupation-number spectrum 245

is found to show a scaling behaviour consistent with sim- 246

ilar results for a scalar BEC across a wide range of values 247

of the inter-component interaction strength. 248

However, we find that a new interaction-dependent scal- 249

ing regime appears in the temporal properties of the mass- 250

and spin-correlation functions, as well as the mean inter- 251

vortex separation. For large values of the relative inter- 252

component interaction strength, γ & 0.6, these exhibit 253
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a γ-dependent scaling that is markedly different from the254

universal behavior, which conforms to that of a scalar BEC255

at a similar stage of time evolution. Modelling the total256

vortex number using a simple kinetic equation, we have257

found that this early-time decay rate for high γ cannot258

be explained by simple two- or three-body collisions. The259

observed enhanced vortex decay rate at early times for260

large γ may be due to the role played by an additional261

inter-vortex force that arises between vortices in the same262

component. The results suggest that this force is short-263

range and appears in addition to the well-known 1/R inter-264

vortex force. This latter force appears to dominate once265

the vortex density drops significantly following the rapid266

vortex annihilations occurring at early times.267

∗ ∗ ∗
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