Delivering brief physical activity interventions in primary care: a systematic review of the prevalence, and factors associated with delivery, receipt, and patient receptivity

4 ABSTRACT

5 **Background**

- 6 Brief interventions (BI) involving physical activity (PA) screening and/or advice
- 7 are recommended in primary care. However, the frequency of delivery is
- 8 unknown.

9 **Aim**

- 10 To examine the extent to which PA BI are delivered in primary care and
- explore factors associated with delivery, receipt, and patient receptivity.

12 **Design**

13 A mixed methods systematic review, with a narrative synthesis of results.

14 Method

- 15 CINAHL, EMBASE, MEDLINE and Psychinfo were searched from January
- 2012 until June 2020 for qualitative and quantitative studies reporting the level
- of delivery and/or receipt of PA BI within primary care, and/or factors affecting
- delivery, receipt, and patient receptivity. Quality was assessed using the
- 19 Mixed Methods Appraisal Tool. Attitudes and barriers towards delivery were
- 20 coded into the Theoretical Domains Framework and the Capabilities-
- 21 Opportunities-Motivation Behaviour model.

22 Results

- 23 After screening 13066 records, 66 articles were included. The extent of PA
- screening and advice in primary care varied widely (2.4% 100%; 0.6% -
- 25 100%, respectively). PA advice was delivered more often to patients with a
- 26 higher body mass index, lower PA levels, and/or more comorbidities. Barriers
- including a lack of time and training/guidelines remain, despite
- 28 recommendations from the World Health Organisation and National Institute
- 29 for Health and Care Excellence. Few studies explored patients' receptivity to
- 30 advice.

31 Conclusion

- 32 PA BI are not delivered frequently or consistently within primary care.
- 33 Addressing barriers to delivery through system-level changes and within
- training programmes could improve and increase the advice given.
- Understanding when patients are receptive to PA interventions could enhance
- 36 healthcare professionals' confidence in their delivery.

Keywords

- 2 Primary care, Physical activity, Brief interventions, Health promotion, Disease
- 3 prevention, Systematic review

4

5

1

How this fits in

- 6 (Summarise, in no more than four short sentences, what was previously known or
- 7 believed on the topic and what your research adds, particularly focusing on the
- 8 relevance to clinicians.)
- 9 Brief physical activity (PA) interventions delivered in primary care
- 10 consultations can increase PA in the general population. However, there is a
- 11 lack of understanding regarding the frequency and factors associated with
- delivery. This review reports high variation in the frequency and context of
- delivery and receipt and outlines common barriers and facilitators (coded
- within the TDF and COM-B model) to practitioner delivery. Identified barriers
- could be addressed through system-level changes, improved educational
- resources, and in practitioner training, to increase practitioner knowledge and
- 17 confidence, and subsequently improve patient receptivity and PA uptake.

1 INTRODUCTION

- 2 Physical inactivity is a global public health problem[1, 2]. In the UK, levels of
- inactivity are increasing; approximately 32% of men, and 36% of women failed
- 4 to meet the government's physical activity (PA) recommendations in 2018[3].
- 5 Physical inactivity increases the risk of poor physical and mental health, is
- 6 estimated to account for as many deaths in the UK as smoking (one in six),
- 7 and costs the NHS around £0.9 billion annually[4].
- 8 The World Health Organisation's (WHO) global recommendations on PA for
- 9 health suggest PA advice should be provided within primary care[5].
- 10 Correspondingly, within the UK the National Institute for Health and Care
- 11 Excellence (NICE) recommends that primary care practitioners should deliver
- 12 'brief' PA advice to patients who are not currently meeting PA guidelines[6].
- NICE defines brief advice as, "verbal advice, discussion, negotiation or
- encouragement, with or without written or other support or follow-up"[6].
- Previous reviews have found brief interventions (BI) to be effective at
- increasing (self-reported) PA in the short-term, with some evidence that this
- can be maintained in the longer term (12 months)[7, 8]. However, barriers to
- giving and receiving PA advice in primary care are rife: a review in 2012
- reported a variety of barriers including lack of resources and perceived
- 20 (in)effectiveness of advice[9]. Since that review was published, population PA
- levels have not substantially increased[10], despite various initiatives
- 22 nationally and globally to increase PA advice delivered in primary care[11, 12].
- Additionally, the UK's recent GP workforce 'crisis' [13, 14] may have impacted
- 24 GPs' capacity to include PA discussions within consultations. Thus, an
- updated review on barriers and facilitators to PA advice in primary care is
- warranted. Furthermore, little is known about how often, and to who, this
- 27 advice is given. This knowledge is crucial for understanding how BI for PA are
- implemented in practice, and identifying potential areas for improvement.
- 29 The aim of this mixed methods systematic review was to examine the extent
- 30 to which brief PA interventions (PA screening and/or advice) are delivered in
- primary care and explore factors associated with delivery, receipt, and patient
- 32 receptivity.

1 METHODS

2 Search strategy

- 3 We searched for quantitative articles reporting level of delivery and/or receipt
- 4 of brief PA interventions within primary care consultations for health
- 5 promotion/disease prevention, and quantitative/qualitative articles reporting
- 6 factors affecting delivery, receipt, and patient receptivity. In July 2018, and
- again in July 2020, separate searches were carried out by an information
- 8 specialist in CINAHL, EMBASE, MEDLINE, and PsychInfo (Supplementary
- 9 Box S1 for example search terms). The review was prospectively registered
- 10 on PROSPERO (CRD42018103812).

11 Article selection and data extraction

- 12 Two authors (RJT, LHH) screened the titles and abstracts using the inclusion
- criteria (Supplementary Box S2), erring on the side of inclusion. Three authors
- 14 (RRS, LHH, AG) reviewed 20% of the titles and abstracts to ensure reliability.
- 15 20% of the full texts were double screened by LHH and AG, with
- disagreements arbitrated by RJB. References of included articles were hand
- 17 searched for additional eligible studies.
- One-hundred per cent of the data were extracted in duplicate by independent
- authors (LHH, AG, RJT, RRS), using an electronic spreadsheet.
- 20 Discrepancies were checked by a third reviewer. Key study characteristics are
- 21 listed in Supplementary Table 1, and the main outcomes of patient and
- practitioner receipt/delivery of PA BI in Supplementary Tables 3 and 4.

23 Quality assessment

- 24 Study quality was assessed using the Mixed Methods Appraisal Tool[15] by
- LHH, with 20% checked by AG.

26 **Analysis**

- To examine the extent to which PA BI are delivered in primary care,
- 28 quantitative data were extracted on the reported frequency of 1) PA screening,
- 29 2) delivery of PA advice by HCPs and 3) patient-reported receipt of PA BI. A

- 1 quantitative synthesis of this data was not possible due to large heterogeneity
- 2 in the definition and measurement of PA BI. A narrative synthesis was
- 3 therefore conducted.
- 4 To explore factors associated with delivery, receipt, and patient receptivity,
- 5 quantitative data were extracted inductively from articles, in duplicate by LHH,
- 6 AG, RJT, RRS, and coded as either patient or HCP/system factors.
- 7 Qualitative data on HCP attitudes and perceived barriers towards delivery,
- and patients' views, attitudes, and receptivity towards PA BI were extracted
- 9 inductively from the articles using the articles' own phrasing/codes. Similar
- codes were grouped together by LHH (expertise in behaviour change theory).
- 11 Codes relating to HCP attitudes or barriers were mapped onto the Theoretical
- 12 Domains Framework (TDF) and Capabilities-Opportunities-Motivation
- 13 Behaviour model (COM-B) by LHH and RJB, to assist identification of key
- components for future interventions aiming to increase PA BI delivery.

15

16

23

RESULTS

- 17 The database searches identified 13,066 records once duplicates were
- removed (Figure 1), with 59 eligible articles. Hand searching references
- identified seven further studies, giving a total of 66 papers. The majority of
- studies collected data from healthcare professionals (HCPs; n=39), used
- 21 cross-sectional surveys (n=52), and were American (n=20) (Supplementary
- 22 Table 1).

Quality Assessment

- 24 The majority of studies were moderate quality. Most quantitative descriptive
- studies used appropriate statistical analyses (94%), and appropriate
- measurements (81%), many of which were pilot tested and/or developed
- using Delphi methods, or in consultation with key stakeholders
- 28 (Supplementary Table 2). The risk of nonresponse bias, and the
- representativeness of the target population was unclear, or inadequate, in
- around half of these studies.

1 Level of PA screening by HCPs

- 2 Eleven studies reported the level of PA screening by practitioners (Figure 2;
- 3 Supplementary Table 3). Data from medical chart audits in medium-high
- 4 quality studies (n=6) reported that the proportion of patients who had their PA
- 5 levels assessed ranged from 2.4% to 60.1% (median=43.5%)[16, 17]. The
- 6 proportion of practitioners who reported assessing PA for at least some of
- 7 their patients ranged from 8% to 100% (median=50%)[18,19].

8 Level of brief PA advice by HCPs

- 9 Thirty-one studies reported the extent to which practitioners provide PA
- advice or counselling (Figure 2; Supplementary Table 3). The proportion of
- practitioners who reported delivering PA advice/counselling ranged from 0.6%
- to 100% (median=64%)[19]. One high quality study analysed audiotaped
- consultations and reported that PA was discussed in 72% of patient visits[20,
- 14 21]. In contrast, the proportion of patients who were given PA
- advice/counselling, as determined by medical chart audit (in one high quality
- study), ranged from 1.5% to 52.2% (median=23.3%)[16].

17 Patient reported receipt of PA BI

- 18 Twenty-five studies provided data on patient receipt of PA BI (Figure 2;
- 19 Supplementary Table 4). The proportion of patients reporting that they had
- received PA advice ranged from 7.7% to 76% (median=35%)[22, 23], with
- 21 thirteen studies reporting fewer than 40% of patients recalled receiving PA
- 22 advice.

23 Factors associated with the delivery or receipt of PA BI

24 Patient factors

- 25 Twenty-three studies examined patient factors associated with PA BI
- 26 (Supplementary Table 5). While the majority of evidence was mixed and
- inconclusive, the following patient factors were most consistently reported to
- be significantly and positively associated with the delivery or receipt of PA BI:
- 29 high patient BMI (n=11), physically inactive/sedentary patients (n=5), patients
- with poorer health/more comorbidities (*n*=5), and patients who had more

- 1 physician visits (*n*=3). Patient gender and age was often found *not* to be
- 2 associated with PA BI (*n*=11; *n*=6, respectively).

3 HCP/system-related factors

- 4 Twenty-four studies examined practitioner/system factors associated with PA
- 5 BI (Supplementary Table 6). The majority of findings were inconsistent,
- 6 except: female practitioners were more likely than male practitioners to
- 7 assess PA (but not necessarily advise)[16, 24-27]; practitioners with higher
- levels of PA themselves[26, 28-30] and practitioners with positive beliefs
- 9 about their capabilities and/or efficacy[16, 25, 26, 31] were more likely to
- 10 deliver PA BI.

11 HCP attitudes and perceived barriers towards PA BI

- 12 Twenty-six quantitative and two qualitative studies[32, 33] examined HCP
- attitudes towards delivering PA BI. These were coded into the TDF[34] and
- 14 COM-B[35] (Supplementary Table 7).
- 15 1. Capabilities (psychological). Twenty quantitative and one qualitative study
- reported barriers and facilitators that were coded under psychological
- capabilities. Nineteen of these reported attitudes that fit within the TDF
- 18 'knowledge'. In 12 of these, HCPs reported a personal lack of knowledge
- or training as a barrier to providing PA BI, with a request for additional
- training mentioned[36]. However, the majority of HCPs in 6 studies
- 21 perceived they had sufficient knowledge or skills. In 2/4 studies that were
- coded under the TDF 'skills', practitioners reported difficulty in advising
- patients, or including it in their appointments[25, 37].

- 25 2. Opportunity (physical). Seventeen studies (including two qualitative studies)
- 26 measured attitudes that were coded under the TDF 'Environmental context
- and resources', and the COM-B 'Physical opportunity' categories. The most
- commonly cited barriers within these themes were perceived time
- constraints for including PA discussions within consultations (n=17) and a
- perceived lack of local services or places to refer patients (n=8). Further
- barriers included perceived (lack of) availability of educational resources for

HCPs and (lack of) effective tools/information to give to patients, along with perceived (lack of) opportunities to follow-up on PA advice.

3

13

14

- 3. Motivation (reflective and automatic). The most commonly coded TDF 4 5 category within Motivation was 'Beliefs about consequences' (n=19). Within 6 this domain, the most commonly reported barriers to delivery PA BI were; 7 HCP perceived (lack of) patient interest, motivation, or likelihood of adhering to advice(n=14), HCP perceived patient expectation of receiving 8 9 pharmacological treatment(n=6), and HCP perceived (lack of) effectiveness of PA advice(n=7). Despite these barriers, most practitioners thought that 10 PA BI were a part of their role(n=11), important(n=7), and the majority felt 11 confident about their capabilities (self-efficacy) in providing PA BI and 12
 - Patients' views, attitudes, and receptivity towards brief PA interventions
- Four high quality qualitative studies explored patient views and attitudes

supporting behaviour change(n=8/13 studies).

- towards PA advice in primary care[38-41]. Patients felt they had no regular
- 17 conversations about PA, and that PA conversations lacked substance. The
- need for a patient-centred approach, with follow-up communication was
- mentioned. Some patients were receptive to PA advice if clearly linked to
- 20 contextual factors, such as the potential to reduce medication or pain. Some
- 21 patients believed practitioners lack the confidence and knowledge to deliver
- 22 PA BI, which influenced their receptivity towards advice. However, provider
- 23 motivation and support were viewed as important for behaviour change.

24 **DISCUSSION**

Summary

- This mixed-methods review of 66 studies worldwide suggests high variation in
- the extent to which PA is discussed with patients in primary care (PA
- screening: 2.4% 100%; PA advice: 0.6% 100%). Key practitioner barriers
- included a lack of time, training/guidelines, and perceived patient
- 30 motivation/adherence to PA advice. Few studies have explored patients'

- 1 receptivity to such advice, however conversations with clear relevance to the
- 2 patient's contextual factors (e.g. medication) appear to be valued.

Comparison with existing literature

3

20

- 4 This review provides an update of the literature on provider and patient
- 5 barriers to delivering/receiving PA advice, following Campbell et al's (2012)
- 6 review[9]. It extends their work through coding provider attitudes and barriers
- 7 into the TDF and COM-B model. Similar provider barriers were identified;
- 8 perceived likelihood of patient uptake, lack of resources (time, materials), and
- 9 HCP confidence and knowledge. Lamming et al's (2017) umbrella review also
- reported time as a key practitioner barrier[7]. It is notable that these barriers
- remain despite an increased awareness of the importance of PA, and
- recommendations from WHO and NICE[5, 6]. There is a clear need to identify
- meaningful ways to tackle these persistent challenges.
- 14 Comparing PA to other behaviour change discussions, diet, weight, and
- smoking is often discussed more frequently than PA, whereas alcohol is
- discussed less[42-49]. Furthermore, a survey in Sweden and the US reported
- that more patients wanted to receive support on diet, weight, and smoking
- than PA. Therefore PA discussions could be conducted alongside advice on
- diet and/or weight to increase delivery frequency and patient receptivity.

Implications for practice

- 21 PA BI were more frequently delivered to patients with higher BMIs, a greater
- 22 number of comorbidities, and who were physically inactive. Patients believed
- that their practitioners' perception of their activity levels and physical
- 24 capabilities influenced their likelihood of receiving advice. Practitioners must
- therefore be cautious not to stigmatise patients when deciding when and how
- to conduct these conversations: if the patient feels they are being stigmatised
- it could have detrimental effects on their psychological and physical health[50]
- and may increase inactivity[51].
- 29 Patients often under-reported receiving PA advice, suggesting that focussed
- HCP training on delivery skills may be needed to increase patient

- 1 engagement with advice. Opportunistic PA BI tailored to what is realistically
- 2 feasible around their lifestyles are likely to be most effective.
- 3 The parallels between HCP perceived barriers to BI for PA compared with
- 4 smoking cessation[52] and obesity[53], notably time constraints, lack of
- 5 experience, and lack of patient motivation, suggests a cultural shift is
- 6 desirable, to address HCP placing preventative lifestyle interventions as lower
- 7 priorities compared with disease management (including
- 8 pharmacotherapy)[54]. Whilst any attempts to address the physical inactivity
- 9 epidemic are multifaceted with a need to engage all stakeholders, primary
- care HCP have a key role owed to the high frequency of patient contact[55]
- coupled with the trust patients put in HCP[56].
- 12 To address this challenge, HCP, particularly GPs, need evidence to realise
- that behavioural interventions have an important place in holistic patient-
- centred evidence-based medicine, with reassurance that patients will engage
- with and benefit from them. HCP also need clear interventions to offer, with
- education at undergraduate and postgraduate level and made essential in
- continuing professional development. The recently launched UK's 'Moving
- 18 Medicine' toolkit[57] may help overcome knowledge and resource barriers.
- 19 However, a recent study demonstrated that despite educational training
- 20 successful addressing GPs' barriers to providing opportunistic weight loss
- 21 interventions during a trial, after the trial ended, GPs reported the same
- barriers as pre-trial[58]. Therefore, wider system changes may also be
- 23 required.

24

25

Implications for research

- There is limited research on patient views towards receiving PA interventions
- in primary care. Three of the four studies in this review were limited to
- samples of adults aged 60+ living in North America[38, 39, 41]. Research is
- 29 needed on patient receptivity towards PA discussions within the UK, amongst
- a wider age-range, to inform practitioner training and increase patient
- 31 engagement with advice.

- Only four studies were UK-based[44, 59-61], and all indicated that rates of PA
- 2 BI are low: 15% of GPs reported delivering PA advice to all patients, 18% 35%
- 3 of patients reported receiving advice, and 53% of patients reported PA
- 4 screening. More research is needed in the UK to better understand the
- 5 prevalence, factors associated with, and barriers and enablers to
- 6 delivering/receiving PA BI in UK primary care.
- 7 Current research fails to adequately describe the content of PA interventions,
- thus, we are unable to comment on the quality of advice given. Future
- 9 research would benefit from describing the BI and the context in which it is
- delivered, using the Behaviour Change Taxonomy[62] and TIDIER
- 11 checklist[63].

12

Strengths and Limitations

- 13 This review is the first to report on the prevalence of PA BI in primary care,
- and link HCP perceived barriers and facilitators to the COM-B and TDF.
- Only articles written in English were included, due to a lack of translation
- resources. Only 20% of article screening and quality assessment was
- conducted in duplicate. Only peer-reviewed, published articles were included,
- therefore a publication bias may be present. This review focuses solely on PA
- screening and advice: we excluded studies that examined specific exercise
- 20 referral schemes or prescriptions (including social prescribing). Future
- research may benefit from comparing the frequencies of these. Due to a lack
- of detail within the articles, we were unable to code BCTs, despite planning to
- 23 in our protocol. The large heterogeneity of outcome measures made cross-
- study and cross-cultural comparisons challenging.
- The quality of studies were often reduced by the sample not being
- representative of the target population (or lack of detail to assess this), and a
- 27 high risk of non-response bias. Therefore caution should be taken when
- generalising findings. It is possible, especially in the HCP sample that those
- with a particular interest in PA were more likely to participate. Therefore the
- prevalence of PA BI reported in this review may be an overestimation.

1 CONCLUSION

- 2 Prevalence of the delivery and receipt of PA BI within primary care varies
- 3 widely, with many studies reporting low levels of delivery/receipt. HCPs have
- 4 identified a number of barriers to delivering PA advice, including time,
- 5 knowledge, and confidence. Addressing these barriers through system-level
- 6 changes and training programmes could improve the consistency, quality, and
- 7 frequency of advice given. A better understanding of when patients are most
- 8 receptive to PA interventions within primary care could enhance the
- 9 effectiveness of interventions and increase HCPs confidence to discuss PA
- with their patients.

Figure 1. Flow diagram of search strategy

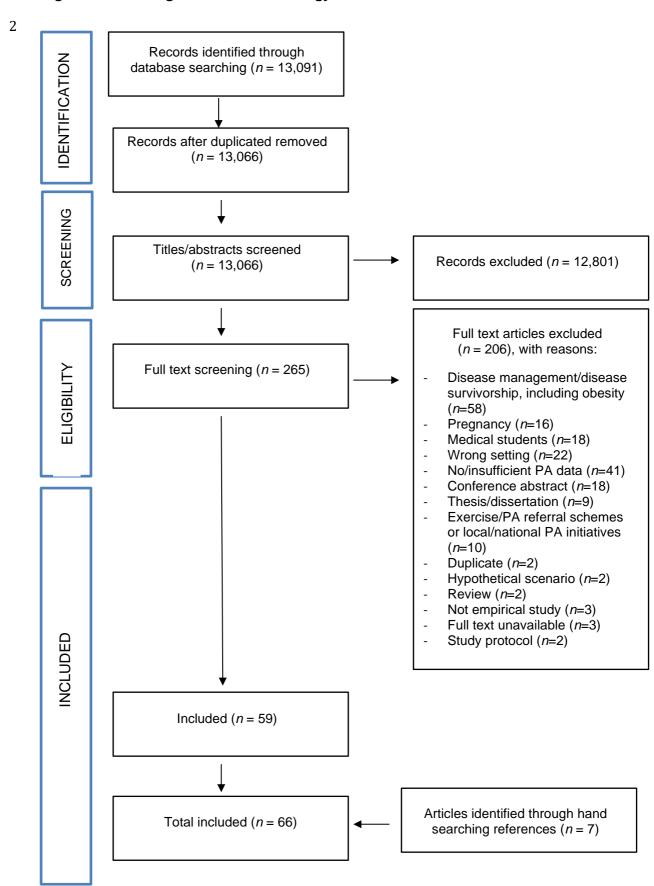


Figure 2. Frequency of physical activity brief interventions in primary care. 100% Screening by medical chart review 90% ■ Screening reported by HCP Advice by medical chart review 80% Percentage received / delivered PA BI imes Advice reported by HCP 70% ■ Patient reported advice/screening 60% 50% 40%

30%

20%

10%

0%

Scatter plot detailing the frequency of PA BI delivery/receipt as reported by patients, healthcare professionals, and medical chart reviews (Yaxis), plotted against the number of participants in each study (X-axis).

Number of participants

10000

100

Funding

This review was supported by funding from Yorkshire Cancer Research and Cancer Research UK. MT is supported by a Cancer Research UK programme grant (C569/A16891). DP is supported by the strategic research programme funded by the Scottish Government's Rural and Environmental Science and Analytical Services (RESAS) Division. RJB is supported by Yorkshire Cancer Research Fellowship funding.

Ethical Approval

Not required as not an empirical study.

Competing Interests

The authors have no competing interests to declare.

References

- 1. Lee, I.-M., Shiroma, E.J., Lobelo, F. et al., *Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.* Lancet, 2012. **380**(9838): p. 219-229.
- 2. World Health Organisation, *Physical Inactivity: A Global Public Health Problem*, in *Global Strategy on Diet, Physical Activity and Health*. https://www.who.int/dietphysicalactivity/factsheet_inactivity/en/.
- 3. NHS Digital, *Statistics on Obesity, Physical Activity and Diet.* 2019.
- 4. Public Health England, *Physical activity: applying All Our Health*, Public Health England., 2019.
- 5. World Health Organisation, Global Recommendations on Physical Activity for Health. 2010.
- 6. National Institute for Health and Care Excellence, *Physical activity: brief advice for adults in primary care [Public health guideline PH44]*. May 2013: https://www.nice.org.uk/guidance/ph44.
- 7. Lamming, L., Pears, S., Mason, D., et al., What do we know about brief interventions for physical activity that could be delivered in primary care consultations? A systematic review of reviews. Prev Med, 2017. **99**: p. 152-163.
- 8. Orrow, G., Kinmonth, A.-L., Sanderson, S., and Sutton, S.J.B., *Effectiveness of physical activity promotion based in primary care: systematic review and meta-analysis of randomised controlled trials.* BMJ, 2012. **344**: p. e1389.
- 9. Campbell, F., Blank, L., Messina, J., et al., *Physical activity: brief advice for adults in primary care.* 2012.
- 10. Du, Y., Liu, B., Sun, Y., et al., *Trends in adherence to the physical activity guidelines for Americans for aerobic activity and time spent on sedentary behavior among US adults, 2007 to 2016.* JAMA Netw Open, 2019. **2**(7): p. e197597-e197597.
- 11. Royal College of General Practitioners. *Motivate 2 Move*. 2013 [cited 2021 06.01.2021]; Available from: https://gpcpd.heiw.wales/clinical/motivate-2-move/.
- 12. Royal College of General Practitioners. *Clinical Priorities*. [cited 2021 06.01.2021]; Available from: https://www.rcgp.org.uk/clinical-and-research/our-programmes/clinical-priorities.aspx.
- 13. Owen, K., Hopkins, T., Shortland, T., and Dale, J., *GP retention in the UK: a worsening crisis. Findings from a cross-sectional survey.* BMJ open, 2019. **9**(2): p. e026048.
- 14. Hall, L.H., Johnson, J., Watt, I., and O'Connor, D.B. *Association of GP wellbeing and burnout with patient safety in UK primary care: a cross-sectional survey.* BJGP, 2019. **69**(684): p. e507-e514.
- 15. Hong, Q.N., Pluye, P., Fàbregues, S., et al., *Mixed methods appraisal tool (MMAT), version 2018.* Registration of copyright, 2018. **1148552**: p. 10.

- 16. Baillot, A., Baillargeon, J.-P., Paré, A., et al., *Physical activity assessment and counseling in Quebec family medicine groups.* Can Fam Physician, 2018. **64**(5): p. e234-e241.
- 17. Galaviz, K.I., Estabrooks, P.A., Ulloa, E.J., et al., *Evaluating the effectiveness of physician counseling to promote physical activity in Mexico: an effectiveness-implementation hybrid study.* Transl Behav Med, 2017. **7**(4): p. 731-740.
- 18. Barrett, E.M., Darker, C.D., and Hussey, J. *Promotion of physical activity in primary care: knowledge and practice of general practitioners and physiotherapists.* J Public Health, 2013. **21**(1): p. 63-69.
- 19. Windt, J., Windt, A., Davis, J. et al., *Can a 3-hour educational workshop and the provision of practical tools encourage family physicians to prescribe physical activity as medicine? A prepost study.* BMJ open, 2015. **5**(7).
- 20. Bardach, S.H., Schoenberg, N.E. and Howell, B.M. *Older patients' recall of lifestyle discussions in primary care.* J Appl Geronto, 2017. **36**(4): p. 386-400.
- 21. Bardach, S.H., and Schoenberg, N.E. The content of diet and physical activity consultations with older adults in primary care. Patient Educ Couns, 2014. **95**(3): p. 319-324.
- 22. Gabrys, L., Jordan, S. and Schlaud, M. *Prevalence and temporal trends of physical activity counselling in primary health care in Germany from 1997–1999 to 2008–2011.* Int J Behav Nutr Phys Act, 2015. **12**(1): p. 136.
- 23. Reilly, M., Ayala, G.X. Elder, J.P. et al., *Physician communication and physical activity among Latinas*. J Phys Act Health, 2013. **10**(4): p. 602-606.
- 24. Alahmed, Z. and Lobelo, F. *Correlates of physical activity counseling provided by physicians: A cross-sectional study in Eastern Province, Saudi Arabia.* PloS one, 2019. **14**(7): p. e0220396.
- Bock, C., Diehm, C. and Schneider, S. *Physical activity promotion in primary health care: results from a German physician survey.* Eur J Gen Pract, 2012. **18**(2): p. 86-91.
- Galaviz, K., Jauregui, E., Ulloa, Fabrigar, L., et al., *Physical activity prescription among Mexican physicians: a structural equation analysis of the theory of planned behaviour.* Int J Clin Pract, 2015. **69**(3): p. 375-383.
- 27. Jørgensen, T.K., Nordentoft, M. and Krogh, J. *How do general practitioners in Denmark promote physical activity?* Scand J Prim Health Care, 2012. **30**(3): p. 141-146.
- 28. Aljaberi, A., Assessment of physical activity (counseling) at primary health care centers in Aseer Region, Saudi Arabia. Medical Journal of Cairo University, 2014. **82**(2): p. 207-13.
- 29. Belfrage, A.S.V., Grotmol, K.S., Tyssen, R. et al., *Factors influencing doctors' counselling on patients' lifestyle habits: a cohort study.* BJGP open, 2018. **2**(3).
- 30. Voltmer, E., Frank, E. and Spahn, C. *Personal health practices and patient counseling of German physicians in private practice.* Int Sch Res Notices, 201..
- 31. Florindo, A.A., Mielke, G.I., de Oliveira Gomes, G.A., et al., *Physical activity counseling in primary health care in Brazil: a national study on prevalence and associated factors.* BMC Public Health, 2013. **13**(1): p. 794.
- 32. Allender, S., Hayward, J., Gupta, S., et al., *Bayesian strategy selection identifies optimal solutions to complex problems using an example from GP prescribing.* NPJ digit med, 2020. **3**(1): p. 1-8.
- 33. Wattanapisit, A., Thanamee, S., and Wongsiri, S. *Physical activity counselling among GPs: a qualitative study from Thailand.* BMC Fam Pract, 2019. **20**(1): p. 1-9.
- 34. Cane, J., O'Connor, D., and Michie, S. *Validation of the theoretical domains framework for use in behaviour change and implementation research.* Implement Sci, 2012. **7**(1): p. 37.
- 35. Michie, S., Atkins, L. and West, R. *The behaviour change wheel.* A guide to designing interventions. 1st ed. Great Britain: Silverback Publishing, 2014: p. 1003-1010.
- 36. Grimstvedt, M.E., Der Ananian, C., Keller, C., et al., *Nurse practitioner and physician assistant physical activity counseling knowledge, confidence and practices.* Prevent Med. 2012. **54**(5): p. 306-308.
- 37. O'Brien, M.W., Shields, C.A., Oh, P.I., et al., *Health care provider confidence and exercise prescription practices of Exercise is Medicine Canada workshop attendees.* Appl Physiol Nutr Metab, 2017. **42**(4): p. 384-390.
- 38. Bardach, S.H. and Schoenberg, N.E., *The role of primary care providers in encouraging older patients to change their lifestyle behaviors.* Clin Gerontol, 2018. **41**(4): p. 326-334.

- 39. Costello, E., Leone, J.E., Ellzy, M., et al., *Older adult perceptions of the physicians' role in promoting physical activity.* Disabil Rehabil, 2013. **35**(14): p. 1191-1198.
- 40. Reddeman, L., Bourgeois, N., Angl, E.N., et al., *How should family physicians provide physical activity advice?*: *Qualitative study to inform the design of an e-health intervention.* Can Fam Physician, 2019. **65**(9): p. e411-e419.
- 41. Weiss, D.R., Wolfson, C., Yaffe, M.J., et al., *Physician counseling of older adults about physical activity: the importance of context.* Am J Health Promot, 2012. **27**(2): p. 71-74.
- 42. Brauer, P.M., Sergeant, L.A., Davidson, B., et al., *Patient reports of: lifestyle advice in primary care*. Can J Diet Pract Res, 2012. **73**(3): p. 122-127.
- 43. Brotons, C., Bulc, M., Sammut, M.R., et al., *Attitudes toward preventive services and lifestyle: the views of primary care patients in Europe. The EUROPREVIEW patient study.* Family Practice, 2012. **29**(suppl_1): p. i168-i176.
- 44. Gaglani, J. and Oakeshott, P., *Conducting a survey of patient reported advice on diet and exercise in primary care.* Educ Prim Care, 2018. **29**(3): p. 178-179.
- 45. Harris, M.F., Islam, F.M., Jalaludin, B., et al., *Preventive care in general practice among healthy older New South Wales residents.* BMC Fam Practice, 2013. **14**(1): p. 83.
- 46. Jerdén, L., Dalton, J., Johansson, H., et al., *Lifestyle counseling in primary care in the United States and Sweden: a comparison of patients' expectations and experiences.* Glob Health Action, 2018. **11**(1): p. 1438238.
- 47. Obeidat, N., Habashneh, M., Shihab, R., and Hawari, F.I. *Are Jordanian primary healthcare practitioners fulfilling their potential in cancer prevention and community health? Findings from a cross-sectional survey.* BMJ Open, 2017. **7**(4): p. e015269.
- 48. Schneider, S., Diehl, K., Bock, C., et al., *Modifying health behavior to prevent cardiovascular diseases: a nationwide survey among German primary care physicians.* Int J Environ Res Public Health, 2014. **11**(4): p. 4218-4232.
- 49. Weinehall, L., Johansson, H., Sorensen, J., et al., *Counseling on lifestyle habits in the United States and Sweden: a report comparing primary care health professionals' perspectives on lifestyle counseling in terms of scope, importance and competence.* BMC Fam Practice, 2014. **15**(1): p. 83.
- 50. Puhl, R.M. and Heuer, C.A. *Obesity stigma: important considerations for public health.* Am J Public Health, 2010. **100** (6): p. 1019-1028.
- 51. Jackson, S.E. and Steptoe, A. *Association between perceived weight discrimination and physical activity: a population-based study among English middle-aged and older adults.* BMJ open, 2017. **7**(3): p. e014592.
- 52. Vogt, F., Hall, S., and Marteau, T.M. General practitioners' and family physicians' negative beliefs and attitudes towards discussing smoking cessation with patients: a systematic review. Addiction. 2005. **100**(10): p. 1423-31.
- 53. Warr, W., Aveyard, P., Albury, C., Nicholson, B., Tudor, K., Hobbs, R., Roberts, N., and Ziebland, S. A systematic review and thematic synthesis of qualitative studies exploring GPs' and nurses' perspectives on discussing weight with patients with overweight and obesity in primary care. Obes Rev. 2021. **22**(4): e13151.
- 54. Ribera, A.P., McKenna, J., and Riddoch, C. Attitudes and practices of physicians and nurses regarding physical activity promotion in the Catalan primary health-care system. Eur J Public Health. 2005. **15**(6): p. 569-575.
- Brooks, J., Ahmad, I. and Easton, G. Promoting physical activity: the general practice agenda. BJGP. 2016. **66**(650): p.454-455.
- 56. Schofield, G., Croteau, K., and McLean, G. Trust levels of physical activity information sources: a population study. Health Promot J Austr. 2005. **16**: p. 221-224.
- 57. Faculty of Sport and Exercise Medicine UK. *Moving Medicine*. [cited 2020 31.01.2020]; Available from: https://movingmedicine.ac.uk/.
- 58. Kebbe, M., Jebb, S.A., Begh, R., Christian-Brown, A., Wheat, H., Farley, A., Lewis, A. and Aveyard, P. *General practitioner views on addressing weight opportunistically in primary care: An embedded sequential mixed-methods study.* Patient Educ Couns. 2021.

- 59. Chatterjee, R., Chapman, T., Brannan, M.G., and Varney, J., *GPs' knowledge, use, and confidence in national physical activity and health guidelines and tools: a questionnaire-based survey of general practice in England.* BJGP, 2017. **67**(663): p. e668-e675.
- 60. Lall, K. and Oakeshott, P. Educating primary care patients with and without hypertension about lifestyle changes: a medical student audit at an inner-city practice. Educ Prim Care, 2019. **30**(2): p. 124-125.
- Morton, S., Thompson, D., Wheeler, P., et al., *What do patients really know? An evaluation of patients' physical activity guideline knowledge within general practice.* London J Prim Care, 2016. **8**(4): p. 48-55.
- 62. Michie, S., Richardson, M., Johnston, M., et al., *The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions.* Ann behav med, 2013. **46**(1): p. 81-95.
- 63. Hoffmann, T.C., Glasziou, P.P., Boutron, I., et al., *Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide.* BMJ, 2014. **348**.