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Abstract

Multivariate Time Series Clustering (MVTS) is an essential task, especially
for large and complex dataset, but it has received limited attention in the
literature. We are motivated by a real-world problem: the need to cluster air
pollution data to produce plausible imputations for missing measurements for
some pollutants. Our main focus will be on the UK air quality assessments,
the study uses data collected from automatic monitoring stations during
four-year period (2015-2018).

In this work, we propose a MVTS clustering method followed by an impu-
tation methods for the whole Time Series (TS). We compare two approaches
to cluster the stations: univariate TS clustering using Shape-Based Distance
(SBD) for individual pollutants, and MVTS clustering using the fused sim-
ilarity that combines the SBD for all the pollutants. We run a k-means
algorithm to produce clusters with each approach on the same dataset.

Our analysis shows that using MVTS clustering produces the best clusters
as measured by various quality indexes and by the imputations they help to
reduce the error average between imputed and real values based on the Root
Mean Squared Error (RMSE) and its standard deviation (Std) .
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1. Introduction

Time Series(TS) is a sequence of observations that a variable takes over
time, such as (t1, v1),. . . ,(ti, vi),. . . (tm, vm), where ti is the time step and vi
is the observation. The order in the time series data is important since the
values are based on time. When several variables are observed and recorded
simultaneously, this becomes a Multivariate Time Series (MVTS).

A large variety of real-world applications use time series analysis such as
weather forecasting [1], earthquake prediction [2] or human activity recog-
nition [3]. MVTS are becoming more prominent specially as part of large
and complex datasets being produced [4]. In this study, we motivated by
the need to generate modelling techniques for multivariate time series data,
where air pollution is an example of such data. Our focus in this paper, will
be on problems related to the air pollution in the UK, especially uncertainty
resulting from missing data with air quality assessment. Hence, we encounter
MVTS while looking at air pollution data, our proposed approach is based
on the MVTS clustering and imputation.

Air pollution is one of the main risks to human health in several parts
of the world. Sources of air pollution are varied and include anthropogenic
sources such as combustion (e.g.in power plants, motor vehicles and resi-
dential heating), agriculture and industry as well as natural sources such as
vegetation, soils, and lightning [5].

In the UK, the main four pollutants that are used to assess the quality
of the air are ozone (O3), nitrogen dioxide (NO2) and particulate matter less
than 2.5µm in diameter (PM2.5) or less than 10µm in diameter (PM10), so
we focus on those four. These pollutants are measured at various monitor-
ing stations and the measured concentrations of each pollutant become a
time series (TS) requiring further transformation and analysis to produce air
quality assessments.

One of the available resources to assess air quality in the UK is the Air
Pollutants Monitoring Network. The network contains air pollution moni-
toring stations that record the air pollutant concentrations. There are 285
air quality monitoring sites across the UK, which are part of several types
of networks with different objectives and coverage. Our focus will be on the
automatic monitoring network called Automatic Urban and Rural Network
(AURN). The instruments used in this network are automated and produce
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hourly pollutant concentrations. These data are collected and stored, then
made directly available via the Internet [6]. Stations in this network are
categorised by their environmental type into one of the following: rural, ur-
ban, suburban background, roadside, or industrial. The total number of
these stations is 169 stations and the geographical distribution of the AURN
monitoring stations is shown in Fig.1.

Figure 1: Geographical distribution of the air quality monitoring stations (AURN).

In the UK, air quality is quantified using the Daily Air Quality Index
(DAQI) which is calculated using the concentrations of NO2, O3, PM2.5,
and PM10. This index is numbered from 1 to 10, and divided into four
bands: ‘low’ (1–3), ‘moderate’ (4–6), ‘high’ (7–9) and ‘very high’ (10). An
index value is initially assigned for each pollutant depending on its measured
concentration. Then the DAQI is taken to be the maximum value assigned to
any of the pollutants. Periods of poor air quality can be identified using this
index. Air quality is negatively correlated with the DAQI index, meaning
that a higher DAQI index represents worse air quality (for more details see
[6]).

The challenges associated with analysing air pollution data ( i.e. the pol-
lutants TS) are as follows. Not all the stations report all the pollutants and
even if a station does, it may not measure a particular pollutant all the time
due to instrument down-time. Together this results in high levels of missing
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data. Therefore current air quality assessments are based on high levels of
uncertainty. As the DAQI is calculated based on the concentrations of mea-
sured pollutants only, which may not reflect the actual air pollution. This
may lead to incorrect policy decisions, with further negative environmental
and health consequences [7].

What makes the air pollution data analysis more complex is that pol-
lutants have different behaviours and seasonal variation. Adding to that,
pollutant can be emitted from various sources and be involved in different
chemical reactions and so their concentrations exhibit different temporal and
spatial distributions.

Particulate matter (PM) has lots of various sources, both primary (emit-
ted directly into the atmosphere) and secondary (produced in the atmosphere
via chemical and physical processes). Whilst PM concentrations are often
greater at roadside [8], the particles can have lifetimes of several days in the
atmosphere, meaning that they can be distributed widely. The larger par-
ticles are subject to greater loss via sedimentation, so PM2.5 is more evenly
distributed than PM10 [9].

The primary source of NO2 comes from fuel burning such as cars, trucks
and buses, power plants, and off-road equipment. This gives NO2 a local
pattern, concentrating where it is emitted in urban areas and near to the
roadside [10].

Ozone is complex as it is not directly emitted into the air, but it is
formed as a secondary pollutant by the reaction of nitrogen oxides (NOx) and
volatile organic compound (VOC) in the presence of sunlight [11]. So, the
ozone formation depends on the VOC–NOx ratio [12]. Ozone concentrations
in urban areas have been found to be lower than those in rural areas [13],
due to the presence of more NOx in urban sites that can remove ozone via
the reaction of NO with O3 to give NO2 and oxygen (O2). O3 and NO2

are strongly anti-correlated, indicating that the O3 is strongly depressed by
high NOx [14]. Furthermore, ozone can have a lifetime of days to weeks
[15], meaning that ozone at a specific site may have been produced by NOx

and VOCs emitted from other distant locations. Ozone behaviour makes the
seasonal variation with ozone concentrations, as ozone is lower in the winter
due to scavenging by NO and higher in the summer due to photochemical
ozone production [11]. While PM and NO2 are at their lowest level during
the summer [16].

Therefore, we aim is to investigate robust methods for estimating the
missing values when there are no measurements of a particular pollutant at
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a site at all to reduce the uncertainty of the air quality assessment resulting
from missing measurements which may be missing either partially or com-
pletely and to enhance the air quality data and provide a DAQI that is more
realistic. As DAQI calculated from observed data only may give a false rep-
resentation of the air quality, for example, if there were high concentrations
of an air pollutant that was not being measured, the air quality may be worse
than indicated by the DAQI.

To achieve our goal, we need to understand the relation between different
pollutant concentrations and their geography. In particular, understanding
such relations may enable us to impute missing data (including entire TS)
where particular pollutants are not being measured. We postulate that in
such cases pollutant measurements from other stations may act as a proxy
measurement for the missing TS. Our approach to this starts with group-
ing stations with similar pollutant(s) behaviour in to groups using clustering
algorithm. Once we have clusters, we can use those to impute various mea-
surements for stations that may belong to a cluster with information from
the cluster itself or stations within the cluster.

As known that clustering is an unsupervised learning method to group
unlabelled objects into homogeneous groups [17]. Similarly for TS, we group
together a set of time series with similar patterns. TS unique structure makes
many traditional clustering methods unable to be applied directly [18]. One
challenge for TS clustering is how to measure similarity, which is the core
of any clustering algorithm. Some of the univariate TS similarity measures
cannot handle missing data or TS of different lengths [19]. The problem
becomes more challenging when more than one time series is involved (i.e.
in a multivariate TS environment). In this work, we experiment with novel
MVTS clustering approaches and evaluate them in the context of air pollution
measurements, and particularly for the task of imputing missing pollutant
TS. We deal with an observation-based MVTS dataset with a high level of
missing data and uncertainty.

We proposed a MVTS clustering approach that starts by clustering sta-
tions based on all measured pollutants using a fusion approach that aggre-
gates the similarity/dissimilarity of the univariate TS (pollutants) between
every two MVTS (stations). This aggregated similarity represents the dis-
tance between MVTS in the k-means clustering algorithm. Then, based on
the clustering results, we propose two methods to impute the whole time
series for the missing pollutant at a given station.

Three experiments are carried out to demonstrate the validity of our ap-
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proach. In these experiments, we compare the clustering and the imputation
results obtained using MVTS clustering with imputation using the univariate
TS clustering.

The structure of the paper is as follows: Section 2 discusses some of the
existing TS clustering methods with their application and the limitations of
the previously proposed time series clustering approaches to our case with
air pollution data. Section 3 discusses in detail all the methods we used to
measure the similarity between MVTS for the clustering algorithm, methods
to impute the missing pollutants and evaluate our proposed solutions. Fi-
nally, in Section 5, we analyse and compare the results of our experiments,
then we discuss these results in in Section 6. At the end of this paper, we
conclude the work with some recommended future work in Section 7.

2. Related work

Due to the increasing availability of time series data and the demand to
analyse them, clustering time series has attracted growing research interest
in recent years [4, 20, 18, 21, 19, 22, 23]. However, most of the existing
clustering methods are for univariate TS data, while clustering multivariate
time series remains a challenging task [21].

The main problem with multivariate time series is dimensionality, and
the majority of the existing researchers have proposed methods for dimen-
sionality reduction to measure the similarity between multivariate time se-
ries (MVTS), such as Principal Component Analysis (PCA) similarity factor
[24, 23], feature extraction methods that transform TS data into set of fea-
tures [19, 20], and statistical [22] or an ensemble model to aggregate the
similarity of multivariate TS components (i.e. univariate TS) [25]

There has been some research into similarity within MVTS. For example,
Fontes et al. [24] proposed a MVTS clustering method based on extracted
features from the univariate TS. Principal Component Analysis (PCA) is
used to measure the similarity between MVTS, then fuzzy k-means is used
to cluster these TS. This clustering approach was used for fault detection
in a gas turbine. Li Hailin [23] proposed a multivariate time series cluster-
ing based on common principal component analysis (CPCA) to construct a
projection coordinate space and to lower the dimension of the data for the
clustering process. The proposed clustering approach has two main stages,
the first is assigning every MVTS to a cluster based on its the similarity to
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the projection coordinate space (i.e. cluster prototype) and the other is to
construct a new prototype of the clusters based on CPCA.

Wu et al. [26] transformed MVTS data into Independent Components
(IC) using Independent Component Analysis (ICA) to find the independent
patterns for each TS. Then they proposed a new clustering algorithm called
ICACLUS to cluster these patterns according to the extracted ICs instead
of the traditional k-means. In this algorithm, the similarity between TS is
measured based on the number of matching ICs. Recently, Li et al. [27]
transformed the MVTS into a network that called component relationship
network (CRN) to reflect the relationship of the MVTS data, then an im-
proved version of Dynamic Time Warping (DTW) is used to measure the
similarity for each component to cluster the MVTS data.

Zhou et al. [22] developed a model-based multivariate time series clus-
tering algorithm that first discovers the temporal patterns in each TS using
confidence value to represent the relationship between different variables.
Their algorithm is based on the k-means and aims to group MVTS based on
the degree of patterns discovering into the same cluster.

D’Urso et al. [4] proposed robust fuzzy clustering models for MVTS based
on an exponential transformation of the dissimilarities. This algorithm was
applied to real-world data on the concentrations of three pollutants (NO,
NO2, and PM10) in the Metropolitan City of Rome for the problem of de-
tecting pollution alarms. Recently, Li et al. [20] proposed a multivariate time
series clustering of weighted fuzzy features based on two distance measure-
ment methods Dynamic Time Warping (DTW) and shape-based distance
(SBD). They first picked initial cluster centers by fast search and find of
density peaks (DPC), then a fuzzy membership matrix is generated by per-
forming DTW on each diminution (i.e. univariate time series), then SBD
is utilised to measure distances within each dimension and generate fuzzy
membership matrices which is used with the fuzzy c-means clustering algo-
rithm.

Ensemble have been applied to time series clustering, Mikalsen et al. [25]
proposed a method called Time series Cluster Kernel (TCK) to learn the
similarities between multivariate time series (MVTS) with missing data with-
out using any imputation methods. This method uses an ensemble learning
procedure that combined the clustering results of several Gaussian mixture
models (GMM) from the final kernel to deal with uncertainty. The proposed
approach achieved good results, however the main drawback of this method
is that it works only on datasets of equal length, also it needs ensemble learn-
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ing with numerous learning datasets that are not available in our case with
air pollution data since we only have one source of this data.

Our approach is a raw-data-based approach, while all other proposed
MVTS clustering techniques are either model-based or feature-based ap-
proach, that aim to transform the MVTS data into another type of data
such as features, network, independent component, ..., etc to prepare the
data for the machine learning algorithms. The MVTS objects (stations) in
our dataset (i.e. the UK’s air pollution data) do not have equal dimensions
as not all pollutants TS recorded in the stations.

3. Methods

3.1. Time series analysis

As previously mentioned, that the UK air pollution data that is used
in this work, has high level of missing data either partially or completely.
As a pre-processing step, we impute partial missing values within the TS to
create a complete dataset. Imputing the missing observations in an early
stage enable us to measure the similarity between TS using univariate time
series similarity measures that cannot handle missing data (i.e. Dynamic
Time Warping (DTW) and Shape-Based Distance (SBD)).

In this step, we use a multiple imputation technique called (MICE) [28].
The process of multiple imputations starts with an incomplete dataset, then
it imputes every missing value n times creating n completed datasets, in
our experiment, we set n=5, then we averaged the imputed values for each
missing value to create a final completed version of the dataset.

MICE is selected based on our initial exploratory experiments [29]. From
this work, we found that using MICE to impute the TS missing observations
is better than using some single imputation methods such as Simple Moving
Average (SMA) for the purpose of clustering and imputation of the univariate
TS.

Also in this work, we compared different time series distance measures
and imputation techniques to impute the missing observations and missing
pollutants (TS). We experimented with two distance metrics that are suitable
for TS data, Dynamic Time Warping (DTW) [30] and Shape-Based Distance
(SBD) [31]. Our analysis showed, that SBD gives better separated cluster
than DTW to cluster stations based on univariate TS clustering using the
k-medoids (PAM) clustering algorithm [32] to cluster stations and impute
the missing pollutants using the cluster average imputation method (CA).
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In the current work, we continue using the SBD to measure the similarity
between two time series (i.e. individual pollutant concentrations) with the k-
means clustering algorithm [17] since the Cluster Average (CA) is more useful
than using the cluster medoid for the purpose of the pollutant imputation.
However, this work includes more pollutants, which make MVTS clustering.

To measure the similarity between stations with all measured pollutants
(i.e. MVTS), we combine the distance matrices of all the univariate TS
into one matrix that represents the similarity between the MVTS. Then,
we attempt an intermediate fusion approach to cluster our dataset/stations
based on four TS, in our case concentrations of the air pollutants O3, PM10,
PM2.5, and NO2.

In fusion clustering, intermediary fusion refers to algorithms that some-
how use fusion to operate (e.g. by fusing distances) [33]. The intermediate
fusion approach we use is an adaptation of work by Mojahed et al. [34]
who used a k-medoids clustering algorithm to cluster objects that were rep-
resented by different data types (e.g. text, images and TSs). We adapt this
as our objects are all TS, hence we use SBD to measure distance. From each
pollutant measured in two stations we can generate a distance matrix, which
is then fused in the fused matrix.

In our dataset, the distance between two stations A and B is the distance
between hourly pollutant concentrations (TS) from these stations using SBD.
Since we only focus on four air pollutants, we will have four distance matrices
(DM) each represents the similarity between stations of each pollutant. We
define the entries of DM for pollutant Pi, DMP i, as follows.

DMPi
(A,B) = SBD(APi

, BPi
) (1)

where A and B are two stations, and SBD is use to measure the distance
between concentrations of pollutant Pi in stations A and B.

Then, Fused Distance Matrix (FDM) is calculated for each pair of sta-
tions. The aggregated distance is calculated as the simple average distance
of all pollutants (O3, PM10, PM2.5, and NO2) when they are measured or
of only those pollutants that are measured at the stations. For example for
stations A and B, and supposing these stations measure all the pollutants,
the fused distance between these stations is:

FDM(A,B) =

∑p
i=1 SBD(APi

, BPi
)

p
(2)
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where p is the number of pollutants. In our case p = 4 if all the pollutants
are measured at station A and B. SBD(APi

, BPi
) is extracted from DMs for

each pollutant.

3.2. K-means MVTS Clustering

The k-means [17] is one of the most widely used clustering algorithms,
that is based on the distance of objects to cluster centroids. For our MVTS
data which consist of 4 pollutants, a cluster centroid is also a MVTS. A
cluster centroid is calculated for each pollutant using the average TS of all the
stations within the cluster. Associated with that, a new FDM is calculated by
measuring the distance between all the objects (stations in our application)
and the centroids for each cluster, then we fuse these distances using the
simple average using Equation. 2.

We applied the basic k-means to cluster the objects (stations) based on
the fused distance matrix. We start the process using randomly selected
stations (this would be a medoid in clustering), but after the first iteration
we compute proper centroids. The processes of running the basic k-means
on the fused distance matrix (FDM) is as follows:

Initialisation:

1. Randomly select k objects/stations as the initial centroids to start
with.

2. Assign all objects to the nearest centroids based on the initial
fused distance matrix (FDM).

Repeat:

1. Calculate the centroid of each cluster. The centroid will now be
the average of the TS from all the stations within the cluster.
Since we have 4 pollutants, every centroid will have 4 time series,
one for each pollutant.

2. Calculate distances between all the stations and the new centroids,
therefore creating a new FDM to represent distance between the
new centroids and all the data objects.

3. Re-assign the objects to the closest centroid based on the new
calculated FDM (from the previous step).
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Until: No change in the cluster centroids.

In our work, as we lack a reference or ground truth clustering solution, to
measure the cluster quality we use the clustering internal quality measures.
These measures are based on intrinsic properties of the clustering solution
such as compactness, separation, and connectedness of the cluster partitions,
so they are based on measurable aspects of a clustering solution [35]. The
compactness is a cluster homogeneity measure that reflects how close are the
objects within the cluster by measuring the within-cluster variation, while the
separation is the degree of separation between clusters. It measures how well
separated a cluster is from other clusters by measuring the between-cluster
variation [36]. The connectedness is the connectivity between objects in the
dataset. It is the degree to which neighbouring objects have been placed in
the same cluster [37]. We selected Silhouette Width (ASW) [38] and Dunn
index (DI) [39] as they measure the cluster compactness and separation and
the connectivity (Conn) measure that reflects how connected objects are
within the clusters [40]. Whereas Silhouette Width and Dunn Indices are
to be maximised, connectivity should be minimised. We also compare the
Within cluster sum of squares (WCSS), which measures the variability of
the objects within each cluster, and between cluster sum of squares (BCSS),
that measure variability between the centroids of the clusters. In general,
the clustering process tries to minimise within-cluster distance and maximise
between-cluster distance [41].

3.3. Imputation Methods of Missing Pollutant TS

Once a clustering of the stations is obtained, we use the clustering solution
to impute missing TS (pollutants). If station j belongs to cluster Cx, (1 ≤
x ≤ k, where k is the number of clusters) given the measured pollutants over
time, then, to impute pollutant Pi based on the clustering results, we use
two methods:

1. Cluster Average (CA): in this method, we impute the missing pol-
lutant (Pi) using the average of that pollutant (Pi) from all stations in
the cluster (ci). Which is the hourly average concentrations of pollutant
Pi in all the stations that fall in this cluster.

2. (CA+ENV): in this method, we impute the average of pollutant Pi

in cluster ci, but using only stations that have the same environment
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type to station j within the cluster, such as Background Rural, Back-
ground Urban, Traffic, or Industrial. This is in recognition that the
type of station may be important and result in closer measurements of
pollutant concentrations.

Fig. 2 visualises the clustering average imputation (CA) method using
the MVTS clustering approach, CA+ENV imputation method is the same
with considering the station environment type.

Figure 2: Visual representation of clustering imputation through the MVTS clustering
process using cluster average (CA) method.

3.3.1. Imputation methods evaluation

To evaluate how plausible the imputation is using different methods, we
can compare truth values to imputed values. We can do this by taking each
existing TS for which we have values, one at a time, and consider them to be
missing. We impute the whole TS by various methods and compare to the
ground truth. We can then average the behaviour of the different imputation
methods to establish the one that provides imputed values closest to the real
values.

Hence, for our experimental set up we take each existing TS for a given
pollutant and station, P j

i in turn, and impute it by the various methods to
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obtain an imputed TS, PIji . We compare the real values to the imputed
values using the Root Mean Squared Error (RMSE), which measures the
average magnitude of the errors between the actual and the imputed data.
The RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2 (3)

Where in our case xi represent the observed data points and x̂i represent
the imputed values.

The method that gives the lowest error on average for all stations (i.e.
imputed TS) will be considered the best method. Note that the best methods
may change from one pollutant to another and may be affected by other
factors such as station type (e.g. urban background, rural and roadside) or
frequency of data measurement (e.g. hourly, daily).

4. Experimental set up

Clustering algorithm and imputation methods were implemented in R,
Version (3.5.2). To provide a more robust testing scenario we separate the
‘model building’ stage for the imputation from the testing stage. We use an
initial data period of three years (2015-2017) as a training set to build the
imputations, including the clustering results, and then impute on the next
year (2018) of the TS to evaluate the goodness of fit.

To fully evaluate the advantages of the MVTS clustering over the uni-
variate TS clustering using SBD for individual pollutants for the purpose
of pollutant imputation, we compare the results of these approaches in our
experiments.

Our experimentation design contains three main stages, as shown in Fig.
3: the first stage is the pre-processing stage that includes missing observa-
tions imputation to create a complete dataset. Then the second stage is to
group/cluster stations based on their temporal similarity, which means using
the stations similarity in pollutant concentrations through clustering algo-
rithm. The third stage is to impute and evaluate whole missing pollutant
TS using clustering information from the previous stage. In the following
sections, we will describe each stage in details.
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Figure 3: The overall proposed experimentation design represents the main three stages.

4.0.1. Stage (1): Pre-processing

This stage includes imputing missing observations within a TS using
MICE for the dataset (2015-2018) to create a dataset with complete TS.
Then, we divided the complete dataset into training set that includes the
data of years 2015-2017, and test set that includes data of year 2018.

4.0.2. Stage (2): Time Series Clustering and Evaluation

In this stage, we used the training set (2015-2017) to cluster the sta-
tions based on their temporal similarity. We apply the k-means clustering
algorithm with SBD to cluster the stations based on their hourly pollutant
concentrations.

We experimented with two approaches: univariate and multivariate time
series clustering. In the first approach, we used the basic k-means clustering
algorithm to cluster the stations based on each pollutant independently using
SBD to measure similarity between TS. So in this case, each pollutant is used
to derive its own clusters and then imputation is based on that clustering
solution so independent for each pollutant. These clustering results are fed
to the next stage (stage 3) to impute pollutant concentrations using the
proposed imputation methods.
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In the second approach, we applied the intermediate fusion approach to
cluster stations based on the four pollutants using the k-means clustering as
explained in Sec.3.2 with the calculated fused distance matrix as in Equa-
tion (2). In this matrix (FDM), 12 stations out of 169 stations are removed
because they measure no common pollutant, so they cannot deliver any in-
formation to the fused matrix. After removing these stations there are 157
stations left to construct the FDM. The 12 stations are allocated to the final
cluster based on their similarity to the cluster centroids.

At the end of this stage, we evaluated the clustering results from these
approaches to select the best clustering solution using Clustering Validity
Indices (CVI).

4.0.3. Stage (3): Imputation and Evaluation Models for Missing Pollutants

In this stage, we impute the missing pollutant, which is a whole TS in the
test dataset (data of year 2018) by applying all proposed imputation methods
in Sec.3.3. For each pollutant at each site, we imputed the pollutant using
the proposed imputation methods with our previously obtained clustering
solutions. At the end of this stage, we compare and evaluate the clustering
solutions in terms of the imputation methods using the RMSE (as described
in Sec.3).

To fully evaluate how well our MVTS approach works for our imputation
problem, we conducted three experiments. In the first experiment, we used
univariate TS clustering approach. In the second and third experiments, we
used MVTS clustering approach.

In the second experiment we include every station, however in the third
experiment, we excluded stations that measure only one pollutant, which is
always NO2. We found that these stations are difficult to cluster using the
fused similarity, because the fused distance of these stations is the distance
of the only measured pollutant. As an alternative solution, we allocate these
stations to the clusters based on their similarity to the cluster centroids.

5. Results

5.1. Experiment 1: Univariate TS Clustering

In this experiment, we applied the first approach to impute the pollutant
concentrations using our proposed imputation methods through clustering
individual pollutant. We analyse the clustering results of each pollutant, in
the following sections.
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5.1.1. PM2.5 Clustering Results

The total number of stations that measure PM2.5 is 77. The result of
applying the basic k-means clustering algorithm to this set of stations is
shown in Fig.4(a), which represents a geographical map with the stations
colour coded according to the clustering results (i.e. (cluster 1, (red), (cluster
2, green), (cluster 3, light blue), and (cluster 4, purple)). There are four
clusters located in four geographical locations (North, Center, South East,
South West). These clusters geographically look compact and well separated
even though the clustering is based on pollutant concentration values. This
means that there appears to be a geographic pattern to the concentrations
of PM2.5.

To further analyse results, we show the time variation between the clus-
ters’ centroids (and we will do similarly for the other pollutants). This en-
ables us to further understand how PM2.5 concentrations are distributed in
the UK and if there are specific time effects. The cluster centroids represent
the average concentrations in the clusters for a particular pollutant. Fig.4(b),
represents the variations in pollutant concentrations on each day of the week
in the top graphs. Then the variation is broken down into hourly, monthly
and weekday variations in the bottom graphs. From this figure, we observe
the variation of PM2.5 concentrations at each cluster centroid, it is noticed
that centroid’s of cluster 2 (green) is the highest, while concentrations at cen-
troid’s of cluster 3 (blue) is the lowest. While the concentrations of reaming
two centroids of cluster 1 and 4 (red and purple ) have similar behaviours.
This variation can also be seen with the monthly, weekly and hourly analysis.

Fig. 4(b), shows that there is a graduation of the concentrations of PM2.5

at the cluster centroids from the South (highest) to the North (lowest). That
is from cluster 3 (light blue) to cluster 2 (green). This can be observed in
all the graphs. The concentrations of cluster 2 (green) which represents the
South East are the highest among all other cluster centroids. On the other
hand, cluster 3 (light blue) located in the North has the lowest concentrations.
The concentrations on clusters in the Centre of the UK (cluster 4, Purple) and
South West (cluster1, Red) are very similar to one another. Concentrations
of PM2.5 are slightly lower in the weekend for all clusters and appear highest
at peak hours, particularly during the evening (as shown in the bottom right
plot). As we can see there are low concentrations during the summer (June,
July, and August) compared to the rest of the year (as shown in the middle
bottom plot).
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((a)) PM2.5 clusters. ((b)) Time variations of cluster’s centroids.

Figure 4: (a) Geographical distribution of stations that measure PM2.5 with the colour
coded clusters obtained using the basic k-means algorithm, (b) Time variations of the 4
cluster’s PM2.5 centroids.

Fig.5 presents the monthly average concentration for each cluster. Histor-
ically, peak values can be seen in January and particularly during 2017 with
the South being markedly higher during those peaks than the North. These
geographical variations are consistent with understanding of the sources of
PM2.5 which tend to be greatest in the south of the UK and the influence of
sources in continental Europe [42].

In general, there is a seasonal variation with PM2.5 concentrations during
these years (as shown in Fig.5), the concentrations tend to be higher in the
winter and lower in the summer. Trend cannot be seen with the monthly
concentrations in this plot, it could be noticed with the yearly mean concen-
trations.

5.1.2. PM10 Clustering Results

The total number of stations that measure PM10 is 75 stations. The result
of clustering this set of stations is shown in Fig.6(a). There are three clusters
(i.e. (cluster 1, (red), (cluster 2, green), and (cluster 3, light blue)), two large
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Figure 5: Monthly average concentrations of the 4 cluster’s PM2.5 centroids.

clusters located in the North and the South and a small cluster that contains
six station on the South West. Fig.6(b), shows the time variation analysis
of clusters centroids, the centroids of cluster 2 (green), which is located in
the North, and cluster 3 (blue), which is located in the South, exhibit very
similar behaviour. However, cluster 2 in the North has lower concentrations
of PM10. In terms of time variation, for the two main clusters, there is still
some effect of day of the week with lower values at the weekend (as shown
in bottom right plot), and higher peak hourly values although the variations
are much less than for PM2.5. The summer months (June, July, August) also
register the lowest concentrations (as shown in bottom middle plot). The
centroid of cluster 1 (red) has average concentrations compared to the other
two.

Fig.7 show the monthly average concentrations of each cluster’s centroid.
We see similar patterns and trends in cluster 2 and 3, while cluster 1 has
a higher peak during 2016. At other times, the South cluster is generally
higher. The seasonal variation for PM10 is very similar to PM2.5.

5.1.3. O3 Clustering Results

The total number of stations that measure O3 is 71 stations. The clusters
obtained for these stations are shown in Fig.8(a). In this map, there are
three clusters (i.e. (cluster 1, (red), (cluster 2, green), and (cluster 3, light
blue)) located roughly across North/West, Center, South/East though for
O3 the geographical separation of the clusters is less clear. The clusters
are separated geographically except for some stations that are light blue
(cluster 3, mostly covering the North) which are mixed within the green
points (cluster 2, mostly covering the Center).

Fig.8(b) shows the time variations of the cluster centroids. In general,
based on the clustering results there are two levels of O3 concentrations, high
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((a)) PM10 clusters. ((b)) Time variations of cluster’s centroids.

Figure 6: (a) Geographical distribution of stations that measure PM10 with the colour
coded clusters obtained using the basic k-means algorithm, (b) Time variations of the 3
cluster’s PM10 centroids.

Figure 7: Monthly average concentrations of the 3 cluster’s PM10 centroids.

in the North/West and lower in the Center and the South/East (as shown
in the top plot). We can see that the centroid of cluster 3 (light blue) that
is located in the North/West has the highest concentrations among all other
clusters centroids. However, cluster 1 and 2 are almost identical and have low
concentrations compared to cluster 3. Concentrations appear higher at the
end of the week (Friday-Sunday) and during the early afternoon (as shown
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in the bottom right plot). We can also see there are higher concentrations
during March, April, and May compared to the rest of the year, hence O3

shows dissimilar behaviour to the particulate matter (as shown the bottom
middle plot). Fig.9 shows the monthly average concentrations for each cluster
centroid. According to this figure there is some seasonality during these years
with peaks occurring in late Spring.

These spatial and temporal distributions are consistent with the UK be-
ing a net sink of surface O3 due to emissions of NOx and dry deposition to
the surface [43]. Tropospheric background O3 peaks in the spring due to
photochemical production and exchange with stratosphere. This is mainly
imported into the UK in the prevailing westerly air flow. Greater NO emis-
sions in the south east and during week days and rush hours reduce the
surface concentrations of O3.

((a)) O3 clusters. ((b)) Time variations of cluster’s centroids.

Figure 8: (a) Geographical distribution of stations that measure O3 with the colour coded
clusters obtained using the basic k-means algorithm, (b) Time variations of the 3 cluster’s
O3 centroids.
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Figure 9: Monthly average concentrations of the 3 cluster’s O3 centroids.

5.1.4. NO2 Clustering Results

The total number of stations that measure NO2 is 157 stations, so this
is the most measured pollutant. The map in Fig.10(a), shows the cluster-
ing of these stations. There are three clusters located roughly around the
North (cluster 2, Green), Center (cluster 4, Purple) and South (cluster 3,
light blue) and the fourth cluster (cluster 1, red) that is spread all over the
other clusters hence NO2 does not show the same neat geographical division
as other pollutants. The red cluster has the highest concentrations among
all other centroids as shown in Fig.10(b). This cluster includes 95% traffic
urban stations, that are located near to traffic (roads, motorways, highways),
and the pollution level at these stations is determined predominantly by the
emissions from nearby traffic, and 5% background urban stations that are
located in the big and crowded cites such as Greater London, Nottingham,
etc. Since NO2 is the main traffic related air pollutant and it has a lifetime
of just minutes to hours, it is not unsurprising that these sites form a cluster
and also that the centroid concentrations are higher than those of the other
clusters.

The centroids of the other 3 clusters are however very similar. Cluster
3 (light blue) located in the South has slightly higher NO2 concentrations
followed by cluster 4 (purple) at the Center, then the cluster at the North
(green) has the lowest concentrations. There are lower concentrations for all
clusters on weekend days and there are peaks during the rush-hours (around
7 am and 6 pm) as shown on the left bottom plot. There are also lower con-
centrations for all clusters during the summer months (June, July, August)
as shown on the middle bottom plot. Fig.11 shows the monthly average con-
centrations of each cluster centroid again exemplifying how the red cluster is
very different to the others although it shows similar seasonality.
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((a)) NO2 clusters. ((b)) Time variations of cluster’s centroids.

Figure 10: (a) Geographical distribution of stations that measure NO2 with the colour
coded clusters obtained using the basic k-means algorithm, (b) Time variations of the 4
cluster’s NO2 centroids.

Figure 11: Monthly average concentrations of the 4 cluster’s NO2 centroids.

5.1.5. Univariate TS clustering evaluation

We evaluated the clustering solutions produced for each pollutant based
on CVIs for the clusters first. Then we evaluated how good these clusters are
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for the purposes of imputing the pollutants with our proposed imputation
methods.

Table.1 shows the comparison of these clusters using the CVIs. We used
the Dunn Index (DI) to measure cluster compactness and separation, Average
Silhouette Width (ASW) to measures how close each point in one cluster is
to points in the neighbouring clusters, and the connectivity measure (Conn)
to reflect how connected objects are within the clusters.

Table 1: Comparing the k-means clusters for each pollutant using the Cluster Validity
Indexes (CVI) in experiment 1.

Measure Criteria PM2.5 PM10 O3 NO2

Optimal number of cluster (k) 4 3 3 4
Average Silhouette Width (ASW ) Maximised 0.235 0.183 0.227 0.129
Dunn index (DI) Maximised 0.911 0.990 0.761 0.871
Connectivity (Conn) Minimised 36.033 27.812 28.962 102.088

From this table, we find that PM10 produces the best clustering solution
based on DI and the best connectivity compared to the other pollutants,
so the stations clustered together are similar to one another yet dissimilar
from stations in other clusters. However, the clustering solution obtained for
PM2.5 has the maximum ASW because the number of the cluster is higher.
It has similar DI index.

On the other hand, to evaluate how good these clusters are for imputing
the pollutants, we compare the RMSE of our imputation methods using
the clustering solutions for individual pollutants. In Table.2, the method
that gives the lowest RMSE is (CA+ENV) for NO2 and O3, and (CA) for
PM2.5 and PM10. That indicates that NO2 and O3 concentrations change
from a location to another based on the environmental type, for example the
stations that are located at the roadside have higher concentrations of NO2

than those at the rural background. However, PM2.5 and PM10 have more
regional patterns, and wider distribution. If we compared these values, we
can see that the lowest error average is associated with the imputation of
the PM10 and PM2.5, this support our previous evaluation of the clustering
quality.

5.2. Experiment 2 and 3: MVTS clustering based on the fused similarity

In these experiments, we use the basic k-means algorithm to cluster the
fused distance matrix we calculated in Sec.3. This is to investigate if a clus-
tering that takes into account all of the pollutants measured at a particular
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Table 2: The average RMSE and its standard deviation (Std) using the basic k-means
clustering algorithm in experiment 1.

Imputation Method NO2 O3 PM2.5 PM10

RMSE Std RMSE Std RMSE Std RMSE Std
CA 15.037 7.260 14.877 4.169 5.728 1.524 8.312 2.750
CA+ENV 14.095 7.051 14.500 3.885 6.147 1.779 8.367 2.739

station and their similarity may give a better understanding of the patterns
of concentration and also better imputation results.

Fig.12 shows the geographical distribution of clustering the stations based
on the basic k-mean in experiment 2 where we include all the stations in
the dataset. From the geographical distribution of this clustering solution
(Fig.12), there are three clusters located in three geographical areas (cluster
2/North (green), cluster 1/South East (red), and cluster 3/South West (light
blue)). These clusters are well separated, however there are some stations
from cluster 1 (red), that appear within other cluster’s geographical areas.

Figure 12: Geographical distribution of clustering stations using the basic k-means algo-
rithm experiment 2.

In experiment 3, we exclude 43 stations from the clustering process as
these stations measure NO2 only and including them in the FDM may neg-
atively affect the clustering process. What we do this time is to allocated
these stations to clusters after clusters are constructed. The allocation is

24



based on their partial similarity of NO2 to the cluster centroids.
Fig.13 shows the geographical distribution of stations for experiment 3,

noting that this time we have four clusters (i.e. (cluster 1, (red), (cluster 2,
green), and (cluster 3, light blue)). As we can see there is good geograph-
ical distribution with the four clusters located in the North, central, South
East, and South West. These clusters are well separated; in fact better than
those in experiment 2, because stations that only measure NO2 disrupt the
geographical connectivity of the clusters. This is because the sites that only
measure NO2 are usually sited in areas where there are concerns about com-
pliance with NO2 air quality standards which is normally close to sources
such as roads.

Figure 13: Geographical distribution of clustering stations using the basic k-means algo-
rithm experiment 3.

5.2.1. Clustering Evaluation

We compared the basic k-means clustering solutions from experiment
2 and 3 based on the CVI to select the best clustering solution, i.e. one
that is more compact and well separated. Table.3 shows the comparison of
these indices. Then, we imputed the missing pollutants using our imputation
methods and compared the imputed with the real TS using RMSE and its
standard deviation (Std) as shown in Table.4.

Table.3 shows that the clustering solution from the third experiment is
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better than the one from experiment 2 with a number of these indices in-
cluding: Within Clusters Sum of Squares (WCSS) measuring the variability
within each cluster, Between Clusters Sum of Squares (BCSS) measuring
variability between the centroids of the clusters; and it also achieved the
highest value with the Silhouette Width (ASW) measuring how close each
point in one cluster is to points in the neighbouring clusters.

On the other hand, we evaluated these clustering solutions in terms of
missing pollutants imputation using the RMSE, as shown in Table.4, and
we compared the clustering imputation methods based on the basic k-means
clustering algorithm derived from these experiments. Looking at the second
experiment only, at the top of Table.4, we find that using CA+ENV gives the
lowest RMSE for NO2 and O3 with (13.947, 14.733, respectively). However,
using CA method gives the lowest RMSE (5.234, 8.247) for PM2.5 and PM10

respectively. This is consistent with the single pollutant imputation from the
first experiment (i.e. experiment 1 in Sec. 5.1).

For the third experiment, at the bottom of Table.4, the result for the
best imputation methods for each pollutant agreed with experiment 2. Im-
portantly, using this clustering solution to impute the pollutants gave the
lowest average error for all the pollutants except NO2. This indicates that it
is a good clustering solution and helpful for imputation. In the next section,
we discuss and compare these results to the results from other experiments
in more details.

Table 3: Cluster Validity Indexes for clustering solutions in experiment 2 and 3 (highlighted
cells represent better results in the comparison between experimenter 2 and 3).

Measure Criteria Basic k-means (Exp. 2) Basic k-means (Exp. 3)
Optimal number of cluster (k) 3 4
Within Clusters Sum of Squares (WCSS) Minimised 0.3409 0.3251
Between Clusters Sum of Squares (BCSS) Maximised 0.4248 0.4263
Average Silhouette Width (ASW ) Maximised 0.1240 0.1351
Dunn index (DI) Maximised 0.1291 0.1037
Connectivity (Conn) Minimised 69.1968 91.8095

5.2.2. Analysis of pollutant concentrations in each cluster

Since the third experiment gives the best clustering solution in terms
of the clustering quality and also achieves the lowest RMSE in the missing
pollutants imputation, we analyse the time variation for all the pollutants in
this solution in order to compared the cluster centroids. Fig.14 and Fig.15
show the time variation for PM10, PM2.5, NO2, and O3 respectively, colour
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Table 4: The average RMSE and its standard deviation using the basic k-means clustering
algorithm in experiments 2 and 3.

Imputation Method NO2 O3 PM2.5 PM10

RMSE Std RMSE Std RMSE Std RMSE Std
Experiment 2

CA 15.805 8.107 15.211 3.526 5.234 1.253 8.247 2.720
CA+ENV 13.947 7.299 14.733 3.469 5.427 1.226 8.283 2.650

Experiment 3
CA 16.024 8.443 14.963 4.387 4.986 1.155 7.943 2.775
CA+ENV 13.965 7.355 14.265 3.882 5.332 1.197 8.284 2.751

coded in these figures according to the clustering results in Fig. 13 (i.e.
(cluster 1, (red), (cluster 2, green), (cluster 3, light blue), and (cluster 4,
purple)).

We will analyse the time variations from these figures based on the four
cluster centroids obtained from experiment 3 results, as shown in Fig. 13.

The centroid of cluster 1 (red), located in the South West, has high con-
centrations of PM10, PM2.5 (as in Fig.14) and the highest concentrations of
O3 among all other cluster centroids, but has the lowest concentrations of
NO2 (as in Fig.15).

The centroid of cluster 2 (green), located in the center of the UK, has an
average concentration of all the pollutants compared to other centroids, as
clearly shown in these figures.

The centroid of cluster 3 (light blue), located in the North has the lowest
concentrations of PM10, PM2.5 as shown in Fig.14. Very high concentrations
of O3 as shown in the top plot of Fig.15, while it has a low to average NO2

concentrations comparing to other clusters.
Finally, the centroid of cluster 4 (purple), located in the South East, has

the highest concentrations of PM10, PM2.5 as shown in Fig.14. Also, it has
the highest concentrations of NO2, but the lowest concentrations of O3 as
shown in Fig.15.

From these figures, if we compare the time variation of pollutants concen-
tration based on the location of the clusters from the MVTS clustering (i.e.
experiment 3) with individual pollutants clustering (Sec. 5.1), we can see
that the pollutants concentration in these locations similar to one another.
For example, the UK North region has the lowest concentrations of PM10,
PM2.5, NO2 but highest concentrations of O3, while the opposite is true for
South regions. Which confirmed the ability of the MVTS clustering to reflect
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and understand multi pollutants behaviour.

Figure 14: Time variation of basic k-means cluster centroids of PM10 (top) and PM2.5

(bottom) concentrations.

Next, we show an example of our imputed TS compared to the real TS for
each pollutant using the selected imputation methods. For this comparison,
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Figure 15: Time variation of basic k-means cluster centroids of O3 (top) and NO2 (bottom)
concentrations.

we selected two stations that associated with the highest and lowest RMSE
for each pollutant. We compare the daily mean of the imputed and the real
TS for the period of six months (Jan-Jun) of the year of 2018. We only
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include an examples of PM2.5 and O3 due to the limited space in this paper.
Fig.16 is an example of the PM2.5 imputed using the CA method and real

TS at ‘London N Kensington’ (lowest RMSE) and ‘Belfast Centre’ stations
(highest RMSE). The imputed TS for London N. Kensington has slightly
higher values than the real TS, while the opposite is true for Belfast Center,
where the imputed TS is slightly lower than the real TS. Again, the trends
are very similar and they represent valid imputations.

Fig.17 shows a comparison between the imputed O3 TS using the CA+ENV
method and real TS at ‘London N Kensington’ in the top (lowest RMSE),
and ‘London Hillington’ in the bottom (highest RMSE). We can see that in
the second plot for ‘London Hillington’ site the variation between the im-
puted and the real TS is slightly higher compared to the previous example
although again the trend is good.

Figure 16: Imputed and real TS comparison for PM2.5 with lowest RMSE (top) and the
highest RMSE (bottom).

6. Discussion

Our analysis showed that a basic k-means algorithm with fused distances
results in geographical patterns that are consistent with our understanding
of sources and lifetimes of these pollutants, as explained in Sec. 5.2.
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Figure 17: Imputed and real TS comparison for O3 with lowest RMSE (top) and the
highest RMSE (bottom).

We found that using the basic k-means with the MVTS clustering and
fused similarity in the second and third experiments gave a clear geographical
correlation between the stations. Our results of analysing the centroids of
the clusters identify similar pollutant concentrations levels and geographical
distribution to the results in one of the most recent reports from Centreforci-
ties [10]. This report focuses on analysing the concentrations level across
the UK for NO2 and PM2.5, and explores the fact that NO2 and O3 have an
anti-correlation [14], hence their concentrations in a region are at opposite
ends of the scale. This is corroborated in our clustering results.

In terms of imputation, using the basic k-means with the defined imputa-
tion methods helped to impute/estimate plausible concentrations of multiple
pollutants at a station. Although the best imputation method with lowest er-
ror average may be different from one pollutant to another, all experiments
agreed that using CA+ENV to impute NO2 and O3 gave the lowest error
average (RMSE), and using CA is better for the imputation of PM2.5, and
PM10 concentrations due to the behaviour of each pollutant.

We also observe that univariate and MVTS clustering analysis lead to
different clustering results. Comparing the error average of these methods
from the univariate TS clustering (experiment 1) to the MVTS clustering
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(experiment 2 and 3) showed that the error average using CA+ENV for NO2

imputation decreased by (0.15, 0.13) in the second and third experiments
using MVTS clustering compared to using the univariate TS clustering. Even
though, the error averages increased for pollutant imputation in the second
experiment for O3 and NO2, they decreased in the third experiment by 0.2,
0.7, 0.4 for O3, PM2.5, and PM10 respectively. This indicates that using NO2

data from NO2 only sites has a detrimental effect in the imputation of O3

and PM.
Furthermore, MVTS clustering enables imputation even when no mea-

surement is available for a given pollutant since the station can be allocated
to a cluster based on the value of the other pollutants measured as we demon-
strated with the stations that measure only NO2 in the third experiment.

7. Conclusion

In this work, we proposed a model to impute missing pollutant (whole TS)
through a MVTS clustering approach. We conducted multiple experiments
to evaluate the effectiveness of our approach. We compared the proposed
approach (i.e. the MVTS clustering using the fused similarity that combines
the SBD for all the pollutants) with the univariate TS clustering using SBD
for individual pollutants. These two approaches are compared in term of the
clustering and the imputation quality.

We found that using the basic k-means with the fused distance performs
better than other clustering algorithms for imputation and gives very com-
pact geographical clustering. This indicates that using the fused distance to
measure the similarity between the pollutants helped us to solve some of the
uncertainty problems associated with missing pollutant values and enabled
us to discover multiple patterns of pollutant behaviour that are manifested
in different areas around the UK. This knowledge can then be used to under-
stand the behaviour of the pollutants that indicate the air pollution level.

In future work, we will apply imputation to evaluate the AURN network
and to help identify where the calculated DAQI might have differed if more
data (measured or imputed) were available. We can also improve imputa-
tion methods by considering environmental type of the stations further, and
information about the stations like station altitude and locations. Also, we
may consider the correlation between the pollutants.

We intend to compare our applied MVTS clustering technique with some
ensemble clustering methods that are based on univariate TS clustering, then
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apply our imputation methods to see the performance of our MVTS cluster-
ing technique compared to traditional ones.
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