
Sympathetic involvement in time-constrained sequential foraging

Neil M. Dundon1,2
& Neil Garrett3,4 & Viktoriya Babenko1

& Matt Cieslak5 & Nathaniel D. Daw3
& Scott T. Grafton1

# The Author(s) 2020

Abstract
Appraising sequential offers relative to an unknown future opportunity and a time cost requires an optimization policy that draws
on a learned estimate of an environment’s richness. Converging evidence points to a learning asymmetry, whereby estimates of
this richness update with a bias toward integrating positive information. We replicate this bias in a sequential foraging (prey
selection) task and probe associated activation within the sympathetic branch of the autonomic system, using trial-by-trial
measures of simultaneously recorded cardiac autonomic physiology.We reveal a unique adaptive role for the sympathetic branch
in learning. It was specifically associated with adaptation to a deteriorating environment: it correlated with both the rate of
negative information integration in belief estimates and downward changes in moment-to-moment environmental richness, and
was predictive of optimal performance on the task. The findings are consistent with a framework whereby autonomic function
supports the learning demands of prey selection.
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Introduction

A specific but nonetheless ubiquitous value-based decision
dilemma requires people to approach or avoid sequential of-
fers that pit a reward against an opportunity cost of time,
without full knowledge of what offers, if any, may follow.
For example, by committing to a specific project, a contract
worker receives payment (reward) while eschewing alterna-
tive projects during project completion (opportunity time
cost), without knowing what alternative options will later
emerge.

The Marginal Value Theorem (MVT; Charnov, 1976) pro-
poses an optimality rule for such sequential decisions, where-
by yields that exceed the average reward rate (richness) of an
environment should be approached and those falling below it
should be avoided. The environment and its consequential
opportunity time cost thus prescribe choice selectivity; for
example, contract workers should only accept projects with
a high hourly rate of return (wiring a new supermarket) during
construction booms when time has a high opportunity cost,
and accept projects with a low hourly rate of return (fixing a
faulty domestic appliance) during construction downturns
when opportunity time cost is low. Accordingly, studies
across various species (Cowie, 1977; McNamara &
Houston, 1985), including humans (Hayden, Pearson, &
Platt, 2011; Kolling, Behrens, Mars, & Rushworth, 2012),
have predicted foraging behavior usingMVT inspiredmodels.
Recent work in humans further resolves the computational
challenge of learning dynamic environmental richness, by
demonstrating that sequential choice behavior is best captured
by anMVT-inspired learningmodel. Specifically, decisions to
both leave a patch and explore the environment in patch for-
aging (Constantino & Daw, 2015; Lenow, Constantino, Daw,
& Phelps, 2017) and capture behavior in prey selection
(Garrett & Daw, 2019) adhere to the MVT-predicted optimal-
ity policy that compares yields against fluctuating environ-
mental richness, which is learned via a standard delta rule
(Rescorla & Wagner, 1972). This later work suggested that
beliefs about environmental richness update with an
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asymmetric bias, whereby improvements are learned at a
higher rate than deteriorations; the “naïve perseverance of
optimism” (Garrett & Daw, 2019).

A separate body of literature has investigated how human
performance in decision-making and learning tasks varies as a
function of stress. Relevant to foraging studies are findings that
acute stress levels promote perseveration with devalued stimuli,
suggesting a stress-driven shift from goal-oriented to habitual
behavior (Schwabe & Wolf, 2009, 2010). However, Porcelli
and Delgado (2017) highlight that many studies in this area
estimate stress effects with assays of slow-acting glucocorticoids
(e.g., cortisol), creating long stress-to-task latency. In the only
extant study exploring the relationship between stress-related
endocrine activity and foraging behavior, both acute and chronic
stress elevation led to overharvesting tendencies in patch forag-
ing (Lenow et al., 2017). The main assays in that study (cortisol
and self-report) probed stress fluctuations operating on longer
time horizons than the faster-acting learning needed to update
beliefs about environmental richness. This time-constant mis-
alignment similarly affects a commonly used alternative assay
of putative stress states – galvanic skin conductance – while
further confounds such as arousal and spontaneous fluctuations
complicate inferences regarding stress-system contribution to
pupillometry data (Bradley, Miccoli, Escrig, & Lang, 2008;
Joshi, Li, Kalwani, & Gold, 2016; Krishnamurthy, Nassar,
Sarode, & Gold, 2017).

Measures of cardiac autonomic physiology have emerged
as an exciting new approach for tracking rapid changes in
cortically mediated stress responses fluctuating on a trial-by-
trial basis, but these have yet to be employed with sequential
decision-making tasks. Such measures have nonetheless
charted the effects of experimentally manipulated reward
and difficulty on summary states of the sympathetic branch
of the autonomic system, indexed with aggregated measures
of beta-adrenergic myocardial mobilization (reviewed in
Richter, Gendolla, & Wright, 2016). Of relevance to sequen-
tial decision-making, increased sympathetic states are associ-
ated with the difficulty of cognitive tasks and the relevance of
reward – i.e., contractility increases with both increased diffi-
culty and increased importance of reward (Kuipers et al.,
2017; Richter, Friedrich, & Gendolla, 2008). Further, where
task difficulty is either unknown (Richter & Gendolla, 2009)
or user-defined (Wright, Killebrew, & Pimpalapure, 2002) –
mirroring the adaptive coping situation in sequential decisions
– sympathetic states uniquely track reward relevance, suggest-
ing theymay be involved with learning the opportunity cost of
an environment. Such a link would be supported by recent
perceived duration studies reporting a specific association be-
tween sympathetic activation and the overestimation of the
duration of a painful stimulus (electro-cutaneous stimulation;
Piovesan, Mirams, Poole, Moore, & Ogden, 2018). In addi-
tion, the association between sympathetic activation and du-
ration overestimation appears to be specific to adaptive events

of negative valence, for example, reporting the duration of the
presentation of a high-arousal, negative-valence image (a mu-
tilated body) versus a neutral or positive image (Ogden,
Henderson, McGlone, & Richter, 2019; van Hedger, Necka,
Barakzai, & Norman, 2017). The role of sympathetic activa-
tion in learning may therefore further be adaptive, primarily
showing associations with environmental deterioration.
However, such a conclusion requires linking sympathetic
and environmental fluctuations over shorter time-scales.

Here, we employ state-of-the-art cardiac analyses (Cieslak
et al., 2018) on electrocardiogram (ECG) and impedance car-
diogram (ICG) data recorded continuously while subjects per-
formed a prey selection task, capturing trial-wise modulation
of sympathetic contributions of the autonomic state. Using
these trial-wise indices, we address three questions; (1) how
drive in the sympathetic stress system aligns with choice pol-
icy and responds to changes in environmental richness; (2)
how activation in this system correlates with learning param-
eters; and (3) is sympathetic drive associated with optimal task
performance. We first describe the general methods regarding
participants, task design, physiological recording, and pre-
processing. We will then separately describe methods and
results for three data analysis branches addressing the above
three research questions.

General methods

Participants

We recruited 20 subjects via word of mouth. Nine subjects
were male and had a mean (standard deviation) age of 19.11
years (1.37) while the remaining 11 female subjects had a
mean (standard deviation) age of 20 years (2.18). The total
mean (standard deviation) age of our sample (N=20) was
19.65 years (2.18). Two male subjects and one female subject
reported themselves as being left-handed. All subjects provid-
ed informed consent to participate and experimental proce-
dures were carried out following IRB approval from the
University of California, Santa Barbara.

Statistical power

Continuous cardiac physiology was recorded while subjects
performed a task (see below) specifically designed to measure
asymmetric (improvement biased) belief updating. Across
three previous behavioral experiments (n = 40, n = 38, n =
38), Garrett and Daw (2019) report this asymmetry with large
respective effect sizes of d = 1.19, d = 0.805 and d = 0.914
(estimating d from reported dependent t-values and sample
sizes (Ray & Shadish, 1996)). Our sample size (n = 20) is
above the minimum level needed (n = 12) to replicate this
behavioral finding, assuming the true effect is the average of
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these three observed effect sizes (0.96) with a one-tailed sig-
nificance of α = 0.05 and statistical power of 0.80 (Dhand &
Khatkar, 2014). Note that this assessment does not relate to
the power of effects involving cardiac activity.

Task

Subjects spent 24 min playing the Prey Selection task (Garrett
& Daw, 2019), a computerized video game emulating a formal
sequential foraging task under a time constraint (see Fig. 1A-
C). Subjects were pilots of a space ship and instructed to harvest
as much fuel as possible to earn a bonus ($0.01 per point). Fuel
was harvested by capturing sequentially approaching space-in-
vaders. Invaders carried either a high (80 points) or a low (30
points) fuel reward, and a high (8 s) or a low (3 s) capture cost.
The four identities (see Fig. 1B) mapped onto a three-tier prof-
itability rank: high (high reward/low cost); mid (high reward/
high cost, or low reward/low cost); and low (low reward/high
cost). Participants spent half of the game-time foraging in an
environment with a disproportionately high concentration of

high profit invaders (boom; high:mid:low = 4:2:1) and the other
half in an environment with a disproportionately high concen-
tration of low profit invaders (downturn; high:mid:low = 1:2:4)
(see Fig. 1C). The two environments had different background
colors, and subjects were informed that they would differ in
terms of invader concentrations, but not explicitly how. Half
of the subjects foraged in the order boom to downturn (BD) and
the other half in the order downturn to boom (DB), with an
opportunity to rest in between the two environments.

Subjects performed the Prey Selection task seated 150 cm
from a 68.6-cm (diameter) computer monitor and registered
responses on a standard PC keyboard. Experimental stimuli
were presented on a Mac mini-computer, using Psychtoolbox
extensions (Brainard and Vision, 1997; Kleiner, Brainerd &
Pelli, 2007; Pelli, 1997) inMATLAB v9.4 (MATLAB, 2018).

The task paradigm is described in Fig. 1A. At all times
subjects saw a cockpit with two target boxes, one on the left
and one on the right of the screen. On each trial, subjects had
2s to decide if they wished to capture or release an invader
approaching their cockpit. Invaders would pseudo-randomly

Fig. 1 Prey selection paradigm. Subjects decide whether to capture or
release serially approaching invaders during their 2-s approach to the
cockpit (panel A). Releasing an invader progresses immediately to the
next invader, while capturing the invader incurs a capture time cost, and
fuel reward. Four invader identities (panel B) map onto a two-by-two
reward-by-cost value space, and can be described categorically as high
(green), mid (blue), or low (brown) profitability. Subjects foraged for

12 min in each of two environments (panel C) with different
proportions of invader profitability. Panel D: Replication of Garret and
Daw (2019) learning asymmetry. Order of foraging (boom – downturn,
BD; downturn – boom, DB) predicts optimal behavior (higher rank 3
captures in downturn relative to boom state). Learning deterioration of
an environment takes longer than learning state improvement. Error bars
illustrate the standard error of the mean across subjects

Cogn Affect Behav Neurosci (2020) 20:730–745732



approach one of the two target boxes. Captures were regis-
tered by holding the response button corresponding to the
target box in the path of the incoming invader (z with left
index finger for the box on the left, m with right index finger
for the box on the right). Subjects were required to keep hold-
ing the response button as the invader finished its 2s approach
to the box, and thereafter for the entirety of the capture time
(2s or 7s). Following a successful capture, a feedback screen
(1s) described the harvested reward, during which subjects
could release the response button. After the feedback screen
the next invader immediately began its approach. Releases
were registered by holding the response button corresponding
to the response box opposite the incoming invader. Subjects
were required to hold the response button until the invader
reached the capture box. The invader would then disappear
and the next invader would begin its approach. Errors carried
an 8s time penalty, during which the response boxes disap-
peared and no invaders approached. Errors were (1) failing to
register any response during the 2s invader approach; (2) re-
leasing the response button before the invader reached the
response box (captures and avoids); (3) releasing the response
button before the end of the capture cost (captures only). On
average, participants made an error on 1.82% of trials (stan-
dard deviation, 1.00%). Note that requiring the full approach
time on both captures and releases, regardless of the latency of
response execution, subjects can only use choice policy and
not vigor (see Guitar-Masip et al., 2011) to optimize perfor-
mance. Also, trial-wise pseudorandom mapping of capture
and release onto either hand reduced the confounding influ-
ence of action hysteresis on decisions (see Valyear et al.,
2019). Finally, to encourage full exploration of each environ-
ment, 25% of trials were forced-choice. On these trials, a red
asterisk would appear above one of the two capture boxes, and
participants were instructed to press this response button re-
gardless of whether they wished to perform the corresponding
capture or release. Error and forced-choice trials were exclud-
ed from later analyses. Participants received a standardized set
of instructions, performed a 2-min block of practice trials, and
required a perfect score on a questionnaire probing task com-
prehension before starting the task.

Physiological recording and preprocessing

Physiological measures of ICG and ECGwere collected using
non-invasive approaches with a total of ten EL500 electrodes.
Prior to each electrode placement, an exfoliation procedure
was performed on each electrode location to maximize signal
quality. An approximate 1-in. area of skin was cleaned with an
abrasive pad, followed by exfoliation with NuPrep gel
(ELPREP, BIOPAC, n.d). Once the skin area was fanned
dry, a small amount of BIOPAC GEL100 was placed on the
electrode and on the skin. In order to assess ICG, a total of
eight of the ten electrodes were placed on the neck and torso:

two on each side of the neck and two on each side of the torso
(Bernstein, 1986). ECG recordings were obtained with a total
of two sensors placed beneath the right collarbone and just
below the left ribcage. The ICG electrodes provided the nec-
essary ground. Continuous ECG was collected using an
ECG100C amplifier and continuous ICG using a
NICO100C amplifier (both from BIOPAC). Data were inte-
grated using an MP150 system (BIOPAC) and displayed and
stored using AcqKnowledge software version 4.3 (BIOPAC).
Both ECG and ICG timeseries were recorded at 1,000 Hz. We
recorded raw ECG (ECG) and both the raw (z) and derivative
dz
dt

� �
of the ICG; the latter facilitates the identification of key

impedance inflection points required to estimate the pre-
ejection period (PEP). Both z and dz

dt were high-pass filtered
to remove respiratory artefact. Below, reference to continuous
ICG refers to dz

dt :

We extracted an estimate of the sympathetic state at each
heartbeat (see Fig. 2) – pre-ejection period (PEP). Semi-
automated software MEAP labeled the continuous ECG and
ICG (Cieslak et al., 2018). For each heartbeat, the ECG R
point serves as the t=0 landmark for within-heartbeat events.
The time interval between the ECG Q point and the ICG B
point (see Fig. 2) defines the pre-ejection period (PEP) of a
heartbeat, which is related to the contractility of the heart
muscle before blood is ejected. However, due to difficulty in
reliably capturing the relatively small Q point, PEP is often
calculated as the difference between the easily detected ECG
R point and the ICG B point (the RBI). This latter interval is
comparable to PEP in reliability (Kelsey et al., 1998, Kelsey,
Ornduff, & Alpert, 2007) and validity (Kelsey et al., 1998;
Mezzacappa, Kelsey, &Katkin, 1999) and sometimes referred
to as PEPr (Berntson, Lozano, Chen, & Cacioppo, 2004). We
used the RBI definition for our measure of PEP. Reduced
values of PEP reflect a shorter pre-ejection interval, indicating
increased sympathetic cardiovascular drive. However, to align
PEP fluctuations with increases in sympathetic activity,
allowing easier apprehension of results of later analyses, we
negative signed (i.e., *-1) all extracted values. For all subse-
quent references to PEP, higher values reflect increased sym-
pathetic cardiovascular drive.

Finally, we used the reciprocal of R-R intervals as a mea-
sure of heart rate (HR), such that higher HR values reflect a
decrease in the interval between R points, i.e., increased heart
rate. Heart rate is influenced by both sympathetic and para-
sympathetic inputs. We included it in our analyses to control
for a known cardiac effect where increased left-ventricular
preload time (which occurs with slowing HR) can shorten
PEP independent of sympathetic influences (Sherwood
et al., 1990).

Trial-wise estimates of PEP and HR were next derived by
taking an average from all heartbeats during the 2s time win-
dow while invaders approached the spaceship on each trial.
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This first provided trial-wise estimates of the physiological
states during a uniform length time window for all trials, re-
gardless of the executed decision or the identity of the invader,
and further allowed us to capture multiple samples, and more
resolute evidence, of the physiological state on each trial.

Finally, each trial-wise physiology estimate was corrected
again for trial-wise respiratory state. We performed this addi-
tional trial-wise respiration correction to account for known
influences of respiratory activity on heart rate (Larsen, Tzeng,
Sin, & Galletly, 2010), computed in our pipeline from raw
ECG R points. Both the magnitude and phase of continuous
respiratory activity can be directly estimated from the magni-
tude of the low-passed (<0.30 Hz) cardiac impedance time
series (i.e., low-passed z time series, from above). We then
defined trial-wise respiratory state as the average normalized
product of the phase and magnitude of respiration activity at
each R point during the 2-s time window of invader ap-
proaches. Respiration-corrected measures of each trial-wise
physiological state were the residuals from a linear model of
each raw trial-wise physiology state and the trial-wise respi-
ratory state, performed separately for each subject.

We now present the statistical analysis methods and results
separately for three separate branches of analyses. The first
branch uses ANOVA and linear mixed-effects models to ex-
plore the dynamics between PEP and HR, choices and objec-
tively estimated measures of environmental richness and its
moment-to-moment derivatives. The second analysis employs
computationally modelled subjective estimates of the environ-
ment’s richness, and compares models that allow the learning
parameter to vary with PEP and HR. In the third and final
analysis we test if blockwise changes in PEP or HR predict
optimal task performance.

Methods - Analysis branch 1: Sympathetic
stress, choices, and environment dynamics

All ANOVAs and trial-wise mixed-effects models were fitted
using lme4 (Bates, Mächler, Bolker, & Walker, 2014) and
lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017)
packages in R. Unless otherwise specified, trial-wise logistic
models were fitted with logit link functions and Laplacian
maximum likelihood approximation, while trial-wise models
of continuous measures used restricted maximum likelihood
approximation (REML). To ensure model convergence, each
trial-wise mixed-effects model used a random intercept mod-
el, i.e., fitted a fixed effect for each specified coefficient, and
an individual intercept for each subject. When reporting sig-
nificant model coefficients, we further report the mean and
standard deviation of the distribution of the relevant coeffi-
cient, re-running the model n times using leave-one-out jack-
knife resampling of the n subjects (respectively: βμ and βσ).
For both ANOVA and trial-wise mixed-effects models,

significant lower order marginal effects of significant higher-
order interactions are not reported in the main text (however,
see Supplementary Tables for a summary of all effects). Post
hoc ANOVA contrasts use Tukey correction. All other data
pre-processing and analyses were conducted using MATLAB
v9.4 (MATLAB, 2018).

Results - Analysis branch 1: Sympathetic
stress, choices, and environment dynamics

Our first behavioral analysis attempted to replicate the Garrett
and Daw (2019) finding regarding asymmetric belief
updating. To this end, we ran a three-way mixed ANOVA
of mean capture-rate as a function of between-group factor
order (RP, PR) and two repeated-measures factors env (boom,

Fig. 2 Dynamics of a template heart beat (k), as measured by
electrocardiogram (ECG; green) and impedance cardiogram (ICG;
blue). Pre-ejection period (PEP) indexes sympathetic-mediated
myocardial contractility, computed as the time between early ventricular
depolarization (point Q on the ECG) and the opening of the aortic valve
(point B on the ICG). Note that in our analyses we used a more easily
identified ECG landmark for early ventricular depolarization (point R)
and reverse-signed each estimate (see Methods: Physiological recording
and preprocessing). Heart rate (influenced by both sympathetic and
parasympathetic activity) is computed as the reciprocal of the R-R
intervals
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downturn) and rank (hi, intermediate, low). Summarized in
Fig. 1D, the ANOVA reported a significant three-way inter-
action between order, env and rank (F = 3.97, df = (2, 90), p =
0.022). We accordingly contrasted mean capture rates be-
tween BD and DB for the six levels of the env*rank interac-
tion. These contrasts demonstrated significantly higher cap-
ture of mid-rank invaders in the downturn environment for
order DB, relative to BD (μ = 0.828 vs. μ = 0.402, both s.
e. = 0.050, p < 0.001), with no other contrasts reaching statis-
tical significance. In other words, foraging during the two
order conditions differed only in terms of adjustments in the
number of mid-rank captures in the downturn environment, in
line with Garrett and Daw (2019), and suggestive of slower
learning in the face of a contextual deterioration (see supple-
mentary analyses for similar results replacing rank (hi, inter-
mediate, low) with a four-level variable corresponding to the
four specific reward/cost combinations of the invaders (i.e., hi/
low, hi/hi, lo/lo, lo/hi).

A corollary of asymmetric belief updating (prioritizing pos-
itive information) is a decision threshold weighted preferential-
ly toward recent reward over recent cost. To formally probe the
influence of current and recent offers on choice behavior, we
fitted a trial-wise mixed-effects model of choicet (capture, re-
lease) as a function of an intercept term and four parameters:
reward and delay on a given trial t (respectively: rewardt, delay-
t) and reward and delay on the previous trial, i.e., t − 1 (respec-
tively: rewardt − 1, delayt − 1). The model yielded a significant
positive influence of rewardt (β = 2.07, s. e. = 0.065, p < 0.001,
βμ = 2.07, βσ = 0.071) and significant negative influence of
delayt (β = − 2.05, s. e. = 0.066, p < 0.001, βμ = − 2.05, βσ =
0.068) on capture probability. Choice was also influenced by
reward on the previous trial; rewardt − 1: (β = − 0.287, s. e. =
0.064, p < 0.001, βμ = − 0.288, βσ = 0.018), but not by the pre-
vious delay; delayt − 1: (β = 0.071, s. e. = 0.064, p = 0.353). The
negative coefficient for rewardt − 1 is predicted by MVT; for
example, a high reward drives positive belief updating (of the
environment’s richness), increasing opportunity cost to future
captures, and decreasing future acceptance. The specific influ-
ence of rewardt − 1 further supports the Garrett and Daw (2019)
finding that positive information integrates more readily into
state appropriate behavioral policy, relative to negative
information.

We next assessed the influence of current physiological
state on the relationship between current offer and choice be-
havior. In two separate models, i.e., one each for PEP and HR,
we ran a trial-wise mixed-effects model of choicet (capture,
release) as a function of the two-way interaction
effects phsyiologyt*rewardt and physiologyt*delayt. We also
included, in each model, an intercept term, and nuisance co-
efficients order (BD, DB), env (boom, downturn) and trial
index. In line with the behavior analyses above, each model
showed the same influence of order and state on choice –
higher capture rates in the downturn state, and for the DB

order (all p-values <0.004). Each model also returned a sig-
nificant negative coefficient for trial index (all p-values
<0.001) reflecting higher capture rates early in foraging.

In addition, the PEP model returned a significant positive
coefficient for the physiology*delay effect (β = 0.461, s. e. =
0.133, p < 0.001, βμ = 0.460, βσ = 0.101), suggesting that in-
creased sympathetic cardiovascular drive (indexed by PEP)
blunts the negative association between delay and capture.
The physiology*reward coefficient did not reach statistical
significance (β = − 0.200, s. e. = 0.132, p = 0.128).

The HR model also returned a significant negative coeffi-
cient for the physiology*delay effect (β = − 0.703, s. e. =
0.152, p < 0.001, βμ = − 0.710, βσ = 0.151), and a significant-
ly positive coefficient for the physiology*reward effect (β =
0.922, s. e. = 0.152, p < 0.001, βμ = 0.915, βσ = 0.161), sug-
gesting that decreased heart rate blunts both the aversion of
delay and the appeal of reward.

The findings from these preliminary models suggest that
increased sympathetic activation is aligned with lower value
acceptance, specifically to the cost dimension of value. HR, in
contrast, decelerates during moments of low value capture. A
shortcoming of these models, however, is that they do not
consider value relative to the current rate of reward, i.e., envi-
ronmental richness. Also, by running two separate models,
i.e., one each for the two different physiology variables, we
cannot confirm if physiological associations with reward and
delay are independent of one another. We accordingly simpli-
fied the parameter space such that a single trial-wise parameter
::
valuet would account for both dimensions of value, adjusted
by an evolving estimation of the opportunity cost at the time of
each choice.

::
value for a given trial t was defined as:

::
valuet ¼ rewardt−θt ð1Þ

Where rewardt is the reward of the offer on trial t and θt is
the opportunity cost of capturing offer t,computed as:

θt ¼ delayt*μt ð2Þ

Where μt is the average rate of reward captured per second
through to the beginning of trial t, i.e. where t > 1, μt is up-
dated with:

μt ¼
μt−1*st−1ð Þ þ rt−1*ct−1ð Þ

st
ð3Þ

where ct − 1 is a discrete variable reflecting the selection for
trial t − 1 (1 = capture, 0 = release), rt − 1 is the reward yielded
from capturing the invader for trial t − 1 and st and st − 1 are,
respectively, the time in seconds of the first frame of trials t
and t − 1 (relative to opening frame of the first trial of the
experiment). To ensure early trials did not impart dispropor-
tionate influence in the model, μt is initialized for all subjects
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for t = 1 in the first block as the average reward rate harvested
during the entire experiment across all subjects (7.97 points
per second), while μt is initialized for all subjects for t = 1 in
the second block as their individual average value of μt in the
first block.

Accordingly,
::
value approaching positive ∞ reflect offers

that exceed the opportunity cost of the current moment, and
should readily be captured, while

::
value approaching negative

∞ describe readily avoidable offers where the reward harvest-
ed in exchange for the absorbed time cost is not justified at that
moment. In choice models, this relationship is reflected by a
positive coefficient, i.e., higher choice probability follows
higher

::
value.

We then ran a single model of choicet (capture, release) as a
function of two two-way interaction effects: PEPt*

::
valuet and

HRt*
::
valuet, in addition to an intercept term, and nuisance

coefficients order (BD, DP), env (boom, downturn), and trial
index. The model returned a negative coefficient for the PEP
*

::
value interaction, which did not reach statistical significance

(β = − 0.188, s. e. = 0.112, p = 0.092). However, a main effect
of PEP reached significance (β = 0.465, s. e. = 0.128, p =
0.000, βμ = 0.465, βσ = 0.053). The HR*

::
value interaction

reached statistical significance (β = 0.708, s. e. = 0.108,
p < 0.001, βμ = 0.718, βσ = 0.151), indicating that a slower
heart-rate blunts the positive association between value and
capture (see Fig. 3a).

The findings from these initial models suggest sympathetic
drive has limited involvement with trial-wise choice in con-
text, with slowed-heart rate (influenced by different branches
of the autonomic system) primarily aligned with capturing
low value in context. We next tested whether PEP or HRwere
associated with derivatives (perturbations) of rate of reward,
i.e., learning the richness of the environment. We consider μt
from Eq. [3] a proxy for the evolution of this reward rate. The

derivative of μt with respect to trial t, i.e.,
dμ
dt t, represents trial-

wise perturbations. We modelled dμ
dt t as a function of

dPEP
dt t and

dHR
dt t. The model also contained an intercept term and nuisance

coefficients env, choice, order, and trial index.
This model of dμ

dt (see Fig. 3B) returned a significantly

negative coefficient for dPEP
dt (β = − 0.008, s. e. = 0.002,

p < 0.001, βμ = − 0.008, βσ = 0.0007), indicating countercy-
clical perturbations in contractility and reward rate – i.e., if
the reward rate decreased, contractility would increase, and
vice versa. The coefficient for HR failed to reach statistical
significance (β = − 0.002, s. e. = 0.002, p = 0.438).
Perturbations in the reward rate are therefore exclusively as-
sociated with sympathetic drive; contractility increases as re-
ward rate reduces.We next probedwhether the dPEP

dt effect was
specifically due to sympathetic engagement in environmental
deterioration, or disengagement in environmental improve-

ment. We separately ran the model of dμ
dt on two sets of trials,

one where dμ
dt was negative, i.e., deterioration (n = 3,063), and

one where dμ
dt was positive, i.e., improvement (n = 3063).

Sympathetic engagement only correlated with environmental
perturbations when the rate of reward decreased (β = − 0.012,
s. e. = 0.003, p < 0.001, βμ = − 0.013, βσ = 0.0009), in the
same countercyclical manner as before, while no significant

relationship between dPEP
dt and dμ

dt was observed on the set of
trials reflecting environmental improvement (β = 0.003, s.
e. = 0.003, p = 0.262).

Finally, we reran all models in Analysis branch 1 using the
raw physiology measures, i.e., not corrected for respiration
state using the residualization procedure outlined in the pre-
processing section. The pattern of results was the same across
all models.

Methods - Analysis branch 2: Sympathetic
stress and learning parameters

The key finding from our analysis so far centers on perturba-
tions in the sympathetic state tracking perturbations in the
reward rate. This may reflect a relationship between the sym-
pathetic state and learning; however, the objective measure of
reward rate used above (the rate of reward harvested per sec-
ond) is not direct evidence that subjects are learning these
perturbations in environment quality. In this branch of analy-
sis, we employ computational models fitted to the choice data,
and estimate parameters of the subjective estimate of reward
rate, in addition to parameters scaling the learning of pertur-
bations in the reward rate. Recall from the previous section,
that μt represents a moving threshold against which encoun-
tered options can be assessed. A simple means by which par-
ticipants can keep track of μt (Constantino & Daw, 2015;
Hutchinson, Wilke, & Todd, 2008; McNamara & Houston,
1985) is to implement an incremental error-driven learning
rule (Schultz, Dayan, & Montague, 1997; Sutton & Barto,
1998) whereby a subjective estimate of μt, which we will refer
to here as ρ for clarity, is incrementally updated according to
recent experience. The optimal policy from the MVT remains
the same: capture an option i, whenever the reward, ri, exceeds
the opportunity cost of the time taken to pursue the option. As
with Eq. [2], opportunity cost is calculated as the time, delayi,
that the option takes to pursue (in seconds) multiplied by the
subjective estimated of the reward rate, ρ.

ci ¼ delayi*ρ ð4Þ

We refer to this measure of opportunity cost, using the
subjective estimate ρ, as ci. As with the objective measures,
participants should capture items that exceed their subjective
estimate of the reward rate, i.e., whenever ri≥ delayi ∗ ρ. Note
that we assume quantities ri and delayi are known to partici-
pants from the outset since they were easily observable and
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each of the four invader identities (i = {1, 2, 3, 4}) always pro-
vided the exact same ri and delayi.

We assumed that subjects learn ρ in units of reward, using a
Rescorla-Wagner learning rule (Rescorla & Wagner, 1972;
Sutton & Barto, 1998), which is applied at every second (s).
After each second, their estimate of the reward rate updates
according to the following rule:

ρ sþ 1ð Þ ¼ ρ sð Þ þ α*δ sð Þ ð5Þ

Here, δ(s) is a prediction error, calculated as:

δ sð Þ ¼ r sð Þ−ρ sð Þ ð6Þ
where r(s) is the reward obtained. r(s) will either be 0 (for
every second in which no reward is obtained, i.e. during

approach time, capture time, and timeouts from missed re-
sponses) or equal to ri (following receipt of the reward from
captured option i).

The learning rate α acts as a scaling parameter and governs
how much participants change their estimate of the reward
rate (ρ) from one second to the next. Accordingly, ρ increases
when r(s) is positive (i.e., when a reward is obtained) and
decreases every second that elapses without a reward.

Symmetric and asymmetric models

We first implemented two versions of this reinforcement
learning model, used previously to test for the presence of
learning asymmetries in this task (Garrett & Daw, 2019): a
Symmetric Model, with only a single α and a modified ver-
sion, an Asymmetric Model, which had two αs: α+ and α−. In
this second model, updates to ρ apply as follows:

Fig. 3 Relationship between autonomic states, value and capture. Panel
A: A single model of trial-wise choice returns a significant main effect
where increased contractility (shorter PEP) increases capture (left panel)
regardless of value and a significant interaction where increased low
value capture is associated with decreased heart-rate (HR). Here, value
is described as in Eq. [1], i.e., reward relative to opportunity cost in
current objective rate of reward, with two levels of the continuous value
(0 = low; 2 = high) modelled for illustration. As a guide, gray arrows
above the plot describe direction of increased (+) or decreased (-) drive
within the respective physiological variable. Panel B: PEP tracks deteri-
oration in environmental richness. Only trial-wise changes in PEP

dPEP
dt Þ

�
significantly predicted trial-wise changes in environmental

richness (dμdt ), negative coefficient indicates that decreases in reward
rate, i.e., deterioration, increased contractility (shorter PEP). Panel C:
PEP predicts optimal learning. Blockwise changes in percentage of rank
3 captures (downturn – boom) modeled as a function of blockwise
changes in PEP (red) and HR (gray); separately for mean physiological
changes in the early (0–360 s) and later (360–720 s) portion of blocks.
Optimal performance (higher D-B rank 3 score) predicted by higher
relative drive in early downturn state, relative to early boom, only for
PEP. *p<0.05; ***p<0.001
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ρ sþ 1ð Þ ¼ ρ sð Þ þ αþ*δ sð Þ if r sð Þ > 0ð Þ
α−*δ sð Þ if r sð Þ < 0ð Þ

�
ð7Þ

This second model allows updates to occur differently ac-
cording to whether a reward is received or not. We refer to the
mean difference in learning rates as the learning bias (α+

−α−). A positive learning bias (α+ >α−) indicates that partic-
ipants adjust their estimates of the reward rate to a greater
extent when a reward is obtained compared to when rewards
are absent. The converse is true when the learning bias is
negative (α+ <α−). If there is no learning bias (α+ = α−), then
this model is equivalent to the simpler Symmetric Model with
a single α.

Asymmetric Models with physiology

Next, we extended the Asymmetry Model described above to
test whether learning from positive (α+) or negative (α−) in-
formation was modulated by trial to trial perturbations in the
physiological state. For each physiological state (i.e., PEP and
HR), we compared two separate models (i.e., four models
were fitted in total).

For each physiological state, the first model (Asymmetry
Phys α+) tested physiological modulation of theα+ parameter.
In this model, α+ was adjusted at each moment in time, ac-
cording to the participants physiological state on that trial:

αþ sð Þ ¼ b0 þ b1*phys tð Þ ð8Þ

Here, t indexes the current trial. b1 governs the extent to
which the learning rate for positive information (α+) is adjust-
ed by the trial-wise measure of the physiological state. α−was
unmodulated by physiological state in this model.

The second of these additional models (Asymmetry
Phys α−) tested physiological modulation of theα− parameter.
This was setup exactly as for Asymmetry Phys α+, except α−

was adjusted on each trial, according to:

α− sð Þ ¼ b0 þ b1*phys tð Þ ð9Þ

Here, b1 governs the extent to which the learning rate for
negative information (α−) is adjusted on each trial. α+ was
unmodulated by physiological state in this model.

In all models, the probability of capturing an item is esti-
mated using a softmax choice rule, implemented at the final
frame of the encounter screen as follows:

P captureð Þ ¼ 1

1þ exp β0−β1 ri−cið Þð Þ ð10Þ

This formulation frames the decision to accept an option as
a stochastic decision rule in which participants (noisily)
choose between two actions (capture/release) according to
the value of each action. The temperature parameter β1

governs participants’ sensitivity to the difference between
these two values whilst the bias term β0 captures a partici-
pant’s general tendency toward capture/release options (inde-
pendent of the values of each action). Note that under the
above formulation, negative values for β0 indicate a bias to-
wards capturing options, positive values indicate a bias to-
wards releasing options.

In each model, ρ was initialized at the beginning of the
experiment to the arithmetic average reward rate across the
experiment, but subsequently carried over between environ-
ments (Constantino & Daw, 2015; Garrett & Daw, 2019). For
each participant, we estimated the free parameters of the mod-
el by maximizing the likelihood of their sequence of choices,
jointly with group-level distributions over the entire popula-
tion using an Expectation Maximization (EM) procedure
(Huys et al., 2011) implemented in the Julia language
(Bezanson, Karpinski, Shah, & Edelman, 2012) version
0.7.0. Models were compared by first computing unbiased
marginal likelihoods for each subject via subject-level cross
validation and then comparing these Leave-One-Out cross-
validation (LOOcv) scores between models (e.g.,
Asymmetric vs. Symmetric) using paired-sample t-tests.

To formally test for differences in learning rates (α+, α−)

we estimated the covariance matrix bΣ over the group level
parameters using the Hessian of the model likelihood

(Oakes, 1999) and then used a contrast cT bΣc to compute the
standard error on the difference α+ - α−.

Results - Analysis branch 2: Sympathetic
stress and learning parameters

A key feature of the learning previously observed in this task
(Garrett & Daw, 2019) is that individuals adjusted their sub-
jective estimates of the reward rate to a greater degree when
the update was in a positive compared to a negative direction.
This learning asymmetry accounted for the order effect where-
by participants changed capture rates between environments
to a greater degree when richness improved (participants
transitioned from downturn to boom) compared to when rich-
ness deteriorated (participants transitioned from boom to
downturn), an effect we also observe here (see Fig. 1D).

First, we tested if the same learning asymmetry was present
in our data by fitting choices to two reinforcement learning
models (Sutton & Barto, 1998): a Symmetric Model and an
Asymmetric Model, exactly as done previously (Garrett &
Daw, 2019). Both models used a delta-rule running average
(Rescorla & Wagner, 1972) to update ρ according to positive
and negative prediction errors. Negative prediction errors
were generated every second that elapsed without a reward
(e.g., each second of a time delay). Positive prediction errors
were generated on seconds immediately following a time
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delay when rewards were received. The difference between
the Symmetric Model and the Asymmetric Model was wheth-
er there were one or two learning-rate parameters. The
Symmetric Model contained just a single learning parameter,
α. This meant that ρ updated at the same rate regardless of
whether the update was in a positive or a negative direction.
The Asymmetric Model had two learning parameters: α+ and
α−. This enabled ρ to update at a different rate, according to
whether the update was in a positive (α+) or a negative (α−)
direction.

Replicating past findings (Garrett & Daw, 2019), the
Asymmetric Model again provided a superior fit (see
Table 1) to the choice data than the Symmetric Model
(t(19) = 3.14, p = 0.005, paired-sample t-tests comparing
LOOcv scores for the Asymmetry vs. the Symmetric Model)
with information integration again being biased in a positive
direction (α+ > α− : z = 1.80, p < 0.05 one-tailed). Prediction
errors that caused ρ to shift upwards (following receipt of a
reward) had a greater impact than prediction errors that caused
ρ to shift downwards (following the absence of a reward).

Next, we looked to relate our fine-grained trial-wise mea-
sures of participants physiological state to learning from pos-
itive (α+) and negative (α−) prediction errors. To do this, we
tested two further models: (1) Asymmetry Phys α+; (2)
Asymmetry Phys α−, separately for PEP and HR. Each model
respectively allowed α+ or α− to change as a function of par-
ticipants’ trial-to-trial physiological state (see Methods –
Analysis branch 2). Results are summarized in Table 2; in
the case of PEP, we did not find evidence that learning from
positive prediction errors (α+) was modulated by its state (p =
0.135); however, we did find evidence that learning from neg-
ative prediction errors (α−) was modulated (t(19) = 2.18, p =
0.042; paired-sample t-tests comparing both Asymmetry PEP
models vs. Asymmetry model). The direction of the effect in
this model was such that negative prediction errors that caused
ρ to shift downwards (following the absence of a reward)
changed beliefs to a greater extent when sympathetic drive
was high (shorter PEP). In other words, participants were

faster to learn that their environment was deteriorating when
the sympathetic branch of the autonomic state was heightened.
In the case of HR, we observed no evidence that learning from
either prediction error was modulated by the physiological
state (both p-values above 0.222).

Methods - Analysis branch 3: Sympathetic
stress and optimal behavior

Our analyses to this point reveal that perturbations in the re-
ward rate are exclusively associated with changes in sympa-
thetic tone, and that sympathetic activation increases learning
symmetry between positive and negative information. We
might accordingly expect sympathetic engagement to predict
optimal performance in the prey selection task. Here we for-
malize optimal performance (D − B Mid) for each subject as
the delta in the rate of mid-rank capture in the downturn en-
vironment, relative to the boom environment:

D−B Mid ¼ p 2; 3f gð Þdownturn−p 2; 3f gð Þboom ð11Þ

where p(X)S is the proportion of items in vector X captured in
environment S. Higher positiveD − B Mid values accordingly
reflect more optimal prey selection in the downturn environ-
ment, which predicts better task performance. We also com-
puted a similar downturn-boom delta value for each subject
for both physiological variable:

D−B DrivePEP ¼
∑
q

t¼k
PEP tð Þ
q downturn

−
∑
q

t¼k
PEP tð Þ
q boom

ð12aÞ

D−B DriveHR ¼
∑
q

t¼k
HR tð Þ
q downturn

−
∑
q

t¼k
HR tð Þ
q boom

ð12bÞ

whereby eachD − BDrive corresponds to the downturn-boom
delta between the average of each trial-wise physiological
state from trial k to q. Higher positive values reflect higher

Table 1 Model fitting and parameters for Symmetry and Asymmetry Models. The table summarizes for each model its fitting performances and its
average parameters

Model LOOcv α α+ α- β0 β1

Symmetry Model 1230.54 -2.49 [95% CI: ± 0.54] 1.80 [95%
CI: ± 0.66]

0.15 [95%
CI: ± 0.05]

Asymmetry Model 1076.02** - -2.17 [95% CI: ± 0.38] -2.38 [95% CI: ± 0.49] -0.15 [95%
CI: ± 1.79]

0.13 [95%
CI: ± 0.03]

LOOcv leave-one-out cross-validation scores, summed over participants, α learning rate for both positive and negative prediction errors (Symmetric
Model), α+ learning rate for positive prediction errors, α- average learning rate for negative prediction errors (Asymmetric Model), β0 softmax intercept
(bias towards reject), β1 softmax slope (sensitivity to the difference in the value of rejecting versus the value of accepting an option). Data are expressed
as mean and 95% confidence intervals (CIs) (calculated as 1.96*standard error). Note: learning rates displayed here (α, α+, and α-) are untransformed
parameters from the model fitting procedure; the function 0.5 + 0.5*erf(α/sqrt(2)) is subsequently applied to transform these to conventional learning
rates within the range 0–1 **p<0.01 comparing LOOcv scores between the two models, paired-sample t-test
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drive (i.e., increased contractility and increased HR) in the
downturn environment. We probed the relationship between
our assay of optimal performance and environment-wise
physiology fluctuations with a linear model of each subject’s
D − B Mid as a function of an intercept, and their D −
B DrivePEP and D − B DriveHR values. Further, we ran two
iterations of this model, one from the trial-wise measures tak-
en from trials in the first half (i.e., 0–360 s) of the time spent in
each environment (where we assumed the majority of learning
is required) and as a control, another model using trials in the
second half (360–720 s) of the time spent in each state. In
other words, in Eq. [12(a-b)], for the first model k was always
1 and q was the last trial for each subject that started before
360 s. For the second model, k was the first trial that started
after 360 s, and q was the subject’s final trial. Positive coeffi-
cients associate the engagement of the relevant physiological
state with optimized learning.

Results - Analysis branch 3: Sympathetic
stress and optimal behavior

The linear model (see Fig. 3C) of D − B Mid, as a function of
the D − B Drive value for both physiological states, estimated
from trials in the first half (early) of each environment returned
a significant positive coefficient forD − B DrivePEP (β =
0.389, s. e. = 0.164, p = 0.030),with the coefficient forD
− B DriveHR failing to reach statistical significance (β = −
0.193, s. e. = 0.324, p = 0.559). The model of D −
B Mid using physiological D − B Drive values estimated from
trials in the second half (late) of environments did not return
any significant coefficients (both p-values > 0.176). These
final models suggest that the sympathetic engagement during
crucial learning periods of a low reward environment predicts

optimal behavioral adjustment. (For a similar pattern of results
using a larger number of smaller time bins, see Supplementary
Materials).

Discussion

Appraising sequential offers of reward relative to an unknown
future opportunity that is coupled with a time cost requires an
optimization policy that draws on a belief about the richness
characteristics of the current environment. Across a range of
experiments, including reinforcement-learning tasks, belief
updating paradigms and prey selection, information integration
shows a positive bias (Eil & Rao, 2011; Garrett & Daw, 2019;
Garrett & Sharot, 2014, 2017; Garrett et al., 2014; Garrett,
González-Garzón, Foulkes, Levita, & Sharot, 2018; Korn,
Prehn, Park, Walter & Heekeren, 2012; Kuzmanovic,
Jefferson, & Vogeley, 2015, 2016; Kuzmanovic & Rigoux,
2017; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, &
Palminteri, 2017). That is, the rate at which humans update their
belief about a probability, association, or reward rate is more
sluggish if the new information carries a negative or aversive
valence or telegraphs a deterioration of the current belief. In our
prey selection task, subjects updated their belief about the rate
of harvested reward with a similar bias toward reward over
delay information. By using simultaneous continuously record-
ed cardiac autonomic physiologymeasures, we reveal a unique-
ly adaptive role for the sympathetic branch in this situation.

In our choice models (analysis branch 1), the positive as-
sociation between value and choice was principally associated
with a reduced heart rate, whether or not the immediate con-
text was factored into the value of the offer, i.e., whether cost
reflected the objective capture-time of an invader and reward
reflected the objective harvested fuel, or whether these value

Table 2 Model fitting and parameters for physiology-modulated
learning models. Each model allows either α+ or α- (untransformed) to
be modulated on a trial by trial (t) basis according to one of the
physiological readouts (PEP or HR) according to an intercept and a slope
(e.g., α+(t) = intercept + w*PEP(t)). A transfer function [0.5 +

0.5*erf(α/sqrt(2))] is then used to convert this to a conventional
learning rate. The alternate learning rate is not modulated by physiology
and is fit as a single free parameter. The table summarizes for each model
its fitting performances and its average parameters

Model LOOcv α+ Intercept (α+) w(α+) α- Intercept (α-) w(α-) β0 β1

PEP Modulate α+ 1023.63 -2.60 [95%
CI: ± 1.23]

0.002 [95%
CI: ± 0.02]

-2.67 [95%
CI: ± 0.40]

-0.19 [95%
CI: ± 1.88]

0.13 [95%
CI: ± 0.03]

PEP Modulate α- 1008.02* -2.41 [95%
CI: ± 0.21]

-2.11 [95%
CI: ± 1.05]

-0.007 [95%
CI: ± 0.01]

-0.30 [95%
CI: ± 1.83]

0.14 [95%
CI: ± 0.03]

HR Modulate α+ 1031.42 -2.05 [95%
CI: ± 0.96]

-0.49 [95%
CI: ± 1.25]

-2.71 [95%
CI: ± 0.34]

-0.22 [95%
CI: ± 1.79]

0.13 [95%
CI: ± 0.04]

HR Modulate α- 1082.25 -2.14 [95%
CI: ± 0.34]

-1.50 [95%
CI: ± 0.83]

-1.09 [95%
CI: ± 1.31]

-0.33 [95%
CI: ±1.97]

0.13 [95%
CI: ± 0.03]

LOOcv: leave-one-out cross-validation scores, summed over participants, α+ learning rate for positive prediction errors (untransformed), α- average
learning rate for negative prediction errors (untransformed), intercept unstandardized intercept for regressing learning rate (α+ orα-) against physiology,
w unstandardized slope for regressing learning rate against physiology, β0 softmax intercept (bias towards reject), β1 softmax slope (sensitivity to the
difference in the value of rejecting versus the value of accepting an option) Data are expressed as mean and 95% confidence intervals (CIs) (calculated as
1.96*standard error) *p<0.05 comparing LOOcv scores against scores for the basic Asymmetry Model, which does not include physiology measures
(see Table 1), paired-sample t-test
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dimensions were collapsed into a single variable that com-
pared reward to the opportunity cost of capture in the current
reward context. In contrast, we observed contextual deriva-
tives, i.e., changes in the rate of harvested reward having a
unique association with sympathetic state derivatives.
Specifically, increases in contractility (shorter PEP) scaled
with decreases in the average rate of reward harvested per
second. No relationship emerged between contractility chang-
es and positive fluctuations in the environment’s richness,
establishing that the sympathetic modification to environmen-
tal changes was isolated to negative valence. In our learning
models (analysis branch 2), drive in the sympathetic system
was uniquely associated with an increased rate of learning,
and specifically when reward rate estimates were updated
via negative prediction error. And finally, in analysis
3, we revealed that the unique relationship between
sympathetic drive and learning was not exclusively a
phenomenological response to a worsening environment,
by observing a positive relationship between activation
of the sympathetic state during crucial periods of the
task – i.e., early in the downturn environment – and
deployment of an optimal behavioral policy – i.e., in-
creased capture of mid-rank invaders.

The only other study (Lenow et al., 2017) to probe the stress
system in a human foraging task demonstrated an opposing
relationship whereby stress increased overharvesting.
Overharvesting occurs when an animal or human exploits prox-
imal known resources beyond a threshold determining that bet-
ter yields would be obtained by switching location. Such mal-
adaptive perseveration indicates a biased low estimation of en-
vironmental quality. That this tendency is exacerbated by stress
is interestingly both consistent and at odds with our finding that
sympathetic stress adaptively increases the rate of negative in-
formation integration. Consistent, in so far as stress drives a
pessimistic learning process in both cases, but at odds in terms
of adaptivity. It could be the case that stress simply plays a
general role in driving more pessimistic foraging behavior and
whether or not this proves adaptive is an arbitrary consequence
of task design. However, it’s important to also note that Lenow
et al. (2017) assayed the hypothalamic-pituitary-adrenal (HPA)
axis of the stress response via cortisol. It may be a step too far to
directly compare these two studies, which characterize stress
with different measures and on different time scales. Some
studies show alignment between the sympathetic system and
the HPA response to stressors (e.g., Bosch et al., 2009), others
demonstrate task selectivity, particularly where subjects feel
threat or a loss of control (see Dickerson & Kemeny, 2004,
for a review) and others still argue a sequential framework that
sees HPA respond once a threshold level of activation has been
reached by the sympathetic system (Bosch et al., 2009;
Cacioppo et al., 1995).

The unique reactivity of the sympathetic branch of the auto-
nomic system for learning that the rate of reward is

deteriorating is consistent with division specific cortical control
of autonomic function. Meta-analysis of human neuroimaging
data demonstrate that divergent brain networks regulate the
sympathetic and parasympathetic branch, with control of the
former including prefrontal and insular cortices, in addition to
multiple areas within the medial wall of the mid and anterior
cingulate (ACC; Beissner, Meissner, Bär, & Napadow, 2013;
Dum, Levinthal, & Strick, 2016). Further, animal tracer evi-
dence (Dum et al., 2016) reveals direct synaptic inputs into
the adrenal medulla – a key sympathetic site for catecholamin-
ergic release – from both pregenual and subgenual portions of
ACC. Converging literature further points to ACC playing a
key role in the learning and policy formation requirements in
our prey selection task. Firstly, ACC is broadly considered a
multi-faceted controller in goal-directed behavior, aligned with
such general cognitivemechanisms as conflict monitoring (e.g.,
Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999) and pre-
emptively signaling the likelihood of an error (e.g., Carter et al.,
1998) or reward (e.g., Hayden& Platt, 2010) of an action. ACC
function has also been implicated more specifically in mecha-
nisms relevant to foraging, such as signaling the amount of
effort invested by animals in exchange for reward (Rudebeck,
Walton, Smyth, Bannerman, & Rushworth, 2006; Walton
et al., 2009), the decision by humans to explore alternative
options (foraging choices) beyond an immediate offer
(Kolling et al., 2012; Shenhav, Straccia Botvinick, & Cohen,
2016), or integrating delayed components of value into adap-
tive switches in choice behavior (Economides, Guitart-Masip,
Kurth-Nelson, &Dolan, 2014). Relevant to our specific finding
is evidence that ACC is recruited in decisions that involve costs
or negative affect (Amemori & Graybiel, 2012; Shackman
et al., 2011; Walton et al., 2009) and tracking reward history
(Bernacchia, Seo, Lee, & Wang, 2011; Seo, Barraclough &
Lee, 2007). Taken together, the specific mobilization of the
sympathetic stress system during environmental deterioration
may be a support mechanism for a number of extra demands
being placed on ACC in this context.

The order effect we observe, and the learning account of it,
replicates past findings (Garrett & Daw, 2019) and indicates
that participants carry over information about the reward rate
from one environment into the next. This is despite the fact
that participants are explicitly told at the start of the experi-
ment that they will experience different environments in the
task and, during the experiment, new environments are clearly
signaled. An important question that awaits future work is
what impact increasing the frequency of switches has on the
underlying learning process. For example, it may be the case
that a greater number of transitions prompt a shift away from
incrementally updating a single estimate of the environments
reward rate towards maintaining and reinstating (previously
learned) context specific reward rates over time. Future exper-
iments will be required to test whether the learning process
and its interaction with the sympathetic branch of the
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autonomic state varies with the number of reversals, potential-
ly along with other factors such as time spent in each environ-
ment, the number of environments and contextual differences
between environments.

While our data reveal an association between environmental
deterioration and potentially adaptive drive in the sympathetic
system, we still do not know the nature of this association’s
underlying causal dynamics. Recent stereotactic electroenceph-
alography evidence from a sample of epilepsy patients demon-
strates that stimulation of the subgenual cingulate leads to a
consistent and dramatic reduction in systolic, but not diastolic
blood pressure, suggesting that this region can control the
cardioinhibitory reduction of myocardial contractility (Lacuey
et al., 2018). This finding converges with previous evidence of
relationships between ventromedial prefrontal and subgenual
cingulate cortices and electrodermal sympathetic tone (Nagai,
Critchley, Featherstone, Trimble, & Dolan, 2004). However
earlier positron emission tomography studies with pure auto-
nomic failure patients (Critchley, Mathias, & Dolan, 2001) and
studies correlating heart-rate variability with functional magnet-
ic resonance imaging (fMRI) data in healthy subjects (Critchley
et al., 2003) also implicate dorsal cingulate and insula cortex in
generating cardiac autonomic arousal during mental effort
(Radulescu, Nagai, & Critchley, 2015). Thus, while it’s likely
that our observed sympathetic drive was elicited by cortical
regions, the precise regions and dynamics remain to be
established. Further, sympathetic recruitment may have been
driven by regions outside of those typically implicated in deci-
sion making, for example, motor areas (primate tracer evidence
highlights dense projections from ventral regions of medial
motor areas to the adrenal medulla (Dum et al., 2016)). Thus,
establishing whether task-specific nodes directly draw on sym-
pathetic support via direct projections (brain-heart-brain), or
whether both decision nodes and sympathetic support is recruit-
ed as part of an overarching network (brain-brain-heart) is an
important future direction for research. Importantly, the ICG/
ECG protocol used in this study can be used concurrently with
both fMRI and high temporal resolution electroencephalogra-
phy, allowing future studies to characterize both the substrates
and temporal dynamics of cortical regions and sympathetic
reaction in behavioral adaptation.

Our study used a cardiovascular measure (PEP) to probe
activity in the sympathetic branch of the autonomic nervous
system. PEP is considered the best available, non-invasive
indicator of sympathetic impact on the heart, given its ability
to directly index the force of beta-adrenergic myocardial con-
tractility (Lewis, Leighton, & Forester, 1974; Light, 1985;
Newlin & Levenson, 1979; Sherwood et al., 1986;
Sherwood et al., 1990). PEP is largely insensitive to vagal tone
(Linden, 1985) which further helps disambiguate findings
from parasympathetic involvement - a confound with alterna-
tive cardiovascular measures such as low frequency heart rate
variability (LF HRV; Berntson et al., 1997). Nonetheless,

ascribing fluctuations in PEP to task-related (extrinsic) sym-
pathetic drive is potentially compromised by additional local
(intrinsic) effects. Specifically, PEP decreases with increased
left ventricular filling (preload), and also with decreased aortic
diastolic pressure (afterload; Newlin & Levenson, 1979;
Obrist et al., 1987). We controlled for these local confounds
by first correcting both the continuous ICG, and the trial-wise
estimates of both PEP and HR for respiratory state, known to
influence stroke volume/preload (Robotham et al., 1979).
Second, we tested healthy stationary sitting young adults,
instructed to minimize movement and posture change; main-
taining a fixed sitting posture particularly helps to maintain
consistent end-diastolic aortic pressure (afterload; Houtveen,
Groot, & De Geus, 2005). Finally, HR, included in all of our
models, provides a good estimate of ventricular filling; specif-
ically, HR controlled for the Frank-Starling mechanism
whereby beat-to-beat deceleration in heart rate, which in-
creases preload, causes increased contractility (shorter PEP)
for reasons not mediated by the sympathetic system (Kuipers
et al., 2017; Sherwood et al., 1990). We are confident that the
Frank-Starling effect does not apply to the primary association
revealed by our learning models, models of reward rate deriv-
atives, and model of choice optimization, all of which did not
show concurrent influence of HR alongside PEP.

HR was uniquely found to scale negatively with low value
capture. As predicted by MVT, and as evidenced by increases
in mid-rank invader captures, the downturn environment in-
creased the subjective value of lower value items. Thus, hav-
ing learned of a deteriorated environmental richness (associ-
ated with increased sympathetic activation), subjects now re-
quire a change in behavioral policy. In other words, subjects
must overwrite the prepotent policy of avoiding mid-rank in-
vaders, and switch to a policy of capturing them. This raises
the possibility that reduced heart rate is driven by increased
executive control demands, recruiting parasympathetic en-
gagement, in line with neurovisceral integration models of
cognitive control (Thayer, Hansen, Saus-Rose, & Johnsen,
2009). Under this model, prefrontal-subcortical inhibitory cir-
cuits that govern the control of thoughts and goal-directed
behavior provide inhibitory input to the heart via the vagus
nerve (Benarroch, 1993; Ellis & Thayer, 2010). However,
given the influence of sympathetic and parasympathetic stress
onHR, this interpretation remains speculative. Future research
would need to measure both sympathetic and parasympathetic
variables on the same time scales, while participants perform
prey selection in dynamic environments.

Expanding into other branches of autonomic stress is one
promising avenue for future research, potentially also shed-
ding light on the lack of HR effects in our main findings
(recalling that both sympathetic drive and parasympathetic
drive can modulate HR). Another important avenue of future
research is to explore stress associations with other dimen-
sions of foraging and decision-making. If sympathetic stress

Cogn Affect Behav Neurosci (2020) 20:730–745742



uniquely tracks the deteriorating reward rate of an environ-
ment, we first may see other stress responses (e.g., HR) selec-
tively track mechanisms related to other environmental per-
turbations, such as threat. More broadly, future research
should also probe whether adaptive sympathetic associations
are observed in a foraging or decision task not requiring in-
crementally updating beliefs, such as binary decision making
(e.g., Freidin &Kacelnik, 2011) or foraging in an immediately
appraisable environment (e.g., Kolling et al., 2012). In addi-
tion, tasks could be developed to further probe the degree to
which sympathetic stress specifically underscores learning en-
vironmental deterioration, or a broader learning framework in
which participants shift from model-free heuristics (capture
high-value items), to a more complex model-based policy that
incorporates environmental factors (environmental richness)
and longer time horizons into a more carefully considered
behavioral policy (Korn & Bach, 2018). Model mediation
would likely also recruit medio-frontal decision sites linked
with the sympathetic stress system and would be largely inde-
pendent from increased executive demands related to
inhibiting action selection (which could be underscored by
parasympathetic tone). These future research avenues can po-
tentially map specific stress responses onto specific learning
and decision mechanisms, in addition to charting their degree
of adaptivity.

Cannon (1929) originally proposed that the body readies
itself for “fight or flight” via secretions of the adrenal medulla,
initiated by sympathetic neural projections from the thoracic
spine. Our findings propose a role of the sympathetic system
at an earlier point of deliberation in context specific decisions,
which endures over the course of decision policy formation.
Stress may not simply support increased motivation and vigor,
and instead be more contextually and cognitively shaped.
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