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Abstract	

	

Wheat	rust	pathogens	have	been	threatening	agriculture	all	through	history	and	they	currently	

cause	big	economic	loses	every	year.	Investigating	how	these	pathogens	are	able	to	spread	and	

the	key	aspects	of	host-pathogen	dynamics	is	vital	for	the	design	of	appropriate	control	strategies.	

Two	of	the	most	damaging	pathogens	that	require	more	careful	monitoring	are	Puccinia	graminis	

tritici	(Pgt),	that	causes	wheat	stem	rust,	and	Puccinia	striiformis	f.	sp.	tritici	(Pst),	cause	of	wheat	

yellow	 rust.	 Here,	 I	 have	 studied	 the	 process	 of	 aeciospore	 dispersal	 for	Pgt,	 beginning	with	

aeciospore	 release.	 Aeciospore	 release	 was	 recorded	 using	 high-speed	 videography	 and	 the	

velocity	of	 ejection	was	estimated.	Aeciospores	 are	observed	 to	 release	 in	 clusters	 to	 achieve	

greater	distances	 and	 their	 ejection	 is	not	 affected	by	 the	 temperatures	 tested	here	 (5-37ºC).	

Humidity	is	the	key	factor	in	aeciospore	release,	and	it	leads	to	their	increase	in	volume,	which	

was	also	measured	in	this	thesis.	A	model	of	how	this	occurs	is	also	proposed	here.	The	dispersal	

process	of	Pgt	aeciospores	is	also	investigated,	by	evaluating	the	number	of	aeciospores	that	can	

be	produced	in	barberry	bushes.	A	Gaussian	Plume	model	is	used	to	predict	how	far	aeciospores	

can	travel,	including	real-time	weather	data	gather	using	an	API.	This	model	was	included	into	a	

user-friendly	website	to	make	the	model	accessible	to	the	widest	demographic.	This	tool	can	help	

identify	 the	 barberry	 bushes	 that	 present	 a	 higher	 risk	 and	 thus	 prioritise	 them	 for	 careful	

monitoring.	Finally,	the	dynamics	of	Pst	population	in	the	UK	at	a	field	level	is	studied	here.	To	do	

so,	I	developed	a	quick	method	for	genotyping	Pst-infected	wheat	samples	collected	from	the	field	

to	 determine	which	 race	 they	 belong	 to.	 Using	 this	method,	 I	 analysed	 samples	 collected	 all	

through	 the	wheat	 growing	 season	 (December-June)	 for	 two	 consecutive	 years	 (2015-16	and	

2016-17).	Results	indicate	that	one	race	(Warrior	-)	has	become	predominant	in	the	UK	and	that	

seasonality	for	different	races	is	observed.	However,	the	presence	of	Pst	races	in	one	season	was	

not	 indicative	 of	 prevalence	 of	 the	 same	 race	 in	 following	 seasons.	 In	 summary,	 this	 thesis	

provides	tools	 to	 improve	wheat	rust	management,	both	 for	stem	and	yellow	rust	at	different	

levels.	First,	by	trying	to	predict	Pgt	aeciospore	release	and	dispersal	to	avoid	future	epidemics	

and	secondly,	with	a	quick	genotyping	method	that	can	lower	the	costs	of	yellow	rust	surveillance.	
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Introduction 
Doing a PhD is never easy, but it helps when 
you have scientists near you willing to read 
your thesis, care for you and guide you 
through the difficult path of research (and 
mathematics) [1,2,3]. However, there are 
many other factors conducive to a successful 
(i.e. completed) thesis. After four years of 
research, my observations and conclusions 
are portrayed here. 

Methods 
Acknowledgements are ordered by date of 
occurrence, when possible. 

Results and Discussion 
Surrounding yourself by experts leads to 
better science 
The contents of this thesis would not have 
been possible had I been deprived of the 
colleagues with whom I was blessed. The 
first steps in the lab are never easy, hence I 
can never endorse enough the best teacher 
that spared 48 hours prior leaving for 
Switzerland and all the subsequent hours 
solving my enquiries [4]. Likewise, the 
mentor who guided me in my first LSF steps, 
R and even statistics, while teaching me all I 
know about wheat [5]. Having a referent 
scientist nearby helped me learn review 
papers and even understand popgen (ish) [6].  

Summer students help you increase your 
mentoring skills while doing your work, 
both things you find displeasing such as 
infecting plants/designing primers [7] or dull 
such as spore counting [8]. The help of 
angels fallen from the sky, especially when 
doing fieldwork shall never be forgotten [9]. 
Sample collectors are sometimes underrated 
but driving long distances to gather the most 
needed material is not a trivial task 
[10,11,12]. As Mr. R. Feynman stated in his 
thesis, no attempt is made at mathematical 
rigor here. But if there ever was, credit 
belongs to my modelling mentors [3,13,27]. 
As an enthusiast of imaging, my greatest 
gratitude goes towards the team of experts 
that achieved the astonishing pictures 

included in this document [14]. Last, but 
definitely not least, discussions not only 
provide ideas but help clear one’s mind. To 
all the brilliant minds who shared their time 
listening and providing the most needed 
advice [4,5,6,15,16]. 

The importance of a support system 
Some people will never know the big part 
they took in this work. Even if not directly, 
to them I owe the strength that I needed to 
get to where I am. 

The originals that were there since the 
beginning [4,5,6] and all the colleagues that 
brightened my days [16], with their 
craziness [17] and support. Office hours and 
lunch/tea breaks have been crucial in my 
well-being. Sharing memes has become the 
greatest form of support [18,19,25]. Much 
support is needed from people who are at 
your same stage [18,20], and I’ll never 
forget our nights with Ross [20]. When away 
from home, flatmates become your family 
and mine made my days much better [21]. 

Science can darken even the brightest of 
days, and inspirations are needed on those 
days to remind you the reason why 
everything started [3,22]. Life consists of 
sharing moments with people that are 
(hopefully) at your same stage. Thus, this 
also goes to you with whom I managed to 
share few moments of happiness [23].  

Also, to my future dog, who never left my 
mind during these four years and reminded 
me the things that truly matter in life [24]. 

Por ultimo, agradecer al Comité por 
amenizarme los largos días de trabajo [25]. 
Y en especial a las 4 maravillas, por todo su 
apoyo incondicional, no solo durante estos 4 
años, sino durante los últimos 20 y los 
siguientes 60 (con suerte) [26]. A mis padres 
[27], por dármelo todo (el interés en las 
matemáticas incluido), por su paciencia y 
apoyo incondicional. No habría llegado 
hasta aquí sin vosotros. Y a mi hermana, la 
primera Dr. Bueno [28], mi modelo a seguir 
y la razón por la que he acabado en ciencia. 
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Conclusion 
People who got to know me during these 
past four years are aware of my 
disappointment towards the academic 
system. I have witnessed reprehensible 
behaviour from people at all stages (but 
sadly, more frequent in seniors) and I can 
only hope that this changes in the future. 

Science is the greatest tool of humanity, it 
has given us knowledge, entertainment and 
even life. I believe that studying nature (or 
technology) to contribute to the world is the 
most noble profession. However, science is 
impossible without humility. I’d only wish 
scientists were more aware of that.  My love 
for science will forever remain, despite of 
where I am. I wish one day this emotion can 
be expanded to Academia too. 

 

There’s a stranger staring at the ceiling, 
rescuing a tiger from a tree. The pictures in 
her head are always dreaming, each of them 
means everything to me [29]. 
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Chapter	1							 General	Introduction	

1.1 The	importance	of	wheat	and	other	cereal	crops		

The	demand	for	crop	production	is	ever	rising	as	the	world	population	increases	and	meat,	

dairy	 and	 biofuel	 consumption	 becomes	 more	 prevalent	 (Ray,	 Mueller,	 West,	 &	 Foley,	

2013).	By	2050,	predictions	of	a	global	population	of	more	than	10	billion1	people	mean	that	

an	extra	200,000	billion	calories	per	annum	are	needed	(Daniel	P.	Bebber	&	Gurr,	2015).	

Cereal	crops	currently	provide	around	25	%	of	the	total	protein	intake	of	humankind,	and	

wheat	in	particular	provides	around	20	%	of	the	total	calories	consumed	worldwide	(FAO,	

2019).	Wheat	is	grown	on	more	area	than	any	other	crop,	occupying	22	%	of	the	cultivated	

area	worldwide	(Leff,	Ramankutty,	&	Foley,	2004).	In	the	United	Kingdom	(UK),	around	70	

%	of	the	total	land	area	is	reserved	for	horticultural	and	arable	crops.	More	than	20	%	of	

this	 land	 is	devoted	 to	cereal	crops,	with	wheat	and	barley	being	 the	most	predominant	

(DEFRA,	2016).		

The	 increasing	crop	demand	could	 imply	an	expansion	of	 the	arable	 land	area,	although	

studies	show	that	it	is	more	sustainable	to	improve	crop	yields	instead	of	clearing	more	land	

for	agriculture	(Ray,	Ramankutty,	Mueller,	West,	&	Foley,	2012).	However,	crop	yields	are	

not	only	no	 longer	 improving,	but	 are	 in	 constant	danger	due	 to	both	abiotic	 and	biotic	

factors.	Abiotic	factors	include	global	warming,	water	crises	and	land	degradation	and	biotic	

factors	comprise	pests	and	pathogens	such	as	insects,	viruses,	bacteria,	fungi	and	oomycetes	

(Daniel	P.	Bebber	&	Gurr,	2015).	These	can	cause	large	yield	losses,	with	up	to	50	%	of	all	

global	 potential	 wheat	 yield	 being	 lost	 to	 diseases	 every	 year	 (Oerke	 &	 Dehne,	 2004).	

Examples	 of	 this	 include	 the	 suni	 bug	 (Eurygaster	 integriceps)	 that	 affects	 developing	

countries	(Dizlek	&	Özer,	2016),	the	wheat	yellow	mosaic	virus	(K.	Singh,	Wegulo,	Skoracka,	

&	Kundu,	2018),	or	Septoria	spp.	(Fones	&	Gurr,	2015).	Out	of	all	these	biotic	factors,	pest	

and	pathogens	are	the	greatest	threat	to	food	security,	accounting	for	approximately	21%	

of	crop	loses	(Savary	et	al.,	2019).	On	top	of	this,	the	distribution	of	crop	pest	and	pathogens	

is	 currently	 changing	 and	many	 pathogens	 have	 recently	 expanded	 their	 range	 to	 new	

locations	which	can	lead	to	an	even	bigger	loss	of	crop	yields	over	time	(Bebber,	2015).	

	

	

 
1 Note: the use of “billion” in this thesis corresponds to 1,000 million, as oppose to 1,000,000 million as it 
is the case in most of continental Europe and Spanish-speaking countries. 
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1.2 Wheat	rusts	diseases:	a	major	threat	to	wheat	production	

1.2.1 A	threat	since	the	beginning	of	agriculture		

One	of	the	main	pests	that	affect	wheat	are	rust	diseases	caused	by	filamentous	fungi	from	

the	order	Pucciniales,	division	Basidiomycota	(Oerke	&	Dehne,	2004).	Rusts	are	obligate	

biotrophic	plant	pathogens	and	many	of	them	infect	agriculturally	important	crops	such	as	

wheat,	barley,	oat,	 soybean	and	coffee	 (Helfer,	2014).	Rust	diseases	are	one	of	 the	most	

economically	significant	diseases	in	wheat,	causing	losses	of	around	1	billion	$USD	every	

year	 (Beddow	 et	 al.,	 2015).	 There	 are	 three	 major	 wheat	 rusts:	 stem	 (black)	 rust,	 leaf	

(brown)	rust	and	stripe	(yellow)	rust,	caused	by	Puccinia	graminis	f.	sp.	tritici	(Pgt),	Puccinia	

triticina	 (Pt)	and	Puccinia	striiformis	 f.	 sp.	 tritici	 (Pst)	respectively	(Figueroa,	Hammond-

Kosack,	&	Solomon,	2018).		

Out	 of	 all	 the	 three	 rusts,	 stem	 rust	 (SR)	 has	 had	 the	 greatest	 importance	 historically,	

causing	large	epidemics	in	most	parts	of	the	world.	It	has	been	a	major	problem	since	the	

beginning	of	agriculture,	when	Romans	sacrificed	animals	to	protect	their	crops,	praying	to	

the	stem	rust	god	‘Robigus’.	Since	then,	it	has	been	prevalent	in	the	Middle	East,	Europe,	

America,	Australia,	New	Zealand,	all	of	Africa	and	Asia	(Ravi	P.	Singh	et	al.,	2008).	In	more	

recent	history,	SR	was	considered	a	disease	of	lower	significance	in	most	parts	of	the	world	

largely	due	to	the	use	of	resistant	wheat	varieties	(Shank	1994).	However,	the	emergence	

of	a	new	race	called	Ug99	in	Uganda	in	1998	raised	the	alarm	as	it	carried	virulence	to	one	

of	the	main	resistance	genes	used	in	wheat	(Ravi	P.	Singh	et	al.,	2011).	Since	then,	variants	

of	this	race	have	merged	and	propagated	to	Central	Asia	and	the	Middle	East.	More	recently,	

one	of	 these	races	termed	Digalu	has	been	found	 in	several	European	countries	 (Olivera	

Firpo	et	al.,	2017;	Olivera	et	al.,	2015).	

Even	 though	 less	 attention	 has	 been	 paid	 to	 brown	 rust	 (BR),	 it	 is	 the	 most	 globally	

distributed	of	all	the	rusts,	being	present	in	all	wheat	production	areas	in	the	world	(Aoun	

et	 al.,	 2020).	 This	 disease	 is	more	 severe	 in	 warmer	 climates	 such	 as	 Central	 Asia,	 the	

Mediterranean	 Great	 Plains	 in	 north	 America	 and	 South	 America	 (M.	 Liu,	 Rodrigue,	 &	

Kolmer,	 2014).	With	 climate	 change	 and	 the	 arrival	 of	 milder	 summers,	 Pt	 is	 however	

increasing	its	prevalence	in	areas	previously	too	cold.		

Yellow	rust	(YR)	is	also	present	in	most	wheat	growing	areas,	being	found	today	in	more	

than	 60	 countries	 (Duan	 et	 al.,	 2010).	 Before	 the	 2000s,	 the	 Pst	 global	 population	was	

distributed	 into	 seven	 Pst	 races	 mainly	 based	 on	 geographical	 origin	 (Thach,	 Ali,	 de	

Vallavieille-Pope,	Justesen,	&	Hovmøller,	2016).	However,	recently	more	aggressive	races	

have	appeared,	adapted	to	warmer	climates,	which	has	led	to	a	geographical	expansion	of	
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this	pathogen	(Beddow	et	al.,	2015;	Milus,	Seyran,	&	McNew,	2006).	Now,	it	is	reported	to	

be	the	most	economically	damaging	wheat	rust	today	and	therefore	it	needs	to	be	constantly	

monitored	to	avoid	epidemics	(Hodson,	2011;	Schwessinger,	2016).	

1.2.2 Wheat	rust	life	cycle	

All	three	wheat	rust	pathogens	have	complicated	heteroecious	life	cycles	that	include	five	

types	of	spores:	urediniospores,	teliospores,	basidiospores,	pycniospores	and	aeciospores	

(Figure	1.1),	and	two	plant	hosts:	wheat	(Triticum	aestivum)	and	an	alternate	Berberis	host	

for	Pgt	and	Pst,	with	common	barberry	(Berberis	vulgaris)	being	especially	notable	due	to	

its	high	level	of	susceptibility	to	Pgt	and	widespread	occurrence.	Pt	however	has	different	

alternate	 hosts,	 mainly	 from	 the	 Ranunculaceae	 family	 (Table	 1.1),	 depending	 on	

geographical	 location	 (Samborski,	 1985).	While	 the	 alternate	 hosts	 of	 Pgt	 and	 Pt	 were	

discovered	almost	a	century	ago	(A	P	Roelfs,	Singh,	&	Saari,	1992),	the	alternate	host	of	Pst	

had	remained	a	mystery	until	lately	(Jin,	2011).		

	

Table	1.1.	Primary	and	alternate	hosts	of	wheat	rust	pathogens.	Adapted	from	(A	P	Roelfs	et	al.,	1992;	R	P	
Singh,	Huerta-Espino,	&	Roelfs,	2002).	

Pathogen	 Disease	
Predominant	

primary	Host	
Alternate	Host	

Puccinia	striiformis	

f.	sp.	tritici	
Stripe	(yellow)	rust	 Wheat	

Berberis	spp,	Mahonia	

spp	

Puccinia	graminis	f.	

sp.	tritici	
Stem	(black)	rust	 Wheat	

Berberis	spp,	Mahonia	

spp	

Puccinia	triticina	 Leaf	(brown)	rust	 Wheats,	triticale	
Thalictrum,	Anchusa,	

Isopyrum,	Clemantis	

	

The	presence	of	the	alternate	host	is	required	to	complete	the	sexual	cycle,	whereas	when	

these	 pathogens	 infect	 wheat	 (the	 so-called	 ‘primary	 host’),	 they	 undergo	 asexual	

reproduction	with	the	production	of	urediniospores	(Xue,	Chi,	Shu-zhen,	&	Zuo-fu,	2012).	

When	a	urediniospore	lands	on	the	surface	of	a	susceptible	wheat	leaf,	it	germinates	and	

enters	the	underlying	tissue	through	open	stomata.	Inside	of	the	host,	the	pathogen	forms	

haustoria	 through	 which	 it	 is	 able	 to	 get	 nutrients	 and	 secrete	 effector	 proteins	 to	

manipulate	 the	 host	 immune	 response	 (Panstruga	 &	 Dodds,	 2009).	 During	 this	 asexual	

phase	on	wheat,	the	fungus	produces	haploid	dikaryotic	urediniospores	with	two	haploid	
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nuclei	 that	can	mutate	 independently	 leading	 to	high	 levels	of	heterozygosity	(Mogens	S	

Hovmøller,	 Sørensen,	 Walter,	 &	 Justesen,	 2011).	 Around	 two	 weeks	 after	 the	 infection	

starts,	the	pathogen	will	re-emerge	on	the	wheat	leaf	surface,	disrupting	the	tissue,	with	the	

formation	of	pustules	called	uredia	that	are	responsible	for	the	name	of	this	disease,	as	the	

colour	 resembles	 rust	 on	 metal.	 Each	 one	 of	 these	 pustules	 contains	 thousands	 of	

urediniospores	 that	 will	 be	 expelled,	 leading	 to	 reinfection	 cycles	 of	 wheat	 in	 just	 one	

season.	These	cycles	can	continue	during	spring	and	summer	until	the	host	senesces	or	until	

environmental	conditions	are	not	optimal	(R	P	Singh	et	al.,	2002).	

At	 the	 end	 of	 the	 growing	 season,	 the	 pathogen	 can	 form	 telia	 and	 produce	 dikaryotic	

teliospores	(Figure	1.1).	These	spores	merge	their	nuclei	(karyogamy)	and	then	undergo	

meiosis	with	sexual	recombination	that	generates	genetic	diversity,	producing	four	haploid	

basidiospores	 that	 will	 infect	 the	 alternate	 host	 (W.	 Chen,	Wellings,	 Chen,	 Kang,	 &	 Liu,	

2014).	After	the	infection	of	the	alternate	host	is	successful,	the	pathogen	will	form	pycnia	

on	the	leaf,	producing	haploid	pycniospores	that	can	be	either	+	or	-.	Pycniospores	from	one	

matting	type	will	be	transferred	to	hyphae	of	the	opposite	mating	type	to	then	merge	and	

develop	into	aecia	(Schwessinger,	2016).	Each	cluster	of	aecia	is	formed	by	several	aecium,	

with	every	aecium	(or	aecial-cup)	containing	a	different	genotype.	This	process	can	happen	

several	 times,	 giving	 rise	 to	 several	 aecia	 that	 are	 genetically	 different.	 The	 aeciospores	

contained	in	the	aecial-cups	are	then	able	to	infect	wheat	(the	‘primary	host’),	which	will	

restart	the	asexual	stage,	in	which	the	fungus	can	cycle	for	long	periods.	Even	though	the	

complete	life	cycle	of	wheat	rusts	includes	two	hosts	and	a	sexual	stage,	the	sexual	cycle	

does	 not	 always	 occur	 and	 can	 be	 geographically	 restricted.	 In	 fact,	 to	 date,	 sexual	

reproduction	 of	Pst	 has	 only	 been	 reported	 to	 take	place	 in	 the	near	Himalayan	 region,	

where	 the	 genetic	 diversity	 of	 isolates	 is	much	higher	 compared	 to	 other	 regions	 (M.	 S.	

Hovmøller	 et	 al.,	 2016).	 In	 the	 rest	 of	 the	 world,	 including	 Europe,	 Africa,	 Americas,	

Australasia	 or	 the	 Middle	 East,	 the	 pathogen	 is	 reported	 to	 only	 undergo	 asexual	

reproduction	(Ali	et	al.,	2014).	On	the	other	hand,	sexual	reproduction	for	Pgt	is	much	more	

widespread	(Berlin,	2017).	For	Pt,	sexual	reproduction	has	not	been	widely	reported,	since	

this	pathogen	population	has	been	shown	to	be	highly	clonal	 for	a	 long	time	(McCallum,	

Seto-Goh,	&	Xue,	2017).
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Figure	1.1.	Life	cycle	of	the	wheat	yellow	or	stem	rust	pathogens.	The	asexual	cycle	carried	out	in	wheat	
leads	to	production	of	urediniospores	(n+n)	and	teliospores	(2n)	at	 the	end	of	 the	season.	The	nuclei	of	 the	

teliospores	merges	and	undergoes	meiosis	to	produce	basidiospores	(n)	that	will	go	and	infect	barberry.	In	the	

alternate	host,	 the	pathogen	will	 produce	pycniospores	 (n)	 that	will	merge	 and	produce	 aecium	containing	

aeciospores	(2n)	that	can	infect	wheat	thus	re-starting	the	cycle.	Image	extracted	from	(Bueno-Sancho,	Lewis,	

&	Saunders,	2020).	
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1.2.3 Environmental	factors	affecting	wheat	rust	diseases	

Climate	 conditions	 are	 critical	 for	 the	 development	 of	 all	 plant	 diseases,	 but	 they	 are	

particularly	 relevant	 in	 the	 case	of	wheat	 rusts	 (Jon	 S.	West,	 Townsend,	 Stevens,	&	Fitt,	

2012).	Seasonal	variables	such	as	temperature	affect	both	the	pathogen	life	cycle	and	host	

growth,	modifying	infection	rates	and	the	length	of	the	latency	period	(X.	M.	Chen,	2005).	

There	are	three	main	factors	that	have	an	important	effect	on	the	rate	of	success	of	these	

pathogens:	humidity,	temperature	and	wind	(X.	M.	Chen,	2005).	Firstly,	humidity	is	required	

for	 infection	 of	 the	 host,	 spore	 germination	 and	 survival,	which	 is	why	wheat	 rusts	 are	

typically	 found	 in	 moist-weather	 regions,	 as	 the	 rate	 of	 infection	 increases	 under	 high	

moisture	 conditions.	 Urediniospores	 usually	 need	 at	 least	 1-3	 hours	 of	 humidity	 to	

germinate	directly	and	6-8	hours	of	dew	period	for	the	infection	process	to	take	place	(X.	M.	

Chen,	2005).	Germination	temperatures	are	distinct	for	the	different	wheat	rusts,	with	Pgt	

and	Pt	ranging	between	2	–	30	ºC,	with	an	optimum	of	15-24	ºC	for	Pgt	and	an	optimum	of	

20	 ºC	 for	 Pt	 (Junk,	 Kouadio,	 Delfosse,	 &	 El	 Jarroudi,	 2016;	 Prank,	 Kenaley,	 Bergstrom,	

Acevedo,	&	Mahowald,	2019;	A	P	Roelfs	et	al.,	1992).	For	Pst	urediniospores	to	germinate,	

temperatures	typically	ranged	from	3-20	ºC,	with	an	optimum	of	10-15	ºC,	which	is	lower	

than	for	Pgt	and	Pt	(A	P	Roelfs	et	al.,	1992;	R.	Singh,	Mahmoudpour,	Rajkumar,	&	Narayana,	

2017).	However,	 from	 the	2000s,	Pst	 isolates	have	been	 found	 in	warmer	 climates	with	

reported	optimum	germination	temperature	of	18ºC,	explaining	their	adaptation	to	higher	

temperatures	(X.	M.	Chen,	2005).	These	are	important	factors	that	affect	the	development	

of	wheat	rust	and	thus	have	to	be	taken	into	account	when	developing	control	strategies.	

1.3 Controlling	fungal	diseases	remains	a	challenge	

Wheat	rust	management	has	been	done	mainly	through	the	use	of	resistant	varieties	and	

fungicide	 application.	 Breeding	 to	 incorporate	 resistance	 genes	 has	 been	 very	 useful	 in	

controlling	 wheat	 rusts	 (Chaves	 et	 al.,	 2013).	 However,	 fungal	 pathogens	 are	 able	 to	

overcome	resistance	quickly	if	 it	 is	encoded	by	a	single	resistance	gene	(Ayliffe,	Singh,	&	

Lagudah,	2008).	A	more	durable	resistance	can	be	achieved	by	stacking	several	resistance	

genes	in	wheat	varieties,	but	the	discovery	of	resistance	genes	to	include	into	commercial	

cultivars	is	a	lengthy	and	costly	process	that	sometimes	can	also	lead	to	a	decrease	in	yield	

(Oliver	&	Hewitt,	2014;	Wulft	&	Moscou,	2014).	On	the	other	hand,	fungicides	are	commonly	

used	by	farmers	and	their	application	is	a	great	tool	to	help	control	several	fungal	diseases	

at	once	(Hirooka	&	Ishii,	2013).	However,	fungicides	are	very	expensive,	and	pathogens	are	

able	to	acquire	resistance	which	can	cause	severe	yield	losses	(Olivera	Firpo	et	al.,	2017).	

The	high	cost	of	these	strategies	sometimes	cannot	be	assumed	at	large	scales	and	selection	
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of	an	appropriate	scale	for	fungicide	application	is	needed.	This	can	present	a	challenge	due	

to	cryptic	 information	about	spread	of	 infection	(C.	a	Gilligan,	Truscott,	&	Stacey,	2007).	

Thus,	understanding	pathogen	transmission	and	disease	development	is	key	to	design	both	

appropriate	 surveillance	 systems	 and	 control	 strategies	 to	 avoid	 further	 spread	 (R.	 K.	

Meentemeyer	et	al.,	2011).	

1.3.1 Models	can	be	used	to	optimise	disease	management	strategies	

Managing	 a	 plant	 disease	 presents	 a	 great	 challenge	 because	 the	 resources	 are	 usually	

limited	and	determining	when,	where	and	how	to	invest	these	precious	resources	typically	

requires	a	high	knowledge	of	epidemic	dynamics	(Cunniffe,	Cobb,	Meentemeyer,	Rizzo,	&	

Gilligan,	2016).	Control	of	epidemics	includes	understanding	the	scale	of	management,	early	

detection	 of	 the	 disease	 and	 removal	 of	 infected	 plants,	 as	 well	 as	 prevention	 of	 the	

epidemics	itself	(C.	a	Gilligan	et	al.,	2007).	However,	detection	of	the	pathogen	is	not	always	

easy	 as	 they	 frequently	 have	 long	 incubation	 periods	 that	 lead	 to	 cryptic	 information,	

making	 it	difficult	 to	 stop	 the	disease	before	 it	 spreads	 (Cunniffe,	Koskella,	 et	al.,	2015).	

Therefore,	 finding	 cost-effective	 strategies	 that	 can	either	 control	 or	 eradicate	pathogen	

spread	is	necessary.	Mathematical	modelling	can	help	build	better	management	systems	by	

using	knowledge	on	disease	spread	to	generate	predictive	models	of	disease	dynamics.	

Previously	developed	models	have	focused	on	(i)	disease	control,	(ii)	design	of	surveillance	

programs	or	(iii)	risk	forecasting.	Firstly,	disease	control	based	on	breeding	programs	has	

been	modelled	 to	 improve	 their	 efficiency	 (Cooper	 et	 al.,	 2009).	Models	 have	 also	 been	

developed	 to	 evaluate	 fungicide	 resistance	 dynamics	 and	 to	 detect	 the	 best	 spraying	

strategy	to	avoid	the	appearance	of	resistance	(Hobbelen,	Paveley,	Oliver,	&	Van	Den	Bosch,	

2013;	van	den	Bosch	&	Gilligan,	2008).	Different	spraying	methods	can	be	easily	tested	by	

simulation	 modelling	 to	 optimise	 disease	 control	 (Dammer,	 Wollny,	 &	 Giebel,	 2008;	

Elderfield,	Lopez-Ruiz,	Van	Den	Bosch,	&	Cunniffe,	2018).	Modelling	has	also	helped	detect	

the	optimal	point	of	chemical	control	usage	needed	to	maintain	sufficient	crop	yields	while	

keeping	the	fungicide	costs	low	(Caffi	&	Rossi,	2018;	Silva	Junior	et	al.,	2016;	Teng,	Blackie,	

&	Close,	1978).	Secondly,	mathematical	modelling	can	also	help	 improve	surveillance	by	

selecting	sites	to	monitor	based	on	information	from	models,	which	has	proved	to	be	more	

accurate	 than	 randomly	 choosing	 sites	 (Cunniffe,	 Stutt,	 DeSimone,	 Gottwald,	 &	 Gilligan,	

2015).	 Indeed,	 surveillance	programs	have	 already	been	designed	 to	manage	plant	 pest	

invasions	using	Bayesian	modelling	(Stanaway,	Mengersen,	&	Reeves,	2011).	Thirdly,	risk	

forecasting	has	been	a	huge	help	in	managing	plant	disease	epidemics	(Gaydos,	Petrasova,	

Cobb,	&	Meentemeyer,	2019;	Shah,	Paul,	De	Wolf,	&	Madden,	2019).	Models	can	therefore	

provide	very	useful	information	to	improve	management	strategies	of	plant	diseases.	
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In	 fact,	modelling	has	been	previously	applied	 to	 the	study	of	plant	diseases	such	as	 the	

Sudden	oak	death	in	the	US	to	investigate	the	effect	of	different	management	systems	on	

disease	spread	(Cunniffe	et	al.,	2016).	They	found	that	increasing	the	management	of	the	

disease	at	the	beginning	of	the	epidemic	can	improve	control,	and	that	selection	of	plants	

for	removal	using	models	enhanced	the	successful	management	of	disease.	This	is	a	clear	

example	of	how	models	can	optimise	management	of	an	established	plant	disease	and	how	

model-based	 optimisation	 of	 resources	 during	 disease	 management	 can	 enhance	 the	

probability	of	success	(Cunniffe	et	al.,	2016).	The	UK	Government	is	in	fact	already	using	

epidemiological	models	to	predict	the	progression	of	tree	diseases	such	as	Chalara	dieback	

of	 ash,	 and	also	Phytophthora	 ramorum	 and	Phytophthora	kernoviae,	 pathogens	 that	 are	

responsible	 for	 several	diseases	 that	 can	 lead	even	 to	 their	death.	The	models	 for	 these	

pathogens	 monitor	 their	 spread	 and	 likely	 future	 impacts	 (National	 Statistics,	 2015).	

Effective	methods	for	plant	disease	management	are	necessary	and	mathematical	models	

that	are	able	to	characterise	pathosystems	and	subsequently	predict	their	dynamics	can	be	

very	useful	to	optimise	control	efficiency.	

1.4 The	process	of	modelling	plant	diseases	

Mathematical	models	applied	to	study	disease	development	can	be	generally	classified	into	

two	 types:	 descriptive	 or	 conceptual.	 The	 first	 ones	 are	 based	 on	 generalization	 of	

experimental	 results.	 These	 can	 also	 be	 predictive	 models	 if	 they	 help	 forecast	 the	

occurrence	and	severity	of	a	disease	(El	 Jarroudi	et	al.,	2017).	Conceptual	models	on	the	

other	 hand	 explain	 specific	 events	 or	 processes	 in	 the	 development	 of	 the	

disease/epidemics	(van	Maanen	&	Xu,	2003).		

Modelling	a	disease	is	a	complex	process	and	several	aspects	need	to	be	considered.	First	of	

all,	 the	 initial	production	of	 the	 inoculum	in	 the	 first	 infection.	Then	the	dispersal	of	 the	

inoculum,	which	will	be	defined	by	a	dispersal	kernel	that	measures	the	dynamics	of	the	

pathogen	(Kot,	Lewis,	&	Driessche,	1996).	Finally,	the	subsequent	probability	of	infection	

after	 dispersal.	 In	 addition,	 models	 can	 include	 parameters	 such	 as	 host	 susceptibility,	

pathogen	reproduction	and	landscape	composition.	Production	of	inoculum	can	either	be	

described	as	a	stochastic	process	(R.	K.	Meentemeyer	et	al.,	2011)	or	be	defined	based	on	

known	parameters	that	are	related	to	environmental	conditions	(C.	A.	Gilligan	&	Van	Den	

Bosch,	 2008).	 Understanding	 how	 inoculum	 is	 produced	 and	 released	 is	 also	 important	

when	 studying	 the	 process	 of	 disease	 development	 (Gregory,	 1968).	 Dispersal	 of	 the	

pathogen	can	be	separated	into	local	and	long-distance	(R.	K.	Meentemeyer	et	al.,	2011).	In	

the	case	of	wheat	rusts,	local	dispersal	is	usually	driven	by	wind	and/or	rain,	whereas	long	

distance	 dispersal	 can	 be	 associated	with	 both	 global	wind	 currents	 and	 anthropogenic	
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activities	due	to	movement	of	infected	materials	or	spores	in	clothing	(C.	R.	Wellings,	2007).	

However,	long-distance	spread	is	very	difficult	to	measure,	and	it	is	generally	excluded	from	

the	simpler	models	(R.	Meentemeyer,	Rizzo,	Mark,	&	Lotz,	2004).	The	posterior	probability	

of	infection	once	the	pathogen	has	been	disseminated	will	depend	not	only	on	the	dispersal	

process	but	also	other	factors	such	as	weather	conditions,	host	susceptibility	and	pathogen	

aggressiveness.	

1.4.1 Dispersal	kernel	estimation	

One	of	the	main	key	challenges	when	studying	the	dynamics	of	a	disease	is	to	determine	the	

dispersal	 kernel,	 that	 is,	 the	 probability	 distribution	 of	 the	 distance	 travelled	 by	 the	

pathogen	responsible	for	the	disease	(Nathan,	Klein,	Robledo-Arnuncio,	&	Revilla,	2012).	

Estimation	of	dispersal	kernels	is	a	complex	process.	Defining	a	dispersal	kernel	presents	

three	main	challenges	related	to	the	uncertainty	of	the	process.	First	of	all,	the	risk	of	falling	

under	over-simplifications	of	the	model	by	disregarding	important	variables	(variation	of	

environment,	 or	 population).	 Second	 of	 all,	 determining	 the	 parameters	 for	 the	 model.	

Finally,	 dispersal	 has	 an	 intrinsic	 stochastic	 nature	 that	 enhances	 the	 difficulty	 to	 be	

determined	(Clark,	Lewis,	McLachlan,	&	HilleRisLambers,	2003).	Kernels	are	defined	as	the	

probability	density	function	(PDF)	of	a	distribution	and	its	shape	varies	regarding	several	

factors	such	as	the	navigation	capacities	of	the	pathogen	(how	it	can	spread),	the	landscape	

composition	or	biotic	interactions	(Nathan	et	al.,	2008).	The	‘fatness’	of	the	distribution	tail,	

that	 defines	 how	 fast	 the	 PDF	 decreases	 towards	 zero,	 is	 also	 an	 important	 aspect	 to	

consider	since	 it	 is	directly	related	to	population	dynamics.	Nevertheless,	sometimes	the	

differences	between	one	dispersal	kernel	or	another	are	minor	and	can	only	be	detected	by	

improving	the	observation	design,	which	entails	a	huge	increase	in	the	sampling	time	and	

costs	(Nathan	et	al.,	2012).	Besides,	assuming	dispersal	kernels	are	constant	throughout	the	

season	 is	 a	 mistake	 and	 it	 is	 more	 realistic	 to	 include	 meteorological	 or	 geographical	

variables	(Cunniffe,	Koskella,	et	al.,	2015;	Rieux	et	al.,	2014).	

1.4.2 Environmental	conditions	also	play	a	crucial	role	in	dispersal	

Finding	 the	 right	 balance	 between	 details	 in	 the	 model	 and	 oversimplification	 is	 often	

challenging.	There	are	temporal	heterogeneities	during	the	year	that	need	to	be	taken	into	

account,	 like	 environmental	 changes	 between	 seasons	 that	 can	 either	 initiate	 or	 end	 an	

epidemic	(Hamelin,	Bisson,	Desprez-Loustau,	Fabre,	&	Mailleret,	2016).	Climatic	factors	not	

only	 affect	 the	 development	 of	 the	 disease	within	 the	 plant,	 but	 also	 the	 spread	 of	 the	

pathogen	and	how	 it	will	 infect	 the	host	 after	primary	 infection	 (X.	M.	Chen,	2005).	 For	

example,	 dispersal	 can	 be	 greatly	 affected	 by	 humidity,	 as	 in	 the	 case	 for	 wheat	 rust	
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pathogens.	Under	humid	conditions,	urediniospores	tend	to	cluster	that	can	adhere	strongly	

to	 the	 leaf,	 increasing	 the	 infection	 frequency.	 Rain	 also	 helps	 the	 pathogen	 spread	 by	

releasing	spores	directly	in	the	field	(Rapilly,	1979).	If	at	the	end	of	the	summer	the	weather	

is	dry	and	hot,	urediniospores	that	are	produced	on	late-harvested	wheat	will	be	able	to	

survive	the	summer	(Sharma-Poudyal,	Chen,	&	Rupp,	2014).	That	would	mean	that	they	will	

be	able	to	infect	wheat	planted	in	early	autumn.	Despite	the	apparent	importance	of	rain	

and	 temperature	 in	 dispersion,	 wind	 is	 the	 main	 driver	 for	 spore	 dispersal	 since	 it	

transports	 them	 to	 the	 next	 host.	 In	 addition,	 it	 can	 dry	 urediniospores,	 reducing	

germination	but	increasing	the	possibilities	of	spore	survival	(Geagea	et	al.,	2000).	The	type	

and	direction	of	the	wind	can	directly	indicate	the	scale	of	epidemics	of	wheat	rusts,	and	

how	early	 they	can	occur	(Rapilly,	1979).	Thus,	 including	environmental	variables	when	

modelling	disease	dispersal	is	crucial	to	be	able	to	represent	the	full	picture	of	the	process.	

1.4.3 Modelling	in	an	agricultural	landscape	

Landscape	properties	are	known	to	have	an	impact	on	pathogen	behaviour	and	how	disease	

spreads.	Despite	its	high	influence	on	plant	diseases,	they	are	usually	ignored	when	building	

epidemiological	models	(Hess	et	al.,	2002).	However,	landscape	composition	can	affect	the	

inoculum	density,	the	pathogen	dynamics,	pathogen	occurrence,	the	genetic	structure	of	the	

pathogen	population,	pathogen	genetic	diversity	and	pathogen	dispersal	(Plantegenest,	Le	

May,	&	Fabre,	2007).	For	example,	the	host	density	in	the	landscape	(and	the	frequency	of	

different	kinds	of	patches	in	an	area)	determines	not	only	the	amount	of	inoculum,	but	is	

also	a	 limiting	factor	for	disease	spreading,	existing	a	threshold	under	which	a	pathogen	

cannot	 infect	 a	 population	 (Otten	 &	 Gilligan,	 2006).	 Presence	 of	 different	 phylogenetic-

related	hosts	(such	as	the	primary	and	the	alternate	host)	in	the	same	landscape	can	also	

vary	the	pathogen	behaviour	in	several	ways.	An	alternative	host	can	decrease	the	disease	

prevalence	or,	on	the	contrary,	be	used	as	a	reservoir	for	the	pathogen	to	survive	until	the	

conditions	 for	 spreading	 are	 optimal,	 increasing	disease	 prevalence	 (Plantegenest	 et	 al.,	

2007).	 Likewise,	 high	 levels	 of	 host	 genetic	 diversity	 alter	 the	 structure	 of	 pathogen	

populations,	 leading	 to	 large	 genetic	 diversity	 in	 the	 pathogen	 which	 increases	 the	

probabilities	of	emergence	of	a	virulent	race	(Gérard,	Husson,	Pinon,	&	Frey,	2006;	Papaïx,	

Goyeau,	Du	Cheyron,	Monod,	&	Lannou,	2011).	This	is	particularly	important	for	Pst,	since	

its	high	levels	of	genetic	diversity	have	led	to	long-distance	migration	and	overcoming	of	

resistance	genes	(M.	S.	Hovmøller,	Justesen,	&	Brown,	2002).	Moreover,	different	strains	of	

the	pathogen	can	influence	the	spread	of	each	other,	and	this	information	is	key	to	predict	

disease	 dynamics.	 Different	 races	 can	 have	 different	 behaviour	 in	 the	 same	 host	 and	

therefore	 competition	between	 them	affects	 the	dispersal	of	 the	disease	 (Hamelin	et	 al.,	
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2016).	Therefore,	it	is	crucial	to	understand	the	landscape	composition	as	it	directly	affects	

disease	dynamics	and	its	study	allows	us	to	(i)	design	better	strategies	for	crop	protection	

by	 taking	 into	 account	 its	 characteristics	 (Plantegenest	 et	 al.,	 2007)	 and	 (ii)	 rearrange	

landscape	 structures	 to	 reduce	 the	 initial	 risk	 and	 thus	 disease	 spread	 (Peter	 Skelsey,	

Rossing,	Kessel,	&	van	der	Werf,	2010).	

1.5 Mathematical	modelling	to	control	wheat	rust	diseases	

Many	mathematical	 models	 have	 been	 applied	 to	 wheat	 rusts	 to	 study	 several	 aspects	

including	 inoculum	 production	 and	 release,	 disease	 dispersal	 patterns	 and	 epidemic	

forecasting	based	on	 environmental	 factors.	Disease	development	has	been	 investigated	

through	models	of	latent	period	duration	for	SR	(Hernandez	Nopsa	&	Pfender,	2014).	The	

release	 and	 posterior	 dispersal	 of	Pst	 urediniospores	 by	 raindrop	 impact	 has	 also	 been	

modelled	(Kim,	Park,	Gruszewski,	Schmale,	&	Jung,	2019).	Spore	dispersal	by	wind	has	been	

examined	 for	 both	 Pst	 (El	 Jarroudi	 et	 al.,	 2020)	 and	 Pt	 urediniospores	 (Pfender,	 Graw,	

Bradley,	 Carney,	 &	Maxwell,	 2006).	 Models	 of	 spore	 dissemination	 have	 indeed	 helped	

forecast	YR	disease	risk	(Newlands,	2018)	and	predict	YR	epidemics	 in	 the	US	(Sharma-

Poudyal	 et	 al.,	 2014).	 Spore	 transport	 models	 have	 also	 facilitated	 the	 investigation	 of	

migration	routes	for	Pgt	and	helped	build	an	understanding	regarding	when	and	how	so	

many	 spores	 could	 be	 dispersed	 in	 the	Middle	 East,	 East	 Africa	 and	 Central/South	Asia	

(Meyer,	Burgin,	Hort,	Hodson,	&	Gilligan,	2017).	Models	of	spore	deposition	have	been	able	

to	predict	severity	of	leaf	rust	disease	(Scott	A.	Isard	&	Chamecki,	2015).	

However,	 weather	 factors	 have	 shown	 to	 be	 key	 in	 disease	 development	 and	 most	

forecasting	models	have	focused	on	this	aspect	(El	Jarroudi	et	al.,	2017;	Luo	&	Zeng,	1995).	

Thus,	environmental	factors	that	affect	key	processes	such	as	initial	infection,	latent	period	

and	infectious	period	have	been	taken	into	account	to	develop	disease	progression	models	

for	 BR	 (Rossi,	 Racca,	 Giosue’,	 Pancaldi,	 &	 Alberti,	 1997).	 Models	 of	 YR	 show	 that	

temperature,	 dew	 period	 and	 light	 quantity	 are	 the	 key	 factors	 for	 disease	 progression	

(Rodríguez-Moreno,	 Jiménez-Lagunes,	 Estrada-Avalos,	 Mauricio-Ruvalcaba,	 &	 Padilla-

Ramírez,	2020).	Several	models	have	also	been	developed	more	recently	to	predict	disease	

based	on	these	environmental	conditions	for	both	YR	(El	Jarroudi	et	al.,	2017,	2020)		and	

BR	(Junk	et	al.,	2016).	The	effect	of	 climate	change	has	also	been	 investigated	 thanks	 to	

mathematical	modelling	to	predict	the	incidence	and	severity	of	SR	and	BR	(Launay	et	al.,	

2020;	Prank	et	al.,	2019).	Despite	the	wide	range	of	models	that	have	been	developed	for	

wheat	 rust	 diseases,	most	 of	 them	are	 focused	 on	 urediniospores	 and	 there	 is	 a	 lack	 of	

information	 about	 aeciospore	 release	 and	 dispersal.	 Furthermore,	 most	 disease	
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transmission	models	ignore	the	pathogen	population	which	can	be	a	key	factor	in	dispersal	

(Papaïx	et	al.,	2011).	

1.6 Introduction	to	the	current	study	

Wheat	rust	diseases	continue	to	pose	a	great	threat	to	global	food	security	and	the	lack	of	

durable	resistance	genes	plus	the	possible	increase	in	fungicide	resistance	only	enhance	the	

risk	of	these	diseases.	Understanding	pathogen	transmission	that	leads	to	these	diseases	is	

therefore	key	to	create	better	control	strategies.	Mathematical	modelling	can	help	increase	

our	knowledge	about	a	 system	when	other	empirical	methods	 fall	 short.	 In	 this	 thesis,	 I	

aimed	to	gain	a	better	understanding	of	transmission	of	wheat	rust	pathogens	to	 inform	

wheat	rust	management,	focusing	on	the	following	aspects:	

1. Studying	 the	 process	 of	 aeciospore	 release	 by	 inspecting	 the	 key	 factors	 in	 the	

process	and	developing	a	model	that	describes	the	likely	mechanism.	

2. Evaluating	the	risk	of	barberry	bushes	near	wheat	fields	by	modelling	aeciospore	

dispersal	and	developing	an	accessible	tool	for	the	wheat	community.	

3. Investigating	the	dynamics	of	the	Pst	population	in	the	UK	and	developing	a	system	

to	identify	Pst	races	in	a	quick	and	inexpensive	manner.	
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Chapter	2							 Decrypting	 the	 aeciospore	 release	

mechanism	in	Puccinia	graminis		

	

2.1 Abstract	

Understanding	 the	process	of	how	spores	 get	 released	 can	give	us	 an	 insight	 into	when	

infection	 occurs	 and	 thereby	 help	 manage	 epidemics.	 Here	 I	 have	 investigated	 the	

mechanism	of	aeciospore	discharge	in	Puccinia	graminis,	the	fungus	responsible	for	stem	

rust.	High-speed	videography	was	used	to	determine	the	release	velocities	of	aeciospores	

and	their	full	trajectory	after	ejection	was	recorded.	The	distance	that	aeciospores	travelled	

after	 release	was	 investigated	under	different	 temperature	 conditions	and	no	difference	

was	observed,	indicating	that	temperatures	within	the	range	5-37	ºC	have	minimal	effect	in	

aeciospore	release.	Aeciospores	were	 found	to	be	released	 in	clusters	 to	achieve	greater	

distances	(up	to	7	cm).	A	significant	increase	in	volume	of	aeciospores	was	observed	when	

immersed	in	water,	which	confirms	the	hypothesis	that	aeciospores	round-off	under	high	

RH	conditions	and	this	can	lead	to	aeciospore	release.	A	mathematical	model	was	developed	

including	 the	 information	 gathered	 in	 this	 chapter	 that	 fits	with	 observations	 of	 launch	

speeds.	 The	 results	 obtained	 here	 provide	 the	 first	 model	 of	 the	 aeciospore	 release	

mechanism	and	further	support	that	water	availability	is	the	key	factor	in	Puccinia	graminis	

aeciospore	release.	

	

2.2 Introduction	

2.2.1 Importance	of	studying	spore	release		

For	most	fungal	pathogens	the	process	of	dispersion	starts	with	spores	being	liberated	from	

their	parental	tissue	with	the	final	aim	of	 infecting	another	susceptible	host	(Mahaffee	&	

Stoll,	2016).	Spore	release	is	a	vital	step	in	the	life	cycle	of	fungi	and	is	an	important	process	

to	consider	when	evaluating	disease	outbreaks.	Understanding	the	conditions	that	induce	

spore	release	is	crucial	to	comprehend	how	many	fungal	pathogens	spread.	For	instance,	

the	mechanism	of	spore	release	can	give	us	information	about	when	spores	are	more	likely	

to	be	found	in	the	air	and	therefore	initiate	infections	(Gregory,	1968).	For	example,	fungi	

releasing	spores	under	decreasing	vapor	pressure	conditions	tend	to	be	found	during	early	

mornings	(Chang,	Blenis,	&	Hiratsuka,	1989),	while	fungi	that	depend	on	water	for	release	

are	more	likely	to	release	at	night	(Hirst,	1953).	Ascospores	from	Mycosphaerella	pinodes	
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have	been	found	to	be	liberated	just	before	the	dew	period	so	they	get	deposited	and	can	

germinate	when	moisture	is	higher	(Carter,	1963).	The	spore	release	mechanism	has	also	

been	reported	to	affect	disease	symptoms,	as	in	the	case	of	Mycosphaerella	musicola	(Jones,	

2003).	This	pathogen	presents	line	or	tip-spotting	lesions	depending	on	how	their	spores	

have	been	released	(Meredith,	1973).	

As	epidemics	are	 frequently	proportional	 to	 the	 initial	 inoculum	 that	 is	produced	 in	 the	

source,	knowledge	of	the	conditions	under	which	the	number	of	spores	released	increases	

can	 aid	 forecasting	 of	 epidemics	 (Gregory,	 1961).	 For	 effective	 dispersal,	 fungi	 have	 to	

release	a	vast	number	of	spores	as	the	probability	of	a	successful	infection	is	low	(Galante,	

Horton,	&	Swaney,	2011).	Reducing	this	initial	inoculum,	for	example	by	removing	infected	

individuals,	 has	been	 reported	 to	be	an	effective	way	of	 controlling	epidemics	 (White	&	

Gilligan,	2006).	Understanding	the	environmental	conditions	that	would	lead	to	a	high	rate	

of	spore	release	can	also	be	used	to	time	fungicide	application	for	more	effective	usage,	as	

has	 been	 shown	 for	 Leptosphaeria	 maculans	 (West	 et	 al.,	 2002)	 and	 Erysiphe	 necator	

(Thiessen,	Neill,	&	Mahaffee,	2017).	Thus,	understanding	when	and	how	spores	are	released	

can	 give	us	 an	 insight	 into	when	 a	disease	 is	more	 likely	 to	 occur,	 and	 the	mechanisms	

involved,	which	can	aid	in	the	prediction	and	management	of	disease	epidemics.	

	

2.2.2 Fungal	spores	must	overcome	the	boundary	layer	for	effective	dispersal	

After	air-borne	spores	are	liberated,	to	be	dispersed	further	they	have	to	be	carried	by	wind	

currents.	When	wind	moves	near	a	surface,	the	friction	with	the	surface	reduces	the	wind	

velocity	 until	 it	 reaches	 a	 null	 speed.	 This	 creates	 a	 layer	 of	 almost	 still	 air	 called	 the	

“boundary	 layer”	 whose	 thickness	 can	 vary	 depending	 on	 the	 surface	 (Schlichting	 &	

Gersten,	2000).	Due	to	the	small	size	of	most	fungal	spores,	even	weak	winds	are	able	to	

carry	spores	 long	distances	(Alastair	McCartney,	1994).	However,	 to	reach	the	turbulent	

free	 wind	 stream	 a	 spore	must	 first	 overcome	 the	 adhesive	 forces	 of	 this	 thin	 laminar	

boundary	layer	of	still	air	that	is	found	near	the	surface	(Figure	2.1	A).		
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Figure	2.1.		Fungal	spores	have	to	cross	the	boundary	layer	to	reach	the	free	air	stream	and	be	carried	

by	the	wind.	A)	Wind	velocity	decreases	as	it	approaches	a	surface	until	reaching	0,	creating	a	boundary	layer	

of	relatively	still	air.	B,	C)	If	spores	can’t	cross	the	boundary	layer,	they	will	fall	back	somewhere	very	close	to	

the	initial	place	of	liberation.	D)		If	they	enter	the	free	stream,	they	can	be	carried	by	the	wind	more	easily	due	

to	their	small	size.	Inspired	by	(NASA,	n.d.).	
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When	a	spore	enters	the	air,	 force	acts	opposite	to	the	motion	of	the	spore,	causing	it	to	

decelerate	 very	 quickly	 (Fischer,	 Stolze-Rybczynski,	 Cui,	 &	 Money,	 2010).	 This	 force	 is	

commonly	 called	 aerodynamic	 drag	 (or	 air	 resistance)	 and	 is	 usually	 divided	 into	 two	

components:	viscous	and	pressure	drag.	The	Reynolds	number	(Re)	is	a	ratio	between	the	

inertial	and	viscous	forces	and	thus	represents	the	importance	of	each	force	under	certain	

conditions	(Fox	&	McDonald,	1994).	At	 large	Re,	 the	pressure	drag	would	dominate	(the	

case	 of	macroscopic	 objects	 such	 as	 animals	 or	 plants),	 and	 at	 low	Re,	 the	 viscous	drag	

would	be	more	relevant	(Alexander,	2017).	The	latter	is	the	case	for	spores	entering	the	air	

and	 this	 drag	 can	 be	 represented	 as	 a	 viscous	 drag	 coefficient	 (!)	 that	 is	 linearly	

proportional	to	the	spore	size.	This	drag	can	be	used	to	estimate	the	maximum	distance	(")	

the	 spore	 can	 travel	 following	 the	 equation	 (Pringle,	 Brenner,	 Fritz,	 Roper,	&	 Seminara,	

2017):	

	
" = $!"#$%

%
!
	 (2.1)	

with	the	ratio	mass-air	drag	(% !⁄ )	being	equivalent	to	(assuming	a	spherical	spore):	

	
%
!
=
2
9

)&*!"#$%
+

	 (2.2)	

where	%	 is	the	mass	of	the	spore,	)	 is	the	radius	of	the	spore,	*!"#$% 	 is	the	density	if	the	

spore	(considered	roughly	constant)	and	+	is	the	viscosity	of	the	medium	(in	the	case	of	the	

air,	 at	 15	 ºC:	 1.81	 x	 10-5	 kg/m/s).	 Knowing	 the	 initial	 release	 velocities,	 the	maximum	

distance	that	a	spore	can	travel	under	the	effect	of	the	viscous	drag	can	be	calculated	with	

the	following	formula,	under	the	assumption	of	single	spores	being	released:	

	 " = $!"#$%
2
9

)&*!"#$%
+

	 (2.3)	

	

For	a	spore	to	cross	the	boundary	layer,	the	distance	travelled	should	be	higher	than	the	

thickness	of	the	boundary	layer	(Figure	2.1	B-D).	Thus,	to	be	able	to	travel	a	distance	large	

enough	to	enter	the	free	air,	 fungi	can	act	on	several	factors,	as	indicated	in	the	formula.	

They	 can	 (i)	 increase	 spore	 velocity	 during	 release	 (Fritz,	 Seminara,	 Roper,	 Pringle,	 &	

Brenner,	2013),	(ii)	decrease	the	thickness	of	the	boundary	layer	(Kinjo	&	Zang,	2001)	or	

(iii)	minimise	the	drag,	for	example	by	creating	spores	with	drag-minimising	shapes	(Roper,	

Pepper,	Brenner,	&	Pringle,	2008)	or	by	coordinating	spore	ejection	(Roper	et	al.,	2010).	

However,	 minimising	 the	 drag	 by	 increasing	 mass	 would	 complicate	 subsequent	 wind	

dispersal.	To	overcome	this,	fungi	such	as	Ascobolus	immerses	are	able	to	cross	the	boundary	

layer	by	releasing	spores	as	a	conjugated	mass	that	then	disarticulate	into	single	spores	to	
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facilitate	subsequent	wind	dispersal	(Buller,	1909).	Given	the	necessity	of	fungal	spores	to	

be	dispersed	as	far	as	possible,	fungi	have	developed	all	kinds	of	mechanisms	to	liberate	

their	spores	taking	into	account	the	barriers	that	they	have	to	overcome.	

2.2.3 Types	of	spore	release	in	fungi		

Spore	 liberation	has	been	widely	studied	 in	 fungi	and	their	mechanisms	for	 this	process	

vary	greatly	depending	on	the	species.	Since	spore	propagation	is	the	ultimate	goal	of	fungi,	

they	 have	 developed	 specific	mechanisms	 adapted	 to	 their	 environmental	 conditions	 to	

make	sure	spores	are	able	to	be	dispersed	as	far	as	possible	(Roper	et	al.,	2010).	

However,	many	species	have	not	acquired	any	mechanical	process	to	ensure	spores	enter	

the	 free	air	stream,	and	 instead	 they	rely	on	external	 factors.	This	 type	of	mechanism	 is	

classified	 as	 “passive	 liberation”	 and	 it	 relies	 on	 external	 agents	 assisting	 spore	

dissemination	 (Alastair	 McCartney,	 1994).	 Examples	 of	 passive	 liberation	 mechanisms	

include:	 shedding	of	 spores	under	gravity	or	 in	convection	currents	 like	Botrytis	 cinerea	

(Chastagner,	Ogawa,	&	Manji,	1978;	Dobbs,	1942),	spores	being	blown	away	by	the	wind	

like	in	the	case	of	Puccinia	urediniospores	or	moulds	(Viljanen-Rollinson,	Parr,	&	Marroni,	

2007)	(Figure	2.2	A).	Another	example	is	falling	raindrops	that	create	kinetic	energy	when	

they	 impact	the	plant	and	can	help	spore	dispersal	(Kim	et	al.,	2019).	This	 is	 the	case	of	

“puffball”	mushrooms	 that	need	external	 forces	 (such	as	rain	or	small	animals)	 to	assist	

spores	release	(Figure	2.2	B).	Certain	fungi	rely	heavily	on	animals	for	the	dispersal	of	their	

spores.	This	is	the	case	of	Anthurus	archeri	(also	called	stinkhorn)	that	contains	spores	in	a	

“foul-smelling,	sticky	slime”	that	attract	insects.	When	insects	land	on	the	fungus,	spores	get	

stuck	to	their	body	and	then	are	transported	(Figure	2.2	C).	This	is	also	the	mechanism	of	

Puccinia	monoica,	that	mimics	flowers	in	shape,	fragrance	and	even	nectar	reward	to	attract	

insects	(Raguso	&	Roy,	1998).	Pycniospores	of	rust	fungi	are	also	believed	to	be	carried	by	

insects	 from	 barberry	 leaves	 (Kolmer,	 2013).	 The	 spores	 of	 other	 fungi	 such	 as	 Tuber	

melanosporum	are	dispersed	on	faeces	after	passing	through	the	digestive	track	of	animals	

like	wild	boards	or	rodents	(Piattoni,	Oir,	Morara,	Iotti,	&	Zambonelli,	2013)	(Figure	2.2	D).	

Despite	the	high	number	of	fungi	that	have	passive	mechanisms,	relying	on	external	factors	

reduces	the	likelihood	of	success	in	spore	propagation.	

As	an	alternative	strategy,	many	fungi	have	therefore	developed	active	mechanisms	of	spore	

release	 to	 increase	 efficiency	 of	 dispersal	 (Ingold,	 1999).	 These	 generally	 rely	 on	 the	

availability	 of	 water	 for	 the	 fungus,	 although	 some	 fungi	 have	 mechanisms	 that	 are	

independent	of	weather.	The	fruit-body	will	usually	develop	after	a	period	of	rain	and	then	

either	discharge	spores	over	a	short	time	period	or	dry	and	start	release	when	it	gets	re-
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wet	 (Gregory,	 1961).	 One	 very	 well	 studied	 process	 of	 active	 spore	 release	 is	 the	

ballistospore	 discharge	mechanism	 in	 Basidiomycetes	 by	 the	 formation	 of	 the	 so-called	

“Buller’s	drop”	(Buller,	1909).	This	process	is	divided	into	3	steps.	First,	water	condenses	at	

the	hilar	appendix,	forming	the	Buller’s	drop,	and	at	the	surface	of	the	spore,	forming	the	

adaxial	drop.	Condensation	then	leads	both	drops	to	expand	and	fuse	on	the	spore	surface	

(Figure	2.2	E).	This	 causes	a	 redistribution	of	mass	 that	gives	momentum	 to	 the	 spore,	

ejecting	the	spore	from	the	sterigma	(Fischer,	Stolze-Rybczynski,	Cui,	et	al.,	2010).	

Another	very	well-known	example	of	active	liberations	is	the	“squirt-gun”	mechanism	that	

is	used	by	Ascomycetes	where	the	ascus	swells	and	ejects	spores	into	the	air	(Trail,	2007).	

This	 process	 appears	 to	 be	 driven	 by	 osmosis	 (Money	 &	 Webster,	 1989).	 When	 the	

accumulation	of	osmolytes	inside	the	ascus	leads	to	water	passing	through	the	membrane	

by	osmosis,	turgor	pressure	increases	until	reaching	a	critical	pressure	of	0.31-1.54	MPa	

(Money,	1994).	This	causes	spores	to	be	discharged	violently	with	the	liquid	content	from	

the	ascus	(Figure	2.2	F).	This	type	of	explosive	spore	discharge	has	also	been	observed	in	

other	species	such	as	Zygomycetes	(e.g.	Pilobolus	Crystallinus),	whose	spores	get	released	

due	 to	 osmotic	 turgor	 pressure	 (Tuthill,	 2005).	 Another	 active	 release	 mechanism,	

frequently	observed	in	fungi	imperfecti	(Meredith,	1963),	is	cavitation-based.	This	occurs	

under	dry	conditions	when	cells	dehydrate	and	their	membrane	shrinks,	causing	cell	walls	

to	 cave	 inwards.	 This	 entails	 a	 deformation	 of	 the	 structure	 and	 increment	 in	 negative	

pressure	that	produces	the	emergence	of	a	gas	bubble	(Figure	2.2	G).	The	appearance	of	

the	cavitation	bubble	results	 in	a	 release	of	 the	wall	 tension,	which	makes	 the	structure	

return	to	its	original	shape	(Sakes	et	al.,	2016).	Another	interesting	observed	phenomenon	

of	spore	release	in	the	Entomophthorales	order	is	the	rounding-off	of	turgid	cells	(Hughes,	

Cole,	&	Kendrick,	2007;	Ingold,	1934)	usually	under	high	humidity.	This	is	also	thought	to	

be	the	case	for	rust	aeciospores,	although	the	details	are	yet	not	clear	(Buller,	1950).	
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Figure	2.2.	Spore	release	can	be	classified	into	‘passive’	or	‘active’	liberation.	Passive	liberation	can	occur	

by	(A)	wind	(Kim	et	al.,	2019),	(B)	rain	(Dixon,	1963),	(C)	insects	(Burk,	Flegler,	&	Hess,	1982)	or	(D)	animals	

(Piattoni	et	al.,	2013).	Examples	of	active	liberation	include:	(E)	Buller’s	drop	for	basidiomycota	(Buller,	1909;	

Stolze-rybczynski	et	al.,	2009),	(E)	ascospore	release	by	osmotic	pressure	(Trail,	2007)	and	(F)	cavitation-based	

(Sakes	et	al.,	2016).	Drawings	in	F	and	G	are	adapted	from	(Sakes	et	al.,	2016).	
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2.2.4 Aeciospore release in rusts 

The	production	and	dispersal	of	different	types	of	spores	produced	by	Puccinia	rust	fungi	

have	been	highly	studied	partly	because	of	their	economic	importance	(Helfer,	2014).	Out	

of	 the	 five	 types	 of	 spores	 that	 Puccinia	 rust	 fungi	 produce,	 aeciospores	 are	 the	 ones	

carrying	 genotypes	 generated	 after	 the	 sexual	 cycle	 is	 completed	 through	 infection	 of	

Berberis	as	mentioned	in	the	 introduction	(Berlin,	Samils,	&	Andersson,	2017).	Thus,	 the	

importance	of	aeciospores	in	the	life	cycle	of	these	fungi	makes	them	very	interesting	to	

study.	

Aeciospores	are	 formed	 inside	 fungal	structures	known	as	cluster	cups	or	aecia	 that	are	

formed	on	the	abaxial	side	of	barberry	leaves.	Different	morphological	types	of	aecia	have	

been	found	in	several	rust	species,	that	vary	in	a	number	of	factors	such	as	spore	ontogeny	

or	presence	of	intercalary	cells	(Sato	&	Sato,	1985).	In	the	case	of	Puccinia	graminis	(Pg),	the	

type	 of	 aecium	 is	 called	 aecidioid	 aecia	 that	 are	 cylindrical	 cup-like	 structures	 in	which	

aeciospores	are	tightly	packed	forming	rows	(Figure	2.3	A-B).	These	aecia	have	a	firm	wall	

of	 cells	called	peridium	that	 is	 formed	by	a	one-cell	 layer	of	peridial	 cells	 (Singh,	1969).	

These	peridial	cells	are	usually	hexagonal	with	walls	of	different	thickness:	a	thinner	one	on	

the	inner	face	and	a	thicker	one	of	up	to	8	µm	in	the	outer	face	(Mims,	Littlefield,	&	Heath,	

1980)	(Figure	2.3	D).	

At	 the	bottom	of	 the	aecial	cups,	basal	cells	 (or	aeciosporophores)	(Figure	2.3	C)	are	 in	

charge	of	forming	aeciospore	mother	cells,	also	named	aeciospore	initials	(Figure	2.3	E).	

These	 subsequently	 divide	 into	 a	 large	 aeciospore	 and	 a	 small	 disjuncture	 cell	 (or	

intercalary	cell)	(Rijkenberg	&	Truter,	1974).	These	wedge-shaped	intercalary	cells	occur	

in	between	aeciospores	and	eventually	disintegrate	to	give	place	to	the	mature	aeciospores	

(Figure	 2.3	 F-I).	 Mature	 aeciospores	 display	 knob-like	 ornamentation	 on	 their	 surface	

called	 verrucose	 o	 verrucae.	 The	 shape	 of	 this	 verrucose	 has	 been	 reported	 to	 vary	 for	

different	 rust	 fungi	 and	 can	 be	 used	 as	 a	way	 of	 distinguishing	 between	 species	 (Lee	&	

Kakishima,	1999;	Wahyuno,	Kakishima,	&	Ono,	2002).	Aeciospores	can	also	contain	large	

granules	on	 their	 surface	 in	 certain	 species,	 like	Pg	 (Figure	2.3	G-H),	whose	 function	 is	

unknown.	However,	this	also	varies	between	species,	as	it	is	not	found	in	Puccinia	triticina	

or	Puccinia	 coronata	 (Gold,	Littlefield,	&	Statler,	1979).	 It	has	been	suggested	 that	 these	

granules	can	help	in	the	process	of	spore	release,	but	this	has	not	been	confirmed	(Mims	et	

al.,	1980).	
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Figure	2.3.	Aeciospores	are	tightly	packed	inside	of	aecial	cups.	(A)	SEM	images	show	aeciospores	highly	

packed	inside	of	aecial	cups,	forming	rows	(B).	(C)	TEM	imaging	shows	immature	aeciospores	are	formed	at	the	

bottom	 of	 the	 cup	 and	 mature	 aeciospores	 are	 found	 towards	 the	 top.	 (D)	 At	 the	 top	 of	 the	 cup,	 mature	

aeciospores	can	be	seen	tightly	packed	together	without	any	apparent	order.	TEM	imaging	of	immature	(E)	and	

mature	(F)	aeciospores	illustrates	the	little	space	between	spores	inside	the	cup.	(G)	A	closer	look	at	aeciospores	

shows	they	contain	verrucae	in	their	surface	(H).	(I)	Verrucae	is	found	all	around	aeciospores	and	between	each	

other.	W:	Cup	Wall;	P:	Peridium	cells;	SP;	Aeciosporophore;	MA:	Mature	Aeciospores;	IA:	Immature	Aeciospores;	

IC:	Intercalary	Cell;	V:	verrucae;	arrow:	verrucae	granules.	SEM	images	were	taken	by	Kim	Findlay	and	TEM	by	

Elaine	Barclay	(John	Innes	Centre)	as	described	in	methods	(sections	2.3.6	and	2.3.7	respectively).	
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Aeciospore	discharge	is	thought	to	occur	under	high	relative	humidity	(RH)	conditions	in	

Pucciniales	containing	aecidioid	aecia.	However,	for	some	rust	species	with	a	different	type	

of	aecia	(called	roestelia),	liberation	has	been	associated	with	a	decrease	in	humidity	as	in	

Gymnosporangium	juniperi-virginianae.	This	fungus	has	the	capacity	to	close	its	aecia	when	

humidity	 is	 high	 and	 under	 low	 humidity,	 the	 outer	 layer	 of	 the	 peridial	 cells	 shrinks,	

causing	the	roestelia	to	open	(Pady,	Kramer,	&	Clary,	1969).	This	is	due	to	the	hygroscopic	

nature	 of	 its	 peridial	 cells	 that	 allows	 roestelia	 to	 open	 and	 close	 (fracture-release	

mechanism),	unlike	aecidioid	aecia	that	once	their	peridium	breaks,	it	remains	open.	This	

has	 however	 not	 been	 observed	 in	 all	 fungi	 that	 produce	 roestelia,	 since	 other	

Gymnosporangium,	such	as	G.	clavipes,	are	reported	to	release	at	90%	RH	and	as	a	possible	

consequence	of	the	rounding-off	of	aeciospores	after	water	intake	(Pady	et	al.,	1969).	This	

is	the	same	process	that	is	believed	to	occur	in	Pucciniales,	whose	aeciospores	are	thought	

to	be	released	when	they	expand	into	a	spherical	shape	under	high	RH	(Kramer,	Pady,	Clary,	

&	Haard,	1968).	Despite	these	indications,	the	actual	mechanism	of	aeciospore	release	for	

Puccinia	fungi	remains	unknown	(Buller,	1958).	

2.2.5 High	speed	videography	can	be	used	to	observe	spore	release	

The	development	 of	 high-speed	 (HS)	 videography	has	 given	 the	 opportunity	 to	 observe	

spore	 release	 in	 many	 species,	 such	 as	 Adiantum	 peruvianum	 (Poppinga,	 Haushahn,	

Warnke,	Masselter,	&	Speck,	2015),	Selaginella	martensii	 (Schneller,	Gerber,	&	Zuppiger,	

2008)	and	in	Sphagnum	(Sundberg,	2010).	In	fungi,	HS	cameras	have	been	used	for	a	long	

time	 to	 observe	 the	 mechanism	 of	 discharge	 (Gregory,	 1949).	 It	 has	 allowed	 the	

examination	 in	detail	 of	 the	process	 of	 ballistospore	discharge	 in	Basidiomycota	 via	 the	

Buller’s	 drop	 (Noblin,	 Yang,	 &	 Dumais,	 2009)	 and	 ‘squirt-gun’	 in	 Ascomycota	 and	

Zygomycota	(Yafetto	et	al.,	2008).	Videos	recorded	with	a	HS	camera	have	also	been	used	to	

predict	trajectories	of	ballistospores	for	several	basidiomycetes	(M.	W.	F.	Fischer,	Stolze-

Rybczynski,	 Cui,	 et	 al.,	 2010).	 Observing	 the	 process	 of	 spore	 discharge	 can	 thus	 help	

elucidate	 the	 mechanism	 of	 release	 (Dressaire,	 Yamada,	 Song,	 &	 Roper,	 2016).	 HS	

videography	offers	an	excellent	opportunity	to	study	aeciospore	release	since,	despite	the	

many	studies,	the	actual	process	has	not	been	previously	observed	due	to	the	high	velocity	

of	discharge	invisible	to	the	human	eye	(Coons,	1910).	

In	this	chapter,	I	have	investigated	how	aeciospores	are	being	released	from	aecial	cups	in	

Pg,	 the	 fungus	 responsible	 for	 Stem	Rust	 (SR)	 and	propose	 a	model	 to	 explain	 how	 the	

release	mechanism	could	take	place.	To	do	so,	I	used	HS	videography	to	observe	the	active	

release	of	Pg	aeciospores	and	estimate	the	velocity	at	which	they	are	ejected.	In	addition,	I	

assessed	 how	 far	 away	 aeciospores	 initially	 travel	 after	 ejection	 and	 the	 effect	 of	
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temperature	 and	water	 absorption	 in	 the	 release	process.	Using	 these	data,	 I	 propose	 a	

model	of	how	aeciospores	may	be	actively	released	from	aecial	cups.	

	

2.3 Methods	

2.3.1 Sample	collection	

Barberry	(B.	vulgaris)	leaves	showing	symptoms	of	SR	infection	were	collected	during	the	

summer	period	of	2018	and	2019	 from	Chalk	Road,	Brandon,	United	Kingdom.	Samples	

were	collected	from	several	common	barberry	bushes	(cultivar	is	unknown)	with	the	help	

of	Phoebe	Davey,	Morgan	Gerrity,	Elizabeth	Orton	and	Clare	Lewis	(Saunders	Lab).	After	

collection	leaves	were	placed	in	boxes	or	9	mm	petri	dishes	and	transported	back	to	the	

laboratory.	

2.3.2 Aeciospore	release	video	recording	

Leaf	fragments	containing	aecia	were	attached	to	a	cuvette	using	Vaseline.	The	cuvette	was	

held	 in	place	with	a	clamp	between	two	spotlights	 to	 improve	the	clarity	of	 the	video.	A	

Photron	 SAX2	mono	 high-speed	 camera	 (Slowmo	 Ltd,	 England)	was	 used	 to	 record	 the	

spore	 release	at	maximum	magnification	 (3,000	 fps	at	1025x1024	pixels	 resolution).	To	

record	the	videos,	the	Photron	Fastcam	Viewer	software	was	used	on	a	DELL	laptop	running	

Windows	7.	To	induce	aeciospore	release	for	recording,	the	aecial	cups	were	sprayed	with	

water.	This	was	done	with	the	help	of	Phoebe	Davey,	Morgan	Gerrity	and	Elizabeth	Orton	

(Saunders	Lab).	

2.3.3 Aeciospore	velocity	calculation	from	videos	

To	estimate	the	velocity	at	which	aeciospores	are	released,	I	took	the	first	frame	before	an	

aeciospore	was	released	and	the	subsequent	 frame.	Using	ImageJ,	 the	coordinates	of	 the	

position	of	 the	 spore	were	 calculated	 for	 each	one	of	 the	 two	 frames.	Aeciospores	were	

assumed	to	follow	a	straight	line	between	those	two	positions	and	the	distance	travelled	by	

the	 spore	 was	 estimated.	 The	 distance	 was	 then	 divided	 by	 the	 time	 between	 frames	

(0.0003	seconds)	to	calculate	the	launch	speed.	The	same	process	was	followed	for	each	

frame	to	determine	the	velocity	of	the	spore	at	every	point	during	its	trajectory	and	thus	

investigate	how	the	velocity	changes	over	time.	The	video	stills	for	each	frame	were	then	

overlaid	together	using	ImageJ	(Images	>	Stack	>	Images	to	Stack)	to	acquire	a	picture	of	

the	full	trajectory	that	the	aeciospores	followed	after	release.	
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2.3.4 Distance	reached	by	aeciospores	after	release	

To	examine	how	far	aeciospores	can	be	released	in	a	closed	environment,	leaf	fragments	

containing	aecia	were	attached	to	the	wall	of	a	100	mm	squared	petri	dish	using	Vaseline	

(Figure	2.4	A).	Before	attaching	 the	 lesions,	 they	were	placed	on	water	 to	 induce	spore	

release.	 A	microscope	 slide	with	 2	%	water	 agar	 on	 top	was	 placed	 in	 front	 of	 the	 leaf	

fragment	 to	 catch	 the	 released	 aeciospores	 (Figure	 2.4	 B).	 The	 aecial	 cups	 were	 then	

sprayed	with	water	to	increase	humidity	and	the	dish	was	left	at	18	ºC	for	18	hours.	The	

aeciospores	that	were	released	from	the	cups	were	deposited	on	the	agar	and	then	observed	

under	 an	 inverted	 Leica	 DMi1	microscope	 with	 a	 scale	 to	 determine	 how	 far	 they	 had	

travelled	 (Figure	2.4	C,	D).	 To	 investigate	whether	 temperature	had	 an	 effect	 on	 spore	

release,	this	experiment	was	carried	out	under	different	temperatures:	5	ºC,	10	ºC,	18	ºC,	

25	ºC,	30	ºC,	33	ºC	and	37	ºC.	A	Tukey's	honestly	significant	difference	(HSD)	post	hoc	test	

was	performed	to	compare	distances	reached	by	released	aeciospores	in	each	condition.	

	

Figure	2.4.	Preparation	of	experiment	to	estimate	distance	reached	by	aeciospores.	(A)	A	10	cm	square	

plate	containing	three	lesions	and	three	microscope	slides,	the	image	shows	the	plate	after	release.	(B)	Lesions	

were	positioned	on	the	wall	of	the	plate	lid	in	front	of	the	microscope	slides	to	collect	the	released	aeciospores	

on	the	slides,	as	shown	in	the	drawing.	(C)	After	release,	slides	were	placed	on	a	transparent	scale	to	measure	

distance	of	release.	(D)	Slides	with	the	scale	were	then	observed	in	the	microscope.	

	

2.3.5 Water	absorption	of	aeciospores	

To	record	the	rate	of	aeciospore	expansion	when	absorbing	water,	dry	aeciospores	were	

placed	on	a	microscope	slide.	An	inverted	microscope	Leica	DMi1	(Leica,	Milton	Keynes,	UK)	

was	used	for	this	experiment.	While	recording	with	the	microscope	at	40x	amplification,	a	

droplet	of	0.1	µL	of	water	was	added	on	top	of	the	aeciospore.	Video	stills	were	taken	prior	

to	adding	the	water	until	aeciospore	expansion	was	complete.	These	video	stills	were	used	

to	estimate	the	rate	of	aeciospore	increase	by	calculating	the	area	of	aeciospores	before	the	
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water	was	added	and	after	they	had	expanded,	and	the	time	for	both	stills	was	recorded.	

Area	was	measured	using	 ImageJ	by	 contouring	 the	aeciospore	and	 selecting	 the	option	

‘Measure’.		

To	quantify	the	precise	increase	in	size	of	aeciospores	after	water	intake,	the	size	of	dried	

aeciospores	 and	 those	 immersed	 in	 water	 was	 measured.	 Released	 aeciospores	 were	

collected	 and	 air	 dried	 for	 at	 least	 2	 hours.	 Aeciospores	 were	 then	 mounted	 in	 water	

(hydrated)	 or	 100	 %	 glycerol	 (dehydrated)	 to	 simulate	 dry	 conditions.	 Using	 a	 Zeiss	

LSM780	confocal	microscope,	pictures	of	the	spores	in	glycerol	and	in	water	were	taken	by	

Elizabeth	Orton	 (Saunders	 lab)	using	an	excitation	wavelength	of	405	nm.	Afterwards,	 I	

estimated	the	area	of	aeciospores	in	the	images	using	ImageJ	by	contouring	the	aeciospore	

and	selecting	the	option	‘Measure’	that	estimates	the	area.	To	calculate	the	diameter,	three	

measurements	 were	 taken	 using	 ImageJ:	 diagonal,	 vertical	 and	 horizontal.	 The	 three	

measurements	were	then	averaged.		

2.3.6 Scanning	Electron	Microscopy	of	aeciospores	and	fungal	structures	

Samples	were	mounted	on	aluminium	stubs	using	Tissue	TekR	(BDH	Laboratory	Supplies,	

Poole,	 England).	The	 stubs	were	 then	 immediately	plunged	 into	 liquid	nitrogen	 slush	 at	

approximately	− 210 °C	to	cryopreserve	the	material.	The	samples	were	transferred	onto	

the	cryostage	of	an	ALTO	2500	cryotransfer	system	(Gatan,	Oxford,	England)	attached	to	a	

Zeiss	Supra	55	VP	FEG	scanning	electron	microscope	(Zeiss	SMT,	Germany)	or	 the	same	

type	 of	 cryo-system	 on	 an	 FEI	 Nova	 NanoSEM	 450	 (FEI,	 Eindhoven,	 The	 Netherlands).	

Sublimation	of	surface	frost	was	performed	at	− 95 °C	for	~ 3 min	before	the	samples	were	

sputter	 coated	with	 platinum	 for	 2 min	 at	 10 mA,	 at	 colder	 than	 − 110 °C.	 After	 sputter-

coating,	 the	 samples	 were	 moved	 onto	 the	 cryo-stage	 in	 the	 main	 chamber	 of	 the	

microscope,	held	at	− 125 °C.	The	samples	were	imaged	at	3 kV	and	digital	TIFF	files	were	

stored.	Both	sample	preparation	and	image	capture	were	performed	by	Kim	Findlay	(John	

Innes	Centre).		

2.3.7 Transfer	Electron	Microscopy	of	aeciospores	and	fungal	structures	

Barberry	leaves	showing	symptoms	of	SR	infection	were	cut	out	and	placed	in	a	solution	of	

2.5	%	(v/v)	glutaraldehyde	in	0.05	M	sodium	cacodylate,	pH	7.3	and	left	overnight	at	room	

temperature.	The	fixative	was	washed	out	by	three	successive	10-minute	washes	in	0.05	M	

sodium	 cacodylate	 and	 samples	 were	 post-fixed	 in	 1	 %	 (w/v)	 OsO4	 in	 0.0	 M	 sodium	

cacodylate	for	one	hour	at	room	temperature.	The	osmium	fixation	was	followed	by	three,	

15-minute	washes	in	distilled	water	before	beginning	the	ethanol	dehydration	series	(30	%,	

50	%,	70	%,	95	%,	100	%	ethanol,	for	approximately	one	hour	in	each	solution).	Once	fully	
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dehydrated,	 the	 samples	were	 gradually	 infiltrated	with	 LR	White	 resin	 (London	 Resin	

Company,	Reading,	Berkshire)	by	successive	changes	of	 resin:	ethanol	mixtures	at	 room	

temperature	as	follows;	1:1	for	1	hour,	2:1	for	1	hour,	3:1	for	1	hour,	100	%	resin	for	1	hour	

then	100	%	resin	for	16	hours.	After	a	fresh	resin	change	for	a	further	8	hours,	the	samples	

were	transferred	into	gelatine	capsules	full	of	 fresh	LR	White	and	placed	at	60	ºC	for	16	

hours	to	polymerize.	The	material	was	sectioned	with	a	diamond	knife	using	a	Leica	UC6	

ultramicrotome	(Leica,	Milton	Keynes,	UK).	Ultrathin	sections	of	approximately	90	nm	were	

picked	up	on	 formvar/carbon	coated	200	mesh	copper	grids.	The	sections	were	stained	

with	2	%	(w/v)	uranyl	acetate	for	1	hour	and	1	%	(w/v)	lead	citrate	for	1	minute,	washed	

in	distilled	water	and	then	air	dried.	The	grids	were	viewed	in	a	FEI	Talos	200C	transmission	

electron	microscope	 (FEI	 UK	 Lrd,	 Cambridge,	 UK)	 at	 200	 kV	 and	 imaged	 using	 a	 Gatan	

OneView	4K	x	4K	digital	camera	(Gatan,	Cambridge,	UK)	to	record	DM4	files.	Both	sample	

preparation	and	image	capture	were	performed	by	Elaine	Barclay	(John	Innes	Centre).		

2.3.8 Aeciospore release model 

The mathematical model was developed with the help of Dr. Mark Blyth (University of 

East Anglia), who performed all mathematical operations. The programming software 

MATLAB and Maple were used for mathematical calculations. The full description of the 

model is included in Annexe section 6.1. 

2.4 Results	

2.4.1 Pg	aeciospores	are	released	at	variable	velocities	that	decrease	rapidly	after	

ejection	

To	study	the	release	of	Pg	aeciospores	from	aecial	cups	located	on	the	abaxial	surface	of	

barberry	leaves,	we	used	a	high-speed	camera	to	record	videos	of	aeciospore	release.	Spore	

ejection	was	recorded	at	3,000	fps	and	the	consequent	80	videos	were	analysed	to	measure	

the	velocity	of	discharge.	To	ensure	accuracy	in	the	velocity	measurements,	31	out	of	the	

initial	80	videos	were	selected	for	analysis	where	the	trajectory	of	the	aeciospore	remained	

in	focus	and	followed	a	straight	line	(Figure	2.5	A-C,D-F).	If	spores	were	perceived	to	be	

released	diagonally	or	out	of	focus,	the	measurement	would	not	be	precise,	and	the	video	

was	discarded.	For	each	of	the	selected	videos,	we	took	the	first	frame	and	measured	how	

much	the	spore	had	travelled	in	the	timeframe	(0.0003	s)	(Figure	2.5	G).	Release	velocities	

were	observed	from	0.094	m/s	up	to	0.754	m/s,	with	a	median	of	0.24	m/s	(Figure	2.5	H).	

The	variability	in	initial	discharge	velocities	was	observed	in	videos	of	several	aeciospores	

being	ejected	at	the	same	time	at	different	speeds.	Despite	the	different	values	of	release	

speed,	all	of	them	were	in	range	of	tens	of	cm/s,	which	shows	that	there	is	consistency	in	
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the	observations.	This	is	likely	to	be	a	consequence	of	the	release	mechanism	that	allows	for	

a	degree	of	variability.	

	

Figure	2.5.	Pg	aeciospores	are	actively	released	at	a	median	of	0.24	m/s.	A	total	of	31	videos	of	aeciospore	

release	were	recorded	with	a	HS	camera	at	3,000	frames	per	second.	To	estimate	the	initial	velocity,	the	first	

two	frame	of	each	video	were	taken	(A,	D:	first	frames;	B,	E:	second	frames;	C,	F:	zoom	of	the	second	frame;	

white	 circle	 indicates	moving	 spore).	 (G)	 An	 estimate	 of	 initial	 velocity	was	 determined	 by	measuring	 the	

distance	that	the	spore	travelled	in	the	time	between	the	two	frames	for	a	total	of	31	videos	of	aeciospore	release	

and	dividing	this	by	the	timeframe	(0,0003	seconds).	(H)	Initial	velocities	ranged	from	0.094	m/s	to	0.754	m/s,	

with	a	median	of	0.24	m/s.	
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The	recorded	videos	were	analysed	frame	by	frame	to	measure	the	velocity	across	time	and	

to	study	how	it	changed	during	the	aeciospore	trajectory.	Velocity	was	estimated	from	the	

point	of	release	until	the	aeciospores	decelerated	completely	and	started	falling	down.	As	

shown	in	Figure	2.6	A,	aeciospores	showed	rapid	deceleration	over	time	due	to	the	drag	

force	 that	 air	 exerts	 on	 the	 aeciospore	 (Pringle	 et	 al.	 2017).	 This	 leads	 to	 the	 distance	

travelled	by	the	aeciospore	across	time	to	reach	a	plateau	when	the	aeciospores	decelerate.	

When	 their	 velocity	 reached	 almost	 0	 m/s,	 spores	 ceased	 to	 move	 and	 started	 falling	

(Figure	2.6	B).	This	deceleration	can	be	observed	in	the	aeciospore	trajectories	(Figure	2.6	

C)	 in	which	when	 the	 spore’s	 velocity	 reaches	 0	m/s	 and	 it	 fell	 downwards	 freely.	 The	

distance	that	the	spores	reached	after	ejection	was	related	to	the	initial	velocity	recorded	

as	those	with	greater	velocity	travelled	further	away	before	falling.	The	full	trajectories	of	

spores	had	been	previously	predicted	for	several	fungi	(Fischer,	Stolze-Rybczynski,	Cui,	et	

al.,	2010)	but,	to	our	knowledge,	they	had	never	been	observed	and	recorded	for	Puccinia	

rust	fungi.	
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Figure	 2.6.	Pg	 aeciospore	 initial	 release	 velocity	 decreases	 rapidly	 after	 ejection.	Aeciospore	 release	

videos	were	analysed	frame	by	frame	to	estimate	the	velocity	and	distance	travelled	from	ejection	until	fall.	(A)	

Aeciospore	velocity	decreased	rapidly	after	ejection	due	to	drag	forces.	(B)	Distance	travelled	by	the	aeciospore	

across	 time	 decreased	 rapidly	 until	 reaching	 a	 plateau	when	 they	 cease	 to	move	 and	 start	 falling.	 (C)	 Full	

trajectories	show	how	aeciospores	only	start	falling	after	their	velocity	reaches	0	m/s.	Aeciospores	released	at	

higher	velocities	travelled	further	(Video	3).	
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2.4.2 Distance	that	aeciospores	travel	can	be	used	to	predict	initial	velocity	

We	 can	 estimate	 the	maximum	 distance	 reached	 by	 an	 aeciospore	 if	 the	 initial	 release	

velocity	is	known,	with	the	following	formula	(Pringle	et	al.	2017):	

	 " = $!"#$%
2
9

)&*!"#$%
+

	 (2.4)	

Where	a	is	the	radius	of	the	spore,	rspore	is	the	density	of	the	spore	and	µ	is	the	viscosity	of	

the	medium,	i.e.	the	air.	The	radius	of	the	Pg	aeciospore	has	been	determined	previously	to	

be	around	10	µm,	with	a	density	of	882	kg/m3,	assuming	an	spherical		aeciospore	(Gregory,	

1961)	and	the	dynamic	viscosity	of	air	is	1.81	x	10-5	kg/m/s.	Substituting	these	values	into	

the	 previous	 equation,	 we	 can	 see	 the	 following	 relationship	 between	 the	 maximum	

distance	(")	travelled	and	the	velocity	of	the	aeciospore:	

	 " = 0.00109	$!"#$% 				(%)	 (2.5)	

The	relationship	above	could	also	be	used	to	infer	the	initial	velocity	of	aeciospore	release	

if	the	maximum	distance	travelled	is	known,	by	simple	reversing	the	equation	as	follows:	

	 $%'"%()%* =
"$%+(,%*
0.00109

				(%/3)	 (2.6)	

Using	 this	 equation,	 I	 could	 estimate	 the	 theoretical	 velocity	 ($%'"%()%*)	 at	 which	 Pg	

aeciospores	were	released	by	knowing	the	initial	distance	aeciospores	travelled	following	

release.	Since	the	real	maximum	distance	that	aeciospores	reached	could	not	be	accurately	

estimated	(since	aeciospores	left	the	plane	before	reaching	the	floor),	the	point	at	which	

aeciospores	started	falling	was	determined	where	their	velocity	was	0	m/s.	At	this	point	it	

was	assumed	that	they	would	fall	freely	vertically	until	reaching	the	floor	if	they	were	not	

caught	 in	 an	 air	 current.	 The	 linear	 distance	 reached	 by	Pg	 aeciospores	was	 estimated	

assuming	the	floor	would	have	been	at	the	same	altitude	of	release.	

From	 the	 recorded	 videos,	 I	 measured	 the	 distance	 reached	 as	 described	 and	 then	

calculated	the	theoretical	expected	velocity	using	the	equation	above.	Then	I	compared	it	

with	the	observed	release	velocity	(Figure	2.7).	A	total	of	20	videos	were	analysed	and	are	

shown	 in	 the	graph	 for	 simplicity.	For	most	videos	 the	difference	between	 the	expected	

maximum	 distance	 travelled	 and	 the	 observed	 value	 was	 very	 small.	 The	 dissimilarity	

between	the	expected	and	observed	distance	was	sometimes	greater	for	aeciospores	that	

were	released	in	pairs	thus	increasing	the	value	of	a,	which	affects	the	drag	and	thus	the	

above	relationship	changes.	However,	overall	the	observed	and	expected	values	remained	

close,	indicating	that,	when	taking	into	account	the	effect	of	the	drag	on	the	aeciospore,	the	

initial	velocity	of	release	can	be	estimated	if	the	maximum	distance	travelled	is	known.	
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Figure	2.7.	The	distance	travelled	by	Pg	aeciospores	can	be	used	to	predict	their	initial	ejection	velocity.	

Pg	 aeciospore	 release	 velocity	 was	 estimated	 using	 the	 distance	 travelled	 by	 the	 aeciospore	 (expected),	

compared	to	the	measured	release	velocity	(observed).	A	total	of	20	videos	were	included	in	this	analysis,	and	

for	all	of	 them	the	observed	and	expected	velocity	were	very	close,	 indicating	 initial	distance	reached	by	Pg	

aeciospores	can	indeed	be	used	predict	the	initial	velocity	of	release.	 	Colours	represent	the	different	videos	

used	for	this	calculation.	
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2.4.3 Distance	that	Pg	aeciospores	initially	travel	after	ejection	remains	constant	

over	a	range	of	temperatures	

To	elucidate	the	mechanism	of	Pg	aeciospore	release,	I	wanted	to	confirm	whether	water	is	

the	main	factor	influencing	aeciospore	liberation	or	whether	temperature	could	affect	it	too.	

To	investigate	whether	temperature	has	an	effect	on	Pg	aeciospore	release,	I	evaluated	the	

distance	 that	 Pg	 aeciospores	 can	 reach	 under	 a	 range	 of	 temperatures	 in	 a	 closed	

environment.	 To	 do	 so,	 I	 attached	 aecial	 cups	 to	 the	 wall	 of	 a	 square	 dish	 containing	

microscope	slides	with	agar	on	top.	I	then	left	the	square	dishes	in	darkness	under	different	

temperatures:	at	5	ºC,	10	ºC,	18	ºC,	25	ºC,	30	ºC,	33	ºC	and	37	ºC.	After	18	hours,	slides	were	

evaluated	under	the	microscope	to	measure	the	maximum	distance	that	Pg	aeciospores	had	

travelled.	 Six	 independent	 biological	 replicates	 were	 carried	 out	 for	 each	 one	 of	 the	

temperatures,	 except	 for	 33	 ºC	 and	 37	 ºC	where	 only	 three	 replicates	were	 utilised.	Pg	

aeciospore	release	followed	the	same	pattern	 in	all	experiments	where	there	was	a	high	

spore	 density	 close	 to	 the	 source	 and	 then	 they	 progressively	 became	more	 dispersed	

(Figure	2.8).	I	recorded	the	distance	until	which	a	high	density	of	aeciospores	was	found	

(more	than	100	aeciospores/0.2	mm2),	a	medium	aeciospore	density	(10-100	aeciospores	

in	0.2	mm2)	and	the	 final	maximum	distance	where	aeciospores	(single	or	groups)	were	

found,	defined	as	“last	spores	found”.	Images	representing	each	one	of	these	conditions	can	

be	 observed	 in	 Figure	 2.8.	 These	 three	 categories	 were	 defined	 to	 test	 whether	

temperature	had	an	effect	on	 the	distance	 that	 the	majority	of	aeciospores	were	able	 to	

reach	and	also	on	the	maximum	total	distance	that	aeciospores	could	reach.The	red	 line	

represents	the	three	distances	that	were	recorded	in	the	example	from	Figure	2.8.	These	

distances	are	the	maximum	distance	at	which	each	one	of	these	three	conditions	could	still	

be	 observed	 (i.e.	 more	 than	 100	 aeciospores,	 10-100	 aeciospores	 and	 the	 maximum	

distance	at	which	aeciospores	were	found).	They	were	recorded	for	each	one	of	the	range	

of	temperatures	used	and	plotted	for	comparison	(Figure	2.9).	

The	maximum	distance	until	which	Pg	aeciospores	were	found	at	a	high	density	fluctuated	

from	 0.55	 cm	 to	 1.63	 cm	 (average	 of	 1.09	 cm)	 across	 all	 temperatures.	 The	maximum	

distance	until	which	a	medium	aeciospore	density	was	seen	ranged	from	0.88	cm	to	2.38	

cm	(average	1.42	cm).	The	 total	maximum	distance	 that	aeciospores	were	able	 to	 reach	

varied	greatly,	from	1.06	cm	(at	37	ºC)	to	7.12	cm	(at	25	ºC),	with	an	average	of	2.40	cm.	In	

general,	distances	recorded	under	each	condition	were	very	variable.	Slight	variation	was	

apparent	in	Figure	2.9,	with	aeciospores	travelling	less	for	example	at	5	ºC	and	37ºC	and	

more	 at	 18	 ºC	 and	 25	 ºC.	 Therefore,	 an	HSD	 post	 hoc	 test	was	 performed	 to	 check	 for	

significant	differences	between	temperatures.	No	statistically	significant	differences	(p	>	
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0.01)	 were	 observed,	 indicating	 that	 the	 given	 temperature	 range	 does	 not	 have	 a	

substantial	effect	on	initial	aeciospore	distances	following	ejection	in	a	closed	environment.		

This	suggests	that	the	range	of	temperatures	tested	here	does	not	seem	to	have	a	role	in	the	

release	of	aeciospores	from	aecial	cups	in	stem	rust,	which	supports	the	hypothesis	that	the	

main	driver	of	Pg	aeciospore	release	is	water.	

	

Figure	2.8.		Microscope	slides	were	observed	to	determine	the	distance	reached	by	Pg	aeciospores	after	

release.	The	slides	were	divided	into	three	conditions:	high	aeciospore	density	(>100	aeciospores/0.2	mm2),	

medium	aeciospore	density	(10-100	aeciospores/0.2	mm2)	and	isolated	aeciospores.	The	maximum	distance	at	

which	all	of	 these	three	conditions	were	observed	was	recorded	for	each	sample.	The	red	 line	 indicated	the	

distance	representing	the	end	of	“high	aeciospore	density”,	“medium	aeciospore	density”	and	the	point	at	which	

the	last	aeciospore	was	found.	
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Figure	2.9.	Temperature	does	not	significantly	affect	distance	reached	by	aeciospores.	Maximum	distance	

reached	by	aeciospores	released	from	aecial	cups	was	studied	under	different	temperatures	(5	ºC,	10	ºC,	18	ºC,	

25	ºC,	30	ºC,	33	ºC	and	37	ºC).	The	maximum	distance	at	which	aeciospores	were	found	at	a	(A)	high	density	

(>100	aeciospores	in	0.2	mm2),	(B)	medium	density	(10-100	aeciospores/0.2	mm2)	and	(C)	the	total	maximum	

distance	reached	by	isolated	aeciospores	was	recorded	for	each	temperature	and	compared.	Images	on	the	left	

represent	each	one	of	the	three	situations.	Differences	in	temperature	were	not	statistically	significant	(p	<0.01;	

HSD	post	hoc	test)	for	any	of	the	experiments.	
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2.4.4 Expected	 release	 velocities	 based	 on	 distance	 of	 single	Pg	 aeciospores	 are	

higher	than	observed	velocities	by	HS	videography.	

Since	the	distances	observed	in	the	previous	experiment	were	much	higher	than	that	those	

reached	by	aeciospores	in	the	recorded	videos,	I	investigated	the	release	velocity	needed	

for	 aeciospore	 to	 achieve	 those	 distances.	 Using	 the	 relationship	 between	 maximum	

distance	and	initial	velocity	previously	defined	(equation	2.6),	I	could	estimate	the	initial	

velocity	that	was	needed	for	aeciospores	to	reach	the	distances	observed	in	the	previous	

experiment.	A	total	of	51	experiments	were	included,	with	6	biological	replicates	for	5,	10,	

25	and	30	ºC,	3	biological	replicates	for	33	ºC	and	37	ºC	and	21	biological	replicates	at	18	

ºC.	For	each	temperature	I	calculated	the	mean	distance	until	a	high	density	of	aeciospores	

was	found	and	the	maximum	distance	at	which	an	aeciospore	was	found	(Figure	2.10	A).	

As	it	can	be	observed,	the	mean	high	aeciospore	density	ranged	between	0-1	cm	while	the	

maximum	distance	at	which	an	aeciospore	was	found	fluctuated	from	1.4	to	7	cm.	These	

values	were	used	to	estimate	the	expected	release	velocity	with	equation	2.4.	The	results	

are	displayed	in	Figure	2.10	B.	For	distances	at	which	a	high	density	of	aeciospores	is	found,	

the	expected	velocities	ranged	from	2	to	8	m/s,	which	are	one	order	of	magnitude	higher	

than	that	observed	in	the	high-speed	recordings	of	aeciospore	release.	Furthermore,	when	

estimating	the	velocities	needed	for	aeciospores	to	reach	the	maximum	distance	at	which	

they	were	found,	the	expected	velocities	reached	tens	of	meters	per	second,	which	is	100	

times	greater	than	that	observed	with	the	HS	camera.	This	implies	that	in	order	to	reach	

that	 distance,	 single	 aeciospores	 would	 have	 to	 be	 ejected	 at	 velocities	 two	 orders	 of	

magnitude	higher	than	what	was	observed.	The	disparity	between	the	range	of	observed	

ejected	velocities	recorded	and	the	expected	velocities	could	indicate	issues	with	the	input	

values	used	in	the	formula	for	predicting	the	initial	velocity.	

It	was	noted	that	many	aeciospores	were	identified	in	clumps	and	as	aeciospore	radius	is	a	

core	property	of	the	formula	used	(equation	2.3),	this	parameter	has	a	high	effect	on	the	

estimated	 initial	velocity.	 If	all	 the	values	 in	 the	equation	are	maintained,	 increasing	 the	

value	of	 the	radius	would	greatly	decrease	the	expected	velocity.	This	 is	applicable	 for	a	

radius	of	any	object	travelling	under	the	effect	of	the	drag	as	described	in	the	formula.	For	

instance,	if	hypothetically	the	radius	of	the	aeciospore	doubled,	the	expected	velocity	would	

decrease	by	a	factor	of	4	(equation	2.7).	If	it	tripled,	the	velocity	would	decrease	by	a	factor	

of	 9	 etc.	 Consequently,	 if	 aeciospores	 aggregate	 in	 groups	 as	 shown	 in	Figure	2.11,	 the	

“radius”	of	the	group	would	be	much	higher	than	that	of	a	single	aeciospore,	and	a	lower	

release	velocity	would	be	needed	for	them	to	achieve	the	same	distance.	
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To	reach	a	distance	of	more	than	1	cm,	a	spore	group	with	a	radius	of	30	µm	would	only	

need	an	initial	velocity	of	1	m/s	(dashed	line	in	Figure	2.11),	which	is	what	was	observed	

in	the	HS	videos.	Aeciospore	clusters	with	a	50	µm	radius	could	then	reach	higher	distances	

(3-7	cm)	with	velocities	closer	to	those	observed	by	HS	videography	(~	1	m/s).	
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Figure	 2.10.	 Predicted	 Pg	 aeciospore	 release	 velocities	 are	 higher	 than	 observed	 in	 high-speed	

videography.	(A)	For	each	temperature,	the	mean	distance	until	which	a	high	density	of	aeciospores	was	found	

(•)	and	the	maximum	distance	at	which	an	aeciospore	was	found	(*)	were	computed.	Colours	represent	the	

different	temperatures.	(B)	Initial	aeciospore	velocity	was	predicted	from	the	observed	maximum	distance	Pg	

aeciospores	travelled.	Predicted	velocities	for	a	single	aeciospore	reached	up	to	64.29	m/s.	
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Figure	2.11.	Increasing	the	radius	of	a	spore	would	decrease	the	initial	velocity	needed	to	reach	the	same	

distance.	The	predicted	velocity	of	release	for	Pg	aeciospores	to	reach	the	maximum	distances	observed	was	

plotted	 for	 different	 values	 of	 a	 (radius	 of	 the	 aeciospore).	 Radius	 of	 aeciospore	 is	 determined	 to	 be	

approximately	10	µm	(hence	the	diameter	is	20	µm,	red	line),	but	if	this	value	increases,	the	predicted	velocity	

decreases.	The	value	of	the	radius	in	the	formula	can	increase	by	aeciospores	clustering	together	into	groups	

that	 have	 a	 radius	 equal	 to	 2,	 3,	 4	 or	 5	 times	 the	 real	 aeciospore	 radius.	 Aeciospores	 grouped	 as	 shown	

underneath	the	x-axis	would	thus	be	able	to	travel	the	same	distance	with	a	lower	velocity.	
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2.4.5 Aeciospores	are	released	in	groups	to	achieve	greater	distances	

The	discrepancy	detected	in	the	previous	section	between	the	expected	velocity	of	single	

aeciospores	and	 the	observed	ones	using	 the	HS	camera	 suggests	aeciospores	 could	not	

achieve	 great	 distances	 at	 the	 observed	 velocities.	 However,	 aeciospores	 aggregating	

together	into	groups	to	increase	their	radius	would	reduce	the	effect	of	drag,	which	would	

help	them	achieve	greater	distances.	To	further	investigate	this	hypothesis,	I	examined	the	

impact	of	aeciospore	aggregation	on	distances	reached	by	these	clusters.		

SEM	imaging	of	Pg	aeciospores	shows	that	aeciospores	are	frequently	found	in	rows,	both	

inside	 and	 outside	 of	 the	 aecial	 cups	 after	 release	 (Figure	 2.12	 A).	 This	 suggests	 that	

aeciospores	are	being	released	in	rows,	with	the	bond	between	aeciospores	facilitated	by	

the	verrucose	that	aeciospores	contain	on	their	surface	(Figure	2.12	B).	This	is	consistent	

with	the	theory	that	they	are	ejected	in	groups	to	achieve	greater	distances.	Moreover,	when	

aeciospores	were	found	at	larger	distances	(more	than	4-5	cm),	they	were	rarely	identified	

as	single	aeciospores,	but	rather	as	groups	clustered	together	(Figure	2.12	D).	Aeciospores	

also	 seemed	 to	 have	 a	 trend	 of	 being	 found	 in	 bigger	 clusters	 at	 the	 furthest	 distances,	

although	this	was	not	always	observed.	Aeciospores	found	at	1.9	cm	appeared	to	be	in	rows	

of	 3-4	 spores,	 at	 2.6	 cm	 a	 big	 cluster	 of	 tens	 of	 aeciospores	 was	 found	 and	 at	 7	 cm,	

aeciospores	were	observed	to	be	in	a	block	of	hundreds	of	aeciospores.	As	the	likelihood	of	

aeciospores	 being	 released	 one	 by	 one	 into	 the	 same	 space	 is	 extremely	 low,	 it	 can	 be	

concluded	that	these	aeciospores	were	initially	released	as	clusters.	Having	showed	how	

the	increase	in	diameter	of	the	object	travelling	(i.e.	the	aggregation	of	aeciospores)	would	

influence	the	maximum	distance	reached,	it	can	be	deduced	that	these	aeciospores	could	

have	been	released	at	the	lower	velocities	observed	with	the	HS	videography	(~	1	m/s).	

Furthermore,	HS	videography	also	showed	that	groups	of	aeciospores,	released	at	the	same	

velocity	 are	 able	 to	 achieve	 greater	 distances.	 In	 Figure	 2.12	 E,	 groups	 of	 aeciospores	

released	at	the	same	time	and	velocity	are	observed	to	maintain	a	velocity	for	longer	when	

they	had	 a	 larger	 radius	due	 to	 aggregation.	Groups	of	 four	 aeciospores	 (red	 circle)	 are	

observed	to	achieve	greater	distances	than	rows	of	2-3	aeciospores	(green	circle)	in	Figure	

2.12	E.		
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Figure	2.12.	Pg	aeciospores	 could	be	 released	 in	 clusters	 to	 achieve	 greater	 initial	 distances.	 (A)	Pg	

aeciospores	are	frequently	found	in	rows	after	release.	(B)	SEM	and	(C)	TEM	imaging	shows	verrucose	that	acts	

to	potentially	adhere	aeciospores	 together.	(D)	Pg	aeciospores	 that	reached	greater	 initial	 release	distances	

were	most	commonly	found	in	clusters	of	several	aeciospores,	with	more	aeciospores	grouping	the	further	they	

were	 found.	 Images	 are	 shown	of	 aeciospore	 clusters	 identified	 at	 1.9,	 2.6,	 and	 7	 cm.	 (E)	 Larger	 groups	 of	

aeciospores	(blue	circle)	released	at	the	same	time	and	with	equal	initial	velocity	reached	greater	distances	than	

groups	of	four	aeciospores	(red	circle)	and	rows	of	two/three	aeciospores	(green	circle).	
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2.4.6 Pg	aeciospores	are	able	to	absorb	water	to	increase	volume	

As	it	has	been	reported	that	high	RH	is	an	important	factor	in	aeciospore	release	and	after	

confirming	that	water	is	likely	to	be	the	main	factor	in	aeciospore	release,	I	examined	the	

behaviour	of	aeciospores	under	high	RH	conditions,	i.e.	when	water	is	freely	available.	To	

investigate	whether	aeciospores	were	able	to	absorb	water,	we	isolated	an	aeciospore	in	a	

microscope	slide	and	added	0.1µl	of	water.	Immediately	after	adding	the	droplet,	the	spore	

started	increasing	in	volume	due	to	water	absorption.	As	it	can	be	observed	in	Figure	13A,	

the	dry	 aeciospore	 shows	a	polyhedral	 shape	 (perceived	as	 a	hexagon	 in	 this	particular	

image)	whereas	the	aeciospore	rounds	up	after	absorbing	water	(Figure	2.13	B).	The	video	

stills	in	Figure	2.13	A-B	show	the	aeciospore	before	adding	the	droplet	of	water,	at	5.56	

seconds	of	the	video,	and	the	aeciospore	displaying	a	spherical	shape	after	absorbing	water,	

at	10.58	seconds.	This	 indicates	that	 it	 took	the	aeciospore	5.02	seconds	to	become	fully	

rounded.	 The	 capacity	 of	 aeciospores	 of	 absorbing	 water	 means	 that	 under	 high	 RH,	

aeciospores	inside	an	aecial-cup	could	increase	in	volume	after	water	intake.	Considering	

how	tightly	packed	aeciospores	are	 inside	cluster	cups,	 if	 the	 increase	 in	volume	 is	high	

enough,	it	could	increase	the	pressure	inside	of	the	cups,	possibly	leading	to	its	release.	

To	calculate	the	exact	increase	in	size	of	aeciospores	after	hydration,	I	estimated	the	volume	

that	aeciospores	have	in	dry	conditions	(simulated	by	immersing	them	in	glycerol)	and	then	

compared	 them	 to	 aeciospores	 that	 had	 been	 immersed	 in	 water	 (i.e.	 in	 a	 high	 RH	

environment)	(Figure	2.13	C-D).	This	way,	I	could	estimate	the	theoretical	increase	that	

aeciospores	 can	 achieve	 when	 water	 is	 freely	 available.	 The	 images	 taken	 were	 then	

analysed	and	the	diameter	and	area	measured.	To	estimate	the	diameter,	aeciospores	were	

measured	horizontally,	vertically	and	in	diagonal	and	I	calculated	the	average	of	all	three.	

This	was	 particularly	 important	 for	 aeciospores	 immersed	 in	 glycerol	 that	 have	 a	more	

irregular	 shape.	 A	 total	 of	 26	measurements	 were	 carried	 out	 for	 those	 aeciospores	 in	

glycerol	and	33	for	those	immersed	in	water.	Aeciospores	immersed	in	glycerol	showed	an	

average	diameter	of	13.6	µm	(±	0.59	S.D.)	and	when	they	were	in	water,	they	had	an	average	

diameter	of	18.55	µm	(±	2.08	S.D.).	This	implies	an	increase	of	4.95	µm	in	diameter	from	

when	 aeciospores	 are	 dry	 (glycerol)	 to	 when	 they	 absorb	 water.	 As	 the	 S.D.	 shows,	

aeciospores	immersed	in	water	exhibited	a	higher	variability	than	those	in	glycerol,	with	

aeciospores	displaying	a	diameter	ranging	from	15.83	µm	to	22.99	µm.	Still	the	difference	

in	volume	between	the	two	conditions	was	statistically	significant,	p	<	0.01;	2-tailed	p-test	

(Figure	2.13	E).	Likewise,	an	increase	in	the	area	was	observed,	with	aeciospores	having	

an	area	of	142.34	µm	(±	11.09	S.D.)	when	immersed	in	glycerol	and	of	262.40	(±	59.41	S.D.)	

µm	when	immersed	in	water	(Figure	2.13	F).	This	represents	an	increase	of	120.06	µm	(p-
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value	<	0.01;	2-tailed	p-test).	As	shown	in	Figure	2.3	A,	aeciospores	appear	to	be	tightly	

packed	inside	of	the	aecial	cup	and	an	increase	in	volume	due	to	hydration	would	increase	

the	pressure	inside	of	the	cup.	Therefore,	it	is	reasonable	to	infer	that	aeciospores	could	be	

ejected	 due	 to	 the	 increase	 in	 pressure	 that	 the	 expansion	 of	 aeciospore	 volume	would	

produce	on	surrounding	aeciospores.	Hence,	we	decided	to	develop	a	model	of	spore	release	

that	utilised	this	knowledge	to	explain	the	potential	Pg	aeciospore	release	mechanism.		

	 	



_____________________________________________________________________ 
Chapter 2 – Decrypting the aeciospore release mechanism in Puccinia graminis 63 
 

	

	

Figure	2.13.	Pg	aeciospores	 increase	 in	volume	significantly	when	 immersed	 in	water.	 (A)	Video	 still	

before	and	(B)	after	hydration	show	an	increase	in	volume.	Aeciospores	were	immersed	in	glycerol	(C)	and	

water	(D)	and	observed	under	confocal	microscopy	to	compare	their	diameter	before	and	after	hydration.	(F)	

Aeciospores	 showed	 an	 average	 diameter	 of	 15.6	±	 0.59	 µm	 in	 glycerol	 and	 18.55	±	 2.08	 µm	 in	water.	 (F)	

Aeciospores	displayed	an	average	section	area	of	142.34	±	11.09	µm	in	glycerol	and	262.40	±	59.51	µm	in	water.	

Aeciospores	 thus	 display	 a	 statistically	 significant	 increase	 both	 in	 diameter	 (4.95	 µm	 increase)	 and	 area	

(increase	of	120.06	µm).	Asterisks	denote	statistically	significant	differences	(**:	p	<	0.01;	2-tailed	t-test).	
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2.4.7 Proposed	model	of	aeciospore	release	in	Puccinia	graminis	

As	previously	stated,	aeciospores	are	found	tightly	packed	in	rows	inside	of	aecial	cups	and	

have	been	observed	to	increase	significantly	in	volume	when	in	contact	with	water.	This	

expansion	 can	 cause	 an	 increase	 of	 pressure	 that	 could	 lead	 to	 aeciospore	 liberation.	

Following	 this	 principle,	 a	mathematical	model	was	developed	 in	 collaboration	with	Dr.	

Mark	 Blyth	 (UEA)	 to	 explain	 this	 process.	 The	model	 proposes	 that	 after	 hydration	 the	

interspore	gaps	become	perfused	with	water	so	that	each	aeciospore	becomes	coated	with	

a	thin	lubrication	film.	This	film	acts	in	two	important	ways:	first,	it	substantially	lowers	the	

shear	 force	 between	 aeciospores	 that	 opposed	 translation,	 and	 second	 it	 tolerates	 a	

substantial	load	similar	to	a	slider	bearing.	The	result	is	that	a	single	aeciospore	can	impose	

a	substantial	force	on	its	neighbouring	aeciospores	(modelled	here	as	two	diverging	walls),	

this	force	being	mediated	by	the	lubrication	film	(Figure	2.14).	Aeciospores	are	modelled	

as	 cuboids	 whose	 sides	 are	 parallel	 to	 the	 walls	 of	 neighbouring	 spores.	 When	 the	

aeciospore	expands	due	 to	water	 intake,	 the	gap	between	aeciospores	 is	reduced,	which	

could	 generate	 a	 ‘squeeze-film’	 effect	 whereby	 a	 force	 is	 generated	 along	 the	 axis	 of	

symmetry.	The	aeciospore	would	then	acquire	momentum	in	the	x	direction	and	would	be	

ejected	from	the	aecial-cup	at	a	velocity	V.	Two	parameters	were	key	for	the	model	and	were	

estimated	here.	First,	the	rate	at	which	aeciospores	increase	its	radius,	i.e.	the	rate	at	which	

the	 space	 between	 neighbouring	 aeciospores	 close.	 Second,	 the	 initial	 size	 of	 the	 gap	

between	aeciospores.	
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Figure	2.14.	Diagram	of	Pg	aeciospore	release	mechanism.	(A)	Aeciospores	are	highly	packed	forming	rows	
in	aecial-cups.	(B)	When	water	is	splashed	on	the	cups,	aeciospores	absorb	water	and	increase	their	volume	(C).	
This	increments	the	pressure	inside	the	cup,	and	the	water	acts	as	a	lubrication	film	(D)	that	leads	spores	to	be	
discharged	outside	of	the	cup	(E,	F).	
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To	estimate	the	rate	of	increase	in	radius	after	aeciospores	absorb	water,	the	cross-sectional	

area	was	estimated	before	and	after	immersing	them	in	water.	Calling	this	A(t)	

6 = 78&	

Where	r(t)	is	the	radius	of	the	spore.	Differentiating	with	respect	to	t,	and	substituting	r	
"6
"9

= 278
"8
"9
= 2√67

"8
"9
	

Hence	
"8
"9
=

1

2√67
	
"6
"9
	

The	rate	at	which	the	area	changes	is	approximated	by	the	difference	between	the	cross-

sectional	area	before	and	after	divided	by	the	time	that	took	for	aeciospores	to	increase	in	

volume,	i.e.		
"6
"9

≈
6+-)%$ − 6.%-#$%

=
	

and	

6 ≈
1
2
(6+-)%$ + 6.%-#$%)	

A	total	of	6	measurements	from	videos	(Figure	2.13	A)	were	done,	resulting	on	a	median	

value	of	the	rate	of	water	absorption	for	aeciospores	("8 "9⁄ )	of	0.56	s-1.	

To	calculate	the	size	of	the	gap	between	aeciospores,	TEM	images	were	used	to	measure	the	

space	that	exists	between	neighbouring	aeciospores.	Measurements	were	taken	from	the	

bottom,	medium	and	top	of	the	aecial	cup	to	get	a	representation	of	the	possible	space	size	

that	 can	 be	 occur	 between	 neighbouring	 aeciospores	 within	 the	 cap.	 A	 total	 of	 138	

measurements	were	taken,	resulting	in	an	average	of	1.96	µm,	with	a	minimum	of	0.462	µm	

and	a	maximum	of	7.464	µm,	near	the	top	of	the	cup	(Figure	2.15).	Thus,	an	average	of	1.96	

x10-6	m	was	used	for	the	value	of	the	initial	gap	size	in	the	model.	

A	 detailed	 explanation	 of	 the	model	 is	 included	 in	 (Annexe	 6.1).	 A	 range	 of	 predicted	

ejected	velocities	was	estimated	that	 fluctuates	between	0.1-0.7	m/s,	as	 it	was	observed	

using	HS	 videography.	 Since	 some	of	 the	parameters	 included	 in	 the	model	were	 rough	

estimates,	 the	predicted	values	of	 the	 launch	 speed	 should	be	 treated	with	 caution.	The	

order	of	magnitude	of	the	estimate	is	however	within	the	range	of	what	was	observed,	and	

thus	the	model	is	consistent	with	the	experimental	data	gathered.	
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Figure	2.15	The	space	between	aeciospores	was	measured	using	TEM.	(A,	B)	A	total	of	138	measurements	
were	taken	using	TEM	images	from	the	bottom,	middle	and	top	of	the	aecial	cup.	(C)	The	size	of	the	gap	between	
neighbouring	aeciospores	varied	between	0.462	up	to	7.464	µm,	with	an	average	of	1.96	µm.	
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2.5 Discussion	

2.5.1 High-speed	videography	allows	us	to	determine	aeciospore	launch	speed		

Release	mechanisms	of	fungal	spores	have	been	studied	for	a	long	time	(Micheli,	1729)	and	

before	HS	 videography	was	 used,	 estimates	 of	 release	 velocities	were	 carried	 out	 using	

various	methods	(Ingold	&	Hadland,	1959;	Page	&	Kennedy,	1964).	However,	these	were	

not	very	accurate,	and	the	use	of	HS	videography	has	permitted	the	measurement	of	launch	

speeds	unambiguously	(Yafetto	et	al.,	2008).	In	this	chapter,	I	used	a	HS	camera	to	record	

the	release	of	Pg	aeciospores	from	aecial-cups.	To	my	knowledge,	this	is	the	first	time	that	

aeciospore	 discharge	 has	 been	 observed	 in	 detail	 and	 recorded.	 Ejection	 velocities	

calculated	here	oscillated	between	0.1-0.7	m/s,	with	a	median	of	0.2	m/s.	These	values	are	

similar	 to	 that	 observed	 in	 other	 Basidiomycota	 when	 releasing	 basidiospores	 via	 the	

Buller’s	drop	mechanism	(Table	2.1).	However,	it	is	considerably	slower	than	the	observed	

for	 ascospores	 (in	 Ascomycota)	 released	 using	 the	 squirt-gun	 mechanism	 (14-21	 m/s,	

Table	 2.1).	 For	B.	 ranarum,	 that	 uses	 a	 rounding-off	mechanism	 (Ingold,	 1934),	 launch	

speeds	were	also	higher	than	what	was	observed	for	aeciospores.	

Table	2.1.	Spore	launch	speeds	for	a	range	of	fungi.	Discharge	velocities	for	a	range	of	fungi	using	different	
mechanism	of	spore	release.	Values	vary	slightly	between	species	even	with	the	same	mechanism.		

Species	 Launch	Speed	(m/s)	 Mechanism	 Reference	

Ascobolus	immersus	 14	 Squirt-gun	 (Yafetto	et	al.,	2008)	

Podospora	anserina	 21	 Squirt-gun	 (Yafetto	et	al.,	2008)	

Basidiobolus	ranarum	 4	 Rounding-off	 (Yafetto	et	al.,	2008)	

Armillaria	tabescens	 0.6	 Buller’s	drop	 (Fischer	et	al.,	2010)	

Gymnosporangium	juniper-

virginianae	
1.1	 Buller’s	drop	 (Fischer	et	al.,	2010)	

Auricularia	auricula	 0.8	 Buller’s	drop	 (Noblin	et	al.,	2009)	

Aleurodiscus	gigasporus	 0.53	 Buller’s	drop	 (Fischer	et	al.,	2010)	

Pilobolus	kleinii	 9	 Squirt-gun	 (Yafetto	et	al.,	2008)	

	

Looking	 at	 the	ultrastructure	 of	 spores	 and	 the	 fruiting	body	 can	help	 elucidate	 release	

mechanisms	(Meredith,	1973).	In	terms	of	aeciospores,	it	was	suggested	that	the	granules	

on	 the	 surface	 of	 aeciospore	 had	 a	 role	 in	 aeciospore	 discharge	 (Gregory,	 1961).	 These	

granules	are	thought	to	aid	in	a	similar	way	that	a	marble	would	help	a	tennis	ball	leap	high	
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into	the	air:	“if	a	tennis	ball	is	pressed	down	against	a	table	and	released,	it	would	barely	

leave	the	table,	but	if	it	is	pressed	down	over	a	marble	on	the	table,	it	would	be	released	

high”	 (Savile,	 1954).	 This	 has	 yet	 to	 be	 confirmed,	 since	 no	 differences	 in	 discharge	

distances	were	found	between	species	that	either	contain	or	lack	these	plugs.	A	correlation	

has	however	been	observed	between	aeciospore	size	and	distance	 travelled,	with	 larger	

spores	being	released	further	(12-13.5	mm	for	P.	podophylli	versus	3-6	mm	P.	andropogonis)	

(Savile,	1954).	These	differences	could	be	explained	by	the	effect	of	drag,	which	would	be	

smaller	in	larger	spores,	thus	allowing	them	to	travel	further.	A	way	to	evaluate	the	role	of	

granules	in	aeciospore	discharge	would	be	to	estimate	the	velocity	of	aeciospore	discharge	

for	fungi	with	and	without	these	plugs	and	compare	both	launch	speeds	to	see	if	initial	speed	

increases	when	granules	are	found.	Surface	roughness	is	known	to	have	an	effect	in	particle	

motion	during	collisions	and	also	 in	adhesive	 interactions	(Wilson,	Dini,	&	Van	Wachem,	

2017).	 An	 increasing	 grain	 size	 has	 been	 observed	 to	 help	 maintain	 kinetic	 energy	 for	

certain	materials	(Sandeep,	Luo,	&	Senetakis,	2020).	Thus,	large	granules	in	the	surface	of	

aeciospores	might	indeed	have	a	role,	even	if	their	occurrence	is	not	intentional	but	only	a	

by-product	of	verrucose	formation.	

Velocity	of	release	had	been	calculated	in	the	past	for	several	fungi	using	distance	of	release	

(Fischer	et	al.,	2004;	Trail,	Gaffoor,	&	Vogel,	2005).	However,	these	methods	were	limited	

by	drag	assumptions.	The	estimation	of	the	effect	of	the	drag	in	small	particles	is	not	trivial	

and	much	work	has	been	done	in	this	field	(Purcell,	1977;	Vogel,	2005).	The	equation	used	

here	 proved	 to	 be	 accurate	 when	 predicting	 spore	 launch	 speeds	 using	 the	 distance	

travelled	(Pringle	et	al.	2017).	The	effect	of	drag	in	the	aeciospores	after	leaving	the	aecial-

cup	can	be	observed	in	their	trajectories.	Trajectories	of	ballistospores	had	been	previously	

predicted	(Fischer	et	al.,	2010),	however,	to	my	knowledge	the	full	trajectory	of	the	spore	

from	release	until	fall	had	never	been	shown	before	for	any	other	rust	fungi.		

2.5.2 Pg	aeciospores	are	released	in	groups	to	achieve	greater	distances	

Distances	reached	by	aeciospores	after	release	observed	 in	the	videos	differed	with	that	

observed	 after	 leaving	 them	 to	 release	 for	 a	 few	 hours	 in	 a	 closed	 environment.	

Observations	with	the	high-speed	camera	showed	spores	travelling	around	0.11-0.77	mm	

(median:	0.4	mm)	before	 starting	 to	 fall.	Nonetheless,	distance	 travelled	under	different	

temperature	conditions	ranged	from	a	maximum	of	5.5	mm	up	to	71.2	mm.	This	maximum	

value	 is	 considerably	higher	 than	 that	previously	 reported,	which	was	3	 -	7	mm	(Savile,	

1954),	although	these	values	from	the	literature	are	presumably	for	single	aeciospores.		
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Release	 of	Pg	 cluster-bombs	 had	 already	 been	 reported	 and	 found	 to	 reach	 up	 to	 1	 cm	

(Coons,	1910).	Here,	aeciospore	clusters	were	mostly	found	reaching	distances	above	2	cm,	

and	 a	 maximum	 of	 7.12	 cm.	 These	 results	 suggest	 that	 aeciospores	 could	 be	 grouping	

together	as	a	way	of	achieving	greater	distances	when	being	released.	This	is	a	very	well	

observed	 behaviour	 in	 fungi	 (Ingold,	 1928,	 1939).	 Grouping	 spores	would	 increase	 the	

mass-air	drag	(m/z)	ratio	which	would	allow	spores	to	travel	further.	This	could	however	

affect	the	posterior	spore	dispersal	since	small	and	light	objects	can	be	carried	more	easily	

in	the	wind	(Pringle	et	al.	2017).	Observations	of	clusters	after	release	revealed	that	single	

aeciospores	 were	 sometimes	 found	 near	 these	 clusters,	 which	 could	 indicate	 that	

aeciospores	might	 also	 be	 able	 separate	 after	 release	 to	 achieve	 greater	 distances.	 	 The	

capacity	 of	 aeciospores	 to	 cluster	 could	help	 them	achieve	 greater	distances	which	 as	 a	

consequence	will	enable	them	to	propagate	further	to	reach	their	primary	host	(wheat	in	

the	case	of	Puccinia	graminis	f.	sp.	tritici).	If	aeciospores	are	then	able	to	disperse,	it	will	help	

them	start	an	infection	and	thus	continue	their	life	cycle.	

2.5.3 Temperature	does	not	seem	to	have	a	direct	effect	 in	 the	mechanism	of	Pg	

aeciospore	release	

Understanding	 the	variables	 that	 influence	spore	discharge	can	help	predict	and	control	

disease	dynamics	(Fourie,	Schutte,	Serfontein,	&	Swart,	2013).	Environmental	factors	are	

known	 to	 affect	 highly	 spore	 release	 (Mims	 et	 al.,	 1980).	 Some	 of	 these	 include	 (i)	

temperature,	 as	 it’s	 the	 case	 of	 basidiospore	 release	 of	 Paxillus	 panuoides	 (McCracken,	

1987),	(ii)	humidity	(Johansson,	Lönnell,	Rannik,	Sundberg,	&	Hylander,	2016)	or	(iii)	light,	

as	shown	for	 for	Venturia	 inaequalis	 (Brook,	1969),	or	even	alternating	 light/dark	as	 for	

Chondrostereum	purpureum	 (Spiers,	 1985).	 Although	 in	most	 cases,	 spore	 release	 is	 not	

affected	by	just	one	variable,	but	it	is	a	combination	of	several	factors	(Grove,	1991).	In	the	

case	of	Pg	aeciospores,	 release	has	been	associated	mainly	with	high	 levels	of	RH.	Here,	

aeciospore	release	was	observed	under	different	temperature	conditions	and	no	significant	

differences	were	found	between	experiments.	This	suggests	that	the	range	of	temperatures	

tested	here	(5	to	37	ºC)	does	not	have	a	role	in	spore	release	and	does	not	affect	how	far	

away	 aeciospores	 are	 discharged.	 Although	 certain	 pattern	 can	 be	 observed,	 with	 an	

increase	in	distance	reach	at	18-25ºC,	variation	is	too	high	between	replicates,	so	further	

work	would	be	required.	Besides,	aecial	and	leaf	stage	of	samples	was	not	considered	here,	

and	future	work	would	include	testing	differences	in	release	under	different	temperatures	

with	samples	collected	at	the	same	stage	of	infection.	

Periodicity	 in	 spore	 liberation	 is	 a	 commonly	 observed	 and	well	 reported	 phenomenon	

(Pady,	Kramer,	&	Clary,	1967;	Stępalska	&	Wołek,	2009).	Many	fungal	spores	are	believed	
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to	have	cycles	of	release	associated	with	numerous	factors	(Kadowaki,	Leschen,	&	Beggs,	

2010).	These	factors	can	be	related	to	weather	conditions	that	trigger	spore	release,	but	

that	is	not	the	case	for	all	pathogens	(Hirst,	1953).	Periodicity	in	aeciospore	discharge	was	

previously	reported	for	Puccinia	andropogonis	(Pady	et	al.,	1967).	Observations	in	several	

rust	species	confirmed	aeciospores	were	more	frequently	found	at	night-time	(Kramer	et	

al.,	1968).	However,	these	peaks	in	release	not	only	coincided	with	periods	of	high	RH,	but	

spore	 release	 was	 also	 observed	 during	 daytime	 rains.	 Studies	 of	 liberation	 periods	 in	

Gymnosporangium	 showed	 a	 clear	 correlation	 between	 high	 RH	 or	 rain	 and	 aeciospore	

release	 (Pady	 et	 al.,	 1969).	 Periodicity	 observed	 previously	 can	 therefore	 be	 biased	 by	

environmental	factors,	which	would	indicate	that	water	availability	is	the	key	requirement	

for	 spore	 release.	 Here,	 aeciospore	 release	 was	 always	 observed	 after	 spraying	 them	

directly	with	water	or	placing	the	lesion	on	water	to	induce	water	intake.	This,	together	with	

the	lack	of	effect	of	the	range	of	temperatures	tested	here,	contributes	to	the	hypothesis	that	

water	absorption	by	aeciospore	 is	a	prominent	 factor	 influencing	their	ejection	from	the	

aecial	cups	(Kramer	et	al.,	1968).	

2.5.4 The	 increase	 in	 Pg	 aeciospores	 via	 water	 absorption	 likely	 contributes	 to	

spore	discharge	

Water	 absorption	 by	 aeciospores	 has	 been	 previously	 reported	 (Mims	 et	 al.,	 1980).	

Aeciospores	were	observed	to	increase	in	volume	when	sprayed	with	water	(Kramer	et	al.,	

1968).	Here,	 I	measured	 the	precise	 increase	 in	area	and	diameter	of	 aeciospores	when	

immersed	in	water.	The	rate	at	which	aeciospores	are	able	to	expand	was	also	determined	

using	videography.	This	expansion	of	up	to	5	µm	(almost	half	of	their	initial	diameter)	could	

indeed	increase	the	pressure	in	aecial-cups	which	would	lead	them	to	take-off,	as	previously	

determined	(Kramer	et	al.,	1968).	Spore	liberation	based	on	cell	turgidity	has	been	observed	

in	 other	 species,	 such	 as	 in	Peronossclerospora	 philippinensis	 (Downy	mildew	 of	maize)	

(Weston,	1923)	and	Basidiobolus	ranarum	(Ingold,	1934).	This	kind	of	release,	even	if	the	

norm	 for	 Pg	 aeciospores,	 does	 not	 occur	 in	 all	 rust	 fungi,	 as	 it	 is	 the	 case	 of	

Gymnosporangium	Juniperi-virginianea	that	needs	dry	conditions	for	spores	to	escape	(Pady	

et	al.,	1969).	To	illustrate	how	this	may	happen,	we	built	a	mathematical	model	that	includes	

the	details	observed	in	aeciospore	release.	Predictions	with	mathematical	models	should	be	

taken	with	caution,	especially	when	parameters	are	an	approximation	(Breckling,	2002).	

However,	modelling	can	help	us	represent	a	biological	mechanism	and	prove	whether	it	is	

plausible	(Fischer	et	al.,	2010).	The	model	developed	here	gives	a	plausible	explanation	to	

the	hypothesis	of	aeciospore	release	mechanism.	An	assumption	is	made	regarding	the	film	

that	 forms	 between	 aeciospores,	 for	 which	 no	 clear	 evidence	 has	 been	 obtained.	
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Presumably,	 if	 water	 enters	 the	 aecial	 cup	 and	 there	 are	 gaps	 occurring	 between	

aeciospores,	it	can	be	assumed	that	water	would	perfuse	between	the	gaps,	hence	forming	

said	film.	However,	this	does	not	imply	that	this	is	the	definite	mechanism	of	how	aeciospore	

release	 occurs,	 since	 other	 mechanisms	 could	 be	 plausible.	 In	 fact,	 other	 models	 were	

considered	 previous	 to	 the	 one	 described	 in	 this	 thesis,	 such	 as	 a	 ‘spring-release’	

mechanism	(Ilton	et	al.,	2018).	For	said	model,	the	elasticity	of	aeciospores	would	be	a	key	

parameter	and	its	calculation	would	have	been	necessary.	Future	work	would	include	this,	

using	Atomic	Force	Microscopy,	as	done	for	other	fungi	such	as	Aspergillus	nidulans	(Zhao,	

Schaefer,	 &	 Marten,	 2005).	 Measuring	 the	 force	 needed	 to	 break	 the	 bond	 between	

aeciospores	would	also	be	a	nice	addition	to	the	model,	and	a	good	way	to	test	whether	the	

force	being	produced	with	the	proposed	model	would	be	enough	to	break	said	bond	(Noblin,	

Yang,	&	Dumais,	2009).	Here,	it	is	proposed	that	water	availability	is	the	only	requirement	

for	aeciospore	release.	This	model	could	be	adapted	to	other	rust	fungi	by	substituting	the	

key	parameters	 included	 in	 the	model,	 such	as	H0	 (the	 initial	 gap),	d	 (the	 rate	of	 radius	

increase)	and	l	(the	diameter	of	the	aeciospore).	These	last	two	parameters	might	not	differ	

in	close	Puccinia	species,	although	the	differences	 in	aeciospore	morphology	among	rust	

species	 suggests	 that	 h0	 could	 vary	 which	 would	 affect	 the	 velocity	 of	 release	 (Lee	 &	

Kakishima,	1999;	Mims	et	al.,	1980;	Zwetko	&	Blanz,	2012).	The	model	developed	here	is	a	

good	 representation	 of	 how	 ejection	 could	 occur	 by	 just	 the	 effect	 of	 rounding-off	 after	

water	absorption.	

2.6 Conclusion	

High-speed	 videography	 was	 used	 to	 study	 the	 mechanism	 of	 aeciospore	 discharge	 in	

Puccinia	graminis.	Aeciospores	were	observed	to	have	a	median	launch	speed	of	0.24	m/s	

that	decreases	rapidly	due	to	the	effect	of	drag.	Aeciospores	were	able	to	reach	distances	of	

up	to	7	cm,	higher	than	previously	reported.	Aeciospores	travelling	more	than	2	cm	were	

found	 forming	 clusters	 which	 could	 be	 a	 mechanism	 to	 achieve	 greater	 distances.	

Aeciospore	release	was	observed	to	be	independent	from	the	temperature	range	tested	and	

triggered	 largely	 by	 water	 availability.	 Water	 intake	 led	 aeciospores	 to	 increase	 their	

volume	 significantly,	 up	 to	 a	 diameter	 increase	 of	 5	 µm.	 This	 expansion	 generates	 an	

increment	 in	 pressure	 inside	 of	 the	 aecial	 cups	 that	 may	 lead	 to	 their	 expulsion.	 The	

mechanism	of	release	was	modelled	using	lubrication	theory	that	proved	to	be	a	plausible	

method,	 with	 predicted	 velocities	 being	 similar	 to	 that	 observed.	 This	 suggest	 that	 the	

hypothesis	that	water	availability	is	the	key	factor	in	aeciospore	release	is	reasonable	and	

this	information	could	potentially	be	used	to	predict	aeciospore	ejection	in	the	field.		
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Chapter	3							 Modelling	 Pgt	 aeciospore	 dispersal	 after	
release	from	barberry	bushes	

	

3.1 Abstract	

Like	many	 rust	pathogens,	 the	wheat	 stem	rust	pathogen,	Puccinia	graminis	 f.	 sp.	 tritici,	

requires	 two	 hosts	 to	 complete	 its	 life	 cycle,	with	 asexual	 reproduction	 taking	 place	 on	

wheat	and	sexual	reproduction	completed	on	various	Berberis	spp.,	where	recombination	

can	give	place	to	novel	virulent	genotypes.	Historically	the	removal	of	common	barberry	(B.	

vulgaris)	that	is	highly	susceptible	to	stem	rust	infection	reduced	the	intensity	of	stem	rust	

epidemics	by	breaking	the	Pgt	cycle.	However,	recently	barberry	planting	has	reinitiated,	

and	new	stem	rust	foci	of	infection	have	been	reported	in	western	Europe.	Therefore,	there	

is	 a	deep	 sense	of	 urgency	 to	 establish	 the	 role	 of	 common	barberry	 in	harbouring	 and	

enhancing	the	diversity	of	wheat	rusts	in	the	UK.	Mathematical	modelling	can	help	us	assess	

the	risk	of	planting	barberry	near	wheat	fields	by	using	dispersal	models	to	investigate	how	

far	away	aeciospores	could	travel.	Two	key	measurements	are	needed	to	generate	accurate	

dispersal	models:	(i)	the	amount	of	inoculum	being	produced	and	(ii)	environmental	factors	

that	influence	dispersal	and	survival	of	spores.	Here,	I	examined	the	number	of	aeciospores	

contained	in	infected	barberry	leaves,	with	an	average	of	7,111	aeciospores	found	per	aecial	

cup	and	8.29	cups/mm2	within	an	aecium.	The	effect	of	temperature	(5-30	ºC)	on	source	

strength	was	also	evaluated	and	no	effect	was	observed,	although	only	2.96	%	of	predicted	

aeciospores	were	actually	found	to	be	released.	This	information	was	used	in	a	Gaussian	

Plume	Model	 to	predict	how	 far	aeciospores	 could	 travel	 from	barberry	bushes.	A	user-

friendly	webapp	 that	 includes	 real-time	weather	 data	was	 then	 developed	 to	make	 the	

model	 accessible	 to	 the	 widest	 demographic.	 This	 tool	 can	 help	 evaluate	 the	 threat	 of	

barberry	bushes	that	are	infected	with	stem	rust	in	spreading	inoculum	to	adjacent	wheat	

fields	and	identify	those	that	need	careful	monitoring.	

	

3.2 Introduction	

3.2.1 The	risk	of	barberry	bushes	

Out	of	all	the	wheat	rust,	Puccinia	graminis	tritici	(Pgt),	that	causes	stem	rust	(SR),	has	been	

causing	 severe	 epidemics	 since	 the	 beginning	 of	 agriculture	 (Arya	 &	 Perelló,	 2010).	 As	

mentioned	in	the	introduction,	this	pathogen	has	a	complex	life	cycle	that	includes	two	plant	
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hosts:	 a	 cereal	 crop	 (wheat	 or	 barley)	where	 it	 undergoes	 asexual	 reproduction	 and	 an	

alternate	host	 (barberry)	 that	 is	 necessary	 to	 carry	out	 sexual	 reproduction	 (Jin,	 2011).	

Common	barberry	(Berberis	vulgaris)	bushes	were	brought	to	Europe	from	Asia	and	were	

frequently	used	as	field	hedges	because	of	their	density	and	sharp	spines	(Barnes,	Saunders,	

&	Williamson,	2020).	The	relation	of	Pgt	with	common	barberry	bushes	has	been	observed	

for	a	long	time,	before	the	role	of	the	alternate	host	was	fully	understood.	European	farmers	

soon	realised	that	growing	barberries	near	cereals	caused	SR	epidemics	in	their	fields.	This	

led	to	a	law	being	passed	in	Rouen	(France)	to	forbid	the	growing	of	SR-susceptible	barberry	

bushes	in	1660,	more	than	200	years	before	DeBary	showed	that	rust	infecting	barberry	in	

spring	was	the	same	that	infected	cereals	later	in	summer	(Pipal,	1918).	The	eradication	of	

common	barberry	was	shown	to	be	an	effective	method	to	stop	SR	epidemics	on	wheat	and	

led	to	almost	its	complete	extinction	in	many	European	countries	(Berlin,	Djurle,	Samils,	&	

Yuen,	 2012;	 Alan	 P.	 Roelfs,	 2010).	 Likewise,	 in	 the	US,	 eradication	 programs	 to	 remove	

common	barberry	from	1918-1980s	managed	to	reduce	the	intensity	of	wheat	SR	epidemics	

and	the	number	of	Pgt	races	(Wang,	Wan,	&	Chen,	2015).	

However,	legislation	to	restrict	barberry	planting	in	western	Europe	has	long	since	lapsed	

and	planting	of	this	popular	shrub	has	reinitiated	alongside	reports	in	recent	years	of	new	

SR	foci	of	infection	after	many	decades	of	absence	(Saunders,	Pretorius,	&	Hovmøller,	2019).	

In	the	UK,	SR	was	recorded	in	2013	on	wheat	for	the	first	time	in	60	years	(Lewis	et	al.,	

2018).	The	isolate	found,	that	belonged	to	the	‘Digalu’	race,	was	reported	to	be	able	to	infect	

over	80	%	of	current	UK	wheat	varieties.	Isolates	from	the	same	race	had	also	been	found	

in	2013	in	Germany	and	Denmark	(Lewis	et	al.,	2018).	In	2017,	an	outbreak	of	wheat	SR	

was	reported	 in	Sweden,	near	an	area	where	common	barberry	had	been	re-established	

(Berlin,	2017).	This	 repopulation	of	 common	barberry	has	given	SR	a	 chance	 to	 survive	

between	crop	seasons	through	the	production	of	overwintering	teliospores	that	will	in	turn	

produce	basidiospores	when	they	germinate,	being	then	able	to	infect	susceptible	barberry.	

Once	 the	 pathogen	 is	 on	 the	 alternate	 host,	 it	 can	 complete	 sexual	 reproduction	 and	

recombine	 which	 could	 originate	 novel	 genotypes	 and	 races	 (Berlin	 et	 al.,	 2012).	 Pgt	

aeciospores	containing	these	new	genotypes	can	be	carried	by	the	wind	and	reach	wheat	

fields	nearby,	occupying	a	new	niche	through	novel	virulence	phenotypes.	Once	they	infect	

wheat,	they	can	produce	more	inoculum	that	can	then	be	dispersed	to	wheat	fields	further	

away,	which	has	the	potential	to	lead	to	a	large	SR	epidemic	in	the	UK.	

Common	barberry,	apart	from	an	alternate	host	for	Pgt	and	other	Puccinia	graminis	(Pg)	

formae	speciales,	is	an	essential	habitat	for	various	species,	such	as	the	barberry	carpet	moth	

(Pareulype	 berberata).	 Larvae	 of	 this	moth	 rely	 on	 this	 bush	 as	 a	 food	 source	 and	 thus	
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common	barberry	eradication	drove	the	barberry	carpet	moth	to	near	extinction	(Waring,	

2004).	Hence,	there	is	a	need	for	a	balance	between	increasing	the	population	of	this	species	

by	re-planting	barberry	bushes	and	managing	the	risk	that	SR	can	pose	to	UK	agriculture.	

In	 order	 to	 address	 this	 problem,	 it	 is	 crucial	 to	 understand	 how	 Pgt	 aeciospores	 are	

disseminated	 from	 their	 production	 source	 in	 barberry	 bushes	 to	 their	 cereal	 host.	

Investigating	 how	 far	 away	 aeciospores	 can	 travel	 can	 help	 us	 understand	 the	 risk	 that	

common	 barberry	 bushes	 pose	 to	 initiating	 SR	 epidemics	 and	 thus	 enforce	 careful	

monitoring	of	these	bushes.	

3.2.2 Studying	the	process	of	pathogen	dissemination	is	key	to	tackling	epidemics.	

The	process	of	air-borne	pathogen	dissemination,	 from	production	 to	deposition,	can	be	

divided	 into	 four	 main	 steps:	 inoculum	 production,	 canopy	 escape,	 dissemination	 and	

deposition	(Mahaffee	&	Stoll,	2016).	Each	one	of	these	processes	depends	on	a	number	of	

factors,	both	environmental	and	biological.	The	first	step,	inoculum	production,	depends	on	

weather	conditions	and	the	phenology	of	the	host	and	pathogen	and	the	amount	of	inoculum	

being	produced	(i.e.	 the	number	of	spores	that	will	be	released)	that	 influence	dispersal.	

Once	 generated	 and	 released,	 spores	 then	 need	 to	 escape	 the	 host	 canopy	 to	 be	

disseminated,	 which	 relies	 on	 the	 canopy	 architecture	 and	 turbulence	 (Andrade,	 Pan,	

Dannevik,	&	Zidek,	2009).	The	turbulence	that	occurs	within	a	canopy	is	defined	by	the	set	

of	wind	 gusts	 (or	 eddies)	 that	 are	 created	 and	 that	 can	 carry	 spores	 above	 the	 canopy	

(Finnigan,	2000).	The	probability	of	a	spore	to	be	transported	out	of	the	canopy	is	affected	

by	the	velocity	of	these	eddies	and	by	a	‘filtering	factor’.	This	filtering	factor	is	related	to	the	

leaf	area	index	(LAI),	i.e.	large	values	of	“leaf	area”	would	reduce	the	chance	that	a	spore	

would	be	able	to	escape	without	colliding	with	a	leaf	(Follett,	Chamecki,	&	Nepf,	2016).	This	

measurement	of	LAI	represents	how	dense	the	plant	canopy	architecture	is	and	can	be	used	

to	 estimate	 the	 vertical	 escape	 fraction	 with	 the	 following	 equation	 (De	 Jong,	 Bourdôt,	

Powell,	&	Goudriaan,	2002).	

	 ?/ = exp	[−LAI	G
H*
IJ
]	 (3.1)	

where	H* 	is	the	deposition	velocity	of	the	spores,	J	is	the	wind	speed,	and	I	represents	the	

von	Karman	 constant.	 This	 is	 a	 dimensionless	 constant	 that	 is	 often	 used	 in	 turbulence	

modelling	to	estimate	fluxes	of	momentum	heat	and	moisture	from	the	atmosphere	to	the	

land	surface	and	it	is	considered	to	be	universal	and	equal	to	0.4.	The	spores	that	leave	the	

canopy	would	then	be	carried	by	the	wind	until	they	are	deposited	onto	the	ground	or	a	new	

host.	The	dispersal	distance	will	then	depend	on	the	deposition	rate	onto	host	tissue	(Aylor,	

2003).	There	are	two	major	mechanisms	of	deposition:	wet	(in	rain	droplets)	or	dry	due	to	
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gravitational	settling	(sedimentation)	or	particle	impaction	(Mahaffee	&	Stoll,	2016).	Once	

the	 pathogen	 has	 been	 deposited	 on	 its	 host,	 the	 infection	 process	 can	 begin	 if	

environmental	factors	are	right	for	spore	germination.		

Many	studies	have	been	carried	out	taking	into	account	environmental	factors	to	predict	

infection	(El	Jarroudi	et	al.,	2017,	2020).	In	addition,	exploring	how	far	spores	can	travel	can	

give	us	more	information	about	the	possible	risk	of	pathogen	infection	in	certain	areas	(de	

Jong,	Scheepens,	&	Zadoks,	1990).	However,	studying	this	is	not	easy	and	usually	requires	a	

deep	knowledge	of	each	step	of	the	process.	Hence,	mathematical	modelling	can	help	make	

predictions	 based	 on	 basic	 knowledge	 about	 the	 system	 and	 provides	 a	 useful	 tool	 for	

investigating	spore	dispersal	(	McCartney	&	Fitt,	1985).	

3.2.3 Modelling	the	process	of	spore	dispersal	

Dispersal	 models	 are	 commonly	 divided	 into	 two	 categories:	 empirical	 and	 physical,	

mechanistic	models.	The	first	ones	consist	of	collecting	data	of	spore	(or	disease)	spread	

and	 fitting	 them	 into	 a	 function	of	 the	distance	 that	 spore	 travels	 from	 the	 source	 (Fitt,	

Gregory,	 Todd,	McCartney,	&	Macdonald,	 1987).	Whereas	 physical	models	 are	 based	 on	

turbulent	 dispersion	 theories	 and	 usually	 include	 effects	 of	wind	 currents,	 gravitational	

settling	and	deposition.	These	are	very	informative	and	frequently	more	accurate	because	

they	model	the	physical	factors	that	have	an	effect	on	the	process	of	dispersal	(Kuparinen,	

2006).	

Empirical	models	focus	on	finding	the	probability	density	function	(dispersal	kernel)	that	

represents	 how	 the	 pathogen	 spreads	 from	 the	 source,	 which	 is	 usually	 defined	 by	 a	

negative	exponential	or	power-law	function	(Fitt	et	al.,	1987).	Both	of	these	functions	seem	

to	be	able	to	explain	dispersal	relatively	well,	although	there	appears	to	be	a	preference	for	

one	or	the	other	depending	on	the	system.	For	example,	air-borne	spores	smaller	than	10	

µm	 have	 been	 observed	 to	 fit	 better	 to	 power	 law,	whereas	 spores	 dispersed	 in	 splash	

droplets	seem	to	fit	better	in	an	exponential	model	(Fitt	et	al.,	1987).	However,	most	of	the	

time	the	differences	between	dispersal	kernels	are	minor	and	are	rarely	constant	through	a	

season.	In	fact,	the	atmospheric	conditions	when	spores	are	released	have	been	found	to	

affect	the	dispersal	kernel	(Reynolds,	2011),	with	spores	being	released	during	the	warmest	

time	of	 the	day	being	more	 likely	 to	be	dispersed	over	 long	distances	 (Savage,	Barbetti,	

MacLeod,	 Salam,	&	Renton,	 2012).	Other	 factors	 that	 affect	 dispersal	 distance	 are	 spore	

release	height,	although	it	does	not	affect	small	spores	as	much	as	larger	spores,	due	to	their	

low	deposition	velocity	(Norros	et	al.,	2014).	Empirical	models	have	been	utilised	for	Pgt	

aeciospores,	using	both	power	law	and	exponential	functions	to	describe	spore	dispersal	by	
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counting	infected	stems	of	grasses	(Johnson	&	Dickson,	1919).	Fitting	the	data	into	those	

functions,	 they	 obtained	 the	 following	 equations	 that	 described	 the	 dispersal	 gradients	

observed:		

ln(N) = 12.66 − 1.05Q	

for	the	exponential	function	and		

ln(N) = 11.97 − 3.327	ln	(Q)	

for	 power	 law,	 where	 Q	 represents	 the	 distance	 downwind	 the	 source	 and	 N	 the	

concentration	of	spores.	However,	these	models	are	an	explanation	of	their	observations	

and	cannot	always	be	generalised	to	other	field	and	atmospheric	conditions.	They	are	not	

based	 on	 a	 mechanistic	 understanding	 of	 the	 spread	 of	 the	 pathogen,	 since	 they	 are	

estimated	by	averaging	disease	incidence	over	time	at	distances	from	a	local	source	(Klein,	

Lavigne,	Foueillassar,	Gouyon,	&	Larédo,	2003).	Therefore,	these	are	statistical	models	that,	

even	though	they	represent	the	observations	very	accurately,	are	not	easy	to	extrapolate	to	

other	conditions.	

For	 this	 reason,	 it	 is	more	 realistic	 to	 include	meteorological	 variables	 and	 information	

about	the	process.	Thus,	physical	models	can	be	very	helpful	since	they	allow	us	to	include	

details	 about	 the	 system	 and	 then	 evaluate	 the	 dispersal	 process	 based	 on	 those	

parameters.	 Within	 this	 category,	 models	 can	 be	 based	 on	 Eulerian	 or	 Lagrangian	

approaches	(Klein	et	al.,	2003).	Both	types	of	models	have	been	used	within	and	above	crops	

(McCartney	 &	 West,	 2007).	 Eulerian	 models	 are	 generally	 based	 on	 the	 atmospheric	

diffusion	theory	and	describe	the	dispersal	of	a	particle	by	analysing	the	position	thereof	in	

a	given	area.	On	the	other	hand,	Lagrangian	models	are	based	on	random	walk	models	that	

estimate	 the	 position	 of	 a	 particle	 at	 different	 consecutive	 time-steps	 to	 calculate	 its	

trajectory	 (Kuparinen,	 2006).	 Even	 if	 they	 tend	 to	 be	 more	 accurate	 than	 the	 Eulerian	

models	(especially	when	modelling	within	the	plant	canopy),	they	are	usually	complex	and	

computationally	very	expensive.	

In	any	case,	to	describe	spore	dispersal	accurately	it	is	crucial	to	incorporate	the	effect	of	

wind,	turbulence	and	deposition	in	the	physical	model.	Thus,	not	only	the	meteorological	

conditions	have	to	be	considered,	but	also	the	biological	information	about	the	system	(i.e.	

spore	size	and	density).	The	more	information	we	can	include	about	the	system,	the	more	

accurate	 our	 model	 would	 be.	 However,	 there	 is	 a	 trade-off	 between	 accuracy	 and	

complexity	when	 building	models	 since	 it	 is	 preferable	 to	 have	 a	 simpler	model	 that	 is	

usable.	
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3.2.4 Gaussian	Plume	Models	for	studying	spore	dispersal	

In	Eulerian	approaches,	the	pattern	that	a	particle	follows	during	dispersal	is	described	by	

an	advection-diffusion	equation.	This	equation	assumes	that	the	movement	of	the	particle	

is	 characterised	 by	 a	 homogeneous	 random	walk	 (diffusion)	 around	 deterministic	 drift	

(advection)	and	can	be	solved	by	making	certain	assumptions	(Loos,	Seppelt,	Meier-Bethke,	

Schiemann,	&	Richter,	2003).	One	of	the	solutions	for	this	is	the	Gaussian	Plume	(GP)	model,	

that	 omits	 the	 effects	 of	 deposition	 and	 spatial-temporal	 variation	 on	 the	 particle	

movement.	This	model	assumes	that	the	distribution	of	spores	in	the	air	follow	a	Gaussian	

distribution	(Spijkerboer,	Beniers,	Jaspers,	Schouten,	Goudriaan,	Rabbinge,	&	van	der	Werf,	

2002).	 This	 type	 of	model	 is	 very	 attractive	 to	 use	 because	 of	 their	 simplicity	 and	 low	

computational	requirements	(Aylor,	2003).	GP	models	have	been	widely	used	for	studying	

fungal	spore	dispersal,	such	as	for	Fusarium	graminearum	(Prussin,	Marr,	Schmale,	Stoll,	&	

Ross,	2015)	and	even	pollen	dispersal	(McCartney	&	Lacey,	1991).	They	have	also	been	used	

to	assess	the	risk	of	Chondrostereum	purpureum	infection	in	forests	(de	Jong	et	al.,	1990).	

Its	main	limitation	is	that	it	assumes	that	concentration	in	the	plume	remains	constant	and	

therefore	cannot	predict	concentration	in	nonhomogeneous	crops	or	within	the	boundary	

layer.	Besides,	it	assumes	a	unique	source	point	and	thus	it	is	not	always	applicable	when	

investigating	dispersal	in	fields	that	might	have	several	sources	of	inoculum	(Prussin	et	al.,	

2015).	 However,	 they	 have	 proved	 to	 produce	 very	 accurate	 results	 when	 studying	

dispersal,	especially	over	long	distances	(Aylor,	1999).	The	classic	GP	model	is	defined	by	

the	following	equation:	
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This	equation	contains	three	factors.	The	first	one	considers	the	number	of	spores	released	

(X,	source	strength)	and	the	wind	speed	(J),	the	second	is	the	crosswind	of	the	shape	of	the	

plume	and	the	third	one	the	shape	of	the	plume	in	the	vertical	direction.	Source	strength	is	

commonly	defined	by	the	number	of	spores	released	times	their	escape	fraction.	The	other	

two	factors	are	going	to	depend	on	the	state	of	the	atmosphere	(in	particular,	the	planetary	

boundary	layer).	Thus,	it	needs	information	about	the	environmental	conditions	to	estimate	

the	stability	of	the	planetary	boundary	layer	(Table	3.1).	The	state	of	the	atmosphere	when	
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spores	are	released	will	have	a	significant	effect	in	how	far	they	are	disseminated	(Seigneur,	

2019).		

	

Table	3.1.	 Stability	 class	of	 the	planetary	boundary	 layer	depending	on	weather	 conditions.	The	 key	
factors	are	the	moment	of	the	day	(day	or	night),	the	state	of	the	sky	(clear	or	cloudy),	the	wind	speed	in	m/s	

and	solar	radiation	(Strong:	Solar	radiation	>	600	W/m2,	Moderate:	Solar	radiation	between	300	and	600	W/m2,	
Slight:	Solar	radiation	<	300	W/m2)	(H	A	McCartney	&	Fitt,	1985)	(Turner,	1970).	

Wind	

(m/s)	

Daytime	Solar	Radiation	 Night	

Strong	 Moderate	 Slight	 Overcast	 <	3/8Cloud	 <	4/8Cloud	 Overcast	

<	2	 A	 A	-	B	 B	 D	 --	 --	 D	

2	-	3	 A	-	B	 B	 C	 D	 E	 F	 D	

3	-	5	 B	 B	-	C	 C	 D	 D	 E	 D	

5	-	6	 C	 C	-	D	 D	 D	 D	 D	 D	

>	6	 C	 D	 D	 D	 D	 D	 D	

	

	

Knowing	 the	 stability	 class	 of	 the	 atmosphere,	 that	 depends	 on	 the	 environmental	

conditions,	is	hence	key	to	model	spore	dispersal.	During	the	day,	when	the	temperature	is	

high	and	wind	speeds	are	low	(like	in	a	hot	still	day	or	a	summer	afternoon),	the	atmosphere	

is	very	unstable	(class	A-B-C),	and	the	shape	of	the	plume	will	be	looping.	This	implies	that	

the	plume	reaches	the	ground	more	easily	and	hence	spores	would	typically	be	deposited	

closer	to	the	source.	During	overcast	conditions	and	when	the	wind	speed	is	very	high,	the	

atmosphere	 is	 in	 a	 neutral	 state	 (stability	 class	 D)	 and	 the	 shape	 of	 the	 plume	 would	

resemble	 a	 cone	 (conning).	The	 spores	would	 then	be	 carried	 fairly	 far	 from	 the	 source	

before	they	reach	the	ground.	Finally,	under	stable	conditions	(E-F),	such	as	still	nights	with	

clear	skies	or	during	early	mornings,	turbulence	is	suppressed,	and	spores	could	be	carried	

longer	distances	(fanning)	(Figure	3.1).	

In	this	chapter,	I	used	a	GP	Model	to	investigate	how	far	Pgt	aeciospores	can	travel	after	

being	released	from	a	barberry	bush.	To	do	so,	I	first	evaluated	the	source	strength	in	a	Pgt-

infected	barberry	bush.	The	samples	used	for	this	purpose	were	collected	from	barberry	

bushes	 showing	 SR	 symptoms	 and	 where	 Pgt	 was	 found	 (Orton,	 Lewis,	 Davey,	

Radhakrishnan,	 &	 Saunders,	 2019).	 As	 the	 forma	 specialis	 for	 all	 samples	 could	 not	 be	

confirmed	and	no	differences	between	forma	specialis	are	expected	(Anikster,	1984),	results	
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obtained	here	are	assumed	 to	be	applicable	 for	Pgt,	 for	convenience.	Since	classification	

based	on	morphological	differences	can	be	done	using	urediniospores,	but	not	at	the	aecial	

stage	(Abbasi,	Goodwin,	&	Scholler,	2005),	this	is	a	reasonable	assumption.	The	information	

collected	about	source	strength	from	barberry	bushes	was	included	in	a	GP	Model	alongside	

weather	data	to	model	Pgt	aeciospore	dispersal.	In	addition,	I	developed	a	user-friendly	web	

interface	 that	 gathers	 real-time	weather	 data	 to	make	 the	model	more	 accessible.	 This	

provides	an	excellent	tool	for	evaluating	the	risk	that	barberry	bushes	can	pose	in	spreading	

inoculum	into	adjacent	cereal	fields.	

	

	

	

Figure	3.1.	The	shape	of	the	plume	changes	with	the	state	of	the	atmosphere.	The	atmosphere	can	be:	(i)	
unstable	(looping),	under	hot	still	conditions	(stability	class:	A,	B,	C),	(ii)	neutral	(conning)	under	overcast	and	

strong	 winds	 conditions	 (stability	 class:	 D)	 or	 (iii)	 stable	 (fanning)	 with	 clear	 skies	 and	 low	 speed	 winds	

(stability	class:	E,	F).	Thus,	spores	would	theoretically	reach	the	ground	earlier	in	unstable	conditions	and	will	

reach	greater	lengths	when	the	atmosphere	is	stable.	
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3.3 Methods	

3.3.1 Sample	collection	

Barberry	leaves	showing	SR	symptoms	were	collected	from	several	 locations	around	the	

UK.	Most	analyses	were	done	with	samples	collected	from	Brandon	(Suffolk).	The	analysis	

of	the	number	of	cups	per	aecium	was	carried	out	with	samples	from	Brandon	and	also	from	

Pleasley	Vale	(Mansfield).	Uninfected	barberry	leaves	were	also	collected	to	estimate	their	

area.	 All	 samples	were	 collected	 from	 several	 barberry	 bushes	with	 the	 help	 of	 Phoebe	

Davey,	Morgan	Gerrity,	Elizabeth	Orton	and	Clare	Lewis	(Saunders	Lab).	After	collection,	

leaves	were	placed	in	boxes	or	9	mm	petri	dishes	and	transported	back	to	the	laboratory.	

3.3.2 Scanning	Electron	Microscopy	

This	was	carried	out	as	described	in	Chapter	2,	section	2.3.6	by	Kim	Findley	(JIC).	

3.3.3 Image	analysis	

All	measurements	in	images	were	carried	out	using	ImageJ.	To	estimate	the	spore	width	in	

a	cup	and	the	length	of	the	cups,	the	“straight”	tool	was	used,	with	the	scale	as	a	reference	

(using	Analyse	>	Set	Scale).	To	calculate	the	area	of	infection	(i.e.	showing	SR	symptoms)	in	

the	leaves,	both	for	the	close-ups	and	for	the	entire	leaf,	the	“freehand	selection”	tool	was	

chosen.	After	selecting	the	region,	the	option	Analyse	>	Measure	was	used	to	obtain	the	area.	

The	same	process	was	followed	to	quantify	the	area	of	a	barberry	leaf.	

To	quantify	the	number	of	spores	per	layer	and	the	number	of	cups	per	aecia,	dots	were	

drawn	 on	 top	 of	 each	 element	 using	 Adobe	 Illustrator.	 This	was	 done	with	 the	 help	 of	

Morgan	 Gerrity	 (Saunders	 lab).	 To	 avoid	 mistakes,	 a	 python	 script	 was	 developed	 to	

quantify	the	dots	automatically	(www.github.com/vbuens/imaging/countdotspores.py).	

3.3.4 Correction	for	potential	source	strength	

To	estimate	the	number	of	aeciospores	released	from	aecial	cups,	Pgt	aecia	were	attached	

to	the	wall	of	a	square	plate,	above	microscope	slides	covered	with	2	%	water	agar.	The	

plates	were	then	left	at	5,	10,	18,	25	and	30	ºC	in	the	dark.	After	aeciospore	release,	pictures	

of	 the	 microscope	 slides	 were	 taken	 as	 shown	 in	 (Figure	 3.2	 A).	 For	 each	 picture,	

aeciospores	were	counted	to	obtain	an	estimation	of	the	number	of	aeciospores	that	had	

been	released	 “per	 row”	 (Figure	3.2	B)	and	 in	 total.	Pictures	were	 taken	at	10x	or	20x,	

representing	an	area	of	1x1.5	mm2	or	0.5x0.75	mm2	respectively.	This	was	carried	out	with	

the	help	of	Clare	Lewis	(Saunders	Lab).	To	count	the	aeciospores	per	image,	a	python	script	

was	 used	 (www.github.com/vbuens/imaging/countdotspores.py)	 and	 images	were	 then	

manually	 checked	 to	 confirm	 the	 count	 was	 correct.	 Pictures	 that	 contained	 too	 many	
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aeciospores	and	could	not	be	automatically	quantified	by	the	python	script	were	counted	

manually.	

	

Figure	3.2.	Pictures	taken	of	the	slide	surface	covered	with	aeciospores.	(A)	Pictures	were	taken	as	shown	
in	the	image,	from	a	to	b,	and	from	c	to	d,	covering	all	the	surface	with	spores.	Following	this	method,	pictures	

were	analysed	in	rows	as	shown	in	(B),	where	there	are	7	rows	of	pictures	with	the	first	being	the	closest	to	the	
source	(i.e.	the	location	where	the	aecium	was	placed).	

	

3.3.5 GP	Model	for	spore	dispersal	

To	 estimate	 the	 concentration	 of	 spores	 at	 each	 point	 downwind	 from	 the	 source	

(susceptible	barberry	bush)	we	used	the	following	GP	Model	(Spijkerboer,	Beniers,	Jaspers,	

Schouten,	Goudriaan,	Rabbinge,	&	van	der	Werf,	2002):	

T(Q, N, V, W) =
X%--

27J[23#
∙ Z

01 2!
&3"!

4
∙ Z

61(815)
!

&3#!
:
Z
61(8;51&*)

!
&3#!

:
	 (3.2)	

	

This	equation	contains	three	factors.	The	first	one	considers	the	number	of	spores	released	

per	second	(Qeff,	effective	source	strength)	and	the	wind	speed	in	m/s	(u),	the	second	is	the	

crosswind	of	the	shape	of	the	plume	and	the	third	relates	to	the	shape	of	the	plume	in	the	

vertical	direction.	The	last	two	depend	on	the	state	of	the	atmosphere.	Thus,	information	

about	wind	speed,	the	time	of	the	day	and	the	state	of	the	sky	(solar	radiation	in	W/m2	and	

percentage	 of	 cloud	 cover)	 was	 used	 to	 determine	 the	 stability	 class	 of	 the	 planetary	

boundary	layer	(Table	3.1).	This	provided	the	values	of	the	standard	deviations	sz	and	sy	

that	determine	the	shape	of	the	plume	(Table	3.2),	where:	

[5 = ^(V<))Q.							,			[2 = ^(V<)10"Q= 	
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Table	3.2.	Values	for	the	parameters	defining	sz	and	sy	depending	on	the	stability	class.	The	values	for	a,	
b,	10p	and	q	vary	depending	on	the	stability	class	of	the	atmosphere	(Spijkerboer,	Beniers,	Jaspers,	Schouten,	
Goudriaan,	Rabbinge,	&	van	der	Werf,	2002).	

Stability	Class	 a	 b	 10p	 q	

A	 0.28	 0.9	 0.527	 0.865	

B	 0.23	 0.85	 0.371	 0.866	

C	 0.22	 0.8	 0.209	 0.897	

D	 0.2	 0.76	 0.128	 0.905	

E	 0.15	 0.73	 0.098	 0.902	

F	 0.12	 0.67	 0.065	 0.902	

Here,	several	assumptions	were	made.	First,	an	escape	of	100%	was	assumed,	since	only	

Pgt-infected	 leaves	 facing	 the	outside	of	 the	barberry	bush	were	considered.	Secondly,	a	

scenario	where	all	aeciospores	are	released	at	the	same	time	and	act	together	as	a	cloud	

was	 presumed.	 Thus,	 the	 GP	model	 can	 be	 applied	 effectively.	 The	 standard	 GP	model	

disregards	deposition	and	thus	here	it	is	added	in	the	Q	factor.	The	effective	source	strength	

(Qeff)	is	defined	by	

X%-- = X"#) × `a88	 × b* × b!	

where	Qpot	is	the	potential	number	of	aeciospores	that	can	be	released,	corr	is	the	correction	

factor	to	calculate	the	aeciospores	that	are	actually	released	per	second,	Fd	is	the	fraction	of	

aeciospores	remaining	after	deposition	and	Fd	is	the	fraction	remaining	after	solar	radiation	

(Prussin	et	al.,	2015).	The	model	was	coded	and	executed	using	python3.	

3.3.6 Web	interface	design	

The	web	interface	for	the	model	was	built	using	python3	and	Django	(version	3.0.2)	as	the	

web	framework.	To	gather	weather	parameters,	the	weatherbit	application	programming	

interface	(API)	was	used	(www.weatherbit.io).	A	Django	form	was	established	to	obtain	the	

input	values	for	the	location	(latitude	and	longitude),	percentage	of	infection	of	the	bush	

and	 leaves	 and	 height	 of	 the	 source.	 All	 templates	were	 designed	 using	 HTML	 and	 CSS	

(bootstrap-4.0.0)	 for	 the	 visual	 aspects.	 The	 interactive	 options	 (such	 as	 the	 button	 to	

display	 the	weather	 options,	 the	 slides	 and	 the	 changes	 in	 leaf	 pictures	when	 selecting	

different	levels	of	infection)	were	coded	using	jQuery	(version	1.12.0),	a	JavaScript	library	

for	web	animations.	The	specific	packages	included	can	be	found	in	the	base.html	template	

on	GitHub.	The	code	for	building	the	front-end	website	and	back-end	database	is	accessible	

on	Github	(www.github.com/vbuens/sr-dispersal).	The	web	interface	is	hosted	at	the	John	

Innes	Centre	and	available	at	https://aeciospore-dispersal-model.com/.	 	
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3.4 Results	

3.4.1 Potential	source	strength	estimation	

To	obtain	an	approximation	of	the	initial	source	strength,	the	number	of	aeciospores	that	

can	 be	 produced	 within	 a	 barberry	 bush	 was	 investigated.	 To	 do	 so,	 I	 evaluated	 four	

parameters:	(i)	 the	number	of	aeciospores	contained	 in	an	aecial	cup,	(ii)	 the	number	of	

cups	 that	 occur	 per	mm2,	 (iii)	 how	many	 cups	 per	 leaf	 and	 (iv)	 the	 possible	 number	 of	

infected	leaves	per	bush.		

First,	 to	estimate	the	number	of	aeciospores	contained	within	an	aecial	cup,	SEM	images	

were	evaluated	to	determine	(i)	 the	number	of	aeciospores	per	aeciospore	 layer,	(ii)	 the	

length	(µm)	of	each	layer	and	(iii)	the	average	length	of	aecial	cups.	The	width	of	a	layer	was	

estimated	 to	 be	 13.9	 ±	 0.35	 (S.E.)	 µm	 per	 layer	 with	 an	 average	 of	 265	 ±	 8.42	 (S.E.)	

aeciospores	 found	per	 layer.	The	 length	of	aecial	 cups	was	extremely	variable	across	all	

samples,	since	it	depended	on	the	stage	of	development	at	which	they	are	collected,	ranging	

from	95	µm	 to	680.85	µm.	Significant	differences	 (p	<	0.01;	 t-test)	were	 found	between	

samples	collected	in	two	different	years.	The	average	for	2018	was	417.85	±	21.32	µm	and	

235.14	±	25.25	for	2019.	These	could	due	to	differences	in	environmental	conditions	when	

samples	were	collected.	The	average	value	of	all	samples	collected	in	2018	and	2019	was	

374.86	µm	(Figure	3.3	A).	By	multiplying	the	number	of	aeciospores	per	layer,	the	length	

of	a	layer	and	the	average	length	of	an	aecial-cup,	the	quantity	of	aeciospores	inside	an	aecial	

cup	 can	be	 approximated.	 This	 resulted	 in	 an	 average	of	 7,111.37	 aeciospores,	within	 a	

range	of	1,805	to	12,916	aeciospores.	Given	the	difficulties	in	assessing	the	length	of	aecial	

cups	in	each	instance,	the	average	of	7,111.37	aeciospores	was	used	in	subsequent	analyses.	

To	determine	the	number	of	cups	found	per	mm2,	samples	were	collected	on	three	different	

days	 from	 two	 different	 locations	 (Brandon,	 Suffolk	 and	 Pleasley	 Vale,	 Mansfield)	 and	

examined	using	microscopy	to	determine	the	number	of	cups	per	aecium	and	its	area.	This	

resulted	in	an	average	of	8.29	±	0.42	(S.E.)	cups/mm2	and	40.05	±	4.2	(S.E.)	cups	per	aecium	

(Figure	3.3	B).	Thus,	a	total	of	58,953	aeciospores	could	be	potentially	contained	per	mm2.	

To	determine	the	number	of	cups	per	infected	leaf,	the	levels	of	infection	of	barberry	leaves	

were	investigated.	The	percentage	of	the	leaf	area	covered	by	aecia	was	calculated	for	85	

barberry	 leaves	with	different	 levels	 of	 infection.	 Infected	 leaves	were	divided	 into	 four	

categories	depending	on	the	infection	level:	low	(<	1	%	of	the	leaf	covered	by	aecia),	medium	

(1-3	%),	high	(3-10	%)	and	very	high	(>	10	%).	These	categories	were	established	based	on	

the	visual	inspection	of	infection	level	in	the	barberry	leaf,	as	shown	in	(Figure	3.4).	Most	

leaves	collected	represented	low	to	medium	levels	of	infection,	with	only	a	few	being	highly	
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infected.	The	mean	for	each	of	the	groups	was	estimated	to	be	0.54	%,	1.82	%,	5.26	%	and	

17.6	 %	 for	 low,	 medium,	 high	 and	 very	 high	 levels	 respectively.	 These	 values	 would	

posteriorly	be	used	as	representative	percentages	of	infection	for	each	category.		

	

	

Figure	3.3	An	average	of	58,953	aeciospores	 could	be	 found	per	mm2.	 (A)	The	number	of	 aeciospores	
contained	 in	 an	 aecial	 cup	 was	 determined	 by	 estimating	 the	 number	 of	 aeciospores	 per	 layer	 (265),	 the	

aeciospore	width	in	a	cup	(13.9	µm)	and	the	average	length	of	an	aecial	cup	(374.86	µm).	This	results	 in	an	

average	of	7,111	aeciospores	per	aecial	cup.	(B)	The	number	of	cups	per	aecium	was	calculated	and	divided	by	
the	area	of	the	aecium.	Using	129	measurements,	an	average	of	8.29	aecial	cups	per	mm2	was	estimated	with	an	
average	of	40	aecial	cups	found	per	aecia.	Site	1	and	2	corresponds	to	Brandon,	with	samples	collected	on	the	

16th	 and	 24th	 of	 June	 2019,	 respectively.	 Site	 3	 corresponds	 to	 Pleasey	 Vale,	 also	 collected	 in	 June	 2019	
(Manfield).	

	

	 	



_____________________________________________________________________ 
Chapter 3 - Modelling Pgt aeciospore dispersal after release from barberry bushes  88 
 

	

	

	

	

Figure	3.4.	Infected	leaves	were	classified	into	four	categories	based	on	infection	level.	The	percentage	of	
leaf	covered	by	aecia	was	estimated	for	85	SR-infected	barberry	leaves.	The	measurements	were	divided	into	

four	groups	based	on	the	observed	infection	level	in	the	leaves	(represented	by	colours).	Distributions	of	the	

values	 included	 in	each	category	are	shown	in	 the	middle	of	 the	graph	with	 the	mean	represented	between	

brackets.	 On	 the	 right,	 SR-infected	 barberry	 leaves	 are	 shown	 as	 a	 representation	 for	 each	 infection	 level	

category.	
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To	generate	an	estimate	of	the	potential	number	of	cups	that	can	be	found	in	an	infected	

leaf,	 these	 values	 (0.54,	 1.82,	 5.26	 and	 17.6)	 were	 multiplied	 by	 the	 area	 of	 a	 mature	

barberry	leaf.	The	area	was	calculated	using	19	measurements,	resulting	in	an	average	of	

9.93	 ±	 4.04	 (S.D.)	 cm2.	 Using	 this	 value,	 the	 number	 of	 aecial	 cups	 per	 leaf	 could	 be	

approximated.	For	example,	for	a	leaf	with	a	low	level	of	infection	(average:	0.54	%),	the	

area	of	infection	would	be:		

0.54
100

× 9.93	`%& = 0.054	`%& = 5.36	%%&		

Knowing	 that	 there	 are	 8.29	 cups/mm2,	 in	 that	 area	 of	 infection	 there	 would	 be	

approximately	44.4	cups.	With	an	average	of	7,111.37	aeciospores	per	cup,	it	would	mean	

316,121	aeciospores	being	produced	on	a	single	leaf.	For	those	leaves	displaying	a	high	level	

of	infection	they	could	contain:	

17.6
100

× 9.93	`%& = 1.75	`%& = 174.77	%%& → 1448.83	`Jd3,	

resulting	in	an	estimate	of	10,303,206.9	aeciospores.	

To	determine	the	total	number	of	aeciospores	that	could	be	produced	in	a	single	bush,	a	

count	 of	 the	 number	 of	 leaves	 in	 a	 barberry	 bush	 was	 needed.	 To	 determine	 this,	

measurements	from	the	literature	were	obtained.	Adult	barberry	bushes	are	estimated	to	

have	58.69	±	4.60	leaves	per	branch	(Khan,	2014),	and	an	average	of	50-60	branches	per	

bush	(Ahmed,	Anjum,	Naz,	Khan,	&	Hussain,	2013).	This	would	imply	that	there	could	be	

around	3,480	leaves	in	a	barberry	bush.	I	also	quantified	the	number	of	leaves	of	a	barberry	

bush	 in	 Brandon,	 UK,	 to	 check	 the	 values	 from	 the	 literature.	 This	 revealed	 an	

approximation	of	900	leaves	in	the	side	of	the	bush	that	faced	a	barley	field	and	hence	the	

side	in	which	100%	of	aeciospores	could	be	assumed	to	be	able	to	escape	the	canopy.	This	

number	is	a	quarter	of	the	observations	from	the	literature	and	thus	considered	a	sensible	

approximation.	To	further	validate	this	estimate,	the	LAI	was	determined	using	these	values	

and	 compared	 to	 values	 in	 the	 literature.	 The	 value	 of	 LAI	 can	 be	 calculated	 using	 the	

following	formula	(Bréda,	2003):	

	 e6f =
9a9)g	hagi)jZ	)8Z)
3aig	3J8h)`Z	)8Z)

=
gZ)h	)8Z)	 × 	kJ%lZ8	ah	gZ)HZ3

j8aJk"	)8Z)
	 (3.3)	

	

For	the	ground	area,	records	were	found	that	gave	the	width	of	a	barberry	shrub	from	1	

meter	up	to	1.8	meters	(NH	Government,	n.d.),	giving	an	average	of	1.4	meters	of	width.	

That	is,	an	area	of	1.96	m2.	Substituting	the	values:	
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e6f =

9.93	 × 101>	(%&) 	× 	3480
1.96	(%&)

= 1.76	 	

This	value	is	consistent	with	previous	reports	for	Berberis	species,	which	ranged	from	1.5	

to	 3.0	 (Xu,	 Griffin,	 &	 Schuster,	 2007).	 Therefore,	 it	 can	 be	 concluded	 that,	 even	 as	 an	

approximation,	 it	 is	 reasonable	 to	 assume	 that	 these	 values	 are	 a	 good	 estimate	 for	 the	

number	of	leaves	in	the	common	barberry	bush.	

3.4.2 Correction	for	the	potential	source	strength	

In	 section	 3.4.1,	 the	 theoretical	 number	 of	 aeciospores	 that	 could	 be	 released	 was	

determined	 based	 on	 the	 area	 of	 each	 aecium	 and	 leaf	 infection	 levels	 to	 provide	 a	

prediction	of	the	potential	source	strength	(Qpot).	The	next	step	was	to	establish	the	actual	

number	of	aeciospores	released	per	second	(Q0).	

To	 assess	whether	 temperature	 should	be	 included	 in	 the	model	 as	 a	 factor	 that	 affects	

source	 strength,	 the	 effect	 of	 temperature	 on	 the	 number	 of	 aeciospores	 released	 was	

investigated.	To	do	so,	Pg-infected	barberry	leaves	were	collected,	and	aecia	left	to	release	

aeciospores	on	microscopy	slides	under	an	array	of	different	temperatures.	After	release,	

the	 microscopy	 slides	 were	 observed	 and	 the	 number	 of	 aeciospores	 released	 was	

estimated	in	each	picture	and	shown	per	row	(corresponding	to	1	mm),	as	described	in	the	

methods	 (Figure	 3.2).	 The	 cumulative	 number	 of	 aeciospores	 released	 is	 shown	 in	 the	

graphs,	where	each	colour	represents	a	row,	going	from	the	closest	row	to	the	source	(i.e.	

the	first	one)	in	a	darker	colour,	up	to	the	furthest	row	in	a	lighter	colour	(Figure	3.5).	The	

cumulative	 number	 of	 aeciospores	 released	 has	 a	 distribution	 similar	 to	 a	 Gaussian	

distribution,	where	most	of	the	aeciospores	were	deposited	in	the	centre	directly	in	front	of	

the	source.	This	was	carried	out	at	five	temperatures:	5,	10,	18,	25	and	30	ºC,	with	three	

replicates	per	temperature.	A	total	of	5-9	rows	of	pictures	were	captured	for	each	replicate.		

The	 aecium	 area	 used	 for	 each	 replicate	 was	 measured	 and	 the	 expected	 number	 of	

aeciospores	(Qpot)	calculated	based	on	estimations	from	the	previous	section.	This	number	

was	then	used	to	determine	the	ratio	of	released	aeciospores	vs	the	expected	(Figure	3.6	

A).	The	ratio	between	expected/observed	was	quite	variable,	likely	due	to	the	variations	of	

freshness	of	the	samples	that	were	also	collected	at	different	stages	of	development.	This	

was	particularly	notable	for	samples	left	at	10	ºC	where	ratios	ranged	from	0.80	%	to	12.73	

%.	To	estimate	whether	the	temperature	has	an	effect	on	the	number	of	aeciospores	that	

are	 released,	 t-tests	 were	 performed	 between	 pairs	 of	 temperatures	 that	 showed	 no	

significance	(p	>	0.05).	This	 indicates	 that	within	the	range	of	 temperatures	 tested	here,	

they	 had	 no	 effect	 on	 the	 total	 number	 of	 aeciospores	 released.	 The	 lack	 of	 significant	
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differences	 shows	 that	 source	 strength	 is	 theoretically	 not	 affected	 by	 temperatures	

investigated	 here	 and	 thus	was	 not	 be	 included	 in	 the	 Q	 factor	 in	 the	model.	 The	 ratio	

between	expected	and	observed	released	aeciospores	had	an	average	of	2.83	%	(Figure	3.6	

B).	This	indicates	that	of	the	total	number	of	aeciospores	predicted	in	the	previous	section,	

is	only	a	fraction	of	those	actually	released,	hence	a	correction	of	2.83	%	was	then	included	

in	the	model.		

	

From	this,	we	can	estimate	X<	to	be:	

X< = X"#) × 0.0283	

Since	 aecial	 cups	 typically	 released	 within	 an	 hour	 and	 then	 were	 observed	 under	 the	

microscope,	the	value	of	X<	has	to	be	divided	by	3600	to	estimate	the	number	of	aeciospores	

that	would	be	released	per	second.	

X< = X"#) ×
0.0283
3600

	)Z`ia3da8Z3	8ZgZ)3Z"/3	
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Figure	3.5.	Number	of	aeciospores	released	shows	a	normal	distribution	for	the	range	of	temperatures	
tested	(5-30	ºC).	Aecial	cups	were	left	to	release	under	different	temperatures	(5-30	ºC)	after	sprayed	with	
water.	Three	replicates	per	temperature	were	carried	out	and	aeciospores	counted	as	described	in	Figure	3.2	
B.	The	number	of	aeciospores	per	row	were	stacked,	showing	the	shape	of	a	Gaussian	distribution.	This	indicates	
that	most	of	the	aeciospores	were	deposited	in	the	centre	(i.e.	directly	in	front	of	the	aecial	cups)	and	fewer	

aeciospores	were	found	on	the	sides.	
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Figure	3.6.	No	significant	differences	in	quantity	of	aeciospores	released	were	observed	under	the	range	
of	temperatures	tested	(5-30	ºC).	(A)	The	ratio	between	the	observed	aeciospores	released	and	that	predicted	
based	on	the	area	of	the	aecium	was	estimated	for	each	temperature.	No	significant	differences	were	observed	

between	temperatures	(t-test;	p	>	0.05).	(B)	Distribution	of	the	ratios	for	all	experiments	and	temperatures.	The	
line	in	the	boxplot	represents	a	median	of	2.1	and	the	‘x’	represents	an	average	of	2.83,	that	is,	2.83	%	of	the	

predicted	aeciospores	contained	in	the	measured	aecial	area	are	actually	released.	
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3.4.3 Aeciospore	loss	due	to	deposition	and	solar	radiation	

The	basic	GP	model	used	here	assumes	that	no	aeciospores	are	being	lost	during	transport.	

However,	 this	 assumption	 is	 not	 realistic	 since	 aeciospores	 could	 be	 lost	 either	 by	

deposition	or	by	 loss	of	 viability	due	 to	 solar	 radiation.	Hence,	 I	 calculated	 the	effective	

source	strength	as		

X%-- = X< × b* × b!	

where	Fd	and	Fs	are	the	fractions	of	the	initial	source	strength	that	remain	after	being	lost	

by	 deposition	 and	 solar	 radiation	 respectively.	 The	 fraction	 of	 aeciospores	 that	 would	

survive	the	exposure	of	solar	deposition	has	the	following	form	(Aylor,	1999):	

	 b! = exp6
−"#
"∗$∗%:	 (3.4)	

	

where	f	is	the	solar	irradiance	(W/m2),	Q	is	the	distance	from	the	source	(m),	J	is	the	wind	

velocity	(m/s)	and	f∗9∗	is	the	dose	of	radiation	that	kills	a	fraction	of	1-1/e	of	the	spores.	

This	dose	has	previously	been	reported	to	be	negligible	in	this	model	for	spore	loss	and	a	

standard	value	of	20	MJ/m2	can	be	adopted	(Prussin	et	al.,	2015).	Although	this	value	has	

not	been	estimated	 for	aeciospores,	but	 for	urediniospores	of	Phakopsora	pachyrhizi,	21	

MJ/m2	results	in	a	mortality	of	63.2	%	(i.e.	the	critical	value)	(Isard	et	al.,	2006).	Thus,	this	

value	was	adopted	here.	

The	fraction	of	aeciospore	remaining	after	deposition	is	defined	by:		

	
b* = expm

−(Γ& + Γ')'
( n	 (3.5)	

where	Γ( 	and	Γ) 	are	the	inverse	time	scales	(s-1)	of	wet	and	dry	deposition	(Aylor,	1999)	
that	can	be	represented	as	(Prussin	et	al.,	2015):	

	 Γ( = 0.000272	o0.7873	 (3.6)	

and	

	
Γ) = )

2

7
	*HE
Q
+, - "Q

[F(Q)
.

G

G0
	 (3.7)	

where	o	is	the	rain	fall	rate	(mm/h),	H!	is	the	settling	velocity	of	aeciospores	and	[5 	is	the	

standard	deviation	of	the	spread	of	the	plume	in	the	z	direction.	The	integral	was	solved	for	

the	value	of	[5,	obtaining	the	following	expression	(Annexe	6.2):	
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Γ) = )

2

7
	*HE
Q
+ 1
)
/	(10V0)

0.53G−0.22Q0.22−K+1

ln(10V0) (0.53 × 0.22)
2	 (3.8)	

	

Since	 settling	 velocity	 can	 change	 depending	 on	 environmental	 conditions,	 we	 took	 a	

standard	value	of	1.13	cm/s	(Pfender	2006).	The	roughness	length	(V<)	represents	the	effect	

of	the	surface	cover	on	the	amount	of	mixing.	This	value	is	thought	to	be	related	to	canopy	

height	in	the	form	V< = 0.13ℎ	for	agricultural	crops	(Shaw	&	Pereira,	1982)	where	ℎ = 0.2	

meters.	

	

3.4.4 Pgt	aeciospore	concentration	can	be	estimated	using	a	GP	model	

Once	X%--	had	been	determined,	equation	3.2	could	be	used	to	estimate	the	concentration	

of	 aeciospores	 at	 each	point	using	weather	 conditions	 to	obtain	 values	 for	 the	 standard	

deviations	sz	and	sy,	as	indicated	in	Table	3.1	and	Table	3.2.	Here,	we	were	interested	in	

knowing	how	many	viable	aeciospores	would	be	deposited	onto	the	ground	(i.e.	z=0),	thus	

the	following	equation	is	used	to	estimate	the	concentration	at	ground	level:	

	

	
T(Q, N, 0, W) =

X%--
27J[2[5

∙ Z
01 2!
&3"!

4
∙ Z

61 8!
&3#!

:
Z
61(81&*)

!
&3#!

:
	 (3.9)	

	

In	the	equation,	W	refers	to	the	height	of	the	source,	V	to	the	roughness	length	and	"	to	the	

displacement	height.	Here,	W	is	set	at	1	m,	z0=0.026	and	d=0.11,	based	on	literature	(Shaw	

&	Pereira,	1982).	The	model	used	here	assumes	that	the	wind	is	coming	from	behind	the	

barberry	bushes	and	thus	aeciospores	are	carried	downwind	from	the	source,	in	a	straight	

line	(Figure	3.7	A).	Number	of	aeciospores	at	each	point	of	the	space	downwind	(y	axis)	

and	 cross-wind	 (x	 axis)	 from	 the	 source	 are	 represented	 in	 a	 2D	 graph,	 with	 colours	

representing	the	number	of	aeciospores	deposited	at	each	point	in	the	x,	y-axis	(Figure	3.7	

B).		

To	evaluate	the	effect	that	the	value	of	Q0	has	in	the	estimations	of	the	model,	the	number	

of	aeciospores	deposited	downwind	 from	the	source	was	determined	using	different	Q0.	

Four	different	Q0	were	used:	(i)	316,121,	(ii)1	,065,445,	(iii)	3,079,254	and	(iv)	10,303,206,	

assuming	 all	 aeciospores	 contained	 in	 a	 barberry	 leaf	 with	 the	 four	 infection	 levels	
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respectively	 (low,	medium,	high	 and	very	high)	were	 released	 at	 the	 same	 time	 (in	 one	

second).	 The	 model	 was	 run	 using	 these	 four	 values	 of	 Q0	 with	 the	 environmental	

conditions:	daylight	and	slightly	cloudy	(10	%	cloud	cover),	no	precipitation	with	a	solar	

radiation	 of	 620	 W/m2	 (Figure	 3.8).	 These	 conditions	 represent	 the	 meteorological	

conditions	that	can	be	found	during	an	average	summer	(not	too	hot	and	not	too	cold)	in	

England,	which	coincides	with	the	time	when	Pgt	aeciospores	are	released	(May-August).	

The	results	show	how	for	the	first	value	of	Q0	(Figure	3.8	A),	most	aeciospores	would	not	

travel	further	than	40	meters,	but	they	would	travel	up	to	60	meters	when	Q0	=	10,303,206	

(Figure	3.8	D).	This	illustrates	the	large	effect	that	the	source	strength	has	in	where	most	

aeciospores	are	likely	to	be	deposited	when	they	are	carried	by	the	wind.	
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Figure	 3.7.	 Representation	 of	 the	 Pgt	 aeciospore	 dispersal	 model.	 (A)	 Outline	 of	 the	 Pgt	 aeciospore	
dispersal	model,	where	aeciospores	are	released	in	the	direction	of	the	wind	and	thus	would	travel	in	the	shape	

of	a	GP	downwind,	until	they	get	deposited	onto	the	ground.	The	shape	of	the	plume	would	vary	according	to	sy	
and	sz,	shown	here.	(B)	The	output	from	the	model	shows	graphs	representing	the	number	of	aeciospores	that	
get	 deposited	 at	 each	 point	 downwind	 from	 the	 source,	 as	 shown	 here.	 Colours	 represent	 the	 number	 of	

aeciospores	 deposited,	 with	 the	 scale	 on	 the	 right.	 The	 (0,0)	 point	 denotes	 the	 location	 of	 the	 SR-infected	

barberry	bush,	i.e.	the	source.	
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Figure	3.8.	The	value	of	the	source	strength	(Q)	has	an	impact	on	how	far	aeciospores	can	travel.	The	
model	was	run	with	the	same	environmental	conditions:	No	precipitation,	1	m/s	of	wind	speed,	10	%	cloud	

cover	 and	 620	W/m2	 of	 solar	 radiation.	 The	 value	 of	Q	was	 assumed	 to	 be	 (A)	316,121	 (B)	1,065,445	 (C)	
3,079,254	and	(D)	10,303,206.9.	That	is,	assuming	that	all	the	aeciospores	contained	in	a	leaf	with	an	infection	
level	low,	moderate,	high	or	very	high	(respectively)	are	released	at	the	same	time.	
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To	evaluate	 the	effect	of	weather	 conditions	 in	 the	model,	 the	GP	model	was	 run	under	

different	environmental	conditions,	using	the	same	source	strength.	Since	the	value	of	Q0	

will	largely	vary	depending	on	the	infection	level	of	the	barberry	bush,	we	assumed	that	25	

%	of	the	bush	had	a	medium	level	of	infection.	This	resulted	in	a	Q0=	1,971	s-1.	Simulations	

were	run	under	three	different	conditions:	(i)	daytime,	solar	radiation	of	620	W/m2,	1	m/s	

wind	speed,	no	precipitation,	10	%	cloud	cover	(Figure	3.9	A),	(ii)	as	(i)	but	with	a	wind	

speed	of	2	m/s	(Figure	3.9	B),	(iii)	night-time	(hence	no	solar	radiation),	1	m/s	wind	speed,	

no	precipitation,	10	%	cloud	cover	(Figure	3.9	C),	(iv)	same	as	(iii)	but	4	m/s	of	wind	speed	

(Figure	3.9	D),	(v)	daytime,	no	solar	radiation,	1m/s	of	wind	speed,	no	precipitation	and	

100%	cloud	cover	(Figure	3.9	E),	and	(vi)	as	(v)	but	with	a	rainfall	rate	of	25	mm	(Figure	

3.9	 F).	 As	 mentioned	 in	 the	 introduction,	 the	 stability	 class	 of	 the	 atmosphere	 has	 a	

significant	effect	in	how	far	spores	are	carried.	When	the	atmosphere	is	stable	(class	E-F),	

spores	can	 travel	 longer	distances	 (Figure	3.1).	This	can	be	observed	by	comparing	 the	

stability	class	A-B	(Figure	3.9	A,B)	with	F-E	respectively	(Figure	3.9	C,D).	Besides,	when	

solar	 radiation	 is	 high,	 a	 proportion	 of	 aeciospores	 would	 be	 killed,	 thus	 reducing	 the	

number	of	viable	aeciospores	being	deposited.	Precipitation	also	has	an	effect	on	aeciospore	

deposition,	since	it	induces	deposition,	which	leads	to	aeciospores	travelling	less	when	the	

rainfall	 rate	 is	 high.	 However,	 the	 effect	 is	 very	 small,	 with	 predictions	 of	 up	 to	 200	

aeciospores	 (indicated	 in	 yellow	 in	 the	 graph)	 being	 deposited	 up	 to	 25	 m	 without	

precipitation	(Figure	3.9	E)	and	up	to	23	m	with	precipitation	(Figure	3.9	F).	

As	it	has	been	shown	here,	how	far	aeciospores	can	travel	is	going	to	depend	on	two	main	

factors.	 Firstly,	 the	 source	 strength,	 that	 is,	 the	 number	 of	 aeciospores	 that	 are	 being	

released	 which	 will	 depend	 on	 how	 infected	 the	 barberry	 bush	 is.	 Secondly,	 the	

environmental	conditions	affecting	dispersal.	These	include:	the	wind	speed,	the	percentage	

of	cloud	cover	(that	has	an	effect	on	the	state	of	the	atmosphere),	the	solar	radiation	(that	

affects	the	state	of	the	atmosphere	and	can	kill	the	aeciospores	thus	reducing	the	Qeff)	and	

precipitation	(that	helps	aeciospores	be	deposited	onto	the	ground).	Since	the	maximum	

distance	 travelled	 by	 aeciospores	 can	 fluctuate	 depending	 on	 several	 factors,	 the	

recommendations	for	how	far	barberry	bushes	should	be	located	from	wheat	fields	to	not	

pose	a	high	risk	as	a	source	of	inoculum	would	vary	for	each	condition.	Therefore,	it	would	

be	better	 to	assess	the	risk	of	barberry	bushes	based	on	their	 level	of	 infection	to	try	to	

estimate	 how	 far	 aeciospores	 could	 be	 transported	 under	 different	 environmental	

conditions.		
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Figure	3.9.	The	environmental	conditions	affect	largely	spore	dispersal.	Simulations	were	ran	assuming	
Q0=	1,971	s-1,	with	the	following	weather	conditions:	(A),	(B)	620	W/m2,	no	precipitation,	10	%	cloud	cover;	
(C),	(D)	night-time	(no	solar	radiation),	no	precipitation,	50%	cloud	cover;	(E)	no	precipitation,	100%	cloud	
cover	 ;	 (F)	 rainfall	 rate	 of	 25	mm,	 100%	 cloud	 cover.	Wind	 speed	 and	 stability	 class	 of	 the	 atmosphere	 is	
indicated	for	each	graph.	
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3.4.5 An	accessible	web	interface	to	host	the	aeciospore	dispersal	model	

The	Pgt	aeciospore	dispersal	model	developed	here	was	included	in	the	back	end	of	a	web	

interface	 to	make	 it	 accessible	 for	 a	wide	 range	 of	 users	 (Figure	 3.10).	 The	website	 is	

available	at	https://aeciospore-dispersal-model.com/.	run	the	model,	weather	parameters,	

such	as	wind	speed,	precipitation	rate	and	the	stability	class	of	the	atmosphere,	are	needed.	

To	determine	the	stability	class,	information	about	wind	speed,	percentage	of	cloud	cover,	

irradiance	and	time	of	the	day	was	collected	using	the	weatherbit	API	(www.weatherbit.io).	

These	values	were	then	used	as	input	into	a	python	function	to	determine	the	stability	class	

following	the	indication	of	Table	3.1.	The	API	used	here	allows	up	to	500	calls	per	day	with	

the	free	subscription	and	provides	current	weather	data	of	the	chosen	location.	The	location	

can	be	specified	by	city	name,	postal	 code,	 station	 id	or	 latitude	and	 longitude.	This	 last	

option	was	chosen	since	barberry	bushes	are	unlikely	to	be	found	in	cities	and	the	specific	

latitude	and	longitude	of	their	location	is	easier	to	find.	Using	these	values,	the	API	gathers	

information	about:	(i)	irradiance,	(ii)	precipitation,	(iii)	RH,	(iv)	percentage	of	cloud	cover,	

(v)	wind	speed	and	(vi)	UV	index.	These	parameters	are	then	included	in	the	GP	model.	

The	infection	level	of	the	source	is	also	needed	to	run	the	model	(Figure	3.11	A).	The	user	

selects	 the	 representative	 level	 of	 infection	 of	 the	 barberry	 leaves,	 choosing	 from	 Low,	

Medium,	High	or	Very	High,	as	shown	in	Figure	3.4.	Using	the	estimation	of	the	potential	

source	from	section	3.4.1,	the	number	of	spores	contained	in	each	leaf	can	be	calculated.	

Thus,	when	the	user	selects	 the	 level	of	 infection,	 the	 leaves	are	assumed	to	contain	 the	

numbers	of	aeciospores	represented	in	Table	3.3.	To	establish	the	number	of	leaves	with	

that	level	of	infection,	the	percentage	of	the	bush	that	is	infected	is	needed.	As	mentioned	in	

section	3.4.1,	a	maximum	of	900	leaves	are	assumed	to	be	at	the	front	side	of	the	barberry	

bush,	since	this	is	where	infection	mostly	occurs.	With	the	percentage	provided	by	the	user,	

the	number	of	infected	leaves	and	thus	the	total	number	of	spores	can	be	calculated.	The	

height	of	the	source	is	set	as	1	meter	by	default,	since	estimations	in	the	field	showed	that	

this	 height	 was	 most	 common,	 but	 it	 can	 also	 be	 changed	 by	 the	 user.	 The	 two	 fields	

highlighted	in	Figure	3.11	A	are	compulsory,	and	the	model	would	not	run	without	them.	

However,	weather	data	can	be	given	instead	of	gathered	using	the	location	by	the	API.	This	

way,	a	user	could	test	the	model	with	different	weather	information,	with	three	parameters	

needed:	(1)	percentage	of	cloud	cover,	(2)	wind	speed	in	m/s,	(3)	UV	index	and	(4)	rain	fall	

in	mm	(that	could	be	set	to	0)	(Figure	3.11	B).	

Using	the	values	provided	by	the	user,	the	model	runs	in	the	background	and	then	takes	the	

user	to	a	new	page	(Figure	3.10).	The	input	values	used	for	the	model	are	shown	at	the	top	

of	the	page,	including	rainfall	rate,	RH,	solar	radiation	(irradiance),	percentage	cloud	cover,	
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wind,	and	the	percentage	of	 infection	 in	the	barberry	 leaves	and	bush.	The	results	show	

information	about	how	 far	aeciospores	could	 travel	under	 these	atmospheric	 conditions	

(Figure	3.11	C).	First,	there	is	a	section	that	determines	the	distance	of	high,	medium	and	

low	 risk,	 related	 to	 the	 distance	 at	 which	 50	 %,	 75	 %	 and	 99	 %	 of	 the	 aeciospores,	

respectively,	would	land.	That	is,	if	99	%	of	the	aeciospores	are	able	to	reach	up	to	25	meters,	

only	1	%	of	the	aeciospores	would	travel	further,	which	presents	a	lower	risk.	The	maximum	

distance	that	a	single	aeciospore	is	likely	to	land	is	also	specified.	Since	the	values	estimated	

at	each	point	are	decimals,	this	maximum	distance	was	determined	by	estimating	the	last	

distance	at	which	1	aeciospore	would	be	found.	Values	lower	than	1	were	assumed	not	to	

be	relevant.	Finally,	two	graphs	(for	day	and	night-time	conditions)	showing	the	number	of	

spores	that	would	land	at	each	point	downwind	from	the	source	are	included.	

	

Table	3.3.	Number	of	aeciospores	used	 in	 the	model	depends	on	 the	 infection	 level	 chosen.	 For	each	
infection	level,	the	percentage	of	infection	in	the	leaf,	the	approximated	number	of	aecial	cups	in	the	leaf	and	

aeciospores	being	produced	is	shown.	

Infection	

level	

Assumed	percentage	of	

leaf	covered	by	Aecia	

Number	of	aecial	

cups	in	the	leaf	

Number	of	

aeciospores	produced	

Low	 0.54	%	 44.4	 316,121	

Medium	 1.82	%	 149.8	 1,065,445	

High	 5.26	%	 433	 3,079,254	

Very	high	 17.6	%	 1448.8	 10,303,206.9	
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Figure	3.10	Web-app	infrastructure	for	the	aeciospore	dispersal	model.	The	user	can	input	the	required	
values	 to	 run	 the	model	using	 the	web	 interface	and	 these	values	would	be	 taken	 to	 the	backend	 to	gather	

weather	data	and	run	the	model.	Latitude	and	longitude	values	are	used	by	the	API	to	collect	real-time	weather	

data	that	will	be	provided	to	the	model,	together	with	information	about	the	infection	level.	The	GP	model	is	

running	in	the	background	and	values	for	concentration	of	aeciospores	deposited	downwards	the	source	are	

calculated	and	displayed	in	the	results	page.	The	results	page	contains	a	section	showing	the	input	values	used	

and	the	results	for	the	model,	including	two	graphs.	
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Figure	3.11.	Web	page	for	running	the	aeciospore	release	model	and	results	display.	(A)	Two	inputs	are	
needed	to	run	the	model,	highlighted	in	red:	(1)	the	location	(lat/lon)	and	(2)	the	infection	level	of	the	bush	and	

the	leaves.	(B)	Weather	information	can	be	given	if	the	user	wants	to	try	the	model	with	non-current	weather	
data.	 This	 menu	 is	 displayed	 by	 selecting	 the	 button.	 (C)	 The	 results	 include	 the	 input	 values	 used	 and	
information	about	“high”,	“medium”	and	“lower”	risk,	showing	the	maximum	distance	that	50,	75	and	99%	of	

aeciospores	 would	 reach.	 The	 “low	 risk”	 section	 shows	 the	 maximum	 distance	 that	 aeciospores	 would	

theoretically	reach.	
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3.5 Discussion	

3.5.1 Source	 strength	varies	depending	on	 infection	 level	 and	 could	be	weather-

dependent.	

Investigating	fungal	spore	dispersal	has	been	an	 important	topic	 for	a	 long	time,	since	 it	

helps	understand	disease	transmission	and	thus,	much	work	has	been	done	on	this	topic	

(Kuparinen,	2006).	When	dispersal	gradients	are	being	studied,	one	of	the	most	important	

factors	 to	 know	 is	 the	 source	 strength	 (Q),	 i.e.	 the	 number	 of	 spores	 released	 (Gregory	

1968).	Here,	I	explored	the	potential	source	strength	that	can	take	place	in	a	Pgt-infected	

barberry	source	bush.	Aecial	 cups	were	 found	 to	contain	an	average	of	7,111.37	spores,	

within	a	range	of	1,805-12,916.	These	values	are	consistent	with	previous	estimations	of	

11,000	aeciospores	per	cup	(Coons,	1910).	The	variation	between	observed	values	is	due	to	

the	difference	in	aecial	cup	length	between	years.	This	disparity	could	be	due	to	the	effects	

of	random	sampling	or	it	could	be	a	consequence	of	the	differences	in	weather	conditions	

between	 2018	 and	 2019.	 Weather	 data	 from	 the	 field	 where	 samples	 were	 collected	

(Brandon,	UK)	for	both	years	shows	an	increase	both	in	rainy	days	and	total	rainfall	in	2019,	

with	respect	to	2018	(Table	3.4).	Although	humidity	has	not	been	related	to	an	increase	in	

aeciospore	production	(Cotter,	1932),	an	increment	in	rain	could	lead	to	aeciospore	release	

which	could	mean	that	the	cups	are	emptied	more	often	and	thus	do	not	reach	a	large	size.	

Aeciospore	 production	 has	 been	 reported	 to	 not	 be	 affected	 by	 pre-inoculation	

temperature,	 although	 it	 is	 positively	 correlated	 to	 an	 increase	 in	 post-inoculation	

temperature	 (Kolnaar	 &	 Van	 Den	 Bosch,	 2001).	 This	 could	 mean	 that	 an	 increment	 in	

temperature	in	the	months	when	we	find	aecia	(May-July),	could	potentially	increase	the	

number	of	aeciospores	being	produced.	However,	aecial	cups	seem	to	grow	faster	at	lower	

temperatures.	Reports	show	that	at	31-32	ºC,	aecial	cups	open	earlier	and	don’t	grow	as	

much	as	those	at	7-8	ºC,	when	they	can	reach	up	to	2-3	mm	before	opening	(Cotter,	1932).	

Average	temperatures	in	both	years	fluctuated	between	13-20	ºC	during	the	season	when	

Pgt	is	found	in	the	field	(Table	3.4).	However,	mean	temperatures	are	not	informative	of	

periods	of	lower	or	higher	temperatures	during	each	month	and	thus	no	conclusions	can	be	

made	in	regard	to	this.	Although	the	mean	temperature	in	June	was	higher	for	2019	than	

2018,	 the	opposite	occurred	 in	 July.	Besides,	differences	 in	mean	 temperatures	between	

2018	and	2019	were	very	low	in	general.	

To	 our	 knowledge,	 this	 is	 the	 first	 time	 that	 the	 number	 of	 aecial	 cups/mm2	 has	 been	

estimated.	Previous	studies	have	looked	at	the	number	of	aecial	cups	in	a	leaf,	which	was	

determined	from	examining	three	highly	 infected	barberry	 leaves	(Table	3.5).	Using	the	

information	 from	(Coons,	1910)	about	 the	number	of	aecia	per	 leaf	and	 total	number	of	



_____________________________________________________________________ 
Chapter 3 - Modelling Pgt aeciospore dispersal after release from barberry bushes  106 
 

aecial	cups,	I	estimated	the	average	cups	per	aecia	that	would	be	found	in	these	three	leaves.	

This	led	to	a	mean	of	40.02	cups	per	leaf,	which	was	the	same	number	that	was	obtained	

with	the	129	measurements	that	were	taken	here	(40.05).	Despite	this	not	being	a	definite	

result	that	40	cups	are	always	found	per	aecium;	it	is	an	indication	that	the	observations	

obtained	here	are	very	consistent.	By	multiplying	the	number	of	aecial	cups	found	in	each	

leaf	by	the	11,000	aeciospores	per	cup	reported,	 the	total	number	of	aeciospores	can	be	

determined	(Table	3.5).	The	obtained	numbers	ranged	from	3,696,000	to	8,052,000	which	

is	also	consistent	with	the	number	of	aeciospores	calculated	herein	for	highly/very	highly	

infected	barberry	leaves	(Table	3.3).	

	

Table	3.4.	Differences	in	weather	conditions	for	2018	and	2019	in	Brandon,	UK.	Temperature	(ºC),	rainfall	
(mm)	and	number	of	rainy	days	are	shown	here	for	both	years	for	the	months	between	January-August.	Rainfall	

and	rainy	days	were	generally	more	abundant	in	2019.	Temperature	is	also	higher	for	most	months	in	2019.	

Data	extracted	from	www.metoffice.gov.uk.	

	 2018	 2019	

	
Temperature	

(ºC)	
Rainfall	
(mm)	

Rainy	
days	

Temperature	
(ºC)	

Rainfall	
(mm)	

Rainy	
days	

January	 5	 20.54	 14	 4	 24.2	 18	

February	 3	 13.67	 11	 8	 34.4	 12	

March	 5	 29.83	 17	 9	 85.8	 19	

April	 10	 27.61	 21	 11	 34.8	 14	

May	 13	 19.51	 10	 13	 69.1	 23	

June	 15	 9.35	 8	 16	 147.5	 25	

July	 20	 8.91	 7	 19	 87.2	 26	

August	 18	 36.28	 12	 19	 65.1	 23	

	

Table	3.5.	Previous	reports	of	number	of	aecial	cups	found	in	leaves	agree	with	our	observations.	Reports	
of	 3	 highly	 SR-infected	 barberry	 leaves	 show	 an	 average	 of	 40	 cups	 per	 aecidia	 and	 similar	 number	 of	

aeciospores	as	the	ones	we	estimated	(Coons,	1910).	

Leaf	 Pustules	 Aecial	cups	 Cups	per	aecidia	 Total	aeciospores	

1	 17	 336	 19.75	 3696000	

2	 10	 492	 49.3	 5423000	

3	 12	 732	 61	 8052000	

Total	 39	 1561	 40.02	 17171000	
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Estimating	the	number	of	infected	leaves	in	a	barberry	bush	is	challenging	and	there	is	not	

much	literature	about	B.	vulgaris.	Especially	because	the	number	of	branches	per	bush	and	

its	height	will	also	depend	on	the	age	of	the	shrub	and	environmental	conditions	during	its	

growth	(Cotter,	1932).	Since	the	number	of	leaves	per	branch	and	number	of	branches	per	

plant	is	very	variable	and	changes	with	environmental	conditions	(Ahmed	et	al.,	2013;	T.	

Khan,	2014),	 calculating	 the	exact	number	of	 leaves	 that	 are	 susceptible	 for	 infection	 to	

assess	the	source	strength	is	not	possible	and	informed	estimations	are	needed.	The	age	of	

the	 leaves	 in	 the	 bush	 could	 also	 influence	 the	 susceptibility	 to	Pgt	 and	 thus	 affect	 the	

potential	 source	 strength	 being	 calculated.	 Reports	 show	 that	 younger	 leaves	 show	

infection	2-3	days	earlier	than	older	leaves	(Cotter,	1932)	and	that	leaves	older	than	10	days	

could	sometimes	show	certain	resistance	to	Pgt	(Melander	&	Craigie,	1927).	This	can	be	an	

effect	 of	 the	 thickness	 of	 the	 outer	 epidermal	wall	 that	 opposes	 resistance	 to	 infection.	

However,	moderate	infection	can	still	be	observed,	and	infection	has	also	been	observed	to	

be	equally	heavy	on	leaves	of	different	ages,	regardless	of	when	they	were	infected.	This	

occurs	 especially	 if	 the	weather	 conditions	 prevent	 barberry	 leaves	 from	 hardening,	 as	

happens	in	spring,	when	Pgt	infection	is	more	favourable	(Cotter,	1932).	Since	Pgt	infection,	

and	possibly	susceptibility	of	barberry	bushes,	 is	greatly	dependent	on	weather,	 climate	

change	could	have	an	effect	in	SR	epidemics.	Global	warming	could	lead	to	more	suitable	

conditions	 for	 Pgt	 to	 spread	 in	 more	 geographical	 locations.	 Climate	 change	 has	 been	

reported	to	have	caused	a	significant	change	on	pathogen	distribution	in	the	past	(Bebber,	

2019).	 This	 has	 been	 a	 result	 of	 an	 increase	 in	 humidity	 and	 optimal	 temperature	 for	

pathogens	 to	 thrive.	Temperature	has	historically	played	a	role	 in	wheat	rust	pathogens	

distribution,	 as	 it	 is	 the	 case	of	Pst	 (Milus	 et	 al.,	 2006).	 In	 fact,	 the	 first	Pgt	 outbreak	 in	

Germany	 in	 2013	was	 also	 associated	 to	 a	warmer	 summer	 (Bebber,	 2015).	 Therefore,	

climate	change	could	not	only	affect	the	distribution	of	SR	worldwide,	expanding	its	range,	

but	could	also	 increment	the	severity	of	 the	epidemics	(Launay	et	al.,	2020;	Prank	et	al.,	

2019).	 On	 the	 other	 hand,	 warmer	 conditions	 could	 also	 decrease	 the	 initial	 inoculum	

(Cotter,	1932)	or	lead	to	epidemics	occurring	earlier	in	the	year.	Besides,	climate	change	

predictions	show	that	even	though	the	risk	of	spore	germination	could	increase,	the	drier	

climate	might	not	allow	for	leaf	penetration	(Lewis	et	al.,	2018).	
The	assessment	of	the	source	strength	is	one	of	the	most	important	factors	when	modelling	

spore	dispersal	 (Gregory,	1968).	Due	 to	 the	difficulty	of	measuring	 it	 accurately,	 getting	

detailed	information	about	the	source	is	a	good	approach	to	make	an	inference	about	the	

potential	 source	 strength.	 The	 observations	 here	 align	 with	 the	 literature	 and	 give	 a	

reasonable	estimation	to	input	into	the	dispersal	model.		
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3.5.2 Gaussian	Plume	models	can	be	used	to	estimate	Pgt	aeciospore	dispersal	

Empirical	models	such	as	the	power	law	and	exponential	model	have	traditionally	been	the	

most	 commonly	 used	model	 to	 describe	 the	 dispersal	 kernel	 of	 fungal	 spores	 (Gregory,	

1968).	Despite	the	accuracy	of	these	model	in	describing	specific	experiments,	the	difficulty	

to	extrapolate	to	other	conditions	led	to	the	development	of	models	that	include	weather	

conditions.		In	fact,	exponentials	and	power	laws	have	been	reported	to	represent	different	

environmental	 conditions	 (Reynolds,	 2011).	 Exponential	 distributions	 have	 been	

associated	 to	 convective	 conditions,	 i.e.	 how	 days	 with	 low	 wind	 speed	 (unstable	

atmosphere),	 while	 a	 -2/3	 inverse	 power	 law	 describes	 dispersal	 in	 stably	 stratified	

conditions,	i.e.	cold	windy	nights	(neutral	atmosphere).	Therefore,	mechanistic	models	that	

integrate	weather	conditions	can	be	more	general	when	investigating	disease	dispersal.	

Here,	I	used	a	Gaussian	Plume	model	to	examine	Pgt	aeciospore	dispersal,	adapting	a	model	

previously	 published	 by	 including	 factors	 that	 are	 disregarded	 by	 GP	 models	 such	 as	

deposition	 and	 spore	 survival	 (Aylor,	 1999;	 Spijkerboer,	 Beniers,	 Jaspers,	 Schouten,	

Goudriaan,	Rabbinge,	&	van	der	Werf,	2002).	GP	models	have	proved	accurate	and	useful	

when	investigating	spore	dispersal	(Kuparinen,	2006).	Using	GPs	for	modelling	dispersal	

within	 a	 canopy	 is	 not	 appropriate	 due	 to	 the	 assumptions	 that	 this	 model	 makes	

(Kuparinen,	2006).	However,	here	we	assume	that	dispersal	is	taken	place	within	an	open	

field	and	thus	 the	movement	of	aeciospores	can	be	modelled	as	a	cloud	with	a	Gaussian	

distribution.	The	observations	done	here	where	aeciospores	get	released	forming	a	normal	

distribution	 (Figure	 3.5)	 indicate	 that	 this	 assumption	 is	 reasonable.	 Other	mechanical	

models	such	as	Lagrangian	models	can	be	more	accurate	than	GP	models,	especially	at	local	

distances	(Aylor	&	Flesch,	2001).	A	Lagrangian	puff	atmospheric	dispersal	model	has	been	

previously	used	for	studying	Pgt	urediniospore	dispersal	(Pfender	et	al.,	2006).	However,	

these	models	are	usually	computationally	expensive	and	thus	making	it	available	would	be	

more	complicated	for	fast	simulations	(Prussin	et	al.,	2015).	GP	models	on	the	other	hand	

can	be	run	even	on	a	smartphone	or	tablet,	hence	making	them	the	best	choice	for	quick	

dispersal	predictions.	A	compromise	between	the	two	also	offers	a	good	alternative	and	has	

shown	good	results	for	distances	up	to	100	m	(P.	Skelsey,	Holtslag,	&	van	der	Werf,	2008).	

The	model	 selected	here	 includes	parameters	 that	describe	 the	 shape	of	 the	plume	 that	

incorporate	the	effect	of	the	surface	over	which	aeciospores	are	being	transported,	since	

the	 drag	 and	 surface	 roughness	 can	 have	 an	 effect	 on	 dispersal	 (Spijkerboer,	 Beniers,	

Jaspers,	Schouten,	Goudriaan,	Rabbinge,	&	Van	Der	Werf,	2002).	The	parameters	used	here	

assume	aeciospores	are	being	 transported	above	agricultural	 landscape.	However,	 these	
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parameters	could	be	changed	to	evaluate	different	situations	such	as	dispersal	over	forest	

canopies	(Shaw	&	Pereira,	1982).	

Several	 improvements	can	be	added	to	the	GP	model	used	here.	Firstly,	here	we	assume	

escape	to	be	100	%	since	only	the	leaves	on	the	outer	part	of	the	bush	are	considered.	This	

was	done	because	it	simplified	the	situation	to	only	assess	the	“worst-case	scenario”,	which	

would	reveal	the	highest	risk	of	barberry	bushes.	Much	work	has	done	to	investigate	escape	

of	spores	from	canopies	and	it	presents	a	great	challenge	in	spore	dispersal	(Andrade	et	al.,	

2009;	Follett	et	al.,	2016;	Gleicher,	Chamecki,	Isard,	Pan,	&	Katul,	2014).	However,	a	simple	

escape	model	could	be	built-in	by	including	the	expression	mentioned	in	the	introduction	

to	compute	the	vertical	escape	of	aeciospores	from	barberry	bushes	(De	Jong	et	al.,	2002).	

This	would	 only	 require	 the	 LAI	 calculated	 here	 (section	3.4.1).	 Secondly,	 here	wind	 is	

assumed	 to	 have	 a	 constant	 direction	 which	 would	 maximise	 the	 dispersal	 distance.	

However,	this	is	not	realistic	and	thus	wind	profiles	could	be	added	to	specify	wind	direction	

(Prussin	et	al.,	2015).	Thirdly,	deposition	here	includes	sedimentation	based	on	the	settling	

velocity	assumed	by	one	aeciospore.	However,	as	mentioned	in	Chapter	2,	aeciospores	are	

observed	to	 form	clumps	which	thus	would	 increase	the	settling	velocity.	 (Ferrandino	&	

Aylor,	1984)	developed	an	equation	to	estimate	the	settling	velocity	based	on	the	number	

of	 spores	 clustering	 together.	 This	 is	 something	 that	 could	 be	 taken	 into	 account	when	

modelling	spore	deposition,	especially	as	it	was	shown	to	have	an	effect	on	spore	dispersal	

distance	(Chamecki,	Dufault,	&	Isard,	2012).	Moreover,	deposition	by	impaction	could	be	

included	in	the	model	to	improve	its	precision,	based	on	the	area	of	the	plants	where	it	could	

impact	(H	A	McCartney	&	Fitt,	1985).	This	however	could	complicate	the	model	while	not	

increasing	significantly	the	accuracy,	and	when	developing	models,	there	is	always	a	trade-

off	between	accuracy	and	complexity	that	needs	to	be	considered.	Lastly,	another	important	

factor	 to	consider	 is	 the	viability	of	aeciospores.	Survival	 rates	of	aeciospores	will	affect	

greatly	 the	 source	 strength,	 and	 even	 though	 reduction	 of	 aeciospore	 viability	 due	 to	

radiation	 has	 been	 taking	 into	 account	 in	 the	 model,	 the	 survival	 of	 aeciospores	 after	

deposition	 should	 also	 be	 considered.	 An	 estimation	 on	 this	 could	 have	 been	 done	 by	

collecting	aeciospores	and	investigating	the	percentage	of	them	that	remain	alive	using	DNA	

dyes	techniques	(Emerson	et	al.,	2017).	

Validation	 of	 the	 results	 that	 this	 model	 provides	 regarding	 aeciospores	 would	 be	

necessary.	However,	this	presents	a	challenge	since	setting	up	an	experiment	in	an	open	

field	could	increase	the	risk	of	SR	epidemics	(Jin,	2011).	Validation	in	a	closed	environment	

would	be	more	appropriate,	but	the	difficulty	of	working	with	wheat	rusts	and	of	infecting	

barberry	bushes	makes	 it	problematic.	However,	 the	model	 chosen	had	been	previously	
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validated	(Spijkerboer,	Beniers,	 Jaspers,	Schouten,	Goudriaan,	Rabbinge,	&	van	der	Werf,	

2002)	and	similar	models	have	been	experimentally	validated	for	organisms	with	similar	

spore	 size,	 such	 as	 F.	 graminearum	 (~10-20	 µm)	 (Prussin	 et	 al.,	 2015).	 Aeciospores	 of	

Puccinia	 punctiformis	 have	 been	 reported	 to	 reach	 up	 to	 30	meters	 during	 the	 summer	

period	of	May-June	(Berner	et	al.,	2015).	The	authors	used	an	exponential	decline	model	to	

predict	 dispersal	 and	 found	 that	 the	 greatest	 number	 of	 infected	 leaves	 occurred	 at	 12	

meters.	However,	the	use	of	an	empirical	model	disregards	the	effect	of	the	weather	in	spore	

dissemination	and	thus	these	results	cannot	be	extrapolated	to	all	situations.	Nevertheless,	

the	 range	 in	which	 aeciospores	were	 found	 in	 their	 experiments	 is	 consistent	with	 the	

observations	obtained	using	the	GP	model	here.	These	results	are	also	consistent	with	Pgt	

urediniospores	dispersal,	where	a	single	spore	can	be	found	up	to	12.06	and	36.5	meters	

(Johnson	&	Dickson,	1919).	The	Pgt	aeciospore	dispersal	model	developed	here	presents	an	

advantage	since	it	can	incorporate	different	environmental	conditions	and	source	strength	

levels	which	can	then	be	used	to	evaluate	the	risk	of	barberry	bushes	in	different	situations.	

3.5.3 Making	 the	model	 available	 can	 help	 inform	 about	 the	 risk	 of	Pgt-infected	

barberry	bushes	

Disease	forecasting	based	on	weather	data	is	common	and	has	been	done	for	a	number	of	

diseases	(Bourgeois	et	al.,	2008)	including	rusts	(Junk	et	al.,	2016).	However,	many	of	these	

models	remain	theoretical	and	are	not	made	available	for	use.	Much	information	is	being	

collected	 about	 the	 factors	 influencing	 crop	 diseases,	 and	 they	 need	 to	 be	 made	 easily	

accessible	so	they	can	inform	stakeholders	and	farmers	(Chaudhary,	Bhise,	Banerjee,	Goyal,	

&	Moradiya,	2015).	Here,	I	developed	a	user-friendly	interface	to	access	the	Pgt	aeciospore	

dispersal	model	using	Django,	written	in	Python	for	the	webapp	(Holovaty	&	Kaplan-Moss,	

2009).	 Django	 is	 one	 of	 the	 most	 popular	 frameworks	 nowadays,	 with	 a	 model-view-

controller	 (MVC)	 architecture,	 that	 allows	 for	 a	 rapid	 development	 and	 clean	 design	

(Deacon,	2005).	When	compared	 to	other	popular	 frameworks	such	as	Ruby	on	Rails	or	

CakePHP,	Django	has	a	higher	rating	 in	user	 interface	development,	maintainability,	and	

popularity,	and	scores	very	high	in	data	management	and	testability	(Plekhanova,	2009).	

This,	together	with	the	facility	to	work	with	Python,	made	it	the	best	choice	for	the	purpose.	

The	current	site	requires	the	user	to	specify	the	level	of	infection	in	leaves	by	selecting	the	

most	representative	image.	When	a	level	is	chosen,	a	percentage	of	leaf	covered	by	aecia	is	

assumed,	based	on	our	observations	(Figure	3.4)	(Table	3.3).	However,	this	is	an	average	

and	could	not	be	an	exact	representation	of	what	the	user	is	seeing	in	the	field.	Therefore,	a	

more	automatic	system	could	be	included	in	the	webapp,	adding	a	page	to	upload	a	picture	

of	a	leaf	and	estimating	the	exact	percentage	of	infection	(Bueno-Sancho,	Corredor-Moreno,	



_____________________________________________________________________ 
Chapter 3 - Modelling Pgt aeciospore dispersal after release from barberry bushes  111 
 

Kangara,	&	Saunders,	2019).	The	weather	API	used	here	allows	you	to	gather	real-time	data	

from	the	indicated	location,	which	is	an	advantage	because	the	model	is	then	running	with	

more	accurate	information,	specific	from	each	geographical	region.	This	API	also	allows	for	

14-day	weather	predictions,	which	could	also	be	included	in	the	webapp	for	making	future	

predictions.	The	postgres	database	in	the	backend	also	allows	to	record	potential	locations	

for	 barberry	 bushes.	 This	 could	 help	with	 the	 Barberry	 Rust	 Explorer	 (BarbRE)	 citizen	

science	project	to	track	common	barberry	bushes	across	the	UK	(www.barbre.co.uk).	

The	risk	that	barberry	bushes	pose	as	sources	of	early	Pg-inoculum	to	adjacent	wheat	fields	

has	been	known	for	a	long	time	and	removing	them	remains	the	most	effective	strategy	to	

reduce	the	incidence	of	stem	rust	epidemics	(Wang	et	al.,	2015;	Zhao	et	al.,	2015).	However,	

eradication	would	 have	 ecological	 consequences	 and	 an	 impact	 on	 species	 that	 rely	 on	

barberry	as	a	habitat	or	food	source	such	as	the	barberry	carpet	moth	and	thus	finding	a	

balance	 between	 both	 systems	would	 be	 ideal.	 Planting	 barberry	 bushes	 in	woodlands,	

ensuring	 they	 are	 isolated	 far	 away	 from	 crops,	 could	 be	 a	 potential	 solution	 for	 this	

problem.	That	could	guarantee	a	niche	for	the	carpet	moth	while	reducing	the	threat	to	UK	

agriculture.			

Despite	the	usefulness	of	models,	it	must	be	noted	mathematical	models	are	theoretical	and	

based	on	probabilities	and	even	when	the	probability	of	an	event	occurring	is	low,	there	is	

still	a	chance	of	that	event	happening.	Pgt	uredioniospores	have	been	modelled	to	be	able	

to	travel	great	distances	in	wind	currents	(Meyer	et	al.,	2017)	and	are	known	to	be	dispersed	

for	kilometres	(Pfender	et	al.,	2006).	Even	when	theoretical	probabilities	show	that	most	

aeciospores	would	fall	on	the	ground	in	the	first	few	meters,	the	probability	of	an	aeciospore	

being	carried	in	the	wind	for	kilometres	and	starting	an	infection	further	away	still	exists.	

In	fact,	viable	Pgt	urediniospores	and	aeciospores	have	been	found	up	to	7,000	and	1,000	

feet	 above	 the	 ground	 (Stakman,	 Henry,	 Curran,	 &	 Christopher,	 1923).	 To	 avoid	 future	

epidemics	of	 an	 important	pathogen	such	as	Pgt,	 risk	 should	be	 reduced	 to	a	minimum.		

Thus,	other	approaches	could	be	taken	to	ensure	the	survival	of	the	carpet	moth	and	other	

species	 while	 allowing	 the	 removal	 of	 barberry	 bushes.	 Alternatives	 include	 (i)	 finding	

another	Berberis	species	resistant	to	Pgt	 that	the	carpet	moth	can	use	as	 its	niche	or	(ii)	

planting	 barberry	 bushes	 in	 woodlands	 isolated	 from	 wheat	 fields.	 Although	 common	

barberry	has	shown	resistance	to	certain	wheat	Pgt	 races	 in	the	past	(Johnson	1954),	B.	

vulgaris	is	classified	as	susceptible	to	SR.	However,	this	is	not	the	case	for	all	Berberis	spp.,	

some	such	as	B.	thunbergii	have	been	reported	to	present	resistance	to	stem	rust	(Bartaula	

2019).	Unfortunately,	the	list	of	susceptible	Berberis	spp.	is	long	and	stem	rust	infection	has	

been	 observed	 in	 several	 species,	 especially	 in	 China	 (Zhao	 2015).	 Investigating	 the	
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behaviour	of	the	carpet	moth	in	resistant	Berberis	spp.	could	offer	an	alternative	that	would	

highly	reduce	the	risk	of	SR	epidemics.	Planting	resistant	barberry	bushes	where	the	moth	

could	survive	while	removing	B.	vulgaris	would	thus	be	the	best	possible	solution	for	this	

problem.	 However,	 moths	 can	 be	 very	 delicate	 regarding	 their	 niche	 and	 finding	 other	

species	in	which	they	can	survive	might	be	complicated	(Martin	&	Pullin,	2004).	Besides,	

mass	 planting	 of	 non-native	Berberis	 species	 is	 also	not	 an	 ideal	 solution	 since	 the	new	

species	could	be	invasive	and	outcompete	other	native	species.	Therefore,	understanding	

the	potential	risk	of	common	barberry	bushes	to	ensure	they	are	located	far	away	enough	

from	wheat	fields	is	our	best	option	at	the	moment.	Using	the	model	developed	here	to	guide	

re-planting	and	to	create	risk	maps	of	barberry	bushes	that	should	be	monitored	would	help	

manage	the	risk	of	Pgt	in	the	UK.	

	

3.6 Conclusion	
A	Gaussian	Plume	model	was	used	to	model	Pgt	aeciospore	dispersal	and	investigate	the	

risk	of	barberry	bushes	near	wheat	fields.	The	two	main	factors	affecting	dispersal	are	the	

source	strength,	i.e.	the	amount	of	initial	inoculum,	and	the	environmental	conditions.	Thus,	

I	 investigated	 the	 potential	 initial	 inoculum	 that	 can	 occur	 within	 a	 barberry	 bush	 by	

counting	how	many	aeciospores	are	 typically	contained	within	an	aecial	 cup,	how	many	

cups	per	mm2	and	how	many	cups	can	occur	within	a	barberry	leaf.	An	average	of	7,111	

aeciospores	 were	 found	 per	 cup,	 although	 significant	 differences	 between	 years	 were	

observed,	 possibly	 due	 to	 variability	 in	weather,	 and	 an	 average	 of	 8.29	 aecial	 cups	 are	

found	per	mm2.	The	percentage	of	infection	in	leaves	based	on	their	level	was	investigated,	

being	 and	 for	 a	 low,	 medium,	 high	 and	 very	 high	 level	 respectively.	 The	 potential	

aeciospores	found	in	leaves	is	however	much	higher	than	what	is	released,	with	only	2.96	

%	of	the	predictions	being	observed	to	be	released.	No	significant	differences	in	the	quantity	

of	 aeciospores	 released	 under	 different	 temperatures	 (5-30	 ºC)	was	 observed	 and	 thus	

temperature	was	 not	 considered	 a	 factor	 in	 source	 strength.	 This	 information	 gathered	

about	potential	source	strength	was	incorporated	into	the	GP	model	with	real-time	weather	

data	to	predict	how	far	aeciospores	can	reach	from	a	barberry	bush.	Predictions	show	a	lot	

of	variability	depending	on	the	state	of	the	atmosphere,	with	lower	risk	under	high	solar	

radiation.	A	webapp	was	developed	with	the	model	in	the	backend	and	a	postgres	database	

to	record	the	entries	to	make	the	model	accessible	for	the	user.	This	provides	an	excellent	

tool	that	can	be	used	for	stem	rust	risk	management.	
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Chapter	4							 Developing	 SNP	 Markers	 to	 study	 Pst	
population	dynamics	in	the	UK	

	

4.1 Abstract 

Yellow	rust,	caused	by	the	fungus	Puccinia	striiformis	f.sp	tritici	(Pst),	has	been	a	significant	

threat	to	wheat	production	worldwide	for	centuries.	Moreover,	new	Pst	races	have	emerged	

recently	able	to	adapt	to	new	climates,	evolving	rapidly	and	being	more	aggressive.	Much	

knowledge	has	been	acquired	lately	about	these	new	races	and	their	distribution	worldwide	

and	in	particular	in	the	UK.	However,	the	dynamics	of	Pst	races	at	the	field	level	still	remain	

unknown	 and	 understanding	 this	 is	 essential	 for	 designing	 effective	 management	

programmes.	 Here,	 I	 have	 developed	 a	 quick	method	 for	 genotyping	 field-collected	Pst-

infected	wheat	samples	to	determine	which	race	they	belong	to.	This	consists	of	genotyping	

with	Kompetitive	Allele	Specific	PCR	(KASP)	using	a	set	of	Single	Nucleotide	Polymorphism	

(SNP)	markers	that	was	found	to	differentiate	a	subset	of	different	Pst	races	identified	in	

the	UK.	To	study	the	Pst	population	dynamics,	field	trials	were	also	undertaken	across	the	

UK	using	wheat	 varieties	 that	 are	known	 to	be	 susceptible	 to	 the	disease	 to	 collect	Pst-

infected	 wheat	 samples	 during	 the	 2015-2016	 and	 2016-2017	 growing	 seasons.	 These	

collected	samples	were	genotyped	using	the	designed	approach	to	study	the	distribution	of	

Pst	races	in	the	UK.	The	results	show	that	most	samples	belonged	to	one	race	named	group	

4	 (Warrior	 -)	 that	 has	 become	 predominant	 in	 the	 UK.	 Besides,	 the	 seasonality	 of	 the	

different	races	was	investigated,	and	it	was	concluded	that	the	presence	of	Pst	races	in	one	

season	was	not	indicative	of	prevalence	of	the	same	race	in	following	seasons.	

	

4.2 Introduction	

4.2.1 Pst:	a	threat	to	global	agriculture	

Pst	 has	 been	 threatening	 wheat	 for	 centuries,	 early	 reports	 of	 a	 wheat	 disease	 that	 is	

believed	 to	be	yellow	rust	 (YR)	were	 found	 in	England	and	Sweden	already	 in	 the	XVIII	

century	 (Wellings,	 2011).	Historically,	 YR	 has	 been	 largely	 delimited	 to	 cool	 and	 humid	

environments,	often	 located	 in	high	altitude	areas	 (Duan	et	al.,	2010).	The	origin	of	 this	

pathogen	was	initially	believed	to	be	Transcaucasia	(Chen	et	al.,	2014),	but	the	high	level	of	

genetic	 diversity	 and	 teliospore	 production	 found	 in	 isolates	 from	 the	 Himalayan	 area	

identified	 lately	 this	 zone	 as	 the	 most	 likely	 centre	 of	 diversity	 of	 Pst	 populations	
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(Hovmøller	et	al.,	2016).	Isolates	from	this	region	were	thought	to	have	travelled	via	wind	

to	the	rest	of	the	world,	such	as	East	Africa,	Middle	East	and	China	(Wan	et	al.,	2004).	Pst	

would	have	then	migrated	to	the	European	continent	and	America	(Ali	et	al.,	2014).	In	1979,	

Pst	was	reported	for	the	first	time	in	Australia,	where	it	is	known	to	have	occurred	owing	to	

the	 international	movement	 of	 spores	 from	Europe	 and	 the	United	 States	 on	 travellers’	

clothing	(Wellings,	2007).	Multiple	incursions	were	also	reported	in	South	Africa	in	1996,	

when	this	pathogen	was	identified	for	the	first	time	in	this	region.	The	source	of	the	isolates	

found	was	unknown	but	they	had	similarities	with	isolates	from	the	Middle	East	and	North	

Africa	(Boshoff,	Pretorius,	&	van	Niekerk,	2002).	Even	though	air-borne	dispersion	of	Pst	

isolates	was	reported	in	several	locations,	YR	was	still	mainly	localised	to	cold	and	humid	

regions	of	the	world	(Duan	et	al.,	2010).		

However,	 Pst	 has	 been	 expanding	 geographically	 and	 evolving	 rapidly	 to	 adapt	 to	 new	

climates	(Beddow	et	al.,	2015).	In	the	2000s,	new	races	were	discovered	that	were	more	

aggressive	and	adapted	to	warmer	temperatures	which	then	allowed	them	to	colonise	new	

regions	 (Chen,	 2005).	 These	 races	 (PstS1	 and	 PstS2)	 were	 able	 to	 spread	 widely	 into	

warmer	regions	like	south	eastern	USA	and	western	Australia.	PstS1	caused	epidemics	in	

central	USA	and	in	Australia	in	2000.	PstS2	was	found	in	NW	Europe,	Mediterranean	region	

and	Middle	East	area.	Pst	isolates	belonging	to	these	races	were	lately	assigned	to	genetic	

groups	coming	from	east	Africa,	suggesting	a	possible	origin.	These	races	were	believed	to	

be	able	to	produce	a	higher	amount	of	urediniospores	in	shorter	timeframes	under	higher	

temperatures	 (Chen,	 2005).	 They	 also	 germinated	 faster	 at	 higher	 temperatures	 (18ºC)	

compared	to	older	isolates	better	adapted	to	lower	temperatures	(12ºC)	(Milus	et	al.,	2006).	

Isolates	 found	 in	Australia	 in	2003	were	also	observed	to	be	aggressive	but	didn’t	show	

temperature	adaptation	(Chen	et	al.,	2002).	The	capacity	of	Pst	for	long-distance	dispersal	

with	its	adaptability	to	warmer	climates	led	to	a	worldwide	expansion	that	increased	the	

threat	to	global	agriculture.	

4.2.2 New	Pst	races	have	appeared	in	Europe	

Before	 the	 2000s,	Pst	 populations	 in	 Europe	 had	 shown	 clonality	 and	were	 believed	 to	

migrate	 quite	 frequently	 within	 the	 continent	 (Justesen,	 Ridout,	 &	 Hovmøller,	 2002).	

However,	 in	2011	new	Pst	 incursions	came	into	Europe	via	 long-distance	wind	dispersal	

causing	the	replacement	of	the	existent	clonal	population	(Hovmøller	et	al.,	2016).	The	low	

genetic	diversity	of	these	populations	seemed	to	indicate	that	the	origin	of	these	races	was	

due	to	exotic	incursions,	suggesting	the	Himalaya	region	as	a	possible	origin	(Hovmøller	et	

al.,	 2002).	 Three	 main	 races	 were	 identified	 in	 Europe	 in	 2011:	 Triticale,	 Kranich	 and	

Warrior	(named	after	the	wheat	varieties	‘Kranich’	and	‘Warrior’	where	the	last	two	were	
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identified).	Likewise,	another	race	called	Warrior	(-)	was	identified	in	Europe	and	found	the	

most	prevalent	one	in	the	UK	in	2014	(Bueno-Sancho,	Persoons,	et	al.,	2017;	Hubbard	et	al.,	

2015).	Whereas	 the	 ‘Triticale’	 and	 ‘Kranich’	 races	were	 localised	 in	 specific	 locations	or	

crops,	the	‘Warrior’	lineage	was	found	in	most	countries	in	Europe	and	also	showed	similar	

levels	of	aggressiveness	to	the	global	races,	PstS1	and	PstS2	(Sørensen,	Hovmøller,	Leconte,	

Dedryver,	 &	 de	 Vallavieille-Pope,	 2014).	 The	 high	 genetic	 diversity	 of	 the	 Kranich	 and	

Warrior	races	and	their	ability	for	teliospore	production	suggested	that	their	origin	could	

be	 due	 to	 the	 incursion	 of	 sexual	 recombining	 populations	 from	 the	 Himalayan	 area	

(Hovmøller	et	al.,	2016).	On	the	contrary,	the	Triticale	race	was	not	found	to	be	similar	to	

any	populations	identified	so	far	in	Asia	(Hovmøller	et	al.,	2016).	Besides,	these	new	races	

were	 able	 to	produce	more	urediniospores	 in	 shorter	period	of	 time,	which	 can	 lead	 to	

expansion	of	their	geographical	niche	(Rodriguez-Algaba,	Walter,	Sørensen,	Hovmøller,	&	

Justesen,	 2014).	 The	 emergence	 of	 novel	 races	 poses	 a	 high	 risk	 to	 agriculture	 globally,	

especially	when	the	Pst	population	seems	to	be	evolving	constantly	and	quicker	than	before	

(Liu	et	al.,	2017).	Thus,	managing	the	disease	has	become	a	priority	and	new	surveillance	

programmes	have	been	developed	to	study	pathogen	diversity.	

4.2.3 Managing	the	disease	with	surveillance	programmes	

The	appearance	of	new	pathogen	races	can	give	rise	to	an	epidemic	that	could	mean	the	

complete	loss	of	crops	and	thus	poses	a	continuous	threat	to	food	security	and	plant	health	

(Dutech	et	al.,	2012).	Exotic	incursions	of	pathogens	into	new	areas	are	unpredictable	and	

can	lead	to	outbreaks	of	diseases	that	can	produce	large	economical	loses	(Pimentel,	Zuniga,	

&	Morrison,	2005).	New	disease	outbreaks	that	affect	crops	have	thus	led	to	an	increasing	

necessity	of	improving	crop	protection	strategies.	

Monitoring	systems	can	help	us	detect	the	disease	quickly	to	tackle	the	problem	before	it	is	

more	widespread	(Meentemeyer	et	al.,	2004).	Thus,	surveillance	programs	to	monitor	YR	

have	been	taking	place	for	a	long	time	(Zadoks,	1961).	These	consist	mainly	of	monitoring	

the	Pst	population	 through	national	surveys	such	as	 the	United	Kingdom	Crop	Pathogen	

Virulence	 Survey	 (UKCPVS)	 in	 the	 UK	 established	 in	 1967	 (Hubbard,	 Wilderspin,	 &	

Holdgate,	 2018).	 Similar	 surveys	 were	 initiated	 in	 Germany	 (Hovmøller	 et	 al.,	 2016),	

Denmark	(Hovmøller,	Yahyaoui,	&	Singh,	2009)	and	France	(de	Vallavieille-Pope,	Picard-

Formery,	Radulovic,	&	Johnson,	1990).	This	led	to	the	creation	of	the	Eurowheat	database	

(www.eurowheat.org)	that	includes	Pst	virulence	dynamics.	Regular	surveys	have	also	been	

carried	 out	 in	Australia,	 China,	 India,	 South	Africa	 and	more	 sporadically	 in	East	Africa,	

Middle	East,	western	Asia,	 South	America	and	 the	Mediterranean	 (Hovmøller,	 Sørensen,	

Walter,	&	Justesen,	2011).	To	enable	quick	responses	to	appearance	of	new	races	ICARDA,	
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CIMMYT	and	Aarhus	university	also	 launched	 in	2008	 the	Global	Rust	Reference	Center	

(GRRC)	to	target	YR	from	all	countries,	as	part	of	the	Borlaug	Global	Rust	Initiative	(BGRI)	

(Hovmøller,	 Walter,	 &	 Justesen,	 2010).	 These	 monitoring	 systems	 help	 prevent	 big	

outbreaks	 since	 new	 races	 appearing	 can	 be	 rapidly	 detected,	 while	 also	 increasing	

knowledge	about	the	pathogen.	

4.2.4 Developing	NGS	technologies	leads	to	better	understanding	of	pathogens	

Traditionally,	surveillance	of	rust	fungal	pathogens	in	agroecosystems	has	been	based	on	

pathotype	surveys	to	provide	phenotypic	information	on	pathogen	diversity.	This	involves	

testing	isolates	pathogeny	against	several	wheat	varieties,	which	is	a	very	time-consuming	

task.	However,	these	methods	only	allow	the	analysis	of	a	few	samples	and	it	is	unlikely	that	

a	 new	 pathotype	would	 be	 detected	 in	 a	 timely	 fashion	 (Atkins	 &	 Clark,	 2004).	 Newer	

methods	 are	 based	 on	 serological	 or	 nucleic	 acid	 assays,	 such	 as	 enzyme-linked	

immunosorbent	 assay	 (ELISA)	 and	 immunoblotting,	 or	 PCR-based	 and	 loop-mediated	

isothermal	 amplification	 (LAMP)	 assays	 (Mori	 &	 Notomi,	 2009;	 Notomi	 et	 al.,	 2000).	

Although	some	of	these	methods	are	commonly	used,	they	can	still	introduce	bias	by	giving	

false	positive	results	or	have	technical	limitations	(Lau	&	Botella,	2017).	

Advances	in	Next	Generation	Sequencing	(NGS)	technologies	have	allowed	the	integration	

of	high-resolution	genotypic	data	in	pathogen	surveillance	systems	(Moran-Gilad,	2017).	An	

approach	 called	 “field	 pathogenomics”	 was	 recently	 developed	 for	 pathogen	 population	

surveillance	 based	 on	 high-resolution	 transcriptome	 data	 acquired	 directly	 from	 field	

samples	of	Pst-infected	wheat	and	triticale	(Hubbard	et	al.,	2015).	This	approach	uses	RNA-

seq	 data	 that	 is	 generated	 directly	 from	 pathogen-infected	 leaves	 collected	 in	 the	 field,	

providing	 a	 unique	 opportunity	 to	 characterize	 the	 pathogen	 population	 and	 its	 host	

directly	in	their	natural	environment.	Using	this	method,	the	Pst	population	form	the	UK	

was	investigated	in	2013	and	compared	to	older	isolates	covering	more	than	30	years	of	

diversity	(from	1978	until	2011).	The	results	showed	a	dramatic	shift	in	the	Pst	population	

in	the	UK	that	was	likely	to	have	occurred	due	to	several	incursions	of	exotic	lineages	of	this	

pathogen.	When	investigating	this	population	further,	four	main	genetic	groups	were	found	

within	the	UK	population	that	were	observed	to	have	different	pathotypes.	Some	of	these	

groups	were	the	same	as	the	races	identified	in	Europe	such	as	Warrior	(group	1),	Triticale	

(group	 2)	 and	Warrior	 (-)	 (group	 4).	 The	 pathotypes	 were	 consistent	 with	 the	 genetic	

groups,	as	it	is	expected	in	highly	clonal	population	(Kolmer,	2019).	Another	genetic	group	

was	also	found	(group	3)	which	was	similar	in	virulence	profile	to	a	historic	race	but	that	

was	 genotypically	 distinct.	 This	 group	 would	 have	 not	 been	 found	 with	 traditional	

phenotyping	and	happened	to	be	part	of	the	new	European	races	that	had	emerged	recently,	
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being	genetically	similar	to	the	Warrior	race	(Hubbard	et	al.,	2015).	Another	recent	study	

found	a	new	genetic	group	in	the	UK	(group	5-1)	similar	to	the	Kranich	race	in	the	UK	in	

2014	(Bueno-Sancho,	Persoons,	et	al.,	2017).	The	development	of	 this	novel	method	has	

thus	help	us	understand	 the	genetics	of	 this	pathogen	and	gain	a	better	 insight	 into	 the	

distribution	of	the	global	Pst	population.	

4.2.5 Investigating	Pst	population	dynamics	in	the	UK	

The	Pst	population	in	the	UK	has	been	studied	in	collaboration	with	the	UKCPVS	using	the	

field	pathogenomics	method	 from	2013	and	 the	 five	 genetic	 groups	have	been	 found	 to	

infect	wheat	fields	across	the	country	(Bueno-Sancho,	Persoons,	et	al.,	2017;	Hubbard	et	al.,	

2015).	Even	though	a	correlation	between	seasons	and	races	was	reported,	more	research	

is	needed	to	confirm	these	observations	(Bueno-Sancho,	Persoons,	et	al.,	2017).	Besides,	

studying	how	the	Pst	population	fluctuates	and	how	the	different	races	spread	within	a	field	

can	 provide	 useful	 information	 to	 develop	 new	 management	 strategies	 that	 take	 into	

account	these	characteristics	(Derevnina	&	Michelmore,	2015;	Plantegenest	et	al.,	2007).	

Even	though	the	field	pathogenomics	approach	provides	a	great	deal	of	information	both	

about	the	host	and	the	pathogen,	 it	has	a	relatively	high	cost	and	thereby	a	cheaper	and	

more	 rapid	 method	 would	 be	 advantageous	 as	 a	 first	 screen	 in	 regular	 surveillance	

programs.	This	would	enable	the	most	notable	and	representative	samples	to	be	quickly	

identified	and	subsequently	analysed	using	the	more	comprehensive	field	pathogenomics	

method.		

Genotyping	by	next-generation	sequencing	(GBS)	is	an	emerging	cost-effective	method	of	

Single	Nucleotide	Polymorphism	(SNP)	genotyping	that	has	recently	emerged	and	has	been	

adopted	 for	 several	 applications,	 including	 breeding	 in	 wheat	 (Triticum	 aestivum)	

(Bernardo,	St.	Amand,	Le,	 Su,	&	Bai,	2020)	and	studying	genetic	diversity	 in	 flax	 (Linum	

usitatissimum)	(Peterson,	Dong,	Horbach,	&	Fu,	2014).	Amplicon	resequencing	consists	of	

amplifying	regions	containing	useful	SNPs	and	has	been	used	for	many	species	such	as	rice	

(Nasu	 et	 al.,	 2002),	 barley	 (Kota	 et	 al.,	 2008)	 and	 sugar	 beet	 (Schneider	 et	 al.,	 2007).	

Kompetitive	Allele	Specific	PCR	(KASP)	is	a	technology	based	on	amplifying	SNPs	that	has	

been	widely	used	in	crop	improvement	(Dhakal	et	al.,	2018;	Tan	et	al.,	2017).	This	technique	

offers	an	alternative	due	to	its	low	price	and	high	level	of	accuracy	(Semagn,	Babu,	Hearne,	

&	Olsen,	2014).	Preliminary	KASP	assays	were	also	developed	for	four	of	these	Pst	races,	

corroborating	the	practicality	of	this	method	(Hubbard	et	al.,	2015).	

In	this	chapter,	I	analysed	samples	collected	from	wheat	field	trials	taking	place	across	two	

growing	seasons	in	locations	susceptible	to	YR	(14	fields	in	2015-2016	and	8	fields	in	2016-
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2017)	to	study	the	population	dynamics	of	Pst	within	a	field.	To	do	so,	I	firstly	developed	a	

quick	genotyping	system	that	I	then	applied	to	the	collected	samples.	

	

4.3 Methods	

4.3.1 Transcriptome	sequencing	of	Pst	isolates	

RNA	was	extracted	from	Pst-infected	leaf	samples	for	transcriptome	sequencing	by	Clare	

Lewis	(Saunders	Lab)	using	the	Qiagen	RNeasy	Mini	Kit	(Qiagen,	Germany)	according	to	the	

manufacturer’s	instructions.	RNA	concentration	and	quality	were	then	measured	using	the	

Agilent	RNA	6000	Nano	Kit	on	the	Agilent	2100	Bioanalyzer	(Agilent	Technologies,	United	

Kingdom).	 cDNA	 libraries	were	prepared	by	Nicola	Cook	using	 an	 Illumina	TruSeq	RNA	

Sample	Preparation	kit	(Illumina)	and	libraries	were	sequenced	on	the	Illumina	HiSeq	2500	

machine	at	Earlham	Institute	(UK)	and	GENEWIZ	(Germany).	The	101-bp	paired-end	reads	

were	trimmed	and	filtered	using	FASTX-Toolkit	(version	0.0.13.2)	and	aligned	to	the	PST-

130	assembly	(Cantu	et	al.,	2011)	using	TopHat	(version	1.3.2.).	SAMtools	(Li	et	al.,	2009)	

(version	0.1.19)	was	used	to	call	SNPs	between	samples	and	the	PST-130	genome	with	a	

minimum	depth	of	coverage	of	20x	as	described	in	(Bueno-Sancho,	Bunting,	Yanes,	Yoshida,	

&	 Saunders,	 2017).	 SNPeff	 (version	 3.6)	 was	 used	 to	 identify	 synonymous	 and	 non-

synonymous	substitutions.	The	distribution	of	read	counts	for	biallelic	SNPs	was	analysed	

for	all	samples	to	confirm	they	had	a	single	Pst	genotype	as	described	in	(Hubbard	et	al.,	

2015).	

4.3.2 Phylogenetic	analysis	of	Pst	isolates	

For	both	phylogenetic	analyses	included	here,	a	maximum	likelihood	approach	was	used.	

All	sites,	with	a	minimum	coverage	of	20x	if	they	were	different	to	the	PST-130	reference	

and	2x	if	they	were	identical,	were	extracted	for	all	included	samples.	Synthetic	gene	sets	

were	 generated	using	 these	 sites	 as	 described	 in	 (Bueno-Sancho,	 Persoons,	 et	 al.,	 2017;	

Hubbard	et	al.,	2015).	Genes	that	contained	more	than	20	%	of	missing	data	for	more	than	

20%	of	samples	were	removed	from	the	set.	The	third	codon	position	was	used	to	build	

unrooted	trees	with	RAxML	8.0.20	(Stamatakis,	2006).	Phylogenetic	trees	were	visualised	

using	Dendroscope,	version	3.5.9	(Huson	et	al.,	2007).		

4.3.3 Population	analyses	of	Pst	isolates	

A	multivariate	Discriminant	Analysis	of	Principal	Components	(DAPC)	was	performed	using	

the	Adegenet	package	(Jombart,	2008)	to	analyse	the	subdivision	of	genetic	groups	in	the	

Pst	population.	This	was	done	using	a	nonparametric	approach	without	any	predetermined	
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genetic	 model.	 To	 run	 the	 analysis,	 I	 generated	 the	 input	 file	 following	 the	 pipeline	

described	in	(Bueno-Sancho,	Bunting,	et	al.,	2017).	First,	I	extracted	all	biallelic	synonymous	

SNP	sites	for	each	one	of	the	samples	that	had	at	least	20x	coverage	and	made	a	list	of	all	

positions,	including	heterozygous	sites.	Then	a	matrix	of	samples	was	built	containing	the	

bases	that	they	all	had	for	each	one	of	those	positions,	assigning	“1”,	“2”,	“3”	or	“4”	if	there	

was	an	“A”,	“T”’,	“G”	or	“C”	respectively.	Each	of	the	samples	will	appear	twice	(i.e.	sample_1	

and	sample_2)	in	the	matrix	to	represent	each	one	of	the	nuclei,	since	Pst	is	dikaryotic.	If	a	

position	was	missing,	then	a	-9	was	assigned	to	that	site.	This	matrix	was	then	used	to	run	

DAPC	analysis.	The	optimum	number	of	genetic	groups	was	assessed	based	on	decreasing	

Bayesian	information	criterion	(BIC)	values,	as	explained	in	(Jombart,	Devillard,	&	Balloux,	

2010)	and	the	results	were	used	to	assign	Pst	isolates	into	population	clusters.	

4.3.4 Development	of	a	pipeline	for	finding	markers	

To	find	a	list	of	appropriate	SNP	markers	to	identify	Pst	genetic	groups,	I	selected	a	set	of	

295	Pst-infected	wheat	samples	that	were	previously	sequenced	for	the	analysis	and	built	a	

matrix	of	synonymous	sites	as	described	in	the	previous	section.	Samples	representing	each	

nuclei	 of	 the	 same	 isolate	 in	 the	 matrix	 were	 treated	 as	 a	 single	 sample	 that	 was	

heterozygous	 if	 the	nuclei	were	different	 and	homozygous	 if	 they	were	 identical.	 I	 then	

developed	a	pipeline	using	python3	(github.com/vbuens/ShortScripts/get_markers.py)	to	

find	markers	to	define	genetic	groups	that	had	the	following	requirements:	

1. SNP	can	be	found	in	all	genetic	groups	

2. SNP	should	(ideally)	be	found	in	all	isolates	

3. SNP	is	the	same	for	all	the	isolates	within	a	genetic	group	

4. SNP	is	different	between	genetic	groups	

The	script	takes	four	inputs:	(1)	the	matrix	previously	described,	(2)	a	file	with	information	

about	the	samples	and	their	genetic	groups	(separated	by	tabs),	(3)	a	percentage	(1-100)	of	

missing	 data	 allowed	 and	 (4)	 a	 percentage	 (1-100)	 of	 error	 within	 a	 group	 permitted	

(Figure	4.3).	The	script	then	evaluates	all	the	SNPs,	clustering	the	samples	by	groups	and	

comparing	 them	within	 a	 group	and	between	groups.	 First,	 it	 filters	positions	 that	have	

more	missing	data	than	the	input	value,	by	checking	that	all	SNPs	are	found	in	at	 least	a	

certain	percentage	of	the	samples.	That	is,	if	a	threshold	of	20	%	missing	data	is	allowed,	it	

will	remove	all	SNP	positions	that	are	not	found	in	at	least	80	%	of	the	samples.	This	filtering	

is	important	since	missing	data	could	be	due	to	lack	of	coverage	when	sequencing	but	the	

position	could	still	be	present	in	the	isolate.	Secondly,	it	filters	based	on	consistency	within	

a	genetic	group,	allowing	a	certain	percentage	of	error.	For	example,	allowing	a	10	%	of	
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error	would	mean	that	if	at	least	90%	of	samples	within	a	group	have	the	same	SNP	for	a	

certain	position,	 it	would	be	accepted.	But	 it	would	be	rejected	 if	more	 than	10%	of	 the	

libraries	have	a	different	SNP	for	the	same	position.	

The	 script	 was	 executed	 with	 different	 combinations	 of	 thresholds	 to	 find	 appropriate	

markers	for	each	genetic	group.	Firstly	a	0	%	of	error	within	a	group	was	allowed	while	

varying	the	percentage	of	missing	data	permitted	from	10	%	up	to	40	%.	Then,	the	same	

was	repeated	but	with	a	10	%	of	variability	within	a	group.		

4.3.5 Wheat	inoculation	with	Pst	isolates	from	different	genetic	groups	

To	obtain	Pst-infected	wheat	samples	from	isolates	from	different	genetic	groups,	I	infected	

wheat	plants	with	four	different	isolates,	one	for	each	of	the	four	genetic	groups	(Table	4.1).	

This	was	done	with	the	help	of	Francesca	Minter	(Saunders	lab).	Wheat	seedlings	from	the	

susceptible	cultivar	Vuka	were	grown	in	9	x	9	cm	pots	which	contained	a	peat	and	sand	

compost	mix	(85	%	fine	peat,	15	%	Gri	2.7	Kg/m3	Osmocote,	wetting	agent,	4	Kg/m3	Malime	

and	1	Kg/m3	PG	mix).	A	total	of	ten	wheat	seeds	were	planted	per	pot	and	were	treated	with	

25	mL	of	growth	regulator	(Maleic	Hydrozide	0.2	g/L)	four	days	after	sowing.	After	14	days,	

wheat	plants	were	spray-inoculated	with	Pst	spores.	To	facilitate	inoculation,	spores	were	

heat-activated	at	40	ºC	for	5	minutes	and	then	resuspended	in	Novec	7100	(3MTM,	MN,	USA)	

at	a	concentration	of	1	mg/mL,	prior	to	inoculation.	After	inoculation,	plants	were	kept	in	

the	 dark	 at	 10	 ºC	 for	 two	 days	 under	 high	 humidity	 conditions	 to	 promote	 spore	

germination.	 The	 wheat	 seedlings	 were	 then	 placed	 in	 cellulose	 bags	 to	 prevent	

contamination	 from	 other	 isolates	 and	 returned	 to	 controlled	 environment	 conditions.	

Infected	tissue	was	collected	14	days	post-inoculation	and	stored	in	RNA	later	solution	at	4	

ºC	(Life	technologies,	UK).	DNA	was	then	extracted	from	these	samples,	as	described	below,	

to	be	used	in	the	subsequent	KASP	assays	as	positive	controls.	

	

Table	4.1.	Pst	isolates	used	for	wheat	seedling	inoculation.	Four	UK	isolates	from	the	four	selected	genetic	
groups	were	used	to	inoculate	wheat	plants.	

GENETIC	GROUP	 ISOLATE	NAME	 YEAR	OF	COLLECTION	 ORIGIN	

1	 F18	 2014	 UK	

3	 15/151	 2015	 UK	

4	 14/7	 2014	 UK	

5-1	 14/106	 2014	 UK	
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4.3.6 Computational	testing	of	the	SNP	markers	

Transcriptome	data	from	475	Pst-infected	wheat	and	triticale	samples	collected	from	2013,	

2014,	2015	and	2016	was	used	to	test	the	SNP	makers.	These	samples	had	been	analysed	

previously	 by	 following	 the	method	 described	 in	 (Bueno-Sancho,	 Persoons,	 et	 al.,	 2017;	

Hubbard	et	al.,	2015)	and	their	genetic	group	was	known.	First,	positions	that	had	≥	20	x	

coverage	if	they	were	different	to	the	reference	and	2	x	if	they	were	identical	were	extracted	

for	each	sample.	Then,	a	python3	script	(was	developed	that	looked	at	the	bases	that	each	

sample	 had	 for	 the	 96	 SNP	 markers	 defined.	 The	 script	 then	 assigned	 the	 Pst-infected	

sample	 to	 a	 genetic	 group	 based	 on	 those	 positions.	 The	 assigned	 genetic	 group	 was	

compared	 to	 the	known	genetic	group	 for	each	sample	 to	 confirm	whether	 the	markers	

worked.	The	same	process	was	followed	when	the	set	of	4	markers	was	tested.	The	script	

used	is	on	GitHub:	https://github.com/vbuens/ShortScripts/blob/master/get_markers.py.	

4.3.7 DNA	extraction	of	Pst	infected	leaf	samples	

DNA	was	extracted	from	Pst	infected	wheat	samples	using	the	MyTaqTM	Extract-PCR	kit,	as	

described	by	the	manufacturer	(Bioline).	In	short,	20	µL	of	Buffer	A,	10	µL	of	Buffer	B	and	

70	 µL	 of	 water	 was	 added	 to	 a	 total	 of	 10-20	mg	 of	 tissue	 that	 was	 disrupted	 using	 a	

homogenizer.	Samples	were	then	incubated	for	5	minutes	at	75	ºC	followed	by	10	minutes	

at	95	ºC.	After	extraction,	DNA	was	purified	using	Agencourt®	XP	magnetic	beads	(Beckman	

Coulter).	 The	 AMPure	 XP	 beads	 use	 solid-phase	 reversible	 immobilisation	 (SPRI)	

paramagnetic	beads	which	selectively	bind	to	DNA	fragments	that	are	larger	than	100	bp.	

Impurities	such	as	primers,	nucleotides,	 salts	and	enzymes	can	be	removed	by	repeated	

washing	of	bead-bound	DNA.	For	each	purification,	an	equal	volume	of	AMPure	XP	beads	

and	DNA	solution	were	combined,	mixed	thoroughly	and	incubated	for	15	minutes	at	room	

temperature.	The	resulting	solution	was	then	placed	in	a	magnetic	rack	to	allow	the	DNA-

bound	AMPure	XP	beads	to	aggregate	to	the	tube	wall	out	of	the	solution	and	incubated	for	

a	 further	 5	 minutes	 until	 the	 supernatant	 became	 clear.	 Following	 removal	 of	 the	

supernatant,	 two	washes	were	performed	with	200	µL	of	80%	Ethanol.	Finally,	 samples	

were	placed	outside	of	the	magnetic	rack	for	5-15	minutes	until	dry	and	then	resuspended	

in	 52	 µL	 of	 nuclease-free	 water.	 The	 samples	 were	 then	mixed	 thoroughly	 and	 further	

incubated	for	2	minutes	at	room	temperature.	Samples	were	then	placed	in	the	magnetic	

rack	 for	 2	 minutes	 and	 the	 supernatant	 containing	 DNA	 was	 transferred	 into	 a	 new	

collection	1.5	mL	collection	tube.		

	

	



_____________________________________________________________________ 
Chapter 4 – Developing SNP markers to study Pst population dynamics in the UK 124 
 

4.3.8 Quantification	of	DNA	concentration	using	the	Qubit	

DNA	concentration	was	quantified	using	the	QubitTM	dsDNA	HS	Assay	Kit	(ThermoFisher	

Scientific,	Paisley,	UK).	To	quantify	the	concentrations	of	DNA	within	a	sample,	this	assay	

uses	 a	 fluorescent	 dye	 that	 intercalates	within	 the	DNA	molecules.	 Upon	 excitation,	 the	

relative	fluorescence	correlates	directly	with	the	quantity	of	DNA	that	the	sample	contains.	

A	master	mix	 was	made	with	 1	 µL	 of	 dye	 and	 199	 µL	 of	 buffer	 per	 sample.	 Two	 DNA	

standards	(containing	0	ng/µL	and	100	ng/µL)	are	needed	to	create	a	standard	curve	that	

is	used	to	accurately	quantify	the	DNA	within	a	sample.	For	each	control	sample,	190	µL	of	

master	mix	was	added	to	10	µL	of	standard	DNA.	For	each	DNA	sample	to	quantify,	199	µL	

of	master	mix	was	added	to	1	µL	of	DNA	sample.	All	samples	and	standards	were	mixed	

thoroughly	and	incubated	for	two	minutes	at	room	temperature.	DNA	concentrations	were	

then	determined	using	the	QubitTM	3.0	Fluorometer	(ThermoFisher	Scientific,	Paisley,	UK).	

4.3.9 TruSeq	Custom	Amplicon	Library	preparation	

A	total	of	91	Pst-infected	samples	were	selected	for	sequencing	with	the	TruSeq	Custom	

Amplicon	method.	Illumina	designed	primers	that	would	amplify	the	set	of	96	designed	SNP	

markers	 in	200-250	bp	amplicons	and	combined	 those	primers	 into	a	Custom	Amplicon	

Oligo	Pool.	This	pool	was	included	in	the	TruSeq	Custom	Amplicon	Library	Preparation	Kit	

(Illumina,	CA,	USA).	For	each	of	the	91	samples,	1-100	ng	(25	ng/µL)	of	DNA	were	entered	

into	the	library	preparation.	The	96	amplicons	were	amplified	and	prepared	for	sequencing	

using	 the	 TruSeq	 Custom	 Amplicon	 v1.5	 Library	 Preparation	 Kit	 following	 the	

manufacturer’s	instructions	(Illumina,	CA,	USA).		

The	 primers	 in	 the	 pool	 were	 hybridised	 to	 the	 DNA	 from	 each	 sample	 with	 an	 initial	

denaturation	step	at	95	ºC	for	1	minute	followed	by	58	cycles	of	90	ºC	for	30	seconds	with	

a	decrease	of	0.5	ºC	per	cycle;	20	cycles	of	60	ºC	for	1	minute	with	a	decrease	of	0.5	ºC	per	

cycle;	10	cycles	of	50	ºC	for	2	minutes	with	a	reduction	of	1	ºC	per	cycle	and	a	final	extension	

of	40	ºC	for	10	minutes.	DNA	with	the	primers	was	then	bound	to	a	membrane	and	washed	

twice	with	wash	buffer	 to	 remove	primers	 that	 had	not	 bound.	 The	 target	 regions	 then	

amplified	using	the	bound	primers	by	incubating	the	samples	at	37	ºC	with	the	Extension	

Ligation	Mix	 for	45	minutes.	A	unique	 identifying	barcode	 (adapter)	was	 added	 to	 each	

sample	before	the	amplicons	were	amplified	with	an	initial	denaturisation	of	95	ºC	for	3	

minutes,	then	26-33	cycles	of	98	ºC	for	30	seconds,	67	ºC	for	30	seconds	and	72	ºC	for	1	

minute	with	a	 final	elongation	step	of	72	ºC	 for	5	minutes.	The	number	of	cycles	of	PCR	

performed	depended	on	the	input	DNA	quantity	of	the	sample.		
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Finally,	a	clean-up	with	Agencourt	AMPure	XP	magnetic	beads,	as	previously	described	for	

DNA	extraction,	was	performed	and	each	sample	eluted	in	25	µL	elution	buffer.	To	quantify	

the	concentration	of	the	DNA	the	QubitTM	was	used	as	previously	described.	To	quantify	the	

insert	size	of	each	library,	each	sample	was	run	on	the	Agilent	2100	Bioanalyzer	(Agilent	

Technologies,	CA,	USA)	using	the	High	Sensitivity	DNA	Kit.	The	resulting	concentration	of	

91	DNA	libraries	ranged	from	0.2	ng/µL	to	55.2	ng/µL	with	insert	sizes	between	176	and	

560	bp	(Table	6.4).	

4.3.10 Sequencing	on	the	MiSeq	platform	

The	91	libraries	constructed	with	the	TruSeq	Custom	Amplicon	method	were	pooled	and	

loaded	onto	 the	MiSeq	sequencer	(Illumina,	CA,	USA)	at	 the	Earlham	Institute	 (Norwich,	

United	Kingdom)	with	a	 final	 concentration	of	580	pM.	Before	sequencing,	 the	pool	was	

denatured	with	0.1	M	sodium	hydroxide	for	5	minutes	and	then	neutralised	using	200	µM	

Tris-HCl,	 pH	 7.	 The	 denatured	 libraries	 were	 sequenced	 with	 20	%	 PhiX	 and	 a	 cluster	

density	of	70	%	using	the	500	cycle	MiSeq	v2	Reagent	Kit	(Illumina,	CA,	USA)	on	the	MiSeq	

sequencer	 which	 generated	 251	 bp	 paired-end	 reads.	 The	 resulting	 data	 were	 de-

multiplexed	on	the	sequencer	to	produce	fastq	files	for	each	sample.	

4.3.11 Data	analysis	of	samples	sequenced	on	the	MiSeq	platform	

The	quality	of	the	251-bp	paired-end	reads	for	each	of	the	91	samples	was	examined	using	

fastqc	(version	0.11.8)		(Andrews,	2010)	and	trimmed	to	remove	adapter	sequences	using	

trimmomatic	 (version	 0.33)	 (Bolger,	 Lohse,	 &	 Usadel,	 2014).	 The	 trimmed	 reads	 were	

aligned	to	the	PST-130	assembly	(Cantu	et	al.,	2011)	using	bwa	mem	(version	0.7.5)	with	

default	 parameters.	 SAMtools	 (Li	 et	 al.,	 2009)	 (version	 0.1.19)	 was	 used	 to	 call	 SNPs	

between	samples	and	the	PST-130	genome	with	a	minimum	depth	of	coverage	of	20X	as	

described	 in	 (Bueno-Sancho,	 Bunting,	 et	 al.,	 2017).	 The	 same	 script	 used	 for	 the	

computational	test	of	the	markers	was	used	here	to	look	at	the	bases	of	the	set	of	96	SNP	

sites	for	each	sample	and	then	assign	each	sample	to	a	genetic	group	based	on	the	list	of	

markers.	

4.3.12 KASP	genotyping	

For	each	marker,	three	primers	were	designed	using	Primer3plus	software	(version	4.0.0.),	

one	 specific	 for	 each	 possible	 base	 at	 that	 position	 and	 a	 third	 common	 primer.	 KASP	

primers	were	designed	by	Francesca	Minter	(Saunders	Lab)	under	my	supervision	and	by	

Clare	Lewis	(Saunders	Lab).	Each	of	the	specific	primers	was	designed	carrying	standard	

FAM	 (5’	 GAAGGTGACCAAGTTCATGCT	 3’)	 or	 HEX	 (5’	 GAAGGTCGGAGTCAACGGATT	 3’)	

compatible	tails	and	with	the	target	SNP	at	the	3’	end.	Oligonucleotides	were	ordered	from	
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Sigma-Aldrich	 (USA)	 and	 primer	 pools	 prepared	 as	 recommended	 by	 the	manufacturer	

(LGC,	UK):	12	µL	of	each	tailed	primer	(100	µM),	30	µL	of	the	common	primer	(100	µM)	and	

46	µL	of	dH2O.	The	reaction	was	prepared	mixing	2.5	µL	2x	KASP	MasterMix	(Kaspar	mix),	

0.07	µL	of	primer	pool	and	2.5	µL	of	DNA	(5-30	ng/µL).	KASP	genotyping	was	carried	out	as	

described	previously	(Bueno-Sancho,	Persoons,	et	al.,	2017).	PCR	reactions	were	prepared	

in	 a	 384-well	 clear	 plates	 (Roche,	 Switzerland)	 and	 the	 PCR	 was	 performed	 using	 an	

Eppendorf	Mastercycler	 pro	 384	 using	 the	 following	 protocol:	 hot	 start	 at	 94	 ºC	 for	 15	

minutes,	followed	by	ten	touchdown	cycles	(95	ºC	for	20	seconds,	touchdown	65	ºC	for	60	

seconds,	-1	ºC	per	cycle,	for	25	seconds),	followed	by	35	cycles	of	amplification	(94	ºC	for	

20	seconds;	57	ºC	for	60	seconds).	As	KASP	amplicons	are	smaller	than	120	bp,	an	extension	

step	 is	unnecessary	 in	 the	PCR	protocol.	Reaction	plates	were	 then	assessed	on	a	Tecan	

Safire	plate	reader	at	ambient	 temperature.	Additional	amplification	cycles	 (up	 to	40-45	

cycles)	were	performed	if	genotyping	clusters	were	not	clear	after	35	cycles.	Data	analysis	

was	performed	manually	using	Klustercaller	software	(version	2.22.0.5,	LGC	Genomics).	

4.3.13 Field	trials	

To	study	 the	Pst	population	 in	 the	UK,	 field	 trials	were	established	by	 Jane	Thomas	and	

Sarah	Holdgate	(NIAB,	Cambridge,	UK)	in	locations	that	are	known	to	be	frequented	by	YR	

infection.	Each	field	contained	two	wheat	varieties	that	were	previously	known	to	be	highly	

susceptible	 to	 the	 disease:	 Solstice	 and	KWS	Kielder.	 The	 varieties	were	 planted	 in	 two	

separated	areas	but	within	the	same	field	for	two	consecutive	wheat	growing	seasons.		

For	the	first	year	of	the	study	(2015-16),	a	total	of	14	different	locations	across	the	UK	were	

selected:	Aby,	Cambridge,	Cirencester,	Colchester,	Croft,	Driffield,	Harper	Adams,	Hereford,	

Morley,	Stonham,	Sutten	Scotney,	Trull,	Warwick	and	Wye	(Figure	4.8A).	For	 the	2016-

2017	wheat	growing	season,	the	study	is	focused	on	just	8	of	these	sites	in	order	to	be	able	

to	 monitor	 the	 disease	 in	 each	 field	 more	 frequently	 within	 the	 limitations	 of	 time	

constraints	(Figure	4.8B).	Four	of	these	sites	were	larger	sites	than	the	previous	year	to	

enhance	the	space	to	monitor	the	spread	of	disease	foci:	Morley,	Hereford,	Stonham	and	

Sutton.	The	other	four	sites	are	the	same	size	as	those	used	in	first	year:	Aby,	Croft,	Taunton	

(Trull)	and	Kent	(Wye).	

The	fields	were	monitored	monthly	during	the	wheat	growing	season	(from	December	until	

June)	by	Christopher	 Judge	and	he	collected	samples	of	wheat	 leaves	each	 time	 infected	

plants	were	spotted	 in	 the	 field.	After	collecting	a	sample,	 it	was	stored	 in	RNAlater	and	

labelled	with:	(i)	exact	location,	(ii)	name	of	the	field	and	spatial	information	within	the	field,	

(iii)	date	and	(iv)	wheat	variety.	
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4.4 Results	

4.4.1 Finding	SNP	markers	to	identify	Pst	genetic	groups	

4.4.1.1 	Selection	of	Pst	samples	to	identify	genetic	markers	

A	total	of	five	main	Pst	genetic	groups	were	recently	identified	in	the	UK.	Four	of	them	were	

found	in	2013	(Hubbard	et	al.,	2015)	and	in	2014	a	fifth	race	that	was	previously	identified	

in	Europe,	called	the	Kranich	race,	was	also	found	in	the	UK	for	the	first	time	(Bueno-Sancho	

et	al.,	2017).	To	identify	genetic	markers	that	would	enable	us	to	classify	the	five	Pst	genetic	

groups,	I	first	studied	the	Pst	population	during	2013,	2014	and	2015	to	find	SNP	markers	

that	were	specific	 for	each	population.	This	would	allow	us	to	rapidly	differentiate	them	

using	just	these	limited	set	of	positions,	instead	of	carrying	out	full	transcriptomics	of	each	

sample.	

To	 identify	 a	 set	 of	 appropriate	markers,	 the	 first	 step	was	 to	 select	 representative	Pst	

isolates	to	include	in	the	analysis.	During	the	field	pathogenomics	BBSRC-funded	project,	

more	than	600	samples	were	sequenced	from	2013	–	2016	from	all	over	the	world.	To	carry	

out	a	precise	analysis,	I	only	chose	isolates	for	which	we	had	good	quality	data	and	that	were	

known	 to	 be	 very	 well	 assigned	 to	 each	 genetic	 group.	 Samples	 were	 chosen	 to	 be	

representative	of	 the	 five	 genetic	 groups	and	with	a	high	enough	number	of	 samples	 to	

capture	all	the	diversity	within	each	genetic	group.	A	set	of	295	representative	Pst	isolates	

collected	 from	 2013,	 2014	 and	 2015	 was	 selected	 from	 24	 countries.	 The	 number	 of	

samples	from	each	genetic	group	varied	due	to	availability,	having	included	more	samples	

from	group	4	(198)	since	it	was	the	most	abundant	group	and	less	for	Kranich	(8)	and	group	

2	(10).	Most	of	the	included	samples	were	originally	collected	from	the	UK,	Germany	and	

France,	particularly	for	2013	for	which	we	only	had	samples	from	the	UK	(Figure	4.1).		

Phylogenetic	analysis	was	carried	out	using	these	295	Pst-infected	samples	using	the	third	

codon	 position	 of	 2,329	 PST-130	 gene	models	 via	maximum-likelihood	model	 (679,350	

nucleotide	sites;	Figure	4.2).	These	295	isolates	had	been	previously	analysed	and	assigned	

to	a	genetic	group	(Adams,	Neher,	&	Saunders,	2020;	Bueno-Sancho,	et	al.,	2017;	Hubbard	

et	al.,	2015).	Isolates	clustered	well	phylogenetically	into	their	respective	genetic	group	and	

are	highlighted	 in	 the	 tree	 in	 the	 colour	of	 their	 group.	Thus,	 I	 could	 confirm	 that	 these	

samples	were	 appropriate	 for	 identifying	 representative	markers	 that	were	 specific	 for	

each	one	of	the	five	populations.	
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Figure	4.1.	The	295	selected	samples	were	collected	from	different	locations	and	different	years.	The	
samples	chosen	for	the	analysis	were	originally	collected	from	different	locations	around	Europe,	USA,	China,	

India	and	Canada	during	three	different	years	(2013,	2014	and	2015).	All	samples	included	from	2013	were	

collected	from	the	UK	and	belonged	to	groups	1,	2,	3	or	4.	Samples	included	from	2014	and	2015	were	from	all	

five	genetic	groups.	Most	of	the	included	samples	were	collected	form	the	UK,	Germany	and	France.	
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Figure	 4.2.	 The	 selected	 295	 Pst	 samples	 are	 a	 good	 representation	 of	 the	 five	 Pst	 genetic	 groups.	
Phylogenetic	tree	of	the	295	samples	using	the	third	codon	position	of	2,329	PST-130	gene	models	(679,350	

sites).	Isolates	are	clustered	into	five	genetic	groups,	represented	by	colours.	The	background	colour	represents	

the	genetic	clustering	assigned,	as	previously	seen	in	(Adams	et	al.,	2020;	Bueno-Sancho,	Persoons,	et	al.,	2017;	

Hubbard	et	al.,	2015).		
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4.4.1.2 A	 set	 of	 96	 SNP	 markers	 was	 found	 that	 could	 differentiate	 the	 five	 Pst	
genetic	groups	

Using	295	Pst-infected	samples,	all	synonymous	SNP	sites	were	extracted	for	each	isolate	

and	 then	 compared	 to	 each	 other	 to	 extract	 specific	markers	 for	 each	 genetic	 group	 as	

described	 in	 the	methods	 (Figure	4.3).	The	high	variability	 that	 exists	between	 isolates	

within	a	single	genetic	group	(Bueno-Sancho	et	al.,	2017;	Hubbard	et	al.,	2015)	made	it	very	

difficult	 to	 define	 consensus	 markers	 within	 and	 between	 genetic	 groups.	 Besides,	

sequencing	errors	and	missing	data	complicated	this	analysis	further.	Thus,	I	had	to	include	

a	margin	of	error	in	the	analysis	in	order	to	gain	a	set	of	markers,	while	setting	a	threshold	

to	make	sure	that	they	were	sufficiently	reliable.			

A	vast	number	of	markers	was	initially	found	for	group	2,	which	was	expected	since	a	low	

number	of	samples	was	included.	Identification	of	markers	for	the	genetic	groups	1,	3	and	

5-1	(Kranich)	was	relatively	easy,	however	group	4	(with	the	highest	genetic	variability)	

was	more	challenging.	Only	a	small	number	of	consensus	markers	could	be	identified	that	

were	 conserved	 across	 all	 Pst	 isolates	 in	 this	 genetic	 group,	 which	 limited	 marker	

identification	for	this	group	(Figure	4.4).	Nonetheless,	markers	were	found	to	be	specific	

for	group	2	and	group	4	(i.e.	7582_7250)	or	group	3	and	group	4	(i.e.	8552_2672)	and	thus	

group	4	could	be	differentiated	by	using	these	markers	and	group3-specific	(26014_8757)	

and	group	2-specific	(i.e.	10129_723).	Due	to	similarity	between	group	1	and	5-1,	several	

markers	were	 found	to	be	specific	 for	 those	 two	groups	and	different	 for	 the	rest	of	 the	

groups.	 Overall,	 a	 set	 of	 96	markers	were	 obtained	 that	 could	 allow	 us	 to	 differentiate	

genetic	groups.	Out	of	these	96,	37	markers	were	specific	for	group	2	(that	were	found	with	

an	allowance	of	10	%	missing	data	and	0%	of	error)	and	24	were	useful	for	differentiating	

all	genetic	groups	(Table	6.3).	Since	group	2	Pst	isolates	had	been	consistently	identified	

only	on	triticale	and	rye	(Hubbard	et	al.,	2015),	this	group	was	excluded	from	subsequent	

analyses.	

4.4.2 Markers	were	successfully	tested	using	three	different	methods	

To	test	that	the	selected	set	of	markers	were	able	to	identify	the	different	Pst	genetic	groups,	

three	different	methods	were	used.	First,	we	took	a	computational	approach	with	samples	

that	 were	 already	 sequenced,	 then	 a	 sequencing-based	 approach	 with	 samples	 with	 a	

known	 genetic	 group	 and	 thirdly	 using	 KASP	 assays	 to	 quickly	 genotype	 samples	 by	

amplifying	single	SNPs.	
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Figure	4.3.	Workflow	of	the	python	script	used	for	identifying	markers.	Two	input	files	were	required:	(1)	
a	file	with	the	synonymous	SNP	positions	for	each	sample	and	(2)	a	file	with	the	group	each	sample	had	been	

assigned	to.	Two	input	values	are	also	needed	to	use	as	thresholds:	(1)	Maximum	percentage	of	missing	data	

permitted	 and	 (2)	 maximum	 percentage	 of	 errors	 permitted.	 The	 synonymous	 SNPs	 file	 was	 used	 to	 find	

positions	that	were	consistent	within	a	group,	different	between	groups	and	followed	the	specified	thresholds.	
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Figure	 4.4.	 Number	 of	 markers	 varied	 greatly	 for	 each	 genetic	 group	 depending	 on	 the	 specified	
thresholds.	Number	of	markers	found	with	a	threshold	of	10%,	20%,	30%	and	40%	of	missing	data	permitted	
and	(A)	10	%	of	error	permitted	or	(B),	(C)	0	%	of	error	permitted.	(C)	shows	the	same	analysis	than	(B)	but	
without	including	genetic	group	2.	
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4.4.2.1 Computational	tests	revealed	markers	were	suitable	for	differentiating	Pst	
genetic	groups	

To	determine	that	the	list	of	selected	markers	was	suitable	for	identifying	genetic	groups,	I	

initially	took	a	computational	approach	to	see	if	I	could	assign	the	genetic	group	of	samples	

that	had	been	previously	sequenced	by	assessing	the	base	at	these	96	positions.	I	utilised	

transcriptome	data	from	475	Pst-infected	samples	collected	across	four	years:	2013,	2014,	

2015	and	2016,	including	the	295	samples	that	were	used	to	define	the	set	of	markers.	Using	

a	python	script,	I	assessed	the	nucleotides	at	each	SNP	position	for	each	of	the	96	positions	

and	assigned	a	score	to	classify	each	sample	into	one	of	the	five	genetic	groups.	Using	this	

approach,	I	was	able	to	classify	98.95	%	of	the	samples	into	their	previously	defined	genetic	

groups,	 determined	 through	 full	 transcriptome	 sequencing.	 Only	 five	 samples	were	 not	

successfully	 assigned	 and	were	 those	with	poor	quality	data	or	 that	were	not	 very	well	

assigned	to	their	genetic	group.	Therefore,	these	results	were	very	promising	and	showed	

how	analysing	just	96	SNP	positions	was	sufficient	to	assign	Pst	isolates	to	one	of	the	four	

Pst	genetic	groups	assessed	herein.	

4.4.2.2 	Amplicon	resequencing	confirmed	the	efficacy	of	the	96	markers	

To	evaluate	the	SNP	markers	using	the	TruSeq	Illumina	custom	amplicon	method,	a	pool	of	

primers	 was	 designed	 by	 Illumina	 that	 amplified	 200	 bp	 surrounding	 the	 SNP	 site	 of	

interest.	A	total	of	91	libraries	were	prepared,	of	which	43	were	Pst	-infected	samples	that	

had	been	previously	genotyped	using	transcriptomic	analysis	and	thus	their	genetic	group	

was	known.	The	other	48	were	samples	collected	during	2016	from	field	trials.	To	test	how	

well	 this	 method	 worked,	 I	 firstly	 explored	 the	 number	 of	 contigs	 containing	 the	 SNP	

markers	that	were	sequenced	for	each	sample	(Figure	4.5).	Most	of	the	samples	contained	

around	half	of	the	contigs,	showing	that	the	designed	primers	were	not	able	to	amplify	all	

the	SNP	markers	as	expected.	Markers	contained	 in	 the	contigs	 located	at	 the	bottom	of	

Figure	4.5,	such	as	10095_1765,	11587_2433	and	19742_674	were	not	present	for	any	of	

the	 samples.	 Markers	 at	 the	 top,	 coloured	 in	 light	 blue,	 such	 as	 9827_1344,	 8286_876,	

8069_1156	and	7753_15395	were	found	in	most	of	the	samples.	Three	samples	(14/113,	

14/7	 and	16.0392)	 did	 not	 contain	most	 contigs,	 showing	 that	 the	 amplification	 of	 SNP	

markers	was	not	very	consistent	and	did	not	work	with	high	accuracy,	possibly	due	to	low	

initial	DNA	concentration	for	these	samples.
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Figure	4.5.	Around	half	of	the	contigs	that	contained	the	selected	markers	were	found	in	almost	all	samples.	The	96	selected	positions	from	a	total	of	48	Pst-infected	samples	collected	
during	the	‘field	pathogenomics’	project	from	2013-2016	were	sequenced	to	test	the	markers.	All	samples	apart	from	two	contained	around	half	of	the	positions,	the	other	half	of	the	positions	
were	missing.	Markers	are	coloured	in	dark	blue	if	they	were	missing	in	a	sample	and	light	blue	if	they	were	found.	Markers	are	sorted	in	the	y-axis	by	prevalence,	showing	the	markers	found	
in	mostly	all	samples	at	the	top.
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Figure	4.6.	The	selected	96	SNP	markers	were	able	to	correctly	assign	the	genetic	group	of	the	control	Pst-infected	samples	that	were	sequenced.	Three	samples	of	each	genetic	group	
(1,	3,	4	and	5-1)	are	shown	here,	with	their	bases	for	each	one	of	15	markers.	The	“expected”	column	shows	the	bases	that	a	sample	from	each	genetic	group	would	typically	have.	The	control	
samples	resembled	the	expected	bases	and	thus	were	assigned	to	their	genetic	group	successfully.	Some	of	the	samples	showed	missing	data	for	some	of	the	markers	but	the	assignment	of	the	
genetic	group	was	still	possible.	
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Using	this	technique,	we	could	identify	the	genetic	group	correctly	for	40	out	of	the	43	Pst-

infected	samples	tested	that	had	previously	been	assigned	to	genetic	groups	and	produced	

sufficient	data	for	analysis	(Figure	4.6).	The	remaining	three	samples	had	very	low	DNA	

concentrations	and	therefore	failed	to	generate	sufficient	transcriptomic	data.	 	However,	

despite	the	low	data	acquired	for	one	of	the	samples	(14/7),	I	was	still	able	to	assign	the	

sample	to	its	corresponding	genetic	group.	Out	of	the	48	Pst-infected	samples	that	had	not	

been	previously	characterised,	 four	of	 them	did	not	produce	data	of	 sufficient	quality	 to	

assign	genetic	groups.	The	remaining	44	Pst-infected	samples	all	produced	sufficient	data	

and	were	assigned	to	group	4.	For	most	samples,	we	used	between	40-50	of	the	96	markers	

to	 identify	 their	 genetic	 group,	with	 an	 average	 of	 47.87	markers	 (±	 8.6	 S.D.)	 used	 per	

sample.	This	indicates	that	not	all	the	primers	were	very	effective	in	all	cases	and	thus	for	

almost	half	of	the	markers	we	had	no	data	available.	As	primers	were	designed	and	pooled	

by	Illumina,	optimisation	of	the	technique	to	increase	the	coverage	for	all	markers	was	not	

possible.	This	adds	a	limitation	to	this	method	because	it	is	harder	to	implement	and	will	

rely	on	Illumina	to	add	more	markers	or	optimise	the	method.	However,	even	with	half	of	

the	SNP	positions	with	missing	data,	we	could	still	successfully	identify	the	genetic	group.	

This	suggests	that	this	method	is	not	very	effective	to	amplify	all	96	positions	but	also	that	

not	all	96	positions	are	needed	to	assign	Pst-infected	samples	to	a	genetic	group.	

4.4.2.3 	KASP	assays	can	be	used	to	identify	populations	with	the	set	of	markers	

To	further	test	the	aforementioned	markers,	I	carried	out	KASP	assays	and	designed	specific	

primers	for	a	subset	of	36	of	the	initial	96	markers	(Table	6.5).	The	high	level	of	GC	content	

and	repeat	content	in	certain	regions	prevented	primer	design	for	the	remaining	markers.	

To	 test	 these	 KASP	 primers,	 a	 total	 of	 5	 samples	 were	 utilised	 as	 positive	 controls	 to	

represent	the	four	genetic	groups	of	Pst	that	infect	wheat:	Pst	isolates	F18	and	F22	(both	

from	group	1),	Pst	isolate	15/151	(group	3),	Pst	isolate	14/7	(group	4)	and	isolate	14/106	

(group	5-1).	Initial	analysis	revealed	that	many	of	the	KASP	assays	were	not	very	consistent	

for	all	the	primers	(Figure	4.7).	KASP	results	using	these	control	samples	differed	greatly	

from	the	expected	results	in	some	cases.	Therefore,	we	selected	four	primer	triplets	that	

could	 be	 used	 to	 reliably	 differentiate	 between	 the	 four	 genetic	 groups:	 CLPST163,	

CLPST167,	PST-16	and	PST-18	(Table	4.2).	These	four	primers	allowed	us	to	differentiate	

between	the	four	genetic	groups	very	easily	and	gave	consistent	results	when	tested	with	

several	samples	(Figure	4.11).
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Figure	4.7.	KASP	primers	were	tested	with	control	Pst-infected	samples	fom	different	genetic	groups.	Example	of	10	of	the	tested	primers	and	the	results	observed	running	KASP	vs	the	
expected	results.	For	a	given	marker,	each	primer	would	give	a	signal:	XX,	XY	or	YY	(represented	in	blue,	green	or	red	to	mirror	KASP	results),	depending	on	the	genetic	group	of	the	sample	
that	is	amplifying.	Many	primers	did	not	give	the	expected	results	(the	expected	and	observed	results	did	not	match)	and	thus	were	not	chosen	for	further	analysis.	Only	four	of	the	primers	
(highlighted	in	light	orange)	worked	well	for	the	samples	consistently	and	were	selected.	

Primer CLPST160 CLPST163 CLPST167 CLPST171 PST-16 PST-17 PST-18 PST-23 PST-29 PST-19

Marker 7670_3437 10982_2778 7291_1846 11355_649 7364_28843 753_1139 8291_7564 19742_674 7237_13346 8552_2672

Contig PST130_7670 PST130_10982 PST130_7291 PST130_11355 PST130_7364 PST130_753 PST130_8291 PST130_19742 PST130_7237 PST130_8552

SNP C3524T G2778A G1846A A649C t28843a c1139a a7564g c674t g13346c A2672G

Specific ALL ALL Group 1 ALL Group 1 Group 1, 5-1 Group 5-1 ALL ALL Group 3
Group 4 XY XY XY XY XX XY XX XY XY XY
Group 3 XX YY XY YY XX XY XX YY YY XY
Group 1 YY XX YY XX XY XX XX XX XX XX
Group 1 YY XX YY XX XY XX XX XX XX XX
Group 4 XX XY XY XX XX XX XX XX XY -
Group 3 YY YY XY XY XX XX XX XX XX -
Group 1 XX XX YY XX XY XX XX XX XY -
Group 1 XX XX YY XX XY XX XX XX XY -

Expected

KASP 
results
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Once	primers	had	been	validated	using	positive	 controls,	 the	 four	primers	were	 further	

evaluated	 using	 additional	 Pst	 infected	 samples	 that	 had	 also	 been	 subjected	 to	 full	

transcriptome	sequencing	and	whose	genetic	group	was	known.	The	 four	KASP	primers	

were	very	effective	in	distinguishing	Pst	genetic	groups,	with	identical	results	compared	to	

the	 Illumina	 sequencing.	 Out	 of	 the	 43	 samples	 sequenced	 using	 the	 amplicon	 Illumina	

sequencing	 method,	 10	 were	 also	 tested	 in	 KASP,	 giving	 the	 same	 result.	 Also,	 the	 48	

samples	collected	from	the	2016	field	trials	were	tested	with	KASP	resulting	in	an	identical	

conclusion.	This	indicates	that	KASP	is	a	quick	and	effective	method	to	genotype	samples	

using	 this	 limited	 set	 of	 markers.	 By	 focusing	 on	 just	 four	 markers,	 we	 can	 therefore	

genotype	samples	rapidly	and	with	a	low	cost.	

	

Table	 4.2.	 Four	 primer	 triplets	 were	 selected	 for	 amplifying	 four	 SNP	 markers	 that	 allow	 us	 to	
differentiate	Pst	genetic	groups.	Five	isolates	from	four	genetic	groups	were	chosen	as	positive	controls.	
The	expected	bases	that	would	be	amplified	by	each	primer	triplet	depending	on	the	genetic	group	are	shown	
here,	with	the	corresponding	KASP	results	within	brackets.	Colours	represent	the	fluorescence	given	by	KASP	
primers	when	amplifying	each	corresponding	nucleotide	(Figure	4.11).	

	 Group	1	 Group	3	 Group	4	 Group	5-1	

	 F18	 F22	 15/151	 14/7	 14/109	

CLPST163	 GG	(XX)	 GG	(XX)	 AA	(YY)	 AG	(XY)	 GG	(XX)	

CLPST167	 AA	(YY)	 AA	(YY)	 AG	(XY)	 AG	(XY)	 AG	(XY)	

PST-16	 AT	(XY)	 AT	(XY)	 TT	(XX)	 TT	(XX)	 TT	(XX)	

PST-18	 AA	(XX)	 AA	(XX)	 AA	(XX)	 AA	(XX)	 AG	(XY)	
	

	

4.4.2.4 	Computational	analysis	revealed	samples	can	be	assigned	to	genetic	groups	
using	just	four	markers.	

To	 further	 check	 that	 the	 four	 selected	 markers	 were	 sufficient	 to	 assign	 Pst-infected	

samples	to	genetic	groups,	I	performed	the	same	computational	test	previously	described	

in	section	4.4.2.1.	Out	of	the	475	Pst-infected	samples	tested,	405	were	successfully	assigned	

to	their	correct	genetic	group	(85.26	%)	and	47	had	missing	data	for	some	of	these	positions	

and	 thus	 could	 not	 be	 assigned	 to	 a	 genetic	 group.	 The	 remaining	 23	 samples	 also	 had	

missing	data	for	some	positions	thus	leading	to	confusing	results.	These	were	all	samples	

that	were	previously	described	as	belonging	to	group	4	but	due	to	the	missing	data	I	was	

unable	to	infer	whether	they	belonged	to	group	3	or	group	4.	These	results	showed	that	the	
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genetic	 group	 of	 Pst-infected	 samples	 can	 be	 successfully	 identified	 using	 these	 four	

positions	as	long	as	data	is	available	for	all	four	nucleotide	positions.	

4.4.3 Studying	the	Pst	population	in	the	UK	across	two	wheat	growing	seasons	

4.4.3.1 	Field	 trials	were	 carried	out	 for	 two	wheat	 growing	 seasons	 to	 study	Pst	
population	dynamics	in	the	UK	

To	study	the	Pst	population	in	the	UK,	field	trials	were	carried	out	across	the	UK	for	two	

consecutive	wheat	growing	seasons.	For	 the	2015-2016	wheat	growing	season	14	 fields	

were	monitored	and	due	to	time	constraint	only	8	were	chosen	for	the	2016-2017	wheat	

growing	season	(Figure	4.8).	These	8	fields	were	still	located	all	across	the	UK	in	order	to	

get	a	good	representation	of	the	Pst	population	in	different	areas.		

A	total	of	757	Pst-infected	samples	were	collected	by	Christopher	Judge	(NIAB)	in	the	first	

year	and	539	Pst-infected	samples	collected	in	the	following	year.	During	the	first	year,	YR	

was	found	for	the	first	time	in	November	in	a	field	in	Harper,	and	it	remained	more	or	less	

constant	 across	 the	 entire	 year	 (Figure	 4.9).	 In	 Taunton,	 the	 disease	 appeared	 at	 the	

beginning	 of	 January	 2016	 and	 then	 seemed	 to	 withdraw	 during	 March	 and	 April	 and	

appeared	again	in	May.	A	similar	case	was	observed	for	Cirencester,	where	infected	samples	

were	collected	in	December	2015	but	then	no	disease	was	found	in	March	and	April,	and	

Callow,	where	disease	was	only	observed	in	December	and	then	in	April.	For	the	field	in	

Cambridge,	infected	samples	were	only	collected	in	February,	March	and	April.	In	all	other	

fields,	 YR	 disease	 was	 constant	 across	 the	 wheat	 growing	 season,	 starting	 mostly	 in	

December-January,	with	samples	regularly	taken	to	get	a	representation	of	Pst	in	each	field.		

For	the	2016-2017	wheat	growing	season,	YR	was	found	later	than	the	previous	year.	Pst-

infected	plants	were	only	found	at	the	beginning	of	the	year	in	Stonham,	Taunton,	Croft	and	

Morley	fields	(Figure	4.10).	In	these	last	two,	disease	seemed	to	disappear	to	only	appear	

again	in	March-April.	This	was	particularly	noticeable	in	Morley,	where	only	a	few	infected	

plants	were	observed	in	December	and	then	disease	withdrew	until	April.	In	Stonham	and	

Taunton,	diseased	plants	were	observed	all	across	the	season.	In	the	other	four	fields,	Pst-

infected	plants	were	not	found	until	March-April	and	then	remained	mostly	constant	until	

the	end	of	the	season	in	June.	
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Figure	4.8.	Field	trials	were	carried	out	all	over	the	UK	for	two	years.	A	total	of	14	sites	were	monitored	
during	the	wheat	growing	season	of	2015-2016	(A)	and	8	were	monitored	during	2016-2017	(B).	Fields	were	
located	in	positions	that	are	known	to	be	susceptible	to	YR.		

	

Figure	4.9.	 A	 total	 of	 757	Pst-infected	 samples	were	 collected	during	 the	2015-2016	wheat	 growing	
season	from	14	different	fields	across	the	UK.	YR	disease	was	found	in	most	fields	around	December	and	
then	it	remained	constant	for	the	rest	of	the	growing	season.	In	Taunton	and	Cirencester,	YR	disease	withdrew	
during	March	 and	April.	 Similarly,	 in	Callow	disease	was	 found	 in	 January	 and	 then	 again	 in	April,	with	no	
symptoms	found	in	February	and	March.	For	the	field	in	Cambridge,	infected	samples	were	only	collected	during	
February,	March	and	April.	
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Figure	4.10.	A	total	of	539	Pst-infected	samples	were	collected	during	the	2015-2016	wheat	growing	
season	from	8	different	fields	across	the	UK.	YR	disease	was	only	found	in	December-January	in	Croft,	Morley,	
Stonham	and	Taunton.	In	Croft,	disease	was	not	found	in	February	and	in	Morley,	YR-infected	plants	were	not	
found	again	until	April.	In	Taunton	and	Stonham,	disease	was	found	all	across	the	year	and	thus	samples	were	
collected	 accordingly.	 In	 the	 other	 four	 fields	 (Aby,	 EMR,	Hereford	 and	 Sutton	 Scotney)	 disease	was	 firstly	
observed	in	March-April	and	remained	mostly	constant	until	the	end	of	the	season	in	June.	
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Figure	4.11.	Pst-infected	field	samples	were	genotyped	using	four	KASP	assays.	Four	primer	triplets	were	
chosen	for	genotyping	the	field-collected	samples:	CLPST-163,	CLPST-167,	PST-16	and	PST-18.	These	primers	
amplify	four	SNPs:	10982_2778,	7291_1846,	7364_28843	and	8291_7564	respectively.	These	SNPs	can	be	used	
to	differentiate	the	Pst	genetic	groups	as	shown	in	the	figure.	
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4.4.3.2 	Field	samples	can	be	successfully	genotyped	using	KASP	assays	

As	 the	 Illumina	 amplicon	 strategy	 and	KASP	 assays	were	both	 effective	 in	 assigning	Pst	

genetic	groups,	I	chose	to	genotype	a	wider	range	of	field	samples	using	the	quicker	and	

more	economical	KASP	method	(Figure	4.11).	I	selected	a	total	of	five	samples	to	use	as	

positive	 controls	 in	 each	 assay	 representing	 each	 of	 the	 four	 Pst	 genetic	 groups,	 as	

previously	mentioned,	and	two	negative	controls:	one	with	water	and	another	with	wheat	

DNA,	 to	 ensure	 that	 the	 primers	 were	 not	 amplifying	 wheat	 DNA.	 Therefore,	 the	 four	

validated	KASP	assays	were	used	to	examine	85	Pst-infected	field	samples	from	the	2015-

2016	season	and	379	Pst-infected	field	samples	from	the	2016-2017	season	to	evaluate	the	

distribution	of	Pst	genetic	groups	in	a	field	across	the	wheat	growing	season.		

For	the	first	year	of	field	trials,	we	selected	53	Pst-infected	samples	collected	from	the	wheat	

variety	 Solstice	 and	 32	 from	KWS	Kielder	 to	 try	 to	 get	 an	 equal	 representation	 of	 both	

varieties.	Three	fields	were	studied:	Aby	(19	samples),	Hereford	(32	samples)	and	Taunton	

(34	samples).	Out	of	the	85	Pst-infected	samples,	76	were	identified	as	belonging	to	group	

4,	6	were	from	group	Kranich	(5-1)	and	only	one	was	assigned	to	group	1	(Figure	4.12).	

There	were	two	samples	for	which	the	DNA	concentration	was	too	low	and	thus	the	KASP	

primer	 did	 not	 amplify.	 Interestingly,	 group	 4	 and	 Kranich	 were	 found	 all	 through	 the	

season,	whereas	group	1	was	only	found	in	May.	

During	the	following	wheat	growing	season,	out	of	the	379	Pst-infected	samples	that	were	

analysed,	 175	were	 collected	 from	 the	wheat	 cultivar	 Solstice,	 and	204	were	 from	KWS	

Kielder.	 Samples	 from	 all	 eight	 fields	 were	 selected	 for	 genotyping	 to	 get	 a	 better	

representation	of	Pst	genetic	groups	found	across	the	UK	(Figure	4.13).	Out	of	the	379	Pst-

infected	samples	that	were	selected	for	KASP,	we	could	identify	the	genetic	group	for	336.	

The	remaining	43	had	very	low	DNA	concentration	and	thus	not	all	the	four	KASP	assays	

were	successful.	This	low	concentration	can	be	due	to	the	small	quantity	of	initial	material	

used.	To	make	sure	sampling	did	not	interfere	in	the	natural	process	of	dispersal	in	the	field	

trials,	 small	 samples	 (»	 1	 cm)	 were	 taken	 which	 made	 it	 difficult	 to	 extract	 large	

concentrations	of	DNA.	All	336	Pst-infected	samples	were	assigned	to	the	genetic	group	4	

and	no	other	genetic	group	was	identified.		

The	dynamics	of	the	Pst	population	across	both	consecutive	years	was	studied	in	the	field	

located	in	Taunton,	Hereford	and	Aby.	Figure	4.14	illustrates	how	the	Pst	genetic	groups	

identified	throughout	the	growing	season	changed	in	the	fields	for	both	years.	Even	though	

both	group	5-1	and	group	1	were	found	in	Taunton	field	in	2016,	all	collected	Pst-infected	
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samples	were	 analysed	 from	 the	 same	 field	 for	 the	 following	 season	 and	 none	 of	 these	

genetic	groups	were	found	that	year.		For	Hereford	and	Aby,	all	samples	collected	both	in	

2016	and	2017	belonged	to	genetic	group	4	and	thus	no	conclusion	can	be	drawn	regarding	

dynamics	 in	 Pst	 races.	 In	 summary,	 despite	 different	 genetic	 groups	 found	 in	 2016,	 I	

observed	that	in	2017	all	374	genotyped	samples	belonged	to	the	genetic	group	4	(Figure	

4.13).	This	further	supports	that	genetic	group	4	is	the	predominant	one	in	the	UK.	

	

	

	

	

Figure	4.12.	Three	different	Pst	genetic	groups	were	found	in	2016.	A	total	of	85	Pst-infected	samples	from	
2016	were	genotyped	using	KASP	from	three	different	fields:	Aby,	Hereford	and	Taunton.	Most	of	the	samples	
found	belonged	to	genetic	group	4.	A	few	samples	from	group	5-1	were	found	at	Taunton	in	January,	February	
and	May,	and	only	one	from	group	1	was	found	in	May	at	the	same	field.	
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Figure	4.13.	Pst	genetic	group	4	was	prevalent	in	2017.	A	total	of	379	Pst-infected	samples	from	2016-2017	
were	genotyped	using	KASP	from	eight	fields	across	the	UK.	All	samples	that	were	successfully	genotyped	were	
assigned	to	genetic	group	4.	A	subset	of	samples	that	could	not	be	identified	due	to	low	DNA	concentration	in	
the	original	sample.	
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Figure	4.14.	Pst	genotypes	found	in	one	year	cannot	predict	the	prominent	genotypes	for	the	following	
year.	Pst-infected	 field	 samples	 collected	 from	 three	 field	 in	 (A)	Taunton,	 (B)	Hereford	 and	 (C)	 Aby	were	
genotyped	for	two	years	to	find	their	genetic	group.	In	the	first	year,	samples	from	three	different	Pst	genetic	
groups	were	identified	(1,	4	and	5-1)	in	Taunton	but	the	following	year	all	samples	belonged	to	a	single	genetic	
group	(group	4).	In	Hereford	and	Aby,	only	one	genetic	group	was	found	both	years.	The	results	from	Taunton	
show	how	prediction	of	genotypes	based	on	results	early	in	the	year	or	the	previous	year	is	not	possible.	
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4.4.3.3 Transcriptomic	 analysis	 of	 Pst-infected	 samples	 confirms	 the	 results	
obtained	with	KASP	assays.	

To	evaluate	whether	the	results	obtained	using	KASP	marker	analysis	were	consistent	with	

the	original	 field	pathogenomics	method,	 a	 subset	 of	 15	 field	Pst-infected	 samples	were	

selected	for	full	transcriptome	sequencing.	All	the	selected	samples	were	collected	during	

the	2016-2017	growing	season	from	different	fields:	Aby	(3	samples),	Croft	(2),	EMR	(6),	

Hereford	(1),	Morley	(1),	Stonham	(1)	and	Sutton	(1).	A	 total	of	11	Pst-infected	samples	

were	obtained	from	the	Solstice	cultivar	and	4	to	from	KWS	Kielder.	Out	of	these	15	samples,	

7	were	also	genotyped	by	KASP	and	assigned	to	group	4.	

Phylogenetic	analysis	was	performed	on	all	15	Pst-infected	samples	plus	31	representative	

Pst-infected	samples	 from	all	 five	genetic	groups	 (Bueno-Sancho,	Persoons,	et	al.,	2017).	

Phylogenetic	analysis	revealed	that	all	15	Pst-infected	samples	clustered	well	with	isolates	

from	group	4	(Figure	4.15).	DAPC	analysis	also	clustered	the	field	samples	with	group	4	

isolates	(Figure	4.16).	Three	of	the	Pst-infected	field	samples:	He-4-17-S6,	CT-1-17-K2	and	

CT-1-17-K5	clustered	together	further	away	from	the	other	samples.	Further	examination	

of	the	distribution	of	read	counts	for	these	three	samples	showed	that	they	did	not	contain	

sufficient	data	 for	analysis.	Moreover,	 the	distribution	of	biallelic	SNPs	 for	a	dikaryon	 is	

expected	to	have	a	peak	at	0.5,	representing	each	one	of	the	two	haploid	nuclei	(Figure	4.17	

A).	 However,	 the	 distribution	 for	 CT-1-17-K2	 did	 not	 follow	 the	 pattern	 expected	 of	 a	

dikaryon	 which	 suggest	 the	 sample	 might	 not	 contain	 a	 single	 Pst	 genotype	 and	 thus	

conclusions	cannot	be	drawn	for	this	sample	(Figure	4.17	B).	

Next,	 I	examined	the	full	96	SNP	sites	to	determine	if	 I	could	assign	the	samples	to	their	

genetic	group	and	thus	confirm	the	KASP	results.	Using	the	list	of	96	markers,	I	was	able	to	

assign	all	Pst-infected	samples	(apart	from	the	three	previously	mentioned	that	did	not	have	

enough	data)	to	the	Pst	genetic	group	4.		Thus,	I	could	confirm	that	these	samples	belong	to	

Pst	genetic	group	4	as	was	observed	with	KASP	analysis.	This	provides	further	validation	

for	the	utility	of	these	4	KASP	markers.	This	also	further	supports	that	Pst	genetic	group	4	

seems	to	be	the	predominant	group	in	the	UK	and	the	only	one	that	was	found	in	the	field	

trials	during	the	2016-2017	wheat	growing	season.		
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Figure	4.15.	All	15	Pst-infected	field	samples	clustered	with	representative	samples	from	genetic	group	
4.	A	set	of	3,363,961	sites	(8,179	PST-130	gene	sets)	were	used	for	phylogenetic	analysis	of	15	Pst-infected	field	
samples	with	a	 set	of	33	representative	Pst-infected	samples	 from	all	give	genetic	groups	 to	 investigate	 the	
diversity	of	the	field	samples.	All	Pst-infected	field	samples	clustered	well	with	representative	samples	from	
group	4.	

	



_____________________________________________________________________ 

Chapter 4 – Developing SNP markers to study Pst population dynamics in the UK 149 

 

 

	

Figure	4.16.	DAPC	results	Pst-infected	show	field	samples	cluster	well	with	group	4	 isolates.	For	k=4,	
group	5-1	isolates	clustered	with	group	1,	as	expected.	However,	group	5-1	is	found	when	k=5.	In	both	cases,	all	
field-collected	samples	were	grouped	with	genetic	group	4.	

	

	

Figure	 4.17.	 Distribution	 of	 biallelic	 single	 nucleotide	 polymorphism	 (SNP)	 read	 frequencies	 of	Pst-
infected	field	samples.	(A)	Read	frequency	at	biallelic	SNPs	for	Pst-infected	field	samples	that	clustered	with	
represtative	isolates	from	group	4	in	the	tree.	These	graphs	represent	that	these	samples	consist	of	a	single	Pst	
genotype	and	got	a	high	amount	of	reads.	(B)	Read	frequency	at	biallelic	SNPs	for	the	three	field	samples	that	
did	not	cluster	well	 in	 the	 tree.	Samples	show	to	have	a	 low	amount	of	 reads	and	 thus	 their	analysis	 is	not	
reliable.		 	



_____________________________________________________________________ 

Chapter 4 – Developing SNP markers to study Pst population dynamics in the UK 150 

 

 

4.5 Discussion	

4.5.1 Limitations	in	SNP	discovery	for	genotyping	

Single	nucleotide	polymorphisms	are	the	most	common	way	of	variation	in	organisms	and	

have	been	used	for	differentiating	populations	since	the	development	of	high-throughput	

sequencing	 technologies	 (Fischer,	 Stolze-Rybczynski,	 Cui,	 et	 al.,	 2010).	 For	 this	 reason,	

molecular	 markers	 based	 on	 SNPs	 have	 been	 shown	 to	 be	 an	 effective	 approach	 for	

evaluating	diversity	(Helyar	et	al.,	2011;	Mboup,	Bahri,	Leconte,	Vallavieille-pope,	&	Kaltz,	

2012).	However,	finding	representative	SNP	markers	for	genotyping	has	certain	limitations,	

partly	linked	to	the	challenges	of	SNP	calling	in	NGS	technologies,	which	can	cause	errors	

and	missing	data	(Chan,	2009).	

To	find	the	set	of	96	SNP	markers	to	differentiate	Pst	populations	described	here,	a	large	

percentage	of	missing	data	in	the	samples	had	to	be	accepted	in	some	cases	(Table	6.3).	

This	can	be	justified	because	of	low	quality	samples	and	the	expected	missing	data	within	

samples,	since	loss	of	data	that	can	occur	in	NGS	technologies	(Ferretti,	Raineri,	&	Ramos-

Onsins,	 2012).	 The	 transcriptome	 data	 obtained	 when	 sequencing	 Pst-infected	 samples	

included	here	contained	both	the	pathogen	(Pst)	and	the	host	(wheat).	As	level	of	infection	

in	 the	 sequenced	samples	 could	vary,	 the	percentage	of	pathogen	reads	obtained	varied	

between	30-40%	(Bueno-Sancho,	Persoons,	et	al.,	2017;	Hubbard	et	al.,	2015)	which	implies	

that	 the	 amount	 of	 data	 for	 each	 sample	 varies	 and	 missing	 data	 is	 expected.	 Besides,	

removing	loci	that	include	missing	data	has	been	observed	to	lead	to	biases	in	the	results	

(Huang	&	Lacey	Knowles,	2016).	Therefore,	accepting	missing	data	for	finding	markers	here	

is	adequate	considering	the	difficulty	of	the	analysis.	

Regarding	errors	within	groups,	a	maximum	of	10%	of	samples	with	different	genotype	to	

the	rest	of	the	genetic	group	was	used.	NGS	technologies	are	known	to	produce	sequencing	

errors	that	can	bias	the	results	(Fox	&	Reid-Bayliss,	2014;	Kanagawa,	2003;	Metzker,	2010).	

Therefore,	I	considered	it	important	to	expect	a	certain	amount	of	error	within	the	included	

samples.	 The	 high	 variability	 within	 genetic	 groups	 could	 also	 hinder	 the	 discovery	 of	

conserved	sites	across	all	samples	(Hovmøller	et	al.,	2011).	A	lower	percentage	of	missing	

data	and	errors	would	have	been	required	for	markers	if	less	samples	had	been	used,	but	a	

good	representation	of	the	variability	within	groups	was	prioritised	to	avoid	false	positives.	

There	 will	 always	 be	 a	 threshold	 between	 including	 all	 variability	 and	 the	 difficulty	 of	

finding	SNP	markers	and	this	is	a	limitation	in	the	method	to	consider.	
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Many	 pipelines	 for	 SNP	 discovery	 have	 been	 established	 for	 multiple	 organisms	 and	

technologies,	with	different	applications	(Hyten	et	al.,	2010;	Rafalski,	2002;	You	et	al.,	2012).	

The	pipeline	developed	here	to	find	specific	SNP	markers	to	differentiate	Pst	genetic	groups	

could	 also	 be	 easily	 applied	 to	 any	 other	 organism,	 as	 long	 as	 the	 genetic	 groups	were	

previously	known,	or	using	additional	Pst	genetic	groups	(Hovmøller,	2019).	The	python	

script	would	only	need	a	matrix	of	biallelic	SNPs	for	the	samples	to	study	and	a	file	with	the	

information	 about	 the	 grouping	 of	 each	 sample	

(www.github.com/vbuens/ShortScripts/get_markers.py).	

The	 challenges	 regarding	SNP	discovery	are	mainly	associated	 to	 the	drawbacks	of	NGS	

technologies	 and	 variation	 among	 individuals.	 Therefore,	 this	 entails	 a	 need	 for	

subsequently	validating	the	SNPs	to	make	sure	they	are	robust	enough	for	your	purpose	

(Seeb	et	al.,	2011;	Shirasawa	et	al.,	2010).	

4.5.2 Genomic	variations	can	affect	virulence	

Investigating	genomic	structural	differences	can	help	us	not	only	understand	evolution	and	

the	pathogen	population,	but	also	gain	information	about	virulence.	In	particular,	SNPs	play	

an	 important	 role	 in	 virulence	 gain.	 The	 emergence	 of	 point	 mutations	 in	 avirulence	

proteins	can	give	place	to	 isolates	that	are	able	to	avoid	recognition	by	R	proteins	(Ellis,	

Lagudah,	 Spielmeyer,	 &	 Dodds,	 2014).	 Due	 to	 the	 homogeneity	 in	 wheat	 varieties	 as	 a	

consequence	 of	 breeding	 for	 disease	 resistance,	 there	 is	 a	 high	 selection	 pressure	 on	

pathogens	to	overcome	resistance	genes	(Schwessinger,	2016).	

Pst	isolates	are	highly	heterozygous	and	contain	a	high	percentage	of	regions	with	mobile	

elements	and	repeats	(Cuomo	et	al.,	2017).	Transposable	elements	are	also	known	to	have	

a	significant	effect	on	virulence	gain,	as	it	is	the	case	of	the	effector	AvrSr35	of	Pgt	(Li	et	al.,	

2019).	Several	Pgt	isolates	have	been	reported	to	have	a	large	insertion	disruption	in	this	

effector,	 likely	 due	 to	 multiple	 transposable	 elements	 insertions.	 Moreover,	 structural	

variation	by	asexual	chromosomal	recombination	can	also	lead	to	gain	of	virulence,	as	for	

AvrSr50	(Chen	et	al.,	2017).	Finding	avirulence	alleles	is	however	very	challenging	precisely	

due	to	this	genomic	structural	variation.	Large	deletions	would	just	show	as	missing	data,	

repetitive	 regions	 would	 map	 equally	 to	 multiple	 regions	 of	 the	 genome	 and	 high	

heterozygosity	could	cause	mismapping	(Pfeifer,	2017).	Besides,	accessory	chromosomes	

are	 often	 not	 found	 in	 genome	 references	 and	 thus	 occurring	 SNPs	 are	 rarely	 detected	

(Pfeifer,	 2017).	 Despite	 these	 challenges,	 much	 information	 can	 be	 obtained	 from	

investigating	genomic	variations	and	thus	its	study	is	of	highly	importance.	
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Here,	SNP	variations	between	Pst	genetic	groups	was	 investigated	which	could	open	the	

opportunity	of	finding	biological	answers	that	explain	the	differences	between	these	races.	

However,	 the	 SNPs	 used	 to	 differentiate	 between	 genetic	 groups	 were	 synonymous	

mutations,	and	thus	are	less	likely	to	have	a	significant	role	in	virulence.	The	same	analysis	

done	 here	 could	 be	 repeated	 with	 non-synonymous	 mutations	 in	 the	 hope	 of	 finding	

structural	differences	between	Pst	genetic	groups.	Another	interesting	future	line	of	work	

would	be	to	compute	differential	expression	analyses	between	the	genetic	groups	selected	

here	and	focusing	on	the	genes	that	contain	more	SNP	differences	between	genetic	groups.	

This	could	give	us	a	hint	on	the	importance	of	the	conserved	mutations	within	a	group.	

4.5.3 Amplicon	resequencing	and	KASP	are	both	viable	for	assigning	genetic	groups	

with	the	96	set	of	markers	

To	assign	samples	to	a	genetic	group	using	these	96	SNP	markers,	two	methods	were	tested:	

Amplicon	resequencing	and	KASP	genotyping.	Both	technologies	have	been	widely	used	for	

genotyping	in	several	species,	especially	in	crop	improvement	(Malik	et	al.,	2016;	Semagn	

et	 al.,	 2014).	Amplicon	 resequencing	 and	KASP	were	both	 able	 to	 successfully	 genotype	

samples,	despite	not	being	able	to	 include	all	96	markers.	SNPs	provide	great	resolution	

when	studying	diversity	in	populations,	but	a	large	number	of	them	is	usually	needed	(Singh	

et	al.,	2013).	Here,	genotyping	of	field	samples	was	possible	with	just	a	small	set	of	markers,	

which	is	reasonable	considering	the	genetic	groups	were	previously	identified.		

The	TruSeq	 technique	 is	 slower	 in	 comparison	 to	KASP,	 since	 after	 extracting	 the	DNA,	

libraries	have	 to	be	made	using	 the	standard	TruSeq	protocol	 that	 takes	a	day	and	 then	

sequencing	needs	 to	be	performed	which	 takes	around	48	hours	 (Illumina,	2015).	After	

obtaining	 reads,	 the	 data	 has	 to	 be	 processed	 which	 would	 potentially	 require	 certain	

bioinformatic	skills.	The	posterior	data	analysis	would	also	take	a	few	days	which	means	

that	from	collecting	a	sample	to	getting	the	results,	a	minimum	of	a	week	would	be	needed	

for	96	samples.	For	KASP	on	the	other	hand,	after	DNA	extraction	the	analysis	is	direct	and	

thus	 is	 faster	 than	 amplicon	 resequencing.	 KASP	 also	 allows	 the	 genotyping	 of	 fewer	

samples	if	necessary,	whereas	for	TruSeq	96	samples	should	be	analysed	at	the	same	time	

to	make	it	cost-effective	(Semagn	et	al.,	2014).	Regarding	costs,	TruSeq	has	a	substantially	

higher	 cost	 than	 KASP	 (Ganal,	 Altmann,	 &	 Röder,	 2009).	 Taking	 into	 account	 all	 the	

advantages	and	disadvantages	of	each	method,	KASP	was	chosen	as	the	best	method	for	

genotyping	 a	 high	 number	 of	 samples,	 quickly	 and	 at	 a	 low	 price.	 Comparisons	 of	 both	

methods	agree	with	these	conclusions	(Ertiro	et	al.,	2015).	
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Many	methods	 have	 been	 widely	 used	 for	 Pst	 surveillance	 to	 classify	 samples	 into	 the	

different	 race	groups	 (Ali	 et	al.,	2014;	Atkins	&	Clark,	2004).	KASP	genotyping	offers	an	

advance	against	other	methods	in	terms	of	low	cost	and	speed	of	processing	(Semagn	et	al.,	

2014).	When	compared	to	the	Field	Pathogenomics	approach	(Hubbard	et	al.,	2015),	this	

method	also	generates	less	unnecessary	data	when	the	aim	is	to	genotype.	However,	doing	

full	transcriptomics	of	a	Pst	infected	wheat	sample	also	provides	information	about	the	host	

(Bueno-Sancho,	 Persoons,	 et	 al.,	 2017;	 Hubbard	 et	 al.,	 2015).	 Besides,	 both	 amplicon	

resequencing	 and	KASP	would	not	 be	 able	 to	 find	new	genetic	 groups.	Undertaking	 full	

transcriptomics	of	samples	could	indeed	be	used	to	identify	new	genetic	groups,	however	

the	relatively	high	cost	of	the	method	makes	it	not	very	adequate	for	routine	surveillance	

(Bräutigam	 &	 Gowik,	 2010).	 A	 new	 method	 was	 recently	 developed	 that	 consists	 of	

sequencing	a	set	of	polymorphic	genes	that	captures	all	Pst	diversity	to	genotype	samples	

using	the	MinIon	sequencer	(Radhakrishnan	et	al.,	2019).	This	technique	also	allows	the	

discovery	of	 new	genetic	 groups	 and	permits	 analysis	 almost	 in	 situ.	However,	 it	 is	 still	

highly	expensive	for	regular	surveillance.	Therefore,	the	approach	developed	here	offers	an	

alternative	for	quick	surveillance	of	Pst.	Although	it	has	limitations,	it	can	be	used	as	a	way	

of	preliminary	screening	many	samples	along	with	another	method	for	those	samples	that	

cannot	be	genotyped	with	KASP.	This	would	be	a	way	of	reducing	the	cost	of	management	

systems	while	increasing	the	number	of	samples	that	can	be	analysed.	

4.5.4 Group	4	seems	to	be	more	prevalent	in	the	UK	

Managing	 plant	 diseases	 presents	 a	 great	 challenge	 because	 the	 resources	 are	 usually	

limited	and	determining	when,	where	and	how	to	invest	these	precious	resources	typically	

requires	a	high	knowledge	of	epidemic	dynamics	(Cunniffe	et	al.,	2016).	However,	there	is	

still	a	lack	of	knowledge	in	terms	of	Pst	race	dynamics.		

The	results	obtained	here	show	how	group	4	has	become	the	most	predominant	group	in	

the	UK.	These	results	are	consistent	with	what	was	observed	by	the	UKCPVS	in	the	last	few	

years	(Table	4.3).	Since	the	beginning	of	the	field	pathogenomics	project	(Hubbard	et	al.,	

2015),	group	4	has	been	increasing	its	prevalence	in	the	UK	with	a	very	clear	tendency.	The	

competitive	 exclusion	 principle	 states	 that	when	 different	 populations	 occupy	 the	 same	

niche,	if	one	of	them	is	even	slightly	more	fit	or	aggressive,	it	will	end	up	displacing	the	other	

populations	completely	until	 they	become	extinct	 (Gause,	1936;	Hardin,	1960).	This	 can	

explain	the	increasing	prevalence	of	the	Warrior	(-)	race	in	the	UK,	causing	the	others	to	

almost	disappear.	A	few	samples	from	group	3	were	actually	found	in	2017	which	were	not	

seen	in	the	field	trials	carried	out	here.	This	can	also	be	an	effect	of	sampling	randomisation	
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which	could	lead	to	other	genetic	groups	being	left	undetected	in	the	field	(Stephen	Parnell,	

van	 den	 Bosch,	 Gottwald,	 &	 Gilligan,	 2017).	 Sampling	 here	 was	 carried	 out	 randomly,	

collecting	 around	 10-20	 samples	 every	 month.	 This	 entails	 that	 when	 there	 were	 less	

infected	plants,	samples	can	capture	well	the	Pst	population	in	the	field,	but	as	the	number	

of	Pst-infected	plants	increases,	capturing	all	the	diversity	becomes	more	complicated.	To	

appreciate	this	concept,	I	estimated	the	probability	of	finding	a	sample	that	did	not	belong	

to	group	4,	considering	different	proportions	of	genetic	groups	in	the	field.		To	do	so,	I	used	

the	frequencies	found	(Table	4.3)	to	simulate	conditions	in	the	field	and	different	quantities	

of	samples	being	taken	from	said	field.	This	simulation	was	done	1000	times	to	estimate	the	

probability	with	more	accuracy	(Figure 4.18	A).	The	same	process	was	done,	simulating	
several	proportions	of	genetic	groups,	and	the	probability	of	finding	an	isolate	that	does	not	

belong	to	group	4	but	is	present	in	the	field	gets	bellow	0.2	only	when	the	proportion	of	

group	4	is	greater	than	70	%	(Figure 4.18	B).	Thus,	it	can	be	concluded	that,	even	if	other	
isolates	might	 have	 been	 in	 the	 field,	 the	 proportion	 of	 them	must	 have	 been	 very	 low,	

otherwise	they	would	have	been	found.	

	

Table	4.3.	Pathotype	group	frequencies	from	2014-2018.	Samples	found	from	each	genetic	group	in	the	UK	
since	2014.	Group	4	is	becoming	more	prevalent	and	the	other	groups	are	not	as	frequent	as	in	later	years.	A	
group	outside	of	the	four	main	genetic	groups	is	also	found	in	2017	and	2018.		Table	adapted	from	2019	UKCPVS	
report	(Hubbard,	Wilderspin,	&	Holdgate,	2019).	

Genetic	group	
Frequency	of	Isolates	Found	(%)	

2014	 2015	 2016	 2017	 2018	

1	(Warrior)	 19	 3	 8	 0	 0	

3	 8	 28	 29	 3	 0	

4	(Warrior	-)	 69	 66	 63	 93	 93	

5-1	(Kranich)	 4	 3	 0	 0	 3	

Other	 0	 0	 0	 4	 4	
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Figure 4.18. Probability of finding an isolate that was not from group 4 reduces to 0.2 when the 
proportion of group 4 in the field is above 70%. Probability of finding a Pst isolate that belongs to a group 
different to group 4 was investigated by considering scenarios with different proportions of groups occurring 
in the field. (A) Proportions seen by NIAB (Table	4.3) were used to investigate probability, and we saw that 
the probability increased when collecting 5 samples in 2016 and 25 in 2017. (B) Different proportions of Pst 
genetic groups in the field were used and it was observed that, if 10 samples were taken, probability of 
finding an isolate that was not from group 4 is only very low when group 4 is the most prevalent in the field 
(more than 70 %).	
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Even	though	the	wheat	varieties	used	here	(Solstice	and	KWS	Kielder)	were	previously	seen	

to	only	be	infected	with	group	4	Pst	isolates	in	2014	(Bueno-Sancho,	Persoons,	et	al.,	2017),	

here	it	is	shown	how	other	groups	can	infect	these	varieties.	However,	it	has	been	observed	

how	group	4	is	more	aggressive	in	certain	varieties,	including	Solstice	(Corredor-Moreno,	

unpublished).	If	group	4	could	indeed	infect	these	two	varieties	more	easily,	that	could	also	

explain	the	results	obtained	here.	Furthermore,	in	2016,	group	4	was	found	throughout	the	

year	whereas	group	1	was	only	found	in	summer.	This	genetic	group	has	also	been	found	to	

occur	 more	 frequently	 in	 southern	 Europe	 (Bueno-Sancho,	 Persoons,	 et	 al.,	 2017)	 and	

evidence	shows	how	temperature	adaptation	can	occur	in	certain	Pst	races	(Mboup	et	al.,	

2012).	Thus,	 it	 could	mean	 that	either	group	4	 is	better	adapted	 to	 lower	 temperatures,	

which	 could	 help	 isolates	 spread	 quickly	 early	 in	 the	 season,	 or	 group	 1	 is	 adapted	 to	

warmer	climates.		

Group	5-1	was	found	all	across	the	year	in	Taunton,	thus	showing	that	this	group	can	also	

occur	during	the	entire	season	and	not	only	summer	months.	Besides,	group	5-1	has	been	

frequently	found	in	colder	areas	like	Poland	and	Denmark,	thus	showing	this	group	can	be	

adapted	to	lower	temperatures	(Ali	et	al.,	2014).	Seasonality	in	pathogen	populations	is	a	

well-studied	 phenomenon	 in	 pathogen	 populations	 (Altizer	 et	 al.,	 2006;	 Estrada-Pena,	

2009)	although	further	experiments	would	need	to	be	done	to	determine	if	that	is	the	case	

for	these	Pst	races.	

These	results	could	also	 indicate	 that	group	4	 is	more	aggressive	and	 it	 can	 infect	more	

easily	when	 the	plant	 is	 healthier.	When	 later	 in	 the	 season	 the	host	 immune	 system	 is	

already	compromised	by	one	pathogen	race,	other	races	could	infect	more	easily	and	thus	

more	groups	are	observed	towards	the	end	of	the	season	(Lamichhane	&	Venturi,	2015).		

4.5.5 Races	prevalence	cannot	be	predicted	based	on	previous	data	

The	field	trials	were	carried	out	here	with	the	aim	of	answering	key	questions	regarding	Pst	

population	dynamics	within	a	field,	such	as	how	pathogen	composition	can	affect	disease	

spread	and	whether	early	genotypes	can	predict	genotypes	 later	 in	the	season.	Different	

races	of	the	pathogen	can	influence	the	spread	of	each	other,	and	this	information	is	key	to	

predict	disease	dynamics.	

Different	races	can	have	different	behaviours	in	the	same	host	and	therefore	competition	

between	them	affects	 the	dispersal	of	 the	disease	(Hamelin	et	al.,	2016).	Multi-pathogen	

infections	can	have	either	antagonistic	or	synergistic	results,	meaning	that	they	can	either	

compete	for	a	host,	slowing	down	the	epidemics,	or	cooperate	in	the	infection	by	coexisting	
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in	 the	 same	 host,	 which	 could	 increase	 the	 speed	 of	 spread	 of	 the	 disease	 and	 cause	

susceptibility	 to	other	pathogens	(Belhaj	et	al.,	2016).	Results	obtained	 from	genotyping	

samples	 collected	 from	 field	 trials	 for	 two	 years	 are	 unfortunately	 not	 very	 informative	

regarding	how	pathogen	population	dynamics	affect	disease	spread.	Previous	studies	have	

shown	 that	 pathogen	 population	 composition	 can	 affect	 disease	 spread	 (Bonsall,	 2004).	

Here,	 there	 is	only	data	 from	one	 field	 that	 contains	more	 than	one	Pst	 race.	Therefore,	

differences	in	disease	dynamics	between	Pst	races	could	not	be	well	studied	since	only	one	

genetic	group	was	mostly	found.	In	principle,	no	substantial	differences	can	be	noted	when	

comparing	disease	level	and	infection	between	a	field	containing	more	than	one	race	and	

the	fields	that	are	in	principle	infected	with	only	one	genetic	group.	However,	more	testing	

should	be	done	to	conclude	this,	and	it	is	possible	that	other	genetic	groups	are	in	the	field	

affecting	disease	spread	and	remained	undetected.	

Genotypes	that	appear	early	in	the	season	are	likely	to	remain	within	the	field	all	through	

the	season	and	hence	be	found	later	in	the	year.	However,	new	genotypes	that	had	not	been	

seen	at	the	beginning	can	emerge	towards	the	end	of	the	season,	as	it	has	been	observed	in	

Taunton	field	in	2016.	Consequently,	it	can	be	concluded	that	early	Pst	genotypes	cannot	

predict	 genotypes	 later	 in	 the	 season.	Besides,	 here	we	 could	 get	 information	about	 the	

genetic	group	of	the	collected	samples,	but	individual	information	about	each	isolate	could	

not	be	obtained.	This	makes	it	impossible	to	determine	whether	different	pathogens	from	

the	 same	genetic	 group	were	 appearing	 later	 in	 the	 season	or	whether	 it	was	 the	 same	

isolate	that	spread	within	the	field.	The	most	likely	scenario	is	the	coexistence	of	several	

isolates	from	the	same	genetic	group	that	stayed	in	the	field	across	all	season.		

4.6 Conclusion	

New	disease	outbreaks	that	affect	crops	have	led	to	an	increasing	necessity	of	improving	

crop	protection	strategies.	Economic	losses	are	often	due	to	a	lack	of	surveillance	programs	

or	 early	 warning	 systems.	 Studying	 how	 current	 pathogens	 are	 spreading	 is	 key	 to	

understanding	 their	 dispersal	 dynamics	 to	 design	 better	 informed	 disease	management	

systems.	Here,	I	developed	a	quick	genotyping	method	for	Pst	samples	that	consist	of	using	

KASP	 to	amplify	 four	SNP	markers	 to	determine	 the	 race.	This	 could	be	used	 to	 rapidly	

monitor	YR	disease	by	analysing	a	high	number	of	samples	in	a	cheap	manner.	The	markers	

developed	here	were	also	given	to	our	industrial	partners	that	implemented	them	in	their	

own	laboratories	for	disease	monitoring.	At	the	minute,	these	markers	are	very	specific	to	

the	UK	Pst	population	but	could	be	expanded	to	include	more	races.	The	simplicity	of	this	

method	allowed	me	to	genotype	a	vast	number	of	samples	quickly	and	at	a	 low	price	 in	
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order	 to	 study	Pst	 dynamics	 in	 the	 UK.	 This	 investigation	 led	 us	 to	 reach	 the	 following	

conclusions:	(i)	one	main	genetic	group	was	found	across	both	years,	which	indicates	that	

it	could	have	become	the	predominant	race	in	the	UK,	(ii)	early	Pst	genotypes	cannot	predict	

genotypes	 appearing	 later	 in	 the	 season	 and	 (iii)	 temporal	 niche	 partitioning	 could	 be	

occurring	in	the	UK.	Further	research	is	however	necessary	to	confirm	these	conclusions	

since	 the	 scope	 of	 the	 study	 contained	 some	 limitations	 that	 could	 be	 influencing	 the	

observations.	
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Chapter	5							 General	Discussion	

5.1 Investigating	wheat	rust	pathogen	transmission	

Wheat	rust	pathogens	have	been	threatening	agriculture	all	throughout	history	(McIntosh,	

2009)	 and	 today,	 these	 pathogens	 cause	 loses	 of	more	 than	 £4	 billion	 in	 the	 UK	 alone	

(Figueroa	et	al.,	2018).	Investigating	how	these	pathogens	are	able	to	spread	and	the	key	

aspects	of	the	dynamics	between	these	pathogens	and	their	host	is	vital	for	the	design	of	

appropriate	control	strategies	(Meentemeyer	et	al.,	2011).	Modelling	of	pathogen	dispersal	

has	been	carried	out	for	many	pathogens	in	the	past	and	has	proved	helpful	in	managing	

disease,	such	as	the	sudden	oak	death	in	the	US	(Cunniffe	et	al.,	2016),	ash	dieback	in	the	UK	

(National	Statistics,	2015)	or	grapevine	leafroll	disease	(Atallah,	Gómez,	Conrad,	&	Nyrop,	

2015).	When	transmission	and	disease	development	is	well	understood,	this	enables	much	

better	targeted	control,	which	can	reduce	the	cost	of	management	and	increase	its	efficiency	

(Donatelli	et	al.,	2017).	The	objective	of	this	thesis	was	to	improve	our	understanding	of	

wheat	 rust	 pathogen	 transmission	 to	 apply	 the	 acquired	 knowledge	 to	 wheat	 rust	

management.	To	achieve	this,	I	focused	on	three	main	aspects:	(i)	Pgt	aeciospore	release	to	

understand	the	beginning	of	the	dispersal	process,	(ii)	dispersal	of	Pgt	aeciospores	in	an	

open	landscape	and	(iii)	dynamics	of	Pst	population	in	the	UK.		

5.1.1 Initial	inoculum	and	weather	are	significant	factors	in	disease	epidemics	

Inoculum	production	is	the	first	step	in	the	dispersal	process	and	has	been	observed	to	play	

an	 important	 role	 in	 epidemics	 (Filho	 et	 al.,	 2016).	 A	 larger	 amount	 of	 initial	 inoculum	

causes	a	greater	probability	of	secondary	infection	and	further	dispersal.	In	fact,	an	increase	

in	disease	severity	has	been	linked	to	the	sporulation	rate,	i.e.	spores	produced	per	lesion	

per	day	(Xu	&	Ridout,	1998).		In	particular	for	stem	rust,	initial	inoculum	levels	have	been	

observed	to	determine	disease	severity	in	epidemics	(Dill-Macky,	Rees,	&	Platz,	1991).	The	

same	has	been	observed	 for	 brown	 rust,	where	high	 levels	 of	 initial	 inoculum	hastened	

disease	 progression	 (Rao,	 Snow,	 &	 Berggren,	 1989).	 Understanding	 how	 inoculum	 is	

produced	and	released	is	thus	important	when	studying	the	process	of	disease	development	

and	pathogen	dispersal	(Gregory	1968).	Here,	I	investigated	the	release	of	Pgt	aeciospores	

and	the	effect	that	different	levels	of	inoculum	can	have	in	aeciospore	dispersal.		

Observations	 using	 high-speed	 videography	 confirmed	 that	 aeciospores	 are	 actively	

released,	allowing	them	to	surpass	the	boundary	layer	and	enter	the	free	stream	that	can	

carry	them	long	distances	(Chapter	2).	Although	the	release	speeds	observed	were	slightly	
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slower	than	previously	observed	for	other	basidiomycetes	(Norros	et	al.,	2014),	distance	

experiments	indicate	they	can	reach	up	to	7	cm,	especially	when	clustering	together	(Figure	

2.12).	 The	 clustering	 would	 affect	 posterior	 deposition,	 by	 incrementing	 the	 settling	

velocity	of	aeciospores	as	discussed	in	Chapter	3,	following	the	equation	by	(Ferrandino	&	

Aylor,	 1984).	 However,	 separation	 of	 spore	 clusters	 after	 release	 has	 been	 previously	

observed	 (Pringle	 et	 al.	 2017)	 and	 this	 could	 well	 occur	 for	 Pgt	 aeciospores.	 Once	

aeciospores	are	deposited	further	from	the	initial	source,	if	conditions	are	right,	they	could	

start	an	 infection	on	a	new	host.	A	single	spore	could	 theoretically	provide	an	 infection,	

although	different	levels	of	efficiency	have	been	observed	for	different	pathogens	(Pei,	Ruiz,	

Hunter,	Arnold,	&	Bayon,	2002).	For	example,	observations	on	P.	triticina	indicated	that	up	

to	50	%	of	single-spore	inoculations	can	produce	uredinia	(Zadoks	1979).	For	Pgt	a	linear	

correlation	between	inoculum	density	and	posterior	uredinia	numbers	has	been	observed	

(Petersen,	1958).	 	The	amount	of	 inoculum	that	can	be	produced	in	a	standard	barberry	

bush	has	been	examined	in	Chapter	3	and	dispersal	of	said	inoculum	was	calculated	using	a	

Gaussian	 Plume	 Model	 (Figure	 3.8).	 This	 model	 also	 evidenced	 the	 crucial	 effect	 that	

weather	conditions	have	in	the	process	of	dispersal.	

Simulation	studies	have	shown	that	weather	and	initial	disease	level	(i.e.	initial	inoculum)	

have	the	largest	effect	in	final	disease	incidence	(Hong	&	Hwang,	1998;	Luo	&	Zeng,	1995).		

Both	inoculum	production	and	dispersal	are	highly	affected	by	environmental	conditions.	

Even	though	no	significant	effect	was	observed	in	the	quantity	of	aeciospore	release	and	

how	far	they	could	reach	after	release	under	the	range	of	temperatures	tested	here	(5-30	

ºC),	temperature	is	known	to	have	a	direct	effect	in	the	development	of	aecia	(Kolnaar	&	

Van	Den	Bosch,	2001).	At	 lower	 temperatures,	 aecia	 can	 reach	 larger	dimensions	which	

would	 increase	 the	 level	 of	 inoculum.	A	 vital	 factor	 in	 aeciospore	 release	 is	 humidity.	A	

mathematical	model	that	only	involves	the	need	for	water	and	subsequent	rounding-off	of	

the	 aeciospores	 was	 developed	 in	 this	 thesis	 (Chapter	 2).	 This	 model	 proved	 to	 be	

consistent	with	observations	and	contributes	to	the	hypothesis	that	water	availability	is	the	

major	 factor	 in	 aeciospore	 release.	 This	 information	 is	 important	 for	 understanding	

aeciospore	dispersal.	

Investigating	 the	 environmental	 factors	 required	 for	 spores	 to	 be	 released	 gives	 us	 an	

indication	of	when	release	and	thus	dispersal	and	posterior	infection	are	likely	to	occur.	The	

periodicity	of	aeciospore	release	was	discussed	in	Chapter	2,	although	a	strong	correlation	

with	water	 availability	was	 observed	 (Pady	 et	 al.,	 1969).	 Periodicity	 has	 however	 been	

observed	 to	 have	 an	 effect	 in	 how	 far	 spores	 can	 be	 dispersed	 (Schmale,	 Bergstrom,	 &	
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Shields,	 2006).	 This	 is	 due	 to	 the	 effect	 that	 atmospheric	 conditions	 have	 on	 dispersal	

(Oneto,	Golan,	Mazzino,	Pringle,	&	Seminara,	2020).	Spores	released	at	night	are	more	likely	

to	be	deposited	onto	the	ground	whereas	spores	release	during	the	day	can	fly	 for	days.	

However,	 sun	exposure	reduces	 the	survival	 rate	of	spores	and	 thus	many	 fungi	 tend	 to	

release	 at	 night	 (Rotem	&	 Aust,	 1991).	 Sometimes,	 fungi	with	 spores	more	 resistant	 to	

radiation	predominantly	release	during	the	day	to	increment	the	distance	travelled	due	to	

turbulence	(Oneto	et	al.,	2020).The	link	of	Pgt	aeciospore	release	with	high	RH	is	consistent	

with	 the	 need	 of	 aeciospores	 for	 moisture	 for	 germination	 and	 subsequent	 infection	

(Powell,	 1974;	 Truxall,	 Travis,	 &	 Hickey,	 1995).	 The	 link	 between	 periodicity	 on	 spore	

release	 and	 weather	 has	 been	 well	 studied	 for	 several	 fungi	 and	 disease	 patterns	 are	

associated	with	it	(Chastagner	et	al.,	1978;	Langenberg,	1977;	van	Niekerk,	Calitz,	Halleen,	

&	Fourie,	2010).	

Wheat	rusts	are	highly	influenced	by	environmental	conditions,	not	only	in	the	process	of	

spore	release	and	dispersal.	Temperature	affects	the	pathogen	life	cycle,	infection	rates	and	

the	length	of	the	latency	period	(Papastamati	&	Van	Den	Bosch,	2007).	Germination	is	also	

highly	 dependent	 on	 temperature,	 with	 different	 rusts	 having	 different	 ranges	 of	

temperatures	 (de	Vallavieille-Pope,	Huber,	 Leconte,	&	Goyeau,	1995;	 Singh	et	 al.,	 2002).	

Therefore,	climate	change	could	have	an	effect	in	several	aspects,	including	(i)	increasing	

inoculum	production,	(ii)	reducing	the	effect	of	resistance	genes,	since	these	can	be	affected	

by	 temperature	 and	 crop	 age,	 (iii)	 shifting	 the	 geographical	 distribution	 of	 rusts	

(Chakraborty,	 Luck,	 Hollaway,	 Fitzgerald,	 &	 White,	 2011).	 An	 increment	 in	 inoculum	

production	can	give	rise	to	larger	pathogen	populations	which	accelerates	the	evolution	of	

the	pathogen	 and	 can	 increase	 the	probability	 of	 pathogens	 overcoming	host	 resistance	

and/or	 reducing	 sensitivity	 to	 fungicides.	 Regarding	 dispersal	 and	 disease	 incidence,	

climate	change	can	also	have	an	effect	on	migration	routes	and	deposition	 (Prank	et	al.,	

2019).	Epidemics	are	expected	to	vary	as	climate	changes,	becoming	more	severe	for	Pst	

(Lyon	&	Broders,	2017),	and	changing	the	 infection	season	 for	P.	 triticina	 (Launay	et	al.,	

2020).	In	the	case	of	Pgt,	stem	rust	epidemics	could	occur	in	regions	that	were	previously	

unsuitable	as	temperatures	increase	(Saunders	et	al.,	2019).			

5.1.2 Landscape	composition	affects	pathogen	dispersal	dynamics	

Investigating	the	dynamics	of	a	plant	disease	is	important	to	comprehend	how	epidemics	

occur	 and	 thus	 try	 to	 stop	 them.	 Host	 composition	 in	 the	 agriculture	 landscape	 has	 a	

significant	role	in	epidemics,	since	host	genetic	homogeneity	in	the	field	leads	to	an	increase	
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in	pathogen	virulence	 (Stukenbrock	&	McDonald,	 2008).	Thus,	 it	 is	 generally	 advised	 to	

sown	 both	 resistant	 and	 susceptible	 cultivars	within	 the	 same	 field	 since	 this	 has	 been	

observed	 to	 reduce	 the	 risk	 of	 epidemics	 (Bhardwaj,	 Prasad,	 Gangwar,	 Khan,	 &	 Kumar,	

2016).	 The	 frequencies	 of	 the	 host	 composition	 are	 reported	 to	 have	 an	 effect	 in	 the	

pathogen	 population,	 as	 it	 was	 observed	 for	 P.	 triticina	 which	 leads	 to	 a	 decrease	 in	

adaptation	(Papaïx	et	al.,	2011).	Host	mixtures	are	known	to	decrease	disease	incidence	and	

their	use	is	more	effective	for	race-specific	pathogens	than	for	race-nonspecific	pathogens	

(Xu	&	Ridout,	2000).	Mixing	hosts	in	square	blocks	has	been	reported	to	be	more	effective	

than	in	strips,	which	is	likely	due	to	the	decrease	efficacy	in	dispersal	(Xu	&	Ridout,	2000).	

The	effect	of	landscape	is	very	obvious	in	heteroecious	pathogens,	such	as	wheat	rusts,	that	

the	 presence	 of	 the	 alternate	 host	 can	 lead	 to	 higher	 genetic	 variability	 and	 thus	 an	

increment	in	the	likelihood	of	epidemics	(Zhao,	Wang,	Chen,	&	Kang,	2016).	That	is	the	case	

that	 was	 investigated	 here,	 where	 the	 risk	 of	 barberry	 bushes	 near	 wheat	 fields	 was	

evaluated	in	Chapter	3.	The	risk	that	barberry	bushes	pose	to	wheat	production	has	been	

known	for	a	while	and	removal	of	bushes	has	proved	to	be	an	effective	way	of	reducing	

epidemics	(Peterson,	2018).	Nevertheless,	there	could	be	other	ways	of	managing	the	risk	

while	still	allowing	the	planting	of	barberry	bushes	that	form	essential	habitat	for	various	

species,	 as	 long	 as	 they	 are	 at	 a	 safe	 distance	 from	wheat	 fields.	 Disease	 incidence	 can	

decrease	when	fragmentation	in	the	agricultural	landscape	increases,	i.e.	when	crop	patches	

are	more	isolated,	due	to	a	reduction	in	the	probability	of	spread	(Carlsson-Granér	&	Thrall,	

2002;	Perkins	&	Matlack,	2002).	However,	fragmentation	can	also	lead	to	an	increment	in	

the	edge	effect	that	can	rise	the	probability	of	infection	(Kelly	&	Meentemeyer,	2002;	Rizzo	

&	Garbelotto,	2003).	 In	the	case	of	Pgt	aeciospore	dispersal	studied	here,	 the	 location	of	

barberry	bushes	in	an	open	landscape	not	only	can	increase	the	probability	of	them	getting	

infected,	but	also	the	posterior	dispersal.	Planting	barberry	bushes	in	the	interior	of	forests	

could	thus	decrease	the	continuity	of	the	pathogen	dispersal	chain	while	still	allowing	for	a	

natural	habitat	for	insects	that	rely	on	barberry	as	a	habitat	and/or	food	source	such	as	the	

barberry	 carpet	moth	 (Tischendorf	 &	 Fahrig,	 2000).	 Investigating	 the	 landscape	 where	

barberry	 bushes	 are	 planted	 could	 also	 help	 decrease	 the	 probability	 of	 dispersal	 by	

including	 elements	 that	 act	 as	 a	 barrier,	 such	 as	 windbreaks	 (Marrou	 et	 al.,	 1979;	

Plantegenest	et	al.,	2007).	

Despite	the	array	of	studies	on	the	effect	that	host	composition	has	on	pathogen	populations	

and	how	pathogen	populations	vary	due	to	competition,	few	studies	have	investigated	the	

effect	 of	 pathogen	 populations	 in	 disease	 spread.	 Besides,	 most	 disease	 transmission	
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models	ignore	the	pathogen	population	which	can	be	a	key	factor	in	dispersal	(Papaïx	et	al.,	

2011).	This	was	one	of	the	aims	of	this	PhD	thesis,	but	the	lack	of	variability	in	the	Pst	races	

found	meant	 that	 it	 could	 not	 be	 investigated,	 as	 discussed	 in	 Chapter	 4.	 The	 pathogen	

population	composition	can	affect	how	disease	progresses,	since	different	pathogens	can	

have	either	antagonistic	or	synergistic	effect	in	disease	incidence	(Belhaj	et	al.,	2016).	An	

example	of	this	 is	the	reduction	in	P.	triticina	pustule	density	due	to	endophytic	 fungi	 in	

wheat	(Dingle	&	McGee,	2003).	However,	the	effect	of	different	races	of	the	same	pathogen	

remains	unknown.	Different	races	of	the	same	pathogen	are	known	to	behave	differently	in	

the	same	host,	due	to	susceptibility,	aggressiveness	of	the	race	or	fitness.	Thus,	competition	

between	 races	 could	 also	 affect	 disease	 progression	 in	 a	 field	 (Bonsall,	 2004).	 More	

aggressive	pathogen	strains	also	tend	to	occur	more	frequently	in	resistant	host	populations	

(Pariaud,	 Robert,	 Goyeau,	 &	 Lannou,	 2009;	 Thrall	 &	 Burdon,	 2003).	 The	 occurrence	 of	

mainly	one	Pst	race	in	the	UK	during	the	2016-2017	wheat	growing	season	is	an	indication	

that	this	Warrior	(-)	race	(referred	as	Group	4	in	Chapter	4)	could	have	replaced	others.	

Considering	 that	 this	 race	was	observed	 to	 infect	 a	wider	 range	of	wheat	 cultivars,	 it	 is	

reasonable	to	believe	that	this	race	could	be	more	aggressive	(Bueno-Sancho,	Persoons,	et	

al.,	2017).	

Considering	the	landscape	and	the	pathogen	races	composition	can	provide	an	advantage	

in	 disease	 management.	 Observations	 show	 that	 managing	 fungicide	 application	

considering	dispersal	between	fields	can	be	more	effective	than	just	considering	 ‘within-

field’	spread	(Parnell,	Van	Den	Bosch,	&	Gilligan,	2006).	Strains	resistant	and	sensitive	to	a	

given	fungicide	can	coexist	in	the	field	and	their	coexistence	depends	on	their	competitive	

relationship	 and	 not	 on	 the	 fungicide	 spray	 heterogeneity	 (Parnell,	 Gilligan,	 &	 Van	Den	

Bosch,	 2005).	 Understanding	 the	 global	 Pst	 population	 could	 help	 reduce	 the	 risk	 of	

emergence	of	new	races	in	other	geographical	locations	by	isolating	pathogen	populations	

(Plantegenest	 et	 al.,	 2007).	 Population	 genetics	 could	 also	 be	 integrated	with	 landscape	

ecology	 to	 facilitate	 the	 understanding	 of	 gene	 flow,	 genetic	 drift	 and	 selection	 (Manel,	

Schwartz,	Luikart,	&	Taberlet,	2003).	Had	I	found	more	than	one	Pst	race	in	the	field	trials	

carried	 out	 in	 Chapter	 4,	 investigating	 the	 effect	 of	 landscape	 composition	 in	 Pst	 race	

dynamics	would	have	been	interesting.	

	

	

5.2 Tools	to	manage	diseases	
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5.2.1 Surveillance	systems	can	help	manage	wheat	rusts	

Wheat	diseases	have	been	traditionally	managed	by	the	use	of	R	genes	that	give	resistance	

to	pathogens	and	fungicide	application	to	avoid	infection	(Chaves	et	al.,	2013).	However,	

fungal	 pathogens	 are	 known	 to	 be	 able	 to	 overcome	 host	 resistance	 and	 to	 develop	

resistance	to	fungicide	treatments	(Ayliffe	et	al.,	2008).	In	the	case	of	wheat	rusts,	this	was	

observed	when	 the	virulent	Ug99	race	overcame	resistance	of	 the	wheat	varieties	being	

grown	and	caused	severe	stem	rust	epidemics	in	many	parts	of	the	world	(Bhavani,	Hodson,	

Huerta-Espino,	Randhawa,	&	Singh,	2019).	Mutations	in	genes	targeted	by	fungicides	have	

also	been	recently	found	in	Pst	that	could	lead	to	a	decrease	in	fungicide	sensitivity	(Tian	et	

al.,	2019)	(Cook	et	al.,	unpublished).	Thus,	even	if	resistant	cultivars	are	sown	in	the	field,	

active	monitoring	is	important	to	detect	diseases	early	on.	

One	of	the	main	questions	in	surveillance	programs	is	how	to	optimise	sampling	resources	

and	detect	unanticipated	pathogens	(Cunniffe,	Koskella,	et	al.,	2015).	Investigating	sampling	

strategies	is	key	towards	an	optimised	monitoring	system	that	ensures	all	the	variability	in	

pathogen	 virulence	 is	 detected.	 For	 example,	 regular	 or	 ‘equal-stratified’	 sampling	

strategies	are	reported	to	be	more	robust	than	random	sampling,	and	including	data	about	

disease	dispersal	and	environmental	information	can	improve	accuracy	(Hirzel	&	Guisan,	

2002).	Sampling	fewer	fields	but	collecting	more	samples	per	field,	instead	of	more	fields	

but	few	samples,	has	also	been	observed	to	help	capture	the	full	representation	of	pathogen	

diversity	in	disease	fields	(Jochua,	Amane,	Steadman,	Xue,	&	Eskridge,	2008).	Simulations	

have	also	shown	how	spreading	sampling	resources	evenly	in	time	can	optimise	the	early	

detection	 of	 disease	 (Parnell,	 Gottwald,	 Gilks,	 &	 van	 den	 Bosch,	 2012).	 Using	 spatially-

explicit	 models	 that	 explain	 disease	 dispersal	 can	 be	 of	 great	 help	 when	 optimising	

surveillance	programs	(Parnell,	Gottwald,	Irey,	Luo,	&	Van	Den	Bosch,	2011).	

Advances	 in	 molecular	 techniques	 have	 helped	 improve	 diagnosis	 and	 study	 of	 fungal	

pathogens	 unsuitable	 for	 culture	 (Martin,	 James,	 &	 Levesque,	 2000).	 From	 traditional	

pathology	 or	 genetic	 markers	 up	 to	 more	 sophisticated	 sequencing	 such	 as	 Field	

Pathogenomics,	all	these	methodologies	have	provided	a	useful	insight	into	the	wheat	rust	

pathogens,	as	discussed	in	Chapter	4.	Within	this	thesis,	 I	developed	a	quick	system	that	

could	help	monitoring	large	volumes	of	Pst	samples	in	an	inexpensive	manner	(Chapter	4).	

This	could	improve	the	capacity	for	sampling	while	still	keeping	the	costs	low.	Sampling	to	

monitor	races	has	allowed	the	identification	of	the	origin	and	evolution	of	Pst	races	(Ali	et	

al.,	2014).	The	distribution	of	Pst	races	has	been	changing	quickly	over	the	past	decade	and	
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new	races	are	being	found	(Hovmøller,	2019).	Despite	the	diversity	in	races	found	globally,	

in	 the	 UK	 there	 seems	 to	 be	 a	 predominant	 race	 (Hubbard	 et	 al.,	 2019).	 This	was	 also	

observed	in	the	present	study	(Chapter	4)	where	mainly	one	Pst	race	was	found	all	over	the	

UK	 across	 two	 wheat-growing	 seasons.	 As	 discussed	 in	 Chapter	 4,	 this	 is	 likely	 a	

consequence	of	the	exclusion	principle	where	a	race	can	displace	others	due	to	competition	

(Hardin,	1960).		

Surveillance	is	usually	carried	out	at	a	local	or	national	scale,	which	limits	the	information	

about	 the	 worldwide	 pathogen	 population.	 Sharing	 the	 data	 globally	 in	 a	 coordinated	

manner	is	key	to	track	pathogens	at	the	global	level	and	avoid	the	emergence	of	epidemics	

(Islam	et	al.,	2016).	Investigating	wind	dispersal	patterns	can	also	help	predict	where	new	

races	could	be	 travelling	and	going	next	 (Meyer	et	al.,	2017).	Besides	 information	about	

races,	about	host	resistance	and	disease	severity	can	be	useful.	Standard	procedures	about	

how	 to	 sample,	 score	 and	 track	 these	 pathogens	 have	 been	 developed	 by	 the	 BGRI	

community	 (Ali	&	Hodson,	 2017).	 Currently,	 there	 are	monitoring	 systems	 in	place	 that	

investigate	 the	 evolution	 of	 both	 Pst	 and	 Pgt	 races	 globally	 (Hodson,	 2011).	 The	

development	of	these	platforms	occurred	as	a	consequence	of	the	creation	of	BGRI,	which	

emerged	as	a	way	of	allowing	collaboration	among	rust	scientists	worldwide	(McIntosh	&	

Pretorius,	 2011).	 	 The	 Global	 Cereal	 Rust	 Monitoring	 System	 (GCRMS)	 has	 allowed	

information	to	be	collected	globally	for	the	wheat	stem	rust	pathogen	(Hodson,	Cressman,	

Nazari,	Park,	&	Yahyaoui,	2009).	This	platform	contains	 information	about	rust	diseases,	

survey	routines,	visualisation	tools,	such	as	RustMapper	and	a	pathogen	tracker	(Park	et	al.,	

2011).	This	was	created	when	the	Ug99	race	appeared	to	be	able	to	track	the	dispersal	of	

this	race	across	the	world	and	improve	monitoring	(Hodson	et	al.,	2012).	Several	websites	

were	developed,	including	rust	surveillance	data	in	RustTracker.org	via	which	the	Wheat	

Rust	 Toolbox,	 that	 includes	maps	 and	data	 visualisation	 (Hansen	&	 Lassen,	 2013).	Host	

information	 is	 still	 limited,	 although	 some	 advances	 have	 been	made	 towards	 including	

more	data	 (Hodson	et	al.,	2012).	For	example,	 surveys	of	Barberry	bushes	are	currently	

being	 carried	out	 as	 part	 of	 the	Wheat	Rust	ToolBox,	 to	develop	 a	diagnosis	 system	 for	

Puccinia	spp.	from	aecial	samples	(Hansen	&	Lassen,	2013).	A	disease	monitoring	system	

was	 also	 developed	 in	 Ethiopia	 to	 control	 the	 development	 of	 Pst.	 The	 Ethiopian	 Early	

Warning	System	integrates	field	surveillance	data,	spore	dispersal	modelling	and	weather	

data	to	forecast	disease	and	inform	wheat	rust	advisories	and	policymakers	(Allen-Sader	et	

al.,	2019).		
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Information	about	pathogen	races	collected	from	surveillance	programmes	can	be	included	

in	models	about	disease	forecasting	or	pathogen	dispersal	to	have	a	full	picture	of	the	state	

of	the	disease	globally.	These	models,	if	made	available	in	the	form	of	platforms,	can	be	used	

to	 inform	 farmers	 and	 advisors	 worldwide.	 The	 existence	 of	 a	 community	 that	 shares	

information	about	the	races	found	in	different	locations	can	accelerate	the	response	to	new	

threats	in	other	parts	of	the	world.		

5.2.2 Developing	tools	and	using	new	technologies	for	wheat	rust	management	

Developing	new	technologies	and	strategies	that	can	help	 improve	management	 is	a	key	

step	in	the	process	of	protecting	agriculture	from	devastating	crop	diseases.	More	and	more,	

websites	are	being	developed	to	include	models	that	can	help	farmers	make	decisions.	For	

example,	a	website	was	developed	to	allow	users	to	utilise	the	Strawberry	Advisory	System	

to	get	predictions	of	disease	 incidence	(Pavan,	Fraisse,	&	Peres,	2011).	This	AgroClimate	

website	 helped	 reduce	 unnecessary	 fungicide	 usage	 by	 providing	 recommendations	 of	

application	 based	 on	 predictions	 (www.agroclimate.org).	 Similar	 web-based	 diagnosis	

systems	have	been	developed	for	oilseed-crops	oilseed-crops	(Kolhe,	Kamal,	Saini,	&	Gupta,	

2011)	and	for	banana	plant	diseases	(Budiyanto	et	al.,	2018).	These	user-friendly	interfaces	

have	 also	 helped	 stakeholders	 optimise	 control	 of	 invasive	 plant	 diseases	 using	 culling	

strategies	 (Cunniffe,	 Stutt,	 et	 al.,	 2015).	 Forecasting	models	based	on	weather	have	 also	

been	made	 available	 through	website	 development	 (Kang	 et	 al.,	 2010).	 These	 can	 help	

farmers	decide	when	 to	 spray	 fungicides	by	 creating	 risk	maps.	 Similar	 tools	have	been	

developed	for	potato	late	blight,	using	RH	and	temperature	data	to	predict	the	risk	and	make	

recommendations	on	fungicide	application	(Wharton,	Kirk,	Baker,	&	Duynslager,	2008)	and	

also	for	wheat	yellow	rust,	with	risks	maps	that	use	WebGIS	technologies	(Kuang,	Liu,	Ma,	

&	Wang,	2013).	A	similar	framework	to	help	farmers	was	developed	for	P.	triticina	called	

Injury	Profile	SIMulation	(IPSIM).	This	platform	predicts	disease	risk	based	on	weather,	soil	

information	 and	 cropping	 systems	 (Robin	 et	 al.,	 2018).	 The	 improvement	 on	 the	

accessibility	 of	weather	 forecasts	 thanks	 to	 the	use	of	APIs	has	 led	 to	 the	 emergence	of	

several	 web-based	 tools	 that	 can	 provide	 disease	 predictions	 in	 real	 time	 for	 the	 user	

(Fernandes,	Del	Ponte,	Pavan,	&	Cunha,	2007).	Here,	I	developed	a	user-friendly	interface	

to	run	the	Pgt	aeciospore	dispersal	model	to	evaluate	the	risk	that	barberry	bushes	pose	

near	wheat	fields	(Chapter	3,	Figure	3.10).	This	website	allows	users	to	input	the	location	

of	 a	barberry	bush	and	gather	 real-time	weather	data	 to	predict	 the	 risk	of	 aeciospores	

being	carried	long	distances	by	the	wind.	To	my	knowledge,	this	 is	the	first	time	that	an	

open	 source	 and	 user-friendly	website	 has	 been	 developed	 for	Pgt	 aeciospores.	 Ideally,	
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citizens	 could	 also	 use	 this	 website	 to	 run	 the	 model	 and	 thus	 record	 the	 position	 of	

barberry	bushes,	which	would	allow	us	to	map	the	occurrence	of	these	bushes	in	the	UK.	

However,	public	engagement	in	citizen	science	projects	is	challenging	(Newman	et	al.,	2010)	

and	hence	the	website	developed	here	provides	an	interface	very	easy	to	use	that	does	not	

require	much	input	from	the	user.	

Disease	diagnosis	has	also	moved	forward	thanks	to	the	development	of	new	technologies,	

with	web-based	systems	being	developed	for	diagnosing,	such	as	Dr.	wheat	for	wheat	pests	

in	 Pakistan	 (Khan	 et	 al.,	 2008).	 Many	 of	 these	 diagnosis	 systems	 rely	 on	 Artificial	

Intelligence	methodologies	for	image	recognition	(Selvaraj	et	al.,	2019).	Indeed,	the	use	of	

machine	learning	(ML)	algorithms	for	detecting	diseases	is	not	new	and	it	has	provided	a	

great	 tool	 for	 quick	 phenotyping	 (Singh,	 Ganapathysubramanian,	 Singh,	&	 Sarkar,	 2016;	

Wang,	Sun,	&	Wang,	2017).	These	technologies	have	also	been	used	for	estimating	infection	

levels	in	leaves	for	several	crops	(Bueno-Sancho	et	al.,	2019;	Sethy,	Negi,	Barpanda,	Behera,	

&	Rath,	 2018).	 	 Thanks	 to	 the	use	of	Unmanned	Aerial	Vehicles	 (UAV),	 the	use	of	 these	

technologies	 has	 been	 escalated	 to	 the	 field	 level	 (Duarte-Carvajalino	 et	 al.,	 2018).	 UAV	

imaging	has	been	applied	to	yellow	rust	detection	to	assist	disease	monitoring	using	high	

resolution	multispectral	and	hyperspectral	imagery	(Su	et	al.,	2018;	Zhang	et	al.,	2019).	For	

brown	rust,	disease	severity	 levels	at	different	canopy	scales	have	been	estimated	using	

both	 ML	 and	 spectral	 data	 (Azadbakht,	 Ashourloo,	 Aghighi,	 Radiom,	 &	 Alimohammadi,	

2019).	 Using	 spectral	 data	 to	 identify	 patches	 of	 infected	 crops	 can	 thus	 be	 applied	 to	

targeted	control	to	reduce	fungicide	application	(West	et	al.,	2003).	Hyperspectral	data	also	

allows	 for	 detection	 of	 wheat	 diseases	 remotely	with	 high	 accuracy	 (Mewes,	 Franke,	 &	

Menz,	 2011).	 These	 technologies	 create	 a	 great	 advantage	when	 identifying	 diseases	 or	

measuring	infection	levels	since	they	allow	for	high	accuracy	at	a	much	quicker	speed	than	

the	human	eye	ever	could,	without	bias	(Bock,	Poole,	Parker,	&	Gottwald,	2010).	

To	 tackle	plant	 diseases,	 and	 in	particular	wheat	 rusts,	 first,	 basic	 knowledge	 about	 the	

disease	is	needed.	This	includes	the	environmental	conditions	conductive	for	the	disease,	

host-pathogen	dynamics	and	how	disease	spreads.	Once	information	about	the	disease	has	

been	 obtained,	 effective	 tools	 can	 be	 developed	 to	 predict	 and	 stop	 epidemics.	 With	

computer	power	doubling	every	year	over	the	past	two	decades,	computational	capacity	

allows	for	much	better	systems	that	can	and	should	be	used	to	manage	plant	diseases.	Much	

knowledge	about	wheat	rusts	has	been	acquired	over	the	years	that	is	now	being	applied	to	

manage	 diseases	 worldwide.	 Recent	 advances	 in	 technologies	 can	 help	 improve	 rust	

management	at	all	levels.	Firstly,	regular	disease	diagnosis	checks	using	UAV	technologies	
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with	 image	 recognition	 can	 be	 used	 for	 quick	 surveillance	 (Bohnenkamp,	 Behmann,	 &	

Mahlein,	2019).	Secondly,	sampling	effectively	when	disease	is	found,	making	use	of	models	

for	 best	 sampling	 strategies,	 and	 genotyping	 to	 identify	 pathogens	 in	 a	 cost-effective	

manner.	Thirdly,	 this	 information	 can	be	 integrated	 into	 a	 global	platform	 that	 contains	

already	developed	models	while	gathering	real-time	weather	data.	This	system	could	then	

give	recommendations	about	what	to	do	in	the	field	in	terms	of	fungicide	application	or	even	

removal	 of	 certain	 plants/patches	 in	 the	 field	 to	 decrease	 pathogen	 inoculum.	 Recent	

model-based	frameworks	have	already	been	developed	that	integrate	satellite	imagery	with	

airborne	 inoculum	 information	 and	 weather	 data	 to	 control	 crop	 diseases	 (Newlands,	

2018).	Moreover,	platforms	could	make	use	of	GIS	technologies	that	 include	 information	

about	landscape	composition	incorporating	surveillance	data	to	create	risks	maps.	Better	

management	of	crop	diseases	is	needed	and	the	technology	to	achieve	this	is	already	out	

there.	 Creating	 survey	 protocols	 that	 integrate	 all	 different	 aspects	 and	 developing	

platforms	to	share	the	data	would	highly	improve	plant	disease	management	and	it	only	

requires	global	collaboration	to	reach	such	an	apparent	utopia.	

5.3 Concluding	statement	

After	 the	 emergence	 of	 the	 virulent	 stem	 rust	 Ug99	 strain	 in	 Uganda,	 Norman	 Borlaug	

declared	his	famous	quote:	“Rust	never	sleeps”	(Borlaug,	2008).	Thus,	as	(rust)	scientists,	

neither	 should	 we	 1.	 Plant	 diseases	 are	 frequently	 disregarded	 when	 they	 are	 not	 a	

significant	 problem,	 but	 a	 potential	 threat	 should	 not	 be	 ignored	 until	 it	 is	 too	 late.	

Mathematical	 modelling	 can	 help	 us	 increase	 our	 knowledge	 about	 plant	 diseases	 and	

prevent	epidemics	before	 they	occur.	 Investigating	plant	diseases	at	different	 levels	and	

integrating	them	into	open-source	platforms	that	can	help	inform	stakeholders	and	make	

better	decisions	is	key	in	the	path	towards	global	food	security.	It	has	reached	a	point	where	

the	 lack	 of	 scientific	 collaboration	 and	 data	 sharing	 is	 restraining	 progress.	 Current	

technology	advances	are	giving	us	the	opportunity	for	global	collaboration	and	I	believe	it	

is	our	duty	as	scientists	to	develop	systems	that	integrate	worldwide	multi-level	data	for	

better	 management.	 This	 thesis	 is	 one	 step	 further	 towards	 trying	 to	 prevent	 future	

epidemics	 by	 improving	 our	 understanding	 of	 wheat	 rusts	 and	 providing	 useful	 and	

inexpensive	tools	for	rust	management.	

 
1 Figurately speaking. Lack of sleep has shown to reduce productivity and is thus not recommended 
(Rosekind et al., 2010). 
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Chapter	6							  Annexe	

6.1 Lubrication	model	for	aeciospore	release	

The	aeciospore	release	mechanism	will	be	modelled	as	shown	in	(Figure	6.1	A),	where	an	

aeciospore,	 surrounded	 by	 neighbouring	 spores,	 will	 expand	 after	 hydration.	 This	

expansion	in	aeciospore	volume	after	water	intake	will	decrease	the	interspore	gap	which	

will	intensify	the	lubrication	force.	For	mathematical	simplicity,	this	squeezing	shut	of	the	

interspore	 gap	 will	 be	 modelled	 by	 assuming	 that	 the	 sides	 of	 the	 aeciospores	 remain	

parallel	or	in	a	fixed	orientation	so	that	the	distance	between	the	spore	and	the	wall	is	purely	

a	function	of	time,	i.e.	it	is	independent	of	x.	In	this	way	the	angle	between	the	walls,	a,	is	

assumed	 to	be	 constant.	During	 squeezing,	 the	aeciospore	pushes	on	 the	 film	creating	a	

strong	lubrication	force	in	the	direction	normal	to	the	wall.	Since	the	walls	are	inclined,	this	

generates	a	component	of	force	in	the	direction	of	the	axis	of	symmetry.	The	aeciospore	is	

thus	propelled	forwards	in	the	positive	x	direction	(Figure	6.1	A).	The	z	axis	is	the	axis	of	

symmetry	(Figure	6.1	B),	so	that	the	walls	are	located	at	

! = ±	tan ∝	

We	 assume	 that	 the	 gap	 between	 the	 aeciospore	 and	 the	 walls	 of	 the	 neighbouring	

aeciospores	is	small	so	that	the	lubrication	theory	can	be	used.	Let	the	aeciospore	occupy	

the	portion	of	the	z	axis	covering	0	≤	z	≤	L	at	t=0.	Let	h(x,t)	be	the	gap	between	the	aeciospore	

and	 the	walls,	 assumed	uniform	(i.e.	 it	does	not	depend	on	z).	The	Reynolds	 lubrication	

equation	can	then	be	applied	here		

	
1
12µ

(ℎ!-")" = /($) −
1
2
/(&)ℎ"	 (1)	

where		

• p(z,t)	is	the	pressure	in	the	liquid	film	
• V(n)	is	the	velocity	of	the	spore	in	the	y	direction	(90º	to	the	wall)		
• V(t)	is	the	velocity	of	the	spore	in	the	x	direction	
• µ	is	the	dynamic	viscosity	of	the	liquid	in	the	film,	assumed	to	be	water	
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Figure	 6.1.	 Description	 of	 the	 Pg	 aeciospore	 release	 model.	 (A)	 Aeciospores	 are	 surrounded	 by	
neighbouring	spores,	forming	an	angle	of	a	between	their	direction	of	release	and	the	neighbouring	aeciospore	
wall.	(B)	There	is	a	force	in	the	J	direction	acting	on	the	spore.	(C)	At	z=0,	L;	p=0	(i.e.	atmospheric	pressure).	The	
wall	of	the	modelled	aeciospore	is	in	an	angle	b	with	respect	to	the	wall	of	the	neighbouring	aeciospore.	(D)	The	
vector	J	indicates	the	direction	of	the	force	that	acts	on	the	aeciospore	and	that	will	force	it	to	be	released	in	the	
i	direction.	

	

The	equation	describing	the	edge	of	the	aeciospore	would	be	

	 ℎ(!, 2) = 3(2) + ! tan5,									0 ≤ ! ≤ 8	 (2)	 	

assuming	that	b	remains	constant	during	the	motion	and	restricted	to	the	range	

	 0 < 5 <
:
2
	 	 	

It	must	be	that	case	that	ht	=Ht	=V(n)	and	that	Xt	=	V(t),	where	x	=	X(t)	is	the	location	of	the	

centre	of	mass	of	the	aeciospore.	So	(1)	becomes	

	
1
12µ

(ℎ!-")" = 3& −
1
2
;& tan 5	 (3)	

Integrating	with	respect	to	z	twice,	substituting	h(z,	t)	from	(2)	and	assuming	that	p	is	zero	

(i.e.	atmospheric	pressure)	at	z=0,	L	(Figure	6.1	C),	we	obtain	

	 - = −
12µ

(23 + 8 tan5)
!(8 − !)

(3 + ! tan5)'
<3& −

1
2
;& tan 5=	 (4)	
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We	now	compute	the	pressure	force	per	unit	length	(in	the	transverse	direction,	i.e.	into	the	

paper)	on	the	aeciospore	in	the	y	direction	normal	to	the	wall.	The	magnitude	of	this	force	

per	unit	length	is	given	by	

	
> = ? -	@!

(

)
=

12µ
tan!5

A(B) <3& −
1
2
;& tan 5=	 (5)	

where		

	 A(B) = log(1 + B) −
2B

(2 + B)
,							B =

8
3
tan5	 (6)	

Note	that	from	(2),	in	order	for	H	≥	0	everywhere,	we	need	

	 3 + 8 tan5 > 0			 →									−1 < B < ∞		 (7)	 	

Thus,	the	function	g(w)	will	have	the	form	shown	in	Figure	6.2.	

The	force	per	unit	length	calculated	here	(5)	is	defined	as	the	vector	J,	whose	magnitude	is	

|J|	=	f.	We	are	interested	in	finding	the	component	of	J	in	the	x	direction,	that	is	along	the	

axis	of	symmetry	(Figure	6.1	A).	This	component	is	given	by	

	 I ∙ K = |I| cosO	 	

where	y	is	the	angle	between	J	and	i	(Figure	6.1	D),	and	y	=	π/2	–	(a	–	b).	Thus	

	 I ∙ K = |I| cosO = > cosP
:
2
− (Q − 5)R = > sin(Q − 5)	 	

The	equation	(5)	represents	the	force	per	unit	length,	but	we	are	interested	in	knowing	the	

force	acting	on	the	entire	surface	of	the	aeciospore.	Assuming	that	the	cuboid	aeciospore	

extends	for	a	length	l	in	the	transverse	direction,	the	total	magnitude	of	force	on	one	side	

of	the	aeciospore	acting	in	the	x	direction	is	then	

	 T = >U sin(Q − 5)	 (8)	 	

The	parameter	l	represents	the	length	of	the	aeciospore,	while	L	previously	defined	in	(2)	

can	then	be	used	to	represent	an	individual	aeciospore	or	a	row	of	spores.	Both	parameters	

are	thus	kept	separated	so	we	can	vary	L	without	varying	the	extent	of	a	single	spore	in	the	

transversal	direction.	

Using	(6)	we	write	the	previous	expression	(8)	as	

	 T = −
12µU
tan! 5

A(B) sin(Q − 5) <3& −
1
2
;& tan 5=	 (9)	
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Figure	6.2.	Function	g	(w)	defined	in	(6)	over	the	allowable	range	[-1,	∞]	(7).	The	value	of	g	(w)	varies	from	
-∞	when	w	⟶	-1,	up	to	+∞	when		w	⟶	∞.	The	value	of	g	(w)	is	close	to	0	when	w	is	near	0.	

	

Assuming	that	the	cuboid	spore	has	four	of	its	faces	pressurised	by	the	neighbouring	spores,	

Newton’s	second	law	can	be	applied	to	obtain	

	 4T = W;&&	 	

where	m	 is	 the	mass	of	 the	 spore.	 Substituting	 for	F	 from	(9)	we	obtain	 the	differential	

equation	for	the	spore’s	centre	of	mass,	

	 ;&& = 4
T
W
= 4W*+ X

12µU
tan! 5

A(B) sin(5 − Q) <3& −
1
2
;& tan 5=Y	 	

Thus	

	 ;&& = 4W*+ZA(B) sin(5 − Q)3& − 4W*+ZA(B) sin(5 − Q)
1
2
;& tan 5	 	

Rearranging	the	terms,	we	can	write	the	above	equation	as	

	 ;&& + [;& − \(2) = 0	,	 (10)	

where	

	
[ = −

24µU
W

sin(5 − Q)

2Z]'5
A(B),							\(2) =

48µU
W

(−3&) P
A(B)

2Z]!5
R sin(Q − 5)	 	

The	terms	in	the	curved	brackets	in	B(t)	are	both	positive	since	(Ht	<	0).	
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The	value	of	b	will	determine	whether	the	aeciospore	side	is	parallel	to	the	neighbouring	

aeciospore	(if	b	=	0)	or	not	(b	≠	0),	as	shown	in	Figure	6.3.	Thus,	we	will	examine	both	

possibilities	in	the	two	following	sections.	

	

	

Figure	6.3.	The	value	of	b	will	determine	the	position	of	the	aeciospore	wall	regarding	its	neighbouring	
spore.	(A)	If	b	=	0,	the	wall	of	the	aeciospore	will	be	parallel	to	the	z	axis.	(B)	If	b	≠0,	the	aeciospore	wall	will	be	
inclined	with	respect	to	z	in	an	angle	b.	

	

6.1.1 	Predictions	when	b	=	0	

When	b	=	0,	the	term	A=0	and	equation	(10)	reduces	to	the	following	form	

;&& = −
4µU8!

W
3&
3!

sin Q	

Integrating	the	above	equation,	we	can	get	an	expression	for	the	spore	speed	

	
;& =

_
W
P
1
3'

−
1
3)
'R	,	 (11)	

where	g	=	2µlL3sina,	and	H0	=	H(0)	is	the	initial	gap	before	the	spore	starts	moving.	

The	formula	from	(11)	assumes	that	the	aeciospore	is	at	rest	at	t	=0.	This	expression	applies	

regardless	of	the	particular	form	of	H(t),	i.e.,	the	way	in	which	the	gap	closes	is	irrelevant.	
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To	get	an	expression	for	the	location	of	the	aeciospore	at	any	time	t,	we	must	integrate	(11).	

To	do	so,	we	assume	H(t)	to	take	the	simplest	possible	form	

3(2) = 3)(1 − `2),	

	

which	implies	that	the	gap	closes	linearly	in	time,	with	d	being	the	rate	at	which	the	gap	

closes.	Hence,	using	the	above	expression,	we	can	integrate	(11)	to	obtain	

	
;(2) =

_
W3)

' P
`2'

1 − `2
R	,	 (12)	

assuming	X(0)	=	0.	

We	want	to	estimate	the	aeciospore	velocity	after	travelling	the	distance	required	to	exit	

the	aecial	 cup.	Defining	 the	distance	 travelled	as	D,	 then	 the	aeciospore	would	 leave	 the	

aecial-cup	at	time	t	=	T,	where	T	satisfies	the	quadratic	equation:	

`a' + b`a − b = 0	

where	 n =	mDH02g.	 This	 can	 be	 solved	 to	 find	 T	 and	 then	 substituting	 in	 the	 following	

expression	to	calculate	the	speed	of	the	spore	at	the	point	of	ejection:	

/ = ;&(a) =
_
W
P

1
3(a)'

−
1
3)
'R		

	

The	ejection	velocities	predicted,	using	different	values	of	D,	are	lower	than	the	observed	

velocities	 using	 the	 HS	 camera	 (Figure	 6.4).	 Velocities	 observed	 with	 HS	 videography	

ranged	from	0.1-0.7,	with	the	average	around	0.2	m/s,	as	shown	in	Chapter	2,	section	2.4.1.	

This	indicates	that	if	we	assume	b	=	0,	the	model	does	not	fit	our	observations.	
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Figure	6.4.	Predicted	velocities	when	b=0.	Velocities	were	estimated	using	the	parameters	from	Table	6.1,	
with	a	value	of	a	=	0.2.	The	ejection	velocity	estimated	remains	bellow	0.045	m/s	for	values	of	D	up	to	800	µm.		

 

6.1.2 Predictions	when	b	≠	0	

When	b	≠0,	A≠0	and	thus,	we	must	consider	the	first	term	(-AXt)	in	(9).	This	term	represents	

an	additional	acceleration	effect	resulting	from	the	spore	edge	not	being	parallel	to	the	wall.	

To	get	a	higher	predicted	ejection	velocity,	the	term	-AXt	must	be	greater	than	zero.	Thus	

−[;& =
24µU
W

sin(5 − Q)

2Z]'5
A(B);& > 0	

	
Since	Xt	>	0,	in	order	for	-AXt	to	be	greater	than	zero,	we	need	

	 sin(5 − Q)A(B) > 0	 (13)	

The	description	of	the	function	g(w)	indicates	that	g	>	0	when	w	>	0	(Figure	6.2),	and	thus	

when	b	>	0,	since	

B =
8
3
tan5,	

as	indicated	in	(6).	Therefore,	to	meet	the	condition	in	(13),	either	(i)	a	>	0	and	b > a,	or	(ii)	

a	<	0	and	b	<	0.	The	latter	requires	a	<	0	which	is	physically	nonsensical,	and	hence,	for	an	

additional	positive	acceleration	effect,	we	need	

a	>	0			and			b	>	a	

As	long	as	both	of	these	conditions	hold,	the	aeciospore	will	be	accelerated	more	than	if	it	

were	parallel	to	the	wall.	
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To	identify	the	important	scales	in	the	problem,	we	carry	out	a	dimensional	analysis.	The	

parameters	included	in	the	model	have	the	following	dimensions,	

[U] = 8, [ℎ)] = 8, [µ] = e8*+a*+, [f] = e8*!, [`] = a*+	

	

Where	M,	L	and	T	represent	fundamental	units	of	mass,	length	and	time.	

Combining	 these	 parameters,	 it	 is	 possible	 to	 identify	 two	 important	 timescales	 in	 the	

problem	

τ+ =
1
δ
				and						τ' = P

λ'ρ
µ
R	

The	 first	one,	t1,	 is	 the	 timescale	on	which	 the	gap	between	the	aeciospore	and	the	wall	

closes.	Using	the	values	from	Table	6.1,	we	calculate	

τ+ = 1.85	s				and						τ' = 1.42	x	10*,s	

In	this	model,	the	aeciospore	is	assumed	to	be	a	cube	of	dimension	l	with	its	mass	given	by		

W = ρU!,	

where	r	is	the	density	of	the	aeciospore.	

The	computer	programming	software	Matlab	determines	the	speed	of	the	aeciospore	once	

it	has	travelled	a	certain	distance,	X*	after	a	time	t*	has	elapsed.	In	particular,	the	release	

velocity	is	calculated	when	

;∗ = ]U	

for	an	integer	n,	that	represents	the	number	of	aeciospore	lengths	(i.e.	l)	that	the	aeciospore	

has	 travelled	before	exiting	 the	aecial	 cup.	Based	on	observation	 from	videography,	n	 is	

expected	to	be	small,	with	a	maximum	of	2	or	3.	Once	the	aeciospore	has	travelled	a	distance	

X*,	the	time	that	has	elapsed,	t*,	is	on	the	order	of	few	t2	units,	and	it	is	only	a	very	small	

fraction	of	t1	units	(typically	10-4).	Thus,	it	can	be	concluded	that	t2	is	the	important	time	

scale	 for	 the	 aeciospore	 ejection.	 Furthermore,	 while	 it	 is	 the	 squeezing	 effect	 due	 to	

aeciospore	rounding-off	after	water	absorption	that	accelerates	the	aeciospore,	by	the	time	

of	ejection	the	initial	gap	h0	has	only	closed	by	a	very	small	amount.	

Table	6.1.	Physical	values	included	in	the	aeciospore	release	model.	The	value	of	r	has	been	extracted	from	
(Pasquill,	 1962).	 The	 values	 of	H0	 and	 l	 have	 been	 estimated	 from	 SEM	 images	 and	 the	 value	 of	 d	 from	
videography	from	Chapter	2	(2.4.7).	Values	for	a,b	need	to	be	estimated	(TBC:	To	Be	Confirmed).	

Parameter	 Value	 Parameter	 Value	

µ	 8.9	x	10-4	Pa	s	 r 882	kg	m-3	

d	 0.46	µm/s	 l	 12	x	10-6	m	

H0	 2	x	10-6	m	 a, b		 TBC	
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6.1.2.1 Velocity	calculations	
Using	Matlab,	with	the	in-built	ode	integrator	ode45,	the	following	equation	is	solved,		

;&& = −[;& + \(2)	

assuming	that	the	aeciospore	starts	at	rest	at	X=0	and	time	t=0,	i.e.:	

;(0) = 0,											;&(0) = 0	

In	 the	 numerical	 calculation,	 for	 the	 known	 parameters	 (µ,	r, d, l,	H0),	 the	 values	 from	

Table	6.1	are	used.	The	values	of	µ	and	r	has	been	extracted	from	the	literature	(Pasquill,	

1962)	and	the	values	of	H0	and	l	have	been	estimated	from	SEM	images.	The	value	of	d	was	

estimated	from	videos	as	indicated	in	Chapter	2	(section	2.4.6).	The	value	of	a	and	b	are	

difficult	to	estimate	and	thus	a	range	of	values	are	considered	(Figure	6.5).	As	previously	

mentioned,	to	meet	the	condition	from	(12),	a	must	be	larger	than	b.	However,	the	release	

velocity	is	not	very	sensitive	to	changes	in	a	and	b.	Ejection	speed	would	change	depending	

on	the	values	used,	but	estimated	velocities	remain	within	the	range	of	observations	(0.094	

–	0.754	m/s).		

	

	

Figure	6.5	Pg	aeciospore	predicted	velocity	of	release	(m/s).	Using	a	value	of	H0=	2x10-6	m	for	the	initial	
gap	size	between	neighbouring	aeciospores,	the	ejection	velocities	were	estimated	for	different	values	of	a	and	
b,	keeping	in	mind	that	a	must	always	be	greater	than	b.	Values	in	the	contour	lines	are	given	in	m/s.	The	dashed	
blue	line	delineates	the	region	where	a> b.	Predicted	velocities	were	in	the	same	range	as	observed	using	HS	
videography	(0.1-0.7	m/s).		
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6.2 Estimation of the dry deposition rate 

The inverse time scale (s-1) of dry deposition that can be represented as (Aylor, 1999): 

 

 
Γ! = "

2

:
	#o.
p
$% & @p

q/(p)
'

0

00
 (14)	 

where vs is the settling velocity of aeciospores and sz is the standard deviation of the 

spread of the plume in the z direction. 

 

 
? X

@p
q"(p)

Y =
@p
q"(p)

1

1"
= ?

@p
r(!))Zp2

1

1"
 (15) 

 

 
?

@p
r(!))Zp2

1

1"
= ?

@p

(10!))).4!1
#".%%Zp2

1

1"
=
1
Z
?

@p

(10!))).4!1
#".%%p2

1

1"
 (16) 

 

The integral that needs to be solved, thus, is: 

 
?

@p

(10!))).4!1
#".%%p2

= ?(10!))*).4!1
#".%%

p*2	@p (17) 

 

which can be solved by steps, with the following principle: 

 ?s@o = s × o −?o	@s (18) 

where 

s = p*2 																															→ 												@s = −up*2*+	@p 

@o = 	 (10!))*).4!1
#".%%

@p			 → 											o = 	
(10!))*).4!1

#".%%

ln(10!)) (0.53 × 0.22)p*).''*+
 

 

For simplicity, we will substitute the constants 10z0, 0.53 and 0.22 by p, c, and q 

respectively. Hence, 
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?(-)*51
#&
p*2	@p = 	p*2 	× 	

(-)*61
#'

ln(-) (wx)p*7*+
−	?

(-)*61
#'

ln(-) (wx)p*7*+
	× (−u)p*2*+@p	

= p*2 	× 	
(-)*61

#'

ln(-) (wx)p*7*+
+

u
ln(-) (wx)

?(-)*61
#'
	× p7*2@p	 

 

 

The principle from (18) can be used again to solve the integral: 

 

?(-)*61
#'
	× p7*2@p	 

 

(19) 

Thus, 

s = (-)*61
#'
																→ 												@s = ln(-) (-)*61

#'
wyp*7*+	@p 

@o = p7*2@p																 → 															o = 	
p7*28+

x − u + 1
 

 

Using the above terms, we can solve integral (19) using (18): 

?(-)*61
#'
	× p7*2@p	 = (-)*61

#'
×

p7*28+

x − u + 1
−?

p7*28+

x − u + 1
	ln(-) (-)*61

#'
wxp*7*+	@p

= 	 (-)*61
#'
×

p7*28+

x − u + 1
−
wx ln(-)

x − u + 1
?p*2 	(-)*61

#'
	@p 

 

The integral in the above expression is the same one that needed to be solved. 

Therefore: 

 

?(-)*61
#'
p*2	@p =	

= 	
p7*28+	(-)*61

#'

ln(-) (wx)

+
u

ln(-) (wx)
z(-)*61

#'
×

p7*28+

x − u + 1
−
wx ln(-)

x − u + 1
?p*2 	(-)*61

#'
	@p{ 

This can be simplified as 
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?(-)*61
#'
p*2	@p =	

= 	
p7*28+(-)*61

#'

ln(-) (wx)
+

x	(-)*61
#'
p7*28+

ln(-) (wx)(x − u + 1)

−
u

ln(-) (wx)
wx ln(-)

(x − u + 1)
?p*2 	(-)*61

#'
	@p

= 	
p7*28+(-)*61

#'

ln(-) (wx)
+

x	(-)*61
#'
p7*28+

ln(-) (wx)(x − u + 1)

−
u

(x − u + 1)
?p*2 	(-)*61

#'
	@p

=
|p7*28+(-)*61

#'
}(x − u + 1) + |u	(-)*61

#'
p7*28+}

ln(-) (wx)(x − u + 1)

−
u

(x − u + 1)
?p*2 	(-)*61

#'
	@p 

 

Since the integral in the last factor is the same as the initial integrals, they can be 

grouped: 

?(-)*61
#'
p*2	@p 	<1 +

u
(x − u + 1)

=

= 	
|p7*28+(-)*61

#'
}(x − u + 1) + |u(-)*61

#'
p7*28+}

ln(-) (wx)(x − u + 1)
 

Thus, 

?(-)*61
#'
p*2	@p 	<

x − u + 1 + u
(x − u + 1)

= = ?(-)*61
#'
p*2	@p 	<

x + 1
(x − u + 1)

=

= 		
(-)*61

#'
p7*28+(x − u + 1) + u	(-)*61

#'
p7*28+

ln(-) (wx)(x − u + 1)
 

This expression can be simplified 

?(-)*61
#'
p*2	@p <

x + 1
(x − u + 1)

= =
(x − u + 1 + u)	(-)*61

#'
p7*28+

ln(-) (wx)(x − u + 1)

= 	
(x + 1)	(-)*61

#'
p7*28+

ln(-) (wx)(x − u + 1)
 

Resulting in 

?(-)*61
#'
p*2	@p =

	(-)*61
#'
p7*28+

ln(-) (wx)
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Placing the original values, we obtain 

 

?(10!))*).4!1
#".%%

p*7 	@p =
	(10!))).4!1

#".%%
p).''*28+

ln(10!)) (0.53 × 0.22)
 

 

Substituting back to the initial integral 

? X
@p
q"(p)

Y
1

1"
=
1
Z
? (10!))*).4!1

#".%%
p*7 	@p

1

1"
 

Where x0 is 0 meters and x will vary and thus have to be calculated at each point 

downwind from the source. Therefore, the integral between those two points would be: 

? X
@p
q"(p)

Y
1

1"
=
1
Z
z
	(10!))*).4!1

#".%%
p).''*28+

ln(10!)) (0.53 × 0.22)
{ 

 

Since at x0=0, the term will cancel. Therefore, the deposition rate will be given by  

 
Γ! = "

2

:
	#o.
p
$ 1
Z
(	(10!0)

−0.530−0.22p0.22−>+1

ln(10!0) (0.53 × 0.22)
+ (20) 

 

 
Table 6.2. Results of the mathematical operations used in this section. 

Operation Result 

(Z>(p))’ ln	(Z)ZA(1)>′(p) 

?ZA(1)@p 
1

	>′(p)ln	(Z)
ZA(1)	@p 
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6.3 Developing SNP markers to identify the Pst population 

	

Table	6.3.	Set	of	96	SNP	markers	to	identify	Pst	genetic	groups,	corresponding	to	Chapter	4							.	Base	pairs	
found	for	each	population	at	each	one	of	the	positions	for	the	96	markers.	Two	columns	indicating	the	%	of	error	
and	the	%	of	missing	data	used	to	find	that	marker	are	included.	The	last	column	shows	which	genetic	group	
can	be	identified	using	the	given	marker.	

SNP	Marker	 Group	
1	

Group	
2	

Group	
3	

Group	
4	

Group	
5-1	

%	
Error	

%	
Missing	
data	

Specific	
for:	

10129_723	 AA	 AC	 AA	 AA	 AA	 0	 10	 Group	2	
10318_2684	 GG	 CG	 GG	 GG	 GG	 0	 10	 Group	2	
10318_2718	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
10722_2542	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
10722_2596	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
10789_3220	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
10892_3852	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
11282_5071	 TT	 AT	 TT	 TT	 TT	 0	 10	 Group	2	
11282_5335	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
11587_2433	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
11588_391	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
12490_380	 GG	 TG	 GG	 GG	 GG	 0	 10	 Group	2	
14936_554	 GG	 AG	 GG	 GG	 GG	 0	 10	 Group	2	
15318_606	 AA	 AC	 AA	 AA	 AA	 0	 10	 Group	2	
16389_951	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
23589_132	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
25458_2613	 AA	 AC	 AA	 AA	 AA	 0	 10	 Group	2	
28668_2280	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
4368_396	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
6848_15952	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
6865_3945	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
7343_3422	 TT	 TG	 TT	 TT	 TT	 0	 10	 Group	2	
7414_9882	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
7720_2763	 GG	 CG	 GG	 GG	 GG	 0	 10	 Group	2	
7767_6171	 AA	 AT	 AA	 AA	 AA	 0	 10	 Group	2	
8024_3203	 GG	 AG	 GG	 GG	 GG	 0	 10	 Group	2	
8069_1156	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
8286_876	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
8449_1451	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
8449_1544	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
8549_13444	 CC	 CT	 CC	 CC	 CC	 0	 10	 Group	2	
8623_4151	 TT	 AT	 TT	 TT	 TT	 0	 10	 Group	2	
8805_7906	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
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8888_2680	 AA	 AG	 AA	 AA	 AA	 0	 10	 Group	2	
9149_1708	 TT	 CT	 TT	 TT	 TT	 0	 10	 Group	2	
9827_1344	 CC	 CG	 CC	 CC	 CC	 0	 10	 Group	2	

10127_1130	 AA	 AG	 AG	 AG	 AA	 0	 20	
Group	1	
and	

Group	5-
1	

10441_749	 TT	 CT	 CT	 CT	 TT	 0	 20	
Group	1	
and	

Group	5-
1	

2682_3747	 CC	 CC	 CC	 CC	 CG	 0	 20	 Group	5-
1	

7113_7055	 GG	 GG	 GG	 GG	 CG	 0	 20	 Group	5-
1	

10095_1765	 CC	 CC	 CC	 CC	 CT	 0	 30	 Group	5-
1	

15225_2855	 AA	 AA	 AA	 AA	 AG	 0	 30	 Group	5-
1	

6921_3712	 TT	 CT	 CT	 TT	 TT	 0	 30	
Group	2	
and	

Group	3	
7020_2447	 CC	 CC	 CC	 CC	 CG	 0	 30	 Group	5-

1	

7341_4368	 AT	 TT	 TT	 TT	 AT	 0	 30	
Group	1	
and	

Group	5-
1	

7364_28843	 AT	 TT	 TT	 TT	 TT	 0	 30	 Group	1	

7446_5852	 GG	 AG	 GG	 GG	 AG	 0	 30	
Group	2	
and	

Group	5-
1	

7557_5505	 GG	 AG	 AG	 AG	 GG	 0	 30	
Group	1	
and	

Group	5-
1	

7670_3524	 CC	 CT	 TT	 CT	 CC	 0	 30	 ALL	

7716_4224	 GG	 AG	 AG	 AG	 GG	 0	 30	
Group	1	
and	

Group	5-
1	

7802_6182	 CC	 CT	 CT	 CT	 CC	 0	 30	
Group	1	
and	

Group	5-
1	

8291_7564	 AA	 AA	 AA	 AA	 AG	 0	 30	 Group	5-
1	

8552_2672	 AA	 AA	 AG	 AG	 AA	 0	 30	
Group	3	
and	

Group	4	
11685_2070	 CC	 CT	 CC	 CC	 CC	 10	 10	 Group	2	
7753_15395	 AG	 GG	 GG	 GG	 GG	 10	 20	 Group	1	
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10441_476	 TT	 CT	 CT	 CT	 TT	 10	 20	
Group	1	
and	

Group	5-
1	

13079_219	 TT	 CC	 CC	 CT	 TT	 10	 30	 ALL	

2595_1398	 CC	 CT	 CT	 CT	 CC	 10	 30	
Group	1	
and	

Group	5-
1	

59_4161	 TT	 AT	 AT	 AT	 TT	 10	 30	
Group	1	
and	

Group	5-
1	

753_1139	 CC	 AC	 AC	 AC	 CC	 10	 30	
Group	1	
and	

Group	5-
1	

10982_2778	 GG	 AA	 AA	 AG	 GG	 10	 40	 ALL	

7802_6449	 AA	 AG	 AG	 AG	 AA	 10	 30	
Group	1	
and	

Group	5-
1	

8182_11012	 CC	 AC	 AC	 AC	 CC	 10	 30	
Group	1	
and	

Group	5-
1	

8301_20194	 TT	 CT	 CT	 CT	 TT	 10	 30	
Group	1	
and	

Group	5-
1	

9120_5942	 AT	 TT	 AA	 AT	 TT	 10	 40	 ALL	

9182_3916	 GG	 AG	 AG	 AG	 GG	 10	 40	
Group	1	
and	

Group	5-
1	

7291_1846	 AA	 AA	 AG	 AG	 AG	 10	 10	
Group	1	
and	

Group	2	

14025_4585	 TG	 TT	 TT	 TG	 GG	 10	 20	
Group	2	
and	

Group	3	
26014_8757	 CT	 CT	 TT	 CT	 CT	 10	 20	 Group	3	
7092_712	 CC	 CC	 CT	 CC	 CC	 10	 20	 Group	3	
7092_715	 TT	 TT	 CT	 TT	 TT	 10	 20	 Group	3	
7341_4770	 CT	 CT	 TT	 CT	 CT	 10	 20	 Group	3	
7670_3437	 TT	 CT	 CC	 CT	 TT	 10	 20	 ALL	
11355_1370	 CC	 CG	 GG	 CG	 CC	 10	 30	 ALL	
11355_649	 AA	 AC	 CC	 AC	 AA	 10	 40	 ALL	
11355_934	 TT	 CT	 CC	 CT	 TT	 10	 30	 ALL	
12156_2790	 TT	 CT	 CT	 TT	 CT	 10	 20	 ALL	
13932_495	 CT	 CT	 CC	 CT	 CT	 10	 20	 Group	3	
19742_674	 CC	 CT	 TT	 CT	 CC	 10	 30	 ALL	
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21106_873	 AA	 AT	 TT	 AT	 AA	 10	 30	 ALL	
6940_13038	 AA	 AG	 GG	 AG	 AA	 10	 30	 ALL	
6940_13850	 CC	 CT	 TT	 CT	 CC	 10	 30	 ALL	
6940_13871	 GG	 AG	 AA	 AG	 GG	 10	 30	 ALL	
6940_13871	 GG	 AG	 AA	 AG	 GG	 10	 30	 ALL	
7030_3696	 AA	 AA	 AG	 AA	 AA	 10	 30	 Group	3	
7237_13346	 GG	 CC	 CC	 CG	 GG	 10	 30	 ALL	
7237_8357	 GG	 CC	 CC	 CG	 GG	 10	 30	 ALL	
7259_1082	 CC	 CT	 TT	 CT	 CT	 10	 30	 ALL	
7369_14359	 GG	 TG	 TT	 TG	 GG	 10	 30	 ALL	
7397_14343	 TT	 TG	 GG	 TG	 TT	 10	 30	 ALL	

7582_7250	 CT	 CC	 CT	 CC	 CT	 10	 30	
Group	2	
and	

Group	4	
7582_8369	 AG	 GG	 AG	 GG	 AG	 10	 30	 ALL	

7582_8747	 CT	 TT	 CT	 TT	 CT	 10	 30	
Group	2	
and	

Group	4	
7670_3586	 TT	 AT	 AA	 AT	 TT	 10	 30	 ALL	
8617_14756	 TT	 CT	 CC	 CT	 TT	 10	 30	 ALL	
9356_4561	 TG	 TG	 GG	 TG	 TT	 10	 30	 ALL	

	

	

Table	 6.4.	 Libraries	 sequenced	 using	 TruSeq	 Custom	 Amplicon	 Illumina	 method.	 Insert	 size	 and	
concentration	for	each	one	of	the	samples	included	is	shown	here.	

Sample	 Insert	size	 Concentration	
(ng/µl)	

Norm	
(nM)	

16.0164	 307	 8.62	 43.26	
16.0168	 371	 4.5	 18.69	
16.0665	 320	 7.78	 37.46	
16.0153	 340	 0.8	 3.63	
16.0662	 309	 7.52	 37.5	
16.0677	 307	 4.68	 23.49	
16.0660.	 343	 10.9	 48.97	
16.0676	 317	 9.56	 46.47	
16.0135	 278	 2.6	 14.41	
16.0138	 310	 2.16	 10.74	
16.0398	 319	 22.6	 109.16	
16.0669	 350	 3.26	 14.35	
16.0401	 289	 16.2	 86.37	
16.0216	 304	 25.2	 127.73	
16.0500.	 289	 5.88	 31.35	
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16.0129	 310	 21.2	 105.37	
16.0183	 285	 18	 97.32	
16.0186	 330	 26.2	 122.33	
16.0605	 303	 4.02	 20.44	
16.0203	 290	 1.7	 9.03	
14/106	 284	 21.6	 117.19	
16.0139	 306	 19.9	 100.2	
16.0627	 279	 24.4	 134.75	
16.0626	 298	 6.5	 33.61	
F18	 286	 3.92	 21.12	
F22	 289	 8.56	 45.64	
13/14	 291	 0.548	 2.9	
14//7	 328	 0.242	 1.14	
15/157	 319	 0.512	 2.47	
16.0133	 288	 3.68	 19.69	
16.0127	 383	 29	 116.67	
16.0175	 176	 24.8	 217.12	
16.0402	 290	 37.2	 197.65	
16.0153	 275	 1.35	 7.56	
16.0170.	 293	 55.2	 290.29	
16.0176	 288	 33.8	 180.83	
16.0177	 302	 33.2	 169.39	
16.0157	 312	 25.6	 126.43	
16.0392	 296	 5.56	 28.94	
16.0397	 304	 28.6	 144.96	
16.0131	 281	 53	 290.62	
16.0161	 289	 50.2	 267.65	

Aby_2/16_S2	 268	 0.254	 1.46	
Aby_2/16_K1	 284	 6.74	 36.57	
Aby_3/16_K0	 279	 2.92	 16.13	
Aby_3/16_K1	 293	 8.36	 43.96	
Aby_3/16_S1	 354	 0.406	 1.77	
Aby_3/16_S1	 242	 0.252	 1.6	
Aby_5/16_K1	 254	 2.36	 14.32	
He_1/16_S0	 252	 6.96	 42.56	
He_1/16_S1	 270	 0.488	 2.78	
He_1/16_S2	 282	 6.36	 34.75	
He_1/16_S3	 268	 14.2	 81.64	
He_1/16_K0	 288	 21	 112.35	
He_4/16_K1	 283	 2.04	 11.11	
He_4/16_K2	 281	 9.24	 50.67	
He_5/16_K0	 306	 1.26	 6.34	
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He_5/16_K1	 284	 3	 16.28	
He_5/16_K2A	 337	 0.894	 4.09	
He_5/16_K2B	 343	 3.38	 15.18	
He_5/16_K2C	 289	 41	 218.6	
He_5/16_K3	 313	 0.267	 1.31	
He_5/16_K4A	 344	 0.79	 3.54	
He_5/16_K4B	 295	 1.8	 9.4	
He_5/16_S1	 284	 1.07	 5.81	
He_5/16_S2	 321	 0.302	 1.45	
He_5/16_S3	 288	 4.24	 22.68	
He_5/16_S4	 291	 1.66	 8.79	
He_5/16_S5	 286	 0.554	 2.98	
He_6/16_S1	 304	 0.312	 1.58	
He_6/16_S2	 324	 0.482	 2.29	
He_6/16_S3	 345	 1.12	 5	
He_6/16_S6	 320	 1.2	 5.78	
He_6/16_S7	 259	 0.32	 1.9	
He_6/16_S8	 423	 0.654	 2.38	
He_6/16_S9	 254	 21.4	 129.82	
He_6/16_K1	 288	 1.15	 6.15	
He_6/16_K8	 302	 9.58	 48.88	
14/56	 269	 16	 91.65	
14/63	 280	 17.1	 94.1	
14/119	 259	 3.56	 21.18	
14/124	 275	 17.3	 96.93	
14/16	 275	 15.4	 86.29	
14/113	 305	 2.88	 14.55	
15/157	 285	 1.1	 5.95	

T_1/16_K3	 277	 2.86	 15.91	
T_2/16_K2	 266	 6.1	 35.33	
T_6/16_S3A	 272	 5.18	 29.34	
T_5/16_K3B	 276	 7.34	 40.98	
T_6/16_S6	 271	 7.02	 39.91	
T_6/16_S8	 271	 11.8	 67.09	
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Table	6.5.	List	of	FAM,	HEX,	and	Common	primers	for	the	36	markers.	The	fluorescence	tail	is	coloured	as	blue	(FAM)	or	green	(HEX)	and	the	last	base	that	will	amplified	is	highlighted	in	
red.	For	each	primer,	the	marker,	its	name,	the	specific	SNP	are	indicated.	A	column	showing	the	group	that	each	primer	triplet	can	differentiate	is	also	included.	

	
	

Marker Name SNP Group FAM (X-axis) HEX (Y-axis) Common Orientation
10127_1130 CLPST153 G1130A  1 and  5-1 GAAGGTGACCAAGTTCATGCTGCAAGTTCAGCCTCGACg GAAGGTCGGAGTCAACGGATTGCAAGTTCAGCCTCGACa CAAGCGAAACAACAAAGCAG
10441_476 CLPST154 C476T  1 and  5-1 GAAGGTGACCAAGTTCATGCTGGTGCTGCCAAGGCTGTc GAAGGTCGGAGTCAACGGATTGGTGCTGCCAAGGCTGTt TGAGGGCAGGGATAACTTTG
7670_3524 CLPST160 C3524T ALL GAAGGTGACCAAGTTCATGCTCTGAATATGATTTTGATGGATCg GAAGGTCGGAGTCAACGGATTCTGAATATGATTTTGATGGATCa GCTCACAAGGCTTCGTTTG REVERSE

10982_2778 CLPST163 G2778A ALL GAAGGTGACCAAGTTCATGCTACCAGCAGGTTTCGATCTTTc GAAGGTCGGAGTCAACGGATTACCAGCAGGTTTCGATCTTTt CTTGTCCCCGCTGTATCATC REVERSE
7291_1846 CLPST167 G1846A  1 and  2 GAAGGTGACCAAGTTCATGCTTCTCGACATAAGAGCCACCAg GAAGGTCGGAGTCAACGGATTTCTCGACATAAGAGCCACCAa ATGTGGCTATCCCAACCAAC
11355_649 CLPST171 A649C All GAAGGTGACCAAGTTCATGCTTTCAGTGCCAAAAACGTCa GAAGGTCGGAGTCAACGGATTTTCAGTGCCAAAAACGTCc CACATGGACATCAGGGTGAG
10129_723 PST-1 C723A 2 GAAGGTGACCAAGTTCATGCTTCGTCAGTACATGTTCAAAAGAATg GAAGGTCGGAGTCAACGGATTTCGTCAGTACATGTTCAAAAGAATt TAGTAGCGCCCACAGATGAC REVERSE

11282_5335 PST-2 t5355c 2 GAAGGTGACCAAGTTCATGCTCAGAGAGAGCGTGGAGGAt GAAGGTCGGAGTCAACGGATTCAGAGAGAGCGTGGAGGAc CAACCCATCTCACAACCACG
11685_2070 PST-3 C2027T 2 GAAGGTGACCAAGTTCATGCTGGATTTCATTCGATTGCTGCg GAAGGTCGGAGTCAACGGATTGGATTTCATTCGATTGCTGCa CAGTTGCTGGAATCCGATCA REVERSE

4368_396 PST-4 T396C 2 GAAGGTGACCAAGTTCATGCTCCCATTGTCAAATCCTTCCTGa GAAGGTCGGAGTCAACGGATTCCCATTGTCAAATCCTTCCTGg CACCCGATTAGCTGAACAGT REVERSE
6848_15952 PST-5 C15952T 2 GAAGGTGACCAAGTTCATGCTCGTATTCACATTCTCTTCTGCTTTg GAAGGTCGGAGTCAACGGATTCGTATTCACATTCTCTTCTGCTTTa GATGTAAACCTCCTCTTCCACT REVERSE
7414_9882 PST-6 c9882t 2 GAAGGTGACCAAGTTCATGCTGAGAGACGGTTCCTGGTGc GAAGGTCGGAGTCAACGGATTGAGAGACGGTTCCTGGTGt CATGGTTAGTAAGTCAAGCCACA
7720_2763 PST-7 g2763c 2 GAAGGTGACCAAGTTCATGCTTGGTCGATATTCTCTCCTCTCg GAAGGTCGGAGTCAACGGATTTGGTCGATATTCTCTCCTCTCc TGGCTTCAGTATTCGAACAAGT
8069_1156 PST-8 A1156G 2 GAAGGTGACCAAGTTCATGCTGAACCTTTCTCGAGACATCATTATt GAAGGTCGGAGTCAACGGATTGAACCTTTCTCGAGACATCATTATc TCCATGGCAAGAGACGAATT REVERSE
8286_876 PST-9 t876c 2 GAAGGTGACCAAGTTCATGCTAATCAAGGTTCATTCCGCCt GAAGGTCGGAGTCAACGGATTAATCAAGGTTCATTCCGCCc ACCAACGTCCGGAACTGAAA

8805_7906 PST-10 a7906g 2 GAAGGTGACCAAGTTCATGCTTCTCGAGTACTTGGAAATCTGAa GAAGGTCGGAGTCAACGGATTTCTCGAGTACTTGGAAATCTGAg GTCCACTCCACCAACTACCA
10441_749 PST-11 C749T  1 and  5-1 GAAGGTGACCAAGTTCATGCTGAGTCCCCAATAAAGTCGGTg GAAGGTCGGAGTCAACGGATTGAGTCCCCAATAAAGTCGGTa GTATCCATACTCACACGCGC REVERSE
2682_3747 PST-12 c3747g  5-1 GAAGGTGACCAAGTTCATGCTAGACCGAGTTCAGCGAGAc GAAGGTCGGAGTCAACGGATTAGACCGAGTTCAGCGAGAg TTGGTTGGCGTGAGGTGAT

15225_2855 PST-13 a2855g  5-1 GAAGGTGACCAAGTTCATGCTGCTTCCATTGGTCAGGTTGa GAAGGTCGGAGTCAACGGATTGCTTCCATTGGTCAGGTTGg TACGTACTTACCCCGGATCG
6921_3712 PST-14 T3712C  2 and 3 GAAGGTGACCAAGTTCATGCTCAAGCAGCAGAAGTAGTAATCCTa GAAGGTCGGAGTCAACGGATTCAAGCAGCAGAAGTAGTAATCCTg AGGATGACTCGGAAGCTGAT REVERSE
7341_4368 PST-15 a4368t  1 and  5-1 GAAGGTGACCAAGTTCATGCTGTCCAGTTGCAGAGATTGGa GAAGGTCGGAGTCAACGGATTGTCCAGTTGCAGAGATTGGt TGGCTATACAGTGGATCGCT

7364_28843 PST-16 T28843A 1 GAAGGTGACCAAGTTCATGCTCGCTCTTGGGGTAGATGGa GAAGGTCGGAGTCAACGGATTCGCTCTTGGGGTAGATGGt ACACCCCTCCACTCTCCTC REVERSE
753_1139 PST-17 c1139a  1 and  5-1 GAAGGTGACCAAGTTCATGCTTGTTCTCGGGCAGGTTGAc GAAGGTCGGAGTCAACGGATTTGTTCTCGGGCAGGTTGAa AGAGTTTGGTTTGAAGGTGGT

8291_7564 PST-18 A7564G  5-1 GAAGGTGACCAAGTTCATGCTGGAAGGGGTATCTTACAAGTTGATt GAAGGTCGGAGTCAACGGATTGGAAGGGGTATCTTACAAGTTGATc CCCCACTCTCTCCTGAAATTG REVERSE
8552_2672 PST-19 A2672G 3 and 4 GAAGGTGACCAAGTTCATGCTCTCCTTACCCACTCCTACGt GAAGGTCGGAGTCAACGGATTCTCCTTACCCACTCCTACGc CCTCAGTCGTTCCTCCACTT REVERSE
9182_3916 PST-20 g3916a  1 and  5-1 GAAGGTGACCAAGTTCATGCTGCGTCATCATCGGTAGTCTg GAAGGTCGGAGTCAACGGATTGCGTCATCATCGGTAGTCTa TTGAAAGCAGCGTAACCCAG
7291_1846 PST-21 g1846a  1 and  2 GAAGGTGACCAAGTTCATGCTCTCGACATAAGAGCCACCAg GAAGGTCGGAGTCAACGGATTCTCGACATAAGAGCCACCAa TGGTCAATCACAGCTGGTAAC
7670_3524 PST-22 C3437T ALL GAAGGTGACCAAGTTCATGCTTGCTGAATATGATTTTGATGGATCg GAAGGTCGGAGTCAACGGATTTGCTGAATATGATTTTGATGGATCa TCCAACCCAAGATTGCGATC REVERSE
19742_674 PST-23 c674t ALL GAAGGTGACCAAGTTCATGCTTCTCCTGGATATGCGCTTCc GAAGGTCGGAGTCAACGGATTTCTCCTGGATATGCGCTTCt GGGTTTTGGATTGGCTGGAA

6940_13850 PST-24 C13850T ALL GAAGGTGACCAAGTTCATGCTGTCCCTTGGTCCTGAACTTTg GAAGGTCGGAGTCAACGGATTGTCCCTTGGTCCTGAACTTTa TGGTGAGTGGTACTATTCGGT REVERSE
7582_8369 PST-25 g8369a  2 and 4 GAAGGTGACCAAGTTCATGCTAAGGACAAGGCGAGGTTCAg GAAGGTCGGAGTCAACGGATTAAGGACAAGGCGAGGTTCAa ACGTCCACCACCTCGATATC
7341_4770 PST-26 c4770t ALL GAAGGTGACCAAGTTCATGCTGGTCTTGGCTTATCTCGTCc GAAGGTCGGAGTCAACGGATTGGTCTTGGCTTATCTCGTCt TGGCCCTTGGGTGGAAAA
7582_8747 PST-27 t8747c ALL GAAGGTGACCAAGTTCATGCTGGATATCGACCTAGAGCAGATTAt GAAGGTCGGAGTCAACGGATTGGATATCGACCTAGAGCAGATTAc GTCCACCACGATGTCCCC

6940_13871 PST-28 a13871g ALL GAAGGTGACCAAGTTCATGCTTCGGTCAAACAAACGATCTc GAAGGTCGGAGTCAACGGATTTCGGTCAAACAAACGATCTt ACCGTCGTTCCAGCTATCTT REVERSE
7237_13346 PST-29 g13346c ALL GAAGGTGACCAAGTTCATGCTACTTCTACTCTTCGACTGACCg GAAGGTCGGAGTCAACGGATTACTTCTACTCTTCGACTGACCc CGGCAGATTGTGTGGATGAA
7397_14343 PST-30 t14343g ALL GAAGGTGACCAAGTTCATGCTGGGGATCCGAGAAATGTGTTa GAAGGTCGGAGTCAACGGATTGGGGATCCGAGAAATGTGTTc GCTGGTAATTGGTAAGCTTTGT REVERSE
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