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Convectively coupled equatorial Kelvin waves (CCKWs) are high-impact tropical
weather systems that can lead to severe flooding over the Maritime Continent. Here,
a vorticity budget for CCKWs over the Indian Ocean is constructed using reanalysis
data, to identify the basic mechanisms of eastward propagation and growth. The
budget is reasonably well closed, with a small residual/sub-gridscale term. In the lower
troposphere, CCKWs behave like strongly modified theoretical equatorial Kelvin waves.
Vortex stretching, from the divergence of the Kelvin wave acting on planetary vorticity
(the −fD term), is the sole mechanism by which the vorticity structure of a theoretical
Kelvin wave propagates eastward. In the lower and middle troposphere, this term is also
the key mechanism for the eastward propagation of CCKWs but, due to subtleties in its
structure and phasing linked to a combination of modal structures, it also contributes
to growth. Unlike in the theoretical Kelvin wave, other vorticity source terms also play a
role in the propagation and growth of CCKWs. In particular, vortex stretching from
relative vorticity (the −ζD term) is the largest source term, and this leads strongly
to growth, through interactions between the background and perturbation vorticity
and divergence. Horizontal vorticity advection by the background flow contributes to
propagation, and also acts to retard the growth of the CCKW. The sum of the source
terms in this complex vorticity budget leads to eastward propagation and growth of
CCKWs. The structure and vorticity budget of CCKWs in the upper troposphere is
quite unlike that of a Kelvin wave, and appears to arise as a forced response to the
lower tropospheric structure. The implications for numerical weather prediction and
climate simulations are discussed.
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1. Introduction

Convectively coupled equatorial Kelvin waves (CCKWs) are
tropical weather systems that propagate eastward along the
equator (Takayabu 1994; Dunkerton and Crum 1995; Wheeler
and Kiladis 1999) and cause a typical increase in rainfall rate of
10 mm day-1 (Baranowski et al. 2016a). They are one type of
a class of convectively coupled equatorial waves (Kiladis et al.
2009). CCKWs have a strong impact on monsoon precipitation
(Mekonnen et al. 2009), and are a major component of the
envelope of convective systems that make up the active phase of
the Madden–Julian Oscillation (MJO; Guo et al. 2014; Haertel et
al. 2015; Kikuchi et al. 2018). Indeed, an accurate representation
of convectively coupled equatorial waves in a climate model is
positively correlated with that model’s ability to simulate the MJO
accurately (Guo et al. 2015). The passage of CCKWs can strongly
modify the underlying diurnal cycle of convection (Sakaeda et al.
2020), and constructive interference from the triggering of the

diurnal cycle over successive islands in the Maritime Continent
can positively feedback on the development of the CCKWs
themselves (Baranowski et al. 2016b).

CCKWs are responsible for high impact weather (Ferrett et al.
2020; Lubis and Respati 2021), including major flooding incidents
(Baranowski et al. 2020; Latos et al. 2021). They can be identified
and skillfully forecast in real time in atmospheric models (Yang et
al. 2021), but also have a significant, possibly two-way interaction
with the underlying ocean (Baranowski et al. 2016a, 2017).

Dynamically, CCKWs are generally considered as an adap-
tion a modified version of theoretical, linear, dry equatorial
Kelvin waves (Matsuno 1966; Gill 1980), as their variance
maxima lie along the dispersion curves of the theoretical waves
(Wheeler and Kiladis 1999), and they have at least a superficially
similar dynamical structure (Wheeler et al. 2000; Straub and
Kiladis 2002; Yang et al. 2007a), with near-zero meridional wind
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anomalies, and zonal wind anomalies that are a maximum on the
equator.

The dynamics of theoretical, linear, dry equatorial Kelvin
waves are well understood. It is often assumed that the dynamics
of CCKWs are similar, even though key differences in the
phasing of the mass (geopotential height) and dynamical (zonal
wind) fields between observed “dry” equatorial Kelvin waves and
CCKWs have been identified (Roundy 2012).

The purpose of this paper is to establish the dynamical
mechanisms for the eastward propagation and growth of CCKWs.
In particular, the hypothesis is tested that CCKWs have the
same eastward propagation mechanism as theoretical, linear,
dry equatorial Kelvin waves. Additionally, theoretical equatorial
Kelvin waves are neutral. Hence, how does the structure of
CCKWs differ from that of theoretical Kelvin waves to allow them
to dynamically grow? A vorticity budget approach will be used,
following the successful application of this technique to diagnose
the dynamical mechanisms by which transient extratropical waves
excite convection along the South Pacific and South Atlantic
Convergence Zones (van der Wiel et al. 2015). The dynamical
vorticity budget approach presented in this study can be viewed
as one half of a full a partial analysis of CCKW mechanisms.
A complementary analysis based on the thermodynamic and
moisture budgets of CCKWs will be a subject of future study.

Theoretical preliminaries are presented in Section 2, and the
data and methodology used are described in Section 3. Section 4
presents detailed results of the CCKW structure and vorticity
budget for a single level in the lower troposphere (850 hPa).
This analysis is then expanded to further levels in Section 5
to determine the vertical structure of CCKWs. These levels
are representative of the: boundary layer (975 hPa); middle
troposphere (500 hPa); upper troposphere (200 hPa). Section 6
presents a discussion and conclusions.

2. Theoretical preliminaries

2.1. Vorticity budget

The vorticity equation for flow on a quasi-horizontal pressure level
in Cartesian coordinates can be written as

∂ζ

∂t
= −u∂ζ

∂x
− v ∂ζ

∂y
− ω∂ζ

∂p︸ ︷︷ ︸ −ζD − fD︸ ︷︷ ︸
advection of vortex stretching

relative vorticity

−βv︸︷︷︸ −
(
∂ω

∂x

∂v

∂p
− ∂ω

∂y

∂u

∂p

)
︸ ︷︷ ︸ ,

advection of tilting/twisting
planetary vorticity

(1)

where: x and y are the horizontal coordinates (eastward and
northward distance) from an origin on the equator at y = 0; p
is the vertical pressure coordinate; t is time; u, v and ω are
the components of the three-dimensional velocity vectory; ζ
is relative vorticity; D is horizontal divergence; f is planetary
vorticity, and β is the northward gradient of planetary vorticity,
β = df/dy.

The vorticity tendency on the left hand side of Equation 1
is balanced by the sum of several vorticity source terms on the
right, and can be considered as a vorticity budget when applied
to a specific system, such as a theoretical equatorial Kelvin wave,
or an observed CCKW. In this paper, we consider the vorticity
distribution ζ(x, y) of our system at a given time. The spatial
(x, y) structures of the vorticity source terms and their positions
relative to the vorticity distribution can then be used to diagnose
the propagation mechanism(s) of the system.

2.2. Theoretical linear equatorial Kelvin wave

The kinematic part of the theoretical linearised (small amplitude)
equatorial Kelvin wave solution to the shallow water equations
in a resting atmosphere (zero background flow) on an equatorial
β-plane f = βy (Gill 1982) is

u(x, y, t) = u0 e
−βy2/2ce Re[eik(x−cet)] , (2)

v(x, y, t) = 0 , (3)

where: u0 is the amplitude of the zonal wind perturbation on the
equator; ce is a positive constant originating from the separation
constant when the (x, y, t) dependence in the shallow water
equations was separated from the p dependence in the vertical
structure equation; k is the wavenumber in the eastward direction,
and Re[X] denotes the real part of [X]. From hereon, the real part
of any complex exponential is implicitly assumed. It can be seen
that ce corresponds to the (eastward) phase speed of the theoretical
Kelvin wave, and also determines the trapping scale

y0 =

√
2ce
β

(4)

in the Gaussian y structure.
The relative vorticity of the theoretical Kelvin wave is then

ζ =
∂v

∂x
− ∂u

∂y
= −∂u

∂y
= ζ0 ye

−βy2/2ce eik(x−cet) , (5)

where ζ0 = βu0/ce, and the divergence of the theoretical Kelvin
wave is

D =
∂u

∂x
+
∂v

∂y
=
∂u

∂x
=
kceζ0
β

e−βy
2/2ce ei[k(x−cet)+

τ
4 ] , (6)

where τ = 2π radians corresponds to one “turn” or one full cycle
(Abbott 2012). Hence τ

4 (= π
2 ) in Equation 6 represents a quarter

of a cycle, which is made clearer using the τ notation. For this
small amplitude flow on a resting atmosphere, all terms in the
vorticity equation (Equation 1) that are nonlinear (quadratic) in
perturbation quantities are negligible: advection terms; vortex
stretching from the Kelvin wave divergence acting on its own
relative vorticity (−ζD); tilting/twisting terms. Advection of
planetary vorticity (−βv) is linear, but as v = 0 for the Kelvin
wave, this term is also zero. Hence, the vorticity budget reduces
to just a single source term: vortex stretching from the Kelvin
wave divergence acting on planetary vorticity (−fD). This
is confirmed by examination of the vorticity and divergence
solutions (Equations 5 and 6):

∂ζ

∂t
= −fD = kceζ0 ye

−βy2/2ce ei[k(x−cet)−
τ
4 ] . (7)

The basic Gaussian structure of the zonal wind anomalies
of Equation 2 are readily apparent (black contours and wind
vectors in Figure 1), with a maximum on the equator that
decays polewards into both hemispheres with trapping scale y0.
For the parameters used here (β = 2.29× 10−11 m-1 s-1, ce =
5.5 m s-1), the trapping scale is y0 = 690 km. Note that although
the theoretical Kelvin wave has been calculated in Cartesian
coordinates, it is then transformed and replotted here in spherical
Earth coordinates to allow for comparison later with diagnostics
of observed CCKWs. The transformation is through a Mercator
projection which introduces little distortion in the tropics. Only
the region over the “Indian Ocean” is plotted here, which covers
approximately 1.5 wavelengths for this sample wave. There is a
maximum in the zonal wind at approximately 67◦E.
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The vorticity structure is also readily apparent, as a dipole
(from the y exp[−(y/y0)2] part of Equation 5) of cyclonic shear
alongside the zonal wind anomaly at 67◦E: positive in the
Northern Hemisphere and negative in the Southern Hemisphere
(colour shading in Figure 1). To the west and east of these
structures (at approximately 42◦E and 92◦E, respectively), there
are negative zonal wind anomalies and dipoles of anticyclonic
shear, in the opposite phases of the wave; the chosen value
of the zonal wavenumber parameter is k = 1.08× 10−6 m-1,
corresponding to a wavelength of 5820 km.

Finally, the divergence structure of Equation 6 can be seen in
the colour line contours in Figure 1. This has the same basic
Gaussian structure in y as the zonal wind field. At 80◦E, there is
a region of negative divergence corresponding to the convergence
between the westerly winds to the west and the easterly winds to
the east. Similarly, there is a region of positive divergence a half
wavelength to the west, at 55◦E. Note that the divergence structure
is a quarter cycle out of phase with the zonal wind and vorticity
structures.

The dynamical mechanism of the eastward propagation of the
theoretical Kelvin wave can now be seen. Focusing first on the
positive vorticity anomaly in the Northern Hemisphere centred
at 5◦N, 67◦E, there is a negative divergence anomaly a quarter
wavelength to the east, at 80◦E (Figure 1). As f is positive in
the Northern Hemisphere, the vortex stretching term −fD is
also positive. Hence we have a positive vorticity tendency to
the east of a positive vorticity anomaly, and therefore the local
vorticity structure propagates eastward. This is shown explicitly
in Figure 2. The negative vorticity anomaly in the Southern
Hemisphere at 5◦S, 67◦E still has a negative divergence anomaly
a quarter wavelength to the east, at 80◦E. However, f is now
negative, and the vortex stretching term −fD is now negative.
Hence, here we have a negative vorticity tendency to the east of a
negative vorticity anomaly, and again the local vorticity structure
propagates eastward. This relationship is repeated throughout the
whole theoretical Kelvin wave structure, and hence the wave
propagates eastward.

We note in passing that a similar argument can be applied to
the thermodynamical part of the Kelvin wave. The dynamical
and thermodynamical structures are related through thermal
wind balance (geostrophic plus hydrostatic balance). Geopotential
height anomalies are in phase with zonal wind anomalies through
geostrophic balance. Assuming a simple two-layer (first baroclinic
mode) vertical structure for convenience, then through hydrostatic
balance the mid-level temperature anomalies are out of phase with
the lower-level geopotential and zonal wind anomalies, and in
phase with the upper-level geopotential and zonal wind anomalies.
Hence, there is a mid-tropospheric cold anomaly above the low-
level westerly zonal wind anomalies (at approximately 67◦E in
Figure 1). The low-level convergence a quarter cycle to the east
(80◦E in Figure 1) leads to upward vertical velocity above it
through mass conservation. The adiabatic cooling due to this
ascent (i.e., a negative temperature tendency) is then a quarter
wavelength to the east of the negative temperature anomaly in the
Kelvin wave, again leading to eastward propagation of the entire
wave. We also note that diabatic heating from convection and
radiation in observed CCKWs will likely go a long way toward
explaining some of the discrepancies from the adiabatic theory
presented here. However, in this paper we concentrate only on the
dynamical (vorticity) structure of the wave.

In summary, the vorticity budget for a theoretical linear
equatorial Kelvin wave in a resting atmosphere is straight forward,
with vortex stretching due to convergence/divergence of the zonal
wind anomalies providing a vorticity source term that is phase
shifted by a quarter cycle compared with the vorticity anomaly,
leading to eastward propagation. This quadrature relationship also

ensures that the wave is “neutral”; it neither grows nor decays with
time. However, there is no such guarantee or even expectation that
such a simple relation will exist for an observed CCKW. In the
next section we devise a methodology to diagnose how multiple
vorticity source terms can affect the propagation and growth of
observed CCKWs.

2.3. Vorticity budget of observed equatorial Kelvin wave

We allow for a growing/decaying and propagating wave by
introducing a complex phase speed c = cr + ici, by setting

ζ = ζ0 g(y) e
ik(x−ct) = ζ0 g(y) e

kcit eik(x−crt) , (8)

where
g(y) = ye−βy

2/2ce . (9)

Such a structure grows exponentially with growth rate kci, and
propagates eastward with propagation speed c = cr . We note that

∂ζ

∂t
= (ci − icr)kζ . (10)

We then have a total source S for the vorticity tendency that has
the same x-wavenumber and y structure as ζ, but phase shifted by
an angle θ (towards positive x, i.e., to the east) such that

∂ζ

∂t
= S = re−iθkceζ , (11)

where here, ce is calculated from a best-fit Gaussian structure to
g(y) in Equation 9. Then, equating the real and imaginary parts of
Equations 10 and 11, we find

ci = cer cos θ; cr = cer sin θ . (12)

The part of the source that is in phase with the ζ structure
contributes to the growth, and the part that is in quadrature
contributes to the phase propagation.

For the theoretical linear Kelvin wave in Section 2.2, the source
term is simply vortex stretching from planetary vorticity

S = −fD , (13)

and using Equation 7 we find

r = 1; θ =
τ

4
, (14)

and
cr = ce; ci = 0 . (15)

Hence the vorticity source is perfectly in quadrature with the
vorticity perturbation, consistent with a neutral wave propagating
at theoretical phase speed ce.

For our observed CCKW, we can diagnose its theoretical
phase speed ce from the y-structure of its u-wind perturbation
(Equation 9). However, the total source will likely not have a
perfect quadrature phase shift to the east (θ = τ/4), and the wave
will likely actually have a modified phase speed and a non-zero
growth rate, dependent on the values of r and θ from Equation 11,
and the subsequent ci and cr values from Equation 12.

Furthermore, the total source term will contain contributions
from all of the terms on the right hand side of the vorticity budget
(Equation 1), as

S =

n∑
j=1

Sj , (16)

where each individual source term can also be written as a
complex exponential

Sj = rje
−iθj cekζ . (17)
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We note that r 6=
∑
rj , and θ 6=

∑
θj . For the observed CCKW,

we calculate the values of rj and θj for each source term
Sj (from composite maps of the relevant structures). Adapting
Equation 12, we can then calculate an effective growth rate kcij
and propagation speed crj for the wave induced by each individual
source term. The dependence on growth and propagation on the
value of the phase difference θ between the vorticity anomaly and
a vorticity source term is summarised in Table 1.

An alternative approach to diagnosing growth or decay is to use
enstrophy, E, defined here as the mean of the vorticity anomaly
squared over a spatial domain R,

E =
1

R

∫∫
R

ζ′2 dx dy . (18)

If the vorticity equation (Equation 1) is multiplied by the vorticity
anomaly, then using

∂

∂t

(
ζ′2
)
= 2ζ′

∂ζ

∂t
, (19)

an enstrophy equation can be formed,

∂E

∂t
=

2

R

∫∫
R

ζ′S dx dy =
2

R

n∑
j=1

∫∫
R

ζ′Sj dx dy . (20)

If the system can be described by a simple sinusoidal wave as in
Section 2.2, the sign of the enstrophy tendency is determined by
the phase difference between the vorticity anomaly and its source
term(s). If they are in perfect quadrature, as in the theoretical
equatorial Kelvin wave, then the covariance between the vorticity
anomaly and the source term is zero, and enstrophy tendency is
zero, consistent with a neutral, propagating wave. However, if the
vorticity anomaly and the source term have a phase difference
less than a quarter cycle (positive covariance), then the enstrophy
tendency is positive and growth of the wave occurs. The end
member of this set is when there is zero phase difference and
maximum covariance of the vorticity anomaly and the source
term; this leads to maximum growth but zero propagation speed.
If the vorticity anomaly and the source term have a phase
difference greater than a quarter cycle (negative covariance), then
the enstrophy tendency is negative and the wave decays. These
enstrophy calculations and interpretations are also valid if the
system cannot be described by a simple sinusoidal wave.

Finally, we note that the enstrophy tendency is essentially the
spatial covariance between the vorticity anomaly and a vorticity
source term. We can normalise this by dividing by the (spatial)
standard deviations of the vorticity anomaly field σζ and the
source term field σS , to produce a spatial correlation coefficient
rj , where

rj =
1

σζσSj

∫∫
A

ζ′Sj dx dy . (21)

To clarify, the area integrals in Equations 18, 20 and 21
are calculated from the actual composite maps described in
Section 3.2, rather than from any idealised fitted functions.

3. Data and methodology

3.1. Data

The existence and location of observed CCKWs were determined
using precipitation data from the Tropical Rainfall Measuring
Mission (TRMM) 3B42 product (Huffman et al. 2007). The data
used were on a 0.25◦ × 0.25◦ grid over the tropics, over the 21-
year period from 1 January 1998 to 31 December 2018, with a
3-hour time resolution.

The vorticity budget was determined from the zonal, meridional
and vertical wind components, and divergence and vorticity at
selected pressure levels from the European Centre for Medium
Range Weather Forecasts (ECMWF) ERA-interim reanalysis
product (Dee et al. 2011). The data used were on a global reduced
Gaussian grid, with 512 equally spaced (approximately 0.70◦)
longitudes, and 256 Gaussian spaced (again, approximately 0.70◦)
latitudes. The data were extracted for the same period as the
TRMM data, and have a 6-hour time resolution.

3.2. CCKW analysis

CCKWs are generally diagnosed based on one of two
complementary methods, both of which rely on the similarity
between CCKWs and theoretical equatorial Kelvin waves. The
first method (Wheeler and Kiladis 1999) picks out CCKWs
based on their equatorially averaged convective (cloudiness or
precipitation) structure. It is based on a two-dimensional filter
in zonal wavenumber–frequency space, designed to extract only
those signals that have equivalent depths (with associated phase
speeds) in the range over which significant Kelvin wave variance
is observed. Other related approaches have also diagnosed
CCKWs through the wavenumber–frequency characteristics of
their convective signals (Zagar et al. 2005; Roundy and Schreck
2009).

The second method (Yang et al. 2003) also uses wavenumber–
frequency filtering, but diagnoses CCKW waves by projecting
the latitudinal structure of a theoretical equatorial Kelvin wave
onto dynamical fields, such as the zonal wind. Again, other
studies have used variants of this approach (Gehne and Kleeman
2012; Kikuchi 2014). Finally, a related method has been recently
developed to extract Kelvin waves in the upper troposphere and
stratosphere based on projections onto a three-dimensional normal
mode expansion of the linearised primitive equations (Blaauw and
Zagar 2018).

The purpose of this study is to examine the dynamical
propagation and growth mechanisms of CCKWs. Hence, CCKWs
are diagnosed here based on their convective structure (following
the framework of Wheeler and Kiladis 1999), rather than based
on their dynamical structure (following the framework of Yang et
al. 2003), so as not to predetermine the dynamical structure of the
CCKWs that will then be further analysed.

The method of Baranowski et al. (2016a) was used to isolate
the individual CCKW events and their trajectories. This method
builds on the methodology of Wheeler and Kiladis (1999).
Full details can be found in Baranowski et al. (2016a), and
are summarised here. First, the TRMM precipitation data were
averaged over the equatorial belt (2.625◦S–2.625◦N) to create a
two-dimensional longitude–time data set (essentially a Hovmöller
diagram).

Using a two-dimensional Fast Fourier Transform (FFT), this
data set was then filtered in the wavenumber–frequency domain
for equatorial Kelvin waves, following the methodology of
Wheeler and Kiladis (1999). This filtering only passed eastward-
propagating waves with phase speeds in the range 5–30 m s-1

(corresponding to equivalent depths H in the range 2.55–91.7 m,
where c2 = gH). Individual CCKWs typically have phase speeds
in the range 10–17 m s-1 (Yang et al. 2007b), but due to
their sporadic nature, CCKW variance spills out into the wider
wavenumber–frequency range. Additionally, absolute caps were
placed in wavenumber and frequency space, such that only zonal
planetary wavenumbers 1–14 and only frequencies corresponding
to the 2.5–30 day period were passed. This excluded signals
from other systems, such as the lower frequency MJO and higher
frequency inertio–gravity waves, from contaminating the analysis.

Local temporal maxima (above a pre-determined threshold of
0.15 mm hr-1) in the CCKW-filtered Hovmöller precipitation
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data set were then used to identify the trajectories of individual
CCKW events. Finally, the trajectories were pruned at their
western (genesis) and eastern (termination) ends, to counter the
effect of the wavenumber–frequency filtering that tends to over
extend the trajectories, when compared with the raw, unfiltered
precipitation data. Each final trajectory consists of a sequence of
paired longitude and time values. The first pair corresponds to the
western (genesis) end, and the last pair corresponds to the eastern
(termination) end.

Lagged composites were then constructed. First, a crossing
longitude was specified, and the date and time of all CCKW
trajectories that passed this crossing longitude was noted. For
this study, we used a crossing longitude of 75◦E in the central
Indian Ocean, which led to 122 selected CCKW events, with
an associated crossing time for each event. The central Indian
Ocean was chosen as this sector has the highest number of CCKW
events (Baranowski et al. 2016a), and as a large ocean basin it is
remote from any confounding effects of land-sea contrasts and
topography that might be found over, for example, the Maritime
Continent. Lagged composites of any variable of interest were
then calculated, as the lagged mean over all the 122 crossing
times.

To illustrate this, the lagged composites of TRMM precipitation
anomalies are shown in Figure 3. By design, there is a region of
positive precipitation anomalies at zero lag, around the crossing
longitude at 75◦E (Figure 3b). This anomaly propagates eastward
with time at a phase speed of approximately 9 m s-1, being centred
at 71◦E at lag −1 day (Figure 3b), and at 89◦E at lag 1 day
(Figure 3c). Here, the TRMM data used in the compositing have
not been wavenumber–frequency filtered for CCKWs. Only the
seasonal cycle (time mean plus first six annual harmonics) has
been subtracted before compositing. Hence, the clean, coherent
signals in Figure 3 with maximum anomalies of 25 mm day-1,
support the robustness of the CCKW event extraction technique.
However, the lagged composites of the dynamical fields from the
ERA-Interim data shown later (e.g., zonal wind, vorticity, etc.)
were constructed from wavenumber–frequency filtered data, to
increase the signal-to-noise ratio.

3.3. Vorticity budget analysis

To calculate the CCKW vorticity budget, 6-hourly global fields of
all the individual terms in Equation 1 (e.g., −u∂ζ/∂x) were first
constructed from ERA-Interim velocity, divergence and vorticity
fields. The horizontal derivatives were calculated in spectral space
using the Windspharm library of Dawson (2016). The vertical
(pressure) derivatives were calculated using a weighted mean of
forward and backward differences, to take account of any non-
equal spacing between pressure levels (Veldman and Rinzema
1992). The time derivatives (for the vorticity tendency ∂ζ/∂t

term) were calculated by centred differences. Finally, the 6-hourly
global fields of the vorticity budget terms were then wavenumber-
frequency filtered as described in Section 3.2, before being lag
composited in the usual manner.

4. Observed lower tropospheric CCKW structure

The vorticity equation (Equation 1) is valid on a single (pressure)
level. Although this study is primarily concerned with the
dynamical structure of CCKWs (the “KW” part of CCKWs), the
coupling with convection (the “CC” part) is clearly also of great
importance. As atmospheric moisture is concentrated in the lower
troposphere, this section presents a detailed analysis of CCKW
structure and vorticity budget for the 850 hPa level, a standard
representative level of the free lower troposphere. The vertical
structure is presented in Section 5.

4.1. Basic dynamical structure

Before analysing the vorticity budget, the basic dynamical
structure of a CCKW is first discussed. Lagged composite maps
of the CCKW at 850 hPa (Figure 4) show a close resemblance
to the theoretical Kelvin wave structure (Figure 1). The 850 hPa
level was chosen as a representative lower tropospheric level,
above any confounding effects of the boundary layer. At zero
lag (Figure 4b), there is a region of positive (westerly) zonal
wind anomalies centred on the equator at approximately 70◦E,
that exhibits an approximately Gaussian structure with latitude.
A (weaker) region of easterly anomalies is situated to the east,
with a region of anomalous convergence between them at 80◦E.
The meridional wind anomalies are very weak compared to the
zonal wind anomalies, as evidenced by the east–west orientation
of the wind vector anomalies. Associated with the shear of the
zonal wind anomalies are vorticity anomalies either side of the
equator.

The zonal wind field from the zero-lag composite at 850 hPa in
Figure 4b was subjected to a least-squares fit to the function

u(x, y) = u0 e
−(y/y0)2 cos(kx− φ), (22)

over the domain 60–80◦E, 8◦S–8◦N. The best-fit values of the
parameters gave an amplitude of u0 = 1.75 m s-1, a Gaussian
trapping scale of y0 = 690 km (corresponding to a theoretical
Kelvin wave phase speed of ce = 5.5 m s-1), and a wavenumber
of k = 1.08× 10−6 m-1. Note that the arbitrary values of the
parameters of the theoretical Kelvin wave plotted in Figure 1 (u0,
ce, k, and an arbitrary phase shift φ of the whole structure with
longitude) were chosen to match those of the CCKW at 850 hPa
in Figure 4b.

The main difference between the observed CCKW structure at
850 hPa and the theoretical Kelvin wave is the spatial localisation
of the CCKW in the Indian Ocean to within approximately one
full wavelength, from the divergence anomaly at 60◦E to the
divergence anomaly at 100◦E. This compares with the endlessly
repeated pure wave structure of the theoretical wave. However,
over the Indian Ocean domain, the CCKW bears a remarkable
resemblance to its theoretical counterpart, especially in the fitting
of the Gaussian trapping scale y0.

The eastward propagation of the CCKW is readily apparent.
The convergence centre is at 72◦E at lag −1 day (Figure 4a), and
88◦E at lag 1 day (Figure 4c), implying a phase speed of 10 m s-1.
Note that this actual propagation speed of the CCKW is much
higher (by a factor of two) than the theoretical Kelvin wave speed
ce = 5.5 m s-1 deduced from the Gaussian trapping scale of the
CCKW at this level.

4.2. Vorticity budget: tendency, total source, and
residual/sub-gridscale term

A preliminary analysis of the vorticity budget is presented for
the 850-hPa lower tropospheric layer (Fig 5). As expected, the
vorticity tendency ∂ζ/∂t field (colour shading in Fig 5a) is
approximately a quarter cycle out of phase with the vorticity
anomaly (line contours in Fig 5a). The phasing is such that, in
the Northern Hemisphere, the maximum in vorticity tendency
(at approximately 85◦E) is to the east of the maximum in
the vorticity anomaly (at approximately 73◦E), consistent with
eastward propagation. Similarly, in the Southern Hemisphere, the
minimum in vorticity tendency is to the east of the minimum in the
vorticity anomaly, again consistent with eastward propagation.

The total vorticity source (the sum of all the terms on the
right hand side of Equation 1) in Figure 5b matches the vorticity
tendency of Figure 5a closely. The difference (vorticity tendency
minus total vorticity source; Figure 5c) is small compared to
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both the vorticity tendency and the total vorticity source. Note
that this term includes any errors in balancing the vorticity
budget and contributions from sub-gridscale processes in the
model component of the reanalysis product; it will be referred
to as the residual/sub-gridscale term (ε). Hence, to a reasonable
approximation, the vorticity budget is closed, and a more detailed
analysis may be carried out.

4.3. Vorticity budget: individual source terms

The individual vorticity source terms from Equation 1 are
presented in Figure 6. Each panel shows a different source term
(colour shading) along with the vorticity anomaly (line contours)
repeated for reference. Recalling that the only non-zero vorticity
source term for a theoretical Kelvin wave is the −fD vortex
stretching term (Figure 2), the −fD term is first examined
here, for the CCKW (Figure 6e). Qualitatively, the −fD vortex
stretching field does lie to the east of the vorticity anomaly, leading
to an eastward propagation tendency. Hence, the basic eastward
propagation mechanism of the theoretical equatorial Kelvin wave
does have a role to play in the eastward propagation of the CCKW.

However, the −fD vortex stretching field is clearly not in
perfect quadrature with the vorticity anomaly. It is situated less
than a quarter cycle to the east and is therefore partially in phase.
Quantitatively, the spatial correlation coefficient from Equation 21
calculated over a 20◦ longitude by 10◦ latitude box (55–95◦E,
10◦S–10◦N) centred on the base point at 75◦E, 0◦N, is r = 0.47,
and the best fit cosine waves to the vorticity anomaly field, and the
−fD vorticity source field, have a phase difference of θ = 0.17τ .
To calculate this phase difference, first a cosine wave of the form

< ζ >= Aζ cos(kx− θζ) (23)

is fitted to the vorticity over the longitude range 55–95◦E, where
the <> operator denotes the latitudinal mean from the equator to
10◦N, minus the latitudal mean from 10◦S to the equator (taking
advantage of the antisymmetric nature of the anomalies about the
equator in Figure 6). Then a second cosine wave, of the form

< Sj >= ASj cos(kx− θSj ) (24)

is fitted to the relevant source term, where the wavenumber k is
the same as that in Equation 23. The phase difference is then

θ = θSj − θζ . (25)

A quarter cycle (perfect quadrature) corresponds to a phase shift
of 0.25τ , hence the phase difference here lies in the range 0 < θ <

0.25τ . As discussed in Section 2.3, this will slow the propagation
speed, and lead to growth. Consistently, the enstrophy tendency
from the −fD term is positive; ∂E/∂t = 7.7× 10−18 s-3.

It is also clear that the other vorticity source terms in Figure 6
are not zero. Hence, the vorticity budget, and propagation
mechanism, of an actual CCKW is significantly more complex
than the simple mechanism of the theoretical equatorial Kelvin
wave.

The other vortex stretching term −ζD (Figure 6d), due to the
interaction of relative vorticity with divergence, is actually the
largest term with a root mean square amplitude over the 55–95◦E,
10◦S–10◦N domain of 12.4× 10−12 s-2, compared with 7.6×
10−12 s-2 for the −fD vortex stretching term. However, the −ζD
vortex stretching term is almost exactly in phase with the vorticity
field (θ = 0.03τ , r = 0.80). Hence this term barely contributes
to the eastward propagation of the wave, but it does lead to
large growth (∂E/∂t = 21.7× 10−18 s-3). These diagnostics of
the CCKW vorticity budget for each term are collected together
as the blue bars in Figure 7.

The −βv planetary vorticity advection source term (Figure 6f)
also contributes to eastward propagation and growth (θ = 0.09τ )
and ∂E/∂t = 3.9× 10−18 s-3, but with a smaller amplitude than
the two vortex stretching terms (Figure 7). This arises physically
as the meridional wind anomaly is (weakly) equatorward to the
east of the cyclonic vorticity anomalies (Figure 4b). This advects
high magnitude planetary vorticity (of the same sign as the relative
vorticity anomalies) toward the equator, leading to an eastward
propagation of the vorticity structure. As the phase difference of
the −βv source is less than 0.25τ then this source term is also
partially in phase with the vorticity anomaly, and consequently
also leads to growth. These three terms (both vortex stretching
terms, and advecton of planetary vorticity) are the only ones that
contribute to both eastward propagation and growth of the CCKW.

The zonal advection (Figure 6a) and meridional advection
terms (Figure 6b) are generally out of phase with the vorticity
anomaly (θ = 0.37τ and −0.44τ , respectively; Figure 7) and have
high amplitudes (RMS = 10.6× 10−12 and 11.5× 10−12 s-2,
respectively). Hence, they contribute strongly to destroying the
wave through negative enstrophy tendencies (∂E/∂t = −10.5×
10−18 and −13.3× 10−18 s-3). In terms of phase propagation,
they approximately cancel each other; the zonal advection source
lies to the east of the vorticity anomaly and gives an eastward
propagation tendency, while the meridional advection source lies
to the west of the vorticity and gives a westward propagation
tendency. However, for the meridional advection term, the overall
behaviour masks a more complex regional structure (Figure 6b).
The Northern Hemisphere part of the meridional advection term
is roughly in quadrature with the vorticity anomaly, leading to the
westward propagation tendency, while the Southern Hemisphere
part is stronger and almost exactly out of phase with the vorticity
anomaly, leading to the decay tendency.

The vertical advection term (Figure 6c) is also significant
(RMS = 6.5× 10−12 s-2), and is perfectly in phase with the
vorticity anomaly (θ = 0.00τ ), hence it contributes efficiently to
the growth of the CCKW (∂E/∂t = 11.5× 10−18 s-3), but has no
effect on propagation.

Finally, we turn to the two source terms that tilt or twist
horizontal vorticity into the vertical through horizontal gradients
of vertical velocity. These are usually negligible for large-scale
flows in the mid-latitudes, but need to be considered here. The
−∂ω∂x

∂v
∂p term (Figure 6g) is very weak (RMS = 1.8× 10−12 s-2)

and does not contribute significantly to either propagation or
growth. However, the ∂ω

∂y
∂u
∂p term (Figure 6h) has large amplitude

(RMS = 6.9× 10−12 s-2). It is almost out of phase with the
vorticity anomaly (θ = 0.47τ ) and consequently has a large
negative growth contribution (∂E/∂t = −10.3× 10−18 s-3).

Hence, even though the dynamical structure of the CCKW at
850 hPa qualitatively resembles a theoretical equatorial Kelvin
wave, the vorticity budget is anything but that of a theoretical
Kelvin wave. There is a complex interplay between the different
terms, which must arise from the detailed structure of the CCKW,
and interactions between the CCKW and the basic flow on
which it is developing and propagating. The net effect of all the
individual source terms are combined into the total source term
(Figure 5b). This has a larger amplitude than any of the individual
terms (RMS = 14.7× 10−12 s-2; purple bar in Figure 7a), and
the total source term lies to the east of the vorticity anomaly
(θ = 0.20τ ). Hence the source terms collectively act to lead to
eastward propagation of the CCKW, and to amplify it.

For completeness, the vorticity tendency ∂ζ/∂t and
residual/sub-gridscale ε terms are also included in Figure 7,
as the black and yellow bars, respectively. The RMS amplitude of
the residual/sub-gridscale term is less than half the magnitude of
the total source term, and smaller than the four leading individual
source terms.
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4.4. Propagation and growth mechanisms of CCKWs

The propagation and growth characteristics from each vorticity
source term are summarised graphically in a “propagation–
growth” polar diagram (Figure 8). The RMS amplitude is plotted
as the polar coordinate, normalised by the RMS amplitude of the
vorticity tendency term ∂ζ/∂t. The phase difference θ between a
source term and the vorticity anomaly is plotted as the azimuthal
coordinate. The diagram can be divided into four quadrants; the
position of a source term within these quadrants indicates its
contribution to propagation and growth. The two blue quadrants
represent propagation, with westward propagation on the left
and eastward propagation on the right. The two red quadrants
represent growth/decay, with growth at the top and decay at the
bottom.

For reference, the vorticity source for the theoretical equatorial
Kelvin wave (which is a neutral, eastward propagating wave) is
shown by the grey square labelled “EKW”. This has a normalised
amplitude of 1, and a value of θ = τ/4, located in the blue
quadrant on the right, for eastward propagation. The vorticity
tendency term ∂ζ/∂t for the CCKW is almost coincident with
the position of the EKW theoretical wave, with a normalised
amplitude of 1 (by design), and a value of θ very close to τ/4

(note this is not guaranteed, as will be seen later with the analysis
on different pressure levels).

The marker for the total source S is close to the vorticity
tendency term on the polar plot, implying that the effect of
the residual/sub-gridscale term (the gold ε marker) is small.
Note that points on the polar plot are additive using a vector
(or complex number) representation. For example, the sum of
the vector representing the total source term (from the origin
to the S marker) and the vector representing the residual/sub-
gridscale ε term should equal the vector representing the vorticity
tendency ∂ζ/∂t. Visual inspection of Figure 8 confirms this. Any
discrepancy is due to errors in fitting the relevant source term maps
to the idealised sinusoidal curves in Equations 23 and 24.

In this section, a more detailed analysis of the larger amplitude
vorticity source terms in Figure 8 is presented. Arguments are
presented for the contributions to propagation and growth/decay
for each term.

4.4.1. Vortex stretching of planetary vorticity −fD

Although, the planetary vortex stretching−fD term does lie in the
blue, eastward-propagating quadrant in the propagation–growth
polar diagram (Figure 8), it does not lie on the θ = τ/4 horizontal
axis alongside its equivalent from the theoretical Kelvin wave (the
“EKW” square). As noted in Section 4.3, the phase difference
between the−fD vorticity source term, and the vorticity anomaly
of the CCKW, is θ = 0.17τ . How does this arise? Conveniently,
the −fD term (along with the −βv term) is one of the simplest
terms to interpret, as it is linear (in perturbation quantities); it is
simply the CCKW divergence anomaly in Figure 4b, multiplied
by f which varies with latitude. So to explain the phase difference
of only 0.17τ , we need to explain the phase difference between
the vorticity and divergence anomalies in the CCKW.

In a theoretical Kelvin wave, the divergence field is quarter of
a cycle out of phase with (to the east of; θ = τ/4) the vorticity
field (Equations 5, 6; Figure 1). This is because the wind is
solely composed of the zonal component, which has a separable
structure in x and y (Equation 2). The vorticity here is solely
due to the shear of the zonal wind (ζ = −∂u/∂y, as the v

component is identically zero) and is in phase with the zonal
wind. The divergence of the theoretical Kelvin wave is due solely
to the divergence of the zonal wind (D = ∂u/∂x, again, as v is
identically zero) and is in quadrature with the zonal wind, and
therefore the vorticity field.

In the CCKW, the meridional wind anomaly, although small,
is not identically zero (Figure 4b). Could a non-zero meridional
wind explain the partially in-phase relationship between vorticity
and divergence in the CCKW? Close examination of the CCKW
wind vector and vorticity anomalies in Figure 4b suggests
that the dominant contribution to the vorticity is also from
its −∂u/∂y component, with the ∂v/∂x component having a
negligible amplitude, i.e., similar to the theoretical Kelvin wave. A
quantitative decomposition of the vorticity field confirms this (not
shown). Similarly, the main contribution to the CCKW divergence
is from ∂u/∂x, with ∂v/∂y having a minor effect, again consistent
with a (modified) theoretical Kelvin wave. Hence, the meridional
wind component does not provide the answer.

Instead, the reason lies with a fundamental change in the spatial
structure of the zonal wind anomaly. We note that although the
zonal wind and divergence anomalies appear to be still very close
to a quarter cycle apart (Figure 4b), the vorticity anomaly is not in
phase with the zonal wind anomaly. This arises from a departure
of the CCKW zonal wind field from the simple and perfectly
separable sinusoidal x and Gaussian y structures of the theoretical
Kelvin wave (the cos kx and e−βy

2/2ce parts of Equation 2,
respectively).

First, we note that cyclonic vorticity anomalies in the Northern
and Southern Hemispheres do still flank the maximum in the
equatorial westerly zonal wind anomalies of the CCKW at 70◦E
(Figure 4b). Hence, part of the vorticity anomaly is in phase with
the zonal wind anomaly, just as in a theoretical Kelvin wave.

However, to the east, the zonal wind field of the CCKW
structure has a characteristic arrowhead shape (with the arrowhead
pointing eastward). For example, the first negative (dashed)
contour at −0.5 m s-1 in Figure 4b crosses the equator at 84◦E,
but then curves westward and poleward into both hemispheres,
such that the weak westerly anomalies on the equator at 82◦E
are flanked by easterly anomalies off the equator. This leads to
additional cyclonic vorticity anomalies that are in phase with the
anomalous convergence at these longitudes. Overall, the vorticity
anomaly is shifted eastward from the zonal wind anomaly, leading
to a phase difference of less than a quarter cycle between vorticity
and divergence (and therefore the −fD source term).

The arrowhead structure is linked to there being different
trapping scales for the westerly and easterly zonal wind anomalies
in the CCKW. The Gaussian trapping scale in the westerly
anomalies at 70◦E is y0 = 690 km, corresponding to a phase
speed of 5.5 m s-1, as discussed in Section 4.1. However, the
trapping scale in the easterly anomalies at 90◦E is larger (y0 =

1160 km, corresponding to a phase speed of 15.4 m s-1). These
two structures appear to be superimposed at the longitude where
the westerlies change to easterlies (approximately 82◦E). At
the equator, they cancel to give approximately zero wind there.
However, as the easterlies, with their larger trapping scale, decay
more slowly away from the equator, there are easterly anomalies
flanking the near-zero wind at the equator, leading to the off-
equatorial cyclonic vorticity anomalies.

Hence, the −fD vortex stretching term contributes to both
propagation and growth. The observed propagation speed of the
CCKW is approximately 10 m s-1, which is the average of the
two modal propagation speeds diagnosed from the westerly and
easterly anomalies (5 and 15 m s-1). The reason for these two
spatial structures is not clear, and the issue is discussed in the
conclusions (Section 6).

4.4.2. Vortex stretching of relative vorticity −ζD

An analysis of the second vortex stretching term, that due to
the relative vorticity, now follows. The −ζD term lies clearly
in the growth quadrant of the propagation–growth polar diagram
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(Figure 8). This source term is non-linear, as it is the product
of two spatio-temporally varying quantities. Hence, there may
be a role for interactions between the dynamical fields of the
CCKW and the “basic state” or background flow, that the CCKW
propagates and develops on. Any quantity, e.g., relative vorticity,
can be decomposed into contributions from the basic state and the
perturbation:

ζ = ζ + ζ′ , (26)

where the overbar denotes the basic state, and the prime denotes
the perturbation. Here, the perturbation is defined as the CCKW-
filtered anomaly, and the basic state is the remainder (total minus
perturbation field). Hence the non-linear vorticity source term here
can be decomposed into interactions between the basic state and
the perturbation:

− ζD = −ζ D − ζD′ − ζ′D − ζ′D′ . (27)

Each of the four terms in Equation 27 can then be wavenumber–
frequency filtered and lag-composited to extract the CCKW
signal, as previously. The CCKW composite of the first term
(−ζ D) is essentially zero, by design. The remaining three terms
can then be compared with the full −ζD term, shown previously
in Figure 6d.

The major contribution is from −ζD′ (Figure 9a), which is the
effect of the divergence perturbation from the CCKW spinning
up the basic state vorticity. For the basic state vorticity, rather
than using a mean background vorticity calculated over the entire
1998–2018 study period, a mean background vorticity specific
to these CCKWs is calculated, by compositing the background
vorticity (ζ) over the 122 days at which the CCKWs crossed
the basepoint longitude of 75◦E. This background flow is then
spatially smoothed by spectral truncation at total wavenumber
42 (Figure 10). In anticipation of the analysis of further source
terms, the background 850-hPa vector wind and divergence fields
were also calculated in Figure 10. The CCKW events had a slight
seasonal bias, with 60% being in the northern summer (May–
October) season, and 40% in the northern winter (November–
April) season.

The mean background flow in Figure 10 is consistent with this,
showing the flow associated with the Asian summer monsoon,
with northeastward flow in the Southern Hemisphere, northward
flow across the equator over the western Indian Ocean, and then a
southeastward flow in the Northern Hemisphere over the Arabian
Sea to around 80◦E, which then curves to the northeast over
the Bay of Bengal. Associated with this background flow, the
background vorticity is cyclonic in the Southern Hemisphere
(negative anomalies from 0–10◦S in Figure 10) with a peak near
80◦E, and also cyclonic in the Northern Hemisphere around Sri
Lanka (positive anomalies).

The −ζD′ vorticity source term in Figure 9a is then consistent
with the D′ divergence anomaly from the CCKW in Figure 4b
spinning up the background vorticity in Figure 10. In particular,
the negative D′ anomaly (convergence) in Figure 4b extends
further from the equator into the Southern Hemisphere than into
the Northern Hemisphere, and the cyclonic ζ structure in the
Southern Hemisphere overlaps this convergence more than its
counterpart in the Northern Hemisphere (the zero line of ζ in
Figure 10 is at 2◦N rather than exactly on the equator. Both
of these subtle differences lead to the ζD′ term in Figure 9a
being much stronger in the Southern Hemisphere than in the
Northern Hemisphere. The resulting −ζD′ source term in the
Southern Hemisphere is such then almost in phase with the
CCKW vorticity anomaly (line contours in Figure 9a), leading to
this term contributing strongly to the growth of the CCKW.

There is a smaller contribution from −ζ′D (Figure 9b), which
represents the interaction of the basic state divergence with

the perturbation vorticity from the CCKW. The background
divergence field (line contours in Figure 10) shows convergence
(negative D) throughout the tropical Indian Ocean, that is fairly
spatially uniform in the equatorial belt. Hence, the resulting−ζ′D
source term is approximately a constant multiplier of the CCKW
ζ′ vorticity field, and is therefore almost perfectly in phase with it
(Figure 9b), again leading to growth of the CCKW.

The contribution from −ζ′D′ (the interaction between the
perturbation vorticity and divergence fields) is negligible (not
shown). An explanation of the relative magnitudes of the previous
two terms can be gained from a scale analysis of the relevant
fields. From Figure 10, |ζ| ∼ 10× 10−6 s-1, and |D| ∼ 1×
10−6 s-1. From Figure 4b, |ζ′| ∼ 3× 10−6 s-1, and |D′| ∼ 1.5×
10−6 s-1. Hence, | − ζD′| � | − ζ′D|, consistent with the fields
in Figure 9a,b. However, from this scale analysis, we might also
expect that the −ζ′D′ term be of similar magnitude to the −ζ′D
term.

The reason for the negligible magnitude of the −ζ′D′ term can
be understood from a consideration of the interaction between two
sinosoidal waves. First, we allow a theoretical equatorial Kelvin
wave to have finite amplitude. Hence, the non-linear −ζ′D′ term
is not immediately discounted in the vorticity equation due to its
amplitude being the product of two infinitessimal perturbation
terms, and therefore negligible compared to the linear terms.
However, the −ζ′D′ term in the theoretical wave would still be
zero, as the divergence field is quarter of a cycle out of phase with
the vorticity field, as discussed in Section 4.4.1 for the −fD term.
Because of this quadrature relationship, the product −ζ′D′, when
spatially averaged, would then be zero.

Moving on from the theoretical Kelvin wave to the observed
CCKW, we note that the phase shift between the vorticity ζ′ and
divergence D′ fields is not exactly a quarter cycle. However, it
transpires that the the growth from the −ζ′D′ source term (or
indeed any of the nonlinear perturbation source terms) will tend to
be zero, whatever the phase shift between the fields. For example,
if the longitudinal dependence of the vorticity structure does vary
as a sinusoid ζ′ = cos(kx), and the divergence structure has a
similar structure with the same wavenumber, but phase shifted as
D′ = cos(kx− φ), then the source term is

− ζ′D′ = −1

2
[cos(2kx− φ) + cosφ] . (28)

This has the form of a wave with double the wavenumber of the
constituent vorticity and divergence fields, and a constant term.
The mean value of the source term is the constant − 1

2 cosφ.
However, the enstrophy generation (Equation 20) calculated from
these pure sine wave structures will be proportional to the integral
(over an integer number of wavelengths) of∫

ζ′ (−ζ′D′) dx = −
∫

cos2(kx) cos(kx− φ) dx = 0, (29)

which is identically zero, whatever the value of the phase shift
φ between the vorticity and divergence fields. Although the
observed CCKW vorticity and divergence fields are not exactly
pure sinusoids in the zonal direction, the majority of their structure
is modelled by a pure sinusoidal wave, and hence the integrated
growth from the −ζ′D′ term will be small.

In summary, the −ζD′ term leads to growth and eastward
propagation, the −ζ′D term leads to growth, and the −ζ′D′ term
is negligible.

4.4.3. Zonal advection −u ∂ζ/∂x

The zonal advection term lies on the boundary between eastward
propagation and decay in the propagation–growth polar diagram
(Figure 8), and therefore has an equal contribution to both. This
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non-linear term can also be decomposed into interactions between
the basic state and the perturbation. The dominant and only non-
negligible contribution is from the −u ∂ζ′/∂x term (Figure 9c).
This is advection of the perturbation vorticity structure in Figure 4
by the background flow at this level.

The strongest background zonal flow u (Figure 10), in the
latitude band 10◦S–10◦N, where the vorticity anomalies in
Figure 4 are large, is the eastward flow over the Northern
Hemisphere Indian Ocean. This is consistent with the largest
values for the zonal advection −u ∂ζ/∂x (Figure 6a), and
−u ∂ζ′/∂x (Figure 9c) terms also being in the Northern
Hemisphere. These eastward winds lead to the −u ∂ζ′/∂x source
terms being to the east of the vorticity perturbations, and therefore
to eastward propagation.

The zonal advection term is weaker in the Southern
Hemisphere, but is still consistent with advection by the
background flow. The background zonal winds in the Southern
Hemisphere, in the 0–10◦S band, where the perturbation vorticity
anomalies are strongest, are weak westward winds in the southern
half of this domain and actually switch to eastward winds at
around 3◦S, i.e., before the equator. Hence, over the whole
equatorial belt, the background zonal winds are eastward, leading
to eastward advection and aiding the eastward propagation of the
CCKWs.

In addition to aiding eastward propagation, the zonal advection
term also has a negative growth contribution for the CCKW
(Figure 8). This is initially surprising, as the vorticity source terms
(colour shading in Figure 9c) appear to be in quadrature with the
vorticity anomalies (line contours in Figure 9c). However, close
examination shows that, e.g., the negative −u ∂ζ′/∂x anomalies
centred at approximately 6◦N, 65◦E have a larger spatial extent
than the positive −u ∂ζ′/∂x anomalies centred at approximately
6◦N, 85◦E. Both these source terms overlap with the positive
vorticity anomaly, hence the net result is a negative vorticity
tendency in a region of positive vorticty anomaly, leading to decay.
This result is due to the CCKW not having a perfect, repeating
sinusoidal structure like the theoretical equatorial Kelvin wave,
and also due to a non-constant background zonal wind, as
discussed below.

This contribution to growth/decay may appear surprising, as
advection is inherently a propagation rather than a growth process.
However, this can be explained by considering the enstrophy
generation (Equation 20) due to zonal advection,

∂E

∂t
=

2

R

∫∫
R

ζ′
(
−u∂ζ

′

∂x

)
dx dy = − 1

R

∫∫
R

u
∂

∂x

(
ζ′2
)
dx dy .

(30)
Integrating by parts gives

∂E

∂t
= − 1

R

[
u
(
ζ′2
)]

+
1

R

∫∫
R

(
ζ′2
)
∂u

∂x
dx dy. (31)

The first term on the right hand side will be zero if the domain
R extends beyond the perturbation. If the background wind is
constant, then ∂u/∂x = 0, the second term on the right hand
side is also zero, and there is no enstrophy generation and no
growth. However, if the background wind is not constant, there
can be growth. From Equation 31, divergence (convergence) of
the background wind leads to an increase (decrease) in enstrophy
and growth (decay).

Furthermore, the zonal advection of perturbation vorticity by
the background wind, and the vortex stretching by the perturbation
vorticity acting on the background zonal divergence, can be
combined together in flux form,

− u∂ζ
′

∂x
− ζ′ ∂u

∂x
= − ∂

∂x
(uζ′) . (32)

For typical distributions, these two terms tend to partially cancel,
further compounding the analysis.

4.4.4. Meridional advection −v ∂ζ/∂y

The meridional advection term contributes to decay in the
propagation–growth polar diagram (Figure 8). Examination of
the −v∂ζ/∂y vorticity source term (Figure 6b) shows this is
mainly due to the overlap of the positive vorticity source with
the negative vorticity anomaly, south of the equator between 65
and 80◦E. Decomposition reveals that this is almost entirely due
to the −v∂ζ′/∂y term (advection of perturbation vorticity by the
background meridional wind; Figure 9d).

The background meridional wind is predominantly northward
over the equatorial Indian Ocean (Figure 10). Consistent with this,
in the 65–85◦E band (the core of the CCKW considered in this
study), there is a negative −v∂ζ′/∂y source term to the north of
the negative vorticity anomaly in the Southern Hemisphere, and a
positive source term to its south. This is consistent with northward
advection, as would be expected from a northward wind. This
northward advection of the CCKW will then have a tendency to
displace the CCKW northward of its usual eastward trajectory
along the equator.

However, our main consideration here is the effect of the
meridional advection term on the growth and decay of the
CCKW. The strength of the background northward wind v is not
constant, with it decreasing toward the north in the core CCKW
region. Hence, in the Southern Hemisphere, the positive advective
tendency to the south of the vorticity minimum at 3◦S, is stronger
than the negative tendency to the north of the vorticity minimum
(Figure 9d). In the Northern Hemisphere, there is a strong negative
tendency to the south of the vorticity maximum at 6◦N, but only
a very weak tendency to the north of this maximum. Hence, when
integrated over the CCKW domain, the meridional advection
tendency destructively interferes with the CCKW vorticity field
and leads to decay.

5. Vertical structure of CCKWs

To elicit any variations of the propagation and growth mechanisms
of CCKWs in the vertical, the CCKW composite structure and
vorticity budget has been calculcated at three further pressure
levels.

5.1. Boundary layer: 975 hPa

The 850 hPa level in Section 4 was chosen to present the vorticity
budget at the standard level in the free lower troposphere. Here,
any effects of the boundary layer are investigated by a similar
analysis at the 975 hPa level. The zero-lagged CCKW structure
in the boundary layer at 975 hPa (Figure 11c) is very similar to
that at 850 hPa just above (Figure 4b). The structure at 975 hPa
is shifted eastward, relative to 850 hPa. This is consistent with
the well-known westward tilt with height of the CCKW structure
(Wheeler et al. 2000).

One process of potential interest in the boundary layer is
frictional convergence. Here, the easterly wind anomalies to the
east of the precipitation anomaly at the base point might be
expected to develop an equatorward component (i.e., northerly
in the Northern Hemisphere, and southerly in the Southern
Hemisphere) toward the low pressure centre at the equator (not
shown), once the frictional force in the boundary layer is added
to the horizontal force balance between the pressure gradient and
Coriolis forces. This mechanism has previously been proposed
to help explain the eastward propagation of the MJO through
its effect on converging moisture ahead (to the east) of the
convective anomaly (Maloney and Hartmann 1998). Any effect
on the moisture budget of the CCKWs is beyond the scope of
the dry dynamical vorticity budget analysed here, but a change
in the meridional wind component and its effect on divergence
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could affect the vortex stretching (−ζD and −fD) and advection
of planetary vorticity (−βv) terms.

Close examination of the velocity structure in Figure 11c
reveals that there is an equatorward component of the flow (and
hence a frictional convergence contribution) to the east of the
precipitation anomaly, but it is weak. The individual vorticity
source terms at all levels are summarised in a propagation–growth
polar diagram (Figure 12). The 850-hPa terms are indicated by
circular markers as before, and the 975, 500 and 200-hPa terms
are indicated by upward pointing triangles, stars, and downward
pointing triangles, respectively. The markers at each level are
joined by lines, creating a “constellation” pattern for each vorticity
source term.

As anticipated, the two vortex stretching terms (−ζD and
−fD) and advection of planetary vorticity (−βv) at 975 hPa
in the boundary layer do have higher (relative) amplitudes than
their counterparts at 850 hPa. Additionally, the −βv term at
975 hPa contributes exclusively to eastward propagation, due to
the equatorward advection of cyclonic vorticity to the east of the
existing cyclonic vorticity structures. However, these changes are
small.

Vertical advection (−ω∂ζ/∂p) and the two tilting/twisting
terms have even smaller amplitudes at 975 hPa compared with
850 hPa, as might be expected due to the proximity to the surface
and associated suppresion of vertical velocities.

Overall, there is little qualitative difference between the
vorticity budgets at 975 and 850 hPa. The conclusion is
that, perhaps surprisingly, the boundary layer does not have
a significant dynamical effect on the propagation and growth
mechanisms of CCKWs.

5.2. Middle troposphere: 500 hPa

In this section, the mid-tropospheric structure and vorticity
budget is examined. The 500 hPa level is chosen, which has
been previously identified as a level of large CCKW amplitude
(Wheeler et al. 2000; Yang et al. 2007a). The vertical structure of
the CCKW again shows the well-known westward tilt with height,
such that at 500 hPa, the westerly wind anomalies now peak at
57◦E, and the easterly anomalies peak near 80◦E (Figure 11b),
directly above the convergence at 850 hPa (Figure 4b).

The dynamical structure at 500 hPa shows an even stronger
deviation from a single mode structure, than it did at 850 hPa, as
the (negative) zonal wind anomalies extend diagonally polewards
and westwards into both hemispheres (like an arrowhead pointing
eastward, in the direction of propagation), rather than just
decaying polewards with a simple, single Gaussian structure.
This is reminiscent of the dynamical structures observed in
mixed Rossby–gravity waves (Kiladis et al. 2016), westward-
propagating inertio-gravity waves (Takayabu 1994; Tulich and
Kiladis 2012), and the MJO (Adames and Wallace 2014). The
zonal wind anomalies at 500 hPa also clearly extend further from
the equator than they do at 850 hPa.

This behaviour can be approximately modelled by the
superposition of two modes, with different latitudinal trapping
scales y1 and y2, and different longitudinal phase shifts φ1 and
φ2. Hence, the zonal wind field from the zero-lag composite at
500 hPa in Figure 11b was subjected to a least-squares fit to the
function

u(x, y) = u0

[
αe−(y/y1)

2

cos(kx− φ1)

+ (1− α)e−(y/y2)
2

cos(kx− φ2)
]
,

(33)

over the domain 50–100◦E, 15◦S–15◦N. Here, the value of u0
was constrained to be the largest magnitude value observed in
the domain (−2.3 m s-1), and y1 was constrained to be the same

value as diagnosed for the single mode at 850 hPa (690 km,
corresponding to a theoretical phase speed of c1 = 5.5 m s-1).

The best-fit values of the free parameters gave a Gaussian
trapping scale of y2 = 1, 890 km for the second mode,
corresponding to a theoretical Kelvin wave phase speed of c2 =

41 m s-1, a partition between the first and second mode of
α = 0.67, a wavenumber of k = 0.87× 10−6 m-1, and a relative
phase shift between the two modes of φ1 − φ2 = 0.20τ , i.e.,
a fifth of a wavelength. Hence, it appears that although the
basic theoretical Gaussian structure is still a realistic model
for the observed CCKW in the lower troposphere, dynamical
mechanisms in the mid-troposphere have distorted the CCKW
structure significantly away from a theoretical single-mode Kelvin
wave. This is discussed further in Section 6.

The terms in the vorticity budget are shown by the star markers
in the constellation plot of Figure 12. Unlike at the other levels,
the vorticity tendency does not show pure eastward propagation
at this level; it also indicates growth. The total source term is very
close by in the polar plot, consistent with the very small amplitude
residual/sub-gridscale ε term, and a high degree of closure of the
vorticity budget.

The main sources of growth at 500 hPa are from the two vortex
stretching terms (−ζD and −fD). Both these terms contribute,
albeit weakly, to eastward propagation also. However, their impact
is strongly negated by the two horizontal advection terms, both
of which have a negative growth tendency, and (weak) westward
propagation. Vertical advection has a (weak) eastward propagation
contribution. Both the −βv and the first tilting (−∂ω/∂x ∂v/∂p)
terms are very weak. The second tilting term (∂ω/∂y ∂u/∂p)
contributes weakly to decay and eastward propagation. Overall,
the CCKW structure and its vorticity budget in the middle
troposphere is more complex than in the lower troposphere.

5.3. Upper troposphere: 200 hPa

The lower and middle tropospheric layers previously examined
are characterised by convergent inflow into the region of CCKW
enhanced precipitation (Figures 4b, 11b,c here; Wheeler et al.
2000), albeit with a westward tilt with height. The 200 hPa level
is representative of divergent outflow in the upper troposphere.
Consistent with this, there is a region of anomalous divergence in
the CCKW structure (Figure 11a) located within and to the west
of the precipitation maximum (Figure 3b).

However, the basic dynamical CCKW structure at this level
is very different from that in the lower and middle troposphere,
as previously reported by Yang et al. (2007c). The meridional
wind component is as large as the zonal wind component;
hence the CCKW at this level cannot just be considered as a
modified equatorial Kelvin wave. This meridional wind represents
divergent outflow and extends poleward to 20◦ latitude in both
hemispheres. It can be considered as a local Hadley circulation
response to the CCKW ascending motion within the precipitation
anomaly.

Not surprisingly, the vorticity budget of the CCKW at 200 hPa
(downward pointing triangles in Figure 12) is also not consistent
with a modified equatorial Kelvin wave. The vorticity tendency
is consistent with eastward propagation as with the lower levels,
as it must be because the whole CCKW structure does propagate
eastward as a coherent entity. However, the individual vorticity
source terms that contribute to this are very different. The −fD
vortex stretching term, the main agent of eastward propagation
for the CCKW at lower levels and the sole agent for the
theoretical Kelvin wave, has no contribution to propagation at
200 hPa, and actually leads to decay of the wave. This arises from
the positive divergence anomalies being alongside the cyclonic
vorticity anomalies (Figure 11a) rather than to the west of them.
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The cyclonic vorticity anomalies themselves arise as much from
the meridional wind as from the zonal wind anomalies. The −ζD
vortex stretching term is an agent for growth and (weak) westward
propagation, and is strongly controlled by interactions with the
basic state.

Zonal and meridional advection lead to strong westward prop-
agation/growth and growth/eastward propagation, respectively.
Again, both source terms contain strong interactions with the basic
state. Vertical advection leads to growth. The strong meridional
wind anomalies at 200 hPa give rise to strong meridional advec-
tion of planetary vorticity (−βv), which is an agent for westward
propagation (via the Rossby wave mechanism) and decay. The first
and second tilting terms are weak and lead to strong eastward
propagation, respectively.

Hence, in the upper troposphere, there is not a Kelvin
wave mechanism operating at all. The overall combination of
source terms with cancelling growth and decay contributions,
and tendencies for both westward and eastward propagation,
combine in a complex way to a net eastward propagation, with
some decay. An interpretation of this is that the (convectively
coupled) equatorial Kelvin wave mechanism operates strongly in
the lower troposphere, where the moisture source that ultimately
powers the CCKW and the convective triggers that organise it are
located, while the upper tropospheric component arises as a forced
response to this, that must follow the eastward-propagating lower
tropospheric component.

6. Conclusions

The dynamical propagation and growth mechanisms of CCKWs
over the Indian Ocean have been investigated using a vorticity
budget approach. A modified equatorial Kelvin wave mechanism
operates in the lower troposphere.

The −fD vortex stretching term contributes most to the
eastward propagation of the CCKW, as in a theoretical Kelvin
wave. It also contributes to growth, through the deviation of the
zonal wind and resulting vorticity distributions from a theoretical
single mode structure. The westerly wind anomalies in the CCKW
have a trapping scale of 690 km, with a corresponding theoretical
phase speed of 5.5 m s-1, but the easterly wind anomalies
have a larger trapping scale of 1160 km, corresponding to a
phase speed of 15.4 m s-1. Hence, in the lower troposphere, it
appears that two distinct Kelvin wave modes are in operation.
Eastward propagation of the CCKW is also aided by advection
by the background lower tropospheric westerly flow over the
Indian Ocean. The results here emphasise the importance of the
background flow in the lower troposphere in aiding eastward
propagation, in contrast to Dias and Kiladis (2014), who found no
universal steering level, but concluded that the westerly barotropic
component of the background winds was more instrumental in
leading to faster eastward propagation of CCKWs.

The main growth contribution is from the −ζD vortex
stretching term, mainly due to a belt of background cyclonic
vorticity in the Southern Hemisphere Indian Ocean, that spins up
the CCKW divergence field as it transits through. This is partially
countered by decay from the zonal and meridional vorticity
advection terms, with the dominant contribution being advection
of the perturbation (CCKW) vorticity by the background
winds. The other vorticity source terms have a relatively small
contribution to CCKW growth and propagation over the Indian
Ocean. Hence, this analysis suggests a simplified vorticity
equation for CCKWs over the Indian Ocean,

∂ζ′

∂t
≈ −u∂ζ

′

∂x
−v ∂ζ

′

∂y
−ζD′ −fD′ .

eastward eastward
decay decay growth growth

(34)

In the middle troposphere, the CCKW shows its well known
westward tilt with height. Additionally, the horizontal structure is
more complex, with a two-mode structure being more prevalent.
The middle tropospheric westerly wind anomalies have a similar
trapping scale to the lower tropospheric structure, but the easterly
anomalies have a much larger trapping scale of 1890 km,
corresponding to a phase speed of 41 m s-1.

The trapping scale of a Kelvin wave mode is linked to its
phase speed through Equation 4, and to an equivalent depth hn
through c2e = ghn. The equivalent depth arises from the separation
constant when the full primitive equations are separated into the
shallow water equations governing the x, y, t behaviour, of which
the Kelvin wave in Equation 2 is a solution, and the vertical
structure equation, which governs the p behaviour and leads to
distinct vertical modes.

These vertical modes are excited by the vertical structure of
the embedded convective heating. In an analysis of mean tropical
atmospheric conditions, Haertel and Kiladis (2004) found values
for the phase speeds of 49 m s-1 for the first internal mode (forced
by deep convective heating of same sign throughout troposphere,
peaking at mid levels), and 23 m s-1 for the second internal
mode, forced by heating of opposite sign in the lower and upper
troposphere. Both these vertical modes have previously been
found to be important for CCKWs (Straub and Kiladis 2003).
More complex heating structures with more sign changes in the
vertical will correspond to smaller equivalent depths and phase
speeds. The range of trapping scales (and phase speeds) diagnosed
here in the CCKW structure are qualitatively consistent with those
of the first few baroclinic modes of the tropical atmosphere.

Convection in CCKWs (along with other convectively coupled
equatorial waves, and the MJO) passes through a life cycle
of different cloud populations with different vertical heating
structures, from shallow convection to deep convection (Tulich
and Mapes 2008; Kiladis et al. 2009). Hence, the aggregated
structure will be a combination of a forced and free response to
the spatio-temporally varying convective heating.

The CCKW structure and vorticity balance in the upper
troposphere are not those of an equatorial Kelvin wave at all,
containing a strong local Hadley-like circulation. The upper
tropospheric CCKW structure is interpreted as a dynamical
adjustment to the forcing in the lower troposphere.

It should be restated that the analysis here, using the vorticity
equation, is a purely dry dynamical approach. The vorticity budget
is valid on its own at each level, but it is clear that the production
of CCKWs depends on the strength and nature of the interaction
between moist convection and dynamics (e.g., Peatman et al.
2018). Hence, to fully understand the vertical structure and the
interplay between the different levels, it will be necessary to mesh
this approach with a similar analysis of the thermodynamical and
moisture budgets. This will be attempted in a future study.

It could be argued that this may have been partially
accomplished by calculating a potential vorticity budget rather
than a vorticity budget, as potential vorticity contains both
dynamical and thermodynamical information. However, (shallow
water) potential vorticity for a theoretical equatorial Kelvin
wave is identically zero as the dynamical and thermodynamical
contributions exactly cancel. Nevertheless, potential vorticity is
available as a pre-calculated output for some reanalyses, e.g.,
ERA-Interim, and a future study could investigate the partitioning
of potential vorticity between the dynamical and thermodynamical
contributions in observed CCKWs.

Preliminary analysis indicates that the mass (geopotential) field
of the composite CCKW structure is shifted westward relative
to the zonal wind field consistent with Roundy (2012), rather
than being in phase with it as in the theoretical linear equatorial
Kelvin wave. As the mass field is linked to the temperature field

c© 2021 Royal Meteorological Society Prepared using qjrms4.cls



and diabatic heating through hydrostatic balance, this phase shift
shows that that diabatic thermodynamical and moist convective
processes have a first order impact on the CCKW structure.

The approach developed here can be expanded on and applied
to other situations to answer further questions. In this study, the
Indian Ocean was chosen as climatologicaly it contains the largest
number of CCKWs. Do CCKWs in other regions, such as the
Pacific Ocean with its easterly background wind field, obey the
same vorticity balance as CCKWs in the Indian Ocean? Is there a
seasonal dependence to the CCKW vorticity balance? The phase
of the MJO is known to modulate the amplitude and frequency
of CCKW events (Roundy 2008; Baranowski et al. 2016a). Does
the phase of the MJO also affect the internal CCKW vorticity
balance?

Individual CCKW events pass through a life cycle (Kiladis et
al. 2009). Here, the CCKW vorticity budget was calculated with
respect to the crossing time at a fixed longitude, irrespective of
the stage of each event within its own life cycle. An alternative
vorticity budget could be carried out based on the position of
events within their life cycles, to determine whether key processes
are important at different times in the life cycle.

The vorticity budget approach presented here can be applied
to output from climate model simulations. Previous work on
the simulation of CCKWs in climate models has highlighted
the importance of the convective parameterisation scheme.
For models in the Coupled Model Intercomparison Project 3
generation (CMIP3), the inclusion of a trigger (Straub et al. 2010)
or convective suppression (Huang et al. 2013) led to relatively
successful simulations of CCKWs in terms of overall amplitude
and global distribution. In the later CMIP5 generation, most
models correctly simulated the CCKW phase propagation over the
Indian Ocean, but underestimated its speed over the Pacific sector
(Wang and Li 2016). However, a dynamical CCKW budget akin
to the one presented here does not appear to have been carried
out on CMIP models. The results of such an analysis should help
elucidate the origins of the systematic errors in those models.

CCKWs have been analysed in numerical weather predictions
(NWP) and are generally too weak (Dias et al. 2018; Janiga et al.
2018). Phase speeds can be either too fast (Dias et al. 2018; Yang
et al. 2021) or too slow (Janiga et al. 2018). Again, a dynamical
vorticity budget analysis could be applied to NWP output to help
further diagnose these systematic errors.

Finally, the vorticity budget approach can be adapted to
diagnose propagation and growth mechanisms in other types of
convectively coupled equatorial waves, such as equatorial Rossby
waves, and mixed Rossby-gravity waves.
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Figure 1. Structure of a sample theoretical linear equatorial Kelvin wave with zonal wavelength 5,820 km (k = 1.08× 10−6 m-1), trapping scale y0 = 690 km
(corresponding to a phase speed ce = 5.5 m s-1), and amplitude u0 = 1.8 m s-1. Horizontal wind vectors are shown by the black arrows (scale vector has length
3 m s-1). Zonal wind speed is shown by the thin black line contours; interval is 1 m s-1, positive contours are solid and the first positive contour is at 0.5 m s-1, negative
contours are dashed. Relative vorticity is colour shaded, with interval 1× 10−6 s-1; first positive contour is at 0.5× 10−6 s-1. Divergence is shown by the thick line
contours with interval 1× 10−6 s-1; positive contours are solid red and first positive contour is at 0.5× 10−6 s-1, negative contours are blue dashed. Continental outlines
are shown in purple for scale only.

Figure 2. Vorticity tendency (equal to total vorticity source−fD) of the theoretical linear equatorial Kelvin wave in Figure 1. Colour shading interval is 10× 10−12 s-2;
first positive level is at 5× 10−12 s-2. The vorticity anomaly is shown by line contours; interval is 1× 10−6 s-1, positive contours are solid red and first positive contour
is at 0.5× 10−6 s-1, and negative contours are dashed blue.
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Figure 3. Lagged composite maps of TRMM precipitation anomalies of CCKW, with basepoint at 75◦E (indicated by the green circle), for day: (a)−1, (b) 0, (c) 1. Colour
shading interval is 5 mm day−1.
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Figure 4. Lagged composite maps of dynamical anomalies of CCKW at 850 hPa, for day: (a) −1, (b) 0, (c) 1. Horizontal wind vectors are shown by the black arrows
(scale vector has length 3 m s-1). Zonal wind speed is shown by the thin black line contours; interval is 1 m s-1, positive contours are solid and first positive contour is at
0.5 m s-1, negative contours are dashed. Relative vorticity is colour shaded, with interval 1× 10−6 s-1; first positive contour is at 0.5× 10−6 s-1. Divergence is shown by
the thick line contours with interval 1× 10−6 s-1; positive contours are solid red and first positive contour is at 0.5× 10−6 s-1, negative contours are blue dashed.
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Figure 5. Zero-lagged composite maps of basic vorticity budget of CCKW at 850 hPa: (a) vorticity tendency, (b) total vorticity source, (c) residual/sub-gridscale processes.
Colour shading interval is 10× 10−12 s-2; the first positive contour is at 5× 10−12 s-2. The vorticity anomaly is shown by line contours in each panel; interval is
1× 10−6 s-1, positive contours are solid red and first positive contour is at 0.5× 10−6 s-1, and negative contours are dashed blue.
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Figure 6. Zero-lagged composite maps of individual source terms in vorticity budget of CCKW at 850 hPa: (a) zonal advection −u∂ζ/∂x, (b) meridional advection
−v∂ζ/∂y, (c) vertical advection −ω∂ζ/∂p, (d) vortex stretching −ζD, (e) vortex stretching −fD, (f) planetary vorticity advection −βv, (g) tilting −∂ω/∂x ∂v/∂p,
(h) tilting ∂ω/∂y ∂u/∂p. Conventions as in Figure 5.
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Figure 7. Diagnostics of vorticity source terms at 850 hPa calculated from zero lag composite fields over the domain 55–95◦E, 10◦S–10◦N: (a) RMS amplitude
(×10−12 s-2), (b) spatial correlation coefficient r, (c) enstrophy tendency ∂E/∂t (×10−18 s-3), (d) phase difference θ between vorticity anomaly field and vorticity
source term (multiple of τ , i.e., fraction of a turn).

Figure 8. Vorticity budget propagation–growth polar diagram of 850-hPa CCKW vorticity source terms, with normalised RMS amplitude as the radial coordinate, and
phase difference θ between the source term and the vorticity anomaly, as the azimuthal coordinate. Contrary to regular convention, the azimuthal coordinate axis is zero
on the positive vertical axis, and increases in a clockwise direction. This enables growth to be toward the top of the diagram, decay to the bottom, westward propagation to
the left, and eastward propagation to the right. The single (−fD) source term for a theoretical equatorial Kelvin wave is shown by the large grey square, labelled “EKW”.
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Figure 9. Decomposition of selected vorticity sources at 850 hPa into contributions from the basic state and perturbation fields. Zero-lagged composite maps of: (a)−ζD′,
(b)−ζ′D, (c) −u∂ζ′/∂x, (d)−v∂ζ′/∂y. Conventions as in Figure 5.

Figure 10. Zero-lagged composite map of the background 850-hPa wind vectors (u, v), vorticity (ζ) and divergence (D). Horizontal wind vectors are shown by the black
arrows (scale vector has length 3 m s-1). Relative vorticity is colour shaded, with interval 2.5× 10−6 s-1; first positive contour is at 1.25× 10−6 s-1. Divergence is shown
by the thick line contours with interval 2× 10−6 s-1; positive contours are solid red and first positive contour is at 1× 10−6 s-1, negative contours are blue dashed.
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Figure 11. Zero-lagged composite maps of dynamical anomalies of CCKW at (a) 200, (b) 500, (c) 975 hPa. Conventions as in Figure 4.
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Figure 12. As Figure 8 but for multiple levels. Each source term is shown by a marker for each level (see key), joined by a line of the appropriate colour, forming a
“constellation” pattern. Note that the radial axis is expanded, compared with the single level version in Figure 8.
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