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Abstract
Given a pairwise distance D on the elements in a finite set X, the order distance�(D) on X

is defined by first associating a total preorder �x on X to each x ∈ X based on D, and then
quantifying the pairwise disagreement between these total preorders. The order distance can
be useful in relational analyses because using �(D) instead of D may make such analyses
less sensitive to small variations in D. Relatively little is known about properties of �(D)

for general distances D. Indeed, nearly all previous work has focused on understanding
the order distance of a treelike distance, that is, a distance that arises as the shortest path
distances in a tree with non-negative edge weights and X mapped into its vertex set. In this
paper we study the order distance �(D) for distances D that can be decomposed into sums
of simpler distances called split-distances. Such distances D generalize treelike distances,
and have applications in areas such as classification theory and phylogenetics.

Keywords Total preorder · Order distance · Treelike distance · Kalmanson distance ·
Circular split system · Flat split system

1 Introduction

In areas such as phylogenetics, it is common to take a distance between elements in some
set X of interest as a first step towards representing the relationships between elements in
X using some discrete structure such as a tree [1, Ch. 7]. However, small inaccuracies in
measuring the distance can lead to large changes in the final representation. One approach
to deal with this problem is to quantify the difference between the orderings on X induced
by the distance between elements in X and build the final representation based on these
differences rather than from the distance directly. This can make the whole process less
sensitive to small variations in the measured distance [2].
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A formal way to define this process is as follows. Suppose that D is a distance on a
finite, non-empty set X, i.e. a symmetric map D : X × X → R with D(x, x) = 0 and
D(x, y) ≥ 0 for all x, y ∈ X. To any element x ∈ X we associate the binary relation �x

on X by putting y �x z if D(x, y) ≤ D(x, z) for all y, z ∈ X. In addition, we use y ≺x z

to express D(x, y) < D(x, z). Note that �x is transitive and total, a type of binary relation
that is sometimes called a total preorder or a weak order (see e.g. the discussion in [3, p.
630]). To measure how much �x and �x′ disagree for x, x′ ∈ X, we penalize every pair of
elements y, z ∈ X by 2 if they are ordered oppositely in �x and �x′ and by 1 if they are
neither ordered oppositely nor equally in �x and �x′ . More formally, the penalization term
δy,z(x, x′) is defined as

2 if (y ≺x z and z ≺x′ y) or (y ≺x′ z and z ≺x y),

1 if (y ≺x z, z 	≺x′ y and y 	≺x′ z) or (y ≺x′ z, z 	≺x y and y 	≺x z),

0 else.

The order distance �(D) on X is defined by setting

�(D)(x, x′) = 1

2
·
∑

y∈X

∑

z∈X

δy,z(x, x′).

This way of measuring the disagreement between total preorders was proposed, for
example, in [4] and later in [3].

Most previous results on order distances have concerned properties of �(D) for D a
treelike distance (see e.g. [2, 5–7]). These are precisely those distances D on X that arise
through a map ϕ : X → V of X into the vertex set V of a tree T = (V ,E) with non-
negative edge weighting � : E → R≥0 and then putting D(x, y) to be the length of the
shortest path from ϕ(x) to ϕ(y) in T . The pair (T , ϕ) is called an X-tree and, to ensure
that, up to isomorphism, the tree T together with the maps ϕ and � is uniquely determined
by the treelike distance D, it is usually assumed that the image ϕ(X) contains all vertices
of T with degree at most two and that � is strictly positive (see e.g. [1, Sec. 7.1]). We
denote the treelike distance D arising from an edge-weighted X-tree (T , ϕ, �) by D(T,ϕ,�)

and say that the edge-weighted X-tree generates D. In Fig. 1 we illustrate the main result

Fig. 1 An edge-weighted X-tree (T , ϕ, �) with X = {a, b, c, d, e} and the distance D = D(T ,ϕ,�). The asso-
ciated order distance � = �(D) is generated by an edge-weighted X-tree (T ′, ϕ′, �′) obtained by adjusting
the weights of the edges in T
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of Bonnot et al. in [2]: The order distance �(D) of a treelike distance D = D(T,ϕ,�) on
X is always treelike and the edge-weighted X-tree (T ′, ϕ′, �′) with �(D) = D(T ′,ϕ′,�′) is
obtained by adjusting the edge-weights of T . This result is important since it shows that
the order distance � = �(D) of an unknown treelike distance D on X allows to gain
information about the structure of the X-tree that generates D.

In this paper, we aim to better understand to what extent Bonnot et al.’s result can be
generalized to discrete structures that include X-trees as a special case and are commonly
used in phylogenetics. To describe them, we call an unordered pair of non-empty subsets
A and B of a finite set X with A ∪ B = X and A ∩ B = ∅ a split of X. We denote
such a pair by A | B and, since it is an unordered pair, B | A refers to same split of X.
Moreover, we denote by DA|B the split-distance on X obtained by taking DA|B(x, y) = 1
if |A ∩ {x, y}| = |B ∩ {x, y}| = 1 and DA|B(x, y) = 0 otherwise for all x, y ∈ X. A set
S of splits of X is called a split system on X and an ordered pair (S, ω) consisting of a
split system S on X and a non-negative weighting ω : S → R≥0 is called a weighted split
system on X. In addition, we call

D(S,ω) =
∑

S∈S
ω(S) · DS

the distance generated by the weighted split system (S, ω). Distances D on X that are
generated by a weighted split system on X are called �1-distances and always satisfy the
triangle inequality (see e.g. [8, Ch. 4]). Every treelike distance is an �1-distances (see e.g.
[1, Sec. 7.4]). Bonnot et al.’s result, phrased in the language of split systems, suggests to
look for split systems S on X with the property that for every non-negative weighting ω of
the splits in S , there exists a non-negative weighting ω′ of the splits in S such that

�
(
D(S,ω)

) = D(S,ω′).

We call such split systems orderly and will mainly investigate these here using the language
of splits and distances to establish some of their basic properties. We suspect, however, that
further insights into the structure of orderly split systems will require a better understanding
of the finite space of those collections {�x : x ∈ X} of total preorders that arise from a split
system on X through the distances generated by weighting the split system.

The rest of the paper is structured as follows. In Section 2 we introduce the preorder
split system SD of a distance D, a concept which was implicitly considered in [9] and that
is key to many of our arguments. In addition, we formally introduce some classes of split
systems that commonly arise in phylogenetics and for which we will study in the remainder
of this paper to what extend they are orderly. In Section 3 we show that so-called circular
split systems [10] are orderly in case they have maximum size (Theorem 1). We also briefly
consider the consequences of this result for efficiently computing the order distance for
distances that are generated by circular split systems. In Section 4 we then explore orderly
split systems within the class of so-called flat split systems [11, 12]. In particular, we show
that within the class of maximum sized flat split systems, the orderly split systems are
precisely those that are circular (Theorem 3). We conclude in Section 5 with some possible
directions for future work. The appendix contains the proofs of some technical lemmas and
auxiliary results presented in Sections 2 and 4.
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2 Preorders and Split Systems

In this section we present some concepts related to split systems that will be used later. For

the rest of this paper X will denote a finite non-empty set with |X| = n and

(
X

2

)
denotes

the set of all 2-element subsets of X. Moreover, by S(X) we denote the set consisting of all
possible splits of X. It will be convenient to use the notation A | B introduced for splits of
X also for the unordered pair ∅ | X, even though this pair is not considered a split of X.

Given a distance D on X and its associated collection {�x : x ∈ X} of total preorders,
we define, for all u, v ∈ X with u 	= v, the set

Xu,v = {x ∈ X : u ≺x v}.
The preorder split system SD associated to D is the set of splits of X of the form Su,v =
Xu,v | X − Xu,v for u, v ∈ X with u 	= v and Xu,v 	= ∅, X. SD is closely related to the so-
called midpath phylogeny introduced in [9]. The relevance of the preorder split system for
the work presented here comes from the fact that, as established in [2], the order distance
�(D) associated to D can always be written as

�(D) =
∑

S∈SD

ωD(S) · DS, (1)

where ωD(S) equals the number of (u, v) ∈ X × X with u 	= v such that Su,v = S. Note
that this implies that, for all distances D, the order distance �(D) is an �1-distance, even if
D itself is not an �1-distance.

In the next lemma, whose proof can be found in Appendix A, we present a useful upper
bound on the size of SD . Note that, as a direct consequence of the definition of SD , it follows
that SD contains at most n(n − 1) splits. In view of |S(X)| = 2n−1 − 1, we immediately
see that for n ≤ 5 this upper bound on |SD| is not tight. Using a computer program, the
smallest n for which we found a distance D on a set X with n elements and |SD| = n(n−1)

is n = 16.

Lemma 1 Let D be a distance on a set X with n ≥ 1 elements. Then we have |SD| ≤
n(n − 1) and, for all sufficiently large n ∈ N, there exists a distance D on X such that
equality holds.

In view of (1) a necessary condition for a split system S on X to be orderly is that, for
all distances D generated by weighting S , the preorder split system SD belongs to the same
class of split systems as S . In the remainder of this section we formally define the classes
of split systems we consider in this paper.

Two splits A1 | B1 and A2 | B2 of X are compatible if at least one of the intersections
A1∩A2, A1∩B2, B1∩A2, and B1∩B2 is empty. In addition, we also call a split system S on
X compatible if the splits in S are pairwise compatible. A split system S on X is compatible
if and only if there exists an X-tree (T , ϕ) such that the splits in S are precisely those that
arise by removing an edge e of T and then considering the two subsets of X mapped by ϕ

into the resulting connected components of T − e. Such an X-tree will be said to represent
the compatible split system and it is unique up to isomorphism (see e.g. [1, Sec. 3.1]). Since
an X-tree has at most 2n − 3 edges (see e.g. [1, Sec. 2.1]) it follows that a compatible split
system on X contains at most 2n− 3 splits. In Fig. 2(a) we give an example of a compatible
split system S and Fig. 2(b) displays the unique X-tree that represents S .
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Fig. 2 (a) A split system S consisting of 7 pairwise compatible splits of X = {a, b, c, d, e}. (b) The X-tree
representing the split system S. (c) The compatible split system S is circular (but not maximum circular) and
fits on the permutation π = (a, b, c, d, e). The maximum circular split system Sπ contains 10 splits

The following lemma, whose proof can also be found in Appendix A, establishes that
there is a 6-point condition that characterizes when the preorder split system SD of a dis-
tance D on X is compatible. To state the lemma, we denote the restriction of a distance D

on X to a subset M ⊆ X by D|M . In [9] an example of a distance D on a 6-element set
X is provided such that SD|M is compatible for all 5-element subsets M ⊆ X, but SD is
not compatible. Hence, compatibility of SD cannot be characterized by a k-point condition
for k < 6.

Lemma 2 Let D be a distance on a set X with n ≥ 6 elements. The preorder split system
SD ⊆ S(X) is compatible if and only if for every subset M ⊆ X with |M| = 6 the preorder
split system SD|M ⊆ S(M) is compatible.

Next we consider a class of split systems that has applications in the analysis of biological
data where it underlies certain networks which generalize X-trees (see e.g. [13]). A split
system S on X is circular if there exists a permutation π = (x1, x2, . . . , xn) of the elements
in X such that, for any split S ∈ S , there exist 1 ≤ i ≤ j < n with

S = {xi, xi+1, . . . , xj } | X − {xi, xi+1, . . . , xj },
in which case we will say that S (and also each single split S ∈ S) fits on π . We denote
the circular split system consisting of all splits that fit on a permutation π of X by Sπ and
remark that π is, up to cyclic shifting and reversal, uniquely determined by Sπ . It follows

immediately from the definition that a circular split system S on X contains at most

(
n

2

)

splits and if S contains precisely

(
n

2

)
splits it is called maximum circular. Circular split

systems naturally appear in the context of the so-called split decomposition of a distance
(see [10, Sec. 3], where they are introduced). As illustrated in Fig. 2(c), every compatible
split system is circular, but not vice versa [10]. In Section 3 we will further study distances
for which the preorder split system is circular.

Again motivated by applications in phylogenetics (see e.g. [14]), a generalization of cir-
cular split systems was introduced in [11]. To define this class of split systems we first
associate to any permutation π = (x1, x2, . . . , xn) of X, and any k ∈ {1, 2, . . . , n − 1} the
permutation

π(k) = (x1, . . . , xk−1, xk+1, xk, xk+2 . . . , xn),
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that is, the permutation obtained by swapping the elements at positions k and k+1 in π . We
denote the set of the two elements that are swapped by sw(π, k) = {xk, xk+1} and define
the split

S(π, k) = {x1, . . . , xk} | {xk+1, . . . , xn}.
Then, putting m =

(
n

2

)
, we consider pairs (π, κ) consisting of a permutation π of X

and a sequence κ = (k1, . . . , km) ∈ {1, 2, . . . , n − 1}m. With each such pair (π, κ) we
associate the sequence π0, π1, . . . , πm of permutations of X defined by putting π0 = π

and πi = πi−1(ki), 1 ≤ i ≤ m. The pair (π, κ) is called allowable if sw(πi−1, ki) 	=
sw(πj−1, kj ) holds for all 1 ≤ i < j ≤ m. Such a sequence of permutations is commonly
called in the literature a simple allowable sequence and it can be graphically represented by a
so-called wiring diagram [15]. In the wiring diagram the elements in X are represented by x-
monotone curves (the wires) with each pair of curves crossing precisely once (representing
the swaps, see Fig. 3 for an example). A split system S ⊆ S(X) is called flat if there exists
an allowable pair (π, κ) with

S ⊆ S(π,κ) = {S(πi−1, ki) : 1 ≤ i ≤ m}.
As for circular split systems, it follows immediately from the definition that a flat split

system on X contains at most

(
n

2

)
splits and if S contains precisely

(
n

2

)
splits it is

called maximum flat. As illustrated in Fig. 3, every circular split system is flat, but not vice
versa [12]. Flat split systems will be considered in Section 4 where we will use the following
characterization of maximum circular split systems (see Appendix A for a proof):

Lemma 3 A maximum flat split system S ⊆ S(X) that contains the split {x} | X − {x} for
all x ∈ X is maximum circular.

We conclude this section with a class of split systems that provides a useful conceptual
framework for all classes of split systems mentioned so far. A split system S on X is linearly
independent if the set of split distances {DS : S ∈ S} arising from S is linearly independent
when viewed as a finite subset of the vector space of all symmetric bivariate maps D :
X × X → R with D(x, x) = 0 for all x ∈ X. Linearly independent split systems were
introduced in [11], where it is also shown that every flat split system (referred to in [11]
as pseudo-affine split system) is linearly independent, but not vice versa. Again it follows

Fig. 3 A wiring diagram representing the simple allowable sequence of permutations of X = {a, b, c, d, e}
obtained from the allowable pair (π, κ) with π = (a, b, c, d, e) and κ = (1, 2, 3, 4, 1, 2, 3, 1, 2, 1). The
face immediately to the left of each crossing yields a split A | B of X with A and B corresponding to those
elements in X whose wires are below and above that face, respectively. The maximum circular split system
Sπ from Fig. 2(c) equals the maximum flat split system S(π,κ) and the faces corresponding to splits in the
compatible split system S from Fig. 2(a) are shaded gray
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immediately from the definition that a linearly independent split system on X contains at

most

(
n

2

)
splits and if S contains precisely

(
n

2

)
splits it is called maximum linearly

independent. The next proposition (see Appendix A for a proof) gives a characterization
of maximum flat split systems among all maximum linearly independent split systems that
will be used in Section 4. A split system S on X satisfies the pairwise separation property
if for any two distinct elements x, y ∈ X, there exist disjoint subsets A and B of X − {x, y}
with A ∪ B = X − {x, y} such that A ∪ {x, y} | B, A ∪ {x} | B ∪ {y}, A ∪ {y} | B ∪ {x} and
A | B ∪ {x, y} are all contained in S ∪ {∅ | X}.

Proposition 1 A maximum linearly independent split system S on a set X with n ≥ 2
elements is maximum flat if and only if it satisfies the pairwise separation property.

3 Circular Split Systems

The key result of this section (Lemma 4) establishes that the preorder split system of a
distance generated by a weighted circular split system is always circular. This will provide
a useful starting point for applying the data analysis process mentioned in the introduction
to the computation of networks such as those described [13]. Using the notation introduced
in the introduction, we define a distance D on X to be circular if there exists a circular
split system S on X together with a non-negative weighting ω of S such that D = D(S,ω).
It follows from split decomposition theory [10] that if such a pair (S, ω) exists then it is
unique up to the addition or removal of splits with weight 0.

Circular distances are also known as Kalmanson distances [16] and in the proof of
Lemma 4 below we will use the following characterization of these distances given in [17]
(see also [18]): A distance D on X is circular if and only if there exists a permutation
π = (x1, x2, . . . , xn) of the elements in X such that

max(D(xi, xj ) + D(xk, xl),D(xi, xl) + D(xj , xk)) ≤ D(xi, xk) + D(xj , xl) (2)

holds for all 1 ≤ i < j < k < l ≤ n. In particular, if D = D(S,ω) for a weighted circular
split system (S, ω) such that S fits on a certain permutation π of the elements in X then D

satisfies condition (2) for this π .

Lemma 4 Let (S, ω) be a circular split system on X with non-negative weighting ω such
that S fits on the permutation π = (x1, x2, . . . , xn) of the elements in X. Then, for D =
D(S,ω), the preorder split system SD is circular and fits on π .

Proof If SD = ∅ then SD is circular and it fits on π . So assume that SD 	= ∅ and consider
any split S ∈ SD . By the definition of SD there exist u, v ∈ X with u 	= v and S = Xu,v |
X − Xu,v . By the definition of the set Xu,v , we must have u ∈ Xu,v and v ∈ X − Xu,v .
Assume for a contradiction that neither Xu,v nor X − Xu,v form an interval of consecutive
elements in π . This implies that there exist u′ ∈ Xu,v with u′ 	= u and v′ ∈ X − Xu,v

with v′ 	= v such that, after possibly shifting and/or reversing π , the restriction of π to
{u, v, u′, v′} is (u, v′, u′, v). Then, in view of the definition of Xu,v , we must have

D(u, u′) < D(v, u′) and

D(v, v′) ≤ D(u, v′).
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This implies
D(u, u′) + D(v, v′) < D(v, u′) + D(u, v′),

contradicting condition (2).

As a consequence of Lemma 4 we obtain the main result of this section:

Theorem 1 Every maximum circular split system is orderly.

Proof Let S be a maximum circular split system together with a non-negative weighting ω

and put D = D(S,ω). By Eq. 1 we have

�(D) =
∑

S∈SD

ωD(S) · DS .

By Lemma 4, SD fits onto the unique permutation π of the elements in X with S = Sπ .
Hence, we have SD ⊆ S and, therefore,

�(D) =
∑

S∈S
ω′(S) · DS,

where ω′(S) = ωD(S) if S ∈ SD and ω′(S) = 0 otherwise. Since ω was chosen arbitrarily,
it follows that S is orderly.

The corollary below follows from Theorem 1 in view of the definition of an orderly split
system and the fact that every circular distance is generated by some weighted maximum
circular split system.

Corollary 1 The order distance �(D) of a circular distance D is always circular.

Note that in Theorem 1 we assume that the circular split system is maximum. To illustrate
that we cannot remove this assumption, consider, for example, the non-maximum circular
split system

S = {{b} | {a, c, d}, {a, b} | {c, d}, {a, d} | {b, c}}
on X = {a, b, c, d} and the weighting ω that assigns weight 1 to every split in S . This yields
the order distance � = �(D) associated to D = D(S,ω) with

�(a, b) = �(a, c) = �(b, c) = 8,

�(a, d) = �(c, d) = 4 and �(b, d) = 10.

which is generated as � = D(S ′,ω′) by the weighted circular split system S ′
� S with

ω′({a, b} | {c, d}) = ω′({a, d} | {b, c}) = 3,

ω′({a} | {b, c, d}) = ω′({c} | {a, b, d}) = 1 and ω′({b} | {a, c, d}) = 4.

So, in general, if D is generated by a non-maximum circular split system S on X the order
distance associated to D may be generated only by a proper superset of S . We will explore
this phenomenon further in the next section when we consider so-called closed split systems.

In the remainder of this section, we briefly look into some consequences of Lemma 4
for computing order distances. Applying an algorithm described in [19] for computing the
disagreement between two total preorders to each pair of elements in X, �(D) can be com-
puted in O(n3 log n) time for general distances D on X. For the special case of a treelike
distance D a running time in O(n2 log n) can be achieved using the approach developed
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in [9] for computing the midpath phylogeny. In the following theorem we show that this run-
ning time can also be achieved for circular distances D. Clearly, no algorithm for computing
�(D) can run faster than the size of the output, that is, we have a lower bound of 	(n2).

Theorem 2 The order distance �(D) of a circular distance D on a set X with n elements
can be computed in O(n2 log n) time.

Proof The first step in the computation of �(D) from D is to obtain a permutation π =
(x1, x2, . . . , xn) of the elements in X such that, D = D(S,ω) for a suitable non-negative
weighting ω of the maximum circular split system S = Sπ . In view of the assumption that
D is circular such a permutation must exist and it can be computed (along with a suitable
weighting ω that we do not use here) in O(n2) time with the algorithm presented in [18].

In view of Lemma 4, we have SD ⊆ Sπ . More specifically, every split S = A | B ∈ SD

must fit on π and, therefore, be such that the elements in either A or B form an interval
I (S) = {xi, xi+1, . . . , xj }, 1 ≤ i ≤ j < n, of consecutive elements in π . We count, for
all 1 ≤ i ≤ j < n, the number p(i, j) of ordered pairs (u, v) ∈ X × X with u 	= v,
Su,v ∈ SD and I (Su,v) = {xi, xi+1, . . . , xj }. Since D satisfies the triangle inequality, it
follows from the definition of the sets Xu,v and Xv,u that Su,v = Sv,u = ∅ | X for any two
distinct u, v ∈ X with D(u, v) = 0. Thus, it suffices to consider those (u, v) ∈ X × X with
D(u, v) > 0 and, again in view of the definition of the set Xu,v , we then have Su,v ∈ SD .
For each of these pairs (u, v) we use binary search to compute the indices i and j with
I (Su,v) = {xi, xi+1, . . . , xj } in O(log n) time. This yields all the required numbers p(i, j),
1 ≤ i ≤ j < n, in O(n2 log n) time. Then, in view of Eq. 1, we have �(D) = D(Sπ ,ω′),
where we put ω′(S) = p(i, j) for the split S ∈ Sπ with I (S) = {xi, xi+1, . . . , xj }, 1 ≤ i ≤
j < n. The distance D(Sπ ,ω′) can be computed from π and ω′ in O(n2) time (see e.g. [20]
where this and related computational problems on split systems are discussed).

4 Flat Split Systems

The main result of this section (Theorem 3) establishes that maximum flat split systems
that are orderly are necessarily circular. This result implies that, in contrast to circular split
systems, the data analysis process mentioned in the introduction cannot be used directly to
compute networks based on flat split systems such as those described in [14].

We begin by presenting some properties of linearly independent split systems that may
be of independent interest in future work but are mainly provided here to subsequently be
applied to the special case of flat split systems. The next lemma provides a useful link
between the combinatorial structure of a linearly independent split system and the order
distances that it generates. We call two splits A1 | B1 and A2 | B2 of X incompatible, for
short, if they are not compatible. Moreover, we call a split system S on a set X with n ≥ 4
elements closed if for any two incompatible splits A1 | B1 and A2 | B2 in S at least one of
the following holds:

(a) S also contains the splits A1 ∩ A2 | X − (A1 ∩ A2), B1 ∩ A2 | X − (B1 ∩ A2),
A1 ∩ B2 | X − (A1 ∩ B2) and B1 ∩ B2 | X − (B1 ∩ B2).

(b) |A1 ∩A2| · |B1 ∩B2| = |A1 ∩B2| · |B1 ∩A2| and S also contains the split (A1 ∩A2)∪
(B1 ∩ B2) | (A1 ∩ B2) ∪ (B1 ∩ A2).

(c) |A1 ∩A2| · |B1 ∩B2| > |A1 ∩B2| · |B1 ∩A2| and S also contains the splits (A1 ∩A2)∪
(B1∩B2) | (A1∩B2)∪(B1∩A2), A1∩A2 | X−(A1∩A2) and B1∩B2 | X−(B1∩B2).
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(d) |A1 ∩A2| · |B1 ∩B2| < |A1 ∩B2| · |B1 ∩A2| and S also contains the splits (A1 ∩A2)∪
(B1∩B2) | (A1∩B2)∪(B1∩A2), B1∩A2 | X−(B1∩A2) and A1∩B2 | X−(A1∩B2).

Lemma 5 Let X be a set with n ≥ 4 elements and S a linearly independent split system
on X. If S is orderly then S is closed.

The somewhat technical proof of Lemma 5 can be found in Appendix A, where it is
also shown that Lemma 5 together with Theorem 1 yields the following characterization of
orderly split systems amongst all maximum linearly independent split systems on sets with
5 elements.

Proposition 2 A maximum linearly independent split system S on a set X with 5 elements
is orderly if and only if it is circular.

We remark that maximum circular split systems on sets with 4 elements cannot be charac-
terized as in Proposition 2. It would be interesting to know if Proposition 2 can be extended
to all values of n ≥ 5, but we have been unable to find a proof or counter-example. If
we restrict to those maximum linearly independent split systems that are flat, however, we
obtain the following characterization.

Theorem 3 Let S be a maximum linearly independent split system on a set X with n ≥ 5
elements. Then the following properties are equivalent:

(i) S is maximum circular.
(ii) S is maximum flat and orderly.
(iii) S is closed and satisfies the pairwise separation property.

Proof (i) ⇒(ii): Assume that S is a maximum circular split system. Then S is maximum
flat and, in view of Theorem 1, orderly.

(ii) ⇒(iii): Assume that S is a maximum flat split system that is orderly. Then, by
Proposition 1, S satisfies the pairwise separation property and, by Lemma 5, S is
closed.

(iii) ⇒(i): Assume that S is closed and satisfies the pairwise separation property. Then,
by Proposition 1, S is maximum flat. Consider any x ∈ X. We claim that the split
{x} | X − {x} is contained in S .

Consider first the case that there exists some y ∈ X − {x} such that one of the subsets
Ay and By of X, that must exist for x and y according to the pairwise separation property,
are empty. Assume without loss of generality that Ay = ∅. Then, in view of the pairwise
separation property, the split Ay ∪ {x} | By ∪ {y} = {x} | X − {x} is contained in S , as
claimed.

It remains to consider the case that for all y ∈ X − {x} the subsets Ay and By of X

are both non-empty. Then, in view of the pairwise separation property, S contains the two
incompatible splits Sy = Ay ∪ {x} | By ∪ {y} and S′

y = Ay ∪ {y} | By ∪ {x}. Since n ≥ 5,
we have

|(Ay ∪ {x}) ∩ (Ay ∪ {y})| · |(By ∪ {x}) ∩ (By ∪ {y})| = |Ay | · |By |
> |{x}| · |{y}| = |(Ay ∪ {x}) ∩ (By ∪ {x})| · |(By ∪ {y}) ∩ (Ay ∪ {y})|.

Thus, condition (a) or (c) from the definition of closedness must hold for the two splits Sy

and S′
y , for all y ∈ X − {x}.
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If there exists some y ∈ X − {x} such that condition (a) holds for the splits Sy and S′
y

then S contains the split

(Ay ∪ {x}) ∩ (By ∪ {x}) | X − ((Ay ∪ {x}) ∩ (By ∪ {x})) = {x} | X − {x},

as claimed. So, assume that for all y ∈ X − {x} condition (a) does not hold for the splits Sy

and S′
y . Then there must exist two distinct y1, y2 ∈ X − {x} such that condition (c) holds

for the two splits Syi
and S′

yi
, i ∈ {1, 2}. Thus, S contains the split of X into the subsets

((Ayi
∪ {x}) ∩ (Ayi

∪ {yi})) ∪ ((Byi
∪ {x}) ∩ (Byi

∪ {yi})) = Ayi
∪ Byi

and

((Ayi
∪ {x}) ∩ (Byi

∪ {x})) ∪ ((Byi
∪ {yi}) ∩ (Ayi

∪ {yi})) = {x, yi}.

It follows that S contains the two incompatible splits {x, y1} | X − {x, y1} and {x, y2} |
X − {x, y2}. As above, since n ≥ 5, only condition (a) or (c) can hold for these two splits.
In both cases S contains the split

{x, y1} ∩ {x, y2} | X − ({x, y1} ∩ {x, y2}) = {x} | X − {x},

establishing the claim.
Since x was chosen arbitrarily, the maximum flat split system S must contain the split

{x} | X − {x} for all x ∈ X. Therefore, in view of Lemma 3, S is maximum circular.

5 Concluding Remarks

In this paper, we have started to explore which classes of split systems allow to gain infor-
mation about them only knowing the order distances �(D) that indirectly arise through the
distances D that they generate. We expect that further progress on this will require a deeper
understanding of the precise relationship between the space of collections {�x : x ∈ X}
of total preorders that can arise from a particular class of split systems and their associ-
ated preorder split systems. A specific question that remains open is whether or not the
generalization of Proposition 2 to n ≥ 6 is true? Computational experiments that we have
performed on a large number of randomly generated maximum linearly independent split
systems seem to indicate that, at least for n = 6, if counterexamples exist they are very rare.

In another direction, note that an �1-distance D on X, as defined in the introduction,
can usually be generated by many different maximum linearly independent split systems
on X. Therefore, for any �1-distance D, one might hope to always find some split sys-
tem that would generate both D and �(D). However, by an exhaustive search through the
34 isomorphism classes of maximum linearly independent split systems on a set X with
n = 5 elements with a computer program we found the following: For every maximum lin-
early independent split system S on X that is not maximum flat, there exists a non-negative
weighting ω such that for the distance D = D(S,ω) and its associated order distance �(D)

there is no maximum linearly independent split system that generates both D and �(D). It
would be interesting to explore whether or not this is the case in general.

Finally, in future work it could also be worth studying variants of the order distance that
are obtained by employing any of the other distance measures on total preorders considered
in [3]. In particular, it would be interesting to know for which of them the resulting order
distance is guaranteed to be an �1-distance and, if such variants exist, which classes of split
systems are orderly for them.
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Appendix A

Proof of Lemma 1 It remains to show that the upper bound n(n − 1) is tight for all suffi-

ciently large n. To this end, consider a distance D on X such that, for all {u, v} ∈
(

X

2

)
,

the value D(u, v) = D(v, u) is selected independently and uniformly at random from the
set {1, 2}. We now argue that, for sufficiently large n, the probability that |SD| = n(n − 1)

is strictly greater than 0.
By construction, D satisfies the triangle inequality, and D(u, v) > 0 for all {u, v} ∈(
X

2

)
. This implies, in view of the definition of the sets Xu,v and Xv,u, that u ∈ Xu,v ,

v ∈ Xv,u, Su,v ∈ SD and Sv,u ∈ SD . In order to have |SD| = n(n − 1), for any two distinct

{u, v}, {a, b} ∈
(

X

2

)
, the splits Su,v , Sv,u, Sa,b and Sb,a must be pairwise distinct.

Again in view of the definition of the sets Xu,v and Xv,u, Su,v = Sv,u can only hold
if D(u, x) 	= D(v, x) for all x ∈ X. By the construction of D, the probability of this is

at most
(

1
2

)n−2
. Similarly, Su,v = Sa,b implies that Xu,v = Xa,b (renaming the involved

elements of X, if necessary). This can only hold if, for all x ∈ X − {a, b, u, v}, we have
D(u, x) < D(v, x) whenever D(a, x) < D(b, x) and vice versa. By the construction of D,

the probability of this is at most
(

3
4

)n−4
. Applying an analogous analysis for any two of the

four splits Su,v , Sv,u, Sa,b and Sb,a , it follows that the probability that at least two of these
splits coincide is bounded by d · cn for some constants 0 < d and 0 < c < 1. This implies
that the probability of |SD| < n(n − 1) is at most

(
n

2

)
·
((

n

2

)
− 1

)
· d · cn,

which is strictly less than 1 for sufficiently large n, as required.

Proof of Lemma 2 First note that if two splits S1 = A1 | B1 and S2 = A2 | B2 of X are
such that at least one of the intersections A1 ∩ A2, A1 ∩ B2, B1 ∩ A2 and B1 ∩ B2 is empty
then also the restrictions A1 ∩ M | B1 ∩ M and A2 ∩ M | B2 ∩ M of these splits to a subset
M ⊆ X satisfy this property, assuming that these restrictions both form bipartitions of M

into two non-empty subsets at all. Thus, if SD is compatible then SD|M is also compatible
for every 6-element subset M ⊆ X in view of the fact that every split in SD|M must be of
the form A ∩ M | B ∩ M for some split A | B ∈ SD .

It remains to establish that if SD is not compatible then there exists some 6-element
subset M ⊆ X such that SD|M is not compatible. So assume that there exist u, v, u′, v′ ∈ X

with u 	= v and u′ 	= v′ such that the splits Su,v = Xu,v | X − Xu,v and Su′,v′ = Xu′,v′ |
X − Xu′,v′ are incompatible. Then there must exist four distinct elements a, b, c, d ∈ X

with a ∈ Xu,v ∩ Xu′,v′ , b ∈ Xu,v ∩ (X − Xu′,v′), c ∈ (X − Xu,v) ∩ Xu′,v′ and d ∈
(X − Xu,v) ∩ (X − Xu′,v′). Moreover, in view of the definition of the sets Xu,v and Xu′,v′ ,
we have u ∈ Xu,v , v ∈ X − Xu,v , u′ ∈ Xu′,v′ and v′ ∈ X − Xu′,v′ . Therefore, we can
choose the elements a, b, c, d in such a way that |{a, b, c, d} ∪ {u, u′, v, v′}| = 6. Hence
M = {a, b, c, d}∪ {u, u′, v, v′} is a 6-element subset such that SD|M is not compatible.

Proof of Lemma 3 As remarked in [21], the lemma can be proven using graph-theoretical
concepts from [22]. In the following we provide a direct proof for completeness. Consider
an allowable pair (π, κ) such that the maximum flat split system S = S(π,κ) contains all
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splits of the form {x} | X−{x}. We represent the simple allowable sequence of permutations
of X associated with (π, κ) by a wiring diagram W . Since any two wires cross precisely
once, there must exist in W , for all x ∈ X, a unique face that is bounded to the right such
that only the wire associated with x is either below or above that face. We form the sequence
F = (f1, f2, . . . , fn) of these faces obtained by ordering them as they occur from left to
right in W , first those at the bottom of W and then those at the top. The sequence F then
yields a permutation π∗ = (x1, x2, . . . , xn) of the elements in X in view of the fact that
each fi is associated with a unique element xi ∈ X. This is illustrated in Fig. 4.

We claim that every split S = A | B ∈ S fits on π∗. To show this, consider the unique
face f in W that is bounded to the right and has all wires corresponding to elements in
A below it and all wires corresponding to elements in B above it (renaming these sets, if
necessary). Consider the rightmost point q on the boundary of the face f . In q the wires
of two distinct elements u, v ∈ X cross. Let i, j ∈ {1, 2, . . . , n} be such that u = xi

and v = xj . Assume without loss of generality that i < j , that is, u comes before v in
π∗. Then, in view of the fact that any two wires in W cross precisely once, we must have
S = {xi, xi+1, . . . , xj−1} | X − {xi, xi+1, . . . , xj−1}, as required.

To prove Proposition 1, we first show that for a maximum linearly independent split sys-
tem S on X that satisfies the pairwise separation property, linear independence is preserved
in the restriction of S to X − {y}, where the restriction of a split system S on X to a subset
Y ⊆ X is the split system

S|Y = {A ∩ Y | B ∩ Y : A | B ∈ S, A ∩ Y 	= ∅, B ∩ Y 	= ∅}.

Lemma 6 Let S be a maximum linearly independent split system on a set X with n ≥ 3
elements that satisfies the pairwise separation property. Then, for any y ∈ X, the restriction
of S to X − {y} is a maximum linearly independent split system that satisfies the pairwise
separation property.

Proof Fix any y ∈ X. For every c ∈ X − {y} let Ac and Bc denote the two subsets of
X − {y, c} that must exist for the pair {y, c} according to the pairwise separation property.
Consider the set

Sc = {Ac | X − (Ac ∪ {y}), Bc | X − (Bc ∪ {y})}
for each c ∈ X − {y} and put

S↔ =
⋃

c∈X−{y}
Sc.

The set S↔ contains splits of X − {y} and, possibly, also the unordered pair ∅ | X − {y}.

Fig. 4 A wiring diagram displaying the maximum flat split system S = S(π,κ) on X = {a, b, c, d, e} with
π = (a, b, c, d, e) and κ = (4, 1, 2, 3, 1, 4, 2, 1, 3, 2). S contains the split {x} | X − {x} for all x ∈ X,
each corresponding to a unique face that is bounded to the right and has precisely one wire either above or
below it. The sequence (f1, f2, f3, f4, f5) of these faces yields the permutation π∗ = (a, b, c, e, d) of the
elements in X and all splits in S fit on π∗
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We claim that |S↔| ≥ n − 1. To see this, consider the graph G↔ with vertex set S↔ in
which there is an edge between two distinct S, S′ ∈ S↔ if there exists c ∈ X − {y} such
that {S, S′} = Sc. Thus, by construction, G↔ has precisely n − 1 edges, each uniquely
associated with an element c ∈ X − {y}. Moreover, the two splits A | B and A′ | B ′ that
are connected by the edge associated with element c ∈ X − {y} are such that A′ = A − {c}
and B ′ = B ∪ {c} (after naming the subsets involved in a suitable way). In this sense, every
edge of G↔ corresponds to the move of a single element from X − {y} from one subset
in an unordered pair to the other subset in that pair. But this implies that, if G↔ contains a
cycle this cycle must contain all edges of G↔, since otherwise it is impossible to return to
any particular split along that cycle. Hence, G↔ must have at least n − 1 vertices, implying
that |S↔| ≥ n − 1, as claimed.

Next note that |S↔|≥ n − 1 implies that, when restricting S to X − {y}, we obtain at

most

(
n

2

)
− (n− 1) splits of X −{y} in view of the fact that, for every S′ ∈ S↔, there are,

according to the pairwise separation property, at least two distinct splits in S that restrict

to S′. On the other hand, in view of the fact that the square matrix consisting of the

(
n

2

)

column vectors formed by the distances DS for S ∈ S has full rank, the restriction of this
matrix to the rows associated to the pairs of distinct elements x, x′ ∈ X−{y} must have rank(

n

2

)
− (n − 1). But this implies that S|X−{y} must contain at least

(
n

2

)
− (n − 1) splits.

Thus S|X−{y} contains precisely

(
n

2

)
− (n− 1) =

(
n − 1

2

)
splits, implying that S|X−{y}

is a maximum linearly independent split system on X − {y}. That S|X−{y} also satisfies the
pairwise separation property follows immediately from the definition of this property.

To prove Proposition 1 we shall also use [21, Theorem 15] which states that a maximum
linearly independent split system S on a set X with n ≥ 2 elements is a maximum flat
split system if and only if, for every 4-element subset Y ⊆ X, the restriction S|Y contains
precisely 6 splits.

Proof of Proposition 1 In [11] it was remarked that every maximum flat split system sat-
isfies the pairwise separation property. In the following we briefly explain why this is the
case. Let S be a maximum flat split system. Then, by definition, there exists an allowable
pair (π, κ) with S = S(π,κ). We represent the simple allowable sequence of permutations
of X associated with (π, κ) by a wiring diagram W . To show that S satisfies the pairwise
separation property, consider two distinct elements x, y ∈ X. By the definition of a simple
allowable sequence, there exists precisely one point q where the wires associated to x and
y cross in W . Putting A to be the set of those elements in X whose wires are below q and,
similarly, B to be the set of those elements in X whose wires are above q, we obtain the
two subsets of X − {x, y} required by the pairwise separation property. This is illustrated in
Fig. 5.

Next assume that S is a maximum linearly independent split system that satisfies the
pairwise separation property. Then, for n ∈ {2, 3, 4}, the fact that S consists of precisely(

n

2

)
splits immediately implies that S is a maximum flat split system by [21, Theorem 15].

So, assume that n ≥ 5. Then, every 4-element subset Y ⊆ X can be obtained by removing
from X the elements in X − Y one by one. Hence, the restriction S|Y is the last element
of a sequence of restrictions, each to a subset with one element less, and to each such
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Fig. 5 A wiring diagram displaying the maximum flat split system S(π,κ) on X = {a, b, c, d, e} with π =
(a, b, c, d, e) and κ = (4, 1, 2, 3, 2, 4, 1, 3, 2, 3). For the elements c and e we obtain the subsets A = {b}
and B = {a, d} required by the pairwise separation property. The elements in A correspond to those wires
that are below the point q where the wires of c and e cross, and the elements in B correspond to those wires
that are above q. The faces corresponding to the splits A ∪ {c, e} | B, A ∪ {c} | B ∪ {e}, A ∪ {e} | B ∪ {c}
and A | B ∪ {c, e} are shaded gray

restriction Lemma 6 applies. Therefore, S|Y must be a linearly independent split system

on Y containing

(
4
2

)
= 6 splits. But this implies, again by [21, Theorem 15], that S is

maximum flat.

Proof of Lemma 5 If S is compatible then it is trivially closed. So assume that S is orderly
and contains two incompatible splits S1 = A1 | B1 and S2 = A2 | B2. Let ω be the
weighting of S with ω(S1) = ω(S2) = 1 and ω(S) = 0 for all other S ∈ S . We consider the
order distance � = �(D) with D = D(S,ω). Then, putting n1 = |A1 ∩A2|, n2 = |B1 ∩A2|,
n3 = |A1 ∩ B2| and n4 = |B1 ∩ B2|, we have, for all x1 ∈ A1 ∩ A2, x2 ∈ B1 ∩ A2,
x3 ∈ A1 ∩ B2 and x4 ∈ B1 ∩ B2,

�(x1, x2) = n1n4 + 2(n1n2 + n3n4) + n2n3,

�(x1, x3) = n1n4 + 2(n1n3 + n2n4) + n2n3,

�(x1, x4) = 2(n1n4 + n1n2 + n3n4 + n1n3 + n2n4),

�(x2, x3) = 2(n2n3 + n1n2 + n3n4 + n1n3 + n2n4),

�(x2, x4) = n1n4 + 2(n1n3 + n2n4) + n2n3,

�(x3, x4) = n1n4 + 2(n1n2 + n3n4) + n2n3

and, for all other u, v ∈ X, we have �(u, v) = 0. Since S is orderly, there must exist some
non-negative weighting ω′ of S with

� =
∑

S∈S
ω′(S) · DS .

Put S ′ = {S ∈ S : ω′(S) > 0} and C = {A1 ∩ A2, B1 ∩ A2, A1 ∩ B2, B1 ∩ B2}. In view of
�(u, v) = 0 for all u, v ∈ X with {u, v} a subset of one of the sets in C, we must have

S ′ ⊆ {S1, S2, S3, S4, S5, S6, S7} = S∗ with

S1 = A1 ∩ A2 | X − (A1 ∩ A2), S2 = B1 ∩ A2 | X − (B1 ∩ A2),

S3 = A1 ∩ B2 | X − (A1 ∩ B2), S4 = B1 ∩ B2 | X − (B1 ∩ B2),

S5 = A1 | B1, S6 = A2 | B2, S7 = (A1 ∩ A2) ∪ (B1 ∩ B2) | (A1 ∩ B2) ∪ (B1 ∩ A2)

The columns in the following matrix represent the split distances associated with the splits
in S∗, with each row corresponding to an unordered pair of distinct sets in C.
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Removing any column from this matrix yields a matrix of rank 6. This implies that the
split system S∗ is not linearly independent but every 6-element subset of S∗ is. Thus, the
space of solutions (ω1, ω2, . . . , ω7) ∈ R

7 of the equation

� =
7∑

i=1

ωi · DSi

is 1-dimensional. More specifically, these solutions have the form

(n1n4 − α, n2n3 − α, n2n3 − α, n1n4 − α, 2(n1n2 + n3n4) + α, 2(n2n4 + n1n3) + α, α)

with α ∈ R. Only the solutions for α = 0 and α = min(n1n4, n2n3), however, yield �

as a sum of linearly independent split distances. This implies that S ′ must correspond to
one of these solutions and, thus, consist of those 6 splits that receive a positive weight in
that solution. But this implies that S satisfies at least one of the conditions (a)-(d) in the
definition of a closed split system, as required.

Proof of Proposition 2 Let S be a maximum linearly independent split system on a set X

with 5 elements. Then, in view of Theorem 1, if S is circular it is orderly.
It remains to show that if S is orderly then it is circular. So, assume that S is orderly.

Then, in view of Lemma 5, S is closed. Moreover, since S is a maximum linearly indepen-
dent split system, we have |S| = 10. Thus, as any compatible split system on X contains
at most 7 splits, S must contain two incompatible splits S1 and S2. Relabeling the ele-
ments in X, if necessary, we assume without loss of generality that S1 = {a, b} | {c, d, e}
and S2 = {b, c} | {a, d, e}. Then, since S is closed, it must also contain the splits
{b} | {a, c, d, e} and S3 = {d, e} | {a, b, c}. Moreover, in view of |S| = 10, S must con-
tain an additional split S4 = {x, y} | X − {x, y} for a 2-element subset {x, y} ⊆ X with
{x, y} 	∈ {{a, b}, {b, c}, {d, e}}. We consider three cases.

Case 1 : S4 = {a, c} | {b, d, e}. Then S1 and S4 are incompatible. Thus, since S is closed,
we have {a} | {b, c, d, e} ∈ S . Similarly, S2 and S4 are incompatible and, therefore, we
have {c} | {a, b, d, e} ∈ S . Put

S∗ = {S1, S2, S3, S4} ∪ {{x} | X − {x} : x ∈ {a, b, c}}.
For all weightings ω of S∗ we have D(S∗,ω)(d, e) = 0 and D(S∗,ω)(d, x) = D(S∗,ω)(e, x)

for all x ∈ {a, b, c}. Thus, the matrix whose columns are the split distances for the 7 splits
in S∗ has rank at most 6, implying that S∗ ⊆ S is not linearly independent, a contradiction.

Case 2 : S4 = {b, e} | {a, c, d}. (Note that the case S4 = {b, d} | {a, c, e} is symmetric.)
Then S3 and S4 are incompatible. Therefore, since S is closed, {a, c} | {b, d, e} ∈ S . From
this we obtain a contradiction as in Case 1.

Case 3 : S4 = {c, d} | {a, b, e}. (Note that the cases S4 = {c, e} | {a, b, d}, S4 =
{a, d} | {b, c, e} and S4 = {a, e} | {b, c, d} are symmetric.) Then, using again that S is
closed, the fact that S2 and S4 are incompatible implies that the splits {c} | {a, b, d, e} and
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S5 = {a, e} | {b, c, d} are contained in S . Similarly, since S3 and S4 are incompatible, we
have {d} | {a, b, c, e} ∈ S . Since S1 and S5 are incompatible, we have {a} | {b, c, d, e} ∈ S .
And since S3 and S5 are incompatible, we have {e} | {a, b, c, d} ∈ S . Thus, S = Sπ for
the permutation π = (a, b, c, d, e) of the elements in X, implying that S is circular, as
required.
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