Auditory spatial representations of the world are compressed in blind humans

Kolarik, Andrew ORCID:, Pardhan, Shahina, Cirstea, Silvia and Moore, Brian C. J. (2017) Auditory spatial representations of the world are compressed in blind humans. Experimental Brain Research, 235. 597–606. ISSN 0014-4819

[thumbnail of Published_Version]
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (717kB) | Preview


Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music, and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals.

Item Type: Article
Faculty \ School: Faculty of Social Sciences > School of Psychology
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 10 Sep 2021 00:23
Last Modified: 22 Oct 2022 13:30
DOI: 10.1007/S00221-016-4823-1


Downloads per month over past year

Actions (login required)

View Item View Item