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Abstract 

 
In the past years, network meta-analysis (NMA) has been widely used among 

 

clinicians, guideline makers, and health technology assessment agencies, and has 
 

played an important role in clinical decision-making and guideline development. To 
 

inform further development of NMAs, we conducted a bibliometric 
 

analysis to assess the current status of published NMA methodological studies, 

summarized the methodological progress of seven types of NMAs, and discussed the 

current challenges of NMAs. 

Keywords: Network meta-analysis, methodological advances, bibliometric analysis, 

diagnostic test accuracy, individual participant data 

 

 
1. Introduction 

 
Network meta-analysis (NMA), also known as mixed treatment comparison or 

multiple treatments comparison meta-analysis, uses statistical methods to allow 



the simultaneous synthesis of data from a network of trials about more than two 

competing healthcare interventions 1-4. Compared with traditional pairwise meta- 

analysis, NMA has the major advantages in borrowing strength from indirect 

evidence to determine the certainty of all treatment comparisons, allowing for the 

evaluation of the comparative effects that have not been investigated head-to-

head in randomized clinical trials, and potentially producing more reliable and 

definitive results 5-9. Even in the absence of direct evidence, NMA can use 

indirect treatment comparison analyses to provide useful evidence to inform 

healthcare decision-making 10-12. Furthermore, NMA allows for the estimation of the 

relative effectiveness among all interventions, visualization of a larger amount of 

evidence, and ranking of the most effective interventions 13-15. As such NMA has been 

becoming increasingly used in the medical literature and in the health technology 

assessment 16-18. In the past few years, several types of NMA with the development 

of statistical methods have been proposed, such as network meta-analyses of 

diagnostic test accuracy, network meta-analyses of individual participant data, 

component network meta- analysis***. In this review, we conducted a bibliometric 

analysis to assess the current status of published NMA methodological studies, 

summarized the methodological progress of seven types of NMAs, and discussed the 

current challenges of NMAs. This review would provide the key points and resources 

regarding the progress and challenges of NMAs. 



2. Status Quo of Methodological Studies of Network Meta-Analyses 

 
We conducted a comprehensive search of PubMed, Embase, Cochrane Library, 

and Web of Science using search terms of “network meta-analysis”, “mixed treatment 

comparison meta-analysis”, “mixed treatment meta-analysis”, “multiple treatment 

comparison meta-analysis” up to October 2020. Two reviewers independently 

reviewed the titles and abstracts of retrieved records to identify NMA methodological 

studies and then extracted information on the characteristics of eligible studies. 

Disagreements were resolved by discussion with a third reviewer. We defined NMA 
 

methodological studies as studies that focused on any aspects of NMA, including 
 

design, conduct, analysis (eg, including bias, statistical plan and methods) or reporting, 
 

as well as statistical studies (eg, studies testing new algorithms or analytical methods, 
 

simulation studies)19. Finally, we included 454 NMA methodological studies for the 

bibliometric analysis. We used VOSviewer 1.6.16 (Leiden University, Leiden, 

Netherlands) to create visual network maps for countries, and institutions, and 

produce density map for high-frequency keywords. In the visual network maps, 

nodes represent the analytical elements, such as countries, institutions, and 

keywords, and the size of nodes reflects the number of publications or frequency 20-

26. The links between nodes indicate the collaboration or co-occurrence, and 

different colors of nodes and lines represent different clusters or years 27-29. 

2.1 Publication year 

 
Before 2008, there were few NMA methodological publications 



 

each year (Figure 1). The number of publications increased steadily to 12 in 2010. 

Afterwards the number of studies increased rapidly and reached 63 in 2014, 

indicating the remarkable development of NMA  during this period. Since then, the 

annual publication number fluctuated between 36 and 67. In summary, NMA has 

attracted more attention from 2012 to October 2020, when 92.29% (419 studies) of 

all the included studies were published. 

 

 

 
Figure 1. Publication years of NMA methodological studies 

 
2.2 Distribution of Journals 

 
454 NMA methodological studies were published in 118 journals. The journals 

 

contributing to more than 3 NMA methodological studies are displayed in 



Figure 2. Value in Health was the most productive journal with a number of 104 

(22.91%) publications, followed by Research Synthesis Methods (47, 10.35%), Journal 

of Clinical Epidemiology (36, 7.93%), Statistics in Medicine (36, 7.93%), and BMC 

Medical Research Methodology (27, 5.95%). Of the top 10 journals, five were from the 

United Kingdom (UK), four from the United States (USA), and one from the 

Netherlands. The top 5 journals published 250 papers, which accounted for 55.07% of 

the included studies, indicating that these journals have made greater contributions 

to the development of NMA methodology. 

 

 
Figure 2. Journals contributing to more than 3 NMA methodological studies 

 

2.3 Distribution of countries 

 
We extracted all countries participated in the studies. A total of 40 countries were 

 

involved in the publication of NMA methodological research. Table 1 shows the top 



20 countries. The UK was the most productive country with 183 (40.31%) publications. 

The USA ranked second with 146 (32.16%) publications, followed by Canada (85, 

18.72%), Greece (44, 9.69%), Germany (43, 9.47%), Netherlands (38, 8.37%), 

Switzerland (31, 6.83%), France (28, 6.17%), Italy (21, 4.63%), and China (20, 4.41%). 

These figures revealed that the developed countries had an absolute leading position 

in the NMA methodology as only China was a developing one of the top 10 
 

productive countries. Therefore, how to promote the application of these new  

 

methods in developing countries may be a problem that needs to be solved.  

 

Figure 3 shows the collaborative network map of the 40 countries. Of these, 38  

 

countries have formed cooperative relationships with other countries, with Canada,  

 

UK, USA, Greece, and Germany having more collaborations and, locating in the 
 

center of the network. This suggested the development of NMA methodology was  

 

built on close cooperation between different countries.  

 
 

Table 1. The top 20 countries contributing to NMA methodological studies[N(%)] 
 

Rank Country N(%) Rank Country N(%) 

1 UK 183(40.31%) 11 Australia 13(2.86%) 

2 USA 146(32.16%) 12 Sweden 13(2.86%) 

3 Canada 85(18.72%) 13 Japan 11(2.42%) 
4 Greece 44(9.69%) 14 Spain 10(2.20%) 

5 Germany 43(9.47%) 15 Ireland 9(1.98%) 

6 Netherlands 38(8.37%) 16 Belgium 8(1.76%) 

7 Switzerland 31(6.83%) 17 Brazil 7(1.54%) 

8 France 28(6.17%) 18 Poland 6(1.32%) 

9 Italy 21(4.63%) 19 Portugal 6(1.32%) 

10 China 20(4.41%) 20 South Korea 6(1.32%) 

 
 



 



 

 
 

Figure 3. The network map of countries for NMA methodological studies 

 
2.4 Distribution of institutions 

 
Table 2 lists the top 18 institutions contributing to the NMA methodology. The 

 

University of Bristol ranked first in productivity with a total of 58 (12.78%) publications, 

followed by the University of Ioannina (44, 9.69%), University of Leicester (33, 7.27%), 

McMaster University (30, 6.61%), University of York (23, 5.07%), and University of 

 

Toronto (22, 4.85%). A total of 510 institutions contributed to the publication of NMA 

methodological research, but only 9.25% of the institutions published more than five 

studies, with 76.65% of institutions involved in only one publication. This means NMA 

methodology, although widely investigated, is not the main research area in most of 

these institutions. 



 

The network map of institution collaboration which created a minimum of five 
 

 publications is shown in Figure 4. Of 41 institutions which established close cooperative  
 
relationships, most were from developed countries. 

 

Table 2. The top 18 institutions contributed to NMA methodological studies[N(%)] 
 

Rank Institute N(%) Rank Institute N(%) 

1 University of Bristol (UK) 58(12.78%) 10 Stanford University (USA) 15(3.30%) 

2 University of Ioannina (Greece) 44(9.69%) 11 University of Ottawa (Canada) 15(3.30%) 

3 University of Leicester (UK) 33(7.27%) 12 St. Michael Hospital (Canada) 14(3.08%) 

4 McMaster University (Canada) 30(6.61%) 13 University of London (UK) 13(2.86%) 

5 University of York (UK) 23(5.07%) 14 University of Groningen (Netherlands) 12(2.64%) 

6 University of Toronto (Canada) 22(4.85%) 15 University of Oxford (UK) 12(2.64%) 

7 University of Bern (Switzerland) 18(3.96%) 16 AstraZeneca (UK) 11(2.42%) 

8 University of Minnesota (USA) 17(3.74%) 17 Medical Research Council (UK) 11(2.42%) 

 
9 

 
Tufts University (USA) 

 
16(3.52%) 

18 Johns Hopkins Bloomberg School of 

Public Health (USA) 

 
10(2.20%) 



 
 

Figure 4. The network map of institutions for NMA methodological studies 

 
2.5 Distribution of keywords 

 
We identified 1387 keywords from the 454 studies, but 1047 keywords 

 

appeared only one time. The top 10 high- frequency keywords (Figure 5) were network 
 

meta-analysis (177, 38.99%), mixed treatment comparison (115, 25.33%), 

 
inconsistency (96, 21.15%), meta-analysis (90, 19.82%), trial (75, 16.52%), systematic 

 
review (58, 12.78%), consistency (56, 12.33%), indirect comparison (42, 9.25%), 

efficacy (41, 9.03%), and ISPOR task-force (41, 9.03%). These indicated one of the 

main focuses of NMA methodological research may lie on the inconsistency or 

consistency between indirect evidence and direct evidence or 



between different indirect evidence. Other commonly used keywords included meta- 

regression, heterogeneity, models, individual participant data (IPD), and aggregate 

data (AD), corresponding to these frequently investigated areas. 

 

 
Figure 5. The density map of high-frequency keywords for NMA methodological studies 

 
2.6 Top 20 cited papers 

 
We extracted the number of citations of included studies from the Web of Science 

database. The top 20 cited studies are shown in Table 3. Of the 20 most cited 

studies, 50% were published between 2012 and 2013. One study focused on reporting 
 

standards, 16 focused on statistical analysis methods, 1 related to how results are 
 

presented, and 2 focused on evidence quality assessment. More than 1000 citations 



were gained by three studies30-32, 600 to 800 by four studies 16,33-35, and 200 to 500 

by the remaining thirteen studies5,36-47. The top cited study was published by Hutton  

et al 30 in 2015. This study introduced the Preferred Reporting Items for Systematic  

Reviews and Meta-analyses (PRISMA) extension statement for reporting of systematic  

reviews incorporating network meta-analyses (PRISMA-NMA), which has now been  

widely used as a reporting standard for NMA results. The second most cited study  

was conducted by Lu et al31 in 2004, in which the authors proposed a hierarchical  

Bayesian model using the Markov chain Monte Carlo (MCMC) software WinBUGS for  

combining direct and indirect evidence in mixed treatment comparisons. Among the  

top 20 cited NMA methodological studies, the earliest one was published in 1997 by  

Bucher et al 32. This study presented an indirect comparison method that can  

estimate the differences between treatment and placebo in two sets of clinical  

trials while preserving the randomization of the originally assigned patient groups.  

The most recent study was published in 2015 by Rucker et al 47. The authors proposed  

a ranking method in the frequentist framework, called P-scores, an  analogue to  the  

surface under the cumulative ranking curve (SUCRA) in Bayesian NMA  

methodology. This study also revealed that simply ranking treatments based on SUCRA  

or P-scores hads no major advantage compared to ranking treatments by their credible  

or confidence intervals. 

 
Table 3. The top 20 cited NMA methodological studies 



Rank Publication Citation 

1 Hutton B, et al 30. The PRISMA Extension Statement for Reporting of Systematic Reviews 

Incorporating Network Meta-analyses of Health Care Interventions: Checklist  and Explanations. 

ANNALS OF INTERNAL MEDICINE. 2015; 162 (11): 777-784. 

1367 

2 Lu G, et al 31. Combination of direct and indirect evidence in mixed treatment comparisons. 

STATISTICS IN MEDICINE. 2004; 23 (20): 3105-3124. 

1189 

3 Bucher HC, et al 32. The results of direct and indirect treatment comparisons in meta-analysis of 

randomized controlled trials. JOURNAL OF CLINICAL EPIDEMIOLOGY. 1997; 50 (6): 683-691. 

1102 

4 Dias S, et al 16. Checking consistency in mixed treatment comparison meta-analysis. STATISTICS IN 

MEDICINE. 2010; 29 (7-8): 932-944. 

770 

5 Chaimani A, et al 33. Graphical Tools for Network Meta-Analysis in STATA. PLOS ONE. 2013; 8 (10): 

Art. No. e76654 

738 

6 Dias S, et al 34. Evidence Synthesis for Decision Making 2: A Generalized Linear Modeling Framework 

for Pairwise and Network Meta-analysis of Randomized Controlled Trials. MEDICAL DECISION 

MAKING. 2013; 33 (5): 607-617. 

652 

7 Lumley T 35. Network meta-analysis for indirect treatment comparisons. STATISTICS IN MEDICINE. 

2002; 21 (16): 2313-2324. 

648 

8 Salanti G 36. Indirect and mixed-treatment comparison, network, or multiple-treatments meta- 

analysis: many names, many benefits, many concerns for the next generation evidence synthesis 

tool. RESEARCH SYNTHESIS METHODS. 2012; 3 (2): 80-97. 

498 

9 Higgins JPT, et al 37. Consistency and inconsistency in network meta-analysis: concepts and models 

for multi-arm studies. RESEARCH SYNTHESIS METHODS. 2012; 3 (2): 98-110. 

492 

10 Glenny AM, et al 38. Indirect comparisons of competing interventions. HEALTH TECHNOLOGY 

ASSESSMENT. 2005; 9 (26): 1-134, iii-iv. 

404 

11 Puhan MA, et al 39. A GRADE Working Group approach for rating the quality of treatment effect 

estimates from network meta-analysis. BMJ. 2014; 349: Art. No. g5630. 

401 

12 White IR, et al 40. Consistency and inconsistency in network meta-analysis: model estimation using 

multivariate meta-regression. RESEARCH SYNTHESIS METHODS. 2012; 3 (2): 111-125. 

397 

13 Cipriani A, et al 41. Conceptual and Technical Challenges in Network Meta-analysis. ANNALS OF 

INTERNAL MEDICINE. 2013; 159 (2): 130-W54. 

366 

14 Mills EJ, et al 5. Demystifying trial networks and network meta-analysis. BMJ. 2013; 346: Art. No. 

f2914. 

337 

15 Salanti G, et al 42. Evaluating the Quality of Evidence from a Network Meta-Analysis. PLOS ONE. 

2014; 9 (7): Art. No. e99682. 

311 

16 Song FJ, et al 43. Methodological problems in the use of indirect comparisons for evaluating 

healthcare interventions: survey of published systematic reviews. BMJ. 2009; 338: Art. No. b1147. 

248 

17 Jansen JP, et al 44. Is network meta-analysis as valid as standard pairwise meta-analysis? It all 

depends on the distribution of effect modifiers. BMC MEDICINE. 2013; 11: Art. No. 159. 

227 

18 van Valkenhoef G, et al 45. Automating network meta-analysis. RESEARCH SYNTHESIS METHODS. 

2012; 3 (4): 285-299. 

225 

19 Mills EJ, et al 46. How to Use an Article Reporting a Multiple Treatment Comparison Meta-analysis. 

JAMA. 2012; 308 (12): 1246-1253. 

216 

20 Rucker G, et al 47. Ranking treatments in frequentist network meta-analysis works without 

resampling methods. BMC MEDICAL RESEARCH METHODOLOGY. 2015; 15: 58. 

211 



 

3. Methodological Progress of Different Types of Network Meta-Analyses 

 
In our bibliometric analysis, we also identified the development of NMA 

methodology was reflected in seven types of NMA. We provided an overview of the 

methodological progress for each type of NMA. 

3.1 Network meta-analyses of diagnostic test accuracy 

 
Network meta-analysis of diagnostic test accuracy is the combination of meta- 

analysis of diagnostic test accuracy and NMA, which allows simultaneous comparison 

of the diagnostic values of multiple tests 48-50. Trikalinos et al 51 published an article in 

2014, specifying the models for the joint meta-analysis of studies comparing multiple 

diagnostic tests on the same participants in paired designs. These models preserve 

the grouping of data by studies, account for the within-study correlation between the 

tests’ true-positive rates (TPRs, also known as sensitivity) and between their false-

positive rates (FPRs, equivalent to 1-specificity), and allow for between-study 

correlations between TPRs and FPRs (such as those induced by threshold effects) 51. 

The models are mainly applicable when the tests are conducted in the same patients 

with the cross-classification results from several tests provided in a large number of 

studies. However, this method is not suitable for combined diagnostic tests or 

excessive number of diagnostic tests. In 2015, Menten et al52, inspired by mixed-

treatment comparison meta-analyses of randomized controlled trials, proposed a 

model using Bayesian methods that allows for the comparison of the accuracy of two 

diagnostic tests using direct (head-to-head) comparisons as well as indirect 

comparisons through a third test. In addition, the model allows correction of 

imperfect reference tests and can 



incorporate prior knowledge about the diagnostic accuracy of reference tests used. 

However, this method requires sufficient information of the reference tests used 

described in the primary studies. Otherwise, this method may not be applicable. In 

2016, Dimou et al53 presented an extension method of the classic bivariate random-

effects meta-analysis54,55 for the log-transformed sensitivity and specificity for two or 

more diagnostic tests. This method allows for the direct calculation of sensitivity and 

specificity, diagnostic odds ratio, the area under curve, and the parameters of the 

summary receiver operating characteristic curve, along with the means for formal 

comparison of these quantities for different tests. In addition, there is no need for 

individual patient data or the simultaneous evaluation of both diagnostic tests in all 

studies. Nyaga et al56 developed an arm-based hierarchical model (ANOVA model) to 

perform Bayesian NMA of diagnostic test accuracy. This model expresses the logit- 

transformed sensitivity and specificity as the sum of fixed effects for the test and 

correlated study effects to model the inherent correlation between sensitivity and 

specificity. The authors compared the results with those from a contrast-based model 

(expresses the linear predictor as a contrast to a comparator test) and found that the 

arm-based model,  with the use of all available data, yielded narrower credible intervals 

and permitted more straightforward 



interpretation of the parameters 56. Cheng57 extended the HSROC model and 
 

decompose the study-level positivity and accuracy parameters into test-specific effects 
 

representing overall mean positivity and accuracy parameters for each test across 
 

study-types. Hoyer et al58 proposed a four-variable (sensitivity and specificity of 
 

diagnostic test 1, sensitivity and specificity of diagnostic test 2) linear mixed model to 
 

compare the values of two diagnostic tests with a common gold standard. In 2018, 
 

Owen et al59 proposed a bivariate NMA model using MCMC methods to  

 

 incorporate multiple tests and multiple explicit thresholds of the same test. This  

 

model also accounts for the correlations between multiple test accuracy measures  

 

from the same study. However, when information on the thresholds used is not  

 

available, this model is unable to estimate the performance of a test under a  

 

threshold or estimate the full summary receiver operating characteristic (SROC) plots  

 

across different thresholds. Ma et al60 developed a missing data framework and a  

 

Bayesian hierarchical model for NMA of diagnostic tests. Regardless of whether a gold 

 

 standard is available, this model can combines studies with different sets of  

 

candidate tests and takes into account heterogeneity across studies and complex  

 

correlation structure among multiple tests. Lian et al61, in 2019, extended the Bayesian 

 

 hierarchical summary receiver operating characteristic (HSROC) model62 to a NMA of  

 

diagnostic tests to simultaneously compare multiple tests within a missing 



data framework. This method allows different studies to include different subsets of 

diagnostic tests, provides flexibility in the choice of summary statistics, and accounts 

for correlations between multiple tests and heterogeneity between studies. Built on 

the consistency assumption, however, this model  is not suitable where  
 
inconsistency exists between direct evidence and indirect evidence, which was  
 
often observed in diagnostic accuracy studies63. 
 

3.2 Network meta-analyses of individual participant data 

 
Network meta-analyses of individual participant data (IPD-NMA) is a combination 

and extension of individual participant data meta-analysis and NMA, which the 

original data of each participant are required 64,65. IPD- NMAs   can   better   explore 

the   heterogeneity and   inconsistency and, identify interactions of patient-level 

effect modifiers through more flexible subgroup analysis and modelling, thereby 

increasing the applicability of research results, and improving the credibility of the 

results 66-70. In 2012, Saramago et al71 developed a series of novel Bayesian statistical 

mixed treatment comparisons (MTC) models for the simultaneous synthesis of IPD 

and AD, taking into account the study and individual-level covariates and covariate 

effects based on between-study and within-study variability. Jansen72 proposed non-

linear NMA models for combining IPD and AD to reduce bias and uncertainty of direct 

and indirect treatment effects in the presence of heterogeneity. In 2013, Donegan et 

al67 introduced random-effects MTC models to combine IPD and AD for a dichotomous 

outcome. In 2014, Saramago et al73 presented a novel NMA modeling method that 

allows the synthesis of IPD on time to event (with censoring) and AD on event count 

(for a given follow-up time) by assuming an underlying distribution of time 

to healing. In 2015, Hong et al proposed74 a Bayesian IPD NMA modeling framework 



for multiple continuous outcomes under both contrast-based and arm-based 

parameterizations. Thom et al75 proposed a covariate-adjusted random-effects 

Bayesian NMA model that can include single-arm, before-and-after, 

observational studies to complete disconnected networks. In 2016, Saramago et al 76 

described an IPD-NMA model for continuous outcomes using the analysis of 

covariance framework. In 2017, Freeman et al77 provided a computationally practical 
 

and flexible IPD Bayesian NMA model for time-to-event data. In 2018, Freeman et al78 
 

proposed a practical framework to conduct one-stage IPD-NMA with treatment- 
 

covariate interactions. In 2020, Gao et al79 investigated statistical methods and 

assessed the reporting and methodological quality of published IPD-NMAs, which 

indicated the reporting of statistical methods and compliance rates of methodological 

and reporting of IPD-NMAs were suboptimal. Therefore, researchers should 
 

continue to focus on IPD-NMA methodology to improve the quality of IPD-NMA to 

provide the best evidence for clinical practice. 

3.3 Network meta-analyses of survival data 

 
In 2010, Ouwens et al80 proposed a method for NMA of time-to-event data with 



treatment effects based on the shape and scale parameters of parametric survival 

curves, which allows for a better fit to the data and the expected survival of competing 

interventions for cost-effectiveness analysis81. In 2016, Vickers82 compared two  

methods of NMA on survival outcomes (including overall survival and 

progression-free survival) based on aggregated hazard ratios or reconstructed 

patient-level data (using fractional polynomials), respectively. The study showed the 

later method using reconstructed patient-level data had some clear advantages over 

the former method. However, the hazard ratio method may still be the preferred 

method where only Kaplan-Meier charts were reported in the primary studies. 

In 2019, Petit et al83 evaluated whether IPD-NMAs using restricted mean survival 

time difference differed from those using hazard ratios through a case study on 

locoregionally advanced nasopharyngeal carcinomas. This study indicated the use 

of either hazard ratios or restricted mean survival time difference affected the 

results of primary outcomes although the results for secondary outcomes were 

overall in agreement. 

 

3.4 Component network meta-analysis 

 
In 2009, Welton et al84 developed a new NMA method, component network 

 

meta-analysis (CNMA), as an extension of standard NMA that can be used to 
 

disentangle and compare the treatment effects of different components included in 



composite interventions while taking advantage of the whole network of randomized 

evidence 85. In 2019, Rücker et al86 introduced a frequentist analysis approach to 

CNMA, which can be implemented using the open-source R package netmeta. In 2020, 

Rücker et al87 used CNMA models to bridge the gap between two disconnected 

networks of treatments for multiple myeloma and compared the results to those 

obtained using the matching method through single-arm observational studies. The 

CNMA model is suitable for a disconnected network with common components 

shared in different subsets of the network. Currently, CNMA is mainly used to 

evaluate the effects of psychological interventions. In the future, this method may play 

an important role in systematic reviews of complex interventions involving multiple 

components. 

3.5 Dose-response network meta-analyses 

 
In 2013, Giovane et al88 proposed a series of NMA models on  

 

dose-effects accounting for the variability of treatment definitions. In 2015, Owen 
 

et al89 developed a three-level hierarchical NMA model that incorporates dose-related 

constraints using Bayesian MCMC methods. In 2016, Mawdsley et al90 proposed a 

model-based framework network meta-analysis (MBNMA), which not only respects 
 

randomization, but also allows estimation and prediction for multiple agents and a 
 

range of doses. In 2017, the study conducted by Normand et al91 explored the 
 

relationship between duration of exposure and outcomes by IPD-NMA suggesting  

 

combining treatment-exposure curves could help in the assessment of evidence  

 

compatibility from direct and indirect comparisons. In 2021, Hamza et al92 proposed a  

 

Bayesian hierarchical dose-response model with normal or binomial likelihood and  

 

the cluster-specific dose–response model. Pedder et al93 proposed a dose-response 



model-based NMA method that suits disconnected networks through a dose- 

 

response relationship when evidence on multiple doses is available. 

 
3.6 Prediction model network meta-analyses 

 
Predictive models, which can estimate a person’s risk of developing a disease or 

other outcome, have gained increasing use to support decision-making in public health 

and clinical practice 94,95. Several prediction model meta-analysis methods have 

been proposed to assess individual risks of adverse outcomes or to aid in risk-based 

decision making 96-98. However, there are many models but lack of comparative 

research on the accuracy of prediction between different models, resulting in 

poor application of existing models. The prediction model NMA proposed by Haile et 

al99 in 2017, permits concurrent external validation and comparisons of prognostic 

scores using IPD arising from a large-scale international collaboration. 

3.7 Living network meta-analyses 

 
In 2014, Elliott et al100 proposed a method called “living systematic reviews”. 

 

This type of systematic review is continually updated when new evidence becomes  

 

available. In 2017, the Journal of Clinical Epidemiology published a series of studies101- 

 
104 on the methodology of the living systematic reviews.  Topics covered in these 

 

studies included the key issues in  these reviews (including searching, updating  

 

scenarios, production processes, peer review and publication; ), novel methods  

 

(such as text mining, machine learning, and crowd sourcing),; statistical issues  

 

associated with repeated meta-analysis,; and the opportunities to link these 

 

 reviews with living guidelines. Despite many challenges in statistical methods,  

 

production processes, peer review, and publications 100,103, as evidence updates  

 



accelerate, living systematic reviews may play a more important role105.  

 

Nikolakopoulou et al’s study106 in 2018 revealed that it would be earlier for a living 

 

NMA to provide strong evidence against the null hypothesis than the corresponding  

 

updated pairwise meta-analysis. In 2019, the study by Crequit et al107 on the  

 

feasibility of living NMA indicated the analysis of the pace of evidence generation  

 

could help in determining the optimal update frequency. Lerner et al108 developed an  

 

algorithm for automatically screening citations for updating NMAs of randomized  

 

controlled trials. In 2020, the first Cochrane living NMA109 was published, which  

 

compared the efficacy and safety of conventional systemic agents, small molecules,  

 

and biologics for people with moderate-to-severe psoriasis. The current COVID-19  

 

pandemic, witnessed the use of living NMAs to timely produce high-quality evidence  

 

considering the prevention and treatment of COVID-19 to support guideline  

 

developments and clinical practice110,111.  Over this period, living NMA attracted more 

 

attention as a crucial approach to summarize available evidence to respond to the  

 

challenges in the pandemic. 
 

4. Challenges of Network Meta-Analyses 

 
4.1 Data retrieval 

 
NMAs usually include a wide range of interventions for a specific condition, 

 

which requires obtaining all available evidence for a comprehensive review. 

Insufficient searches may fail to identify all existing evidence, resulting in biased 

results 112. Therefore, a comprehensive literature search is essential. For living 
 

NMAs, routine update of the evidence is necessary to obtain new evidence in  

 

time and reflect dynamic evidence. To meet the challenges in updating 



systematic reviews due to increasing number of publications, it is urgent to develop  

 

a convenient automatic screening tool with high sensitivity and specificity to  

 

support NMA updates. For IPD-NMAs, reviewers need to request IPD from the  

 

authors of the original studies or collect through data- sharing platforms113-115.  

 

However, IPD retrieval was generally disappointing, with only 25% to 59.8% of IPD  

 

meta-analyses able to obtain IPD from all included studies 113,115-117. Therefore, more  

 

efforts are still required to improve IPD data sharing. 
 

4.2 Ranking competing treatments 
 

One of the advantages of NMA is that it allows for the ranking of competing 
 

treatments. Several methods available for the ranking. Within a Bayesian framework, 
 

researchers can report the distribution of ranking probabilities (that is, the probability 
 

of being at each possible rank, from best to worst), the mean rank or the surface under 
 

the cumulative ranking curve (SUCRA) 118. For the frequentist framework, authors can 
 

use the P-score 119. However, treatment ranking has gained much criticism over the 
 

last years 120. The main criticisms include: (1) ranking of treatments most often is not 
 

interpreted due to the limitations of the evidence base (such as risk of bias) 121; (2) 
 

rankings may give the false sense that some interventions are superior to others when 
 

the relative effects are in fact not different from the null beyond chance 14,122; (3) the 
 

widely used ranking methods focuses on  the best probability of each treatment 
 

without considering the whole ranking distribution and produces misleading results 
 

121,123. The previous study also has revealed simply ranking treatments based on SUCRA 
 

or P-scores has no major advantage compared to ranking treatments by their point 
 

estimates 119. Therefore, further studies are needed to address these issues. 
 

4.3 Inconsistency assessment 



 

An important aspect of a network meta-analysis is to assess the consistency of 

different sources of evidence. Several methods have been developed to evaluate the 

inconsistency in intervention NMAs, such as ‘design-by-treatment’ model method124, 

node splitting method125. However, methods available for assessing inconsistency in 

NMAs of diagnostic test accuracy are very limited, which deserves more attention. 

 

4.4 Certainty of evidence 
 

The application of NMA results requires an understanding of the quality of the 

evidence. In 2014, the Grading of Recommendations Assessment, Development and 

Evaluation (GRADE) Working Group presented a four-step approach to rate the 

certainty of the evidence from NMA126. Salanti et al127 proposed another NMA 

evidence rating approach (Confidence in Network Meta-Analysis, CINeMA) in 2014, 

Nikolakopoulou et al128 improved this method by introducing the methodological 

framework and application in details. In 2019, the GRADE working group 

presented the guidelines for addressing incoherence and avoiding spurious 

judgments of imprecision in sparse networks when assessing the certainty in the 

evidence from NMA129,130. In 2020, the GRADE working group proposed two 

frameworks, minimally contextualized framework and partially contextualized 

framework, to draw conclusions from an NMA based on the GRADE approach131,132. 

Currently, the GRADE approach has been widely used to assess the quality of 

evidence from aggregated NMAs. However, a previous study showed that only 9.5% 

of the 21 included IPD-NMAs used GRADE to assess the quality of evidence79. 

Therefore, it is necessary to develop more specific methods for assessing the 

quality of evidence to adapt to different types of NMA. 



 
5. Conclusion 

 
In the past few years, the NMA methods have been rapidly developed, and 

 

different types of NMA have been proposed.  Increased use of these methods  

 

would facilitate evidence-based clinical decision- making and guideline development. 
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