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Transposable elements (TEs) are self-replicating genetic sequences and are
often described as important ‘drivers of evolution’. This driving force is
because TEs promote genomic novelty by enabling rearrangement, and
through exaptation as coding and regulatory elements. However, most TE
insertions potentially lead to neutral or harmful outcomes, therefore host
genomes have evolved machinery to suppress TE expansion. Through hori-
zontal transposon transfer (HTT) TEs can colonize new genomes, and since
new hosts may not be able to regulate subsequent replication, these TEs may
proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA trans-
poson into sea kraits (Laticauda), and its subsequent explosive expansion
within Laticauda genomes. This HTT occurred following the divergence of Lati-
cauda from terrestrial Australian elapids approximately 15–25 Mya. This has
resulted in numerous insertions into introns and regulatory regions, with
some insertions into exons which appear to have altered UTRs or added
sequence to coding exons. Harbinger-Snek has rapidly expanded to make up
8–12% of Laticauda spp. genomes; this is the fastest known expansion of TEs
in amniotes following HTT. Genomic changes caused by this rapid expansion
may have contributed to adaptation to the amphibious-marine habitat.
1. Introduction
Transposable elements (TEs) are self-replicating genetic elements that mobilize
themselves across genomes. A substantial proportion of eukaryotic genomes is
composed of TEs, with most reptilian and mammalian genomes comprising
between 30 and 60% [1]. As TEs proliferate within a genome, most insertions
will be either neutral or deleterious [2]. Over evolutionary timescales, the move-
ment of TEs can enable major adaptive change; being exapted as coding and
regulatory sequences, and by promoting both inter- and intra-chromosomal
rearrangements such as segmental duplications, inversions and deletions
through non-allelic homologous recombination (NAHR) [3,4]. Due to the dele-
terious effect of TE expansion, eukaryotes have evolved various defence and
regulatory mechanisms [5–7].

In addition to being vertically inherited, TEs can also invade a new host
through horizontal transposon transfer (HTT). While the exact mechanisms of
HTT are unknown, many instances across eukaryotes have been reported
[8–12]. It is expected that following HTT the expansion of new TEs is slowed
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or halted due to the potentially deleterious effects they can
cause [2,13], and any continued expansion will likely be
slow. For example, following ancient HTT events the BovB
retrotransposon has taken 32–39 My and 79–94 My to colo-
nize between 6 and 18% of ruminant and Afrotheria
genomes, respectively [9,14,15]. However, the rapid expan-
sion of TEs following HTT has previously been noted in
Myotis bats, where hAT transposons expanded to cover
3.3% of the genome over the space of 15 My [16–18].

Here, we report the HTT of a Harbinger DNA transposon,
Harbinger-Snek, into Laticauda, a genus of marine snakes which
diverged from terrestrial Australian snakes 15–25 Mya [19–21].
Since diverging from terrestrial snakes Laticauda transitioned
to amphibious-marine habitats, foraging on coral reefs and
returning to land only to digest prey, mate and lay eggs [22].
Surprisingly, no available strictly terrestrial animal genomes
contained any trace of Harbinger-Snek, with the most similar
sequences identified in sea urchins. Due to the absence of
Harbinger-Snek-like sequences from terrestrial species and
highly similar sequences present in marine species, we pro-
pose Harbinger-Snek was horizontally transferred to Laticauda
from a marine donor genome during habitat transition. Fur-
thermore, since this initial HTT event, Harbinger-Snek has
expanded rapidly within the genomes of Laticauda and now
accounts for 8% of the L. laticaudata assembly and 12% of
the L. colubrina assembly.
2. Methods
All scripts/code/data used and produced can be found at:
https://zenodo.org/record/5140605 [23].

(a) Ab initio repeat annotation of elapids
Using RepeatModeler2 [24], we performed ab initio annotation of
the four Austro-Melanisian elapid genomes: Laticauda colubrina
[25], Notechis scutatus, Pseudonaja textilis and Aipysurus laevis
[26]. To improve the RepeatModeler2 libraries, we manually
classified consensus sequences over 200 bp using a BLAST,
extend, align and trim method, described by Galbraith et al. [27].

(b) Identification of horizontal transfer and potential
source/vectors

To identify any TEs restricted to a single lineage of elapid, we
searched for all TEs identified by RepeatModeler2 using
BLASTN (-task dc-megablast) [28] in the three other assemblies,
as well assemblies of the Asian elapids Naja naja [29] and
Ophiophagus hannah [30]. TEs present in high numbers in a
species, but not present in the other elapids, were considered
HTT candidates. This yielded a high copy number of Harbinger
elements in L. colubrina. To rule out contamination, we searched
for this element in a L. laticaudata genome assembly [25]. Using
RPSBLAST [31] and the Pfam database [32], we identified
Harbinger copies with intact protein-coding domains.

To identify potential source or vector species, we searched all
metazoan RefSeq genomes with a contig N50 of at least 10 kbp
with BLASTN (-penalty -5 -reward 4 -out -word_size 11 -gapopen
12 -gapextend 8) (electronic supplementary material, table S1). In
species containing similar elements, we created consensus
sequences using the aforementioned BLAST, extend, align and
trim method. As we had identified similar Harbinger elements in
fish, bivalves and echinoderms from RefSeq, we repeated this pro-
cess for all GenBank assemblies of other species from these clades
with a contig N50 of at least 10 kbp.
We identified transposase domains present in curated
Harbinger sequences and all autonomous Harbinger elements
available from Repbase [33] using RPSBLAST [31] and the
Pfam database [32]. Using MAFFT (–localpair) [34], we created
a protein multiple sequence alignment (MSA) of identified trans-
posase domains. After trimming the MSA with Gblocks [35], we
constructed a phylogenetic tree using FastTree [36] and from this
tree chose an appropriate outgroup to use with curated elements.
We subsequently constructed a protein MSA of the curated trans-
posases using MAFFT, trimmed the MSA with Gblocks and
created a phylogeny using IQ-TREE 2 (-m MFP -B 1000), which
selected TVMe + I + G4 as the best model [37–39]. For compari-
son, we also created phylogenies using the same MSA with
MrBayes and RAxML [40,41]. To compare the repeat and species
phylogenies, we created a species tree of major sampled animal
taxa using TimeTree [42].

(c) Potential interaction of Harbinger-Snek with genes
Using the improved RepeatModeler2 libraries and the Repbase
(-lepidosaur) library, we used RepeatMasker [43] to annotate
the two species of Laticauda. Using Liftoff [44], we transferred
the No. scutatus gene annotation from RefSeq [45] to the
L. colubrina and L. laticaudata genome assemblies. To identify
Harbingers in genes, exons and regulatory regions we intersected
the RepeatMasker intervals and transferred gene intervals using
plyranges [46]. To test for potential effects of these insertions on
biological processes and molecular functions in Laticauda, we ran
PANTHER overrepresentation tests [47] of each using Anolis caroli-
nensis as a reference with genes annotated in Laticauda as a filter.

(d) Continued expression of Harbinger-Snek
To test if Harbinger-Snek is expressed in L. laticaudata, we aligned
raw RNA-seq reads from vomeronasal organ, tongue, nasal
cavity and liver tissue from Kishida et al. [25] (BioProject
PRJDB7257) to the L. laticaudata genome using STAR [48].
Using IGV [49], we examined the alignments, examining intact
Harbinger-Snek TEs and exons of genes in which we had
identified Harbinger insertions.
3. Results and discussion
(a) Harbinger-Snek is unlike transposons seen in

terrestrial elapid snakes
Our ab initio repeat annotation revealed a novel Harbinger
DNA transposon in L. colubrina, Harbinger-Snek. Using
BLASTN, we found Harbinger-Snek present in both L. colubrina
and L. laticaudata, but failed to identify any similar sequences
in terrestrial relatives. Harbingers are a superfamily of transpo-
sons encoding two proteins, a transposase and a Myb-like
DNA-binding protein [50]. While both are necessary for
transposition [51], we identified multi-copy variants of
Harbinger-Snek which encoded only one of the two proteins,
going forward referred to as solo-ORF variants. These
variants likely result from large deletions and may be non-
autonomous. In addition, we identified many short
non-autonomous variants which retain the same target site
duplications and terminal motifs, yet encode no proteins.

(b) Harbinger-Snek was horizontally transferred to
Laticauda

Harbingers have previously been reported in a wide variety of
aquatic vertebrates including fish and some crocodilians and

https://zenodo.org/record/5140605
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Table 1. The expansion of Harbinger elements in Laticauda spp. This dramatic expansion (cells with grey background), along with that of LTR elements, in
L. colubrina has contributed to L. colubrina having a larger genome than terrestrial species. This increase is due to the expansion of Harbinger-Snek alone as
they account for over 99.7% of the Harbingers present in each Laticauda assembly. This gain in L. laticaudata appears to have been offset to some degree by
loss from other TE families. Mbp or percentage difference in assembly repeat content between Laticauda and the average of the terrestrial Notechis scutatus and
Pseudonaja textilis. Repeat content was annotated using RepeatMasker [43] using a combined Repbase [33] and curated RepeatModeler2 [24] library.

Notechis Pseudonaja L. colubrina L. laticaudata

retrotransposons diff. Mbp (%) diff. Mbp (%)

SINEs (Mbp) 25.81 25.34 24.31 −1.27 (−0.06%) 24.57 −1.00 (−0.06%)
Penelopes (Mbp) 33.19 33.08 42.34 +9.20 (0.45%) 45.28 +12.15 (0.78%)

LINEs (Mbp) 277.65 266.79 262.89 −9.33 (−0.46%) 235.46 −36.76 (−2.36%)
LTR elements (Mbp) 175.52 174.59 202.06 +27 (1.33%) 131.33 −43.73 (−2.81%)
DNA transposons

hAT (Mbp) 88.63 83.87 79.33 −6.92 (−0.34%) 77.62 −8.63 (−0.55%)
Tc1/Mariner (Mbp) 61.56 56.27 57.80 −1.11 (−0.05%) 55.43 −3.48 (−0.22%)
Harbinger (Mbp) 0.44 0.41 229.84 +229.42 (11.33%) 126.84 +126.42 (8.11%)

Helitrons (Mbp) 3.24 3.19 3.09 −0.13 (−0.01%) 3.01 −0.20 (−0.01%)
unclassified (Mbp) 165.40 156.35 140.72 −20.15 (−1.00%) 134.11 −26.77 (−1.72%)
total TEs (Mbp) 798.05 766.60 999.63 +217.30 (10.73%) 788.05 5.72 (0.37%)

assembly size (Mbp) 1665.53 1590.04 2024.69 +396.91 (19.60%) 1558.71 −69.01 (−4.43%)
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testudines, but not in solely terrestrial vertebrates [33]. Our
repeat annotation of the Laticauda, Aipysurus, Notechis and
Pseudonaja assemblies revealed Harbingers to be the dominant
TE superfamily in both Laticauda species examined (table 1).
As 99.7% of all Harbingers in the two Laticauda assemblies
were Harbinger-Snek, this dominance is due solely to the
expansion of Harbinger-Snek (electronic supplementary
material, table S2). The absence of Harbinger-Snek from terres-
trial relatives suggested it was horizontally transferred into
the ancestral Laticauda genome, and our search of over 600
metazoan genome assemblies identified similar sequences
only in echinoderms, bivalves and teleosts. We are aware
that available genome sequences reflect taxonomically
biased sampling, and this will have affected the species
where we have detected similar TEs.

The nucleotide sequences most similar to Harbinger-Snek
were identified in the purple sea urchin, Strongylocentrotus
purpuratus, and were approximately 90% identical to the
transposase coding region and approximately 88% identical
to the DNA-binding protein. Based on (i) high numbers of
Harbinger-Snek in both species of Laticauda sampled and (ii)
similar sequences only present in marine species, we con-
clude that Harbinger-Snek was likely horizontally transferred
to Laticauda following their divergence from terrestrial
snakes 15–25 Mya, and prior to the crown group divergence
of the eight recognized species in Laticauda (spanned by
L. colubrina and L. laticaudata) approximately 15 Mya [19].

Our phylogenetic analysis (figure 1) of similar Harbinger
transposase sequences placed Harbinger-Snek in a strongly
supported cluster with Harbingers found in two sea urchins,
S. purpuratus and Hemicentrotus pulcherrimus (order Echi-
noida). In addition, the species that cluster together
elsewhere on the tree are not closely related, for example,
the sister cluster to the Laticauda-Echinoidea cluster contains
a variety of fish and bivalve species. The mismatch of the
species tree and the transposase tree suggests the horizontal
transfer of Harbinger-Snek-like transposons may be wide-
spread among these marine organisms. Interestingly, neither
Echinoida assembly contained more than 10 Harbinger-Snek-
like transposons, none of which encode both proteins.
H. pulcherrimus Harbinger-Snek-like transposons only con-
tained the transposase ORF, while the S. purpuratus
assembly contained Harbinger-Snek-like transposons encoding
either the transposase or the DNA-binding protein.

(c) Harbinger-Snek expanded rapidly in Laticauda and is
now much less active

Both the RepeatMasker annotation and BLASTN searches
revealed a massive expansion of Harbinger-Snek in both Lati-
cauda species, making up 8% of the L. laticaudata assembly
and 12% of the larger L. colubrina assembly (electronic sup-
plementary material, table S2). To become established
within a host genome following horizontal transfer, TEs
must rapidly proliferate, or become lost due to genetic drift
or negative selection [52]. To our knowledge, the largest pre-
viously described expansion of DNA transposons in
amniotes following HTT is that of hATs in the bat Myotis luci-
fugus [16–18]. Following HT approximately 30 Mya, hAT
transposons quickly expanded over 15 My at an estimated
rate of approximately 0.7 Mbp My−1 and currently make up
approximately 3.3% of the M. lucifugus genome. Using the
upper bound of Harbinger-Snek’s transfer of 25 My (directly
after their divergence from terrestrial Australian snakes), we
calculate Harbinger-Snek to have expanded in L. colubrina at
a rate of 11.3 Mbp My−1 and in L. laticauda a rate of
8.12 Mby/My. Therefore, our finding is the largest described
expansion of a TE in an amniote following HTT.

Mass expansion of existing TEs during speciation has pre-
viously been seen in many groups including primates [53],
woodpeckers [54] and salmonids [55]. By making the
genome more dynamic, these expansions may have fostered
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Figure 1. The absence of Harbinger-Snek from terrestrial vertebrates and its highest similarity to Harbingers present in sea urchins support its horizontal transfer to
Laticauda since transitioning to a marine habitat. Nodes without support values have support of 95% or higher. The distribution of species across this tree suggests
Harbinger-Snek-like transposons were horizontally transferred between a wide variety of species. This figure is an extract of a maximum-likelihood phylogeny con-
structed from the aligned nucleotide sequences of the transposases present in curated elements using IQ-TREE 2 [37], for the full tree see electronic supplementary
material, figure S1. We also reconstructed trees with similar topologies using RAxML and MrBayes (see methods). Clade phylogeny constructed with TimeTree [42].
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Masker [43].
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rapid adaptations. The sharp peak in the divergence profile
(figure 2) indicates Harbinger-Snek’s expansion was rapid,
and the small number of near-identical copies suggests
expansion has slowed massively, especially in L. laticaudata.
Many more apparently complete and potentially intact
copies of Harbinger-Snek are present in the L. colubrina assem-
bly than the L. laticaudata assembly, with only one fully intact
copy in L. laticaudata, but 269 in L. colubrina. Our alignment of
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L. laticaudata RNA-seq data from four tissues (vomeronasal
organ, nasal cavity, tongue and liver) to the L. laticaudata
genome revealed reads mapping across both coding regions
of the intact copy of Harbinger-Snek. Therefore, Harbinger-
Snek and its non-autonomous derivatives may still be
transposing in L. laticaudata.

In addition to containing many more intact copies of the
full element, Laticauda colubrina also contains a higher
number of the solo-ORF variants than L. laticaudata, with
2263 intact transposase-only variants compared to 35, and
452 intact DNA-binding protein only variants compared to
six. Based on this stark contrast, since divergence approxi-
mately 15 Mya [19] L. colubrina has maintained a higher rate
of Harbinger-Snek expansion, or L. laticaudata has had a higher
rate of Harbinger-Snek loss or has more efficiently suppressed
expansion.

(d) The accordion model—the expansion of Harbinger-
Snek has been balanced by loss in L. laticaudata

The peak in Harbinger-Snek expansion in L. colubrina is both
higher and more recent than L. laticaudata (figure 2). In
addition, L. laticaudata has a much lower overall Harbinger-
Snek content and genome size (table 1). Past observations in
birds, mammals and squamates found increases in genome
size due to transposon expansion are balanced by loss due
to deletions through NAHR [56,57]. We expect that the
mass expansion of Harbinger-Snek in Laticauda has generated
many near-identical sites in the genome, in turn promoting
NAHR. In spite of the explosive expansion of Harbinger-
Snek in L. laticaudata, the genome size and total TE content
is very similar to that of the terrestrial Pseudonaja and Notechis
(table 1). This retention of a similar genome size is not seen in
L. colubrina, the genome assembly of which is 20% larger than
the terrestrial species. However, the overall TE content of the
L. colubrina genome remains similar to that of L. laticaudata
and the terrestrial species, with the expansion of TEs only
contributing half of the total increase in genome size. This
is consistent with the aforementioned expectation of
balancing of TE expansion by deletions.

(e) Expansion of Harbinger-Snek has potentially
impacted gene function

In both species of Laticauda, many insertions of Harbinger-
Snek overlap with or are contained within exons, regulatory
regions and introns. Insertions overlapped with the exons
of 56 genes in L. colubrina and 31 in L. laticaudata, 17 of
which are shared (electronic supplementary material, table
S3). By manually inspecting transcripts mapped to the
L. laticaudata genome, we determined eight 3’ UTRs and two
coding exons predicted by Liftoff now contain Harbinger-Snek
insertions which contribute to mRNA (electronic supplemen-
tary material, table S3). These genes have a wide range of
functions, many of which could be significant in the context
of adaptation. Of note, a fragmented insertion of Harbinger-
Snek present in GTP Binding Protein 1 (GTPBP1) appears to
have altered an ORF. Because GTPBP1 plays a role in regulat-
ing circadian mRNA stability [58], this could be consequential
for aquatic adaptation.

We also identified insertions into 1685 and 888 potentially
regulatory regions (within 5 kbp of the 5’ UTR in genes) and
into introns of 4141 and 1440 genes in L. colubrina and
L. laticauda, respectively. PANTHER over/under-representation
tests of these in gene and regulatory region insertions identified
a number of pathways of potential adaptive significance (elec-
tronic supplementary material, table S4–S7). Therefore,
Harbinger-Snek is a prime candidate in the search for genomic
changes responsible for Laticauda’s adaptation to a marine
environment through altered gene expression.
4. Conclusion
In this report, we describe the rapid expansions of Harbinger-
Snek TEs in Laticauda spp., which is to our knowledge, the
fastest expansion of a DNA transposon in amniotes reported
to date. The large number of insertions of Harbinger-Snek into
exons and regulatory regions may have contributed to specia-
tion and adaptation to a new habitat. As the HTTwas prior to
the divergence of eight Laticauda species, Harbinger-Snek pre-
sents a unique opportunity to reconstruct subsequent
molecular evolution and determine the impact of HTT on
the adaptation of Laticauda to the amphibious-marine habitat.
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