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To present time-varying evidence, cumulative meta-analysis (CMA) updates

results of previous meta-analyses to incorporate new study results. We investi-

gate the properties of CMA, suggest possible improvements and provide the

first in-depth simulation study of the use of CMA and CUSUM methods for

detection of temporal trends in random-effects meta-analysis. We use the stan-

dardized mean difference (SMD) as an effect measure of interest. For CMA, we

compare the standard inverse-variance-weighted estimation of the overall

effect using REML-based estimation of between-study variance τ2 with the

sample-size-weighted estimation of the effect accompanied by Kulinskaya–
Dollinger–Bjørkestøl (Biometrics. 2011; 67:203–212) (KDB) estimation of τ2.

For all methods, we consider Type 1 error under no shift and power under a

shift in the mean in the random-effects model. To ameliorate the lack of power

in CMA, we introduce two-stage CMA, in which τ2 is estimated at Stage 1

(from the first 5–10 studies), and further CMA monitors a target value of effect,

keeping the τ2 value fixed. We recommend this two-stage CMA combined with

cumulative testing for positive shift in τ2. In practice, use of CMA requires at

least 15–20 studies.
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Highlights

What is already known
• Cumulative meta-analysis is a popular method of evaluating and monitoring

temporal changes in accumulating evidence. Statistical evaluation of CMA
is especially relevant because of the growing popularity of living systematic
reviews.

• Repeated testing of the overall effect in CMA results in inflation of the Type
1 error rate. However, the amount of this inflation was not yet sufficiently
quantified; it depends on the particular effect measure and on the choice of
estimators.
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What is new
• In extensive simulations for CMA of SMD δ, we observed considerable, and

continuously increasing with addition of further studies, negative biases of
the inverse-variance-weighed overall effect. In contrast, the sample-size-
weighted overall effect is almost unbiased.

• This bias produces much larger inflation of the Type 1 error rate for IV
REML in comparison with SSW KDB. The use of inverse-variance-weighted
estimation of SMD is not recommended in CMA.

• A shift in the mean effect results in a very slow change of the overall effect
in CMA, but in a considerable and rapid change in the estimated between-
study variance τ2. This change reduces the power of CMA.

• To increase the power of CMA, we introduced a two-stage CMA, in which
τ2 is estimated in Stage 1 without further re-estimation in Stage 2. This two-
stage CMA with the sample-size-weighted overall effect performs better
than the standard CMA and is recommended.

• A new CMA method based on re-estimation of τ2 using the QP-based test is
also useful when τ2 is small. We recommend use of both new methods
simultaneously.

• We also provide tables enabling choice of significance levels.

Potential impact for RSM readers outside the authors’ field
• For CMA of SMD, we recommend the two-stage analysis based on SSW,

used simultaneously with a QP-based test for shift in between-study
variance.

• CMA of SMD has rather low power, which is reduced by inertia of the
cumulative estimation and by heterogeneity of the data. At least 15–20 stud-
ies are required for CMA to be useful in practice.

1 | INTRODUCTION

Meta-analysis, a statistical methodology that combines
estimated effects from multiple studies on the same topic,
to arrive at an evidence-based overall effect, had revolu-
tionized many scientific fields, helping to establish evi-
dence-based practices and to resolve seemingly
contradictory research outcomes.1 The conduct of meta-
analysis provides a snapshot of evidence at one time point,
but the evidence is not static: as it accumulates, new stud-
ies often challenge the results of previous studies. If the
evidence changes over time, the conclusions of meta-anal-
ysis will strongly depend on when the review was con-
ducted, and any policy-relevant recommendations derived
from it will quickly go out of date.1,2

Numerous studies have shown that substantial
changes over time in the magnitude, the statistical signif-
icance, and even the sign of the reported effects are
common in numerous disciplines, from biomedical
research2–5 to social sciences,6–9 ecology and evolutionary
biology,10–13 and information systems.14 These temporal
trends could be caused by changes in the true effect,
changes in study characteristics that influence the effect

(known as moderators in meta-analysis) or biases (e.g.,
delay in the publication of studies with nonsignificant
results).10,15

Temporal trends are typically visually explored and often
formally detected through cumulative meta-analysis (CMA),
introduced by Lau et al.16 CMA is a process of updating the
results of an existing meta-analysis to incorporate new study
results. It is one of the most popular ways to present time-
varying evidence.4,17,18 Other methods for detecting temporal
trends are reviewed in Trikalinos and Ioannidis,19

Kulinskaya and Koricheva,20 and Koricheva et al.21 Until
recently, CMA was applied to systematic reviews identified
to be in need of updating.22,23 But the use of CMA has grown
substantially because of the growing popularity of living sys-
tematic reviews, online summaries updated as new research
becomes available.24 CMA also provides a graphical repre-
sentation of shifts in evidence associated with other factors
such as sample size, precision, or study quality.25,26

It is well understood that the repeated testing inher-
ent in CMA inflates Type 1 error. This inflation was stud-
ied by simulation by Whitehead,27 Hu et al.,28 and
Thorlund et al.29 among others; but, to our knowledge, it
was not systematically quantified. A number of methods
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addressing this issue are based on methodology originally
developed for sequential clinical trials.30–33 Another
approach uses quality control methods, in particular
CUSUM charts.20 However, the use of the random-effects
model in CMA requires consecutive re-estimation of the
between-study variance τ2 as well as the overall effect δ,
and makes both classes of methods problematic.34,35

In this paper, we investigate the properties of CMA, sug-
gest possible improvements, and provide an in-depth simu-
lation study of the use of CMA and CUSUM methods for
detecting temporal trends in random-effects meta-analysis.
We use the standardized mean difference (SMD) as the
effect measure. For CMA, we consider both the standard
inverse-variance-weighted estimator of the overall effect (δ)
with REML-based estimation of the between-studies vari-
ance (τ2) and a sample-size-weighted (SSW) estimator of
δ combined with the Kulinskaya–Dollinger–Bjørkestøl36

(KDB) estimator of τ2, recommended by Bakbergenuly
et al.37 For all methods, we consider Type 1 error under
no shift and power under a shift in the mean.

The requisite statistical methods are described in Sec-
tion 2. Section 3 examines the properties of CMA and
identifies the problems caused by gross overestimation of
τ2 resulting from a shift in the mean. Therefore, we sug-
gest cumulative testing of τ2. Also, we modify CMA in
the spirit of quality control methods. At Stage 1 (the first
5–10 studies), we estimate both δ and τ2, and then we
‘monitor’ known or estimated in Stage 1 value of effect,
keeping the estimated value of τ2 fixed. Section 4 presents
the design and results of our simulations for standard
and two-stage CMA methods and for CUSUM charts.
Section 5 applies the methods to data on species richness,
and Section 6 concludes with discussion. Our full
simulation results are available as e-print.38 R procedures
implementing the proposed methods of CMA are avail-
able in the file CMA for SMD.txt and examples and R
scripts of their use are provided in Appendices S3 and S4.

2 | PRELIMINARIES

2.1 | Study-level estimation of SMD

Consider a meta-analysis of k comparative studies, each
consisting of two arms, treatment (T) and control (C),
with sample sizes niT and niC. The total sample size in
study i is ni ¼niT þniC, and the ratio of the control
sample size to the total is denoted by qi ¼ niC=ni. The sub-
ject-level data in each arm are assumed to be normally
distributed with means μiT and μiC and equal variances
σ2i . The sample means are xij, and the sample variances
are s2ij, for i¼ 1,…,k and j¼C or T.

The SMD effect measure is

δi ¼ μiT �μiC
σi

:

The unbiased estimator of δi, sometimes called Hedges's g
or Hedges's d, is

gi ¼ J mið ÞxiT � xiC
si

, ð1Þ

where mi ¼niT þniC�2, and J mð Þ¼Γ m
2

� �
=
ffiffiffi
m
2

p
Γ m�1

2

� �
,

often approximated by 1�3= 4m�1ð Þ, corrects for bias.39
The standard deviation, σi is estimated by the square root
of the pooled sample variance

s2i ¼
niT �1ð Þs2iT þ niC�1ð Þs2iC

niT þniC�2
:

The variance of gi is Var gið Þ¼ eni�1þδ2i =2 niT þniCð Þ,
where eni ¼niTniC= niT þniCð Þ is the effective sample size
in study i. An unbiased estimator of this variance is39

v2i ¼ eni�1þ 1� mi�2ð Þ
miJ mið Þ2

 !
g2i : ð2Þ

The sample SMD gi has a scaled non-central t-distribu-
tion on mi d.f. and non-centrality parame-
ter niqi 1�qið Þ½ �1=2δi:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

niqi 1�qið Þp
J mið Þ gi � tmi niqi 1�qið Þ½ �1=2δi

� �
: ð3Þ

2.2 | Standard random-effects model

In meta-analysis of k studies, the standard random-effects
model assumes approximately normal distributions of
within- and between-study effects. For a generic measure
of effect,

δ̂i �N δi,σ2i
� �

and δi �N δ,τ2
� �

, ð4Þ

resulting in the marginal distribution δ̂i �N δ,σ2i þ τ2
� �

. δ̂i
is the estimate of the effect in Study i, and its within-
study variance is σ2i , estimated by σ̂2i , i¼ 1,…,k. τ2 is the
between-study variance, estimated (from k studies) by τ̂2k.
The overall effect δ¼ δ kð Þ can be estimated from k studies
by the weighted mean
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δ̂IV kð Þ ¼
Pk
i¼1

ŵi τ̂
2
k

� �
δ̂i

Pk
i¼1

ŵi τ̂
2
k

� � , ð5Þ

where the ŵi τ̂
2
k

� �¼ σ̂2i þ τ̂2k
� ��1

are inverse-variance (IV)
weights. The fixed-effect (FE) model assumes that τ2 � 0,
and the estimator δ̂FE kð Þ uses the IV weights ŵi ¼ ŵi 0ð Þ.

The variance of δ̂IV kð Þ is routinely estimated by

V̂ar δ̂IV kð Þ
� �¼ Xk

i¼1

ŵi τ̂
2
k

� �" #�1

: ð6Þ

The standard confidence interval for the overall effect δ kð Þ
uses the IV point estimator as its centre, and its half-
width equals the estimated standard deviation (square
root of the variance (6)) times the critical value from the
normal distribution.

2.3 | Point and interval estimation of τ2

Because the ŵi τ̂
2
k

� �
in Equation (5) involve τ̂2k, we need to

choose an estimator of τ2. It is well known that the maxi-
mum likelihood estimator of τ2 is biased, and the
restricted maximum-likelihood (REML) estimator is a
good choice.40 We use τ̂2REML in the IV estimator of δ and
the Q-profile (QP) method41 for the accompanying inter-
val estimator of τ2. For SMD, this method is one of the
best traditional methods.37

The Q-profile confidence interval can be obtained
from the lower and upper quantiles of FQ, the approxi-
mate cumulative distribution function of Cochran's Q sta-
tistic42 Q τ̂2

� �¼Pŵi τ̂
2

� �
δ̂i� δ̂IV
� �2

:

Q τ2L
� �¼FQ;1�α=2, Q τ2U

� �¼FQ;α=2: ð7Þ

The lower and upper confidence limits, τ2L and τ2U , can be
calculated iteratively. This Q statistic is often assumed to
have a Chi-square distribution with k�1 degrees of free-
dom when τ2 ¼ 0; FQ ¼ χ2k�1 in the original Q-profile
method.41 However, χ2k�1 is an adequate approximation
only for very large sample sizes.

For SMD, Kulinskaya et al.36 derived O 1=nð Þ correc-
tions to moments of Q and suggested using the Chi-
square distribution with estimated degrees of freedom
based on the corrected first moment of Q to approxi-
mate its distribution. Bakbergenuly et al.37 proposed an
estimator of τ2, τ̂2KDB, based on this improved
approximation.

An accompanying KDB confidence interval for τ2

combines the Q-profile approach and the improved
approximation by Kulinskaya et al.36 Bakbergenuly
et al.37 demonstrated by simulation that τ̂2KDB is less
biased than REML for small sample sizes (n<100), espe-
cially for k≥ 10, and both estimators become almost
unbiased from n¼ 100. Both the QP and the KDB confi-
dence intervals for τ2 have too high coverage for τ2 near
zero. For larger τ2, QP performs well, and the KDB inter-
val may be somewhat too liberal for small n.

Confidence intervals for τ2 are related to tests of the
null hypotheses τ2 ¼ τ20. Values of τ20 beyond the esti-
mated confidence limits τ̂2L, τ̂

2
U

� �
are rejected by a two-

sided α-level test, and values below the lower bound of
the one-sided interval τ̂2L,∞

� �
are rejected by a one-sided

α=2-level test in favour of τ2 > τ̂2L. We refer to these tests
as QP and KDB.

2.4 | Point and interval estimators of δ

Traditional CMA based on REML uses τ̂2REML in δ̂IV kð Þ (5)
and in its estimated variance (6), in combination with the
critical values from the normal distribution. We refer to
this method as IV REML.

For SMD, the estimated effects δ̂i (1) and their esti-
mated variances v2i (2) are not independent. Because of
this, the IV estimates of the overall effect δ̂IV kð Þ are biased.
Use of non-random weights eliminates this bias. The use
of effective-sample-size weights (SSW) for estimation of
δ, suggested by Hedges and Olkin,43,p.110 was explored
and found superior to IV weights in a comprehensive
simulation study by Bakbergenuly et al.37

These weights depend only on the studies' arm-level
sample sizes: wi ¼ eni ¼ niTniC= niT þniCð Þ; eni is the effec-
tive sample size in Study i. They coincide with the
inverse-variance weights when gi ¼ 0 in (2). We refer to
the estimator of δ of the form (5) with these weights as
SSW and denote it by δ̂SSW. The interval estimator
corresponding to SSW (SSW KDB) uses the SSW point
estimator as its centre, and its half-width equals the esti-
mated standard deviation of SSW under the random-
effects model times the critical value from the t-distribu-
tion on k�1 degrees of freedom. The estimator of the
variance of δ̂SSW is

V̂ar δ̂SSW
� �¼Pen2

i v2i þ τ̂2KDB
� �Penið Þ2 , ð8Þ

in which v2i comes from Equation (2).
Once more, we refer to the tests of the hypothesis

δ¼ δ0 based on the respective confidence intervals as
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IV REML and SSW KDB. In particular, the α-level two-
sided IV REML test compares its statisticdVar δ̂IV REML

� ��1=2 j δ̂IV REML�δ0 j against the normal criti-
cal value z1�α=2, and the SSW KDB test compares its sta-
tistic V̂ar δ̂SSW

� ��1=2 j δ̂SSW�δ0 j against the critical value
from the t-distribution on k�1 degrees of freedom.

2.5 | CUSUM charts and their use in
sequential meta-analysis

Methods of statistical quality control (QC) were initially
developed in industrial applications of statistics, and are
now commonly used in medicine, epidemiology and pub-
lic health (e.g., to detect a start of an epidemic or to mon-
itor quality of hip implants). Their use in meta-analysis
for detection of temporal trends was suggested by
Kulinskaya and Koricheva.20 A process that is operating
with only random causes of variation is said to be in sta-
tistical control; otherwise, the process is out of control.44

The standard QC application includes two stages: a set-
up stage where the parameters of a process in control are
estimated, and the subsequent monitoring stage. At the
monitoring stage, the samples (of size n) are collected on
a regular basis; and if the values of interest (say, the sam-
ple mean xn) fall within the control limits on the control
chart and do not exhibit any systematic pattern, the pro-
cess is considered to be in control.

The cumulative sum or CUSUM chart45 is one of the
most efficient QC tools. It is equivalent to a sequential
likelihood ratio test of the null hypothesis H0 (the process
is in control) against an alternative H1 (the process is out
of control). The cumulative log likelihood ratio (LLR) of
H1 versus H0 is plotted at every step i, i¼ 1,2,…, and the
test stops in favour of H1 when the LLR is large.46

In standard applications, the null hypothesis H0 :

yi �N μ0,σ
2ð Þ is tested against the alternative H1 :

yi �N μ0þΔσ,σ2ð Þ of a practically relevant amount of
shift Δ (times the standard deviation) in the underlying
mean. Usually, two one-sided CUSUM charts (for posi-
tive and negative deviations) are plotted simultaneously.
An upper one-sided CUSUM testing the hypothesis H0 :

Δ¼ 0 versus H1 :Δ>0 can be written as a cumulative
LLR: x0 ¼ 0,xi ¼max 0,xi�1þ lið Þ, i¼ 1,2,… for the ith
log-likelihood contribution li ¼Δ yi�μ0ð Þ=σ�Δ=2ð Þ.

In meta-analysis, when there is no temporal shift, the
process is in control, and all effect estimates are approxi-
mately normally distributed with the same mean,
δ̂i �N δ,σ2i

� �
. If a shift of size Δ occurs at some time

point, the mean of the process deviates from δ, so that
δ̂i �N δþΔ,σ2i

� �
, and the process can be considered out

of control. Applying the CUSUM chart to meta-analysis,
the LLR for study i is20 li ¼Δ wi δ̂i�δ�Δ=2

� �� �
, where

the weights are the inverse variances of the δ̂i. Thus, the

upper CUSUM accumulates weighted deviations from
the target value that are greater than Δ=2. Under positive
shift, the expected path of a CUSUM increases linearly
with the number of positive deviations and with their
average weight, until it crosses the chosen control limit.

An important notion associated with the chosen signif-
icance level in sequential testing is the average run length
(ARL) of the control chart. The ARL is the expected num-
ber of points plotted before a point falls outside the control
limits. The CUSUM signals as soon as xi > h. The value of
the control limit, h, is chosen to provide good ARL
values. The standard choices are h¼ 4 or h¼ 5 standard
deviations. These values correspond to an ARL of
168 and 465, respectively, when the process is in control,
and to an ARL of 4.75 and 5.75, respectively, for a shift of
1:5σ.

44 We use the R package qcc47 for CUSUM analysis.
The use of QC charts in meta-analysis is justified in

the fixed-effect model; but in the random-effects model,
re-estimation of τ2 introduces dependence between the
sequential effect estimates, and hence their distribution is
not consistent with the standard assumption of indepen-
dent increments in the QC charts.35

3 | ESTIMATION AND TESTING
IN CMA

Consider K consecutive studies and a simple random-
effects model for study-level effects, with a simple shift in
the mean (at study k1þ1):

δ̂i�G δiþΔI i> k1ð Þ,σ2i
� �

and δi�N δ,τ2
� �

, i¼ 1,…,K, ð9Þ

where G �ð Þ is an arbitrary distribution with mean δiþ
ΔI i> k1ð Þ and variance σ2i , K is the maximum number of
studies, I i> k1ð Þ is the 0/1 indicator and 1< k1 <K . In
the shift-in-the-mean model (9), the true SMD shifts from
δ in the first k1 studies to δþΔ in studies k1þ1, …, K .
The standard REM (4) holds for the first k1 studies and,
separately, for the studies from k1þ1 to K when the dis-
tribution G �ð Þ is normal. For SMD, the distribution G �ð Þ
is given by Equation (3).

In this section, we consider some general CMA patterns
under this model and suggest several approaches to testing.

3.1 | Estimation of δ

Define cumulative overall mean effect δ kð Þ of k≤K stud-
ies to be a weighted mean of study-level effects δi,
i¼ 1, � � �,k: δ kð Þ ¼

Pk
i¼1wiδi=

Pk
1wi. In CMA, this cumula-

tive mean effect δ kð Þ is estimated by δ̂ kð Þ ¼
Pk

1ŵiδ̂i=
Pk

1ŵi

whenever the number of studies k increases.
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If there is no shift in δ, the cumulative mean δ kð Þ � δ.
However, if there is a shift in δ at study k1þ1, δ kð Þ
becomes a weighted average of δ and δþΔ values.

Given a set of weights wi, i¼ 1, � � �,K, and denoting the
running sum of weightsWk ¼

Pk
1wi, the cumulative mean

effect for k≤ k1 studies is δ, and for k> k1 studies it is

δ kð Þ ¼ δþΔ Wk�Wk1ð Þ=Wk: ð10Þ

Consider, for simplicity, that the sample sizes are equal
between arms and among studies, niC ¼ niT � n=2, so that
effective sample sizes are eni �n=4. Thus, the SSW estima-
tor uses equal weights wi ¼n=4, and the cumulative
mean δSSW kð Þ ¼ δþΔ 1�k1=kð Þ increases from δ at k¼ k1
to δ1þΔ 1�k1=Kð Þ, reaching δþΔ only at K ¼∞.

The within-study variances of Hedges's g are
Var gið Þ¼ 4=nþδ2i =2n. Under the scenario of no shift in δ
or τ2, the population IV weights should be equal. Given a
positive shift in the mean from δ to δþΔ, the variances
of the gi, i≥ k1þ1 also increase, and the weights
decrease accordingly. Therefore, with IV weights the
cumulative mean effect (10) will be reduced, compared
with SSW. This may reduce the power of the CMA based
on the IV weights. Figure S1 in Appendix S2 illustrates
changes in δSSW kð Þ and in δIV kð Þ under the scenario of
equal sample sizes. The difference between the two
cumulative mean effects is the largest when τ2 ¼ 0; but it
decreases in τ2, and for τ2 > 0 it also decreases rapidly
with n and is negligible at n¼ 100.

However, the estimated variances v2i given by Equa-
tion (2) and, therefore, the IV weights ŵi are random var-
iables and are not exactly equal. Additionally, these
random weights are not independent from the estimated
effects gi, resulting in order 1=n bias of the estimated
cumulative mean effect δ̂IV kð Þ, even under the no-shift
scenario, as we demonstrate in Section 4.4.

3.2 | Estimation of τ2

To understand the pattern of changes in the estimated value
of τ2 in CMA, denoted by τ̂2kð Þ, consider the running value
of Cochran's Q statistic, Q kð Þ ¼

Pk
i¼1wi δ̂i� δ̂ kð Þ

� �2
for IV

weights wi ¼ v�2
i . A number of estimators of τ2, including

KDB, are based on the first moment of Q. Consider the
same simple scenario of equal sample sizes and a shift in
the mean from δ to δþΔ at study k1þ1 given by (9).

Let ξi ¼ δ̂i�ΔI i> k1ð Þ. The variables ξi coincide with
δ̂i under the hypothesis of no shift. Write
δ̂i ¼ ξiþΔI i> k1ð Þ, and δ̂ kð Þ ¼ ξ kð Þ þΔ Wk�Wk1ð Þ=Wk for
ξ kð Þ ¼

Pk
1wiξi=

Pk
1wi. The running value of the Q statistic

is Q kð Þ ¼
Pk

i¼1wi ξiþΔI i> k1ð Þ� ξ kð Þ �Δ Wk�Wk1ð Þ=Wk

� �2
.

It follows that

Q kð Þ ¼
Xk
i¼1

wi ξi� ξ kð Þ
� �2

þ2ΔWk1 ξ kð Þ �ξ k1ð Þ
� �

þΔ2Wk1 Wk�Wk1ð Þ=Wk,

The first term of Q kð Þ accounts for between-study hetero-
geneity of ξi. The mean of the second term is zero, and
we expect it to be reasonably small. And the third term
reflects the contribution of the shift Δ. Under no shift,
only the first term is nonzero.

The moment-based estimators of τ2 described in Der-
Simonian and Kacker,48 which include the popular Der-
Simonian–Laird estimator,49 and the recent SDL
estimator37 have the form τ̂2M ¼ Q kð Þ �E0 Qð Þ� �

=

Wk�W 2ð Þ
k =Wk

� �
where E0 Qð Þ is the expected value of Q

under homogeneity (i.e., when τ2 ¼ 0), the denominator
is the multiplier at τ2 in the Taylor-series expansion of
E Q kð Þ
� �

, and W 2ð Þ
k ¼Pk

1w
2
i .

Hence,

τ̂2M ≈ τ̂2ξ þΔ2Wk1 Wk�Wk1ð Þ
W 2

k�W 2ð Þ
k

� � , ð11Þ

where τ̂2ξ is the estimator of the heterogeneity vari-
ance under no shift. For the case of equal sample
sizes, the weights are wi ¼n=4, Wk ¼ kn=4 and
W 2ð Þ

k ¼ kn2=42, so τ̂2M ≈ τ̂2ξ þΔ2 k1 k�k1ð Þ
k k�1ð Þ . At k¼ k1þ1,

τ̂2M ≈ τ̂2ξþΔ2= k1þ1ð Þ, and then it increases in k almost
linearly. This increase in estimated τ2 does not depend on
the sample size.

In our simulation study, we do not use τ̂2M , but both
the KDB and the popular Paule–Mandel estimator50 are
also based on the first moment of Q kð Þ, and we expect
similar behaviour from these estimators. REML is not a
moment estimator, but our simulation results, discussed
in Section 4.3, demonstrate this behaviour for both KDB
and REML (Figure 1).

3.3 | Testing for a shift in the mean
in CMA

Consider consecutive testing for a shift at k¼ 1,…,K in
the model (9) based on the cumulative estimates
δ̂ kð Þ, τ̂2kð Þ
� �

from K studies ordered over time. At each k,
the standard CMA tests H0 : δ kð Þ ¼ δ0 against δ kð Þ ≠ δ0 for
a known value of δ0, at the same level α. We consider
two types of tests, described in Section 2.4, IV REML and
SSW KDB. These test statistics have the form
V̂ar δ̂ kð Þ

� ��1=2
δ̂ kð Þ �δ0
� �

. The variance Var δ̂ kð Þ
� �

is of
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order 1=N kð Þ þ τ2kð Þ=k, where N kð Þ is the total sample size
in the k studies. This is easier to see from Equation (8)
for the variance of δ̂SSW, but it is also true for δ̂IV REML.
Therefore, for sufficiently large sample sizes, these

statistics are approximately equivalent to the ratiosffiffiffi
k

p
δ̂ kð Þ �δ0
� �

=τ̂ kð Þ. The power of these tests depends pri-
marily on the value of

ffiffiffi
k

p
δ kð Þ �δ0
� �

=τ kð Þ, but it may be
distorted by biases of δ̂ kð Þ and τ̂ kð Þ.

FIGURE 1 Bias of REML and KDB estimators of between-studies variance τ2 when δ¼ 1 for k≤ 25 followed by a shift to δ¼ 2 for

k≥ 26, n¼ 20, 50 and 100, K ¼ 50 and τ2 ¼ 0, 0:1, 0:25 and 1. Light grey line at 0 [Colour figure can be viewed at wileyonlinelibrary.com]
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Visually, the CMA provides a forest plot of the δ̂ kð Þ
values with their confidence intervals for increasing k,
and a δ0 outside the kth confidence interval is rejected by
the kth test. An example of these CMA plots is provided
in Row 2 of Figure 7; see Section 5 for further details.

As discussed in Section 3.2, the cumulative estimate
τ̂2kð Þ increases with the shift in the mean. Because of this,
we also consider two tests, QP and KDB, of τ2kð Þ ≤ τ20 ver-
sus τ2kð Þ > τ20 for a known value of τ20 as possible tests for
shift. These tests are also performed consecutively for
increasing k. However, based on (11) these tests,
described in Section 2.3, are likely to be more powerful
for early shifts (small k). Similar to the standard CMA
tests for δ̂ kð Þ, these tests are easily performed visually on a
forest plot of cumulative τ̂2kð Þ values. Examples of these
plots appear in the first row of Figure 7.

From the findings in Section 3.2, it also follows that
for a test of a shift based on δ̂ kð Þ, the accompanying
increase in τ̂2kð Þ may decrease its power. It would make
sense to use a sufficiently well-estimated value of τ2

before this increase occurs. Because of this, we consider
the following modification to traditional CMA, which we
refer to as the two-stage CMA.

Borrowing the quality control concept of two-stage
monitoring, in Stage 1 we aim to estimate τ2. Therefore,
we test for δ kð Þ ¼ δ0 for k¼ 5,…,10 using IV REML or

SSW KDB. If that test rejects at k1þ1, we take τ̂2k1 (esti-
mated by REML or KDB, respectively) as the ‘true’ value
τ20; otherwise we take τ20 ¼ τ̂210ð Þ. The rationale for this
choice of 5≤ k≤ 10 studies for estimating τ2 in Stage 1 is
that an estimate of τ2 is not sufficiently precise for k<5,
and is reasonably accurate by k¼ 10 under no shift (see
Section 4.3). However, we do not want to use an inflated
value of τ2 if an early shift does occur. In Stage 2, we
monitor the (known) mean effect δ0, using the τ20 value
estimated in Stage 1 as the known between-study vari-
ance τ2kð Þ without re-estimating it. We refer to the respec-
tive tests and estimators as IV REML (τ20) and SSW
KDB (τ20).

We also consider a more realistic scenario of monitor-
ing the estimated value of δ (estimated in Stage 1 as
described above at k1þ1 or at k¼ 10) instead of the
‘known’ δ0. We refer to these tests as IV REML (̂δ0) and
SSW KDB (δ̂0) when further testing proceeds as in the
standard CMA (i.e., with τ2 re-estimated each time), and
IV REML (δ̂0, τ20) and SSW KDB (δ̂0, τ20) when also using
the value of τ20 estimated in Stage 1.

For comparison, we also use two-stage CUSUM
charts with h¼ 4, 5 and 6 to monitor the known
mean δ0 for the effects δ̂i with variances v2i þ τ20. Table 1
gives a comprehensive summary of methods and
abbreviations.

TABLE 1 Methods and abbreviations

Weights in estimation of δ IV Inverse-variance weights wi ¼ 1=v2i

SSW Effective sample size weights en¼ nCnT=n

Point estimators of τ2 REML Restricted maximum-likelihood estimator

KDB Kulinskaya–Dollinger–Bjørkestøl estimator36,37

Point estimators of δ IV REML IV weights with REML-estimated τ2

SSW KDB SSW weights, KDB-estimated τ2 in variance calculation

Interval estimators of τ2 QP Q-profile interval based on χ2K�1 distribution of Q41

KDB Q-profile interval based on improved approximation36

Critical values in intervals and tests IV REML Standard normal distribution

SSW KDB t-Distribution with K�1 d.f.

Methods of CMA Standard CMA δ̂ kð Þ and τ̂2kð Þ are re-estimated at each k¼ 2,…,K; known δ0 value is

used for testing H0 : δ kð Þ ¼ δ0 at each k

Two-stage CMA (τ20) τ0 ¼ τ̂2 is estimated in Stage 1 from 10 or fewer studies; this τ20 value
is constant in Stage 2; δ0 is known

Standard CMA (̂δ) δ̂ kð Þ and τ̂2kð Þ are re-estimated at each k¼ 2,…,K; δ̂0 estimated in

Stage 1 used for testing H0 : δ kð Þ ¼ δ̂0 in Stage 2

Two-stage CMA (̂δ0, τ20) δ̂0 and τ0 ¼ τ̂2 both estimated in Stage 1 are used for testing H0 :

δ kð Þ ¼ δ̂0 in Stage 2

CUSUM analysis Two-stage CUSUM (τ20) τ0 ¼ τ̂2 is estimated in Stage 1 from 10 or fewer studies; this τ20 value
is constant in stage 2; δ0 is known
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4 | SIMULATION STUDY

4.1 | Simulation design

In the majority of our simulations we use K ¼ 50 as the
maximum number of studies, though in some scenarios
we also use K ¼ 100 and 1000. For each combination of
parameters, we use equal sample sizes from n¼ 20 to
1000 in all K studies. The sample sizes in the treatment
and control arms are equal.

We use a total of 10,000 repetitions for each combina-
tion of parameters. Thus, the simulation standard error
for estimated coverage of δ or τ2 at the 95% confidence
level, or testing at 0:05 level is roughlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:95�0:05=10,000
p ¼ 0:00218. The simulations were
programmed in R version 3.3.2.

As the number of studies increases in CMA, with
k≤K, we examine bias and coverage in estimation of δ
and τ2, and the accumulating rejection rates (Type 1 error
or power) of tests for the shift in the mean effect and in
the between-study variance τ2. We also consider the
cumulative signalling rate and the ARL in CUSUM anal-
ysis.44 We consider both a constant value of δ (the null
hypothesis of no shift in the mean) and a shift from δ¼ 1
to δ¼ 2 at 0:25, 0:5 and 0:75 of the total number of stud-
ies. Our summaries of results in Sections 4.3–4.7 include
illustrative figures and are based on examination of the
figures in our ePrint.38 We vary five parameters: the over-
all true SMD (δ) and the between-studies variance (τ2), in
addition to the maximum number of studies (K), the
point of shift (if any) ðk1Þ, and the studies' total sample
size (n). Table 1 lists the values of each parameter.

We generate the true effect sizes δi from a normal dis-
tribution: δi �N δ,τ2ð Þ. We generate the values of Hedg-
es's estimator gi directly from the appropriately scaled
non-central t-distribution, given by Equation (3), and
obtain their estimated within-study variances from
Equation (2).

We study two approaches to point and interval esti-
mation and testing of τ2 (REML/QP and KDB) and two
resulting approaches to point and interval estimation and
testing of δ (IV REML and SSW KDB). Each of these two
approaches was studied in the four CMA settings listed
in Table 1: traditional CMA setting with known δ0 value,
CMA with estimated in Stage 1 value of δ0, the two-stage
CMA with known value of δ0, and the two-stage CMA
with the estimated in Stage 1 value of δ0 (Table 2).

4.2 | Outcomes recorded in simulations

In all simulations, we assumed the shift-in-the-mean
model (9) and, for the CMA methods of interest, we

studied the bias of the point estimators δ̂ kð Þ of the cumu-
lative mean δ kð Þ (10) and (for the standard CMA) the bias
of τ̂2kð Þ in estimating τ2 for 5≤ k≤K . We also investigated
coverage of the δ kð Þ and of τ2 by the relevant interval esti-
mators and empirical levels of the accompanying two-
sided tests for the null hypothesis of no shift in δ and
(separately) of one-sided tests of no shift in τ2. We also
investigated cumulative Type I errors of these tests at the
0.05, 0.01 and 0.005 levels for δ and at the 0.025, 0.005
and 0.0025 levels for one-sided tests for τ2.

4.3 | Bias of τ̂2kð Þ

When there is no shift in δ, both estimators of τ2 (REML
and KDB) have non-negligible positive bias for small k,
especially for small sample sizes (n≤ 50), Figure 1. KDB
retains small positive bias for larger values of k, whereas
the bias of REML becomes negative when τ2 > 0. Biases
do not depend visibly on the value of δ, but they increase
in k and increase considerably in τ2. The bias of REML is
about �0:04, and the bias of KDB is þ0:04 when n¼ 20,
τ2 ¼ 0:25 and k¼ 10, compared with �0:10 and þ0:07
when τ2 ¼ 1. The biases decrease in n; when n¼ 100,
KDB is practically unbiased, and REML has small nega-
tive bias of about 2%.

From the point of a shift, both estimators of τ2

increase rapidly, KDB somewhat faster than REML.
However, for larger n, the behaviour of REML converges

TABLE 2 Data patterns in simulations

Parameter Input values

δ (true value of
the SMD)

0, 0.5, 1

Δ (shift in δ) �0:5 and �1, both for δ¼ 1

τ2 (variance of
random effect)

0, 0.1, 0.25, 1

K (maximum
number of
studies)

50, 1000 (two-stage CMA)

k1 (point of shift
in δ)

i K=4d e, i¼ 1, 2, 3 for shift from 1 to 2;
K ¼ 50 and k1 ¼ 26 for shifts from 1
to 1:5, 1 to 0:5, and 1 to 0

n (sample size: total
of the two arms)

20, 50, 100, 500, 1000 (shift in the
mean)

20, 50, 100, 500 (no shift in the mean)

α (two-sided
significance level)

0.05, 0.01, 0.005

M (number of
repetitions)

10,000

1000 (two-stage CMA with K ¼ 1000)
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to that of KDB, and the difference between the estimators
is negligible at n¼ 100.

4.4 | Bias and coverage of δ̂ kð Þ

The cumulative effect estimated by SSW is almost unbi-
ased under all simulated conditions, regardless of the
value or a shift in δ. In Figure 2, SSW coincides with its
expected value, given by Equation (10). IV REML is also
unbiased when δ¼ 0 (not shown). However, IV REML
has a small negative bias, up to about 5%–7%, when n¼
20 and δ¼ 1, Figure 2. The bias increases in δ and in k. It
also increases, though rather slowly, in τ2. The bias
decreases for larger sample sizes; when n¼ 100 and δ¼ 1,
the bias is about 1.5%. After the shift in δ, IV REML is
somewhat lower than SSW, and it deviates from its nomi-
nal mean (10), but these differences decrease in sample
size and are practically eliminated by n¼ 100.

As illustrated by Figure S2 in Appendix S2, coverage
of SSW KDB is rather conservative (i.e. above nominal)
for small numbers of studies, but it improves for larger
values of k and τ2. When n¼ 20 and k≤ 5, coverage of IV
REML is somewhat conservative when τ2 ¼ 0 and δ¼ 0,
but it drops below nominal for larger k when δ¼ 1. For
larger sample sizes, IV REML provides stable, if some-
what conservative, coverage when τ2 ¼ 0. When τ2 > 0, IV
REML has very low coverage for k≤ 10, and it does not
improve much in n. Coverage at the nominal 95% level is
about 85%–90% when k¼ 20 and τ2 ≥ 0:25, and it remains
below nominal when n¼ 100. Coverage is visibly reduced
for δ>0. As we shall see in the next section, this liberal
coverage translates into higher Type 1 error in CMA.

4.5 | Level and power of tests for δ
in CMA

Because of multiple testing over the increasing number
of studies k, the empirical levels of SSW KDB and IV
REML at the same nominal level are increasing in k, but
the empirical levels of SSW KDB are considerably lower.
The difference between the two methods is more pro-
nounced for larger values of δ; see Appendix S2, Figures
S3 and S4 for δ¼ 0 and δ¼ 0:5 up to K ¼ 50 and Figure
S5 for δ¼ 1 and K up to 1000. Tables S1–S3 in Appendix
S1 provide empirical levels at selected values of k at the
nominal 0.05, 0.01 and 0.005 levels for δ¼ 0, 0:5 and 1.
As an example, at the nominal 0.05 level, these levels for
δ¼ 1 are 0.048 for SSW KDB versus 0.118 for IV REML at
k¼ 12 and 0.089 versus 0.187 at k¼ 25 for n¼ 20 and
τ2 ¼ 0. These levels increase further in τ2 (0.079 vs. 0.177
at k¼ 12 for n¼ 20 and τ2 ¼ 0:1); and they increase

somewhat in n, in this example to 0.150 versus 0.253 at
k¼ 12 for n¼ 1000 and τ2 ¼ 0:1. Testing at the lower
nominal levels makes sense for larger values of k, τ2 and/
or n, see Tables S1–S3 for some guidance.

The power of SSW KDB and IV REML is compara-
tively low. Figure 3 shows empirical levels for shift from
1 to 2 at Study 26. For both methods, the power is highest
when τ2 ¼ 0 and deteriorates considerably in τ2. Taking
into account its lower level, SSW KDB is more powerful
than IV REML. The power increases in n, and by n¼ 100
both methods reach power 80% at 31 studies when τ2 ¼ 0
and at 36 studies for τ2 ¼ 0:25. Choosing the nominal
level of 0.01 safeguards the empirical levels about 0.05 at
k¼ 25 and reduces the power of CMA accordingly.
Table S6 provides the number of studies needed to reach
power of 80% and 90% for a shift from δ¼ 1 to δ¼ 2 at
k¼ 13, 26 and 38. As expected, the power of all tests is
lower at smaller shifts, but the direction of shift does not
seem to matter (Figures S9–S20 in Appendix S2).

4.6 | Level and power of tests for τ2

in CMA

We studied one-sided tests for τ2kð Þ > τ20, and typical results
for Δ¼ 1 at k¼ 26 are depicted in Figure 4 for nominal
levels 0.025, 0.005 and 0.0025. Multiple testing inflates
empirical levels, more so for KDB than for QP. Table S4
in Appendix S1 provides empirical levels at selected
values of k at the nominal 0.025, 0.005 and 0.0025 levels
for δ¼ 1. The power increases in n and decreases in τ2.
When τ2 ¼ 0, the power is quite high from n¼ 50; but
when τ2 ¼ 0:25, the power reaches 80% for both tests only
at k¼ 41 for n¼ 100. Power is extremely low when
τ2 ¼ 1, even for very large sample sizes; for shift at k¼ 26,
power barely reaches 30% at k¼ 50 when n¼ 1000 (not
shown).

4.7 | Comparing tests for shift in δ in
one- and two-stage CMA

When there is no shift in δ, two-stage CMA and the stan-
dard one-stage CMA have very similar inflation of the
empirical levels. However, two-stage CMA is somewhat
more powerful under the shift. This difference in power
is clear for KDB SSW (τ20) from n¼ 20, and for IV REML
(τ20) from n¼ 50, Figure 5 and Figure S6. This difference
in power is explained by inflation in the estimated τ2kð Þ in
the standard CMA, as discussed in Section 3.3.

For comparison, Figure 5 and Figures S6–S20 in
Appendix S2 also include CUSUM-based CMA with h¼ 4
and 5 along with the CMA tests at the 0.05 and 0.01
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FIGURE 2 Weighted cumulative effects δSSW kð Þ and δIV kð Þ given by Equation (10) (dashed lines) and estimated by SSW and IV REML

cumulative effects δ̂ kð Þ (solid lines) when δ¼ 1 for k≤ 25 followed by a shift to δ¼ 2 for k≥ 26, n¼ 20, 50 and 100, K ¼ 50 and τ2 ¼
0, 0:1, 0:25 and 1. Light grey line at 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Empirical levels of CMA tests for shift in δ based on SSW KDB and IV REML at nominal levels 0.05, 0.01 and 0.005 for equal

sample sizes niC þniT ¼ n¼ 20, 50 and 100, τ2 ¼ 0 and 0:25 and a shift from δ¼ 1 to δ¼ 2 at Study 26. Light grey line at 0.05. Green and blue

dashed lines correspond to power 80% and 90%, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Empirical levels of CMA tests for positive shift in τ2 based on KDB and QP at nominal levels 0.025, 0.005 and 0.0025 for

equal sample sizes niC þniT ¼ n¼ 20, 50 and 100, τ2 ¼ 0 and 0:25 and a shift from δ¼ 1 to δ¼ 2 at Study 26. Light grey line at 0.025. Green

and blue dashed lines correspond to power 80% and 90%, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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nominal levels, respectively. Under no shift, CUSUM-
based analysis results in greater inflation of the empirical
levels, but equally, it has more power under shift. Simi-
larly to other tests, its power increases in n and decreases
in τ2.

Figure 5 and Figures S6–S20 also include the two-
stage methods using an estimated in Stage 1 mean effect
δ̂0. In this scenario, the ‘standard’ CMA methods, which
re-estimate τ2kð Þ, have especially inflated levels, and the
two-stage methods, which use the estimated τ20, are
clearly the better choice. Unexpectedly, methods that use
two parameters estimated at Stage 1 (̂δ0,τ20) have some-
what lower Type 1 error and somewhat more power than
the comparative methods using known δ0, especially for
IV REML.

Table S5 in Appendix S1 provides empirical levels of
two-stage CUSUM analysis of k studies with h¼ 4, 5 and
6 when δ¼ 1. Table S7 provides empirical levels of two-
stage CMA of k studies at nominal levels 0.05, 0.01 and
0.005 when δ¼ 1, and Table S8 gives the number of stud-
ies (k) required for 80%/90% power for detecting a shift
from δ¼ 1 to δ¼ 2.

5 | EXAMPLE

As an example, we use data by Bat�ary et al.51 on the role
of agri-environment management schemes in conserva-
tion and environmental management. We use the data
on species richness from 39 studies published from 1992
to 2010, with mostly small to medium sample sizes, rang-
ing from 2 to 37 per arm, though one study has 152 obser-
vations in each arm. The effect measure is SMD, and
positive values correspond to higher species richness in
the extensive (organic) than in the intensive (conven-
tional) fields. The majority of the studies originated from
European countries and compared conventional with
organic management. The original meta-analysis did not
take chronology into account. Observations of multiple
taxa and/or of different geographical regions in an individ-
ual study were included separately in the dataset, resulting
in 109 records in total. We chose a single sub-study with
median value of δ̂ from each study. Figure 6 provides the
raw data and forest plot, depicting the 39 sub-study
effects with corresponding 95% confidence intervals.

Visual examination of the forest plot shows that the
effects in the first 18 studies seem to hover somewhat
above zero, and Study 19 is a high outlier. The next sub-
set of effects (Studies 20–33) is somewhat more positive,
and Study 33 is another high outlier. The last subset of
effects (Studies 34 to 39) seems to drift back toward zero.
These observations are clearly confirmed by the plots of
cumulative τ2 values in the top row of Figure 7, using

both QP and KDB confidence intervals. Heterogeneity is
very high in the first eight studies, but then it settles
down and is relatively low up to Study 18. It jumps at
Study 19, but then decreases from Study 20–33, indicating
that Study 19 is just an outlier and not the start of a shift.
The same happens at Study 33. In this example, the KDB
values of τ̂2 are higher than the REML values.

In the second row of Figure 7, IV REML provides higher
estimates of δ̂ kð Þ and narrower confidence intervals than
KDB SSW. As we expected from the simulations, IV
REML is less conservative and shows a significantly posi-
tive effect δ̂ð8Þ; IV REML ¼ 0:959 0:014,1:905ð Þ at the
0.01 level at Study 8 (discounting Study 1), compared
with Study 36 for SSW KDB (with
δ̂ð36Þ, SSW KDB ¼ 0:952 0:005, 1:898ð Þ). Both methods show
wider confidence intervals because of increased τ2 values
at the outlier Study 19.

In two-stage CMA, the values τ̂2REML, 7ð Þ ¼ 1:04 and
τ̂2KDB, 10ð Þ ¼ 0:836 are used in two-stage IV REML and KDB
SSW, respectively. The value of δ̂ð10Þ, SSW ¼ 0:664. The
KDB test for τ2 shows significant increase in τ2 at Study
19, compared with Study 10. The confidence intervals for
δ̂ kð Þ are somewhat wider for two-stage CMA than for
standard CMA at the start, and somewhat lower by
the end, for both methods. Two-stage SSW KDB results
in a significant effect at Study 25, where
δ̂ð25Þ,SSW KDB ¼ 0:872 0:022, 1:721ð Þ, considerably faster
than the one-stage SSW KDB CMA.

In the CUSUM plots, the first 7 points (for REML)
and first10 points (for KDB) are obtained with changing,
cumulative values of τ̂2kð Þ, but thereafter use the fixed
values throughout. The CUSUM based on the value of
τ̂2REML, 7ð Þ ¼ 1:04 does not reach significance, but the
CUSUM based on the smaller value of τ̂2KDB, 10ð Þ ¼ 0:836
does at Study 19, and both CUSUMs quickly react to any
changes in effects.

In this example, which involves no significant shifts
in effects, SSW KDB CMA appears to be too conservative.
However, as our simulations demonstrate, this method
would result is a much lower false-positive rate. Different
methods provide complementary information, and in
practice we therefore recommend the use of multiple
plots, including the forest plot, the CMA plot for τ2 and
the two-stage CMA plot for δ.

6 | DISCUSSION: PRACTICAL
IMPLICATIONS FOR CMA

Cumulative meta-analysis is a well-established and popu-
lar method of evaluating and monitoring accumulating
evidence. This method is especially widely used in health
and environmental applications where multiple
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FIGURE 5 Empirical levels of one- and two-stage CMA tests for shift in δ at nominal level 0.01, shift in τ2 at nominal levels 0.005 and

of CUSUM with h¼ 5 for equal sample sizes niC þniT ¼ n¼ 50, τ2 ¼ 0, 0:1,0:25 and 0:1 and a shift from δ¼ 1 to δ¼ 2 at Study 26. Light grey

line at 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]
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publications on the same topic are available over a num-
ber of years. The multiplicity problems inherent in CMA
are well known, and a number of alternative statistical
methods aimed at resolving these problems are available.
However, this does not seem to hinder the popularity of
CMA in applied research.

Therefore we investigated, theoretically and by sim-
ulation, the level and power of CMA and how to
improve both. For the popular effect measure SMD, we
compared two approaches for CMA: the first (IV REML)
is based on the popular REML estimation of the
between-study variance τ2 and the inverse-variance
method for combining the evidence, whereas the second
(SSW KDB) is based on the effective-sample-size weights
and the KDB estimator of τ2.

36 Our simulations clearly
demonstrate that the SSW KDB analysis is a much better
option when δ≠ 0.

From theoretical consideration of CMA in Section 3,
we recognized the issues with variance inflation in CMA
when a shift in the mean occurs and suggested therefore
a two-stage approach to CMA, as well as testing for a

shift in τ2. Our simulations show that the two-stage CMA
performs better than the standard one-stage CMA on
both Type 1 error and power. Testing for τ2 also works
well for small-to-moderate values of τ2 ≤ 0:25; the Q-pro-
file method41 is the preferred option. However, this
method has very low power for larger τ2. For all studied
methods, smaller shifts or higher heterogeneity results in
lower power, but the direction of shift does not seem to
matter. Power increases considerably in sample size n.
However, even for n¼ 1000 and a large shift in δ from 1
to 2, at least three to five studies after the shift are needed
to achieve 80% power at the 0:01 level when τ2 ¼ 0:1, and
seven to nine studies are needed when τ2 ¼ 0:25. Overall,
at least 15–20 studies are required to use any version
of CMA.

In our simulations, we also considered CUSUM
charts, suggested by Kulinskaya and Koricheva,20 and
modified them for random-effects MA by adding esti-
mated at Stage 1 between-study variance τ20. However,
this resulted in too high a Type 1 error rate, and we do
not recommend this method.

FIGURE 6 Forest plot for species richness data from Bat�ary et al. (2011) with 95% confidence interval. The effect measure is SMD, and

positive values correspond to higher species richness in the intervention arm
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A practical recommendation is to run simultaneously
two analyses: testing for cumulative τ2 at the 0.005 level
using the Q-profile method, and the two-stage testing for

shift in the mean effect at the 0.01 level using SSW KDB,
with either known or estimated in Stage 1 target value of
δ, and using the constant value of τ20 estimated in Stage

FIGURE 7 CMA plots for species

richness data from Bat�ary et al. (2011). QP

and KDB confidence intervals for τ2 at 99%

confidence level; one- and two-stage CMA

intervals at 99% level, additional horizontal

lines at δ̂ 8ð Þ,IV REML ¼ 0:959 and at

δ̂ 10ð Þ,SSWKDB ¼ 0:664; CUSUM plots with

h¼ 5. The effect measure is SMD, and

positive values correspond to higher species

richness in the intervention arm [Colour

figure can be viewed at

wileyonlinelibrary.com]
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1 by KDB. The suggested levels guarantee an overall
level close to 0.05 for k≤ 26 studies, as the two tests at
levels α1 and α2, with rejection if at least one of them
rejects the null hypothesis, result in approximately an
α1þα2 level. Somewhat higher levels would be possible
for lower numbers of studies and/or lower between-study
variances.

We studied only simple scenarios of equal sample
sizes within and between studies, but we anticipate
CMA to have even lower power in more realistic
unbalanced settings. A study of the use of CMA for
other effect measures would also be of interest for
practitioners, though we do not believe that the power
would improve. We considered only simple alterna-
tives of a shift in δ at one point. Other realistic alterna-
tives may include linear or nonlinear trends in effects
and other more complicated options. Lai52 provides a
comprehensive review of the use of sequential methods
for a wide class of alternatives. A critical review of
these methods for applications in meta-analysis would
be very useful.

In the case of high heterogeneity, the power of all
CMA methods is very low. It would be of interest to con-
sider the use of runs tests, which are routinely used in a
similar quality control context,53 and which may increase
the power of CMA. Another important extension of CMA
would be methodology for cumulative analysis when the
heterogeneity is reduced through meta-regression. We
shall address these possible improvements in further
research.
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