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For all methods, we consider Type 1 error under no shift and power under a

effect using REML-based estimation of between-study variance 7? with the

shift in the mean in the random-effects model. To ameliorate the lack of power
in CMA, we introduce two-stage CMA, in which 7% is estimated at Stage 1
(from the first 5-10 studies), and further CMA monitors a target value of effect,
keeping the 72 value fixed. We recommend this two-stage CMA combined with
cumulative testing for positive shift in z2. In practice, use of CMA requires at
least 15-20 studies.
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Highlights

What is already known

« Cumulative meta-analysis is a popular method of evaluating and monitoring
temporal changes in accumulating evidence. Statistical evaluation of CMA
is especially relevant because of the growing popularity of living systematic
reviews.

« Repeated testing of the overall effect in CMA results in inflation of the Type
1 error rate. However, the amount of this inflation was not yet sufficiently
quantified; it depends on the particular effect measure and on the choice of
estimators.
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What is new

In extensive simulations for CMA of SMD 6§, we observed considerable, and
continuously increasing with addition of further studies, negative biases of
the inverse-variance-weighed overall effect. In contrast, the sample-size-
weighted overall effect is almost unbiased.

This bias produces much larger inflation of the Type 1 error rate for IV
REML in comparison with SSW KDB. The use of inverse-variance-weighted
estimation of SMD is not recommended in CMA.

A shift in the mean effect results in a very slow change of the overall effect
in CMA, but in a considerable and rapid change in the estimated between-
study variance 72. This change reduces the power of CMA.

To increase the power of CMA, we introduced a two-stage CMA, in which
7% is estimated in Stage 1 without further re-estimation in Stage 2. This two-
stage CMA with the sample-size-weighted overall effect performs better
than the standard CMA and is recommended.

A new CMA method based on re-estimation of 72 using the QP-based test is
also useful when 7? is small. We recommend use of both new methods

simultaneously.

variance.

1 | INTRODUCTION

Meta-analysis, a statistical methodology that combines
estimated effects from multiple studies on the same topic,
to arrive at an evidence-based overall effect, had revolu-
tionized many scientific fields, helping to establish evi-
dence-based practices and to resolve seemingly
contradictory research outcomes.! The conduct of meta-
analysis provides a snapshot of evidence at one time point,
but the evidence is not static: as it accumulates, new stud-
ies often challenge the results of previous studies. If the
evidence changes over time, the conclusions of meta-anal-
ysis will strongly depend on when the review was con-
ducted, and any policy-relevant recommendations derived
from it will quickly go out of date.™*

Numerous studies have shown that substantial
changes over time in the magnitude, the statistical signif-
icance, and even the sign of the reported effects are
common in numerous disciplines, from biomedical
research”®™ to social sciences,® ecology and evolutionary
biology,'® " and information systems.'* These temporal
trends could be caused by changes in the true effect,
changes in study characteristics that influence the effect

« We also provide tables enabling choice of significance levels.

Potential impact for RSM readers outside the authors’ field
« For CMA of SMD, we recommend the two-stage analysis based on SSW,
used simultaneously with a QP-based test for shift in between-study

« CMA of SMD has rather low power, which is reduced by inertia of the
cumulative estimation and by heterogeneity of the data. At least 15-20 stud-
ies are required for CMA to be useful in practice.

(known as moderators in meta-analysis) or biases (e.g.,
delay in the publication of studies with nonsignificant
results).'>"

Temporal trends are typically visually explored and often
formally detected through cumulative meta-analysis (CMA),
introduced by Lau et al.'® CMA is a process of updating the
results of an existing meta-analysis to incorporate new study
results. It is one of the most popular ways to present time-
varying evidence.*'”'® Other methods for detecting temporal
trends are reviewed in Trikalinos and Ioannidis,*
Kulinskaya and Koricheva,® and Koricheva et al.*! Until
recently, CMA was applied to systematic reviews identified
to be in need of updating.*>** But the use of CMA has grown
substantially because of the growing popularity of living sys-
tematic reviews, online summaries updated as new research
becomes available.”* CMA also provides a graphical repre-
sentation of shifts in evidence associated with other factors
such as sample size, precision, or study quality.>>*°

It is well understood that the repeated testing inher-
ent in CMA inflates Type 1 error. This inflation was stud-
ied by simulation by Whitehead,”” Hu et al,*® and
Thorlund et al.>® among others; but, to our knowledge, it
was not systematically quantified. A number of methods
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addressing this issue are based on methodology originally
developed for sequential clinical trials.*** Another
approach uses quality control methods, in particular
CUSUM charts.?® However, the use of the random-effects
model in CMA requires consecutive re-estimation of the
between-study variance 72 as well as the overall effect §,
and makes both classes of methods problematic.>***

In this paper, we investigate the properties of CMA, sug-
gest possible improvements, and provide an in-depth simu-
lation study of the use of CMA and CUSUM methods for
detecting temporal trends in random-effects meta-analysis.
We use the standardized mean difference (SMD) as the
effect measure. For CMA, we consider both the standard
inverse-variance-weighted estimator of the overall effect (6)
with REML-based estimation of the between-studies vari-
ance (7%) and a sample-size-weighted (SSW) estimator of
& combined with the Kulinskaya-Dollinger-Bjorkestol*
(KDB) estimator of 72, recommended by Bakbergenuly
et al.’” For all methods, we consider Type 1 error under
no shift and power under a shift in the mean.

The requisite statistical methods are described in Sec-
tion 2. Section 3 examines the properties of CMA and
identifies the problems caused by gross overestimation of
72 resulting from a shift in the mean. Therefore, we sug-
gest cumulative testing of 72. Also, we modify CMA in
the spirit of quality control methods. At Stage 1 (the first
5-10 studies), we estimate both § and 72, and then we
‘monitor’ known or estimated in Stage 1 value of effect,
keeping the estimated value of 7° fixed. Section 4 presents
the design and results of our simulations for standard
and two-stage CMA methods and for CUSUM charts.
Section 5 applies the methods to data on species richness,
and Section 6 concludes with discussion. Our full
simulation results are available as e-print.*® R procedures
implementing the proposed methods of CMA are avail-
able in the file CMA for SMD.txt and examples and R
scripts of their use are provided in Appendices S3 and S4.

2 | PRELIMINARIES

2.1 | Study-level estimation of SMD
Consider a meta-analysis of k comparative studies, each
consisting of two arms, treatment (T) and control (C),
with sample sizes n;7 and n;c. The total sample size in
study i is n;=n;r+n;c, and the ratio of the control
sample size to the total is denoted by g; = n;c/n;. The sub-
ject-level data in each arm are assumed to be normally
distributed with means u;; and p;- and equal variances
7. The sample means are X;;, and the sample variances
are sl?j, fori=1,..,kandj=CorT.
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The SMD effect measure is

_Hir — Hic
Oj

6

The unbiased estimator of §;, sometimes called Hedges's g
or Hedges's d, is

Xir —Xic
g =T(m) ™, 1)
1

where m; =mn;r +nic—2, and J(m)=T(%)//20 ("2 1)
often approximated by 1—3/(4m — 1) corrects for bias.*
The standard deviation, o; is estimated by the square root
of the pooled sample variance

s = (rur —

U)sir + (mic —1)si
nir +nic —2 '

The variance of g; is Var(g)= [ 5i2/2(niT +nic),
where n; = nirnic/(mir + nic) is the effective sample size
in study i. An unbiased estimator of this variance is*

v=n"+ (1—(mi_2)>gi2. (2)

miJ(mi)z

The sample SMD g; has a scaled non-central ¢-distribu-
tion on m; df. and non-centrality parame-

ter [nlql(l ql)]l/Z
niq;(1-q,) 1/2
(a1 -] a). )
2.2 | Standard random-effects model

In meta-analysis of k studies, the standard random-effects
model assumes approximately normal distributions of
within- and between-study effects. For a generic measure
of effect,

51’ NN(5i,6i2) and 5i NN((s, 72), (4)

resulting in the marginal distribution &; ~ N (8,67 +2). &;
is the estimate of the effect in Study i, and its within-
study variance is ¢, estimated by 67, i=1,...,k. 72 is the
between-study variance, estimated (from k studies) by 7;.
The overall effect 5 =6 can be estimated from k studies
by the weighted mean


https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%2F8bdvf%2Fdownload

KULINSKAYA anp MAH

s | WI LEY_Research

Synthesis Methods
k
G
Srv(k) = l:,i , (5)
> wi()

where the W;(22) = (67 +%7) " are inverse-variance (IV)

weights. The fixed-effect (FE) model assumes that 72 =0,

and the estimator EFE(k) uses the IV weights w; =;(0).
The variance of 31v<k) is routinely estimated by

\far(SW(k)) = lz ﬂ)i (%i)‘| . (6)

The standard confidence interval for the overall effect &,
uses the IV point estimator as its centre, and its half-
width equals the estimated standard deviation (square
root of the variance (6)) times the critical value from the
normal distribution.

2.3 | Point and interval estimation of 72
Because the w;(7}) in Equation (5) involve 77, we need to
choose an estimator of 72. It is well known that the maxi-
mum likelihood estimator of 7> is biased, and the
restricted maximum-likelihood (REML) estimator is a
good choice.** We use 75, in the IV estimator of § and
the Q-profile (QP) method*! for the accompanying inter-
val estimator of z2. For SMD, this method is one of the
best traditional methods.*’

The Q-profile confidence interval can be obtained
from the lower and upper quantiles of Fg, the approxi-
mate cumulative distribution function of Cochran's Q sta-

tistic* Q(#2) = Y (#2) (5 — bv)

Q(17) =Fgi1-aj2» Q(t})) =Fg.as2- (7)

The lower and upper confidence limits, 77 and 77, can be
calculated iteratively. This Q statistic is often assumed to
have a Chi-square distribution with k — 1 degrees of free-
dom when 7*=0; Fo=y; , in the original Q-profile
method.*' However, xi_, is an adequate approximation
only for very large sample sizes.

For SMD, Kulinskaya et al.*® derived O(1/n) correc-
tions to moments of Q and suggested using the Chi-
square distribution with estimated degrees of freedom
based on the corrected first moment of Q to approxi-
mate its distribution. Bakbergenuly et al.*” proposed an
estimator of 72, #gpg, based on this improved
approximation.

An accompanying KDB confidence interval for 2

combines the Q-profile approach and the improved
approximation by Kulinskaya et al.*® Bakbergenuly
et al.*’ demonstrated by simulation that 73, is less
biased than REML for small sample sizes (n < 100), espe-
cially for k>10, and both estimators become almost
unbiased from n=100. Both the QP and the KDB confi-
dence intervals for 7> have too high coverage for 72 near
zero. For larger 72, QP performs well, and the KDB inter-
val may be somewhat too liberal for small n.

Confidence intervals for 7? are related to tests of the
null hypotheses 7> =173. Values of 72 beyond the esti-
mated confidence limits (77, 77,) are rejected by a two-
sided a-level test, and values below the lower bound of
the one-sided interval [#7,00) are rejected by a one-sided
a/2-level test in favour of 72 >7;. We refer to these tests
as QP and KDB.

2.4 | Point and interval estimators of §
Traditional CMA based on REML uses gy, in Sryge) (5)
and in its estimated variance (6), in combination with the
critical values from the normal distribution. We refer to
this method as IV REML.

For SMD, the estimated effects &; (1) and their esti-
mated variances v} (2) are not independent. Because of
this, the IV estimates of the overall effect SW(k> are biased.
Use of non-random weights eliminates this bias. The use
of effective-sample-size weights (SSW) for estimation of
8, suggested by Hedges and Olkin,**?!'° was explored
and found superior to IV weights in a comprehensive
simulation study by Bakbergenuly et al.*”

These weights depend only on the studies’ arm-level
sample sizes: w; =n; = niriic/ (ir + hic); 1; is the effec-
tive sample size in Study i. They coincide with the
inverse-variance weights when g, =0 in (2). We refer to
the estimator of § of the form (5) with these weights as
SSW and denote it by dssw. The interval estimator
corresponding to SSW (SSW KDB) uses the SSW point
estimator as its centre, and its half-width equals the esti-
mated standard deviation of SSW under the random-
effects model times the critical value from the ¢-distribu-
tion on k—1 degrees of freedom. The estimator of the
variance of Sgsw is

>on (v + kps)

()’

Vhr (Sssw) =

: (8)

in which v? comes from Equation (2).
Once more, we refer to the tests of the hypothesis
0=25y based on the respective confidence intervals as
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IV REML and SSW KDB. In particular, the a-level two-
sided IV REML test compares its statistic
— -1/2 | ¢ . .\
Var Sy remL) | orvREML — 80 | against the normal criti-
cal value z;_g)», %nzd the SSW KDB test compares its sta-
tistic Var (Sssw) / | 5ssw — 8o | against the critical value
from the ¢-distribution on k — 1 degrees of freedom.

2.5 | CUSUM charts and their use in
sequential meta-analysis

Methods of statistical quality control (QC) were initially
developed in industrial applications of statistics, and are
now commonly used in medicine, epidemiology and pub-
lic health (e.g., to detect a start of an epidemic or to mon-
itor quality of hip implants). Their use in meta-analysis
for detection of temporal trends was suggested by
Kulinskaya and Koricheva.?® A process that is operating
with only random causes of variation is said to be in sta-
tistical control; otherwise, the process is out of control.**
The standard QC application includes two stages: a set-
up stage where the parameters of a process in control are
estimated, and the subsequent monitoring stage. At the
monitoring stage, the samples (of size n) are collected on
a regular basis; and if the values of interest (say, the sam-
ple mean X,,) fall within the control limits on the control
chart and do not exhibit any systematic pattern, the pro-
cess is considered to be in control.

The cumulative sum or CUSUM chart*® is one of the
most efficient QC tools. It is equivalent to a sequential
likelihood ratio test of the null hypothesis H, (the process
is in control) against an alternative H; (the process is out
of control). The cumulative log likelihood ratio (LLR) of
H, versus Hj is plotted at every step i, i=1,2,...,, and the
test stops in favour of H; when the LLR is large.*®

In standard applications, the null hypothesis Hy:
¥;~N(ug,0%) is tested against the alternative Hj:
Yi~N(uy+Ac,06?) of a practically relevant amount of
shift A (times the standard deviation) in the underlying
mean. Usually, two one-sided CUSUM charts (for posi-
tive and negative deviations) are plotted simultaneously.
An upper one-sided CUSUM testing the hypothesis Hy :
A =0 versus H;:A>0 can be written as a cumulative
LLR: xo=0,x; =max(0,x;_1 +1), i=1,2,.. for the ith
log-likelihood contribution [; = A((y; — o) /o — A/2).

In meta-analysis, when there is no temporal shift, the
process is in control, and all effect estimates are approxi-
mately normally distributed with the same mean,
5 ~N (6,6%). If a shift of size A occurs at some time
point, the mean of the process deviates from §, so that
5 ~N (6+A,07), and the process can be considered out
of control. Applying the CUSUM chart to meta-analysis,
the LLR for study i is® ;= A[w;(5;—5—A/2)], where
the weights are the inverse variances of the §;. Thus, the

Synthesis Methods— YW1 LEY_L

upper CUSUM accumulates weighted deviations from
the target value that are greater than A/2. Under positive
shift, the expected path of a CUSUM increases linearly
with the number of positive deviations and with their
average weight, until it crosses the chosen control limit.

An important notion associated with the chosen signif-
icance level in sequential testing is the average run length
(ARL) of the control chart. The ARL is the expected num-
ber of points plotted before a point falls outside the control
limits. The CUSUM signals as soon as x; > h. The value of
the control limit, h, is chosen to provide good ARL
values. The standard choices are h=4 or h=>5 standard
deviations. These values correspond to an ARL of
168 and 465, respectively, when the process is in control,
and to an ARL of 4.75 and 5.75, respectively, for a shift of
1.56** We use the R package gcc*’ for CUSUM analysis.

The use of QC charts in meta-analysis is justified in
the fixed-effect model; but in the random-effects model,
re-estimation of 7? introduces dependence between the
sequential effect estimates, and hence their distribution is
not consistent with the standard assumption of indepen-
dent increments in the QC charts.>”

3 | ESTIMATION AND TESTING
IN CMA

Consider K consecutive studies and a simple random-
effects model for study-level effects, with a simple shift in
the mean (at study k; +1):

8i~G(6+AI(i>ky),07) and 6;~N(5,7), i=1,...K, (9)

where G(-) is an arbitrary distribution with mean &; +
AI(i> k) and variance o7, K is the maximum number of
studies, I(i>k;) is the 0/1 indicator and 1<k; <K. In
the shift-in-the-mean model (9), the true SMD shifts from
6 in the first k; studies to 6+ A in studies k; +1, ..., K.
The standard REM (4) holds for the first k; studies and,
separately, for the studies from k; +1 to K when the dis-
tribution G(-) is normal. For SMD, the distribution G(-)
is given by Equation (3).

In this section, we consider some general CMA patterns
under this model and suggest several approaches to testing.

3.1 | Estimation of §

Define cumulative overall mean effect 6 of k <K stud-
ies to be a weighted mean of study-level effects §&;,
i=1,-k o4 = SO widi/ S ¥w;. In CMA, this cumula-
tive mean effect &) is estimated by S(k) =S kd /S,
whenever the number of studies k increases.
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If there is no shift in §, the cumulative mean O(k) = 0.
However, if there is a shift in 6 at study ki +1, &,
becomes a weighted average of § and 6+ A values.

Given a set of weights w;, i=1,---,K, and denoting the
running sum of weights W, = Z’{wi, the cumulative mean
effect for k <k; studies is §, and for k > k; studies it is

5(k) =5+A(Wk—Wkl)/Wk. (10)

Consider, for simplicity, that the sample sizes are equal
between arms and among studies, n;c = n;r = n/2, so that
effective sample sizes are n; = n/4. Thus, the SSW estima-
tor uses equal weights w;=n/4, and the cumulative
mean Sssw(x) =0+ A(1 —ky/k) increases from 6 at k=k;
to 81 + A(1— k1 /K), reaching §+ A only at K = co.

The within-study variances of Hedges's g are
Var(g;) =4/n+ 67 /2n. Under the scenario of no shift in &
or 72, the population IV weights should be equal. Given a
positive shift in the mean from 6 to §+ A, the variances
of the g, i>k;+1 also increase, and the weights
decrease accordingly. Therefore, with IV weights the
cumulative mean effect (10) will be reduced, compared
with SSW. This may reduce the power of the CMA based
on the IV weights. Figure S1 in Appendix S2 illustrates
changes in dssw(r) and in dpy() under the scenario of
equal sample sizes. The difference between the two
cumulative mean effects is the largest when 7% =0; but it
decreases in 72, and for 72> 0 it also decreases rapidly
with n and is negligible at n =100.

However, the estimated variances v? given by Equa-
tion (2) and, therefore, the IV weights W; are random var-
iables and are not exactly equal. Additionally, these
random weights are not independent from the estimated
effects g;, resulting in order 1/n bias of the estimated
cumulative mean effect 31v<k), even under the no-shift
scenario, as we demonstrate in Section 4.4.

3.2 | Estimation of 72
To understand the pattern of changes in the estimated value
of 72 in CMA, denoted by 2 r(k), consider the runnlng value
of Cochran's Q statistic, Q) =K w (8 — Sk ) for IV
weights w; =v;%. A number of estimators of 72, including
KDB, are based on the first moment of Q. Consider the
same simple scenario of equal sample sizes and a shift in
the mean from 6 to 6§+ A at study k; + 1 given by (9).

Let & =5; — AI(i>k;). The variables & coincide with
5 under the hypothesis of no shift. Write
Si =&+ AI(i > kl), and S(k) :E(k) + A(Wk — Wkl)/Wk for
E = Zlfwiéi / Z’fwi. The running value of the Q statistic

is Qo = i (& + AT k) — By — A(Wic— Wi ) /W)

It follows that

k

= Z w; (é’i - E(k))z +2AWy, (E(k) - E(kl))
i=1
+ AWy, (Wi — W)/ Wi,

The first term of Q) accounts for between-study hetero-
geneity of &. The mean of the second term is zero, and
we expect it to be reasonably small. And the third term
reflects the contribution of the shift A. Under no shift,
only the first term is nonzero.

The moment-based estimators of 72 described in Der-
Simonian and Kacker,*® which include the popular Der-
Simonian-Laird estimator,*® and the recent SDL
estimator’” have the form 3 =(Qu —Eo(Q))/
(Wk — W,({z) / Wk> where E((Q) is the expected value of Q
under homogeneity (i.e., when 72 =0), the denominator
is the multiplier at 7> in the Taylor-series expansion of
E(Qu). and W = -1w?.

Hence,
Wi, (Wi =W
rzzwzrg—&-Az—kl(z £ (2)"1), (11)
(wi-w)
where %é is the estimator of the heterogeneity vari-

ance under no shift. For the case of equal sample

sizes, the weights are w;=n/4, Wy=kn/4 and
kn2/42 s0 rﬁl~r§+A2k1§’,§ 9 At k=k+1,
TM~T.§ +A?/(k;+1), and then it increases in k almost

linearly. This increase in estimated 7?> does not depend on
the sample size.

In our simulation study, we do not use TM, but both
the KDB and the popular Paule-Mandel estimator™® are
also based on the first moment of Q(k), and we expect
similar behaviour from these estimators. REML is not a
moment estimator, but our simulation results, discussed
in Section 4.3, demonstrate this behaviour for both KDB
and REML (Figure 1).

3.3 | Testing for a shift in the mean
in CMA

Consider consecutive testing for a shift at k=1,...,K in
the model (9) based on the cumulative estimates
gf(k), W from K studies ordered over time. At each k,
the standard CMA tests Hy : d(x) = 6o against &) 7 do for
a known value of &y, at the same level a. We consider
two types of tests, described in Section 2.4, IV REML and
SSW KDB. These test statistics have the form

VAalr(S(k))_lz(S(k)—éo). The variance Var(y)) is of
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FIGURE 1 Bias of REML and KDB estimators of between-studies variance 72 when 6 =1 for k <25 followed by a shift to § =2 for
k> 26, n=20, 50 and 100, K = 50 and 7> =0, 0.1, 0.25 and 1. Light grey line at 0 [Colour figure can be viewed at wileyonlinelibrary.com]

order 1/N y, +T%k) /k, where Ny, is the total sample size statistics are approximately equivalent to the ratios
in the k studies. This is easier to see from Equation (8) \/E(S(k) —50) /Z(k)- The power of these tests depends pri-
for the variance of Sgsw, but it is also true for Spvremi.- marily on the value of \/E((SU{) —60) /r<k), but it may be
Therefore, for sufficiently large sample sizes, these distorted by biases of o) and 7).
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Visually, the CMA provides a forest plot of the S(k)
values with their confidence intervals for increasing k,
and a &y outside the kth confidence interval is rejected by
the kth test. An example of these CMA plots is provided
in Row 2 of Figure 7; see Section 5 for further details.

As discussed in Section 3.2, the cumulative estimate
%fk) increases with the shift in the mean. Because of this,
we also consider two tests, QP and KDB, of T(Zk) <1} ver-
sus 7{;, > 75 for a known value of 77 as possible tests for
shift. These tests are also performed consecutively for
increasing k. However, based on (11) these tests,
described in Section 2.3, are likely to be more powerful
for early shifts (small k). Similar to the standard CMA
tests for S(k), these tests are easily performed visually on a
forest plot of cumulative %%k) values. Examples of these
plots appear in the first row of Figure 7.

From the findings in Section 3.2, it also follows that
for a test of a shift based on S(k), the accompanying
increase in %(zk) may decrease its power. It would make
sense to use a sufficiently well-estimated value of 72
before this increase occurs. Because of this, we consider
the following modification to traditional CMA, which we
refer to as the two-stage CMA.

Borrowing the quality control concept of two-stage
monitoring, in Stage 1 we aim to estimate 72. Therefore,
we test for O(k) = o for k=5,...,10 using IV REML or

TABLE 1 Methods and abbreviations
Weights in estimation of & v
SSW
Point estimators of 72 REML
KDB
Point estimators of § IV REML
SSW KDB
Interval estimators of 7> QP
KDB
Critical values in intervals and tests IV REML
SSW KDB
Methods of CMA Standard CMA

Two-stage CMA (73)
Standard CMA (5)
Two-stage CMA (5o, )

CUSUM analysis Two-stage CUSUM (z2)

SSW KDB. If that test rejects at k; + 1, we take 8 (esti-
mated by REML or KDB, respectively) as the ‘true’ value
73; otherwise we take 75 =1(,,. The rationale for this
choice of 5 <k <10 studies for estimating z? in Stage 1 is
that an estimate of 72 is not sufficiently precise for k < 5,
and is reasonably accurate by k=10 under no shift (see
Section 4.3). However, we do not want to use an inflated
value of 72 if an early shift does occur. In Stage 2, we
monitor the (known) mean effect 5y, using the 73 value
estimated in Stage 1 as the known between-study vari-
ance rfk> without re-estimating it. We refer to the respec-
tive tests and estimators as IV REML (z3) and SSW
KDB (2).

We also consider a more realistic scenario of monitor-
ing the estimated value of § (estimated in Stage 1 as
described above at k;+1 or at k=10) instead of the
‘known’ 8,. We refer to these tests as IV REML (5,) and
SSW KDB (8,) when further testing proceeds as in the
standard CMA (i.e., with 7? re-estimated each time), and
IV REML (8, 72) and SSW KDB (6, 2) when also using
the value of 7 estimated in Stage 1.

For comparison, we also use two-stage CUSUM
charts with h=4, 5 and 6 to monitor the known
mean &, for the effects &; with variances v? 4 z2. Table 1
gives a comprehensive summary of methods and
abbreviations.

Inverse-variance weights w; = 1/v?
Effective sample size weights n=ncnr/n
Restricted maximume-likelihood estimator
Kulinskaya-Dollinger-Bjerkestel estimator®-’

IV weights with REML-estimated 72

SSW weights, KDB-estimated 72 in variance calculation
Q-profile interval based on y%_, distribution of Q*'
Q-profile interval based on improved approximation®
Standard normal distribution

t-Distribution with K —1 d.f.

3(1() and %(Zk) are re-estimated at each k =2,...,K; known &, value is

used for testing Ho : 5(x) = do at each k

7o =17 is estimated in Stage 1 from 10 or fewer studies; this 72 value
is constant in Stage 2; &, is known

3(1() and %%k) are re-estimated at each k=2,...,K; So estimated in
Stage 1 used for testing Hy : 6 = o in Stage 2

5o and 7o =22 both estimated in Stage 1 are used for testing Hy :
Sy = & in Stage 2

7o=1" is estimated in Stage 1 from 10 or fewer studies; this 72 value
is constant in stage 2; &, is known
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4 | SIMULATION STUDY TABLE 2 Data patterns in simulations
. . . Parameter Input values

4.1 | Simulation design P

6 (true value of 0,0.5,1
I . . the SMD

In the majority of our simulations we use K =50 as the ¢ )

A (shift in §) 4+0.5 and +1, both for 6 =1

maximum number of studies, though in some scenarios
we also use K =100 and 1000. For each combination of
parameters, we use equal sample sizes from n=20 to
1000 in all K studies. The sample sizes in the treatment
and control arms are equal.

We use a total of 10,000 repetitions for each combina-
tion of parameters. Thus, the simulation standard error
for estimated coverage of § or 7* at the 95% confidence
level, or testing at 0.05 level is roughly
1/0.95 x 0.05/10,000 = 0.00218. The simulations were
programmed in R version 3.3.2.

As the number of studies increases in CMA, with
k <K, we examine bias and coverage in estimation of §
and 72, and the accumulating rejection rates (Type 1 error
or power) of tests for the shift in the mean effect and in
the between-study variance 7>. We also consider the
cumulative signalling rate and the ARL in CUSUM anal-
ysis.** We consider both a constant value of § (the null
hypothesis of no shift in the mean) and a shift from §=1
to §=2 at 0.25, 0.5 and 0.75 of the total number of stud-
ies. Our summaries of results in Sections 4.3—-4.7 include
illustrative figures and are based on examination of the
figures in our ePrint.*® We vary five parameters: the over-
all true SMD (6) and the between-studies variance (z2), in
addition to the maximum number of studies (K), the
point of shift (if any) (k;), and the studies' total sample
size (n). Table 1 lists the values of each parameter.

We generate the true effect sizes §; from a normal dis-
tribution: §; ~ N(5,7%). We generate the values of Hedg-
es's estimator g; directly from the appropriately scaled
non-central ¢-distribution, given by Equation (3), and
obtain their estimated within-study variances from
Equation (2).

We study two approaches to point and interval esti-
mation and testing of > (REML/QP and KDB) and two
resulting approaches to point and interval estimation and
testing of § (IV REML and SSW KDB). Each of these two
approaches was studied in the four CMA settings listed
in Table 1: traditional CMA setting with known &, value,
CMA with estimated in Stage 1 value of §,, the two-stage
CMA with known value of §p, and the two-stage CMA
with the estimated in Stage 1 value of §, (Table 2).

4.2 | Outcomes recorded in simulations

In all simulations, we assumed the shift-in-the-mean
model (9) and, for the CMA methods of interest, we

7?2 (variance of 0,0.1,0.25,1

random effect)

K (maximum
number of
studies)

50, 1000 (two-stage CMA)

ky (point of shift i[K/4], i=1, 2, 3 for shift from 1 to 2;
in 6) K =50 and k; =26 for shifts from 1
t01.5,1t00.5,and 1 to 0

20, 50, 100, 500, 1000 (shift in the
mean)

20, 50, 100, 500 (no shift in the mean)

n (sample size: total
of the two arms)

a (two-sided 0.05, 0.01, 0.005
significance level)

M (number of 10,000
repetitions)

1000 (two-stage CMA with K =1000)

studied the bias of the point estimators S(k) of the cumu-
lative mean 6y (10) and (for the standard CMA) the bias
of %(Zk) in estimating 72 for 5 <k <K. We also investigated
coverage of the 5y and of 7> by the relevant interval esti-
mators and empirical levels of the accompanying two-
sided tests for the null hypothesis of no shift in § and
(separately) of one-sided tests of no shift in 72. We also
investigated cumulative Type I errors of these tests at the
0.05, 0.01 and 0.005 levels for 6 and at the 0.025, 0.005
and 0.0025 levels for one-sided tests for 2.

. )
43 | Bias of 77,

When there is no shift in §, both estimators of 7> (REML
and KDB) have non-negligible positive bias for small k,
especially for small sample sizes (n < 50), Figure 1. KDB
retains small positive bias for larger values of k, whereas
the bias of REML becomes negative when 7> > 0. Biases
do not depend visibly on the value of §, but they increase
in k and increase considerably in 72. The bias of REML is
about —0.04, and the bias of KDB is +0.04 when n = 20,
72=0.25 and k=10, compared with —0.10 and +0.07
when 72=1. The biases decrease in n; when n=100,
KDB is practically unbiased, and REML has small nega-
tive bias of about 2%.

From the point of a shift, both estimators of 2
increase rapidly, KDB somewhat faster than REML.
However, for larger n, the behaviour of REML converges
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to that of KDB, and the difference between the estimators
is negligible at n =100.

44 | Bias and coverage of S(k)

The cumulative effect estimated by SSW is almost unbi-
ased under all simulated conditions, regardless of the
value or a shift in 6. In Figure 2, SSW coincides with its
expected value, given by Equation (10). IV REML is also
unbiased when §=0 (not shown). However, IV REML
has a small negative bias, up to about 5%-7%, when n=
20 and 6 =1, Figure 2. The bias increases in § and in k. It
also increases, though rather slowly, in z2. The bias
decreases for larger sample sizes; when n =100 and 6§ =1,
the bias is about 1.5%. After the shift in §, IV REML is
somewhat lower than SSW, and it deviates from its nomi-
nal mean (10), but these differences decrease in sample
size and are practically eliminated by n = 100.

As illustrated by Figure S2 in Appendix S2, coverage
of SSW KDB is rather conservative (i.e. above nominal)
for small numbers of studies, but it improves for larger
values of k and 72. When n =20 and k < 5, coverage of IV
REML is somewhat conservative when 72=0 and §=0,
but it drops below nominal for larger k when §=1. For
larger sample sizes, IV REML provides stable, if some-
what conservative, coverage when 72 = 0. When 72 >0, IV
REML has very low coverage for k <10, and it does not
improve much in n. Coverage at the nominal 95% level is
about 85%-90% when k =20 and 72 > 0.25, and it remains
below nominal when n =100. Coverage is visibly reduced
for 6> 0. As we shall see in the next section, this liberal
coverage translates into higher Type 1 error in CMA.

4.5 | Level and power of tests for 6
in CMA

Because of multiple testing over the increasing number
of studies k, the empirical levels of SSW KDB and IV
REML at the same nominal level are increasing in k, but
the empirical levels of SSW KDB are considerably lower.
The difference between the two methods is more pro-
nounced for larger values of §; see Appendix S2, Figures
S3 and S4 for §=0 and §=0.5 up to K =50 and Figure
S5 for =1 and K up to 1000. Tables S1-S3 in Appendix
S1 provide empirical levels at selected values of k at the
nominal 0.05, 0.01 and 0.005 levels for §=0, 0.5 and 1.
As an example, at the nominal 0.05 level, these levels for
6=1 are 0.048 for SSW KDB versus 0.118 for IV REML at
k=12 and 0.089 versus 0.187 at k=25 for n=20 and
72 =0. These levels increase further in 72 (0.079 vs. 0.177
at k=12 for n=20 and 7>=0.1); and they increase

somewhat in n, in this example to 0.150 versus 0.253 at
k=12 for n=1000 and 7?=0.1. Testing at the lower
nominal levels makes sense for larger values of k, 7% and/
or n, see Tables S1-S3 for some guidance.

The power of SSW KDB and IV REML is compara-
tively low. Figure 3 shows empirical levels for shift from
1 to 2 at Study 26. For both methods, the power is highest
when 7> =0 and deteriorates considerably in 72. Taking
into account its lower level, SSW KDB is more powerful
than IV REML. The power increases in n, and by n =100
both methods reach power 80% at 31 studies when 72 =0
and at 36 studies for 72 =0.25. Choosing the nominal
level of 0.01 safeguards the empirical levels about 0.05 at
k=25 and reduces the power of CMA accordingly.
Table S6 provides the number of studies needed to reach
power of 80% and 90% for a shift from 6=1 to §=2 at
k=13, 26 and 38. As expected, the power of all tests is
lower at smaller shifts, but the direction of shift does not
seem to matter (Figures S9-S20 in Appendix S2).

4.6 | Level and power of tests for 7>
in CMA

We studied one-sided tests for T%k) > 72, and typical results
for A=1 at k=26 are depicted in Figure 4 for nominal
levels 0.025, 0.005 and 0.0025. Multiple testing inflates
empirical levels, more so for KDB than for QP. Table S4
in Appendix S1 provides empirical levels at selected
values of k at the nominal 0.025, 0.005 and 0.0025 levels
for §=1. The power increases in n and decreases in 72.
When 72 =0, the power is quite high from n=50; but
when 72 =0.25, the power reaches 80% for both tests only
at k=41 for n=100. Power is extremely low when
72 =1, even for very large sample sizes; for shift at k = 26,
power barely reaches 30% at k=50 when n=1000 (not
shown).

4.7 | Comparing tests for shift in 6 in
one- and two-stage CMA

When there is no shift in §, two-stage CMA and the stan-
dard one-stage CMA have very similar inflation of the
empirical levels. However, two-stage CMA is somewhat
more powerful under the shift. This difference in power
is clear for KDB SSW (z2) from n =20, and for IV REML
(z2) from n =50, Figure 5 and Figure S6. This difference
in power is explained by inflation in the estimated T%k) in
the standard CMA, as discussed in Section 3.3.

For comparison, Figure 5 and Figures S6-S20 in
Appendix S2 also include CUSUM-based CMA with h =4
and 5 along with the CMA tests at the 0.05 and 0.01
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FIGURE 2

Weighted cumulative effects dsswr) and drv(x) given by Equation (10) (dashed lines) and estimated by SSW and IV REML
cumulative effects B(k) (solid lines) when § =1 for k <25 followed by a shift to § =2 for k >26, n =20, 50 and 100, K = 50 and 7> =
0, 0.1, 0.25 and 1. Light grey line at 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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http://wileyonlinelibrary.com

KULINSKAYA anp MAH

» Research
® | wi LEY—synthesis Methods

nominal levels, respectively. Under no shift, CUSUM-
based analysis results in greater inflation of the empirical
levels, but equally, it has more power under shift. Simi-
larly to other tests, its power increases in n and decreases
in 72.

Figure 5 and Figures S6-S20 also include the two-
stage methods using an estimated in Stage 1 mean effect
0. In this scenario, the ‘standard’ CMA methods, which
re-estimate T%k), have especially inflated levels, and the
two-stage methods, which use the estimated r%, are
clearly the better choice. Unexpectedly, methods that use
two parameters estimated at Stage 1 (&,z2) have some-
what lower Type 1 error and somewhat more power than
the comparative methods using known &y, especially for
IV REML.

Table S5 in Appendix S1 provides empirical levels of
two-stage CUSUM analysis of k studies with h =4, 5 and
6 when 6=1. Table S7 provides empirical levels of two-
stage CMA of k studies at nominal levels 0.05, 0.01 and
0.005 when 6 =1, and Table S8 gives the number of stud-
ies (k) required for 80%/90% power for detecting a shift
fromé=1to5=2.

5 | EXAMPLE

As an example, we use data by Batdry et al.”' on the role
of agri-environment management schemes in conserva-
tion and environmental management. We use the data
on species richness from 39 studies published from 1992
to 2010, with mostly small to medium sample sizes, rang-
ing from 2 to 37 per arm, though one study has 152 obser-
vations in each arm. The effect measure is SMD, and
positive values correspond to higher species richness in
the extensive (organic) than in the intensive (conven-
tional) fields. The majority of the studies originated from
European countries and compared conventional with
organic management. The original meta-analysis did not
take chronology into account. Observations of multiple
taxa and/or of different geographical regions in an individ-
ual study were included separately in the dataset, resulting
in 109 records in total. We chose a single sub-study with
median value of 5 from each study. Figure 6 provides the
raw data and forest plot, depicting the 39 sub-study
effects with corresponding 95% confidence intervals.
Visual examination of the forest plot shows that the
effects in the first 18 studies seem to hover somewhat
above zero, and Study 19 is a high outlier. The next sub-
set of effects (Studies 20-33) is somewhat more positive,
and Study 33 is another high outlier. The last subset of
effects (Studies 34 to 39) seems to drift back toward zero.
These observations are clearly confirmed by the plots of
cumulative 7 values in the top row of Figure 7, using

both QP and KDB confidence intervals. Heterogeneity is
very high in the first eight studies, but then it settles
down and is relatively low up to Study 18. It jumps at
Study 19, but then decreases from Study 20-33, indicating
that Study 19 is just an outlier and not the start of a shift.
The same happens at Study 33. In this example, the KDB
values of 7% are higher than the REML values.

In the second row of Figure 7, IV REML provides higher
estimates of 3<k> and narrower confidence intervals than
KDB SSW. As we expected from the simulations, IV
REML is less conservative and shows a significantly posi-
tive effect &g rvremr =0.959 (0.014,1.905) at the
0.01 level at Study 8 (discounting Study 1), compared
with Study 36 for SSW KDB (with
8(36), ssw kpp = 0.952 (0.005, 1.898)). Both methods show
wider confidence intervals because of increased 7> values
at the outlier Study 19.

In two-stage CMA, the values %ﬁEML,(7):1.O4 and
%%DB,(M) =0.836 are used in two-stage IV REML and KDB
SSW, respectively. The value of &), ssw =0.664. The
KDB test for 72 shows significant increase in 7* at Study
19, compared with Study 10. The confidence intervals for
3<k> are somewhat wider for two-stage CMA than for
standard CMA at the start, and somewhat lower by
the end, for both methods. Two-stage SSW KDB results
in a significant effect at Study 25, where
S(zs),ssme:0-872(0-022, 1.721), considerably faster
than the one-stage SSW KDB CMA.

In the CUSUM plots, the first 7 points (for REML)
and first10 points (for KDB) are obtained with changing,
cumulative values of %%k), but thereafter use the fixed
values throughout. The CUSUM based on the value of
%ZREML,U) =1.04 does not reach significance, but the
CUSUM based on the smaller value of %§DB,(10) =0.836
does at Study 19, and both CUSUMSs quickly react to any
changes in effects.

In this example, which involves no significant shifts
in effects, SSW KDB CMA appears to be too conservative.
However, as our simulations demonstrate, this method
would result is a much lower false-positive rate. Different
methods provide complementary information, and in
practice we therefore recommend the use of multiple
plots, including the forest plot, the CMA plot for 7 and
the two-stage CMA plot for 6.

6 | DISCUSSION: PRACTICAL
IMPLICATIONS FOR CMA

Cumulative meta-analysis is a well-established and popu-
lar method of evaluating and monitoring accumulating
evidence. This method is especially widely used in health
and environmental applications where multiple
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of CUSUM with h = 5 for equal sample sizes nic +nir =n =50, 72 =0, 0.1,0.25 and 0.1 and a shift from §=1 to § =2 at Study 26. Light grey
line at 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]
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Forest plot of Batary et al. (2011)

Study  Source Year Ny Ne X7 St Xe Sc [95% CI
1 Moreby et al. 1994/1 1994 31 31 = 335 25276 1144 25276 3.16[2.68, 3.64]
2 Drinkwater et al. 1995/2 1995 14 17 = 127 10.1025 249 16.9047 0.83[0.12, 1.54]
3 Feber et al. 19981 1998 9 9 —a— 51752 11186 65697 1.2528 1.12[0.20,2.04]
4 Alvarez et al. 200111 2001 13 9 = 17761 03444 19104 04107 0.35[-0.50, 1.20]
5 Kleiln et al. 2001/2 2001 37 37 . 15703 14256 19219 14256  0.24[-0.20,0.58]
6 Peter & Walter 2001 2001 152 152 gl 29318 65147 44489 28721 0.30[0.10, 0.50]
7 Kruess & Tscharntke 2002a/2 2002 6 6 A 32 12247 63 31843 1.19[0.06,2.32]
8 Irmler 200311 2003 27 5 ] 246661 156127 322826 239058 0.44[-0.52, 1.40]
9 Kleijn et al. 2003 unpubl.12 2003 21 21 == 3.905 2508 4524 24823 0.241-0.38, 0.86]
10 Kremen etal. 20031 2003 5 4 A 36 12913 40286 25825 0.20 [-1.11,1.51]
1 Kleijn et al. 2003 unpubl./g 2003 20 20 == 3389 63734 363 8.9978 0.30[-0.32,0.92]
12 Verhulst et al. 2004/2 2004 22 22 —=— 32 17824 7 27204 1.62[1.03,2.21]
13 Roschewitz et al. 2005 2005 12 12 —— 142 54 297 74 231[1.50,3.12]
14 Schmidt et al. 2005/1 2005 12 12 —=— 144583 52584 1375 4.2452 -0.14[-0.95, 0.67]
15 Sepp et al. 2005/2 2005 5 10 A 3 33541 33 4111 0.07 [-1.00, 1.14]
16 Shah et al. 2005/2 2005 10 10 —— 36 12649 36 1.2649 0.00[-0.88, 0.88]
17 Gabriel etal. 2006 2006 19 19 f—a— 2353 8.3289 3947 7.2526 2.00[1.35,2.65]
18 Genghini et al. 2006/1 2006 26 15 —u—] 04 0.24 0.68 0.23 1.16[0.51, 1.81]
19 Rundléf & Smith 2006/2 2006 [ 6 ——— 02995 00608 08051 0.1009 6.71[5.58,7.84]
20 Knop et al. 2006/2 2006 21 21 [y 3952 16577 4952 1.987 0.54 [-0.08, 1.16]
21 Marshall et al. 2006/1 2006 21 21 = 0.619 12442 1381 1.2091 0.95[0.33,1.57]
22 Petersen et al. 2006/1 2006 20 20 = 146134 28574 202163 4.9821 1.35[0.73,1.97]
23 Clough etal. 2007b 2007 21 21 —=— 234483 04812 244828 94812 0.11[-0.51,073]
24 Holzschuh et al. 2007/1 2007 19 19 —=— 2053 22967 6.368 3.4028 1.46[0.81,211]
25 Albrecht et al. 2007/2 2007 13 13 —— 53333 3698 94872 3.2358 1.16[0.40, 1.92]
26 Béldi et al. 20071 2007 21 21 —=— 462381 37859 518571 51926 1.21[0.59,1.83]
27 Batdry et al. 2007¢/1 2007 21 21 H—=— 64286 06156 6.6667 0.4748 0.43[-0.19, 1.05]
28 Dietschi et al. 200711 2007 14 17 —=— 37 56125 529 9.4831 1.94[1.23 2.65]
29 Kohler et al. 2007/1 2007 21 21 —— 4762 19468 6714 29856 0.76[0.14, 1.38]
30 Manhoudt et al. 2007/2 2007 6 4 e 348718 67692 51.2821 85128 1.98[0.71,3.25]
A Batary et al. 2008 unpubl./8 2008 10 10 | — 24875 05376 35875 0.506 2.02[1.14,2.90]
32 Romero et al. 2008/1 2008 18 18 —=— 6.5 27153 147 4.8366 2.04[1.39,2.69]
33 Rundlof et al. 2008b/2 2008 [ 6 P 07335 0.3043 25938 05128 4.07[2.94,5.20]
34 Winfree etal. 2008 2008 16 6 e 6.6 24 6 26 -0.241-1.18,0.70]
35 Batary et al. 2008 unpubl./7 2008 10 10 = 28 07273 315 0.8222 0.43[-0.45 1.31]
36 Batdry et al. 2008/1 2008 21 21 —a— 204286 09118 211805 0.7258 0.91[0.29, 1.53]
37 Ekroos et al. 2008/2 2008 40 15 p—=— 114 05 14 04 0.54[-0.05, 1.13]
38 Sjodin et al. 2008/4 2008 8 8 —— 275 16971 375 1.6971 0.56 [-0.42, 1.54]
39 Batdry et al. 2010 2010 10 10 E——] 31111 16764 44211 32027 0.49[-0.39, 1.37]
RE Model B 1.13[0.75, 151]

I T T T T T T T T T T 1
2 4 © 4 2 3 4 5 6 T & 9 10
Effect size
FIGURE 6 Forest plot for species richness data from Batdry et al. (2011) with 95% confidence interval. The effect measure is SMD, and

positive values correspond to higher species richness in the intervention arm

publications on the same topic are available over a num-
ber of years. The multiplicity problems inherent in CMA
are well known, and a number of alternative statistical
methods aimed at resolving these problems are available.
However, this does not seem to hinder the popularity of
CMA in applied research.

Therefore we investigated, theoretically and by sim-
ulation, the level and power of CMA and how to
improve both. For the popular effect measure SMD, we
compared two approaches for CMA: the first (IV REML)
is based on the popular REML estimation of the
between-study variance 72 and the inverse-variance
method for combining the evidence, whereas the second
(SSW KDB) is based on the effective-sample-size weights
and the KDB estimator of 72°° Our simulations clearly
demonstrate that the SSW KDB analysis is a much better
option when & # 0.

From theoretical consideration of CMA in Section 3,
we recognized the issues with variance inflation in CMA
when a shift in the mean occurs and suggested therefore
a two-stage approach to CMA, as well as testing for a

shift in 72. Our simulations show that the two-stage CMA
performs better than the standard one-stage CMA on
both Type 1 error and power. Testing for 72 also works
well for small-to-moderate values of 72 <0.25; the Q-pro-
file method*' is the preferred option. However, this
method has very low power for larger z2. For all studied
methods, smaller shifts or higher heterogeneity results in
lower power, but the direction of shift does not seem to
matter. Power increases considerably in sample size n.
However, even for n =1000 and a large shift in § from 1
to 2, at least three to five studies after the shift are needed
to achieve 80% power at the 0.01 level when 72 =0.1, and
seven to nine studies are needed when 7% = 0.25. Overall,
at least 15-20 studies are required to use any version
of CMA.

In our simulations, we also considered CUSUM
charts, suggested by Kulinskaya and Koricheva,?® and
modified them for random-effects MA by adding esti-
mated at Stage 1 between-study variance rj. However,
this resulted in too high a Type 1 error rate, and we do
not recommend this method.
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FIGURE 7 CMA plots for species
richness data from Batdry et al. (2011). QP
and KDB confidence intervals for 72 at 99%
confidence level; one- and two-stage CMA
intervals at 99% level, additional horizontal
lines at 3(8),1\, remL = 0.959 and at

810).ssw kpp = 0.664; CUSUM plots with
h=>5. The effect measure is SMD, and
positive values correspond to higher species
richness in the intervention arm [Colour
figure can be viewed at
wileyonlinelibrary.com]

A practical recommendation is to run simultaneously
two analyses: testing for cumulative 7> at the 0.005 level
using the Q-profile method, and the two-stage testing for
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1 by KDB. The suggested levels guarantee an overall
level close to 0.05 for k <26 studies, as the two tests at
levels a; and a,, with rejection if at least one of them
rejects the null hypothesis, result in approximately an
a1 +a, level. Somewhat higher levels would be possible
for lower numbers of studies and/or lower between-study
variances.

We studied only simple scenarios of equal sample
sizes within and between studies, but we anticipate
CMA to have even lower power in more realistic
unbalanced settings. A study of the use of CMA for
other effect measures would also be of interest for
practitioners, though we do not believe that the power
would improve. We considered only simple alterna-
tives of a shift in § at one point. Other realistic alterna-
tives may include linear or nonlinear trends in effects
and other more complicated options. Lai** provides a
comprehensive review of the use of sequential methods
for a wide class of alternatives. A critical review of
these methods for applications in meta-analysis would
be very useful.

In the case of high heterogeneity, the power of all
CMA methods is very low. It would be of interest to con-
sider the use of runs tests, which are routinely used in a
similar quality control context,> and which may increase
the power of CMA. Another important extension of CMA
would be methodology for cumulative analysis when the
heterogeneity is reduced through meta-regression. We
shall address these possible improvements in further
research.
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