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Abstract 

The Plankton Imager (PI) is an underway semi-automated, high-speed imaging instrument 

which takes images of all passing particles and classifies the mesozooplankton present. We 

used data (temperature, salinity and mesozooplankton abundance) collected in the Celtic Sea 

in spring and autumn from 2016 to 2019 to assess the ability of the PI to describe temporal 

changes in the mesozooplankton community and to capture the seasonality of individual taxa. 

The description obtained using the PI identified both seasonal and interannual changes in the 

mesozooplankton community. Variation was higher between years than seasons due to the 

large variation in the community between years in autumn, attributed to the breaking down of 

summer stratification. The spring community was consistent between years. The seasonality 

of taxa broadly adhered to those presented in the literature. This demonstrates the PI as a 

robust method to describe the mesozooplankton community. Finally, the potential future 

applications and how to make best use of the PI are discussed. 

Introduction 

The ubiquitous distribution and high abundance of zooplankton makes them fundamental in 

many ocean processes. They have an essential role in the global carbon cycle and carbon 

sequestration, regulating the exchange of CO2 between the atmosphere, surface ocean and 

ultimately the seabed (Hansell, 2002; Steinberg et al., 2002; Steinberg and Landry, 2017). 

Zooplankton can be used in global monitoring; providing reliable, sensitive indicators to 

climate change (Taylor et al., 2002). Furthermore, the adult and juvenile stages of 

zooplankton are the principal prey for many commercially fished species (Beaugrand et al., 

2003; Heath, 2005). Despite this, time-series data for zooplankton are sparse (Mackas and 

Beaugrand, 2010) and our knowledge of communities is spatially fragmented (Pitois et al., 

2016).  

At the same time, rising exploitation of our seas is putting increasing pressure on critically 

assessing and protecting the marine environment (Bean et al., 2017). Resultant policy, such 

as the EUs Marine Strategy Framework Directive (MSFD – Directive 2008/56/EC), demands 

increasingly complex metrics for plankton communities (McQuatters-Gollop et al., 2017). 

However, the capacity to resolve questions posed by policy are hindered by financial ceilings 

that limit monitoring capacity (Bean et al., 2017; Pitois et al., 2018). To make matters worse, 

traditional taxonomy by light microscopy, the required analyses on net samples, itself a 

‘discipline in crisis’ (Agnarsson and Kuntner, 2007), is laborious and time-consuming. These 
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factors place impetus on developing cost-effective methods to obtain sufficient data to 

accurately describe plankton communities (Danovaro et al., 2016). In response, a range of 

new devices, often using the latest technology have been developed (Wiebe and Benfield, 

2003). For example, acoustic tools can provide high temporal and spatial resolution for 

assessing total biomass (Wiebe and Benfield, 2003), but cannot answer questions requiring 

taxonomic information (Stanton et al., 1994; Benoit-Bird and Lawson, 2016). Imaging 

devices, such as the FlowCam (Sieracki et al., 1998) and ZOOScan (Gorsky et al., 2010) are 

well established, widely used methods. While these devices can speed up identification and 

provide data archiving benefits, they are commonly used on captured, preserved samples and 

therefore suffer the same constraints as the deployment of nets and preservation of 

specimens.  

Semi-automated, in situ, imaging devices take a different approach. Deployable devices such 

as the Video Plankton Recorder (Davis et al., 2005), Underwater Vision Profiler (Picheral et 

al., 2010) and The in situ Ichthyoplankton Imaging System (Cowen and Guigand, 2008) 

capture images of passing particles for subsequent classification removing the need for 

physical sample collection. For a comprehensive review of these devices see: Lombard 

(Lombard et al., 2019). More recent devices, for example The Scripps Plankton Camera 

System (Orenstein et al., 2020) and PlanktonScope (Song et al., 2020), are currently 

employed for routine monitoring. The Plankton Image Analyser (Culverhouse et al., 2015; 

Pitois et al., 2018) uses a similar image-capture method but is instead connected to the ships 

clean water inlet. This negates the need for deployment and allows for continuous imaging of 

particles as they pass through the system as the ship is underway. Continuous sampling 

allows for high spatial and temporal resolution whilst retaining reasonable taxonomic 

resolution. The device also has economic advantages: it is easily retrofitted to existing vessels 

and runs continuously with minimal human interaction after set-up. Furthermore, the use of 

semi-automated image recognition algorithms has strong potential to significantly reduce 

analysis time. 

The first application of the Plankton Image Analyser (PIA) was a comparison with ring net 

sampling (Pitois et al., 2018). The study found that the PIA performed well, but noted 

limitations associated with depth of field issues leading to a higher number of unidentifiable 

blurred images. Here, the Plankton Imager (PI), an evolution of the PIA, was used with an 

improved method to reduce the incidence of blurred images. We used the Celtic Sea as a case 
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study to assess the ability of the PI to describe temporal changes in the mesozooplankton 

community.  

Method 

Study area and sampling methods 

Data were collected at night during five fisheries surveys from 2016 to 2019 in the Celtic Sea 

aboard the RV Cefas Endeavour (Fig. 1, Table 1). Autumn data were collected as part of the 

PELTIC survey (PELagic ecosystems in the western English Channel and eastern celTIC 

Seas) and spring data aboard the SWECOSS survey (South West ECOSystems Survey). The 

PI ran continuously and mesozooplankton counts were obtained at 107 stations by extracting 

from the raw data. Temperature and salinity data were collected in autumn using a SAIV mini 

Conductivity, Temperature, Depth (CTD) and in spring using the Cefas-built ESM2 data 

logger at 93 stations. Due to sampling constraints, 14 stations did not have corresponding 

temperature and salinity data (Fig. 1). PI data are freely available from the Cefas Data Hub: 

10.14466/CefasDataHub.101 (Pitois et al., 2020). 

Temperature and salinity 

Temperature and Salinity data were bin averaged into 1 m depth increments starting at the sea 

surface. Sea surface temperature (SST) was taken as the shallowest bin available. Although 

the PI samples at 4 m, the difference in temperature between the surface and 4m was only 

0.02 °C on average and thus negligible. Differences in temperature (ΔT) and salinity (ΔS) 

were calculated between the shallowest and deepest readings.  

The Plankton Imager (PI) 

The Plankton Imager is an instrument for the continuous, semi-automated, underway 

sampling of mesozooplankton in surface waters. The PI uses a Basler 2048-70kc line scan 

camera with a scanning rate of 70,000 lines per second capturing 2,048 10 µm pixels per line 

(Culverhouse et al., 2015; Pitois et al., 2018, 2021). Water pumped from 4 m depth passes 

through the flow cell at 22 L min-1 equating to an approximate 1.3 m3 of seawater per hour. 

The flow cell has an internal depth of 12.8 mm giving a field of view of 10 µm x 20.48 mm. 

The PI can capture particles sized from 10 µm to 2 cm but was set up with a range of 200 µm 

– 2 cm. This was to prevent the image capture rate exceeding the hard drive write speed 
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which would result in lost images. Captured images are classified by a Random Forest 

machine learning algorithm which sorts images into predefined categories (Breiman, 2001). 

The algorithm is trained on expert-sorted PI images (Fig. 2). In line with PI software and 

hardware developments, the classifier training set has been continually improved. 

Classification accuracy varies between stations but currently all images are checked and, if 

needed, resorted by an expert taxonomist.  

Zooplankton counts were derived from 200 zooplankton images extracted at random from all 

images obtained during a 1 hour period at each station (Pitois et al., 2018). The actual 

number of images needed to reach 200 specimens varied based on plankton density and 

detrital content. All non-target images (e.g. large phytoplankton or particulates) are classified 

as detritus. This process of subsampling is analogous that used by the Folsom Splitter where 

data are continually and randomly split until the target number of individuals is reached. 

Images per hour ranged by an order of magnitude. The PI operates on a semi-automated 

classification method, similar to that used by ZOOScan (Gorsky et al., 2010). An expert 

taxonomist validated the output from the machine learning classifier for each station. The PI 

flow rate, sampling duration, number of images classified (including detritus) and total 

number of images sampled in the timeframe were used to resolve the scaling factor. The 

scaling factor was then used to calculate zooplankton abundance (individuals m-3; ind. m-3 

henceforth). 

Zooplankton were classified into 40 taxonomical categories. All images are classified to the 

maximum discernible taxonomic resolution. In some cases, due to orientation of the specimen 

or image blur, an image could only be confidently identified to a low taxonomic resolution 

(e.g. unidentified copepod or decapod larvae). Of the 40 categories, 12 contributed to less 

than 1 % of the total abundance and were present in less than 5 % of all stations (fish larvae, 

cladocera, gammaridea, monstrilloida, marine mites, ascidian larvae, siphonophora, Caligus 

spp., caprellidae, ostracoda, physonectae and Clione spp.). These were removed prior to data 

analysis. The abundance data from the remaining 28 taxonomic groups (Fig. 7; 

Supplementary Table 1) were used to compare the communities across the survey areas and 

between seasons.   

Statistical analyses  

All analyses were undertaken in R (version 4.0.2) using the Vegan package (Oksanen et al., 

2013; R Development Core Team, 2018).  
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The non-parametric Spearman’s correlation coefficient was used to test for correlation 

between max depth and ΔT. For those sites with salinity and temperature data, the 

community was analysed using non-metric dimensional scaling (NMDS) on a Bray-Curtis 

dissimilarity matrix. Prior to NMDS abundance data were transformed using the Hellinger 

transformation to reduce data asymmetry (Legendre and Gallagher, 2001). The envfit() 

function, which fits supplementary variables on the NMDS, was used to determine the 

correlation and forcing direction of environmental factors. The ordisurf() function, which fits 

a smooth surface to an ordination using a generalised additive model, was used to visualise 

the difference in environmental variables between seasons as well as explore their 

relationship with seasonal groupings.  

To test for a significant difference between years and seasons, Permutational Multivariate 

Analysis Of Variance Using Distance Matrices (PERMANOVA, using the ADNOIS 

function) were used with 999 random permutations (Anderson, 2001). The betadisper() 

function, which analyses multivariate homogeneity of group dispersions, was used to 

determine if a significant result produced by PERMANOVA was the result of the variable 

being tested (year or season) or variations within seasons (Anderson et al., 2006). A NMDS 

was run, exactly as before, for all sites and the envfit() function used to determine the 

correlation and forcing of each taxa toward a particular survey / season. This was reinforced 

through use of a SIMPER analyses (Clarke and Ainsworth, 1993).  

Results 

Physical conditions 

There was a clear difference in temperature profiles between seasons (Fig. 3). Across all 4 

years autumn temperature (range = 9.52 °C to 16.9 °C, mean ΔT = 4.8 °C) was an average of 

3.9 °C warmer and had higher variability in ΔT than spring (range = 9.26 °C to 13.2 °C, 

mean ΔT = 2.35 °C). Varying degrees of stratification can be seen in autumn where ΔT > 1 

°C for a third of stations (Fig. 3). The strength of the stratification was positively correlated 

with deeper waters across all years (rs = 0.4, p < 0.001), such that ΔT was highest at the most 

westward stations. Near-shore stations, those within the English Channel and in close 

proximity to the Bristol Channel, had the lowest ΔT values (Fig. 4). Spring profiles show that 

the water column was well mixed with little to no variation in temperature with depth (i.e. ΔT 

< 1 °C for 95 % of spring profiles) or between years (Fig. 3). 
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The NMDS plot (Fig. 5a) was used to explore the relationship between physical variables and 

plankton distribution. The larger variation in the stratification between years in autumn 

compared to spring (Fig. 3) was reflected in the mesozooplankton community where 

variation between years was larger in autumn than spring (indicated by the large spread along 

the x-axis in Fig. 5a). Autumn 2018 had no overlap in community with either 2016 or 2019 

(Fig. 5a) and could reflect the cooler seas in 2018 (Fig. 3). The envit() function suggested that 

the supplementary physical variables with a more linear relationship to the NMDS scores 

(indicated by the contour plots: SST, Fig. 5d and ΔS, Fig. 5c) were related with dissimilarity 

between seasonal groupings (Fig. 5a). ΔT is not shown in Fig. 5a as the model fitted by the 

envfit() function was not significant. The contour plots for SST (Fig. 5d) and ΔS (Fig. 5c) 

indicate that cooler SST (below 12 °C), and reduced ΔS (where variation was < 0.08), were 

found in spring. Higher SST values and a more variable ΔS were found in autumn sites. 

Figure 5b highlights the non-linear relationship between NMDS site scores and ΔT. Lower 

stratification (Fig. 3) was associated with spring sites. Most autumn sites had a ΔT > 0.8 °C, 

although there was high variation between years (Fig. 5b). The spread of points across the ΔT 

contours may reflect the variation in ΔT between locations (Fig. 4)  

Mesozooplankton Community   

Mesozooplankton abundance varied greatly between years and seasons (Fig. 6). Autumn 

2019 stations had the highest mean abundance (6,780.5 ind. m-3). Conversely, the previous 

autumn had the lowest mean station abundance (2,323.5 ind. m-3). There appears to be no 

relationship between mean station abundance and season. Although both surveys in 2019 had 

almost double the mean station abundance of any other previous survey (Fig. 6).  

On average, 9 to 10 taxa contributed to over 95% of the total abundance (Supplementary 

Table 1). Over all 5 surveys common dominant taxa were ‘Unknown copepods’, copepod 

nauplii and Centropages spp. Unknown copepod tended to be the largest contributor to total 

abundance of any taxa, but this was inconsistent between years (Fig. 7). The contribution of 

copepod nauplii to total abundance was fairly consistent with the exception of spring 2019 

(mean relative abundance ranged from 1.3 % to 5.85 % excluding spring 2019 where relative 

abundance was 14.64 %, Fig. 7). Centropages spp. also made a consistent contribution to 

total abundance (mean relative abundance ranged from 1.58 % to 4.17 % with an average 

value of 3.2 %, Fig. 7). None of these 3 taxa adhered to a particular season. Common to four 

of five surveys dominant taxa were Oithona spp., Pseudocalanus spp. and Acartia spp.  
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With the notable exception of radiolaria in autumn 2019, which had an average contribution 

of 61 % to the total abundance at each station (Fig. 7), copepods dominated the community 

accounting for > 70 % of the total abundance on average (Fig. 6). Of these, an average 30.9% 

were classified as “Unknown copepods” (Fig. 7). Para-Pseudocalanus spp. were particularly 

numerous in spring 2019, contributing to a third of the total abundance (mean station 

abundance 1470.0 ind. m-3, Supplementary Table 1). 

Meroplankton constituted a larger portion of the spring community than autumn (Fig. 6). For 

spring 2017 and 2019, meroplankton made up 30 % and 8 % of the total mesozooplankton 

abundance respectively, while their contribution was < 1% in all 3 autumn surveys. The 

higher proportion of meroplankton found in spring comprised different larval forms each 

year. In spring 2017, the high meroplankton abundance was driven by decapod and barnacle 

larvae (25 % and 7.23 % of total abundance respectively, Fig. 7). Spring 2019 mainly 

comprised of echinoderm larvae, followed by Polychaete larvae (6.53 % and 0.71 %, Fig. 7). 

Some meroplankton, mainly bryozoa and bivalve larvae, were found in high abundance 

during autumn (Fig. 7).  

Statistical analyses were performed on mesozooplankton abundances to determine 

statistically which taxa were driving variation between communities and add robustness to 

the prior description. A PERMANOVA suggested that both season and year were significant 

factors in causing variations between the communities (season p < 0.05, R2 = 0.08; year p < 

0.05, R2 = 0.42). It is likely due to heterogeneous dispersion effects (within-survey variation 

seen in all autumn surveys, Fig. 8) in autumn that year yielded a higher R2 value. Further 

evidence for this comes from the lack of ellipse overlap for the autumn surveys in the NMDS 

plot (Fig. 8). Subsequent ANVOVAs on the analysis of multivariate homogeneity of groups 

(using the betadisp() function) confirmed this. Spring communities had homogeneity among 

years (F(2,24) = 1.9145, p = 0.17) whilst autumn were significantly different in groups 

between years (F(2,78) = 9.6832, p < 0.001). It is therefore likely that year had some 

influence on our PERMANOVA result and perhaps reduced the seasonal effect.  

The taxa loadings on the NMDS plot (Fig. 8) echoes those trends seen in relative abundance 

(Fig. 7). For example, the high relative abundance of radiolaria in autumn 2019 (Fig. 7) is 

also seen in the ordination plot where radiolaria are highly correlated with this survey 

stations. This forcing from an individual, or few key taxa, is characteristic for all autumn 

surveys (Fig. 8). Oithona spp. and Centropages spp. are strongly correlated with autumn 
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2016 where as Candacia spp. and Corycaeus spp. are strongly correlated with 2018 and 

neither taxa strongly correlated with other years. Spring stations show the opposite, where 

there is high overlap in yearly ellipses and discerning taxa that correlate better to one year 

than another is difficult (Fig. 8). In general, the location of spring stations within the 

ordination are forced by meroplankton, such as decapod and echinoderm larvae compared to 

autumn. SIMPER analysis reported that average dissimilarity between spring and autumn was 

49.2 %. Six taxa were responsible for driving > 50 % of the difference between spring and 

autumn communities and twelve for > 75 %. This being said, it is important to consider the 

heterogeneity of autumn surveys.  

Discussion 

Environmental drivers of seasonality 

The increased stratification offshore in early autumn (Fig. 4) is consistent with the established 

summer stratification of the Celtic Sea and Western Channel as well as the breaking down of 

stratification through increased mixing in coastal waters during late summer and autumn 

(Southward et al., 2004; Harris, 2010). This trend is also consistent between years but is not 

reflected by consistency in the mesozooplankton community between years. While there is a 

similar linear spread of each autumn surveys stations across the ΔS contours in the NMDS 

plot (Fig. 5c), the communities are dissimilar between years (Fig. 8). Conversely, spring had 

both consistency in the degree of stratification (negligible variation between years and sites, 

Fig. 4) and in community overlap on the ordination plot (Fig. 8). This suggests that the 

summer stratification persists into early autumn, before it begins to degrade (Southward et 

al., 2004; Smyth et al., 2015), and its increased strength with distance offshore is likely to 

have contributed to the large dissimilarity of autumn stations seen in the ordination analysis 

(Fig. 8).  

The potential processes driving community composition and taxa seasonality at PML’s 

longstanding L4 timeseries station (Harris, 2010), which falls within our study area, are 

summarised by Atkinson (Atkinson et al., 2018). The authors review a suite of mechanisms 

that govern the mesozooplankton and suggest that a synergistic combination of mechanism is 

often responsible. Those most relevant to our study are: the loophole hypothesis, whereby 

physiochemical changes favour some taxa (Irigoien et al., 2005); changes in net heat flux 

where stabilisation of the water column promotes the spring bloom (Smyth et al., 2014); 
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mortality-controlled copepod phenology (Irigoien and Harris, 2003; Maud et al., 2015) and 

zooplankton feeding traits (Sailley et al., 2015). The high community variation we see in 

autumn between years may be the result of a complex combination of these processes where 

each hypothesis is more relevant in a specific year. For example, the persistence of the 

summer stratification into autumn (Southward et al., 2004), may have been more pronounced 

in 2019 resulting in the exceptional abundance of radiolaria in 2019, although we do not see 

this effect in our data (Fig. 3). Radiolarian diversity has been shown to increase with distance 

offshore and depth of stratification (Biard et al., 2017) and this may explain, in-part, their 

high abundance. On further investigation, the highest numbers of radiolaria were found at the 

most stratified, offshore stations. An additional factor may be the coincidence of the autumn 

bloom with the survey timing. While survey dates tend to be consistent year on year (Table 

1), the timing of the environmental phenomena leading to phytoplankton blooms, and thus an 

increase in mesozooplankton, are not so regular. This potentially resulting in a mismatch 

between bloom conditions and the survey dates. It has been suggested that survey ‘snapshots’ 

might be spatially misleading (Huret et al., 2018) and may be responsible for the large 

variation between the autumn communities despite similar environmental conditions. 

System performance  

The community description presented here reveals interannual and seasonal variabilities in 

both the abundance of individual taxa and the mesozooplankton community structure. Our 

findings were in line with those found by two time series in the area: The Continuous 

Plankton Recorder (CPR) (Richardson et al., 2006) and Plymouth Marine laboratories L4 

Station (Eloire et al., 2010). Additionally, the seasonality of individual taxa and observation 

of distinct seasonal communities presented here agrees with previous descriptions of 

mesozooplankton in the Celtic Sea (Johns, 2006; Eloire et al., 2010; Highfield et al., 2010; 

Giering et al., 2019). This agreement between devices is found despite that loss of detailed 

taxonomic information when using the PI compared to traditional methods (i.e. those samples 

analysed by microscopy). For example, we find a high number of unknown copepods in all 

surveys (Fig. 7) due to occurrences where a specimen has a non-favourable orientation 

relative to the camera when imaged (Tang et al., 1998), with copepods being particularly 

troublesome.  

Zooplankton are a morphologically diverse group of organisms in terms of size, shape and 

behaviour. Therefore, any plankton sampling device will preferentially sample, or be biased 
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towards, a certain group of organisms (Owens et al., 2013). The PI, like all plankton 

samplers, suffers gear specific issues such as active and passive avoidance or damage to 

samples. The radiolaria peak presented here provides an interesting example. Fragile varieties 

or those that form colonies, such as radiolaria, are difficult to sample with nets or devices that 

require collection of the individual (Cifelli and Sachs, 1966; Burki and Keeling, 2014). This 

is less problematic for imaging devices. The high abundance of radiolaria seen in 2019, as 

well as its consistent appearance within the dominant taxa of PI samples, adds to a growing 

body of evidence from imaging devices that suggest radiolaria are highly abundant and an 

important part of marine food webs which are often missed by traditional methods (Dennett 

et al., 2002; Picheral et al., 2010; Biard et al., 2016). Conversely, the PI was found to 

underreport certain taxonomic groups when compared to a ring net; Pitois (Pitois et al., 2018) 

suggested that the fragility of Appendicularia resulted in destruction beyond recognition and 

the strong swimming ability of chaetognaths resulted in sampling avoidance. Although the 

seasonality exhibited by these taxa (Fig. 7) agrees with existing literature (Johns, 2006; Eloire 

et al., 2010). This suggests that while the PI under samples these taxa, it still does so 

sufficiently to detect seasonal trends. The fixed depth intake from which the PI samples may 

give rise to variation as well as the choice to only use night stations. Many zooplankton 

undergo diel vertical migration (Hays, 2003), which may introduce a sampling bias toward 

those that only occupy the upper water column at night.  

Moving forward 

As a new device, the PI needs to find its niche amongst existing devices. How it can best 

complement, build upon, or supplement existing data sets needs to be determined. No single 

device is able to accurately capture all components of the zooplankton and all systems 

underestimate parts of the zooplankton community (Owens et al., 2013). Researchers must 

select a system, or a suite of systems, that is most appropriate to answer the research 

questions posed (Skjoldal et al., 2013).  

The findings presented here suggests that the PI captures the community with sufficient 

accuracy to describe trends and community structures within the mesozooplankton. The 

limitations of the PI, mainly the loss of highly detailed taxonomic information and its fixed 

sampling depth, are balanced by several advantages. From an economic standpoint, the 

automated nature of the device and ease of integration onto existing surveys make it an 

attractive option for continuous underway sampling where the level of description of the 
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community presented here is satisfactory (for example, a potential application may be food 

web studies). However, the foremost advantages are seen from an ecological point of view, 

the PI can obtain this information at an unparalleled spatial and temporal resolution due to 

sampling 24/7 with negligible down time. To date, and to demonstrate the robustness of the 

PI as a mesozooplankton sampler, the PI stations have been chosen to coincide with ring nets. 

This does not use the PI to its full potential. For example, in autumn 2018, a representative 

year in terms of images although with the most stations per survey, the PI captured 8.3 

million images (inclusive of detritus) over the whole survey. Of these, only 50,162 (or 0.6 %) 

were used. On a more recent survey in 2020, not reported here, the PI captured 16.2 million 

images. With recent improvements, mainly through increasing the processing and storage 

speeds to keep up with the phenomenal data collection rate, experiments at sea suggest the 

minimum size (currently 200 µm) can be reduced by half. This would reveal more of the 

plankton community, although anecdotal evidence suggests the number of images captured 

would increase by an order of magnitude, in turn bringing its own data processing challenges. 

To tackle these challenges, new tools must be developed to make best use of the ‘big-data’ 

produced by the PI.  

Conclusion  

We have demonstrated that the PI is able to detect changes in mesozooplankton abundances 

in line with established devices. While the inherent strength of devices such as the PI (i.e. 

cost effectiveness and high frequency sampling leading to fine scale spatial data) can be used 

to address new research questions, they also give rise to new challenges. Mainly, the data 

collection rate is faster than the processing rate. Progress in the machine learning classifier 

and the emergence of innovative methods in data analytics will remove the need to subsample 

images and classify all particles at a modest taxonomic resolution. This will result in truly 

high mesozooplankton resolution data, able to complement existing large-scale or simple 

point sampling timeseries for this important group of marine organisms.  
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Table and Figure legends 

Figure 1. Location of the 107 zooplankton stations and 93 CTD stations off the south-west 

coast of the UK. Where Stns. = Stations. 

Table 1. Number of stations per survey. For zooplankton stations n = 107.  For corresponding 

CTD stations n = 93: Dash indicates no data. Zoop. = Zooplankton. 

Figure 2. Collage of example mesozooplankton images used for training set for the 12 most 

abundant categories across all surveys.  

Figure 3. Temperature profiles for each station per survey. The inverse y-axis shows depth (1 

m bins) with the x-axis showing temperature (°C).   

Figure 4. ΔT plotted as circle size for all autumn stations across all years. 

Figure 5. Analysis of interactions between environmental variables and plankton community 

site dissimilarity for sites with physical data. All plots show the same non-metric 

multidimensional scaling plot created using a Bray-Curtis dissimilarity matrix on Hellinger-

transformed abundance data. 5a shows the supplementary environmental variables plotted 

using the envfit() function. Plots 5b (ΔT), 5c (ΔS) and 5d (SST) show contour plots created 

using the ordisurf() function to explore the relationships between environmental variables and 

the NMDS site scores. 

Figure 6. Mean station abundance for each survey with taxa grouped into four major 

categories. 

Figure 7. Relative abundance (%) (Relative Abun.) for all surveys for taxa that contributed to 

> 1 % of the total abundance. Axis labels are on bottom left subplot (Hyperiidae) and are the 

same for all subplots. Categories are arranged in order of decreasing relative abundance from 

highest in the top left to lowest in the bottom right. Mean abundance and tabulated values are 

available in Supplementary Table 1.  

Figure 8. NMDS plot on Hellinger-transformed abundance data using a Bray-Curtis 

dissimilarity matrix on Hellinger-transformed abundance data, where stress = 0.18. 

Supplementary variables taxa were plotted using the envfit() function with a p < 0.05.  



19 

 

Tables 

Table 1 Number of stations per survey 

Year 

Spring Autumn 

Dates 
Zoop. 

stations 

CTD 

Stations 
Dates 

Zoop.  

stations 

CTD 

Stations 

2016 - - - 3 – 19 Oct 39 36 

2017 7 Mar – 5 April 18 13 - - - 

2018 - - - 6 Oct – 10 Nov 24 22 

2019 17 – 31 Mar 8 4 1 – 28 Oct 18 18 

 

Supplementary material 

Supplementary Table 1. Average abundance (Mean Abd.) and relative abundance (Rel. Abd.) 

for each survey for those data that contributed to > 1 % of total abundance. 
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