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1.  INTRODUCTION

Captive breeding is an increasingly common com-
ponent of wildlife conservation programmes world-
wide (McGowan et al. 2017), helping prevent the
extinction of many species (Bolam et al. 2021). Birds
benefiting from ex situ programmes include the
bearded vulture Gypaetus barbatus in Europe

(Jenny et al. 2018), black stilt Himantopus novaeze-
landiae) in New Zealand (Galla et al. 2020) and Cali-
fornia condor Gymnogyps californianus in the USA
(Walters et al. 2010) among many others. Indeed,
more than 250 avian species may depend in varying
degrees on ex situ management (Collar & Butchart
2014). Nevertheless, translocations of captive-bred
individuals, aimed at reintroducing or reinforcing
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populations of threatened species, pose multiple
risks (IUCN/SSC 2013) and often fail (Mathews et al.
2005, Converse et al. 2013, Berger-Tal et al. 2020).

Although commonly regarded as a species con -
servation endeavour, translocation of captive-bred in-
dividuals is frequently used to reinforce (i.e. supple-
ment or restock) legally exploited populations (Griffith
et al. 1989, Armstrong & Seddon 2008). IUCN guide-
lines stipulate that conservation releases should not
take place until the cause of the original extinction or
population decline has been addressed (IUCN/SSC
2013), and the success of such releases is commonly
defined as the establishment of a population able to
persist without further intervention (Griffith et al.
1989, IUCN/SSC 2013). The IUCN guidelines further
advise that ‘where populations are augmented for ...
recreational or commercial offtake … often conserva-
tion benefit … will either be non-existent or be sec-
ondary to other interests’ (IUCN/SSC 2013, p. 4). In-
deed, if offtake is not regulated to sustainable levels,
continuous captive-breeding reinforcement can itself
become a conservation issue, particularly where it
 involves species of conservation concern.

We suggest this is the case with 2 threatened bus-
tards, African houbara Chlamydotis undulata and
Asian houbara C. macqueenii. The African houbara
occupies semi-desert lands from northernmost Mau-
ritania to Egypt west of the Nile (BirdLife Interna-
tional 2020b), while the Asian houbara is a resident
breeder in semi-deserts from the Arabian Peninsula
and Middle East to southern Iran and Pakistan and a
migrant breeder from Central Asia to western China,
wintering in the same general range as the resident
populations (Combreau & Al Baidhani 2013, BirdLife
International 2020a) (Fig. 1). For many centuries,
both species were the prized avian quarry of Arab
falconers, occupying a central place in the culture of
the desert peoples of the Middle East (Bailey et al.
1998). However, over the past 50 yr, traditional fal-
conry practices have been supplemented by increas-
ingly technical and sophisticated methods (Bailey et
al. 1998), with often large parties of falconers from
the Gulf states hunting the species across almost all
parts of their ranges (Stone 2008). The access of fal-
coners to these ranges has been eased by economic
influence and the disintegration of the Soviet Union,
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Fig. 1. Global distribution of 2 threatened bustard species (African houbara Chlamydotis undulata and Asian houbara C. mac-
queenii) showing the international network of captive breeding centres and (where known) the scale of translocation and re-
leases. 1: International Foundation for Natural & Wildlife Preserves, Morocco; 2: International Foundation for the Conserva-
tion & Development of Wildlife, Morocco; 3: Emirates Centre for Wildlife Propagation, Morocco; 4: Errachidia Wildlife
Breeding Centre, Morocco; 5: Emirates Bird Breeding Centre for Conservation, Algeria; 6: National Wildlife Research Centre,
Saudi Arabia; 7: King Abdulaziz City of Science & Technology, Saudi Arabia; 8: Kuwait Houbara Breeding Centre; 9: Interna-
tional Foundation for Ecological Research, Qatar; 10: The Rawdat Al Faras Houbara Breeding Centre, Qatar; 11: Centre for
Breeding & Reproduction of Falcons & Houbara, Qatar; 12: National Avian Research Centre, UAE; 13: Sheikh Khalifa Houbara
Breeding Centre, UAE; 14: Central Veterinary Research Laboratory, UAE; 15: planned centre, Iran; 16: Emirates Bird Breed-
ing Centre for Conservation, Uzbekistan; 17: The Emirates Centre for Houbara Conservation, Uzbekistan; 18: Sheikh Khalifa 

Houbara Breeding Centre, Kazakhstan; 19: planned centre, Tuva, Russia
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with their activities assisted by desert-adapted 4×4
vehicles, sophisticated communication systems and
high numbers of pre-trained falcons, many of them
hybridised for enhanced hunting performance (Bai-
ley et al. 1998, Usman & Farooq 2016).

Resident populations of Asian houbara were al -
most entirely extirpated from the Arabian Peninsula
in the 1970s and from Pakistan by the 1990s (Com-
breau et al. 2005) and have declined severely in Iran
(Mansoori 2006), with hunting now dependent on the
country's wintering migratory populations. However,
by the year 2000, migratory Asian houbara were ex-
ploited repeatedly throughout their flyway, involving
a combination of falconry, hunting with firearms and
trapping for illegal trade estimated in the 1990s at up
to 7000 ind. yr−1 from Pakistan alone (Goriup 1997,
Bailey et al. 1998, Combreau & Al Baidhani 2013).
Between 1994 and 2000, offtake was estimated to be
3 times the annual sustainable yield (Combreau et al.
2001); migratory Asian houbara declined by over
50% in Kazakhstan and China be tween 1998 and
2002 (Tourenq et al. 2005), with further steep de -
clines in parts of Kazakhstan between 2000 and 2009
(Riou et al. 2011). Recent demographic modelling of
Asian houbara breeding in Uzbekistan indicates an
ongoing decline of over 9% each year (Dolman et al.
2018), with at least 53% of winter mortality attributa-
ble to hunting/trapping (Burnside et al. 2018). For
African houbara, no comparable quantitative data for
anthropogenic mortality or population trends exist,
but the contribution of overhunting to population de-
clines, as documented by Goriup (1997) and Azafzaf
et al. (2005), was further evident from reports of e.g.
all populations in Morocco (except ‘West Sahara’) be-
ing ‘severely reduced’ by Middle Eastern falconers
(Thévenot et al. 2003), 1000 birds being killed annu-
ally by Arab falconers in the pre-desert zone of Alge-
ria (de Smet 1989) and a serious decline in Tunisia at-
tributed to ‘the abusive hunting of foreign falconers’
(Chammem et al. 2003, p. 46), with the low-density
re sidual population still subject to illegal hunting by
‘local poachers as well as Arab falconers’ (Chammem
et al. 2012, p. 294). Consequently, both species are
now threatened, categorised as Vulnerable on the
IUCN Red List (Bird Life International 2020a,b), with
African houbara potentially at greater risk owing to
its smaller total estimated population (i.e. ~9800 indi-
viduals for African versus 39000−52000 individuals
for Asian houbara, before the present era of rein-
forcements: Goriup 1997). More recently, the global
African houbara population has been estimated at
13000‒ 33000 mature individuals, attributable to re-
leases of captive-bred birds, although it is expli -

citly stated that ‘a reliable estimate for the number of
individuals in North Africa has not been considered
achievable’ (BirdLife International 2020b). Houbara
are lekking species, and the consequent variance
in reproductive success will further reduce contem-
porary effective population size (Ne) relative to ap-
parent numbers (Hare et al. 2011).

To date, although there have been efforts to create
protected areas and enforce legal protection, the pri-
mary conservation response to counter these de clines
has been captive breeding and release programmes
(Fig. 1), which have been rolled out across the ranges
of the 2 species (IFHC 2013, Dolman et al. 2018).
However, the impact and conservation value of these
programmes have received little independent scien-
tific scrutiny. Here, we review the potential risks in-
herent in such programmes, particularly when used
for game reinforcement, and assess the degree to
which this approach can be considered an appropriate
response to the plight of the 2 species of houbara.

2.  RISKS FROM CAPTIVE BREEDING

Releases and reinforcement involving captive-bred
animals should respect biogeography and the
genetic structure of source and recipient populations,
to avoid homogenization and assimilation of previ-
ously differentiated gene pools, intraspecific hybridi-
sation and biotic impoverishment that can compro-
mise fitness by disrupting local adaptations (Olden et
al. 2004, IUCN/SSC 2013). Fisheries and gamebird
reinforcement have frequently failed to allow for
genetically distinct conspecific populations, leading
to introgression (Petersson et al. 1996, Olden et al.
2004, Randi 2008, Barbanera et al. 2009, Forcina et
al. 2018). However, the operational identification of
evolutionarily significant units (ESUs) is contentious,
particularly in terms of objective thresholds for isola-
tion, the role of neutral genetic markers or nuclear
loci, and behavioural or morphological proxies of
heritable adaptive diversity (Fraser & Bernatchez
2001). Defining ESUs based on strict phylogenetic
isolation assumes that other fine-scale phenotypic
divergence can be disregarded, as it is ultimately
replaceable through future natural selection; but this
may not sufficiently emphasize the ecological viabil-
ity of populations through maintenance of adaptive
diversity, leading to an emphasis on finer-scale (spa-
tial and temporal) conservation units (Fraser &
Bernatchez 2001).

Even where population structure is recognized
appropriately in translocation and reinforcement
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strategies, supplementation of wild populations
through captive breeding poses multiple additional
risks. Captive breeding inevitably alters multiple
heritable traits in species, through a combination of
founder effects, genetic drift, relaxation of natural
selection (because of plentiful food, no predation)
and unintentional adaption to captivity, together pro-
ducing changes in morphology, physiology, endo -
crine systems, metabolic rate, thermoregulation,
innate behaviour and temperament (Snyder et al.
1996, Tieleman et al. 2002, Heath et al. 2003,
Frankham 2008, Williams & Hoffman 2009, Cham-
pagnon et al. 2012, Lacy et al. 2013). These adapta-
tions are ‘overwhelmingly deleterious when popula-
tions are returned to wild environments’ (Frankham
2008, p. 327). Where trait optima differ between cap-
tivity and the wild, reinforcement of wild populations
with captive-bred individuals will alter wild pheno-
types; quantitative genetic modelling predicts this
will occur even when se lection differentials are
weak, captive stock is continually refreshed by wild
accessions, and captive-bred releases only comprise
a small proportion of the free-living population (Ford
2002).

While wild traits such as clutch size optimize cur-
rent and residual reproductive fitness (Charnov &
Krebs 1974), captivity frequently selects for higher
fecundity (Heath et al. 2003, Christie et al. 2012,
Chargé et al. 2014a). Hatchery-rearing of chinook
salmon Oncorhynchus tshawytscha relaxes natural
selection for large eggs; the rapid evolution of
small eggs alters traits in reinforced natural popu-
lations (Heath et al. 2003). Increased fertility in
game-farmed stock has been implicated in increas-
ing rates of introgression into wild mallard Anas
platyrhynchos populations (Čížková et al. 2012), of
hybrid red-legged partridge Alectoris rufa × chukar
A. chukar into wild red-legged partridge (Casas et
al. 2012) and of farmed hybrids of domestic Japan-
ese quail Co turnix japonica × common quail C.
coturnix into wild common quail (through a sperm-
competition advantage; Sanchez-Donoso et al.
2016). Captive populations may suffer important
loss of immuno-competence from founder effects,
inbreeding and genetic drift (Athrey et al. 2018).
Captivity may also select for immuno-competence
that is maladaptive in birds released into the wild,
as breeding centres, con centrating individuals at
high density, are prone to atypical pathogen out-
breaks such as pox (Le Loc’h et al. 2016) that may
alter the immunogenetic composition of survivors
(Worley et al. 2010). Conversely, effective biosecu-
rity may exclude natural pathogens from centres,

resulting in released individuals with reduced re -
sistance (Ewen et al. 2012).

Problematic changes to foraging, movement, terri-
torial and anti-predator behaviours are commonly
encountered in reintroduction attempts (Berger-Tal
et al. 2020). Captive-bred animals may lose natural
behaviours through genetic domestication (McPhee
2004, Houde et al. 2010, Moseby et al. 2016), habitu-
ation (Huber 2010) and lack of ontological develop-
ment (Price 1999). Captivity may alter temperament
(Snyder et al. 1996, McDougall et al. 2006, Frankham
2008), especially selecting against traits such as bold-
ness or aggression (Belyaev 1979, Håkansson et al.
2007). In long-term captive stock, the removal of the
‘wildest’ individuals through injury and mortality,
combined with preferential retention of breeders
amenable to artificial insemination, is expected to
select for docility. This may have fitness conse-
quences in the wild (Leopold 1944, McDougall et al.
2006), but ironically, in cases where released animals
are hunted, it may also undermine their perceived
worthiness as challenging quarry.

Learnt behaviours are also prone to loss in captivity
(Snyder et al. 1996), particularly during chick-rearing
(Collar 2020), with consequences for post-release
survival. Loss of parental learnt behaviour may con-
tribute to lower reproductive success in released
head-started birds (e.g. Roche et al. 2008). Captive-
bred released galliforms frequently have lower sur-
vival and breeding success than their wild counter-
parts, reflecting in particular their failure to acquire
appropriate anti-predator behaviours (Rantanen et al.
2010, Rymešová et al. 2013, Collar 2020). Predator-
aversion training improved post-release survival of
farmed red-legged partridges (Gaudioso et al. 2011),
but has generally produced mixed results (Berger-
Tal et al. 2020), particularly for bird translocations
(Tetzlaff et al. 2019), and is often labour-intensive,
costly and potentially hazardous.

Captive breeding can alter phenotypes through
ontogenetic effects arising from the environmental
and physiological conditions experienced during
foetal and early post-natal development (Reeves et
al. 2020). Epigenetic modifications to gene activity
and expression can be transmitted from parents to
offspring, changing their phenotype or behaviour
(Jablonka & Raz 2009, Jablonka & Lamb 2015). Epi-
genetic changes can be induced by stress, hormones,
maternal neonatal care, nutrition, rearing conditions
and other factors (Carere et al. 2005, Jablonka & Raz
2009, Sepers et al. 2021), particularly when recurrent
or sustained (Jablonka & Lamb 2015), and they are
therefore likely to be common in captive breeding
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systems. In great tit Parus major, changes in DNA
methylation of a dopamine receptor gene have been
implicated in epigenetic changes in exploratory be -
haviour over only 4 generations of captive selection
(Verhulst et al. 2016), while experimental dif ferences
in early-life nutritional stress caused epi genetic
changes to genes related to development, growth,
metabolism, behaviour and cognition (Se pers et al.
2021). At least in theory, epigenetic variation could
become widespread or fixed within a population
even where it has no selective advantage, if unre-
lated individuals all encounter novel environments
(Jablonka & Lamb 2015).

Genetic adaptation to captivity can be rapid (Sny-
der et al. 1996), occurring even under counteractive
breeding protocols (Lacy et al. 2013, Chargé et al.
2014a). Selection for tameness changed silver fox
Vulpes vulpes reproductive patterns within 5 gener-
ations (Belyaev 1979), and the expression of hun-
dreds of genes in steelhead trout O. mykiss was
altered in a single captive generation (Christie et al.
2016). Maladaptive changes in lamellar density of
wild mallards were found after only 30 yr of large-
scale annual releases for hunting (Champagnon et al.
2010). Domestication risk is reduced by minimizing
the number of captive generations (Snyder et al.
1996, Frankham 2008, Williams & Hoffman 2009);
conversely, risks increase where long-term captive
stock repeatedly reinforce free-living populations
(Ford 2002, Araki et al. 2007, Willoughby & Christie
2019). Repeated accessions of wild individuals into
captive populations is a common strategy used to
reduce the rate of genetic adaptation to captivity
(Frankham 2008, Witzenberger & Hochkirch 2011);
however, this may not eliminate inadvertent domes-
tication (Ford 2002) and is further confounded if the
free-living source population already includes the
progeny of large numbers of releasees with modified
traits. By amplifying overall variance in reproductive
success relative to the case in which there is no rein-
forcement, population supplementation typically
lowers the effective size of the entire captive−wild
system (NeT) (Hare et al. 2011).

Where captive-bred individuals are released in
numbers disproportionate to the size of the wild pop-
ulation, introgression can compromise biogeogra-
phy, population structure and viability (Laikre et al.
2010, Champagnon et al. 2012, Thakur et al. 2018).
IUCN translocation guidelines (IUCN/SSC 2013,
p. 22) are explicit on this problem:

Where translocations involve reinforcement, … there
is a risk of genetic swamping of the resident popula-
tion(s) by the translocated individuals. This can poten-

tially cause a reduction in vigour or reproductive suc-
cess in a small, stable, resident population if a large pro-
portion of the subsequent reproductive output is
derived from the less well-adapted translocated stock.

Semi-domestication of captive-bred individuals used
for reinforcement would be less problematic if sub -
sequent selection in the wild removed maladaptive
traits, eventually restoring wild levels of fitness (Frank -
ham 2008), although this purging process would
still incur a demographic cost to the wild population
(O’Sullivan et al. 2020). However, continued reinforce-
ment changes wild phenotypes from their optima,
even with moderate selection differentials, thereby re-
ducing wild fitness (Ford 2002, Wil loughby & Christie
2019). Despite generally lower survival and/or produc-
tivity, widespread introgression has resulted from
large-volume releases of farmed wildfowl (Cham-
pagnon et al. 2013, 2016, Söderquist et al. 2017) and
gamebirds (Parish & Sotherton 2007, Rymešová et al.
2013, Robertson et al. 2017, Madden et al. 2018), in-
cluding hybrid chukar into modern red-legged par-
tridge populations, genetically homogenized farmed
red-legged partridge into local populations and Ja -
panese quail into common quail (Barilani et al. 2005,
Barbanera et al. 2010, Casas et al. 2012, Forcina et al.
2021). Similarly, for migratory salmonids, reinforce-
ment by captive-bred individuals results in introgres-
sion despite their much lower fitness (Araki et al.
2007, 2009, Satake & Araki 2012).

The limited evidence available suggests that the 2
species of houbara are particularly exposed to the
dangers from captive-breeding reinforcement out-
lined here.

3.  MULTIPLE UNKNOWNS OF LARGE-SCALE
HOUBARA REINFORCEMENT

The Asian houbara was first bred in captivity in
the 1970s by Mendelssohn et al. (1979), but it took 2
further decades of research before a model for their
mass production was developed using artificial in -
semination, artificial incubation and the hand-
 rearing of chicks (Seddon et al. 1995). From this
beginning, captive breeding programmes have been
im plemented across the ranges of both species (IFHC
2017), reinforcing houbara populations on a major
scale. In 2004 a workshop comprising experts from
all key North African range states concluded that the
African houbara numbered 8240‒9240 in total, prin-
cipally in Algeria with smaller populations in Mo -
rocco, Tunisia and Libya (Azafzaf et al. 2005); yet be -
tween 1998 and 2016 one breeding centre released
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116 500 captive-bred African houbara, 111 865 of
them in Morocco (IFHC 2017), following this in
2017‒2018 with a further ca. 17 000 birds in Morocco
and ca. 7000 in Algeria and Mauritania (IFHC 2018,
2019). Thus, reinforcement may have exceeded ini-
tial wild numbers more than 10-fold. For one conces-
sion covering 50 169 km2 of eastern Morocco, area-
weighted density estimates across hunting (64% of
area; 0.05 houbara km−2) and non-hunting (36%, and
0.1 km−2) areas suggest initial (2001) numbers of
approximately 3400 houbara (Hardouin et al. 2015),
with 2838 estimated in 2001‒2003 (Bacon 2017), into
which 94 374 captive-bred birds were released be -
tween 1996 and 2016, averaging 10 000 annually
from 2009 (Bacon 2017); thus every year releases
now exceed initial numbers at least 3-fold.

Arab falconers take approximately 2000 African
houbara annually in eastern Morocco, of which 85%
are captive-bred (Bacon 2017), while the wild-born
birds include hybrids between truly wild individuals
and releasees or their progeny (Bacon et al. 2019);
captive-bred released birds also contribute the ma -
jority of nests found (Bacon 2013). Such a high propor-
tion of released captive-bred birds suggests a ‘put-
and-take’ game management strategy (Goriup 1997)
rather than genuine conservation reinforcement.

3.1.  Population management strategy

One possible rationale for such extraordinarily
high reinforcement levels as those outlined above is
that the majority of birds are expected to die through
post-release mortality, or to be hunted out (as a ‘put-
and-take’ strategy would intend), but there is no
published policy to place this practice in context.
Under the Convention on the Conservation of Migra-
tory Species of Wild Animals (CMS), a draft action
plan for the Asian houbara (CMS 2005) proposed
limiting offtake to a sustainable level informed by the
best available knowledge of population dynamics.
Captive-bred releases were to be permitted to in -
crease or supplement houbara numbers for lawful
sustainable falconry, but only if (1) following IUCN
re-introduction guidelines, (2) subject to CMS ap -
proval and (3) with public reporting of strategies,
captive-breeding inventories and results of releases.
Current large-scale captive-bred releases and trans -
locations operate with apparent autonomy, lacking
such wider accountability, as part of a general strat-
egy of replenishing and reinforcing wild populations
(IFHC 2011, 2017). Despite multiple decades of rein-
forcement, we are not aware of any published sci-

ence to justify the numbers involved and no analysis
of the contribution that captive breeding makes to
African houbara population dynamics, although such
assessments are necessary to determine the success
of any conservation translocation strategy (Hardouin
et al. 2015, Bacon et al. 2017).

3.2.  Phylogeography

Analysis of mitochondrial DNA shows the 2 hou -
bara species to be significantly differentiated (Idagh-
dour et al. 2004, Pitra et al. 2004, Korrida & Schweizer
2014), having diverged during the Lower Pleistocene
(between 0.77 and 0.94 million years ago: Korrida &
Schweizer 2014). For African houbara, no phyloge-
netic structure was found across Tunisia, Morocco
and Algeria (both mtDNA and microsatellite analysis:
Lesobre et al. 2010, Korrida et al. 2012, Korrida &
Schweizer 2014), consistent with long-distance fe -
male breeding dispersal (e.g. of 200 km); these have
therefore been managed as a single population unit
for reinforcement (Lesobre et al. 2010) (see Fig. 1). In
contrast, Asian houbara populations are phylogeneti-
cally structured, with individuals from the Middle
East (Jordan, Negev-Sinai) differentiated from mi -
gratory Central Asian populations (mtDNA analysis:
Pitra et al. 2004, Korrida & Schweizer 2014), while res-
ident populations in the south-eastern Arabian Penin-
sula (Yemen) are even more strongly differentiated
from both the Middle East and Central Asian popula-
tions (microsatellite analysis: Riou et al. 2012). More-
over, further subtle differentiation exists within mi-
gratory Central Asian populations between West
Kazakh birds and the remainder (Riou et al. 2012).

The apparent lack of genetic structure of most
migratory Central Asian houbara populations is con-
sistent with recent expansion (18−98 thousand years
ago: Korrida & Schweizer 2014) during the last gla-
cial period. However, a lack of structure in neutral
genetic markers, as frequently found following post-
glacial range expansion, can mask important differ-
ences in adaptive phenotypic traits that have
diverged through selection (Fraser & Bernatchez
2001, Meyer-Lucht et al. 2016). The morphology of
Asian houbara differs between resident southern and
migrant Central Asian populations, among which
weight then varies along a west‒east cline, being
lowest for the longest-distance migrants from east-
erly populations (Combreau & Al Baidhani 2013).
Important aspects of their migration strategies are
probably under genetic control (Burnside et al. 2017),
with individuals showing unnatural migration be -
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haviour when translocated into other populations
(Burnside et al. 2020), consistent with the subtle phy-
logenetic and morphological differences between
birds in western and eastern Kazakhstan (Riou et al.
2012, Combreau & Al Baidhani 2013). It is therefore
disconcerting that current release strategies for
Asian houbara appear to consider neither phyloge-
netic origin nor migratory population structure, as
demonstrated by the following reports:

(1) non-migratory birds of contrasting Asian phylo-
genetic stock (Combreau et al. 2011a) released into
the Arabian Peninsula (Islam et al. 2012, Azar et al.
2016);

(2) birds derived from (one or more) non-migratory
populations released in eastern Pakistan, outside the
natural breeding range of the species (Daily Times
2015), also noting that the release of non-migratory
stock on wintering grounds in Pakistan cannot in any
case compensate for the continued over-exploitation
there of migratory populations from distant breeding
regions including China;

(3) captive-bred ‘resident’ stock of unspecified and
potentially mixed geographic origin released into the
Central Asian flyway (IFHC 2011) (Fig. 1); and

(4) birds captive-bred in southern Kazakhstan in a
facility originally established with accessions from
central Kazakhstan (IFHC 2011) released into the
western (Caspian) flyway (Combreau et al. 2011b),
resulting in atypical occurrences of (ringed) captive-
bred birds from this breeding facility far outside
the usual wintering range, including Azerbaijan1, the
Gilan province of Iran (R. D. Sheldon in litt.) and
Turkey (G. M. Kirwan in litt.).

3.3.  Consequences of captive breeding
reinforcement

Whether large-scale reinforcement potentially risks
semi-domestication of wild houbara populations de -
pends on the degree of modification in captivity, and
the relative fitness on release, of captive-bred birds.
Long-term captive-bred stock of African houbara
shows genetic changes across multiple life-history
traits (ejaculate size, male display rate and female
egg production) due to unintended selection (Chargé
et al. 2014a), despite genetic management that
avoided inbreeding and maintained genetic diversity

(Rabier et al. 2020). Genetic covariance among pre-
and post-copulatory traits (Chargé et al. 2013) can
accelerate these responses to unintended selection.
Bustards, being hyper-vigilant and stress-prone, are
also at particular risk of trauma injury and hence of
selection for docility (Dolman et al. 2015), and this risk
must be intensified by artificial insemination, making
temperamental domestication adaptive. Captive-bred
Asian houbara (in Saudi Arabia, of Pakistan stock)
had 17% lower resting metabolic rate and 28% lower
evaporative water loss than wild birds transported
from Afghanistan (Tieleman et al. 2002), which may
in turn reduce maximum oxygen consumption and
thus predator responses (Nespolo et al. 2017). How-
ever, the full extent of genetic adaptation to domes-
ticity remains unassessed.

Also uninvestigated are the consequences of hou -
bara captive management for immune genetics and
gut biomes. This omission is serious: until biosecurity
protocols were fully developed, flocks were exposed
to novel pathogens not commonly encountered in the
wild, including Newcastle disease and chlamydiosis
(Lacroix et al. 2003), while canary and fowl geno-
types of poxvirus became endemic in African hou -
bara breeding flocks in Morocco, and Asian houbara
flocks in the Arabian Peninsula, respectively (Le
Loc’h et al. 2016). Such novel pathogens can impose
direct selection; this may be further amplified in
African houbara, as immune-challenge reduces male
courtship display and ejaculate quality, egg fertiliza-
tion and embryo viability (Chargé et al. 2010) as well
as chick survival (Chargé et al. 2011), thus poten-
tially increasing selection differentials favouring
atypical genotypes. Moreover, captive management
has involved ‘genetic dumping’, whereby offspring
from the most represented (and most closely related)
breeders are preferentially released to reinforce wild
populations (Chargé et al. 2014a); this promotes
genetic diversity in the captive stock, but reduces it
in reintroduced cohorts (Chargé et al. 2014b). Here
again, the consequences for free-living populations
have not been assessed.

Hunters speaking off the record have reported that
captive-bred African houbara in Morocco generally
underperform as falcon quarry. Accumulating evi-
dence from correspondence and social media posts
in both Asia and the Middle East has shown released
captive-bred Asian houbara exhibiting maladaptive
levels of tameness, tolerating or even approaching
humans, vehicles and buildings, although the rela-
tive strength of genetic domestication and behav-
ioural acculturation cannot be gauged. Importantly,
while wild young houbaras spend ca. 50 d with their
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mothers after hatching (P. M. Dolman and R. J. Burn-
side unpubl. data) and are assumed then to acquire
a repertoire of vigilance and anti-predator behav-
iours that promote their post-independence survival
(Combreau & Smith 1998), captive-bred birds cannot
experience this vital parental relationship. Anti-
predator training has been attempted with Asian
houbara (van Heezik et al. 1999), but is clearly
impracticable for large-scale releases.

Wild life-history traits and demographic parame-
ters prior to releases in Morocco are unreported, and
unbiased comparisons of captive-bred houbara to
wild phenotypes are now problematic as ‘a substan-
tial proportion of wild-born individuals may be off-
spring from translocated birds’ (Bacon et al. 2019,
p. 565). However, the evidence is unpromising. An -
nual survival rate of captive-bred African houbaras
released into non-hunting areas was 67% (Hardouin
et al. 2015), while that of wild-born birds from ap -
proximately 8 mo (6 mo post-independence) was
broadly similar (females ≈ 48% yr−1; males ≈ 72%
yr−1) (Hardouin et al. 2012). In Asian houbara, such
low adult annual survival rates would be insufficient
to sustain a population (Dolman et al. 2018). More-
over, released captive-bred African houbara show
contrasting patterns of condition-dependent disper-
sal compared to wild birds (Hardouin et al. 2014).
Controlling for age-related effects, the former exhibit
substantially lower nesting propensity, while those
released in spring lay smaller eggs and have 40%
lower brood survival than wild-born birds; that these
effects remain undiminished with age indicates a
persistent difference in breeding performance (Ba -
con et al. 2019). Preliminary demographic modelling
indicates that the African houbara population in east-
ern Morocco is unviable and would decline without
continued reinforcement, even in the absence of
hunting, primarily due to low juvenile and subadult
survival (Bacon 2017). Indeed, if this introgressed
population is currently not self-sustaining without
further reinforcement, it would no longer constitute a
wild population (IUCN 2019).

Non-migratory Asian houbaras released from stock
deriving from Balochistan, Pakistan, have bred in
Saudi Arabia (Islam et al. 2012), but with apparently
low success (Maloney 2003); long-term viability of
these populations is unknown. Captive-bred non-
migratory birds released in the United Arab Emirates
(UAE) (of stock deriving from Iran, Pakistan and the
Arabian Peninsula; Azar et al. 2016) also have low
nesting probability (Azar et al. 2018), with a mean
annual survival for the first year after release of 48%,
rising only to 54% in subsequent years (Azar et al.

2016). For locally sourced captive-bred migratory
Asian houbara released in Uzbekistan, post-release
survival to the autumn is sufficient (56%) to provide
alternative quarry for hunters, and approaches that
of wild-born juveniles (61%) (Burnside et al. 2016,
Dolman et al. 2018), but survival over their first mi -
gration is considerably lower than that of wild juve-
niles (23 versus 37%) (Dolman et al. 2018). Moreover,
first-winter captive-bred birds initiate migration later
and winter farther north than wild juveniles (Burn-
side et al. 2017), the long-term consequences of
which are unknown. Relative breeding productivity
of surviving captive-bred releasees is also unknown,
as low return rates have to date precluded measuring
the productivity of older, experienced females (Dol-
man et al. 2018). The performance of other rein-
forced populations in Central Asia (including the
Navoi district in Uzbekistan, and different regions of
Kazakhstan; see Fig. 1) are unreported.

For Asian houbara, levels of reinforcement are
increasing through releases of captive-bred birds
both translocated from the Arabian Peninsula and
produced in facilities within Central Asia (Fig. 1),
with further breeding centres planned (TASS 2021)
and a declared ambition to release 35 000 birds a
year into the flyway (Allinson 2014). Indeed, at cur-
rent levels of unregulated offtake, the levels of re -
inforcement required to stabilise populations are,
alarmingly, ≈1.5 times total wild numbers annually
(Dolman et al. 2018). High mortality during first-win-
ter migration may remove many less fit captive-bred
individuals, but even so the small numbers that sur-
vive (Burnside et al. 2016) may then breed, resulting
in introgression.

4.  A WAY FORWARD FOR CAPTIVE BREEDING
OF HOUBARA

The number of houbara breeding centres that have
been built in the past 30 yr is not easy to establish (we
identify 19 in Fig. 1, of which 16 are currently active).
The evidence reviewed above suggests that these
programmes risk and might indeed be contributing to
the declines in wild populations that they are in-
tended, ultimately, to prevent. In light of this concern,
there are questions that dedicated research can and
must answer in order to establish the scientific basis
by which houbara hunting and any reinforcement
strategy can become truly sustainable (IUCN 2000).
The most fundamental of these concern the numbers,
densities and trends in regional populations, the
ecological and anthropogenic causes of variation in
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these values, the natural demographic rates in the
absence of reinforcement and the demographic con-
sequences of any supplementations. For the Asian
houbara captive-breeding schemes, information on
important aspects of their genetic management
should be made publicly available, particularly re-
garding the following: numbers of founders and their
current representation in captive populations; long-
term effective size of captive populations (which will
be influenced by any loss of genetic diversity
through historic bottlenecks and founder effects, in-
breeding and genetic drift: Hare et al. 2011, Athrey
et al. 2018); and the main tenance or merging of
phylogeographic lines derived from diverse acces-
sions. Such information is needed on, for example,
(1) stock in the Arabian Peninsula derived from
Pakistan, Kazakhstan, Iran and Afghanistan (IFHC
2013) managed as a captive-bred non-migratory
‘resident population’ used for releases (IFHC 2011);
(2) the number and geographic origin of founders of
a breeding flock of 5270 Asian houbara transferred
from Morocco to establish a breeding centre in the
UAE (IFHC 2012); and (3) whether accessions from
separate flyways in western and central Kazakhstan
are managed separately within Central Asia (IFHC
2017).

Demographic and genetic profiling (including
whole genome sequencing and genome-scale com-
parison) of wild populations, and of the captive pop-
ulations derived from them, is essential in order to
allow the closest possible alignment of the two. Such
profiling is required to determine the extent of heri-
table domestication in captive populations (including
immuno-competence and temperament), the relative
importance of learning and genetics to predator
awareness and the extent of introgression into wild
populations. Appropriate levels of reinforcement, the
various impacts (ecological, behavioural, genetic) of
released captive-bred birds on wild populations, the
physiological and behavioural fitness of the 2 groups,
and their relative productivity and survival all need
measuring and modelling. While it is possible that
such investigations have been undertaken, we are
not aware that the resulting information has been
made publicly available. Ultimately, such informa-
tion would contribute to the development of broader
conservation programmes for the 2 species. For wild
populations to remain wild, a package of measures is
needed involving non-hunting areas and scientifi-
cally established quotas on numbers of birds both
released and hunted (Dolman et al. 2021), along with
media outreach campaigns to sensitize hunters to the
unsustainability of the status quo.

Existing houbara breeding and conservation pro-
grammes have mobilised considerable resources and
overcome technical challenges to achieve remark-
able volumes of production of birds for release. If
such resources and expertise could be directed to a
more holistic conservation programme for these spe-
cies, it would be hugely beneficial both for the spe-
cies and for the long-term future of sustainable hunt-
ing. Depending on the evidence, captive breeding
might play a diminished or at least geographically
restricted role, e.g. ‘put-and-take’ birds inside con-
cessions, separated from networks of non-hunting
areas where wild populations can recover without
reinforcement. Elsewhere, we outline what would be
required to achieve sustainable hunting and a long-
term future for Arab falconry (Dolman et al. 2021).
Such measures are the only reliable way in which the
long tradition of Arab falconry and indeed the 2 spe-
cies of houbara will themselves ultimately survive.
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