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Speaker-independent Speech Animation using
Perceptual Loss Functions and Synthetic Data

Danny Websdale, Sarah Taylor and Ben Milner

Abstract—We propose a real-time speaker-independent speech-
to-facial animation system that predicts lip and jaw movements
on a reference face for audio speech taken from any speaker.
Our approach is motivated by two key observations; 1) Speaker-
independent facial animation can be generated from phoneme
labels, but to perform this automatically a speech recogniser is
needed which, due to contextual look-ahead, introduces too much
time lag. 2) Audio-driven speech animation can be performed in
real-time but requires large, multi-speaker audio-visual speech
datasets of which there are few. We adopt a novel three-
stage training procedure that leverages the advantages of each
approach. First we train a phoneme-to-visual speech model
from a large single-speaker audio-visual dataset. Next, we use
this model to generate the synthetic visual component of a
large multi-speaker audio dataset of which the video is not
available. Finally, we learn an audio-to-visual speech mapping
using the synthetic visual features as the target. Furthermore,
we increase the realism of the predicted facial animation by
introducing two perceptually-based loss functions that aim to
improve mouth closures and openings. The proposed method and
loss functions are evaluated objectively using mean square error,
global variance and a new metric that measures the extent of
mouth opening. Subjective tests show that our approach produces
facial animation comparable to those produced from phoneme
sequences and that improved mouth closures, particularly for
bilabial closures, are achieved.

Index terms - audio-visual systems, recurrent neural networks

I. INTRODUCTION

Speech animation is the process of creating facial motion
on a digital character that synchronises to given audio speech.
It is an essential component of animated television shows,
movies and computer games, and is traditionally created either
manually by artists or semi-automatically using motion capture
technology. In recent years, a range of automated methods
has been proposed that allow facial animation to be estimated
directly from the audio speech signal [1], [2], [3], [4], or
from a text or phoneme sequence [5], [6]. Automatically
generated facial animation can be produced much faster than
by hand and has the potential for real-time processing which
makes it well suited to animating virtual characters online in
a range of interactive multi-modal human-machine interfaces
such as computer games, intelligent assistants, and virtual and
augmented reality [7].

The challenge of automatic speech animation has been
around for decades. Early attempts were rule-based systems
such as phoneme-driven key-frame interpolation [8], [9], [10]
or sample concatenation [11], [12], [13]. A notable example
was Video Rewrite which was a video-based solution based on
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blending video samples of the mouth region corresponding to
triphones and stitching it onto a full-face video background [11].
Rule-based approaches tended to lack realism since animation
is constrained to a set of predefined poses. More compelling
facial animation has since been achieved using data-driven
model-based systems [6], [14], [15], [16] and we base our
work on this approach.

Automatic speech animation can be driven from text or
from an audio signal. With animation from text, an intermediate
linguistic representation (typically phoneme labels) is first
created. A model is then trained to estimate sequences of visual
speech parameters from the phoneme labels [16]. With anima-
tion from an audio signal, one method is to extract a phonetic
transcription using an automatic speech recogniser [10] and
then estimate visual parameters. Alternatively, automatic speech
animation can be achieved by learning a mapping directly
from the audio waveform [2], [17], [18] or from acoustic
features (e.g filterbank) [1], [19] to the visual parameters.
An advantage of using a linguistic representation, such as
phonemes, is that they are inherently speaker independent since
they do not encode the speaker’s identity, only the speech
content. A disadvantage is that a robust speech recogniser
is needed to automatically produce an accurate phoneme
transcription. If the speech recogniser is trained across a range
of speakers, then speaker-independent animation is possible,
although the phoneme accuracy is likely to be lower than a
speaker-dependent system. However, large vocabulary, robust
speech recognisers require broad contextual windows that span
multiple words in order to exploit language models which
improve decoding accuracy [20]. This introduces a significant
time lag that makes real-time speech animation prohibitive,
where tolerable delays are of the order 200ms [21], [22].
Conversely, audio-driven speech animation has been shown
to generate realistic lip synchronisation in real-time, but in a
speaker-dependent setting [2], [22]. Our work leverages the
advantages of both audio and text driven methods to achieve
speaker-independent, real-time speech animation.

To animate speech from any speaker in real-time, es-
sentially two options can be considered. One approach is to
employ a set of person-specific speaker-dependent models.
This may be expected to generate good animations for a given
speaker but would be challenging to implement. Sufficient
training data for each person-specific model would be required
and this would need to be added to for any new speakers.
Furthermore, input speech would need to be classified in terms
of the speaker before being sent to the appropriate model.
Instead, our approach is to create a single speaker-independent
model that maps audio from any speaker directly into visual
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parameters.
The first aim of this work is to develop a framework

that maps audio speech, taken from any speaker, to a set of
visual parameters corresponding to the pose of a representative
(target) face. We harness the speaker-independent quality of
phoneme-to-animation systems to generate synthetic training
data with which to train our audio-driven system. All speakers
are animated to a fixed representative face so that a graphics
character need only be set up once and can be controlled by
a voice from any speaker. This is beneficial for applications
such as computer games, where an avatar is rigged once and
can subsequently be controlled by any player’s voice. An
alternative approach would be to use a speaker-independent
speech recogniser to generate a sequence of phonemes, and
their start and end times, and input this into a phoneme-to-visual
parameter mapping. However, the broad contextual windows
required in such a system would introduce substantial delay
compared to our proposed method. Further, any phoneme errors
in the output transcription would lead to erroneous visual
parameters as would errors in the phoneme start and end
times. No such ‘hard’ error exists in the proposed approach
as the mapping does not go through an intermediate symbol
(phoneme) mapping and instead maps directly from audio
features to visual parameters.

The optimisation algorithms in model-based systems
typically minimise the mean squared error [6] or maximise
the correlation [23] between predicted and target values.
Existing loss functions are computed over the entire face
(or jaw) region. However, our initial tests found that poor
facial animation is particularly evident for bilabial phonemes
(/b/, /p/, /m/) which require a full mouth closure to appear
realistic. Therefore, the second aim of our work is to improve
the realism of the predicted animation by developing loss
functions that put emphasis on perceptually significant events
such as bilabial closures. The main contributions of this paper
can be summarised as:

• We introduce a modular framework for generating speaker-
independent speech animation.

• We exploit phoneme-driven speech animation to generate
synthetic training data.

• We develop a robust speaker-independent audio-driven
speech animation system that is trained on synthetic data.

• We introduce perceptually motivated loss functions to
increase the naturalness of predicted facial animation.

• We introduce a new evaluation metric to measure explicitly
the extent of mouth opening.

The remainder of this paper is organised as follows.
Related work is discussed in Section II. Section III explains the
methods of acoustic and visual feature extraction. The proposed
speaker-independent audio-to-visual mapping is introduced
in Section IV. Section V describes the two perceptually
motivated loss functions to improve the naturalness of predicted
animation. Experimental results are presented in Section VI
where we use both objective and subjective analysis to evaluate
speaker-dependent and speaker-independent animation. Finally,
a discussion is made of the proposed methods in Section VII
and the work concluded in Section VIII.

II. RELATED WORK

Some of the earliest model-based methods for estimating
visual parameters from audio used hidden Markov models
(HMMs) [3], [24], [25], [26], [27]. However, these methods
were limited by their use of Gaussian mixture model-based
states (with the assumption of diagonal covariances) and by the
decision tree clustering of visual features within states [28], and
consequently produced animation that lacked expressiveness.
More recently, deep neural networks (DNNs) have been shown
to be effective at learning the non-linear mappings between
input speech audio or linguistic features, and output visual
parameters [2], [6], [29], [30]. A facial pose depends not only
on the current sound, but also upon the neighbouring sounds
due to co-articulation, so networks are typically trained to
learn a mapping from a window of input speech to the visual
parameters.

Alternatively, recurrent neural networks (RNNs) inher-
ently capture neighbouring sounds using an internal state
that remembers past events. Furthermore, bi-directional RNNs
(BRNNs) can use both past and future inputs to make a
prediction, and have been applied successfully to audio speech
synthesis [31]. A well-known issue with RNNs is that propa-
gated gradients can become very small and vanish, particularly
when modelling long span relationships. The long short-term
memory (LSTM) model overcomes this by using a series of
gates to control the flow of information [32]. LSTMs (and bi-
directional LSTMs) have been applied successfully to automatic
speech animation [15], [23], [18] as well as audio-driven head
motion synthesis [18], [33], [34]. A three-stage LSTM has been
used to predict the parameters required for the JALI 3D facial
animation rig [35], [36]. One LSTM is used map the input audio
into phoneme groups while a second LSTM maps the audio
into facial landmarks. Finally a third LSTM combines these
two outputs with the audio to generate the JALI parameters.
Convolution neural networks (CNNs) have also been applied
to facial animation. An architecture comprising first a series of
CNNs, with 1D filter kernels, and a fully connected layer has
been used to map raw audio into active shape model (ASM)
parameters [37]. To give smoother changes between frames,
the previous ASM parameter vector is fed back and used in the
prediction of the current frame. Alternatively, in [38], a series
of CNNs are used to map input spectrograms into a feature
representation which is then input into an LSTM and dense
layers to predict facial parameters.

Other model-based approaches include generative adver-
sarial networks (GANs) in which one or more discriminators
are trained to detect fake animation and a generator is
simultaneously trained to produce animation good enough to
fool the detector. Vougioukas et al. [39] and Sadoughi and
Busso [40] applied this technique to video-based animation
and expressive lip animation respectively. A cascaded GAN
approach has also been proposed whereby input audio is first
mapped to facial landmark features, which are then mapped
to the final video [41]. This is shown to synthesise more
robust animation that has fewer visual artefacts that arise from
irrelevant sounds in the audio. Variational Autoencoders (VAEs)
were used by [42] to generate speech animation from both
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audio and gaze. A multimodal architecture was used to embed
all input modalities and the facial coefficients in the shared
latent space.

III. AUDIO AND VISUAL FEATURE EXTRACTION

Automatic speech animation is a transformation from
audio speech to facial motion. In this work we pose this as
the task of mapping from a set of acoustic speech features
to visual speech features. To achieve realistic animation the
visual features must adequately encode the speaker’s facial
pose while the acoustic features must contain sufficient speech-
related information to regress this pose.

A. Visual features

Speech-to-animation models can be trained to predict
facial animation in various forms. Image-based systems output
pixel values in an effort to create video realistic output [17].
Others output directly to the vertices of a 3D face mesh [2].
More commonly, models are trained to predict a parameteri-
sation of a face that describes the geometry or appearance of
the pose [6]. We use a parametric representation of the face
that is derived from an active appearance model (AAM) [43].
As a means of representing faces, AAMs have had widespread
success [6], [43], [44], [45]. AAMs are particularly suited
to our approach because they separate facial actions in the
feature space (for example the first dimension of the AAM
representation describes the extent of lip opening and closing
- see Figure 3) which facilitates the calculation of our novel
perceptual loss, defined in Section V. Another benefit of AAMs
is that the predicted animation can be easily retargeted to a
graphics character by transferring the AAM to the character
as a blendshape rig [6].

The specific implementation of the AAM used in our
work is described in [12]. In summary, the AAM is trained
from a set of images that have been hand-labelled with 34 2-D
vertices demarcating the contours of the lips, jaw and nostrils
(illustrated in Figure 1(a)). Generalised procrustes analysis [46]
is used to align each set of vertices to the mean jaw shape
to remove scale, rotation and translation due to head motion.
The 34 pairs of x-y co-ordinates, {r(n), r(n+ 1)}, are stacked
to create a 68-D vector, r = [r(1), r(2), . . . , r(67), r(68)]. A
set of DS coefficients, from a principal components analysis
(PCA), are then extracted to give parameter vector s that
encodes the shape of the facial pose.

Appearance is modelled with two independent linear
models representing the pixel intensities of the inner mouth
and jaw areas respectively. The regions are modelled separately
since the inner mouth area can change somewhat independently
to the rest of the jaw due to the presence and positions of the
teeth and tongue. The images are warped to the mean shape
and the pixels from each region are extracted. PCA is applied
to the stacked pixel intensities to extract appearance vectors,
bm and bj , that model the mouth and jaw facial regions with
DO and DJ components, respectively.

Finally, the shape and both appearance features are
stacked and another PCA is performed to decorrelate the
features. This results in a DV = 47 dimensional vector, at, with

Experiments

Conclusion
The quality of animation has been shown to be related to both the 
model architecture and the amount of future acoustic context. The 
BiLSTM was found to be significantly better than a DNN, the 
benefit of which can be used either to reduce prediction errors or 
to allow future context to be reduced. 

Analysis looking specifically at the effect of future context showed 
that a reduction from 170ms to 110ms has no effect on realism, 
while reducing to 80ms has a small effect. The specific choice of 
the future context is therefore dependent on factors such as the 
network latency, the overall latency target and the level of realism 
required in the animation.
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The Effect of Real-Time Constraints 
on Automatic Speech Animation

Danny Websdale
Sarah Taylor

Ben Milner

Machine learning has previously been applied successfully to 
speech-driven facial animation. To account for carry-over and 
anticipatory coarticulation a common approach is to predict the 
facial pose using a symmetric window of acoustic speech that 
includes both past and future context. Using future context limits 
this approach for animating the faces of characters in real-time 
and networked applications, such as online gaming. 

An acceptable latency for conversational speech is 200ms and 
typically network transmission times will consume a significant 
part of this. Consequently, we consider asymmetric windows by 
investigating the extent to which decreasing the future context 
effects the quality of predicted animation using both deep neural 
networks (DNNs) and bi-directional LSTM recurrent neural 
networks (BiLSTMs). Specifically we investigate future contexts 
ranging from 170ms (fully-symmetric) to 0ms (fully-asymmetric), 
with evaluations made through objective and subjective 
experiments targeting prediction quality and perceived realism.

Introduction

Corpus

• Actor provides ~2100 utterances in neutral style.
• Video 1920x1080 @ 29.97 fps.
• We train and fit Active Appearance Models (AAMs). 34 2D 

vertices that define a mesh demarcating the contours of the lips, 
jaw and nostrils.

• Audio is captured at 48 kHz.
• Sentences were randomly split into training, validation and test 

sets containing 1884, 100 and 100 sentences respectively.
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4. Discovering Dynamic Visemes

4.1. Parameterising Visual Speech

Active Appearance Models (AAMs) [CET01] provide a
means for tracking the speech articulators in a video. The
shape of an AAM is defined by the two-dimensional vertex
locations of a mesh that delineates the inner and outer lip
contours and the jaw (Figure 3):

s = {x1,y1,x2,y2, ...,xN ,yN}T .

The model is built by hand-labelling a small number of train-
ing images with the vertices that define the mesh. These
training meshes are then normalised for similarity, and prin-
cipal component analysis (PCA) gives a compact linear
model of the form:

s = s0 +
m

Â
i=1

si pi, (1)

where s0 is the mean shape and si are the shape basis vectors.
The coefficients pi are the shape parameters, which define
the encoding of s.

The appearance of an AAM is defined over the pixels
within the shape mesh, x = (x,y)T 2 s0. The appearance
is constructed by warping each training image to the mean
shape and then applying PCA to give a compact linear model
of appearance variation:

A(x) = A0(x)+
n

Â
i=1

liAi(x) 8x 2 s0, (2)

where the coefficients li are the appearance parameters,
A0(x) is the mean appearance, and Ai(x), are the appearance
basis vectors.

In this work we use the inverse compositional project-
out AAM algorithm [MB04] to track the facial features.
For analysis, rather than building an AAM with a single ap-
pearance component (i.e. performing a single PCA on all of
the pixels within the shape mesh), we use a multi-segment
AAM [TMS⇤09], where different regions of the face are
modelled as independent appearance components. This al-
lows a model of the inner mouth that is not required to be
linearly related to the surrounding appearance.

To construct a multi-segment AAM the images are seg-
mented into two sub-regions, one containing the pixels of the
inner-lip area and the other containing the remainder of the
face pixels. Independent appearance models are then con-
structed for each sub-region and the corresponding appear-
ance parameters are concatenated and normalised as follows:

b =

0
@

Wpp
Wll1

l2

1
A = UcV T =

q

Â
i=1

jici (3)

where

Wp =

vuutÂn2
i=1 s2

l2i

Âm
i=1 s2

pi

, Wl =

vuutÂn2
i=1 s2

l2i

Ân1
i=1 s2

l1i

(4)

Figure 3: The 34 vertex locations of the active appearance
model mesh designed to capture the shape and appearance
variation of the visible speech articulators.

where p is a vector of shape parameters, and l1 and l2 are
vectors of appearance parameters for the two segments of the
multi-segment model. The number of dimensions of the re-
spective appearance and shape models are n1, n2 and m, and
s2

l1i
, s2

l2i
and s2

pi represent the variance captured by each
dimension of the respective model, ji are the basis vectors
spanning the combined shape and appearance space, and c is
a 20-dimensional vector that compactly describes the com-
bined shape and appearance variation of the lips and jaw
during speech. The dimensionality of each of the respec-
tive models is selected such that a given proportion (we used
95%) of the total variation is captured.

4.2. Identifying Visual Gestures

Following [HTH10], we segment the AAM parameter tra-
jectories corresponding to sentences into sequences of non-
overlapping visual gestures, where the ith gesture in a se-
quence, Gi, is a sequence of AAM feature vectors that map
a trajectory in AAM space representing a movement of the
visible speech articulators. The boundaries between gestures
are defined as salient points along the trajectory, which are
identified by differentiating the gradient magnitude in 20D
AAM parameter space, and locating the zero-crossings.

The motivation for identifying gesture boundaries in this
way is that during speech the articulators do not move at a
constant rate. Rather, they tend to accelerate away from ar-
ticulatory targets and then decelerate as they approach the
next target. This generates a visually intuitive and com-
pelling segmentation, marking boundaries where the artic-
ulators change direction, or where they hit extreme poses,
such as the lip closure during a bilabial. Figure 4 shows the
gesture boundaries for an utterance and Figure 1 illustrates
the asynchrony between phone and gesture boundaries. Fur-
ther examples are given in the accompanying video.

c� The Eurographics Association 2012.
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The DNN architecture takes a stacked window of acoustic 
features as input. The BiLSTM takes a windowed sequence of 
acoustic features as input, the first recurrent pair traverses the full 
window, the second traverses only up to aligned frame t (ta = tv ). 
Only the final output of the sequence, representative of aligned 
frame t, is passed through the remaining dense and output layers.

Objective Results
BiLSTM outperforms DNN for all future contexts. BiLSTm with just 
70ms of future context is able to match the performance of the DNN 
with 170ms of future context, thereby reducing the latency by 100ms.

Subjective Results
Using only the BiLSTM, subjects were asked “Do you think this is real 
or animated lip motion?”. 70% of the ground truth animations are 
considered real which is attributed to rendering artefacts produced 
from AAM reconstruction. 50ms of future context is not statistically 
significantly worse than 80ms, 110 ms and 170 ms.
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Fig. 1. (a) Training image with 34 x-y vertices marked, (b) Example mouth
shapes showing the measurement of mouth opening/closure, ∆, which uses
the 27th and 32nd co-ordinate pairs.

t the time index of the vector, that combines and compresses
the shape and appearance information and retains 98% of the
total variation.

Once constructed, the AAM can be fitted to new images
by solving for the model parameters [43]. In this way video
frames can be tracked and parameterised into feature vectors
that encode the position of the jaw and lip area. The videos
used in this work (Section VI) have a frame rate of 29.97 fps,
so a vector of visual features is created every 33ms.

B. Acoustic features

The acoustic features must encode the characteristics of
speech to enable an accurate sequence of visual speech features
to be estimated. Given their success in many speech processing
applications [47], [48], and in our previous related work [1],
the acoustic features are based on mel-frequency cepstral
coefficients (MFCCs). Our implementation builds on the ETSI
Aurora standard [47] and extracts 20ms frames of speech every
10ms, applies a Hamming window and then computes the
power spectrum. A 44-channel mel-spaced filterbank is then
applied followed by a log and discrete cosine transform to
produce a DM=44-dimensional MFCC vector, xt, with no
truncation applied. The audio is sampled at 48kHz.

IV. SPEAKER-INDEPENDENT AUDIO-TO-VISUAL MAPPING

One method to create a sequence of visual features for
animation is to first use a speech recogniser to decode an
input audio signal into a phoneme sequence. This phoneme
sequence can then be mapped to a stream of visual features [6].
The benefit of this approach is that the phoneme sequence
is agnostic to speaker identity, so can work for any given
input speech, assuming that the speech recogniser is speaker
independent. However, this approach requires a large vocabulary
continuous speech recogniser which may result in phoneme
errors and will introduce a significant time lag, due to contextual
(language) modelling, before producing an output. This makes
real-time, online operation impossible. Instead, in this work
we propose a speaker-independent architecture to map directly
from acoustic features to visual features. An overview of our
system is shown in Figure 2.
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Fig. 2. Proposed architecture for speaker-independent audio-to-visual mapping.

Training comprises blocks A and B. In the first block
(A) we train a speaker-dependent phoneme-to-visual speech
model that learns the mapping from phoneme sequences to
visual features for a single target speaker. This step requires an
audio-visual speech database for the target speaker. In block
B, the trained phoneme-to-visual speech model (block A) is
used to predict visual features from a phonetically annotated
multi-speaker database. This step generates synthetic data from
which a direct mapping from acoustic features to visual features
can be learnt. The result is an audio-to-visual speech model
where acoustic features from any speaker can be mapped to
AAM parameters representing a single target speaker (block C).
Subsequently, the predicted facial motion can be retargeted to
other characters if required [6]. The remainder of this section
explains the processing blocks in more detail.

A. Single-speaker phoneme-to-visual speech mapping

To generate AAM vectors from a phoneme sequence
we follow the deep learning approach in [6]. Essentially this
begins with an audio-visual speech database taken from a
single speaker (target speaker) – we use the KB-2k database
described in Section VI. For each training sentence a sequence
of visual features, at, is extracted using the method described

in Section III-A. Accompanying this is a time-aligned phonetic
transcription of each sentence which we obtained using an
automatic speech recogniser. To improve the transcription, any
phoneme or alignment errors were corrected by hand. At each
time frame a 41-dimensional binary vector, pt, is used to
indicate which phoneme from the set of 41 Arpabet phonemes
is being spoken. To provide context, the sequences of visual
and phonetic features are sampled with fixed length overlapping
windows, a′t and p′t. The window of visual features, a′t,
comprises KV A AAM vectors while the window of phoneme
features, p′t, provides context over KP frames to give a
41 × KP dimensional vector. These windows are both centred
at frame t.

Given the training dataset, a feed forward DNN, h(.),
is trained to estimate a window of visual features, ã′t, from
an input window of phoneme vectors, p′t, i.e. ã′t = h(p′t).
The final sequence of visual features, ãt, is computed by
calculating the frame-wise mean of the overlapping predictions.
Best performance, in terms of minimising estimation error, was
found using three fully connected hidden layers, each with
3000 units and a hyperbolic tangent transfer function. In terms
of context window sizes, stacking KP =11 phonetic features
and KV A=5 AAM vectors was found to give best performance.
Further details on training can be found in [6].

B. Multi-speaker audio-to-visual speech mapping

The system that generates visual features directly from an
audio waveform follows the deep learning approach in [22], and
maps a sequence of input MFCC vectors to an output sequence
of AAM vectors. The approach in [22] was developed for
a single speaker and uses an audio-visual speech database
(KB-2k) for training that provides both acoustic and visual
features. Our approach extends this system to become speaker
independent. For this we use acoustic features taken from the
multi-speaker TCD-TIMIT database described in Section VI.
Obtaining tracked faces, and subsequently visual features, from
a large multi-speaker database requires substantial processing
and significant human intervention. Instead, we propose synthe-
sising these visual features by phonetically transcribing each
training sentence and then predicting the corresponding visual
features using the phoneme-to-visual speech mapping method
described in Section IV-A. This approach not only removes
the need for tracked videos, but also produces visual features
that are based on the single speaker (target) AAM used for
training the phoneme-to-visual speech model. If independent
AAMs were constructed for each speaker in the database, it is
unlikely that the set of AAMs would be aligned to each other,
making the resulting speaker-specific AAM vectors unsuitable
for training. Finally, synthesising visual features in this way
allows speech databases to be used that contain only an audio
stream, thereby broadening the availability of databases that
can be used for training.

For each speaker-independent training sentence the fol-
lowing process is applied:

1) Extract a sequence of MFCC vectors, xt, using the
method described in Section III-B.
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2) Transcribe the sentence into a phoneme-level annotation.
The TCD-TIMIT database is supplied with these annota-
tions but they could be produced automatically using a
speech recogniser.

3) Synthesise a sequence of visual features, ât, from the
phoneme transcription using the trained phoneme-to-
visual speech model (described in Section IV-A).
As before, to provide context, the sequences of AAM

and MFCC features are sampled using fixed length overlapping
windows, a′t and x′t. The window of visual features, a′t,
comprises KV B AAM vectors while the window of audio
features provides context over KA frames to give a DM × KA

dimensional vector. These are both centred at frame t. From the
set of training data, a bi-directional LSTM (BLSTM), l(.), is
trained to estimate a window of AAM vectors, â′t, from an input
acoustic sequence, x′t, i.e. â′t = l(x′t). The final sequence of
visual features, ât, is computed by calculating the frame-wise
mean of the overlapping predictions

Best performance, in terms of minimising mean square
error, was found using two pairs of recurrent forward and
backward layers. Each contains 256 LSTM cells with peephole
connections [49] such that pair hn = [hn ; hn ]. This is followed
by a single fully connected layer with 2000 rectified linear
units (ReLU) [50] and a linear output layer.

The first LSTM pair, h1, traverses the full context window
of the input acoustic features

h1 , h1 = [xt−ωa
, ...,xt+ωa

] (1)

whereas the second LSTM pair, h2, stops traversing after
reaching h1

t in both forward and backward directions

h2 = [h1
t−ωa

, ...,h1
t ], h2 = [h1

t , ...,h
1
t+ωa

] (2)

where ωa = bKA/2c. Only the final output from h2, repre-
sentative of the audio-visual alignment at t, is passed through
the remaining network. In terms of context window sizes,
a sequence of KA=33 MFCC features (340ms of audio) and
KV B=3 visual features (100ms of video) gave best performance.
Further details of the audio-to-visual speech model architecture
can be found in [22].

C. Speaker-independent audio-to-visual speech mapping

The audio-to-AAM mapping model can now be used to
predict AAM features from the audio of any speaker as shown
in Block C of Figure 2. From the input audio, MFCC vectors
are extracted and sliding window decomposition applied. These
are input into the audio-to-AAM model from where a sequence
of AAM vectors is output.

V. PERCEPTUAL LOSS FUNCTION

We generally achieve a low mean square error (MSE)
when mapping acoustic features to visual features. However,
when visualised, the rendered facial animation is sometimes
observed to exhibit poor naturalness. This is most often caused
by the mouth not closing or opening in a realistic way and
is particularly salient for bilabial closures (/b/, /p/ and /m/)
which require the mouth to close fully in order to appear

natural. For other speech sounds the lip targets are typically
perceptually less important. To address this weakness, we
propose a perceptually-based loss function by extending the
MSE to focus more on mouth closures and openings.

A. Mean square perceptually-weighted error (MSPE)

The most extreme facial poses occur when AAM coeffi-
cients deviate far from their mean values. This is illustrated
in Figure 3 which shows AAM coefficients a(1) to a(10) as
each is varied from three standard deviations below its mean
to three standard deviations above, while setting the remaining
coefficients to their mean value. Perceptual errors in animation
that are caused by insufficient mouth closure or opening arise
from under-prediction of certain AAM coefficients where they
are not sufficiently far from their mean value to produce the
desired articulation. These extremity values tend to be low
probability events as they occur infrequently in training data.
It is therefore likely that when extremity values are required,
the model will under-predict these (i.e. closer to the mean)
rather than attaining the desired value or even over-predicting
(i.e. further from the mean).

To enable the model to generate more visually realistic
animations for mouth closures and openings, we propose a per-
ceptually motivated loss function that encourages prediction out
to extremity values (at both sides of the mean) to make greater
mouth closing and opening more likely. This is achieved by
introducing a perceptually-based error weighting into the MSE
loss function that weights under-prediction and over-prediction
of AAM coefficients differently. The conventional MSE loss
function, LMSE, used initially within the audio-to-visual speech
mapping in Section IV-B, is defined as,

LMSE =
1

T DV

T∑

t=1

DV∑

j=1

(
at(j)− ât(j)

)2
(3)

where at(j) and ât(j) represent respectively the jth coefficients
of the tth target and estimated visual features, and T and
DV are the number of vectors under test and the number of
coefficients in the visual vectors. The proposed mean square
perceptually-weighted error loss function, LMSPE, is defined
as,

LMSPE =
1

T DV

T∑

t=1

DV∑

j=1

[
Mt(j) ReLU

(
(at(j)− ât(j)), α

)

+ (1−Mt(j)) ReLU
(
(ât(j)− at(j)), α

)]2
(4)

where the square error calculation within the summation is
now divided into two parts according to a mask value. The
mask, Mt(j), denotes whether AAM coefficient at(j) is above
or below its mean value, µa(j), and is defined,

Mt(j) =

{
1 for at(j) ≥ µa(j)
0 for at(j) < µa(j)

(5)

Within the two parts of the squared error calculation a leaky
rectified linear unit (ReLU) operator is defined as,

ReLU(x, α) =

{
α× x for x < 0

x for x ≥ 0
with 0 ≤ α ≤ 1 (6)
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where α determines the amount of leakage and in this
application controls the amount of perceptual weighting within
the loss function. For α < 1, the contribution made by negative
errors (over-prediction) is reduced by a factor α while positive
errors (under-prediction) are unchanged. Smaller values of α
increase the effect of perceptual weighting while for the case
where α = 1, no rectification takes place and the loss function
is equivalent to MSE. When combined with the mask operator,
M , errors are weighted to encourage extremity values.

As an example, when the reference AAM coefficient
is greater than its mean value (i.e. at(j) ≥ µa(j)) the loss
function encourages over-prediction of AAM coefficients above
the mean. In this situation the mask value Mt(j) = 1 and so
the first term in (4) is activated. When the estimated coefficient,
ât(j), is over-predicted the resulting error (at(j) − ât(j))
is negative and is therefore reduced by the ReLU operator
which in turn encourages over-prediction within the loss
function. When the coefficient is under-predicted, the error
is positive and unchanged by the ReLU operator. Conversely,
when the reference AAM coefficient is less than its mean
value (i.e. at(j) < µa(j)) the loss function encourages over-
prediction below the mean by activating the second term
in (4). When the estimated coefficient, ât(j), is over-predicted
(i.e. lower than the reference) the error (ât(j) − at(j)) is
negative and is therefore reduced by the ReLU operator
which encourages over-prediction below the mean value. For
under-predicted estimates, the error is positive and remains
unchanged.

B. Improving mouth closure and opening

The perceptually-weighted loss function, LMSPE, in (4)
can be evaluated over all visual features during model training.
However, the LMSPE loss function will increase MSE across
all AAM coefficients and may introduce artefacts that were
previously not present. To reduce this unwanted effect, the
LMSPE loss function is adapted to affect just mouth closures
and openings (the most perceptually salient errors), LCO,
or just mouth closures, LC, by targeting only those AAM
coefficients that explicitly represent mouth closure and opening.
The conventional MSE calculation is applied to the remaining
coefficients. These two perceptual loss functions, LCO and LC,
are defined,

LCO =
1

T DV

T∑

t=1

DV∑

j=1

[
I(j)Mt(j) ReLU

(
(at(j)− ât(j)), α

)

+ I(j) (1−Mt(j)) ReLU
(
(ât(j)− at(j)), α

)

+ (1− I(j)) (at(j)− ât(j))
)]2

(7)

LC =
1

T DV

T∑

t=1

DV∑

j=1

[
I(j)Mt(j) ReLU

(
(at(j)− ât(j)), α

)

+ I(j) (1−Mt(j)) (at(j)− ât(j))

+ (1− I(j)) (at(j)− ât(j))
]2

(8)
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<latexit sha1_base64="GxhEg9OBwgdmBXnkmnEFXcHgQpc=">AAAB8HicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvYi7VAyaaYNTTJDkhHK0Kdw40IRtz6OO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1WrvuGjySpDEplr+othNfBz6EMuZqD0ld/GNNUMmWpIMb0fC+xQUa05VSwWbGfGpYQOiEj1nOoiGQmyBYLz/Clc4Y4irV7yuKF+3siI9KYqQxdpyR2bFZrc/O/Wi+1UT3IuEpSyxRdfhSlAtsYz6/HQ64ZtWLqgFDN3a6Yjokm1LqMii4Ef/XkdWjXqr7j+1q5Uc/jKMA5XMAV+HADDbiDJrSAgoRneIU3pNELekcfy9YNlM+cwR+hzx+6pI+o</latexit><latexit sha1_base64="GxhEg9OBwgdmBXnkmnEFXcHgQpc=">AAAB8HicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvYi7VAyaaYNTTJDkhHK0Kdw40IRtz6OO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1WrvuGjySpDEplr+othNfBz6EMuZqD0ld/GNNUMmWpIMb0fC+xQUa05VSwWbGfGpYQOiEj1nOoiGQmyBYLz/Clc4Y4irV7yuKF+3siI9KYqQxdpyR2bFZrc/O/Wi+1UT3IuEpSyxRdfhSlAtsYz6/HQ64ZtWLqgFDN3a6Yjokm1LqMii4Ef/XkdWjXqr7j+1q5Uc/jKMA5XMAV+HADDbiDJrSAgoRneIU3pNELekcfy9YNlM+cwR+hzx+6pI+o</latexit><latexit sha1_base64="GxhEg9OBwgdmBXnkmnEFXcHgQpc=">AAAB8HicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvYi7VAyaaYNTTJDkhHK0Kdw40IRtz6OO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1WrvuGjySpDEplr+othNfBz6EMuZqD0ld/GNNUMmWpIMb0fC+xQUa05VSwWbGfGpYQOiEj1nOoiGQmyBYLz/Clc4Y4irV7yuKF+3siI9KYqQxdpyR2bFZrc/O/Wi+1UT3IuEpSyxRdfhSlAtsYz6/HQ64ZtWLqgFDN3a6Yjokm1LqMii4Ef/XkdWjXqr7j+1q5Uc/jKMA5XMAV+HADDbiDJrSAgoRneIU3pNELekcfy9YNlM+cwR+hzx+6pI+o</latexit><latexit sha1_base64="GxhEg9OBwgdmBXnkmnEFXcHgQpc=">AAAB8HicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvYi7VAyaaYNTTJDkhHK0Kdw40IRtz6OO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1WrvuGjySpDEplr+othNfBz6EMuZqD0ld/GNNUMmWpIMb0fC+xQUa05VSwWbGfGpYQOiEj1nOoiGQmyBYLz/Clc4Y4irV7yuKF+3siI9KYqQxdpyR2bFZrc/O/Wi+1UT3IuEpSyxRdfhSlAtsYz6/HQ64ZtWLqgFDN3a6Yjokm1LqMii4Ef/XkdWjXqr7j+1q5Uc/jKMA5XMAV+HADDbiDJrSAgoRneIU3pNELekcfy9YNlM+cwR+hzx+6pI+o</latexit>

+2�
<latexit sha1_base64="htXtBPI2bJCRu+uMXgZAGFJ0yNU=">AAAB8XicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvaC7VAyaaYNTTJDkhHK0Ldw40IRt76NO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1Wrmt9w0eSVAalslf1FsLr4OdQhlzNQemrP4xpKpmyVBBjer6X2CAj2nIq2KzYTw1LCJ2QEes5VEQyE2SLjWf40jlDHMXaPWXxwv09kRFpzFSGrlMSOzartbn5X62X2qgeZFwlqWWKLj+KUoFtjOfn4yHXjFoxdUCo5m5XTMdEE2pdSEUXgr968jq0a1Xf8X2t3KjncRTgHC7gCny4gQbcQRNaQEHBM7zCGzLoBb2jj2XrBspnzuCP0OcPLRyP5A==</latexit><latexit sha1_base64="htXtBPI2bJCRu+uMXgZAGFJ0yNU=">AAAB8XicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvaC7VAyaaYNTTJDkhHK0Ldw40IRt76NO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1Wrmt9w0eSVAalslf1FsLr4OdQhlzNQemrP4xpKpmyVBBjer6X2CAj2nIq2KzYTw1LCJ2QEes5VEQyE2SLjWf40jlDHMXaPWXxwv09kRFpzFSGrlMSOzartbn5X62X2qgeZFwlqWWKLj+KUoFtjOfn4yHXjFoxdUCo5m5XTMdEE2pdSEUXgr968jq0a1Xf8X2t3KjncRTgHC7gCny4gQbcQRNaQEHBM7zCGzLoBb2jj2XrBspnzuCP0OcPLRyP5A==</latexit><latexit sha1_base64="htXtBPI2bJCRu+uMXgZAGFJ0yNU=">AAAB8XicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvaC7VAyaaYNTTJDkhHK0Ldw40IRt76NO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1Wrmt9w0eSVAalslf1FsLr4OdQhlzNQemrP4xpKpmyVBBjer6X2CAj2nIq2KzYTw1LCJ2QEes5VEQyE2SLjWf40jlDHMXaPWXxwv09kRFpzFSGrlMSOzartbn5X62X2qgeZFwlqWWKLj+KUoFtjOfn4yHXjFoxdUCo5m5XTMdEE2pdSEUXgr968jq0a1Xf8X2t3KjncRTgHC7gCny4gQbcQRNaQEHBM7zCGzLoBb2jj2XrBspnzuCP0OcPLRyP5A==</latexit><latexit sha1_base64="htXtBPI2bJCRu+uMXgZAGFJ0yNU=">AAAB8XicbZDLSgMxFIZPvNZ6q7p0E2wFQSgz3dhlwY3LCvaC7VAyaaYNTTJDkhHK0Ldw40IRt76NO9/GtJ2Ftv4Q+PjPOeScP0wEN9bzvtHG5tb2zm5hr7h/cHh0XDo5bZs41ZS1aCxi3Q2JYYIr1rLcCtZNNCMyFKwTTm7n9c4T04bH6sFOExZIMlI84pRYZz1Wrmt9w0eSVAalslf1FsLr4OdQhlzNQemrP4xpKpmyVBBjer6X2CAj2nIq2KzYTw1LCJ2QEes5VEQyE2SLjWf40jlDHMXaPWXxwv09kRFpzFSGrlMSOzartbn5X62X2qgeZFwlqWWKLj+KUoFtjOfn4yHXjFoxdUCo5m5XTMdEE2pdSEUXgr968jq0a1Xf8X2t3KjncRTgHC7gCny4gQbcQRNaQEHBM7zCGzLoBb2jj2XrBspnzuCP0OcPLRyP5A==</latexit>

+3�
<latexit sha1_base64="ftq0RBK1KwA5pqqk/PcLhcPBrL8=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8FWEIQyUxd2WXDjsoK9YDuUTJppQ5PMkGSEMvQt3LhQxK1v4863MdPOQlt/CHz85xxyzh/EnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDaa3Wb37RJVmkXwws5j6Ao8lCxnBxlqP1avrgWZjgavDcsWtuQuhdfByqECu1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LUosqPbTxcZzdGGdEQojZZ80aOH+nkix0HomAtspsJno1Vpm/lfrJyZs+CmTcWKoJMuPwoQjE6HsfDRiihLDZxYwUczuisgEK0yMDalkQ/BWT16HTr3mWb6vV5qNPI4inME5XIIHN9CEO2hBGwhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfPy6nj+U=</latexit><latexit sha1_base64="ftq0RBK1KwA5pqqk/PcLhcPBrL8=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8FWEIQyUxd2WXDjsoK9YDuUTJppQ5PMkGSEMvQt3LhQxK1v4863MdPOQlt/CHz85xxyzh/EnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDaa3Wb37RJVmkXwws5j6Ao8lCxnBxlqP1avrgWZjgavDcsWtuQuhdfByqECu1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LUosqPbTxcZzdGGdEQojZZ80aOH+nkix0HomAtspsJno1Vpm/lfrJyZs+CmTcWKoJMuPwoQjE6HsfDRiihLDZxYwUczuisgEK0yMDalkQ/BWT16HTr3mWb6vV5qNPI4inME5XIIHN9CEO2hBGwhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfPy6nj+U=</latexit><latexit sha1_base64="ftq0RBK1KwA5pqqk/PcLhcPBrL8=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8FWEIQyUxd2WXDjsoK9YDuUTJppQ5PMkGSEMvQt3LhQxK1v4863MdPOQlt/CHz85xxyzh/EnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDaa3Wb37RJVmkXwws5j6Ao8lCxnBxlqP1avrgWZjgavDcsWtuQuhdfByqECu1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LUosqPbTxcZzdGGdEQojZZ80aOH+nkix0HomAtspsJno1Vpm/lfrJyZs+CmTcWKoJMuPwoQjE6HsfDRiihLDZxYwUczuisgEK0yMDalkQ/BWT16HTr3mWb6vV5qNPI4inME5XIIHN9CEO2hBGwhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfPy6nj+U=</latexit><latexit sha1_base64="ftq0RBK1KwA5pqqk/PcLhcPBrL8=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8FWEIQyUxd2WXDjsoK9YDuUTJppQ5PMkGSEMvQt3LhQxK1v4863MdPOQlt/CHz85xxyzh/EnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDaa3Wb37RJVmkXwws5j6Ao8lCxnBxlqP1avrgWZjgavDcsWtuQuhdfByqECu1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LUosqPbTxcZzdGGdEQojZZ80aOH+nkix0HomAtspsJno1Vpm/lfrJyZs+CmTcWKoJMuPwoQjE6HsfDRiihLDZxYwUczuisgEK0yMDalkQ/BWT16HTr3mWb6vV5qNPI4inME5XIIHN9CEO2hBGwhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfPy6nj+U=</latexit>

µ
<latexit sha1_base64="iLrX6OrsNm69aORZfugF2mo+H/M=">AAAB7HicbZC7TgJBFIbP4g3xhlraTAQTK7JLIyWJjSUmLpjAhswOszBhLpuZWROy4RlsLDTG1gey820cYAsF/2SSL/85J3POH6ecGev7315pa3tnd6+8Xzk4PDo+qZ6edY3KNKEhUVzpxxgbypmkoWWW08dUUyxiTnvx9HZR7z1RbZiSD3aW0kjgsWQJI9g6K6wPRFYfVmt+w18KbUJQQA0KdYbVr8FIkUxQaQnHxvQDP7VRjrVlhNN5ZZAZmmIyxWPadyixoCbKl8vO0ZVzRihR2j1p0dL9PZFjYcxMxK5TYDsx67WF+V+tn9mkFeVMppmlkqw+SjKOrEKLy9GIaUosnznARDO3KyITrDGxLp+KCyFYP3kTus1G4Pi+WWu3ijjKcAGXcA0B3EAb7qADIRBg8Ayv8OZJ78V79z5WrSWvmDmHP/I+fwASjY4m</latexit><latexit sha1_base64="iLrX6OrsNm69aORZfugF2mo+H/M=">AAAB7HicbZC7TgJBFIbP4g3xhlraTAQTK7JLIyWJjSUmLpjAhswOszBhLpuZWROy4RlsLDTG1gey820cYAsF/2SSL/85J3POH6ecGev7315pa3tnd6+8Xzk4PDo+qZ6edY3KNKEhUVzpxxgbypmkoWWW08dUUyxiTnvx9HZR7z1RbZiSD3aW0kjgsWQJI9g6K6wPRFYfVmt+w18KbUJQQA0KdYbVr8FIkUxQaQnHxvQDP7VRjrVlhNN5ZZAZmmIyxWPadyixoCbKl8vO0ZVzRihR2j1p0dL9PZFjYcxMxK5TYDsx67WF+V+tn9mkFeVMppmlkqw+SjKOrEKLy9GIaUosnznARDO3KyITrDGxLp+KCyFYP3kTus1G4Pi+WWu3ijjKcAGXcA0B3EAb7qADIRBg8Ayv8OZJ78V79z5WrSWvmDmHP/I+fwASjY4m</latexit><latexit sha1_base64="iLrX6OrsNm69aORZfugF2mo+H/M=">AAAB7HicbZC7TgJBFIbP4g3xhlraTAQTK7JLIyWJjSUmLpjAhswOszBhLpuZWROy4RlsLDTG1gey820cYAsF/2SSL/85J3POH6ecGev7315pa3tnd6+8Xzk4PDo+qZ6edY3KNKEhUVzpxxgbypmkoWWW08dUUyxiTnvx9HZR7z1RbZiSD3aW0kjgsWQJI9g6K6wPRFYfVmt+w18KbUJQQA0KdYbVr8FIkUxQaQnHxvQDP7VRjrVlhNN5ZZAZmmIyxWPadyixoCbKl8vO0ZVzRihR2j1p0dL9PZFjYcxMxK5TYDsx67WF+V+tn9mkFeVMppmlkqw+SjKOrEKLy9GIaUosnznARDO3KyITrDGxLp+KCyFYP3kTus1G4Pi+WWu3ijjKcAGXcA0B3EAb7qADIRBg8Ayv8OZJ78V79z5WrSWvmDmHP/I+fwASjY4m</latexit><latexit sha1_base64="iLrX6OrsNm69aORZfugF2mo+H/M=">AAAB7HicbZC7TgJBFIbP4g3xhlraTAQTK7JLIyWJjSUmLpjAhswOszBhLpuZWROy4RlsLDTG1gey820cYAsF/2SSL/85J3POH6ecGev7315pa3tnd6+8Xzk4PDo+qZ6edY3KNKEhUVzpxxgbypmkoWWW08dUUyxiTnvx9HZR7z1RbZiSD3aW0kjgsWQJI9g6K6wPRFYfVmt+w18KbUJQQA0KdYbVr8FIkUxQaQnHxvQDP7VRjrVlhNN5ZZAZmmIyxWPadyixoCbKl8vO0ZVzRihR2j1p0dL9PZFjYcxMxK5TYDsx67WF+V+tn9mkFeVMppmlkqw+SjKOrEKLy9GIaUosnznARDO3KyITrDGxLp+KCyFYP3kTus1G4Pi+WWu3ijjKcAGXcA0B3EAb7qADIRBg8Ayv8OZJ78V79z5WrSWvmDmHP/I+fwASjY4m</latexit>Param #

<latexit sha1_base64="1aOtfhkjfvyzbd1JS8dqnBALJt4=">AAAB73icbZDLSgMxFIZP6q3WW9Wlm+AguCoz3dhlwY3LCvYC7VAyaaYNTTJjkhHK0Jdw40IRt76OO9/GtJ2Ftv4Q+PjPOeScP0oFN9b3v1Fpa3tnd6+8Xzk4PDo+qZ6edUySacraNBGJ7kXEMMEVa1tuBeulmhEZCdaNpreLeveJacMT9WBnKQslGSsec0qss3otoonEA29Y9fyavxTehKAADwq1htWvwSihmWTKUkGM6Qd+asOcaMupYPPKIDMsJXRKxqzvUBHJTJgv953jK+eMcJxo95TFS/f3RE6kMTMZuU5J7MSs1xbmf7V+ZuNGmHOVZpYpuvoozgS2CV4cj0dcM2rFzAGhmrtdMZ24CKh1EVVcCMH6yZvQqdcCx/d1r9ko4ijDBVzCNQRwA024gxa0gYKAZ3iFN/SIXtA7+li1llAxcw5/hD5/ABvBj04=</latexit><latexit sha1_base64="1aOtfhkjfvyzbd1JS8dqnBALJt4=">AAAB73icbZDLSgMxFIZP6q3WW9Wlm+AguCoz3dhlwY3LCvYC7VAyaaYNTTJjkhHK0Jdw40IRt76OO9/GtJ2Ftv4Q+PjPOeScP0oFN9b3v1Fpa3tnd6+8Xzk4PDo+qZ6edUySacraNBGJ7kXEMMEVa1tuBeulmhEZCdaNpreLeveJacMT9WBnKQslGSsec0qss3otoonEA29Y9fyavxTehKAADwq1htWvwSihmWTKUkGM6Qd+asOcaMupYPPKIDMsJXRKxqzvUBHJTJgv953jK+eMcJxo95TFS/f3RE6kMTMZuU5J7MSs1xbmf7V+ZuNGmHOVZpYpuvoozgS2CV4cj0dcM2rFzAGhmrtdMZ24CKh1EVVcCMH6yZvQqdcCx/d1r9ko4ijDBVzCNQRwA024gxa0gYKAZ3iFN/SIXtA7+li1llAxcw5/hD5/ABvBj04=</latexit><latexit sha1_base64="1aOtfhkjfvyzbd1JS8dqnBALJt4=">AAAB73icbZDLSgMxFIZP6q3WW9Wlm+AguCoz3dhlwY3LCvYC7VAyaaYNTTJjkhHK0Jdw40IRt76OO9/GtJ2Ftv4Q+PjPOeScP0oFN9b3v1Fpa3tnd6+8Xzk4PDo+qZ6edUySacraNBGJ7kXEMMEVa1tuBeulmhEZCdaNpreLeveJacMT9WBnKQslGSsec0qss3otoonEA29Y9fyavxTehKAADwq1htWvwSihmWTKUkGM6Qd+asOcaMupYPPKIDMsJXRKxqzvUBHJTJgv953jK+eMcJxo95TFS/f3RE6kMTMZuU5J7MSs1xbmf7V+ZuNGmHOVZpYpuvoozgS2CV4cj0dcM2rFzAGhmrtdMZ24CKh1EVVcCMH6yZvQqdcCx/d1r9ko4ijDBVzCNQRwA024gxa0gYKAZ3iFN/SIXtA7+li1llAxcw5/hD5/ABvBj04=</latexit><latexit sha1_base64="1aOtfhkjfvyzbd1JS8dqnBALJt4=">AAAB73icbZDLSgMxFIZP6q3WW9Wlm+AguCoz3dhlwY3LCvYC7VAyaaYNTTJjkhHK0Jdw40IRt76OO9/GtJ2Ftv4Q+PjPOeScP0oFN9b3v1Fpa3tnd6+8Xzk4PDo+qZ6edUySacraNBGJ7kXEMMEVa1tuBeulmhEZCdaNpreLeveJacMT9WBnKQslGSsec0qss3otoonEA29Y9fyavxTehKAADwq1htWvwSihmWTKUkGM6Qd+asOcaMupYPPKIDMsJXRKxqzvUBHJTJgv953jK+eMcJxo95TFS/f3RE6kMTMZuU5J7MSs1xbmf7V+ZuNGmHOVZpYpuvoozgS2CV4cj0dcM2rFzAGhmrtdMZ24CKh1EVVcCMH6yZvQqdcCx/d1r9ko4ijDBVzCNQRwA024gxa0gYKAZ3iFN/SIXtA7+li1llAxcw5/hD5/ABvBj04=</latexit>

1
<latexit sha1_base64="FeZRs2YOMYQI8TEtsJcQcw2qGqI=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewtc7Bhb++yu2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iARXBvX/XYKW9s7u3vF/dLB4dHxSfn0rKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6e2i3n1CpXksH80sQT+iY8lDzqix1kPVqw7LFbfmLkU2wcuhArlaw/LXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly1Tm5ss6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBZ3kxFXyIyYWaBMcbsrYROqKDM2nZINwVs/eRM69Zpn+b5eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c4L86787FqLTj5zDn8kfP5Ay5vjQU=</latexit><latexit sha1_base64="FeZRs2YOMYQI8TEtsJcQcw2qGqI=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewtc7Bhb++yu2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iARXBvX/XYKW9s7u3vF/dLB4dHxSfn0rKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6e2i3n1CpXksH80sQT+iY8lDzqix1kPVqw7LFbfmLkU2wcuhArlaw/LXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly1Tm5ss6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBZ3kxFXyIyYWaBMcbsrYROqKDM2nZINwVs/eRM69Zpn+b5eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c4L86787FqLTj5zDn8kfP5Ay5vjQU=</latexit><latexit sha1_base64="FeZRs2YOMYQI8TEtsJcQcw2qGqI=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewtc7Bhb++yu2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iARXBvX/XYKW9s7u3vF/dLB4dHxSfn0rKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6e2i3n1CpXksH80sQT+iY8lDzqix1kPVqw7LFbfmLkU2wcuhArlaw/LXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly1Tm5ss6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBZ3kxFXyIyYWaBMcbsrYROqKDM2nZINwVs/eRM69Zpn+b5eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c4L86787FqLTj5zDn8kfP5Ay5vjQU=</latexit><latexit sha1_base64="FeZRs2YOMYQI8TEtsJcQcw2qGqI=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewtc7Bhb++yu2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iARXBvX/XYKW9s7u3vF/dLB4dHxSfn0rKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6e2i3n1CpXksH80sQT+iY8lDzqix1kPVqw7LFbfmLkU2wcuhArlaw/LXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly1Tm5ss6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBZ3kxFXyIyYWaBMcbsrYROqKDM2nZINwVs/eRM69Zpn+b5eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c4L86787FqLTj5zDn8kfP5Ay5vjQU=</latexit>

2
<latexit sha1_base64="oENSnqYxRdwzebYIphzG18bkHj0=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFre2d3b3ifung8Oj4pHx61jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTG8X9e4T10bE6hFnCfcjOlYiFIyitR6q9eqwXHFr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ06jXP8n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzBy/0jQY=</latexit><latexit sha1_base64="oENSnqYxRdwzebYIphzG18bkHj0=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFre2d3b3ifung8Oj4pHx61jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTG8X9e4T10bE6hFnCfcjOlYiFIyitR6q9eqwXHFr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ06jXP8n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzBy/0jQY=</latexit><latexit sha1_base64="oENSnqYxRdwzebYIphzG18bkHj0=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFre2d3b3ifung8Oj4pHx61jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTG8X9e4T10bE6hFnCfcjOlYiFIyitR6q9eqwXHFr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ06jXP8n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzBy/0jQY=</latexit><latexit sha1_base64="oENSnqYxRdwzebYIphzG18bkHj0=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkoSG0uM8pHAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFre2d3b3ifung8Oj4pHx61jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTG8X9e4T10bE6hFnCfcjOlYiFIyitR6q9eqwXHFr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ06jXP8n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzBy/0jQY=</latexit>

3
<latexit sha1_base64="wgYIg2HsKVv2n11MV/lL/giIXFQ=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuQOCylJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzF5jQc=</latexit><latexit sha1_base64="wgYIg2HsKVv2n11MV/lL/giIXFQ=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuQOCylJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzF5jQc=</latexit><latexit sha1_base64="wgYIg2HsKVv2n11MV/lL/giIXFQ=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuQOCylJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzF5jQc=</latexit><latexit sha1_base64="wgYIg2HsKVv2n11MV/lL/giIXFQ=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuQOCylJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzF5jQc=</latexit>

4
<latexit sha1_base64="A/C9me3wnd3pphsLUgZ4d0nVYLw=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsEeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gAy/o0I</latexit><latexit sha1_base64="A/C9me3wnd3pphsLUgZ4d0nVYLw=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsEeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gAy/o0I</latexit><latexit sha1_base64="A/C9me3wnd3pphsLUgZ4d0nVYLw=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsEeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gAy/o0I</latexit><latexit sha1_base64="A/C9me3wnd3pphsLUgZ4d0nVYLw=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsEeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gAy/o0I</latexit>

5
<latexit sha1_base64="3mAMQsZHye8aIXvzxFhGwDoqDNE=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsQeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gA0g40J</latexit><latexit sha1_base64="3mAMQsZHye8aIXvzxFhGwDoqDNE=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsQeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gA0g40J</latexit><latexit sha1_base64="3mAMQsZHye8aIXvzxFhGwDoqDNE=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsQeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gA0g40J</latexit><latexit sha1_base64="3mAMQsZHye8aIXvzxFhGwDoqDNE=">AAAB6nicbZBNSwMxEIZn61etX1WPXoKt4KnsFsQeC148VrS10C4lm2bb0Gx2SWaFsvQnePGgiFd/kTf/jWm7B219IfDwzgyZeYNECoOu++0UNja3tneKu6W9/YPDo/LxScfEqWa8zWIZ625ADZdC8TYKlLybaE6jQPLHYHIzrz8+cW1ErB5wmnA/oiMlQsEoWuu+elUdlCtuzV2IrIOXQwVytQblr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWVQ04sbPFqvOyIV1hiSMtX0KycL9PZHRyJhpFNjOiOLYrNbm5n+1Xophw8+ESlLkii0/ClNJMCbzu8lQaM5QTi1QpoXdlbAx1ZShTadkQ/BWT16HTr3mWb6rV5qNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+R8/gA0g40J</latexit>

6
<latexit sha1_base64="NJmEDHWnPuvkmzyZJItukmzpu7s=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSOQilJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzYIjQo=</latexit><latexit sha1_base64="NJmEDHWnPuvkmzyZJItukmzpu7s=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSOQilJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzYIjQo=</latexit><latexit sha1_base64="NJmEDHWnPuvkmzyZJItukmzpu7s=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSOQilJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzYIjQo=</latexit><latexit sha1_base64="NJmEDHWnPuvkmzyZJItukmzpu7s=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSOQilJbCwxCpLAhewte7Bhb++yO2dCLvwEGwuNsfUX2flvXOAKBd9kkyfvzGRn3iCRwqDrfjuFjc2t7Z3ibmlv/+DwqHx80jFxqhlvs1jGuhtQw6VQvI0CJe8mmtMokPwxmNzM649PXBsRqwecJtyP6EiJUDCK1rqvXlUH5Ypbcxci6+DlUIFcrUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7FhWNuPGzxaozcmGdIQljbZ9CsnB/T2Q0MmYaBbYzojg2q7W5+V+tl2LY8DOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehU695lu/qlWYjj6MIZ3AOl+DBNTThFlrQBgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfPzYIjQo=</latexit>

7
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Fig. 3. The first ten AAM coefficients a(1) to a(10) as each is varied by
three standard deviations below and above its mean value.

A second mask, I(j), indicates whether AAM coefficient a(j)
is within the subset of coefficients, A, that represent mouth
closure or opening, defined as,

I(j) =

{
1 for a(j) ∈ A
0 for a(j) /∈ A (9)

Considering loss function, LCO, this addresses both mouth
closures and mouth openings. The first two terms in the
summation are the perceptually-weighted error which is applied
to the subset of AAM coefficients, A, that represent mouth
closures and openings. The final term computes an unweighted
error for the remaining coefficients that are not in A. The second
loss function, LC, is designed to weight only mouth closures,
as under-articulated closures are perceptually worse than
under-articulated openings, particularly for bilabial phonemes.
This is achieved by reducing the second term in the summation,
which corresponds to mouth openings, to an unweighted error.

Figure 3 shows that coefficients a(1), a(3) and a(5)
contribute most to mouth closing and opening. We there-
fore experiment with generating animations using each of
these modes individually as A1 = {a(1)}, A3 = {a(3)}
and A5 = {a(5)} and then combining all three to give
A135 = {a(1), a(3), a(5)}. The effectiveness of the two
perceptually weighted loss functions is evaluated in Section VI,
where models trained with either LCO or LC are compared
against the unweighted, LMSE, loss function.

VI. RESULTS

We evaluate the proposed speaker-independent animation
system and perceptual loss functions using both objective and
subjective tests. We first investigate the efficacy of the proposed
architecture and loss functions on a single-speaker dataset
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for which we have ground truth visual features. This allows
us to perform an initial refinement of the system. Next, we
evaluate on a multi-speaker dataset. Finally, we report results
on subjective testing.

The single-speaker setting is evaluated using the KB-2k
audio-visual speech dataset which comprises an American
male uttering 2,084 phonetically balanced sentences in a
neutral style [12]. The audio sampling frequency is 48kHz
while the video is captured at 29.97fps. This dataset has been
phonetically annotated using a speech recogniser, and then
manually hand-corrected to ensure correctness. Sentences are
split randomly into training, validation and test sets containing
1884, 100 and 100 sentences each. The multi-speaker system
is evaluated using the TCD-TIMIT dataset which comprises
55 speakers each uttering approximately 98 sentences [51].
This is partitioned into 39 speakers for training (20 male
and 19 female), 6 for validation (3 male and 3 female) and
10 for testing (5 male and 5 female). The audio and video
were sampled at the same rates as for the KB-2k dataset.
Phonetic annotations are supplied with this dataset and were
created using forced alignment, based on the reference phoneme
sequence.

A. Single-speaker analysis
This section presents experimental results using the

single speaker from the KB-2k dataset for testing which is
accompanied by ground truth visual features extracted from
the original video. We first measure the baseline performance
using the conventional MSE loss function before examining
the effect of the perceptually-weighted loss functions applied
to various combinations of AAM coefficients.

The objective evaluations use the MSE from (3) and
global variance (GV), which is calculated as

GV =
1

T DV

T∑

t=1

DV∑

j=1

(
ât(j)− µâ(j)

)2
(10)

where ât(j) represents the jth coefficient of the tth estimated
visual feature, and µâ(j) is the mean of the estimate of the
jth visual feature. T and DV are, respectively, the number of
vectors under test and the number of coefficients in the visual
features. The MSE is a commonly used metric but we also
include global variance as we find this to correlate better with
the perceptual naturalness of the animation, with higher GV
generally showing higher levels of articulation [52].

We also measure the effect of using perceptually-weighted
loss functions on the predicted animation. Whilst MSE and
GV indicate the general accuracy of visual features against
ground truth features, they do not explicitly measure the extent
of mouth closure. To evaluate mouth closure explicitly we
calculate the distance, ∆, between x-y co-ordinates taken
from the pair of 2-D vertices that correspond to the middle
of the top inner lip and middle of the bottom inner lip,
shown in Figure 1(b). These vertices correspond to elements
{rt(63), rt(64)} and {rt(53), rt(54)}. The mouth opening for
the reference (target) and estimated mouth animations, ∆REF

t

and ∆EST
t , are then calculated as

∆REF
t =

√
(rt(63)− rt(53))2 + (rt(64)− rt(54))2 (11)

∆EST
t =

√
(r̂t(63)− r̂t(53))2 + (r̂t(64)− r̂t(54))2 (12)

Using these reference and estimated mouth openings, the
mouth error for each animated frame is calculated as a simple
difference between the two, with the sign of the error retained.
The mean mouth error, ε, is then computed as the average
error across all T frames in the test data as

ε =
1

T

T∑

t=1

(∆REF
t −∆EST

t ) (13)

Values of ε close to zero show good estimation of the amount of
mouth opening. Negative values of ε indicate that the estimated
mouth opening is larger than the reference mouth and so not
closed enough. Positive values indicate that the estimated mouth
opening is smaller than the reference and not open enough.

1) Baseline evaluation: We begin by evaluating the
performance of three baseline methods that use the conventional
MSE loss function. This is shown in Table I and considers
the MSE, GV and mouth error metrics, split into bilabial
closure phonemes (/b/, /p/ and /m/) and non-bilabial closure
phonemes (i.e. the set of phonemes excluding /b/, /p/ and
/m/). First, we include the baseline phoneme-to-visual speech
mapping method, based on [6] and described in Section IV-A
(Phoneme-to-AAM). This uses hand corrected phoneme an-
notations and so represents an ideal system. Second is a
speaker-dependent system based on [22] that maps directly from
acoustic features to AAM features using the ground-truth data
(Audio-to-AAM). This is trained on the single speaker dataset
and, although not appropriate for later speaker-independent
operation, it serves as a useful baseline to evaluate the error
introduced by mapping directly from audio compared with from
phonemes. The third system (Audio-to-AAM (Synth)) also
maps from audio to AAM features but is now trained on visual
features that have been synthesised by the Phoneme-to-AAM
system and follows the three-stage framework proposed in
Section IV-B. These three systems are evaluated against ground
truth visual features extracted from the single speaker in the
KB-2k dataset. The fourth entry in Table I shows results
from the proposed synthetically trained model (Audio-to-AAM
(Synth)) but with its outputs evaluated against synthesised test
data visual features produced by the Phoneme-to-AAM system,
as these are generated in the same way as the targets used
during its training.

Table I shows that the Phoneme-to-AAM mapping ar-
chitecture has larger MSE than the Audio-to-AAM mapping,
but produces more accurate mouth closures. The AAM vectors
produced from this system are subsequently used to train the
Audio-to-AAM (Synth) system (Section IV-B), so observing
good accuracy here is important. In practice, errors for this
method would be larger as the hand corrected phoneme
annotations would be replaced by those generated from an
automatic speech recogniser and likely contain errors in the
phoneme labels and their start and end times. In terms of
mouth error, ε, all methods show insufficient mouth closure
(ε < 0) for the bilabial closure phonemes (/b/, /p/ and /m/)
with the Audio-to-AAM (Synth) method performing worst. For
non-bilabial closures, all methods predict slightly too much
mouth closure (ε > 0) although the visual consequence is
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TABLE I
BASELINE PERFORMANCE. MEAN SQUARE ERROR, GLOBAL VARIANCE AND
MOUTH ERROR FOR BILABIAL CLOSURES AND NON-BILABIAL CLOSURES

FOR THE PHONEME-TO-AAM, AUDIO-TO-AAM TRAINED ON GROUND
TRUTH DATA AND AUDIO-TO-AAM TRAINED ON SYNTHESISED DATA

SYSTEMS. THE FINAL ROW IS EVALUATED AGAINST SYNTHESISED TEST
DATA.

System MSE GV ε (bilab) ε (non-bilab)

Phoneme-to-AAM [6] 55.49 93.29 -0.93 0.11
Audio-to-AAM [22] 46.39 103.18 -1.04 0.84
Audio-to-AAM (Synth) 60.53 81.77 -2.77 0.17
Audio-to-AAM (Synth)

13.48 81.77 -1.84 0.06
against Phoneme-to-AAM

likely to be perceptually less serious compared to animating
bilabial closures. When evaluating the Audio-to-AAM (Synth)
system against visual features produced from the Phoneme-to-
AAM system (row 4), a low error is achieved which shows
the mapping to be effective.

2) Evaluation of perceptual loss functions: We evaluate
the effect of using the perceptually-weighted loss to train
the Audio-to-AAM mapping using the single speaker dataset.
Figures 4(a) and 5(a) show MSE and GV for the closing-only
loss function, LC, applied to different sets of AAM coefficients
as α is varied from 0 to 1 to change the perceptual weighting.
Specifically, from the observations in Section V-B, the sets
of AAM coefficients investigated are a(1), a(3), a(5) and
a(1, 3, 5), which are shown as lines C1, C3, C5 and C135.
Similarly, figures 4(b) and 5(b) show MSE and GV for the
closing and opening loss function, LCO applied to the same
sets of AAM coefficients plus an additional set that includes
all coefficients. These are shown as lines CO1, CO3, CO5,
CO135 and COALL. At α=1 the perceptual terms in the loss
function are inactive, and the loss is reduced to the standard
MSE loss function as shown in row 3 of Table I. Reducing α
increases the perceptual contribution within the loss functions
which increases the MSE and global variance. This rise is
expected as the perceptual parts of the loss function are not
designed to minimise the MSE of the estimated visual features.

Figure 6 shows mouth error, ε, computed over just the
set of bilabial closure phonemes (/b/, /p/ and /m/) for the
closing, and closing and opening loss functions, as α is varied
from 0 to 1. Using the MSE-only loss function (i.e. α=1),
the mouth error, ε, is -2.77 which corresponds to row 3 of
Table I. This indicates that the mouth is generally not closed
enough for the bilabial closures and when animated does reveal
poor realism in many cases. As α is reduced, the increasing
contribution of the perceptual component of the loss functions
improves mouth closure as evidenced by the increasing value
of ε from -2.77. Considering the effect of individual AAM
coefficients, a small increase in mouth closure is observed
for a(3) and a(5), while a(1) introduces much more mouth
closure. Combining multiple AAM coefficients also has large
effect as in C135, CO135 and COALL. Informal observation of
the resulting animations of predicted bilabial closure phonemes
confirms that mouth closure is now achieved more often and
realism has been improved.

The perceptual loss functions make no distinction as
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Fig. 4. Mean square error of audio-to-visual speech estimation as the
perceptual weighting, α, is varied from 0 to 1 for closing only and closing
and opening loss functions.

to whether the input speech is a bilabial closure or not, and
consequently mouth closure is also affected for non-bilabial
closure phonemes. Figure 7 shows mouth error, ε, for the same
set of loss functions and values of α, but now calculated over
the set of non-bilabial phonemes (i.e. excluding /b/, /p/ and
/m/). Using the MSE loss function (α=1), the mouth error, ε,
is 0.17, which is much closer to zero error than for bilabial
closures and indicates a mouth opening that is slightly too
small. As α is reduced, which increases the perceptual part
of the loss functions, the closing-only loss functions introduce
more mouth closure, while the opening/closing loss functions
have less effect on mouth error.

Ideally, mouth closures should increase for bilabial
closure phonemes and not change for non-bilabial closures.
Practically, however, a trade-off must be made as well as
consideration of the MSE and GV metrics. Consequently, for
further multi-speaker testing we select perceptual loss functions
C1, CO1, C135, CO135 and COALL as these give the best
balance across both objective scores and from our informal
observations of the animation.

B. Multi-speaker analysis

We evaluate the speaker-independent audio-to-visual
speech mapping using the TCD-TIMIT multi-speaker database.
Ten speakers are used for testing and each contributes 98
sentences. With this speaker-independent dataset there are no
ground truth visual features that can be used for evaluation, so
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Fig. 5. Global variance of audio-to-visual speech estimation as the perceptual
weighting, α, is varied from 0 to 1 for closing only and closing and opening
loss functions.

instead AAM vectors produced using the phoneme-to-visual
speech system in Section IV-A are used as the reference data
for analysis. Following objective tests, a set of subjective tests
are then performed to compare the naturalness of animations
for different perceptual loss functions.

1) Objective evaluation: Figure 8 shows MSE, global
variance and mouth error for bilabial closures and non-bilabial
closures for the five perceptual loss functions that were found
to perform best in Section VI-A2 (C1, CO1, C135, CO135 and
COALL) and are evaluated across α from 0 to 1.

Considering mouth error first, for bilabial closures insuf-
ficient mouth opening is observed with the standard MSE loss
function (i.e. α=1 where ε=-1.35). For non-bilabial closures,
the mouth error is positive indicating too much closure with
ε=1.28. These results are similar to those observed with the
single speaker analysis in Section VI-A. When the perceptual
loss function is applied to all coefficients for mouth openings
and closings, COALL, we observe greater mouth closure across
both bilabial closures and non-bilabial closures as α is reduced
from 1 to 0. This loss function also gives the largest increases
in MSE and GV across all combinations of loss functions and
AAM coefficients.

When the parameters influenced by the perceptual loss
function are reduced to CO135, only a small increase in mouth
closure is introduced as α reduces from 1.0 to around 0.4.
Below this the mouth closure for bilabial closures increases
substantially while for non-bilabial closures the change is
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(b) Closing and Opening

Fig. 6. Mouth error of audio-to-visual speech estimation for bilabial closure
phonemes (/b/, /p/, /m/) for different perceptual weightings. Negative error
corresponds to mouth opening too large, positive error corresponds to mouth
opening too small.

less, which is desirable. Removing the opening component
of the loss function to give C135 causes too much mouth
closure, particularly for non-bilabial closures. Restricting the
loss function to openings and closures applied to the first AAM
coefficient only, CO1, has much less effect on mouth closure
and makes only a small gain on bilabial closures. Removing
the opening part of the loss function to give C1, follows a
similar trend and both are highly variable for small changes
in α.

In terms of MSE, this increases as α is reduced for all
loss functions, as was observed for single speaker testing, with
COALL being affected most which is due to the perceptual
loss function being applied across all visual features. Global
variance exhibits a similar trend, with larger increases found
with COALL and CO135.

2) Subjective analysis: Finally, we measure the natural-
ness of our proposed system using subjective tests. Specifically,
we consider the four best system configurations determined by
the objective tests and from informal observation of animations.
These are systems COALL and CO135 which we investigate
each with perceptual weight values of α=0.4 and α=0.1. For
comparison, the system using the standard MSE loss function
is included (i.e. when α=1.0) and also the Phoneme-to-visual
speech system described in Section IV-A that is used to
synthesise target visual features for training. These six systems
are evaluated using a complete set of pairwise preference tests,
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(b) Closing and Opening

Fig. 7. Mouth error of audio-to-visual speech estimation for non-bilabial
closure phonemes (excluding /b/, /p/, /m/) for different perceptual weightings.
Negative error corresponds to mouth opening too large, positive error
corresponds to mouth opening too small.

yielding 15 combinations in total. In each session, subjects are
played three examples from each pair of configurations, all in
a random order, giving a total of 45 test comparisons. For each
comparison, a video is played that shows the pair of animations
side-by-side and subjects are asked to select which one they
think is more natural. The original audio accompanies the
video. Participants are able to view the videos as many times
as they wish. Each of the 45 comparisons takes its sentence
at random from one of the 10 different test speakers from the
TCD-TIMIT dataset. Before the test, subjects are played three
videos which together show all six systems, taken at random.
This forms an initialisation phase that subjects are not told
about, and the results from these are discarded. The tests are
performed using a web interface with 30 subjects participating.

Table II shows the results of the preference tests where
each entry shows the percentage preference of System A over
System B. A Chi-squared test was also performed and where
the result is statistically significant (at 95%) an asterisk is
used to indicate this. The Phoneme-to-visual speech system
is most preferred by subjects, although this is a somewhat
artificial result as the phoneme annotations and timings are
generated using forced alignment which would not be available
in practice. However, this is an important result as it is this
system that is used to synthesise the training data for the
subsequent systems developed in Section IV. The least preferred
system uses the standard MSE loss function which has no
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(c) Mouth error (ε) - for bilabial phonemes /b/, /p/ and /m/
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(d) Mouth error (ε) - for non-bilabial phonemes

Fig. 8. Speaker-independent MSE, GV and mouth error for varying loss
functions evaluated against the phoneme-to-visual speech predictions as
perceptual weighting, α, is varied.
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TABLE II
SUBJECTIVE PREFERENCE SCORES COMPARING ANIMATIONS PRODUCED FROM SIX DIFFERENT METHODS OF ESTIMATING VISUAL FEATURES. AN ASTERISK

INDICATES THE RESULT IS STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE.

System A
System B

P-to-AAM MSE(1.0) COALL(0.4) CO135(0.4) COALL(0.1) CO135(0.1)

Phoneme-to-AAM − 75.79∗ 64.04∗ 56.52 53.93 47.67
MSE(α = 1.0) 24.21∗ − 35.96∗ 36.67∗ 22.34∗ 31.52∗

COALL(α = 0.4) 35.96∗ 64.04∗ − 53.93 39.56∗ 32.58∗

CO135(α = 0.4) 43.48 63.33∗ 46.07 − 47.78 35.56∗

COALL(α = 0.1) 46.07 77.66∗ 60.44∗ 52.22 − 54.02
CO135(α = 0.1) 52.33 68.48∗ 67.42∗ 64.44∗ 45.98 −

perceptual weighting (i.e. α=1.0). Applying the perceptual
loss function improves naturalness in all cases. Considering
the effect of the perceptual weighting, the two systems with
higher weighting, CO135(α=0.1) and COALL(α=0.1), are both
preferred over the two with lower weighting, CO135(α=0.4)
and COALL(α=0.4). Comparing the effect of applying the loss
function to all AAM coefficients, COALL, to just those related
to mouth closing and opening, CO135, reveals little difference
in preference. This indicates that whichever loss function is
used, it is important to ensure that AAM coefficients a(1),
a(3) and a(5) are perceptually weighted.

To examine further the realism of the animated mouth, the
upper plot of Figure 9 shows the mouth openness, ∆EST , for
the sentence ‘the paperboy bought two apples and three ices’
from the Phoneme-to-AAM system and the Audio-to-AAM
system using the MSE loss function (i.e. α=1.0) and the CO135

and COALL loss functions (with α=0.1). Considering instances
of bilabial closures, for example the instances of phoneme
/p/ at frames 3, 10 and 40, both CO135 and COALL achieve
tighter closures compared with the Phoneme-to-AAM and MSE
systems. The result of this can be seen in the lower plot of
Figure 9 which shows the predicted animations and lip shapes
for the frames corresponding to the word ‘paperboy’ (frames
3 to 20) for each of the four conditions. Animations generated
using perceptual loss functions (COALL and CO135) can both
be seen to give tighter closures for the /p/ and /b/ phonemes
in the word.

VII. DISCUSSION

This work has shown that our proposed three-stage
framework is able to generate realistic animations from a
range of speakers. However, an aim of this work is not just
to demonstrate an effective end-to-end system, but also to
provide a framework that is modular by design. To validate
this outcome, we explore replacing the Audio-to-AAM module
in the third stage of our framework with a different architecture.
Specifically, we substitute our bi-directional LSTM (BLSTM)
with an architecture based on [38] that takes in raw audio,
extracts spectrograms, and applies these first to a series of
CNN layers to extract features before applying them to an
LSTM and dense layers to predict AAM parameters.

This allows us to examine the effectiveness of our
framework by comparing three different modules for the
final audio-to-AAM stage. First is our proposed method that
uses the perceptual loss function and BLSTM architecture,

TABLE III
EVALUATION OF THE PROPOSED THREE-STAGE FRAMEWORK USING THREE
VARIANTS OF THE AUDIO-TO-AAM MODULE: I) PROPOSED BLSTM WITH

PERCEPTUAL LOSS FUNCTION (CO135(α=0.1)), II) BASELINE BLSTM
METHOD WITH MSE LOSS FUNCTION [22] AND III) CNN-LSTM

METHOD [38]. EVALUATION METRICS ARE MEAN SQUARE ERROR, GLOBAL
VARIANCE, MOUTH ERROR FOR BILABIAL CLOSURES AND NON-BILABIAL

CLOSURES AND THE NUMBER OF MODEL PARAMETERS.

ε ε

System MSE GV (bilab) (non-bilab) #Params

BLSTM (CO135) 45.85 96.21 1.14 2.31 3.5M
BLSTM (MSE) [22] 35.03 57.87 -1.46 1.06 3.5M
CNN-LSTM [38] 53.74 33.41 -1.16 3.54 8.4M

specifically configuration CO135(α=0.1). Second is the baseline
MSE loss function and BLSTM architecture [22]. Third is the
CNN-LSTM architecture [38]. These are evaluated using the
same training and testing configurations as in Section VI-B.
Table III shows the MSE, GV and mouth error, ε, split into
bilabial and non-bilabial phonemes, for each of the methods
with the three-stage framework.

These results confirm that our three-stage framework
remains effective when a method in one module is changed for
another. The BLSTM with the conventional MSE loss function
is essentially loss function COALL(α=1.0), and this has already
been shown to be inferior to the perceptually weighted loss
function, both objectively in Section VI-B1 and subjectively
in Section VI-B2. Comparing against the CNN-LSTM method
shows this to achieve lower performance. This we attribute to its
use of an LSTM, whereas our approach uses a bi-directional
LSTM that allows temporal structure to be modelled more
effectively which is important when generating animations
parameters. As a further comparison, we also show in the final
column of Table III the total number of parameters in each
model. The CNN-LSTM method has over twice the number of
parameters as the BLSTM methods, with the increase arising
from the CNN stages.

Other deep learning model architectures could equally
be substituted into our proposed framework at either the
phoneme-to-AAM stage or the audio-to-AAM stage. For
example, GANs, VAEs and the other approaches discussed in
Section II could all be configured to estimate the synthetic
visual targets from the speaker-independent acoustic informa-
tion. Additionally, in many cases, our proposed perceptually-
weighted loss function could also replace directly the existing
objective functions in supervised learning techniques.
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Fig. 9. Mouth openness (top) and predicted animation (bottom) corresponding to the test sentence ‘the paperboy bought two apples and three ices’ from the
Phoneme-to-AAM system and the Audio-to-AAM system using the MSE loss function (i.e. α=1.0) and the CO135 and COALL loss functions (with α=0.1).
Aligned phoneme labels are given above each plot.

VIII. CONCLUSION

In this work we have introduced a three-stage
speaker-independent speech animation framework that can be
trained using a single-speaker audio-visual speech dataset and
a multi-speaker audio-only dataset and is capable of operating
in real-time. Specifically, we have proposed a speech animation
pipeline that uses synthetic visual parameters, estimated from a
speaker-independent phoneme-to-visual speech model, to train
a multi-speaker audio-to-visual speech model. Furthermore,
we describe a novel perceptually-weighted loss function that
improves the perceived naturalness particularly during the
production of bilabial closures. The delay introduced through
the look-ahead needed for windowing input acoustic features is
170ms which is below the 200ms ITU recommendation for real-
time services [21]. Furthermore, recent work has shown that
asymmetric windows can further reduce look-ahead lags [22].

The proposed system was evaluated first within a single
speaker setting and then within a multi-speaker setting. Without
a perceptually-weighted loss, the facial animation sometimes
exhibited poor realism even when attaining generally low MSE.
We observed that this effect was more perceptually significant
when mouth closures were under-articulated, particularly when
animating the bilabial closure sounds of /b/, /p/ and /m/. To
address this weakness, we proposed a perceptually-based loss
function that mitigates under-prediction errors and subsequently
improves the animation of bilabial closures. Objective measures
confirmed that the new perceptually-weighted loss function

was able to improve the accuracy of bilabial closures. Although
this came at a cost to the overall MSE, subjective evaluations
confirmed that the animations generated were significantly
preferred over those using the standard MSE loss. The best
performing audio-to-visual speech models (COALL and CO135

with α=0.1) were trained using the perceptually weighted loss
function applied to both mouth openings and closures, LCO,
and showed results comparable to the phoneme-to-visual speech
system. As a final evaluation, we showed that our three-stage
framework is modular, by replacing our BLSTM audio-to-
AAM model with a CNN-LSTM taken from [38]. This worked
within our framework, although objective evaluation showed
our proposed perceptually-weighted BLSTM to perform better.
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