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Speaker-independent Speech Animation using
Perceptual Loss Functions and Synthetic Data

Danny Websdale, Sarah Taylor and Ben Milner

Abstract—We propose a real-time speaker-independent speech-
to-facial animation system that predicts lip and jaw movements
on a reference face for audio speech taken from any speaker.
Our approach is motivated by two key observations; 1) Speaker-
independent facial animation can be generated from phoneme
labels, but to perform this automatically a speech recogniser is
needed which, due to contextual look-ahead, introduces too much
time lag. 2) Audio-driven speech animation can be performed in
real-time but requires large, multi-speaker audio-visual speech
datasets of which there are few. We adopt a novel three-
stage training procedure that leverages the advantages of each
approach. First we train a phoneme-to-visual speech model
from a large single-speaker audio-visual dataset. Next, we use
this model to generate the synthetic visual component of a
large multi-speaker audio dataset of which the video is not
available. Finally, we learn an audio-to-visual speech mapping
using the synthetic visual features as the target. Furthermore,
we increase the realism of the predicted facial animation by
introducing two perceptually-based loss functions that aim to
improve mouth closures and openings. The proposed method and
loss functions are evaluated objectively using mean square error,
global variance and a new metric that measures the extent of
mouth opening. Subjective tests show that our approach produces
facial animation comparable to those produced from phoneme
sequences and that improved mouth closures, particularly for
bilabial closures, are achieved.

Index terms - audio-visual systems, recurrent neural networks

I. INTRODUCTION

Speech animation is the process of creating facial motion
on a digital character that synchronises to given audio speech.
It is an essential component of animated television shows,
movies and computer games, and is traditionally created either
manually by artists or semi-automatically using motion capture
technology. In recent years, a range of automated methods
has been proposed that allow facial animation to be estimated
directly from the audio speech signal [1], [2], [3], [4], or
from a text or phoneme sequence [5], [6]. Automatically
generated facial animation can be produced much faster than
by hand and has the potential for real-time processing which
makes it well suited to animating virtual characters online in
a range of interactive multi-modal human-machine interfaces
such as computer games, intelligent assistants, and virtual and
augmented reality [7].

The challenge of automatic speech animation has been
around for decades. Early attempts were rule-based systems
such as phoneme-driven key-frame interpolation [8], [9], [10]
or sample concatenation [11], [12], [13]. A notable example
was Video Rewrite which was a video-based solution based on
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blending video samples of the mouth region corresponding to
triphones and stitching it onto a full-face video background [11].
Rule-based approaches tended to lack realism since animation
is constrained to a set of predefined poses. More compelling
facial animation has since been achieved using data-driven
model-based systems [6], [14], [15], [16] and we base our
work on this approach.

Automatic speech animation can be driven from text or
from an audio signal. With animation from text, an intermediate
linguistic representation (typically phoneme labels) is first
created. A model is then trained to estimate sequences of visual
speech parameters from the phoneme labels [16]. With anima-
tion from an audio signal, one method is to extract a phonetic
transcription using an automatic speech recogniser [10] and
then estimate visual parameters. Alternatively, automatic speech
animation can be achieved by learning a mapping directly
from the audio waveform [2], [17], [18] or from acoustic
features (e.g filterbank) [1], [19] to the visual parameters.
An advantage of using a linguistic representation, such as
phonemes, is that they are inherently speaker independent since
they do not encode the speaker’s identity, only the speech
content. A disadvantage is that a robust speech recogniser
is needed to automatically produce an accurate phoneme
transcription. If the speech recogniser is trained across a range
of speakers, then speaker-independent animation is possible,
although the phoneme accuracy is likely to be lower than a
speaker-dependent system. However, large vocabulary, robust
speech recognisers require broad contextual windows that span
multiple words in order to exploit language models which
improve decoding accuracy [20]. This introduces a significant
time lag that makes real-time speech animation prohibitive,
where tolerable delays are of the order 200ms [21], [22].
Conversely, audio-driven speech animation has been shown
to generate realistic lip synchronisation in real-time, but in a
speaker-dependent setting [2], [22]. Our work leverages the
advantages of both audio and text driven methods to achieve
speaker-independent, real-time speech animation.

To animate speech from any speaker in real-time, es-
sentially two options can be considered. One approach is to
employ a set of person-specific speaker-dependent models.
This may be expected to generate good animations for a given
speaker but would be challenging to implement. Sufficient
training data for each person-specific model would be required
and this would need to be added to for any new speakers.
Furthermore, input speech would need to be classified in terms
of the speaker before being sent to the appropriate model.
Instead, our approach is to create a single speaker-independent
model that maps audio from any speaker directly into visual
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parameters.
The first aim of this work is to develop a framework

that maps audio speech, taken from any speaker, to a set of
visual parameters corresponding to the pose of a representative
(target) face. We harness the speaker-independent quality of
phoneme-to-animation systems to generate synthetic training
data with which to train our audio-driven system. All speakers
are animated to a fixed representative face so that a graphics
character need only be set up once and can be controlled by
a voice from any speaker. This is beneficial for applications
such as computer games, where an avatar is rigged once and
can subsequently be controlled by any player’s voice. An
alternative approach would be to use a speaker-independent
speech recogniser to generate a sequence of phonemes, and
their start and end times, and input this into a phoneme-to-visual
parameter mapping. However, the broad contextual windows
required in such a system would introduce substantial delay
compared to our proposed method. Further, any phoneme errors
in the output transcription would lead to erroneous visual
parameters as would errors in the phoneme start and end
times. No such ‘hard’ error exists in the proposed approach
as the mapping does not go through an intermediate symbol
(phoneme) mapping and instead maps directly from audio
features to visual parameters.

The optimisation algorithms in model-based systems
typically minimise the mean squared error [6] or maximise
the correlation [23] between predicted and target values.
Existing loss functions are computed over the entire face
(or jaw) region. However, our initial tests found that poor
facial animation is particularly evident for bilabial phonemes
(/b/, /p/, /m/) which require a full mouth closure to appear
realistic. Therefore, the second aim of our work is to improve
the realism of the predicted animation by developing loss
functions that put emphasis on perceptually significant events
such as bilabial closures. The main contributions of this paper
can be summarised as:

� We introduce a modular framework for generating speaker-
independent speech animation.

� We exploit phoneme-driven speech animation to generate
synthetic training data.

� We develop a robust speaker-independent audio-driven
speech animation system that is trained on synthetic data.

� We introduce perceptually motivated loss functions to
increase the naturalness of predicted facial animation.

� We introduce a new evaluation metric to measure explicitly
the extent of mouth opening.

The remainder of this paper is organised as follows.
Related work is discussed in Section II. Section III explains the
methods of acoustic and visual feature extraction. The proposed
speaker-independent audio-to-visual mapping is introduced
in Section IV. Section V describes the two perceptually
motivated loss functions to improve the naturalness of predicted
animation. Experimental results are presented in Section VI
where we use both objective and subjective analysis to evaluate
speaker-dependent and speaker-independent animation. Finally,
a discussion is made of the proposed methods in Section VII
and the work concluded in Section VIII.

II. RELATED WORK

Some of the earliest model-based methods for estimating
visual parameters from audio used hidden Markov models
(HMMs) [3], [24], [25], [26], [27]. However, these methods
were limited by their use of Gaussian mixture model-based
states (with the assumption of diagonal covariances) and by the
decision tree clustering of visual features within states [28], and
consequently produced animation that lacked expressiveness.
More recently, deep neural networks (DNNs) have been shown
to be effective at learning the non-linear mappings between
input speech audio or linguistic features, and output visual
parameters [2], [6], [29], [30]. A facial pose depends not only
on the current sound, but also upon the neighbouring sounds
due to co-articulation, so networks are typically trained to
learn a mapping from a window of input speech to the visual
parameters.

Alternatively, recurrent neural networks (RNNs) inher-
ently capture neighbouring sounds using an internal state
that remembers past events. Furthermore, bi-directional RNNs
(BRNNs) can use both past and future inputs to make a
prediction, and have been applied successfully to audio speech
synthesis [31]. A well-known issue with RNNs is that propa-
gated gradients can become very small and vanish, particularly
when modelling long span relationships. The long short-term
memory (LSTM) model overcomes this by using a series of
gates to control the flow of information [32]. LSTMs (and bi-
directional LSTMs) have been applied successfully to automatic
speech animation [15], [23], [18] as well as audio-driven head
motion synthesis [18], [33], [34]. A three-stage LSTM has been
used to predict the parameters required for the JALI 3D facial
animation rig [35], [36]. One LSTM is used map the input audio
into phoneme groups while a second LSTM maps the audio
into facial landmarks. Finally a third LSTM combines these
two outputs with the audio to generate the JALI parameters.
Convolution neural networks (CNNs) have also been applied
to facial animation. An architecture comprising first a series of
CNNs, with 1D filter kernels, and a fully connected layer has
been used to map raw audio into active shape model (ASM)
parameters [37]. To give smoother changes between frames,
the previous ASM parameter vector is fed back and used in the
prediction of the current frame. Alternatively, in [38], a series
of CNNs are used to map input spectrograms into a feature
representation which is then input into an LSTM and dense
layers to predict facial parameters.

Other model-based approaches include generative adver-
sarial networks (GANs) in which one or more discriminators
are trained to detect fake animation and a generator is
simultaneously trained to produce animation good enough to
fool the detector. Vougioukas et al. [39] and Sadoughi and
Busso [40] applied this technique to video-based animation
and expressive lip animation respectively. A cascaded GAN
approach has also been proposed whereby input audio is first
mapped to facial landmark features, which are then mapped
to the final video [41]. This is shown to synthesise more
robust animation that has fewer visual artefacts that arise from
irrelevant sounds in the audio. Variational Autoencoders (VAEs)
were used by [42] to generate speech animation from both
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audio and gaze. A multimodal architecture was used to embed
all input modalities and the facial coef�cients in the shared
latent space.

III. A UDIO AND VISUAL FEATURE EXTRACTION

Automatic speech animation is a transformation from
audio speech to facial motion. In this work we pose this as
the task of mapping from a set of acoustic speechfeatures
to visual speechfeatures. To achieve realistic animation the
visual features must adequately encode the speaker's facial
pose while the acoustic features must contain suf�cient speech-
related information to regress this pose.

A. Visual features

Speech-to-animation models can be trained to predict
facial animation in various forms. Image-based systems output
pixel values in an effort to create video realistic output [17].
Others output directly to the vertices of a 3D face mesh [2].
More commonly, models are trained to predict a parameteri-
sation of a face that describes the geometry or appearance of
the pose [6]. We use a parametric representation of the face
that is derived from an active appearance model (AAM) [43].
As a means of representing faces, AAMs have had widespread
success [6], [43], [44], [45]. AAMs are particularly suited
to our approach because they separate facial actions in the
feature space (for example the �rst dimension of the AAM
representation describes the extent of lip opening and closing
- see Figure 3) which facilitates the calculation of our novel
perceptual loss, de�ned in Section V. Another bene�t of AAMs
is that the predicted animation can be easily retargeted to a
graphics character by transferring the AAM to the character
as a blendshape rig [6].

The speci�c implementation of the AAM used in our
work is described in [12]. In summary, the AAM is trained
from a set of images that have been hand-labelled with 34 2-D
vertices demarcating the contours of the lips, jaw and nostrils
(illustrated in Figure 1(a)). Generalised procrustes analysis [46]
is used to align each set of vertices to the mean jaw shape
to remove scale, rotation and translation due to head motion.
The 34 pairs of x-y co-ordinates,f r (n); r (n + 1) g, are stacked
to create a 68-D vector,r = [ r (1); r (2); : : : ; r (67); r (68)]. A
set ofDS coef�cients, from a principal components analysis
(PCA), are then extracted to give parameter vectors that
encodes the shape of the facial pose.

Appearance is modelled with two independent linear
models representing the pixel intensities of the inner mouth
and jaw areas respectively. The regions are modelled separately
since the inner mouth area can change somewhat independently
to the rest of the jaw due to the presence and positions of the
teeth and tongue. The images are warped to the mean shape
and the pixels from each region are extracted. PCA is applied
to the stacked pixel intensities to extract appearance vectors,
bm andb j , that model the mouth and jaw facial regions with
DO andD J components, respectively.

Finally, the shape and both appearance features are
stacked and another PCA is performed to decorrelate the
features. This results in aDV = 47 dimensional vector,at , with

(a) (b)

Fig. 1. (a) Training image with 34 x-y vertices marked, (b) Example mouth
shapes showing the measurement of mouth opening/closure,� , which uses
the 27th and 32nd co-ordinate pairs.

t the time index of the vector, that combines and compresses
the shape and appearance information and retains 98% of the
total variation.

Once constructed, the AAM can be �tted to new images
by solving for the model parameters [43]. In this way video
frames can be tracked and parameterised into feature vectors
that encode the position of the jaw and lip area. The videos
used in this work (Section VI) have a frame rate of 29.97 fps,
so a vector of visual features is created every 33ms.

B. Acoustic features

The acoustic features must encode the characteristics of
speech to enable an accurate sequence of visual speech features
to be estimated. Given their success in many speech processing
applications [47], [48], and in our previous related work [1],
the acoustic features are based on mel-frequency cepstral
coef�cients (MFCCs). Our implementation builds on the ETSI
Aurora standard [47] and extracts 20ms frames of speech every
10ms, applies a Hamming window and then computes the
power spectrum. A 44-channel mel-spaced �lterbank is then
applied followed by a log and discrete cosine transform to
produce aDM =44-dimensional MFCC vector,x t , with no
truncation applied. The audio is sampled at 48kHz.

IV. SPEAKER-INDEPENDENT AUDIO-TO-VISUAL MAPPING

One method to create a sequence of visual features for
animation is to �rst use a speech recogniser to decode an
input audio signal into a phoneme sequence. This phoneme
sequence can then be mapped to a stream of visual features [6].
The bene�t of this approach is that the phoneme sequence
is agnostic to speaker identity, so can work for any given
input speech, assuming that the speech recogniser is speaker
independent. However, this approach requires a large vocabulary
continuous speech recogniser which may result in phoneme
errors and will introduce a signi�cant time lag, due to contextual
(language) modelling, before producing an output. This makes
real-time, online operation impossible. Instead, in this work
we propose a speaker-independent architecture to map directly
from acoustic features to visual features. An overview of our
system is shown in Figure 2.


