
 

 

Assessment of Inundation Risk from Sea Level Rise 

and Critical area for Barrier Construction: A GIS-

Based Framework and Application on the Eastern 

Coastal Areas of Qatar 

 

 

By  

A.AZIZ ALI M AL-MANNAI 

 

A thesis submitted for the degree of Doctor of Philosophy  

University of East Anglia, Norwich  

School of Environmental Sciences 

 

May 

2021 

 

 

 

© This copy of the thesis has been supplied on condition that anyone who consults it is understood 

to recognise that its copyright rests with the author and that no quotation from the thesis, nor any 

information derived therefrom, may be published without the author’s prior, written consent.



II 
 

Abstract 

Climate has changed throughout geological history as part of the natural process, which 

consequently altered the extent and the level of seas. However, the rate of these changes has 

accelerated from the second half of the last century. There is much scientific evidence that climate 

change has and will continue to accelerate the rate of sea level rise in the 21st century. This creates 

a significant risk for many countries in terms of flooding, coastal erosion and wetland inundation, 

which in turn will impact human communities (socially and economically) and ecosystems. It is 

therefore vital to have reliable strategies for modelling and reducing the impact of climate change.  

 This study provided a methodology based on geospatial technology to provide stakeholders 

with a decision-making tool for better understanding of uncertainties in climate change study and 

future flood defence planning. This study integrated the uncertainties from both DEM and RCPs 

to provide a better projection of flooding that results from sea level rise. The study also looked at 

the errors and the spatial autocorrelation aspect and provides evidence that the independency of 

the error did not improve the outcomes significantly.  

 Identifying the critical area in studying sea level rise inundation is crucially important for the 

decision makers to plan to and prevent future flooding by building barriers. This study developed 

a method to include the factors affecting the site selection by integrating the multi-criterial 

evaluation with GIS tool for site selection. In Qatar and many other countries, industrial activities, 

especially from the oil and gas industry, are concentrated in the coastal areas. The economic benefit 

of protecting the coastal areas from flooding is important for the wider economy of the country. 

Therefore, prioritising the areas based on the risk of flooding and identification of the critical areas 

to build barriers will help in making decisions on future investments by governments and 

companies operating in those areas. 
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Chapter 1: Introduction 

1.1. Background 

Sea levels have fluctuated throughout history as a result of climate changes and geological events. 

In the last deglaciation (20,000 - 8000 years ago), it is estimated that the rate of sea level rise (SLR) 

increased by 10 mm per year, with eustatic sea level reaching a total of 130 m during that period 

(Alley et al., 2005). Since 1850, the sea level has risen by about 19 cm worldwide (Stocker, 2014). 

Thus, SLR is not a new phenomenon. However, in the last century it has become the subject of 

increasing concern for scientists, policy makers and the wider public, particularly since the early 

1990s when more precise and global data became available. This is because it is widely viewed as 

a consequence of human activities (Oppenheimer et al., 2019). Most current studies suggest that 

climate change has and will continue to accelerate the rate of SLR. The rate of rise projected for 

the 21st century is predicted to be faster than in the previous century. This in turn will increase the 

risk of floods, erosion, wetland inundation and all the associated material damages to human 

communities and the ecosystem (Stocker, 2014). Therefore, understanding the causes and 

consequences of climate change is a social challenge that is needed to help predict changes in 

impact, develop adaptation and mitigation measures and to assess climate change impacts on 

human health and the environment (Nicholls et al., 2007; Small and Nicholls, 2003). It is therefore 

vital to have a better understanding of the impact of climate change on SLR.  

1.2. Sea level rise and climate change 

This section will now consider how SLR is affected by climate change. The science of climate 

change has increased substantially since the creation in 1988 of the Intergovernmental Panel on 

Climate Change (IPCC), the international body tasked with evaluating climate change causes and 

consequences. The regular comprehensive assessment reports (AR) of the IPCC are prepared by 

gathering technical and socio-economic information regarding climate change, human mediated 

climate change, effects and consequences and measures that can be adapted for their mitigation. 
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The latest report presents a clear and up to date view of the state of art in climate change science 

in the Fifth Assessment Report (AR5) of the IPCC, published in 2014 (IPCC, 2018). A range has 

been given for future imminent global mean sea level (GMSL) rise by the year 2100 with a low 

level of 0.2 m and a high level of 2.0 m (Parris et al., 2012) and an intermediate range falling 

between 0.5 m and 1.2 m (Figure 1-1).  

 There are two main causes for SLR. One is the melting of glaciers and polar ice sheets; the 

other is the thermal expansion of oceans due to warming. These two causes have contributed to 

75percent of SLR observed globally. Glacier mass loss and changes in land water storage appear 

to explain 90percent of the observed global mean SLR for 1971–2010 and 1993–2010 (Pachauri 

et al., 2014). Weissenberger and Chouinard (2015) contend that the two main causes mentioned 

above have an almost equal contribution to SLR. The best estimates of the likely changes in SLR 

moving forward are produced by the IPCC (Table 1-1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 1: The rate of GMSL rise scenarios (Parris et al., 2012) 

Table 1- 1: The SLRs for different RCP scenario from Stocker (2014). 

 RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Global mean sea level rise 

in 2100 (m) 
0.44 0.53 0.55 0.74 

Range of global sea level 

rise in 2100 (m) 
0.28 to 0.61 0.36 to 0.71 0.38 to 0.73 0.52 to 0.98 

Figure 1-1 removed for copyright reasons. Copyright holder is Parris et al., (2012) 
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 For climate modelling a set of new methods were developed for long-term and short-term 

modelling, which are called representative concentration pathways (RCPs) (Van Vuuren et al., 

2011), which are approved by the IPCC. Deriving the probable trajectories for the significant 

drivers of climate change by 2100 is the main objective of these RCPs. Representative 

concentration pathways are based on the concentrations of greenhouse gases (GHG), which are 

calculated as CO2 equivalents in units of Watts per square metre. These will provide a framework 

to research and model the possible climate conditions in the future, along with their consequences. 

There are four main RCPs: RCP 2.6 is a stringent mitigation scenario that projects a peak in 

emissions between 2010 and 2020, after which there will be a significant decline; both RCP 4.5 

and RCP 6.0 (intermediate scenarios) are projected to peak around 2040 and 2080, respectively, 

with a decline later; RCP 8.5 (scenario with very high emissions) predicts increasing GHG 

atmospheric concentrations over the current century (Church et al., 2013).  

 Climate change and SLR are important as millions of people living in coastal areas are exposed 

to SLR and AR5 is carrying out studies on SLR specifically (Nicholls & Cazenave, 2010). The 

average SLR was around 3.0 mm/year between 1993-2010 (Hay et al., 2015), and RCP 8.5 predicts 

it will increase in the coming 100 years. The SLR forecast until 2100, depending on different RCPs, 

is summarised in Figure 1.2 and Table 1.1. RCP 8.5 means the worst-case scenario with a 

consequent SLR between 0.52 and 0.98 m, with a 66 percent likelihood range (global average by 

2100) predicted as “likely” by AR5 IPCC (Figure 1-2). This is relative to the sea level during the 

period 1986-2005 (Church et al., 2013). 
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Figure 1- 2: Projections of global mean SLR over the 21st century (relative to 1986–2005) 

for a low emissions scenario (RCP 2.6), intermediate scenarios (RCP 4.5 and 6.0) and high 

emissions scenario (RCP 8.5). The assessed likely range is shown as a shaded band. Source: 

Church et al., (2013). 

 There is also the possibility of more extreme SLR, and the possibility of sections of Antarctic 

ice sheets melting and a subsequent higher SLR in the 21st century, which is not excluded in AR5 

(Church et al., 2013). As DeConto and Pollard (2016) predicted, Antarctica has the potential to 

contribute more than one metre of SLR by 2100 and more than 13 m by 2500. Because of this 

uncertainty, high-end SLR scenarios must be considered when modelling its impacts. For example, 

the upper-limit SLR generated by Jevrejeva et al. (2014) (including estimates with low probability, 

that are seemingly not possible but cannot be ruled out as per paleoclimate observations) estimated 

higher SLR up to 1.80 m by 2100, with less than a 5 percent probability. This was based on the 

construction of a probability density function for global mean SLR. 

 Sea level rise will also vary by location and depends on several factors, like ocean currents, 

temperature and sea depth. Therefore, SLR is not universally uniform and it can vary from place 

to place due to climatic differences, especially in the equatorial Pacific Ocean, as shown in Figure 

1-3. This is related to the movement of water in the oceans as per the changing wind patterns, 

which in turn are affected by the El Niño-Southern Oscillation phenomenon indicated by the 

Figure 1-2 removed for copyright reasons. Copyright holder is Church et al., (2013). 
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patterns of ocean thermal expansion at the regional level. Variations in SLR also occur over time, 

from short-lived phenomena like waves and storms, to changes lasting decades or even centuries 

(Figure 1-3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 3: Global Sea Level Trends. Source: Titus & Wang (2008) (using data from the 

Permanent Service for Mean Sea Level) 

 

 The regional patterns of SLR are particularly important as society and the environment are 

directly affected by the local sea-level changes. The variations in the rate of SLR regionally are 

significant, as shown by satellite altimeter data (Figure 1-4), with an increase in SLR of about five 

times the global average since 1993 in some regions (Aarup et al., 2010). However, the relatively 

short altimeter record and differences in climate, particularly in the equatorial Pacific Ocean, might 

be responsible for some of the extreme observations.  

 

 

 

 

 

 

Figure 1-3 removed for copyright reasons. Copyright holder is (Titus & Wang, 2008). 
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Figure 1-4: The spatial distribution of the rates of SLR, plotted about the global average 

rate of rise for the period January 1993 to December 2009, as measured from satellite 

altimeter data (CSIRO, 2014) 

 This variability in climate will continue in the 21st century with an impact on coastal 

communities by the long-term SLR, variations in sea level and also by extreme sea level alterations 

caused by storms and waves.  

1.3. Uncertainty in SLR assessment 

Estimations about the magnitude of SLR vary widely in various reports and documents (see Section 

1.2). Although slowing of the amount of GHG is being reported from different regions in the world, 

SLR will continue even after the emissions of GHG stop rising due to inertia in the climate system 

(Levermann et al., 2013).  

 Predicting SLR for any specific location with a high degree of certainty can be a challenging 

task as changes in ocean currents, ocean density and sea level are all connected, and changes at 

one location can impact another (Yin et al., 2010). This is illustrated in the uncertainty calculations 

of SLR carried out by the IPCC. This implies that the sea level in the regions close to the mass of 

ice sheets lowers and rises in other areas (Kopp et al., 2010). More recent research in AR5 shows 

Figure 1- 4 removed for copyright reasons. Copyright holder is (CSIRO, 2014) 
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that the West Antarctic ice sheet has been melting faster throughout the latest decade than had 

originally been expected. This implies a further SLR of several decimetres more. This was regarded 

as highly unlikely in the IPCC report but is now a clear possibility (Turner et al., 2017). There is a 

17 per cent chance of the SLR being more than that predicted in IPCC´s RCP 8.5 (Wuebbles et al., 

2017).  

1.4. The implications of SLR and flooding on global coastal population 

Coastal and low-elevation populations are at risk from SLR and other seaward hazards (e.g. 

changes in ocean currents, winds and storm intensity) induced by climate change. The densely 

populated low-lying areas where the population is continuously growing are becoming more 

vulnerable to the risks caused by climate change. The area that is less than 10 metres above sea 

level represents only two per cent of the Earth’s land surface but is inhabited by 10 per cent of the 

world’s population in general, which is also 13 per cent of the world’s urban population 

(McGranahan et al., 2007). The coastal population is projected to be 1.8-5.2 billion people by 2080, 

based on expected migration (Nicholls et al., 2007). There is a wide conversion of natural coastal 

land into agriculture and aquaculture, as well as industrial and residential land by the growing 

populations (Valiela, 2009), which are becoming regions of highly economical productivity. Thus, 

it is not only coastal populations but also their socio-economic activities that are threatened by 

SLR. The impacts of SLR on coastal areas include land flooding and storm damage, erosion, 

saltwater intrusion, rising water tables and wetland loss (Nicholls & Tol, 2006). The inundation of 

low-lying coastal areas around the world is currently considered one of the most dramatic and 

immediate effects of SLR (FitzGerald et al., 2008). It is foreseen expected to reach 50 per cent of 

the total population living within a distance of 100 km of the shores in the next two decades (Small 

& Nicholls, 2003; Neumann et al, 2015). The projected population at risk by country by the year 

2050 is given in Woosnam (2017), including 37.2 million people from India being exposed to the 

impacts of SLR by the year 2050. The coastal areas are also home to some of the world’s most 

productive and complex systems and support a diversity of plant, fish and wildlife species. There 

are global and sub-global estimates of vulnerability of coastal populations and ecosystems to rapid 

SLR (Small and Nicholls 2003; Woodroffe et al., 2006; McGranahan et al., 2007; Nicholls et al., 
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2007), due to irretrievable inundation of low-lying regions, intensified flooding events and 

heightened beach erosion and salination of coastal land. Millions of people might be displaced due 

to loss of property and infrastructure, and the coastal ecosystems might also be lost considerably 

by the end of the 21st century (Nicholls & Lowe, 2004). 

 An increase in storm intensities and coastal flooding are potential outcomes of SLR, which is 

gaining wider concern as it threatens the low-lying coastal areas with submergence and inundation, 

e.g. for coastal areas of Bangladesh (Broadus et al., 1986; Huq et al., 1995).  

 The protection costs that can be incurred by a one metre rise in sea level was estimated by the 

IPCC Coastal Zone Management Subgroup (CZMS) in 1990. The common methodology framed 

by the IPCC CZMS was used to complete the first analysis of global vulnerability in 1992, where 

the flood risk and accompanying costs were evaluated based on the assumption of one metre SLR 

globally from 1990 to 2020 (Hoozemans et al., 1992). This was updated soon after in its second 

edition (Hoozemans et al., 1993). The findings were publicised at the United Nations (UN) 

Conference on Environment and Development in Rio de Janeiro, Brazil, in 1992 (IPCC CZMS, 

1992) and the World Coast Conference in Noordwijk, the Netherlands, in 1993 (WCC’93, 1994). 

The impact algorithms were subsequently improved, making the flood impact analysis more 

dynamic (Nicholls et al., 1999; Nicholls, 2000). This could combine a range of implications of 

SLR on rising coastal populations and their living standards. Thereafter, many studies were 

conducted on sector-wise impacts on climate related to socio-economic activities (Parry et al., 

1999; Arnell et al., 2002; Parry et al., 2001) and are cited many times in the IPCC Third Assessment 

Report (McCarthy et al., 2001). 

 Coastal habitations and establishments are increasingly exposed to floods (Hanson et al., 2011; 

De Sherbinin et al., 2007) due to climate change, the increasing burden of populations and assets, 

as well as subsidence (Nicholls, 1995; The World Bank, 2010). Based on the evaluation of present 

flood losses, an estimation of future losses based on socio-economic impacts alone were shown to 

be US$ 6 billion per year, which may rise to US$ 52 billion by 2050. There is an urgent need to 

upgrade current coastal protection measures to prevent losses of more than US$ 1 trillion per 

annum due to climate change and subsidence. Although present investments maintain adaptations 
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to flood probability, the subsidence and SLR can cause losses up to US$ 60–63 billion per year by 

2050. It is critical to prepare for more severe disasters in future as there is a probability that the 

magnitude of loss will increase by more than 50 per cent.  

 Climate change in ecosystems along the coast can result in SLR and more intense, frequent 

storms (Murdukhayeva et al., 2013). The low-lying areas in coastal parks can be inundated due to 

such phenomena. To assess this risk of coastal inundation, appropriate geospatial data, tools and 

models were chosen to conduct case studies.  

Human action will be the driving factor for increased risks of coastal flooding, as depicted in Figure 

1-5. Variability in mean SLR can affect the flood occurrence and flood risk that can impact climate 

change too. The assets that are exposed to specific floods and the extent of their damage impact 

the monetary loss ensuing from the flood. The socio-economic development, along with adaptation 

measures, are anthropogenic factors that can reduce flood risks. Human behaviour can change the 

patterns of global climate and occurrence of floods by affecting the emission of GHG. These 

interactions require comprehension to control human actions and mitigate the effects of SLR 

(IPCC, 2014). 

 

 

 

 

 

 

 

 

 

Figure 1- 5: Illustration of environmental and human processes relevant for the assessment 

of SLR impacts. Adapted from IPCC (2014). 
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 Many of the major cities and ports in the world with thriving populations are concentrated 

along the coast (Nicholls et al., 2008). The population numbers are constantly increasing in the 

low-lying coastal areas (below 10 m), which will reach 879 million in 2030 from 625 million in 

2000 (Neumann et al., 2015). Coastal zones can be hubs of economic activity and contain industries 

like tourism. They are further economically paramount in fuel-based economies like Qatar, and in 

developing countries the coastal regions play a significant role in the economy and commerce. An 

extreme coastal flooding event occurring with a 100-year return period can affect global coastal 

cities and their economies by around US$ 3 trillion. This may increase to US$ 35 trillion by 2070 

(Hanson et al., 2011). Coastal disasters include waves, winds, tides and tsunamis, along with SLR-

related cyclones and floods (IPCC, 2014). 

1.5. Adaptation and mitigation measures to sea level rise impacts 

The international community is yet to seriously consider the implications of SLR for infrastructure 

planning, economic development and population aspects (Dasgupta et al., 2007). There are three 

important concepts in relation to climate change impacts and the response of both natural and 

human systems:  

i. vulnerability: the threats to a given system, and its susceptibility to the harmful effects of 

climate change; 

ii. adaptation: a system’s ability to adjust and reduce its vulnerability to climate change 

enhancing resilience to observed and predicted climate change impacts. The IPCC defined 

‘adaptation’ as adjustment in natural or human systems to a new or changing environment;  

iii. mitigation: the strategies and actions (i.e. policies) applied to reduce the emission and 

concentration of GHGs in the environment. ‘Mitigation’ is defined by the IPCC as 

technological change and substitution that reduce resource inputs and emissions per unit 

of output with respect to climate change (Cardona et al., 2012; Netz et al., 2007; Smith et 

al., 2001; Watson et al., 1996).  
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Adaptation measures include social and environmental process modifications, climate risk 

perception, actions to reduce climate risk and the exploration of new opportunities to cope with 

the modified environment. If mitigation measures are successful, the impacts are lessened and the 

need for adaptation also lessens. Thus, adaptation and mitigation are reciprocal. Adaptation 

measures are used to deal with the effects of climate change and SLR and to reduce the 

uncertainties associated with their impacts by incrementally planning ahead. They allow 

stakeholders and policy makers to consider a range of options for choosing the best approach, 

avoiding inappropriate decisions (i.e. too little, too much, too soon, or too late), which may 

inadvertently increase the socio-economic and environmental SLR impacts (Barnett & O’Neill, 

2010). 

Sea level rise has many adverse effects on the environment and coastal populations globally, 

which are increasing mainly due to climate change. The exposure to increased occurrences of 

floods and other SLR-related consequences are becoming more notable, severe and catastrophic. 

Floods are unstoppable natural disasters that cause extensive economic damage and loss of life. 

This puts an onus on the societies to develop adaptive measures, despite uncertainty in knowing 

how rapid and extensive the future SLR will be (Griggs et al., 2017).  

Mitigation measures include alleviating the causes of climate change, such as emission of 

GHG, deforestation, urban heat islands, etc., and adaptation measures, including constructing 

seawalls, blue-green solutions or dykes (Nicholls, 2011). Developing adaptive measures to climate 

change is becoming paramount in tackling climate change worldwide. 

Sea level rise progresses relatively slowly and is hardly noticeable (Moser, 2005). Thus, SLR 

appears to be another coastal development, along with the impacts of floods and storms, and it is 

hard to link them to the slow process of SLR (Spirandelli et al., 2016).  

1.6. The use of geographic information science for SLR 

The current phenomena of global climate change and increasing sea levels necessitates scientific 

information on likely impacts, to direct planning in coastal areas. These are subject to erosion, 

flooding and other coastal hazards, both currently and in the future, due to SLR. In this regard, 

spatial technology, such as geographic information systems (GIS), is an important tool to provide 
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stakeholders with relevant and timely information for use in a decision-supporting capacity. In this 

respect, GIS has proved that it has the potential to act as a first assessment of many SLR-induced 

effects, including inundation and flooding risk, shoreline recession and seawater intrusion risk, as 

well as socio-economic vulnerability (Snoussi et al., 2011). The outcome of GIS-based models 

identifies priority areas where natural and human systems are likely to be the most vulnerable. 

Geographic information systems also provide visualisations so that SLR and its associated impacts 

can be visualised for various stakeholders in the coastal environment and economy. These may 

enable planners and government authorities to make well-informed decisions, integrating this 

knowledge in coastal planning and development (Faour et al., 2013). 

1.7. Aims and objectives 

The aim of this study is to develop a methodology that can be used to examine the impact of SLR 

on flooding by taking into account the many uncertainties involved. This is then developed into a 

methodology for identifying appropriate sites to build a barrier to prevent future flooding. The 

specific objectives are: 

1. To apply and evaluate various spatial interpolation methods and techniques to generate high-

resolution digital elevation models (DEM) in complex urban areas. 

2. To assess the SLR inundation in a coastal area.  

3. To quantify the impact of uncertainty in the DEM and in SLR estimates upon flooding 

projections.  

4. To evaluate the importance of taking spatial autocorrelation into account when modelling the 

impacts of uncertainty. 

5. To explore methods to identify critical areas for barrier construction to prevent sea level 

inundation.  

This study is based on the east coast of Qatar. 
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1.8. Thesis outline 

This thesis comprises seven chapters. A brief description of each is provided below: 

 Chapter 1: Introduction: Presents the background, aims and objectives of the research.  

 Chapter 2: Background to the Study Area and Previous Studies of Sea Level Rise in 

the Middle East: Introduces the country of the study, Qatar, including information on 

climate, topography, changing sea levels and socio-economic characteristics. An overview 

of previous studies on climate change and SLR is presented with a focus on Qatar, the 

Gulf and the Middle East.  

 Chapter 3: Digital Elevation Model: This chapter describes the collection of secondary 

elevation data points and the various interpolation methods used to build a DEM in a 

complex urban area.  

 Chapter 4: Assessing sea level rise and mapping inundation: The purpose of this 

chapter is to develop a method to map inundated areas based on climate change scenarios.  

 Chapter 5: Assessing uncertainty in sea level rise and mapping inundation: The main 

objectives of this chapter are to estimate the impact of uncertainties associated with DEM 

and SLR projections on the inundation mapping and to compare the impact of these two 

sources of uncertainties on the final flood probability map. The need to understand the 

impact of spatial autocorrelation on the final outcomes of inundation mapping is also 

addressed. 

 Chapter 6: Critical areas for barrier construction: This chapter provides a new 

methodology for identifying and selecting areas to build barriers to prevent flooding from 

SLR.  

 Chapter 7: Conclusions: Overall conclusions of this research are presented. 
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1.9. Gaps in the scientific literature that this study will address 

1.9.1. Chapter 3 

Although there are many papers in the literature on flooding, one of the key challenges is to 

estimate flooding in urban areas, taking account of the complexity of the urban form (Wang et al., 

2018). Previous research into SLR is often limited by the coarse resolution of elevation data and 

this makes it difficult to model future SLR associated with climate change (Nicholls, 2004). Flood 

prediction in urban areas using DEMs is dependent upon the accuracy of the digital terrain data 

(Kim et al., 2020). A high-accuracy DEM is an important input in modelling future SLR (Gesch, 

2018). Marginal differences in the DEM will give a different predicted area and it becomes 

important to apply accurate topographical data. For this chapter we used elevation datasets with 

high spatial resolution (10 m grid) and vertical accuracy of 10 cm. Yet for modelling flooding in 

urban areas this resolution was not thought to be high enough. There are few papers in the literature 

on the relative merits of interpolating regularly spaced data of an existing raster DEM to a finer 

resolution. In this chapter we apply and evaluate a number of different interpolation techniques 

(e.g. IDW, spline, kriging (with four different semi-variogram models) and TIN) to produce a grid 

with a spatial resolution of 5 m.  

 The DEMs that such techniques generate are often bare-earth models, where buildings and 

other urban features are removed. Yet flooding is influenced by many urban features and objects, 

like bridges over main roads, trees and buildings. The bare-earth DEM sets the topographical base 

for 2D surface modelling. Objects and features may be reincorporated into the bare-earth DEM 

using different methods to incorporate the detailed flow dynamics around buildings (Wang et al., 

2018; Shen et al., 2018). Realistic urban flooding by DEM has limitations that can be challenging. 

Researchers have tried incorporating supplementary data like transportation and other related 

anthropogenic information (Duke et al., 2003; Duke et al., 2006). The ultimate goal is to develop 

a DEM which depicts the flow through complex urban features like roads, railroads, road or 

embankments/cuttings. Chapter 3 adds to this literature, generating urban DEMs exploring a range 

of techniques for incorporating features such as embankments and cuttings into the DEM and also 

interpolating into data “gaps” where buildings have been removed. 
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1.9.2. Chapter 4 

A basic analysis of coastal flooding uses a “bathtub” method to demarcate the coastal areas below 

a set water height. Coastal flooding modelled using the bathtub approach is extensively used in 

SLR assessments (Van De Sande et al., 2012; Sahin, 2014; Poulter & Halpin, 2008; Gesch 2009, 

2013; Leon et al., 2014; Schmid et al., 2014; West et al., 2018). However, this simplistic approach 

does not consider whether the flooded area is connected to the sea and the impacts of not making 

this assumption are also explored. This allows for a better represented model of surface flooding 

(Sahin, 2014). 

 To prevent inaccurate projections and misunderstanding of spatial processes, uncertainty is a 

key factor to consider (Couclelis, 2003; Tucci & Giordano, 2011). To model the uncertainty in 

GIS, Monte Carlo Simulation (MCS) and other approaches based on MCS have been extensively 

used in GIS-based flood modelling (Openshaw et al., 1991; Fisher,1991; Lanter & Veregin, 1992; 

Holmes et al., 2000). Although there is much research on DEM uncertainty, there is less research 

on how uncertainties in climate model projections may influence flooding extent (Collet et al., 

2018). Notable exceptions exist (Amante, 2019), and the research that has been conducted has not 

led to guidance or methodologies that can be used by decision makers (Collet et al., 2018). 

Flooding projections that do not consider these uncertainties may result in incorrect assessments, 

which in turn may lead to poor coastal management (West et al., 2018). In Chapter 4 we 

demonstrate how to model flooding, incorporating both uncertainty in DEM and uncertainty in the 

climate model. It also demonstrates how uncertainty associated with RCPs predictions can be 

quantified and displayed to enable the reader to make an informed assessment on the potential 

impact of flooding or to compare different RCP scenarios (Stammer et al., 2013). 

1.9.3. Chapter 5 

Closer points are more related than farther ones and this is known as positive spatial 

autocorrelation.  The existence of autocorrelation indicates that the objects are not independent. 

The theoretical advantages of taking spatial autocorrelation into account in error simulations were 

highlighted by Hunter and Goodchild (1997). However, from the review of literature there are few 

studies using spatial autocorrelation for assessment of DEM uncertainty. Notable examples include 
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Darnell et al. (2008). The relationship between flooding at hydrological stations and nine related 

factors was studied by the Poisson regression model (Fang et al., 2019). The accuracy of 

predictions increased when spatial autocorrelation was included in this regression model, which 

increased further when the autocorrelation of the rates of flooding events were incorporated. In 

Chapter 5, the impact of such refinements are highlighted, enabling the chapter to explore whether 

such refinements are important in a flooding context (also explored in Chapter 6). 

1.9.4. Chapter 6 

In the literature there are many studies using GIS to assess the impact of flooding. There are also 

several studies assessing the most suitable location for dam placement along river systems (Jozaghi 

et al., 2018; Al-Ruzouq et al., 2019; Adham et al., 2018). However, there are virtually no studies 

using GIS as a decision-making tool to assess the most suitable location for dams to prevent coastal 

inundation. This is the focus of Chapter 6. Including uncertainties in the site selection is a new 

approach, as previous researchers have tended to use one DEM (Maanan et al., 2018; Boateng et 

al., 2017; Li et al., 2017). This is in spite of the multiple use of MCS in GIS in flood modelling 

studies (Openshaw et al., 1991; Fisher,1991; Lanter & Veregin 1992; Holmes et al., 2000). In 

addition to the use of GIS as a decision-making tool for coastal dam location, the method developed 

also incorporates MCS to account for DEM uncertainties.  
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Chapter 2: Background to the Study Area and Previous 

Studies of Sea Level Rise in the Middle East 

2.1. Background of the study area  

Qatar is situated halfway along the western coast of the Arabian Gulf, located between the latitudes 

24° 27´ and 26° 10´ north and the longitudes 50° 40´ and 51° 40´ east (Figure 2-1). The Qatar 

peninsula extends northwards, covering an area of approximately 11627 km2 (MDPS, 2015). It 

includes several islands, reefs and shoals. The Qatari peninsula is about 185 km in length in the 

north – south direction, while the maximum width east-west is about 85 km. The territorial waters 

of Qatar extend approximately 95 nautical miles east and around 51 nautical miles north into the 

Arabian Gulf. The only land border (approximately 86 km) is shared with the Kingdom of Saudi 

Arabia. 

 

Figure 2-1: State of Qatar (Source: Qatar GISNet, Ministry of 

Municipality and Environment, MME) 
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 The State of Qatar is divided into eight municipalities, namely Doha, Al Rayyan, Al Wakra, 

Umm Salal, Al Khor and Al Thakhira, Al Shamal, Al Daayen and Al Sheehaniya. Each 

municipality is further divided into zones for the convenience of planning. Doha is the capital of 

the country and the hub for most of the economic, social, cultural and diplomatic activities. Most 

of the government offices and important establishments are located there. Qatar also includes a 

range of islands, the largest being Halul, which is a hub for the oil and gas industry. Qatar is mainly 

arid (Norton et al., 2009), with large areas of urban development, the majority of which occurs on 

Qatar’s east coast. The largest urban development is Metropolitan Doha, which comprises of five 

different municipalities: Doha, Al Rayyan, Al Daayen, Umm Salal and Al Wakra. Other key 

settlements in Qatar include Al Khor, Al Shamal and Industrial Cities (Mesaieed, Ras Laffan and 

Dukhan).  

2.2. Climate of Qatar 

2.2.1. Temperature and humidity 

Qatar’s climate is characterised by hot and humid summers and semi-dry short winters with little 

rainfall. The extremes of temperature in Qatar are experienced during June, July and August, with 

the lowest temperature experienced in December and January. Generally, the absolute maximum 

temperature is 47 °C and the absolute minimum temperature is 1 °C (Abulfatih et al., 2001). The 

winter months are more humid, whereas June is the driest month of the year. 

 Qatar experiences summer from May to September, with elevated temperatures, and lower 

temperatures during winter (from October to April) with semi-dry conditions. The maximum 

temperature during summer can go up to 50 °C. The monthly average temperature and relative 

humidity are shown in Figure 2-2. The relative humidity varies significantly from 20 per cent to 

90 per cent. The natural evaporation rate is generally high, with about 2000 mm/year (Darwish, 

2015). 
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Figure 2-2: Overview of daily, minimum and maximum temperature and relative humidity 

in Qatar (MMUP, 2013). 

2.2.2. Rainfall 

Rainfall is unpredictable, irregular and variable in terms of both time and space, with an average 

annual rate of only 73 mm. Rainfall is confined to the period between October and May. The 

amount and pattern of rainfall is one of the keys to understanding the dynamic processes of the 

different terrestrial ground features. The average annual maximum daily rainfall ranges from 

24 mm in the south of Qatar to 29 mm in the north.  

 Like other Arabian Gulf countries, the precipitation in Qatar varies significantly from year to 

year in intensity and volume. Some years are nearly completely dry, and some years have more 

than 200 mm annual precipitation, as shown in Figure 2-3. The mean monthly rainfall during the 

period of 1972-2011 is shown in Figure 2-4. 

 

 

 

 

 

 

Figure 2-2 removed for copyright reasons. Copyright holder is (MMUP, 2013) 
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Figure 2-3: Overview of annual rainfall in Qatar (MME, 2017). 

 

Figure 2-4: Mean monthly rainfall in Qatar (QMD, 2016). 

2.3. Topography and geomorphology 

The topography of Qatar is mainly flat to lightly undulating, with sand formations of calcareous 

rocks in the south-east (Norton et al., 2009). It consists mostly of barren plains with lowlands 

covered with sand. Surrounding an inlet of the Arabian Gulf there is an area of rolling sand dunes 

at the Khor al Adaid, to the south-east of the country. The land surface has a relief with maximum 

height of 103 metres above sea level (Qurayn Abu al Bawl), low to moderate relief (SEL, 1980; 
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Eccleston & Ḥarḥash, 1982) and the lowest part of the peninsula is at about 6 m below sea level 

(Yehia et al., 1982). The north-south axis is around 180 km long and the east-west axis is widest 

at its centre, which is 85 km (Batanouny, 1981).  

 Much of the Qatari peninsula is less than 40 m above sea level. The significant geological 

features are small mounts (jabals) in the south that are over 100 m above sea level and a rocky 

Miocene ridge spreading from Dukhan to the southern border on the west coast (Norton et al., 

2009). In the west of the country there are several relatively low hills around and over Qatar’s main 

oil field. The centre of the peninsula is relatively flat and covered with loose stones. There are 

small depressions in which there is a marginally different microclimate supporting some plant life, 

more evident in winter than in summer. Towards the south of the country are the sand dunes, which 

initially stand separately but merge and increase in size as they approach the border into Saudi 

Arabia.  

 A range of geological formations dating from the Palaeogene to Quaternary ages encompass 

the surface soils in Qatar (Winslow & El Hakim, 2009). The limestone spreads over the deeper 

geology of the Qatari landscape, which can be seen on the surface as karst-related processes, like 

regular depressions, sinkholes, caves and solution hollows. The karst features are attributed to the 

dissolution of the gypsum and anhydrite deposits of the Rus Formation. Another geological 

formation, the Dammam Formation, has carbon sequences which are supposed to be associated to 

a lesser extent with these karst features (Winslow & El Hakim, 2009). 

 Three quarters of the land surface is formed from the tertiary sedimentary sequences and one 

quarter is covered by quaternary deposits. The Aeolian sand deposits can be found in the south-

east and south-west coastal parts of the peninsula. Qatar is a peninsula limestone peninsula with 

gentle relief, resulting from the modest tectonic sections of the Earth’s surface. It is divided into 

two areas by the Qatar Dome – the eastern and western areas. Its landscape is controlled by karstic 

surface appearance, including widespread depressions up to 25 m deep (Ashghal, 2012). The 

coastline of Qatar is softly appearing and presents an isolating outline with different islands, reefs, 

caps and extensive areas of marshes (sabkhas). Sabkhas exist widely along the coastal outer parts 

or the borders of the country. They are close to the water table and covered with salt crust 

(Batanouny, 1981; Yehia et al., 1982). Rocky hill areas are also common along the coastal areas. 
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2.4. Soils  

Almost half of the soils in Qatar are calcareous, while one third are characterised by the presence 

of gypsum. The soils in Qatar are also characterised by water deficiency and extremely poor levels 

of organic matter. They are very shallow in depth, ranging from 10 to 30 cm. Overall, the country 

is covered by calcareous sandy-loam to loam soils, whereas small-to-large patches of rocky 

limestone outcrops are found scattered over the south-western part of the country. There are some 

colluvium depressions (Rodah soils) scattered at some places in the northern part. These are the 

most fertile lands of the country, with soil depths ranging from 30 to 150 cm. Some of the coastal 

areas have sabkha deposits, a high-salinity depression soil intermixed with moderately deep to very 

deep sand to sandy loam soils (Scheibert et al., 2005; Ashghal, 2012). 

2.5. Environment  

Sabkhas are salty flat areas where the percentage of evaporation is high. This area covers seven 

per cent of Qatar land area and is classified into two different types: coastal sabkhas and internal 

sabkhas. Coastal sabkhas spread along the coast of Qatar. There are many changes happening to 

this type of sabkha, one of which happens on a daily basis when the seawater submerges the area 

during tidal movement (twice a day), and then it goes away leaving a residue of salt in the area. 

2.6. Oceanography 

2.6.1. Tides and currents  

The currents around Qatar seldom exceed one knot yearly. There are many factors that have an 

indirect influence on these currents. The strong dominant Al Shamal winds in the winter can turn 

the waters and cause a small difference between bottom and surface water temperatures. Because 

of the high rate of evaporation and the high salinity in the summer, the salty Gulf water floods out 

through the Strait of Hormuz. In addition, the currents along the Qatar’s coast flow anticlockwise. 

The range of tide around the Qatar peninsula is 1.6 m and the Salwa tidal amplitude is considered 

the smallest (United Nations, 1997).  
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2.6.2. Waves and water level 

The height of waves around Qatar is 30 cm for waters near the shore (inshore); this can rise to 

1.52 m. However, the waves in the waters that are far from the shore (offshore) are between 0.30 

to 1.22 m. When the Al Shamal wind occurs, the height of the waves increases to reach 4.27 to 

4.57 m (United Nations, 1997). 

2.6.3. Salinity 

There are three main factors that cause the increase in seawater salinity. These are low rainfall, 

high evaporation rates of water in summer and the small amount of freshwater inputs from land. 

The salinity in the surface water of Qatar is between 39 ppt and 41 ppt. However, the salinity in 

the bottom waters far from the shore and near the boundaries is around 1 to 2 ppt lower than the 

surface. The higher salinity in Qatar is found on the south-east coast, especially in Khor Udaid. 

Gulf Salwa is considered to be the place with the highest salinity, which is around 55 ppt (United 

Nations, 1997). 

2.7. Changing sea levels in Qatar 

There are two main stations that can provide historical data on SLR in Qatar. The first one is the 

Mina Sulman station in Bahrain, as shown in Figure 2-5. Recordings from this station showed that 

the sea level rose by 3.28 mm/year from 1982 to 2003 and 2.97 mm/year from 1993 to 2008. There 

is a gap of data from 1998 to 2003. This increased the uncertainty of the trend estimation (ICZMP-

CCSLR, 2014). 
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Figure 2-5: The trend in mean SLR during time series 1980-2010 from the Mina Sulman 

station from PSLMSL data set. (ICZMP-CCSLR, 2014). 

 The second station is located at Doha port. Estimated sea level changes from 1976 to 2013 

using recordings from this station are shown in Figure 2-6. It shows that the sea level rose by 

1.47 mm/year. However, this figure was revised to an estimated 2.8 mm/year from 1993 to 2013 

(ICZMP-CCSR, 2014). 

 

Figure 2-6: The linear trend in mean sea level for Doha station (ICZMP-CCSLR, 2014). 
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Sea level rise around Qatar does not different from regional and global trends (Table 2-1).  

Table 2-1: Summary of local, regional and GMSL increase (ICZMP-CCSLR, 2014). 

Scale Data set 
SLR increase 

(mm/year) 
Period 

Local 

(Qatar) 

Main Sulman station (PSMSL data set) 
3.28 ± 1.1 

2.97 ± 2.55 

1983-2007 

1993-2007 

Doha Station 
1.47 ± 0.69 

2.8 ± 1.58 

1976 – 2013 

1993 - 2013 

Regional 

4 stations (PSMSL) (Ayhan & Alothman, 

2009) 

1.96 ± 0.21 

2.7 ± 0.21 

Longer than 19 

years 

Church & White (2011) database 1.9 ± 0.44 1950 - 2009 

TOPEX and Jason Altimeter (Cazenave at 

al., 2012) 
1.0 – 3.0 1993 - 2009 

Global 

Global data from Church & White (2011) 
1.7 ± 0.2 

1.9 ± 0.4 

1900 – 2009 

Since 1961 

TOPEX and Jason Altimeter (Cazenave at 

al., 2012) 
3.4 ± 0.4 1993 - 2009 

IPCC ARC (2013) 1.7 ± 0.20 1901 - 2010 

IPCC ARC (2013) 3.2 ± 0.40 1993 - 2010 

 

 Sea level rise is expected to accelerate and continue in the future. This will have a significant 

impact on the coastal areas and increase the vulnerability and likelihood of flooding in these areas.  

2.8. Socio-economic characteristics 

The population of Qatar has exponentially increased from about 50,000 in 1960 to about 2.5 

million in 2015 (The World Bank Databank, 2015; Ministry of Development Planning and 

Statistics, 2016; Trading Economics, 2016). According to the Planning and Statistics Authority 

(2019), the population in 2019 was approximately 2,753,045. Doha is the capital of the country 

and 39.8 per cent of the total population of Qatar lives there. The second city is Al Rayyan, with 

around 25.2 per cent of the population, and the third city is Al Wakra, with 12.4 per cent of the 

population (MDPS, 2016).  

 The population in Qatar increased from 369,000 to 522,000 during the period of 1986-1997, 

i.e. a rise of 41.6 per cent. This increase in population continued during the period of 1997-2004, 

from 522,000 to 744,000, a rise of 42.5 per cent, and during the period of 2004-2010 the population 

increased from 744,000 to 1,699,000, a rise of 128.4 per cent. There was also a 41.5 per cent 
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increase in population (1,699,000 to 2,405,000) in the five-year period from 2010 to 2015. This 

clearly shows that the population increased six and a half times during a period of 29 years from 

1986 to 2015, which means that the average annual growth rate of the population stands at 6.7 per 

cent, mainly due to the rapid development in the country (Figure 2-7). 

 

Figure 2-7: Qatar’s population growth during the Census years (1986-2015); the overall 

annual growth rate (in %) is also shown with the male and female population. (Data 

source: Qatar GISnet). 

 The growth of the population has varied from zone to zone. The zones with industrial and 

commercial activities have shown the maximum growth. Many zones in Al Rayyan, Umm Slal, Al 

Khor and in the fringe areas of Doha municipality have populations that more than doubled during 

this period, while other zones in old Doha have registered a decrease. The decrease can mostly be 

attributed to the demolition of buildings in the old Doha area for new construction and 

displacement of activities, such as farms or cattle shades, etc., in the outer urban areas. However, 

the majority of zones in the country have recorded an increase in population during this period. 

 Since exploration started of Qatar’s oil and gas resources, there has been an observable 

increase in the population in the country, mainly due to migrant workers. In the 1970s, Qatar’s 

population was just over 111,000 and historical evidence suggests that, even during this time, the 

majority of the population were already “foreigners” (Babar, 2015). The staggering increase in 
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population between 2004 and 2010 can be expected as the country was experiencing modernisation 

during these times, with large investments in both infrastructure and human development.  

 The launch of Qatar National Vision 2030 in October of 2008 may also have played a great 

role in demographic explosion, as it gave frameworks on several aspects of Qatar’s development, 

including human, social and economic development. This further encouraged more migration of 

skilled and unskilled workers in order to cater for the attainment of the country’s vision. The 

population continued to rise until 2015, albeit at a slower rate compared to the last five years, 

because of the continuous recruitment of workers which can be attributed to the awarding of the 

Football World Cup to Qatar in late 2010 (De Bel-Air, 2015). 

 Figure 2-8 shows population growth that took place at zone level during 1986-2015, as per the 

censuses undertaken in 1986, 1997, 2004, 2010 and 2015. In 1986, a large number of the 

population was concentrated in a few areas in Doha, as well as in the nearby Al Rayaan area. 

Around 10,000–20,000 people were living in Al Khor, Umm Slal, west and east parts of Al 

Sheehaniya and Al Wakra municipality. An increase in population was observed in north-east Al 

Rayyan and Umm Slal in 1997, and some areas of northern Al Wakra. More apparent increases in 

population, however, were observed in north Al Khor (Ras Laffan area) and in industrial zones in 

Doha municipality. This observation can be attributed to the increasing population due to workers’ 

recruitment.  
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Figure 2-8: Population distribution per zonal area of Qatar from 1986 to 2015 using 

Natural Breaks (Jenks) classification (Data source: Qatar GISnet). 

 In 2004, the population became more intense in areas adjacent to the capital city of Doha, from 

the northern portion of Al Khor towards the south, including Umm Slal, Al Rayyan and northern 

portions of Al Wakra. The population also started to spread out of these areas in a western direction 

towards the areas of Al Sheehaniya. In 2010, municipalities that had high populations in 2004, i.e. 

Al Khor, Umm Slal and Al Rayyan, showed a decrease in population. The population distribution 

revealed a shift to north Al Khor (Ras Laffan), Al Wakra or west Al Sheehaniya (Dukhan), which 
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exhibited an increase in population or in some other parts of the country, e.g. Al Shamal, north Al 

Sheehaniya (Al-Ghuwariyah) and mid-Al Wakra area (Umm Saeeid), as shown by the more 

dispersed population during this time. There was little change in the distribution of population in 

2015, except for the increase in population in eastern parts of Al Sheehaniya and northern Al 

Wakra. 

 There is a significant increase in population along the east coast of Qatar, from 1986 to 2015, 

where the oil industries are located, such as Ras Laffan and Umm Saeeid, and on the west coast at 

Dukhan. As such, these coastal regions stand vulnerable to SLR from a socio-economic aspect. 

However, the population inside Doha municipality was comparatively low, except in areas like the 

industrial area, Al Mansoura, in 2015. Most of the areas in Doha were intended for commercial 

purposes; moreover, companies prefer to house their employees in areas outside but adjacent to 

Doha, where housing costs are cheaper than in the capital. 

2.9. Climate change and sea level rise in the study area 

Qatar is the second largest producer of natural gas (Economides & Wood, 2009), making the 

country one of the world’s richest. Historically, maritime trade was the main economic activity in 

Qatar (Carter, 2006), bringing urban settlements to the coastal areas. Therefore, most current 

residents of Qatar are living in the coastal areas. More than 90 per cent of the population lives in 

the capital Doha. Also, major industrial activities, including petrochemical companies, ports, 

desalination facilities and other supporting industries are concentrated in the eastern coastline north 

and south of Doha (Norton, 2009).  

 In the past two decades, the coastal areas in Qatar have grown fast due to the economic 

development in two key industries, oil and gas, and fisheries. The oil and gas industry, particularly, 

played an important role in the rapid development taking place in Qatar and most of the reserves 

in the sea or near the coastal area (Figure 2-9). Northfield, the biggest natural gas field in the world, 

is located in the sea with large production, refining and exportation activities on the north coast of 

Qatar.  
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 Therefore, the coastal areas are crucial to support the oil and gas industry and among the high 

priorities to be protected from any future SLR. Any destruction of the oil and gas industry will 

have a significant economic impact in terms of the revenue for the government and the future for 

these areas.  

Figure 2-9: Qatar oil and gas infrastructure (source: http://www.eia.gov/). 

 

 Globally, research on climate change and SLR is extensive and widely reported. However, 

there is no published research work in this regard for Qatar. Despite the intrinsic value of current 

literature on climate change and related SLR at global levels a gap still exists, particularly in site-

specific research that uncovers the vulnerabilities of the coastal region to potential SLR and ways 

to improve regional resilience.  

 The global climate change risk assessment studies for Qatar are limited. In one study 

(Maplecroft, 2009), Qatar is considered one of the three countries in the Arabian Gulf exhibiting 

“extreme” vulnerability to SLR, along with Kuwait and Bahrain. The study estimated that Qatar is 

susceptible to inland flooding at less than 5 m SLR, with 18.2 per cent of its land area and 13.7 per 

https://www.eia.gov/
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cent of its population being adversely impacted. In another study by a World Bank group, it has 

been suggested that a 1 m SLR could impact two per cent of the population and GDP and one per 

cent of urban land. 

  Worldwide, coastal areas have held a significant economic, social and environmental value. 

According to the UN Atlas of the Oceans, 44 per cent of the world’s population live within 150 km 

of the coastline (Syvitski et al., 2005). Of the world’s ten most densely populated cities, nine are 

located on the coast. The coastal areas are also highly prone to disaster as they are exposed to a 

variety of natural hazards, both episodic and chronic. Episodic hazards include flooding due to 

heavy rain, cyclones, storm surges, earthquakes and tsunamis. Chronic hazards include coastal 

erosion and SLR (Bush et al., 2001). 

 Climate change, associated with SLR and its impact on the coastal zone, constitutes a current 

issue of global magnitude and concern. These are compounded by other factors, such as the 

increase in human population and other developmental activities of the modern era (industrial 

development, urbanisation and agricultural). These factors have exerted significant pressure on 

coastal areas. For example, Ciscar et al. (2011) have estimated the impact of climate change on 

agriculture in Europe. They produced estimates of crop yield reductions by ten per cent, river 

flooding causing economic damages of up to € 15 billion, sea flooding affecting up to 5.5 million 

people and a reduction of annual growth by 0.2-1 per cent. 

2.9.1. Impacts of sea level rise in the Arab world 

The regions of Arab countries are hyper-arid to arid with some scattered semi-arid zones. The 

climate remains extremely harsh for major parts of the year, with low precipitation and scarce 

water resources. Desertification, minimal biodiversity and excess of extreme weather conditions 

are common features of these hyper-arid regions. There are 22 countries in this Arab region, which 

include ten African countries and 12 west Asian countries. Significant numbers of the population 

live in economic centres located on the coastal zones of the Mediterranean Sea, the Red Sea, the 

Gulf and the Atlantic Sea. There has been a significant growth in both the population and tourism 

in these coastal areas (Massoud et al., 2003). 
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 The Arab Forum for Environment and Development carried out a study in 2009 on the effects 

of climate change on the Arab region that provided detailed data on the impact of SLR in this 

region. Remote sensing techniques were used to demonstrate the impact of climate change on SLR 

scenarios that range from conservative (1 m) to extreme (5 m) until the year 2100. It was found 

that, in an event of less than 1 m SLR, about 41,500 km2 of the Arab countries would be directly 

affected by the displacement of a fast-growing population of at least 37 million (~11 per cent). If 

the SLR is 2 m, 3 m and 4 m, then 60,000 km2, 80,700 km2 and 100,800 km2, respectively, of the 

Arab coastal region will be seriously impacted. Up to 113,000 km2 (0.8 per cent) of the coastal 

region would be inundated in the extreme event of a 5 m SLR (Tolba & Saab, 2009).  

 The study also found that Egypt, Saudi Arabia, Algeria and Morocco will be the most affected, 

while other countries such as Sudan, Syria, and Jordan will be less affected. In the extreme scenario 

of a 5 m SLR, Egypt will be the most impacted country with a displacement of at least 12 million 

Egyptians. This implies that Egyptians alone make up one third of the Arab population affected by 

SLR (Figure 2-10 and 2-11). 

 

Figure 2-10: Extreme scenario (5 m SLR) impacts on the Arab world, by total population 

affected. Source: (Tolba & Saab, 2009). 
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Figure 2-11: Extreme scenario (5 m SLR) impacts on the Arab world, by percentage of 

population affected. Source: (Tolba & Saab, 2009). 

 In a similar, extreme 5 m SLR scenario, 50 per cent of the population in the United Arab 

Emirates (UAE), Qatar and Bahrain are estimated to be at risk. It is also indicated that Qatar, UAE, 

Kuwait and Tunisia are most vulnerable in terms of their land mass, since 1 m of SLR will 

affect one to three per cent of land in these countries. The extreme case of a 5 m SLR would reduce 

about 13.4 per cent and 6.9 per cent of land in Bahrain and Qatar, respectively, (Figure 2-12 and 

2-13). 

 

Figure 2-12: A comparison of percentage impact of SLR on gross domestic product (GDP) 

in the Arab Countries. Source: (Tolba & Saab, 2009). 
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Figure 2-13: A comparison of percentage impact of SLR on land in the Arab Countries. 

Source: (Tolba & Saab, 2009). 

 

 Although SLR may have less impact on the land area of the Middle East and North African 

regions than the developing world (0.25 per cent vs. 0.31 per cent with a 1 m SLR), it may have 

other severe impacts. For example, 3.2 per cent of its population (vs. 1.28 per cent worldwide), 

1.49 per cent of its GDP (vs. 1.30 per cent worldwide), 1.94 per cent of its urban population (vs. 

1.02 per cent worldwide) and 3.32 per cent of its wetlands (vs. 1.86 per cent worldwide) will be 

impacted (Dasgupta et al., 2007). 

2.9.2. Sea level rise in the Arabian/Persian Gulf 

The Arabian/Persian Gulf is a marginal and semi-enclosed sea which overlooks the Indian Ocean. 

It also lies in a semi-arid area of the Middle East, north to the Tropic of Cancer (Khan et al., 2002). 

It extends between the 24ْ  and 30ْ N latitudes and 48ْ  and 57ْ E longitudes and is located within the 

coordinates of eight countries: Iran, Iraq, Kuwait, Saudi Arabia, Bahrain, Qatar, the UAE and 

Oman (Figure 2-14).  
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Figure 2-14: The mean depth of the Arabian/Persian Gulf (Source: Hamza & Munawar, 

2009). 

 

 The Gulf extends over an area of about 239,000 km2, with a length of 1000 km and a width 

that ranges from 75 to 350 km. The depth of the waters in the Gulf ranges from 20 to 100 m, 

increasing in the Strait of Hormuz to 130 m (Hamza & Munawar, 2009). According to the results 

obtained by the Sea Level Rise Explorer in 2015, the Arabian Gulf Coast is vulnerable to the 

consequences of SLR (Figure 2-15). 
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Figure 2-15: The Gulf countries, which will be affected by SLR (Source: Sea Level Rise 

Explorer, 2015). 

 

 In 2012, Ksiksi et al. focused on the city of Abu Dhabi and studied the effects of SLR on 

mangrove areas and land use. Five SLR scenarios were scrutinised (0.5, 1.5, 2, 2.5, 3 metres), 

leading to the conclusion that, in the event of the worst-case scenario (rise of 3 m), 40 per cent of 

urban areas and 82 per cent of mangrove forests would be affected. Ksiksi et al. (2012) used Shuttle 

Radar Topography Mission (SRTM) in order to create a DEM, and analysis was conducted in 

ArcGIS.  

 In the same year, the Environment Public Authority of Kuwait conducted a study in 

conjunction with the Convention on Climate Changes (2012). Chapter 3 of the report dealt with 

the vulnerability of the coasts of Kuwait to SLR. The study divided the Kuwaiti coast into three 

zones: northern, central and southern. The researchers used the global DEM by the United States 

Geological Survey and implemented four scenarios of SLR (0.5, 1, 1.5 and 2 m). They also created 

a database of 793 points along the coastal line and recorded all points in relation to the lines of 

latitude/longitude and vertical distance above the average sea level. However, the study relied on 

SLR scenarios during high tide and only focused on the risks to human beings, therefore ignoring 

risks to ecosystems, such as coral reefs, mangroves and other marine flora and fauna. 



Chapter 2 

37 
 

 In 2014, Al-Buloshi et al. set out to study the effects of floods and SLR in six governorates of 

Oman using GIS. They adopted seven SLR scenarios (0.2, 0.5, 1, 2, 3, 4, 5 m) and concluded that, 

in the event of SLR, Al-Wusta and Al-Bathina are the most at risk, with an expected land loss of 

900 km2. This study relied on a coarse DEM of a horizontal spatial resolution of 40 metres. 

 Babu et al. (2011) focused on the impact of SLR on the Saudi Gulf coast and its effects on the 

ecosystem, population and social and economic infrastructure. To assess the climate change 

impacts (CCI) and adaptation, three scenarios of SLR (1, 2 and 3 m), as well as an environmental 

sensitivity index (ESI), were used to highlight vulnerable areas. Geographic information systems 

and remote sensing were used to gather data. The author concluded that a 3 m SLR will submerge 

3600 km2 of Saudi coastal land along the Gulf. What distinguishes this research from other studies 

is that it was developed from SRTM with 30 m resolution. However, control mechanisms and 

adaptations to these changes were not discussed by the author.  

 Al-Jeneid et al. (2007) assessed the vulnerability of environmental systems to SLR in Bahrain 

and attempted to measure their capacity for adaptation. They used GIS and remote sensing as tools 

and focused on two scenarios, digitising a topographic map with a contour interval of 5 m and 

ground truth data of more than 6,000 points. In the first place, the effects of 0.5 m, 1 m and 1.5 m 

SLR were studied, leading to conclusions that Bahrain could lose 17.5 per cent of its land to floods. 

In the second scenario, they analysed SLR risks of 2 m and 5 m and concluded that Bahrain would 

lose 47 per cent of its land. The success of this study lies in the use of a high-resolution (5 by 5 m) 

DEM, as well as proposing an action plan for national development policy makers to consider in 

order to secure the country’s systems environment. However, the weakness of this paper lies in the 

fact that its focus did not consider other factors, such as tide and storms. This is important because 

surge heights will amplify surge magnitudes in funnel-shaped water bodies, such as the Arabian 

Gulf, resulting in higher water levels during storms (Reid & Bodine, 1968). Overall, this will 

exacerbate adverse impacts of SLR on coastal zones. These impacts are well known, and they 

include land inundation, coastal flooding, shoreline erosion and loss of wetlands (Solomon et al., 

2007; Nicholls, 2007). 
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 An additional problem in the Arabian Gulf is subsidence caused by the large-scale extractions 

of petroleum and natural gases (El-Raey, 2009). However, there is no long-term data or 

information about this phenomenon, which prevents any meaningful longitudinal analysis. This is 

particularly worrying in a region which Dasgupta et al. (2007) describe as highly vulnerable to the 

potential impacts of SLR. The same study identifies Qatar as a highly vulnerable country in the 

Arabian Gulf region, where around 2.8 per cent of its total terrestrial area will be impacted by the 

scenario of a 1 m SLR. Another study by Al Janeid et al. (2008) draws a very grim picture for the 

Kingdom of Bahrain, where 11 per cent and 14 per cent of its total lands will be impacted by a 

SLR of 50 cm and 1 m, respectively. 
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   Chapter 3: Digital Elevation Model 

3.1. Introduction 

Digital elevation models are widely used in various studies and the accuracy of the DEM is an 

important factor to ensure the accuracy of results. A basic fact is that it is impossible to measure 

or simulate the Earth's surface with an accurate value. Different kinds of elevation sampling errors 

will occur during the process of DEM generation. In addition, the true surface is complex and 

irregular. Even if there were no DEM sampling errors, the limited elevation sampling points would 

still lead to an approximate simulation of the true surface. The accuracy of the terrain 

representation crucially depends on DEM spatial resolution applied (Guo-an et al., 2001). There 

are three main types of DEM errors: systematic, blunders or random (USGS, 1997). Systematic 

errors associated with the DEM generation process are due to a predetermined cause. The second 

type of error, blunders, are vertical errors associated with the data collection process. The third 

type is a random error, caused by random factors, and is usually difficult to remove (Burrough, 

1986).  

 For analyses using DEMs the vertical accuracy is a key consideration. This incorporates the 

three errors from the paragraph above. Vertical accuracy is linked to horizontal resolution (i.e. the 

size of each grid cell). In a DEM, elevations are a mean over the cell. Therefore, cell size will 

influence how accurately each cell represents the elevation within. For example, a DEM created at 

a horizontal resolution of a 10 cm by 10 cm grid will provide a much more accurate representation 

of the land surface than a 1 km by 1 km grid. The uncertainty of a DEM can be assessed by using 

root mean square error (RMSE) as a general indicator of DEM accuracy (Stefanescu et al., 2012).  

 Modelling the impact of climate change on SLR is a challenge in many locations because 

predicted SLR is smaller than the vertical error of many global elevation datasets. Sea level rise 

predictions by 2081 range from 28 cm to 98 cm (Pachauri et al., 2014), while the vertical resolution 

of most DEMs is more than a few metres. For example, the ASTER DEM RMSE vertical accuracy 

ranges between 2 m and 9 m (Satgé et al., 2015). Therefore, in many locations only a broad 

assessment can be done to investigate the impact of climate change on SLR (Poulter & Halpin, 

2008).  
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 Digital elevation models are usually produced by interpolating samples of elevation data points 

to predict the elevations at all positions inside the DEM area (Li et al., 2004). However, the 

resulting DEM will contain errors. There are several factors which contribute to error accumulation 

in DEMs. One of the most important sources of error is the accuracy of elevation data. For example, 

ground-based or airborne automatic laser scanners can produce high-resolution elevation datasets 

(vertical accuracy of 0.5 mm) for a small area (Darboux & Huang, 2003). In contrast, traditional 

topographic surveys or the use of stereoscopic air-photos or high-resolution satellite imagery can 

produce relatively lower resolutions (ranging from centimetres to metres in accuracy) for a larger 

geographic area. There are other factors that affect the quality of DEM, such as data density and 

landform (Chaplot et al., 2006), spatial distribution of elevation and morphology of the area and 

the interpolation method used to generate DEM (Wilson & Gallant, 2000). Fisher and Tate (2006) 

reviewed the causes and consequences of error in DEMs and identified three components of the 

error budget in the process of DEM creation: 

1. Error occurs in measured or interpolated elevation values. 

2. Uncertainty related to the resolution of the DEM. 

3. Error introduced by the specific technique of interpolation. 

The accuracy of the interpolation method and its outcomes are affected by many factors. These 

vary in each case study. For example, Chaplot et al., (2006) compared the accuracy of DEM 

generated in areas of France and Laos through kriging, Inverse Distance Weighted (IDW), Multi-

quadratic Radial Basis Function and spline. They found that all methods generated DEMs with 

similar accuracy when the density of elevation points were high. However, when the density of 

points was low, Kriging and IDW performed better than other methods. Arun (2013) evaluated 

IDW, Ordinary kriging, ANUDEM, Nearest Neighbour and spline based on their accuracy and 

sensitivity to topography variations and concluded that, in most cases, Ordinary kriging performed 

better than the other methods. In terms of accuracy, the effect of topography variation on the 

performance of interpolation methods was studied by Binh and Thuy (2008). They suggested that 

spline interpolation methods generate more accurate DEM for mountainous areas, while IDW and 

Ordinary kriging with exponential models of semi-variogram are most suitable in hilly and flat 

areas. 
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This chapter focuses on the generation of DEMs for urban and industrial areas of Qatar using 

an initial elevation dataset with a high vertical accuracy (10 cm RMSE), with points spaced every 

10 m. This allows a detailed assessment of the impacts of climate change on SLR to be produced. 

However, this data is not ideal for an assessment of SLR for several reasons. Firstly, these data 

points did not cover all the areas of interest in this study, and especially near the coast (Figure 3-

1); there were data gaps where buildings and other man-made features were. Therefore, an 

interpolation of the elevation dataset was necessary to create a DEM covering the entire study area. 

In addition, the elevation data had points every 10 m, which was felt to be too coarse for an 

assessment of flooding in an urban area. Hence, the data needed to be interpolated to a higher 

resolution of 5 m. Finally, the elevation dataset incorporated many breaklines and methods to 

incorporate these into the DEM needed to be developed. Given these challenges this chapter 

explores how urban DEMs can be generated in Qatar, exploring a range of techniques for 

incorporating features such as embankments and cuttings into the DEM, interpolating into data 

“gaps” where buildings have been removed and producing a finer DEM for SLR assessment. 
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Figure 3- 1: Map showing the areas with no elevation points in Al Thakhira area 
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3.2. Methods 

3.2.1. Elevation data collection 

Elevation data points were obtained from the Centre for Geographic Information Systems and 

Planning (DEM-GISP) of the Ministry of the Municipality, Qatar. The DEM was delivered as part 

of the Qatar National Aerial Mapping 2008 project by COWI and Pace Imaging, a Middle East 

joint venture. It was generated using a Vexcel UltraCam-X for the capturing of 1:4,000 aerial 

photography for the production of an orthophoto with 10 cm spatial resolution (COWI, 2008). The 

DEM was created based on photogrammetric techniques in three dimensions (3D) using stereo 

imagery for inhabited and industrial areas covering approximately 650 km2.  

 The resulting DEM comprises a mass of grid spaced points, at intervals of 10 m on the ground, 

and 90 per cent are stated to have vertical accuracy of 0.1 m RMSE. The data was collected using 

the Qatar national grid coordinate reference system (CRS), which is based on the QND95 

geographic 2D CRS (Pallathu, 2015). This dataset did not cover the whole of Qatar, and its spatial 

extent is limited to urban areas, economically important areas and areas with the potential for future 

urban development projects. The distribution of these elevation points within Qatar is shown in 

(Figure 3-2). 
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Figure 3-2: Distribution of elevation data points with 10 m horizontal resolution and 10 cm 

vertical accuracy  

 The entire country is covered by another DEM-GISP generated from 1:30,000 aerial 

photography, with points approximately 100 m apart and a vertical accuracy of 1 m (Pallathu, 

2015). However, it was not suitable for this study to assess the changes in the sea level because the 

stated vertical accuracy of this data was not considered good enough to assess sub-metre changes 

in sea level.  

 The DEM was generated using automated methods, but manual intervention was required. This 

was necessary to remove elevations associated with buildings and other man-made features. 

Therefore, the elevation data points do not cover streets and spaces where buildings exist. An 

example of these gaps is presented in Figure 3-7, indicating that, in addition to avoiding roads, 

there are other areas where elevation points are not present. This is the case for areas with rapid 

changes of elevation and sand dunes. In some cases, the reason for the gaps is unknown. 

 



Chapter 3 

45 
 

3.2.2. Defining the study area 

Elevation data was not available for the whole of Qatar (Figure 3-2). Therefore, five study areas 

where clusters of elevation data points were available were selected (Figure 3-3). These areas are 

Doha, Mesaieed, Al Khor-1, Al Khor-2 and Al Thakhira. Nearly 90 per cent of the population lives 

in these five locations in Qatar (Planning and Statistics Authority, 2015). Besides, these areas have 

potential for future developments. The Doha area (465 km2) is the capital city of Qatar, where all 

government departments are based. Doha is considered as the centre of economic activities in 

Qatar, with 74 per cent of the population living there. While Mesaieed, Al Khor and Al Thakhira 

are less populated than Doha, they are economically important for Qatar; they are hubs for the 

petrochemical, chemical fertiliser, oil refining and natural gas industries. These areas were defined 

geographically by manually selecting five clusters of points. 
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Figure 3-3: The selected study areas where a large number of elevation points were 

available and also economically important for Qatar. 



Chapter 3 

47 
 

The DEM points were scattered in these five locations with no administrative or geographic 

boundaries to define the study sites. To define the boundary of each site as a single polygon, the 

following method was used. The boundary needed to include all points and avoid gaps within the 

study boundary. These could occur where there were large spaces within the study area with no 

DEM points (e.g. large buildings). It was also decided that the polygon should not extend more 

than 10 m beyond the outer points of the study area. The boundaries were created in two steps: 

1. A buffer zone of 100 m around all the points was created to cover a much wider area, to 

ensure that any gaps within the study area were closed. 

2. The 100 m buffer line was buffered inwards by 90 m to produce a 10 m buffer zone from 

the outside points.  

This process is illustrated in (Figure 3-4). The beige colour represents the area of clustered 

points and the final study area. The light green represents the buffer zone, which ensures that the 

boundaries do not contain gaps, or that the interpolation is not done to more than 10 m (cell width) 

from the mass of points. The sizes of the five study areas are presented in (Table 3-1). 

 

Figure 3-4: Defining study area by creating buffer zones to include all elevation points 
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Table 3-1: Name, area and number of elevation points for the five selected study areas 

Area 

Number 
Name of the study areas Area (km2) Total number of elevation points 

1 Al Thakhira 93.78 736,234 

2 Al Khor-1 11.42 89,567 

3 Al Khor-2 13.62 102,111 

4 Doha 465.04 3,352,917 

5 Mesaieed 88.24 603,810 

3.2.3. Accuracy assessment 

In addition to the stated accuracy of this data, the stated accuracy was further validated by visiting 

a number of sites in the study area. A field survey was arranged in January 2016. The researcher, 

along with a technician from the Centre for Geographic Information Systems and Planning, 

assessed the accuracy of elevation data points from DEM-GISP using a Leica Viva GNSS GS08 

plus receiver (Figure 3-5) with a stated ±10 mm vertical accuracy (Leica Geosystems AG - Part of 

Hexagon, 2019).  

 
Figure 3-5: Leica Viva GNSS GS08 plus receiver used in field validation 

 The accuracy of the Leica Viva GNSS GS08 is dependent upon many factors, such as the 

number of satellites and constellation geometry. The accuracy, which is measured as RMSE, is 

estimated: 5 mm (horizontal), 10 mm (vertical) and compliant to ISO17123-8 standard (Leica, 

2012). 
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 In total, 43 random points were chosen from the original dataset in the five studied areas. These 

points were visited and the elevation recorded. Ten points were excluded from the analysis because 

there was evidence that the elevation had changed significantly due to land flattening for urban 

and industrial development since the original survey (Figure 3-6). The result of the survey (Table 

3-2) shows the 33 points surveyed to have errors of less than a metre, with an average error of 

33 cm. There were 78.8 per cent of the points with errors of less than half a metre and 51.5 per cent 

had less than 25 cm error. 

 In most cases, the elevation of these points has a lower elevation value reading from the survey 

compared to what was recorded in the DEM. This ranged from a few centimetres to just below a 

metre. There are a few cases where the elevation was higher, but this was likely due to artificial 

increases in the elevation for the purpose of development. For example, the maximum differences 

were in Doha (just below one metre), likely because the area was elevated prior to new urban 

developments.  

 This relatively small validation suggests that the stated accuracy in the DEM data may be an 

overestimate. However, it is important to recognise other reasons why the two datasets may differ 

(Figure 3-7). The first reason is that the GISP DEM data was collected in 2009. Much of the study 

area consists of a sand substrate, hence natural processes may have altered the elevation since 

2009. Also, man-made development not spotted by the researcher may have occurred. It is also 

possible that the location of the two elevation points was not identical. Secondly, the high accuracy 

of the Leica Viva GNSS GS08 device also contributed to error because it has an extremely low 

level of vertical error (5 mm to 20 mm) while the DEM data had a much higher vertical error 

(10 cm). Based on the validation, it was decided to proceed with the DEM as a suitable source for 

assessing SLR. 
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Figure 3-6: Satellite imagery showing the new development in Al Khor-1, causing changes 

in elevation values between 2009 and 2016 

 

 

 

 

 

 

 

Example of new developments in Al-Khor-1 
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Table 3-2: Field measurement of elevation using Leica to calculate the error of DEM-GISP 

Study 

areas 
SN Location Surface type 

Elevation 

Leica Viva 

GNSS 

GS08 (m) 

Elevation 

DEM-

GISP (m) 

Error 

(±m) 

RMSE 

(m) 

Al 

Thakhira 

1 
51°31'47.772"E 

25°50'47.502"N 

Dolomite and 

limestone 
5.03 5.28 0.24 

0.45 

2 
51°31'39.378"E 

25°50'30.11"N 

Dolomite and 

limestone 
4.89 5.28 0.39 

3 
51°32'1.157"E 

25°50'30.063"N 
Settlements 4.68 5.18 0.51 

4 
51°32'36.795"E 

25°50'53.635"N 

Silt Flats 

Sabkha 
4.53 5.11 0.58 

Al Khor-1 

5 
51°32'43.39"E 

25°44'11.549"N 
Settlements 6.83 7.02 0.19 

0.28 

6 
51°32'20.08"E 

25°44'5.518"N 
Settlements 7.22 6.86 0.36 

7 
51°32'38.869"E 

25°42'24.832"N 

Dolomite and 

limestone 
6.43 6.75 0.32 

8 
51°32'19.089"E 

25°42'29.906"N 

Dolomite and 

limestone 
6.75 6.51 0.24 

Al khor-2 

9 
51°31'19.11"E 

25°41'6.222"N 
Settlements 2.21 2.28 0.07 

0.44 

10 
51°31'20.929"E 

25°40'57.816"N 
Settlements 4.60 4.22 0.38 

11 
51°31'17.653"E 

25°40'42.856"N 
Settlements 3.26 3.08 0.18 

12 
51°31'0.797"E 

25°40'43.553"N 
Settlements 3.00 3.17 0.17 

13 
51°30'1.194"E 

25°40'56.261"N 
Settlements 9.27 8.69 0.58 

14 
51°29'15.707"E 

25°41'6.851"N 
Settlements 5.39 5.43 0.04 

15 
51°29'28.61"E 

25°40'30.465"N 
Settlements 5.50 5.94 0.44 

16 
51°29'55.843"E 

25°40'10.242"N 
Settlements 4.56 5.45 0.89 

Doha 

17 
51°26'43.151"E 

25°24'16.701"N 

Dolomite and 

limestone 
19.68 19.46 0.21 

0.63 

18 
51°28'5.35"E 

25°20'9.15"N 
Settlements 9.36 9.46 0.10 

19 
51°31'13.025"E 

25°21'19.95"N 
Settlements 2.53 2.17 0.36 

20 
51°31'17.009"E 

25°19'26.791"N 
Settlements 2.29 1.32 0.96 

21 
51°25'56.32"E 

25°19'17.317"N 
Settlements 17.27 18.02 0.74 

22 
51°26'59.439"E 

25°13'55.36"N 
Settlements 18.14 17.19 0.95 

23 
51°26'37.243"E 

25°10'50.486"N 
Settlements 27.71 28.17 0.46 
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Study 

areas 
SN Location Surface type 

Elevation 

Leica Viva 

GNSS 

GS08 (m) 

Elevation 

DEM-

GISP (m) 

Error 

(±m) 

RMSE 

(m) 

Mesaieed 

24 
51°31'46.873"E 

25°1'8.747"N 

Silt Flats 

Sabkha 
1.10 1.20 0.10 

0.21 

25 
51°31'16.224"E 

25°0'17.276"N 

Dolomite and 

limestone 
4.98 5.11 0.13 

26 
51°31'54.023"E 

24°59'54.918"N 

Dolomite and 

limestone 
8.56 8.75 0.19 

27 
51°31'20.338"E 

24°59'23.73"N 

Dolomite and 

limestone 
6.71 6.67 0.04 

28 
51°32'25.601"E 

24°59'41.883"N 

Dolomite and 

limestone 
9.57 9.70 0.14 

29 
51°31'32.016"E 

24°52'59.68"N 
Sand Dunes 1.25 1.14 0.11 

30 
51°32'36.651"E 

24°54'0.764"N 
Sand Dunes 1.10 1.14 0.04 

31 
51°32'38.328"E 

24°55'4.735"N 
Sand Dunes 1.19 1.40 0.22 

32 
51°33'42.825"E 

24°58'29.149"N 

Silt Flats 

Sabkha 
2.92 3.38 0.46 

33 
51°31'33.38"E 

24°58'19.89"N 

Silt Flats 

Sabkha 
0.37 0.63 0.26 

RMSE (m) for all areas 0.42 
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Figure 3-7: Google Earth image with an overlay of the 10 m DEM points 

 Digital elevation models are sampled arrays of elevation values representing ground positions 

at regularly spaced intervals. Digital elevation model is the terminology used to describe terrain 

elevation datasets in a digital raster form. The DEM is an important input to evaluate coastal 

vulnerability to flooding as the result of SLR. In this chapter, three different data interpolation 

methods were selected to create the DEM, namely IDW, Kriging and TIN. Spline was discounted 

at this point due to the exceptionally large computational requirements and, hence, time required, 

but is explored later in the chapter. Each of these interpolation methods will now be described. 
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3.2.4. Inverse distance weighting 

Inverse distance weighting explicitly conveys the assumption that things that are close to one 

another are more alike than those that are further apart. To predict a value for any unmeasured 

location, IDW will use the measured values surrounding the prediction location. Those measured 

values closest to the prediction location will have more influence on the predicted value than those 

further away (Burrough & McDonnell, 1998). Thus, IDW assumes that each measured point has a 

local influence that diminishes with distance. It weights the points closer to the prediction location 

more than those further away, hence the name. Inverse distance weighting is proportional to the 

inverse of the distance (between the data point and the prediction location) raised to the power 

value. Consequently, as the distance increases, the weights decrease rapidly. The rate at which the 

weights decrease is dependent on the value of power function (p) (Equation 3-1). 

 

𝑤(𝑖) =
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒^𝑝
                                         (𝐸𝑞𝑢𝑡𝑖𝑜𝑛 3 − 1) 

 

where w(i) is the inverse distance-weight and p is the power function. 

If p = 0, there is no decrease with distance, and because each weight is the same, the prediction 

will be the mean of all the data values in the search neighbourhood. As p increases, the weights for 

distance points decrease rapidly. If the p-value is high, only the immediate surrounding points will 

influence the prediction (Burrough & McDonnell, 1998). 

 A power function of two is used as a default value in IDW analysis. However, in this study 

three power functions were tested, p = 1.5, 2.0 and 2.5, to identify the most appropriate power 

value and best outcomes. Small non-integer changes in p were used to avoid large differences 

between interpolations. The effect of changing p-value was investigated by examining the cross-

validation statistics in order to identify the best power function. 

 Inverse distance weighting techniques have lots of advantages and disadvantages compared to 

other types of interpolation methods (Mitas and Mitasova, 2005; Yao et al. 2013) 
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Advantages: 

1. It provides explicit control over the influence of distance (an advantage not offered by 

kriging). 

2. The user can create a smoother surface by decreasing the power, increasing the number of 

sample points used or increasing the search radius. 

3. The user has control over the mathematical form of the weighting function.  

Disadvantages:  

1. Decisions must be made about the power factor as well as the distance over which the 

points have an influence on the interpolated value.  

2. Inverse distance weighting does not automatically provide an estimate of error associated 

with the interpolation. 

3. The interpolated surfaces average out irregularities, and factors such as sharp changes in 

slopes are not considered unless these sites have a high point density. 

4. Inverse distance weighting cannot make estimates above the maximum or below the 

minimum values of sample points. Thus, peaks and valleys, for example, will be flattened 

out if their high and low points are not part of the sample (Dumitru et al., 2013). 

3.2.5. Kriging 

This method is similar to IDW in that it weights the surrounding measured values to derive a 

prediction for an unmeasured location. The general formula for both interpolators is formed as a 

weighted sum of the data. In IDW, the weight depends solely on the distance to the prediction 

location. However, with kriging, the weights are based, not only on the distance between the 

measured points and the prediction location, but also on the overall spatial arrangement of the 

measured points (Equation 3-2). The kriging interpolation formula is as below: 

                     (Equation 3-2) [from Oliver & Webster (1990)] 
 

Ẑ(so) = predicted value  

Z(si) = the measured value at the location i 

λi = an unknown weight for the measured value at the location i 

so= the prediction location 

N = the number of measured values 
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The semi-variogram functions assume that things nearby tend to be more similar than 

things that are further apart. Both semi-variogram and covariance measure the strength of statistical 

correlation as a function of distance (Burrough & McDonnell, 1998). Semi-variogram models for 

all pairs of points are separated by distance h. The formula involves calculating half the difference 

squared between the values of the paired locations. To plot all pairs quickly becomes 

unmanageable. Instead of plotting each pair, the pairs are grouped into lag bins – for example, 

computing the average semi-variance for all pairs of points that are greater than 40 metres but less 

than 50 metres apart. The empirical semi-variogram present a graph with values on the y-axis and 

distance (or lag) on the x-axis (Figure 3-8). 

 

 

 

 

 

 

 

 

 

Figure 3-8: An example explaining the semi-variogram model (source, ESRI, 2015) 

 In this study, five different types of kriging were performed, based on semi-variogram models 

fitted to the dataset, namely Ordinary Spherical, ordinary exponential, Ordinary Gaussian and 

Ordinary Linear, in order to find the best prediction model with minimum statistical errors. 

 

 

 

 

Figure 3-8 removed for copyright reasons. Copyright holder is 

(ESRI, 2015) 
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1. Spherical Model: Based on this model, spatial autocorrelation between points decreases 

where distance increases, until some level beyond which correlation becomes zero (Figure 

3-9). The spherical model is one of the most used models. 

 

 

 

 

 

 

Figure 3-9: Spherical semi-variogram (source, ESRI, 2015) 

2. Exponential Model: Based on this model the spatial autocorrelation decreases 

exponentially with increasing distance and becomes zero at an infinite distance (Figure 3-

10). The exponential model is one of the most used models. 

 

 

 

 

 

 

 

Figure 3-10: Exponential semi-variogram (source, ESRI, 2015) 

3. Gaussian Model: This model has an S-shaped semi-variogram model, which means that 

the points are correlated in a small distance. The S-shaped semi-variogram concaves 

upward to a point the curve begins to flatten (Figure 3-11). 

Figure 3-9 removed for copyright reasons. Copyright holder is (ESRI, 2015) 

 

Figure 3-10 removed for copyright reasons. Copyright holder is (ESRI, 2015) 
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  Figure 3-11: Gaussian model (source, ESRI, 2015) 

4. Linear Model: Based on this model, the autocorrelation between points is decreased when 

distance increases in a linear function (Figure 3-12).  

   

 

 

 

 

 

 

Figure 3-12: Linear model (source, ESRI, 2015) 

There are many advantages for using the kriging method: (Mitas and Mitasova, 2005; Yao et al. 

2013) 

1. It produces better estimates than other methods because it considers the spatial dependence 

between points. 

2. It is less susceptible to investigator’s decisions (e.g. number of sample points to use) as it 

identifies the optimal interpolation weights and search radius.  

3. It gives an indication of the reliability of the estimates (Dumitru et al., 2013).  

4. It provides high statistical quality of predictions (e.g. unbiasedness). 

5. It has the ability to predict the spatial distribution of uncertainty. 

Figure 3-11removed for copyright reasons. Copyright holder is (ESRI, 2015) 

 

Figure 3-12 removed for copyright reasons. Copyright holder is (ESRI, 2015) 
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3.2.6. Triangulated irregular network 

The triangulated irregular network (TIN) is based on vector data and is constructed by triangulating 

a set of vertices (points). The vertices are connected with a series of edges to form a network of 

triangles. There are different methods of interpolation to form these triangles, such as Delaunay 

triangulation or distance ordering (Burrough & McDonnell, 1998). ArcGIS supports the Delaunay 

triangulation method. Delaunay triangulation draws a circle through three nodes of a triangle and 

has the advantage of reducing imprecision and being independent of the order in which the points 

are processed.  

 The advantages and disadvantages of TIN methods include: 

Advantages: 

1. Better surface description at various levels of resolution. 

2. Size of the triangles can be adjusted to fit the terrain surface (small triangles for complex 

reliefs, big triangles for simple reliefs), thus reducing unnecessary data storage and enhancing 

storage capacity.  

3. Avoids redundancies of the regular grid. 

4. Provides an efficient means for computing derived data such as slopes.  

5. Allows extra information to be gathered in areas of complex relief without the need to gather 

huge amounts of redundant data from areas of simple relief (Burrough & McDonnell, 2015). 

Disadvantages: 

1. May require network visual inspection and manual control. 

2. When the closest three points used to make a triangle are a sample from the same contour, the 

triangle has a zero slope and therefore becomes flat. This constitutes an error in the surface 

which requires adding supplementary points for correction, even though errors will remain 

(Fowler & Little, 1979). 

3. The triangular digitisation may hinder some spatial analysis, such as surface geometry and 

topology (Burrough & McDonnell, 2015). 



Chapter 3 

60 
 

3.2.7. Spline 

The spline method estimates surface elevation using a mathematical model that minimises all 

surface curvature to create a smooth surface which passes through the input points (ESRI, 2017). 

There are two types of spline: regularised and tension. Regularised spline interpolation uses first 

derivative (slope), second derivative (rate of change in slope) and third derivative (rate of change 

in the second derivative), while the tension spline uses only first and second derivative, which 

creates a smoother surface but increases the processing time (Equation 3-3).  

 (Equation 3-3)  

The index j denotes the measured points, the unknown coefficients and R (x,x[j]) the basic 

functions. For the related cases, T(x) = a1 = constant (Mitas and Mitasova, 2005). 

Advantages (Mitas and Mitasova, 2005; Yao et al. 2013) 

1. It captures trends in data. 

2. It performs better where sample values may not include the extreme elevation values.  

3. It can create a smooth distribution of values. 

Disadvantages  

1. It does not give explicit control over the influence of distance. 

2. It does not perform well when the points are too closely clustered, and their values are 

extremely different. 

3.2.8. Uncertainty assessment using root mean square error 

Upon completion of an interpolation, it is important to validate the data interpolation to assess its 

accuracy. One way of achieving this is by calculating a RMSE (Simpson & Wu, 2014). The RMSE 

is calculated as the average of the squares of the "errors" (Equation 3-4), that is the difference 

between the value of validation dataset and the elevation value in the DEM generated by 

interpolation method. The RMSE has been frequently used to assess model performance of many 



Chapter 3 

61 
 

environmental and climate research studies (Chai & Draxler, 2014). The formula for RMSE is 

presented below. 

n

XX
RMSE

n

i
idelmoiobs 


 1

2
,, )(

 (Equation 3-4) 

where Xobs stands for the observed values and Xmodel stands for the modelled values at time/place i. 

In this study it was not clear what percentage of the data points should be used for validation and 

what percentage should be used to generate the DEMs. To estimate this, we looked at the 

proportion of missing elevation points in each study area. Originally, the elevation points were 

supposed to be spaced at 10 m intervals, but in some cases this target was not achieved because of 

buildings, streets, sand dunes and other man-made features which were removed. Thus, in each 

study area there is a proportion of missing points. The percentage of missing data was calculated 

(Equation 3-5) by dividing the difference between numbers of data points, based on 10 m intervals 

and available data points, by number of data points based on 10 m interval and is explained in the 

equation below: 

% of missing point =
Total no.of available points− Area (m2) /100(m2)]

Area (m2) /100m2]
𝑋 100 …. (Equation 3-5) 

 The results in Table 3-3 show that the proportion of missing elevation data points varied 

between 21 per cent in Al Khor-1 to 31 per cent in Mesaieed. From this table, the first scenario 

was to generate DEM using 80 per cent of elevation data and validate it with the other 20 per cent. 

A second scenario was tested to only use half the points for validation, i.e. 10 per cent, and generate 

the DEM with the other 90 per cent. 
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Table 3-3: Propotion of data points missing in each study area. 

Name of 

the study 

areas 

Area (m2) 

Complete 

number of 

elevation 

points 

Total number 

of available 

elevation 

points 

Number of 

missing 

elevation 

points 

Proportion 

of elevation 

points 

missing (%) 

Al Thakhira 94,000,000 940,000 736,234 203,766 22 

Al Khor-1 11,420,000 137,000 89,567 28,774 20 

Al Khor-2 13,620,000 136,000 102,111 33,889 25 

Doha 465,040,000 4,650,000 3,352,917 1,297,083 28 

Mesaieed 88,240,000 880,000 603,810 276,190 31 

  

The results are shown in Table 3-4 for the three interpolation models. As there were small 

differences between the values of RMSE when 10 or 20 per cent was used, 10 per cent of the data 

was used as a validation set to assess the accuracy of the three interpolation methods for all five 

locations. 
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Table 3-4: The RMSE (m) values calculated using 10 and 20 per cent for all three 

interpolation methods in the Al Thakhira area 
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 Using 90 per cent of the elevation data points (training set), 25 DEMs were generated by three 

interpolation techniques for each study area (130 DEMs in total), and the RMSE calculated using 

the other 10 per cent of the elevation data (validation set). The results in  

 show the accuracy of data interpolations for all five locations. Inverse distance weighting showed 

a better performance than other methods (RMSE highlighted in orange), especially in areas with 

less urbanisation, such as Alkhor-1 and 2. The best results (RMSE 0.09 m to 0.168 m) were 

achieved when the power was 2.5 and number of points six. Kriging, in particular ordinary 

exponential kriging (OE kriging), was the next best interpolator. This type of kriging showed better 

results (highlighted in green) with an average RMSE of 0.171 m for all five areas in comparison 

to other types of kriging. The TIN method was the least accurate, with and without using break 

lines. Breaklines were used to examine whether the accuracy of the DEM generated by TIN could 

be improved, but the result showed that there was not a large improvement (Table 3-5).Therefore, 

the decision was made not to investigate TIN techniques further.
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Table 3-5: The RMSE (m) values calculated using 10 per cent for all five locations using three interpolation methods (Orange: IDW better results than other 

methods; Green: Kriging better results than other methods) 

Method ID 
Cell 

size 
Power Points 

RMSE 10% Al 

Thakhira 

RMSE 10% 

Al Khor-1 

RMSE 10% Al 

Khor-2 

RMSE 

10% Doha 

RMSE 10% 

Mesaieed 

Average 

RMSE 

IDW 

1 5 1.5 6 0.1138 0.1417 0.1026 0.1818 0.1785 0.1437 

2 5 1.5 8 0.1139 0.1539 0.1055 0.1933 0.1849 0.1503 

3 5 1.5 12 0.1269 0.1728 0.1147 0.2115 0.1957 0.1643 

4 5 2 6 0.1104 0.1239 0.1005 0.1654 0.1730 0.1346 

5 5 2 8 0.1138 0.1322 0.1018 0.1726 0.1776 0.1396 

6 5 2 12 0.1196 0.1448 0.1082 0.1840 0.1848 0.1483 

7 5 2.5 6 0.1089 0.0961 0.0997 0.1554 0.1684 0.1257 

8 5 2.5 8 0.1111 0.0971 0.1000 0.1596 0.1726 0.1281 

9 5 2.5 12 0.1148 0.1023 0.1042 0.1659 0.1771 0.1329 

Kriging ordinary 

spherical 

1 5   6 0.2138 0.2048 0.0945 0.2489 0.3143 0.2152 

2 5   8 0.2221 0.2184 0.0938 0.2610 0.3305 0.2251 

3 5   12 0.2315 0.2355 0.0949 0.2769 0.3544 0.2387 

Kriging ordinary 

circular 

4 5   6 0.2187 0.2013 0.1054 0.2581 0.3192 0.2206 

5 5   8 0.2279 0.2141 0.1080 0.2728 0.3363 0.2318 

6 5   12 0.2388 0.2296 0.1144 0.2933 0.3621 0.2477 

Kriging ordinary 

exponential 

7 5   6 0.1600 0.0922 0.0946 0.2295 0.2797 0.1712 

8 5   8 0.1611 0.0922 0.0938 0.2518 0.2900 0.1778 

9 5   12 0.1615 0.0917 0.0949 0.2742 0.3022 0.1849 

Kriging ordinary 

Gaussian 

10 5   6 0.2558 0.2264 0.1978 0.2746 0.3736 0.2657 

11 5   8 0.2747 0.2498 0.2148 0.2951 0.4060 0.2881 

12 5   12 0.3036 0.2325 0.2406 0.3272 0.4617 0.3131 

Kriging ordinary 

linear 

13 5   6 0.1332 0.2217 0.1129 0.3678 0.2099 0.2091 

14 5   8 0.1425 0.2416 0.1188 0.3883 0.2230 0.2228 

15 5   12 0.1612 0.2704 0.1307 0.3914 0.2448 0.2397 

TIN 1 5     0.2601 0.1740 0.1507 0.7901 0.7822 0.4314 

TIN with break 

line  
2 5     0.3565 0.2691 0.2084 0.8874 0.7101 0.4863 
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 When we looked at the error for individual data points, it appeared that very few points 

contribute to a large proportion of errors. Therefore, to assess the spatial variation of RMSE, an 

error density map (EDP) was produced. The EDP was created by calculating error between 

elevation values from the validation set and the DEM, estimated by IDW interpolation methods. 

The error was squared and then square-rooted to produce only positive values. Inverse distance 

weighting techniques were used to map the spatial distribution of error in all five locations. These 

maps were important to understand the extent of inaccuracy in the interpolation techniques in the 

studied areas. The results (Figure 3-13 to Figure 3-17) showed that the relatively high density of 

errors were limited to very small areas and did not cover a large part of the study area. When we 

looked at some of the high-density areas, they appeared to be those with gaps in the data points, 

those near gaps or those where changed elevation points had irregular intervals due to topography 

constraints, such as sand dunes and hills. 

 In Al Thakhira, most of the area has an error of less than 10 cm (yellow area), while the high 

error (red area) was restricted in small areas and ranged from 10 cm to 2.3 m. In Al Khor 1 and 2, 

most of the areas had less than 10 cm error. Even the highest errors (red) were less than 60 cm. In 

Doha, there were less areas with high errors (red), but it had a more scattered high error class, with 

values ranging from 10 cm to 3.4 m. Similarly, in Mesaieed, a large part of the study area had an 

error of less than 10 cm and fewer areas with high error (red) ranging in value from 10 cm to 1.3 m.  
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Figure 3-13: Error density map of Al Thakhira.
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Figure 3-14: Error density map of Al Khor-1. 

 

Figure 3-15: Error density map of Al Khor-2. 
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Figure 3-16: Error density map of Doha. 
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Figure 3-17: Error density map of Mesaieed. 

 Overall, the results also showed that IDW consistently created outputs with the lowest errors, 

especially with high power and low point number setting. This consistency was not observed for 

the kriging types. Ordinary exponential kriging in general performed better, but only Al Thakhira 

and Al Khor-1 produced the most accurate DEM in comparison to other kriging types. Ordinary 

spherical kriging was better in Al Khor-2 and Doha and ordinary linear kriging was better in 

Mesaieed.  

 The accuracy of IDW data interpolation was varied between all five locations. For example, 

IDW created DEM for Alkhor-1 with the least RMSE (0.096 m), while in Mesaieed the RMSE is 

the highest (0.168 m). There is no clear reason why this occurred. The two possible factors 
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affecting the accuracy of IDW outputs are slope and degree of spatial autocorrelation between 

elevation points. These will be considered. 

 The IDW output is highly affected by the nature of the terrain, especially slopes. Arun (2013) 

found that the RMSE of IDW is lower (RMSE = 0.93 m) in gentle slope areas compared to steep 

slope areas (RMSE = 1.45 m) or a combination of gentle and steep slopes (RMSE = 1.73 m). Qatar 

in general has a very flat terrain with little variation in topography. Figures 3-18 to 3-21 show the 

slope maps for all five areas.  

 Table 3-6 displays the average slope and RMSE for each study area. Inverse distance weighting 

generated the most accurate DEM for Alkhor-1 but was least accurate for Mesaieed. The average 

slope in Mesaieed was 0.91 degree, with slopes of 30 degree in some areas. In Doha, the slopes 

were generally gentler at 0.81 degree.  

 Hence, the relationship between slopes and RMSE was unable to explain the variation in IDW 

performance in these five studied areas. For example, Al Thakhira has the lowest average slope 

(0.62 degree), but the RMSE value is the third highest (0.109 m).  

Table 3-6: The mean slope for the five study areas and IDW accuracy (RMSE) 

Area 

Number 
Name of the study areas Mean Slope (degree) RMSE (m) 

1 Al Thakhira 0.62 0.109 

2 AL khor-1 0.88 0.096 

3 AL khor-2 0.77 0.100 

4 Doha 0.81 0.155 

5 Mesaieed 0.91 0.168 
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Figure 3-18: Slope map for Al Khor-1 (a) and Al Khor-2 (b) 

 

Figure 3-19: Slope of Al Thakhira 

(a) 
(b) 
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Figure 3-20: Slope of Doha 

 

Figure 3-21: Slope of Mesaieed 
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3.2.9. Factors affecting digital elevation model, uncertainty spatial autocorrelation 

The degree of spatial autocorrelation in each study area was investigated, as the correlation of 

elevation data with itself may influence the errors in generated DEMs (Xuejun & Lu, 2008). The 

spatial autocorrelation (Global Moran's I) tool in ArcGIS was used to measure spatial 

autocorrelation based on the locations and the values of elevation data points simultaneously for 

all the five studied areas. ArcGIS tool uses the Equation 3-6 to calculate Global Moran's I Index 

(Getis, 2007):  
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  (Equation 3-6) 

x  is the mean of the x  elevation, ijw  are the elements of the weight matrix and 0S  is the sum of 

the elements of the weight matrix: 0 ij

i j

S w .  

 The tool calculates the Moran's I Index value as clustered, dispersed or random. The Global 

Moran's I tool calculates a z-score and p-value. Values range from -1 (negative spatial 

autocorrelation) to +1 (positive spatial autocorrelation), and zero values indicate a random spatial 

pattern. 

 Moran's I was calculated for the five study areas in ArcGIS and the results (Table 3-7) show 

evidence that the degree of spatial autocorrelation between elevation data points may affect the 

performance of IDW and the best kriging method with exponential model. The accuracy of IDW 

and OE kriging tends to increase when the Moran’s I index increased, except in Doha which is 

highly urbanised.  

Table 3-7: Relationship between Moran's I Index and RMSE from IDW interpolation 

Study area Moran I  IDW -RMSE (m) OE Kriging -RMSE (m) 

Al Thakhira +0.66 0.109 0.160 

Alkhor-1 +0.82 0.096 0.0922 

Alkhor-2 +0.78 0.100 0.0946 

Doha +0.95 0.155 0.229 

Mesaieed +0.55 0.168 0.280 
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 The performance of OE kriging in the five study areas was assessed further by producing a 

prediction standard error (PSE) map. Prediction standard error is a cross-validation technique to 

estimate uncertainty in the data by removing one of the input data points from the dataset in turn, 

before using the remaining datasets to predict back to that location. By comparing true value 

against predicted value of that point, an error is produced.  

 The PSE map for each study area was produced using ArcGIS – Geostatistical Analyst. The 

result clearly showed that most of the errors occurred in areas where there are streets or buildings. 

This is likely because there were fewer data points available (more data points were missing) for 

the interpolation in these locations (Figures 3-22 to 3-26).  

 The average standard error calculated by PSE for the five locations (Table 3-8) demonstrate a 

similar pattern to the RMSE calculations (Table 3-5). 

Table 3-8: Average standard error of OE kriging with proportion of missing elevation 

points in five study areas. 

Area 

Number 
Name of the Study Areas Average Standard Error (m) 

1 Al Thakhira 0.422238 

2 AL khor-1 0.230774 

3 AL khor-2 0.209793 

4 Doha 2.190073 

5 Mesaieed 1.514485 
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Figure 3-22: Prediction standrad error map for Al Thakhira area. 
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Figure 3-23: Prediction standard error map for Al Khor-1. 

 

Figure 3-24: Prediction standard error map for Al Khor-2. 
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Figure 3-25: Prediction standard error map for Doha area. 
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Figure 3-26: Prediction standard error map for Mesaieed. 
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3.2.10. Further comparison of inverse distance weighting and kriging 

Inverse distance weighting and kriging were compared further as these two methods showed a 

consistently low RMSE. The next step compared the spatial accuracy of both methods for one 

study area.  

 The two methods with the least RMSE (Table 3-9) were used to generate a DEM at the five 

locations using all the data points. The RMSE is also presented. The purpose of this analysis was 

to determine the areas where both methods of prediction are similar and where their predicted 

DEM differs. This is important to quantify the amount of uncertainties between these two methods. 

For this purpose, the DEM outputs were converted into a raster map (grid) and then a difference 

map between the IDW and best kriging techniques.  

 The visual result did not show any major difference between the two techniques. The accuracy 

in generating DEM through both kriging and IDW methods was similar in areas where elevation 

data points were available. However, differences appeared in areas where there were missing 

points. This was greater along the coastline. Figures 3-27, 3-28, 3-29, 3-30 and 3-31 show the 

difference between DEM-IDW and DEM-kriging (ordinary spherical). The green colour indicates 

similar predictions by both methods; brown coloured areas indicate areas where OS kriging 

overestimated the DEM value compared to IDW. The blue colour indicates areas where IDW 

overestimated the DEM compared to kriging (ordinary spherical).  

Table 3-9: Comparison between RMSE (m) from IDW and best kriging technique for the 

five study areas (From Table 3-5) 

Study area RMSE Best Kriging type RMSE IDW Difference in RMSE 

Al Thakhira 0.13315 0.0002 0.13295 

Al Khor-1 0.09171 0.000117 0.091593 

Al Khor-2 0.09378 0.000011 0.093769 

Doha 0.22947 0.000634 0.228836 

Mesaieed 0.20989 0.000135 0.209755 
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Figure 3-27: Difference map between DEM-IDW and DEM-kriging (ordinary spherical) 

showing similarity and differences in predicting DEM value. 
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Figure 3-28: Difference map between DEM-IDW and DEM ordinary linear kriging 

showing similarity and differences in predicting DEM value for Al Thakhira. 
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Figure 3-29: Difference map between DEM-IDW and DEM-kriging (OE) showing 

similarity and differences in predicting DEM value for Al Khor-1. 
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Figure 3-30: Difference map between DEM-IDW and DEM kriging (ordinary spherical) 

showing similarity and differences in predicting DEM value for Doha. 
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Figure 3-31: Difference map between DEM-IDW and DEM kriging (ordinary linear) 

showing similarity and differences in predicting DEM value for Mesaieed. 

 

 



Chapter 3 

86 
 

3.2.11. Incorporating breaklines into digital elevation models 

In the elevation data for Qatar, breaklines are present. These provide additional information on the 

land surface and the next step in the DEM generation is to consider their incorporation and whether 

this improves accuracy. Breaklines generally outline sudden and sharp changes in surface elevation 

and there are two main types.  

 Soft breaklines provide information about the surface without implying a change in the surface 

behaviour across the line. They are often used to incorporate height values as a linear feature in 

TIN. Soft breaklines also help maintain linear features and edges in TIN surface modelling (ESRI, 

2016). Hard breaklines represent sharp interruptions in surface elevation. Hard breaklines are 

mainly used to define linear features such as streams, ridges, shorelines, building footprints, dams 

and other locations of abrupt surface change. 

 Breaklines can be used as a barrier in data interpolation methods, such as IDW and spline, to 

limit the search for the input sample points for interpolation in areas where there are changes in 

the surface behaviour. Using breaklines as a barrier will help to improve the accuracy of the DEM 

(Linyu et al, 2012) as they provide more information about the feaures in the study area. 

 The next step in developing the DEM methodology is to test various options to incorporate 

break lines. These are illustrated in Figure 3-32 and use the breaklines as barriers as well as the 

elevation data contained on them to increase the number of sample points for the interpolation.. 

These use additional data and techniques to improve the quality of interpolation and include the 

use of breaklines as barriers and also the use of elevation information driven from breaklines  
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Figure 3-32: Diagram illustrating options considered to improve the DEM generated by 

using elevation data point and break lines. 

Option A: Breaklines are not incorporated and the interpolation uses 90 per cent of elevation 

data to generate DEM and 10 per cent of the data for validation.  

Option B: As Option A but includes breaklines as barriers. Within some interpolations (IDW for 

example), breaklines restrict the interpolation algorithm where there are sharp changes in elevation 

values to create a linear discontinuity in the surface. As the breaklines create discontinuity in the 

DEM, results indicated that some pixels had no elevation value. To add value to cells with no 

elevation values, the raster calculator was used in ArcGIS to remove and replace no data values 

within a raster using statistical information from the surrounding data values. A conditional 

statement and focal statistics function (expression below) was used to replace cells with no value 

within DEM (in raster format) with a value statistically derived from neighbouring cell values 

(three cells by three cells).  

The expression used in the raster calculator (ArcGIS) is as below: 

Con (IsNull(Raster File), FocalStatistics(Raster File, NbrRectangle(3,3, "CELL"), 

"MEAN"), Raster File). 
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Option C: This was as specified in Option A, except that the points generated from breaklines 

were also incorporated. Break line data files contain a huge amount of information about the 

elevation in the study areas. If the elevation data from breaklines is transformed into data points 

and merged with the original elevation data, this may increase DEM accuracy.  

 To generate these points, a tool developed by Nir Fulman, a research assistant at Tel Aviv 

University, was used. The tool is called Points Along Line. It takes an input layer of polylines and 

creates points along the lines at a given distance between points. This tool was used to generate 

data points, for every 10 m, along the break lines. Using an Intersect operator elevation, data was 

then applied to these points from the line. Finally, this new data set was merged with the original 

elevation data points. Then, 90 per cent of the elevation data points were used to generate DEM 

using IDW, and the other ten per cent to calculate the RMSE necessary to validate the DEM 

generated.  

Option D: This is the same as Option C, but here breaklines were included as a barrier to restrict 

the data interpolation in areas where there were sharp changes in the elevation.  

3.2.12. Incorporating break lines: Results 

For IDW, the results showed a notable increase in the value of RMSE for Option C and D (Table 

3-10). This suggests that, by including the elevation data points from break lines, sharp elevation 

changes were included in the data set which reduced accuracy. It is also worth noting that, for 

IDW, incorporating breaklines (A vs C) increased the RMSE. In contrast, procedures including 

breaklines as a barrier (Option B) produced some improvements in RMSE compared to Option A. 
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Table 3-10: Comparisons of DEM generated by IDW, spline, kriging and TIN and improved using breaklines data. 

Study areas 
  IDW Spline Kriging TIN 

  A B C D A B A B A B 

Al Thakhira 

RMSE (m) 0.11 - 0.59 - 0.1 0.08 0.16 0.55 0.26 0.36 

Median 0.02 - 0.04 - 0.01 0.01 0.03 0.07 0.04 0.04 

Q25% 0 - 0 - 0 0 0 0.01 0 0 

Q50% 0.02 - 0.04 - 0.01 0.01 0.03 0.07 0.04 0.04 

Q75% 0.05 - 0.16 - 0.03 0.03 0.07 0.27 0.13 0.13 

Min 0 - 0 - 0 0 0 0 0 0 

Max 6.66 - 9.3 - 6.5 5.26 6.16 10.1 9.6 13.6 

Al Khor-1 

RMSE (m) 0.1 0.09 0.35 0.37 0.09 0.07 0.09 0.34 0.17 0.27 

Median 0.03 0.03 0.05 0.05 0.02 0.02 0.03 0.04 0.06 0.07 

Q25% 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.03 

Q50% 0.03 0.03 0.05 0.05 0.02 0.02 0.03 0.04 0.06 0.07 

Q75% 0.07 0.07 0.13 0.11 0.05 0.04 0.05 0.11 0.13 0.15 

Min 0 0 0 0 0 0 0 0 0 0 

Max 2.8 1.03 4.83 5.39 3.13 1.42 2.97 5.83 3.4 5.27 

Al Khor-2 

RMSE (m) 0.1 0.08 0.37 0.36 0.09 0.08 0.09 0.35 0.15 0.21 

Median 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.03 0.04 0.04 

Q25% 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 

Q50% 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.03 0.04 0.04 

Q75% 0.06 0.06 0.13 0.11 0.04 0.06 0.05 0.12 0.09 0.11 

Min 0 0 0 0 0 0 0 0 0 0 

Max 3.31 1.46 4.49 6.9 3.2 3.42 3.19 5.3 3.31 3.26 

Doha 

RMSE (m) 0.16 - 0.27 - 0.17 0.15 0.23 0.29 0.79 0.89 

Median 0.04 - 0.07 - 0.05 0.04 0.06 0.08 0.28 0.3 

Q25% 0.01 - 0.03 - 0.02 0.01 0.02 0.03 0.11 0.11 

Q50% 0.04 - 0.07 - 0.05 0.04 0.06 0.08 0.28 0.3 

Q75% 0.09 - 0.14 - 0.08 0.08 0.13 0.18 0.59 0.64 

Min 0 - 0 - 0 0 0 0 0 0 

Max 10.96 - 10.6 - 12.8 10 11.1 9.24 16.8 22.4 
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Study areas 
  IDW Spline Kriging TIN 

  A B C D A B A B A B 

Mesaieed 

RMSE (m) 0.17 - 0.72 - 0.13 0.1 0.28 0.69 0.78 0.71 

Median 0.03 - 0.06 - 0.02 0.02 0.05 0.07 0.35 0.08 

Q25% 0.01 - 0.01 - 0 0 0.01 0.02 0.1 0.02 

Q50% 0.03 - 0.06 - 0.02 0.02 0.05 0.07 0.35 0.08 

Q75% 0.07 - 0.23 - 0.06 0.05 0.12 0.27 0.73 0.21 

Min 0 - 0 - 0 0 0 0 0 0 

Max 9.03 - 20.1 - 6.91 5.92 11.1 18.7 19.1 20.7 

Average RMSE (m) 0.12 0.13 0.08 0.46 0.15 0.10 0.11 0.17 0.44 0.43 

Average Median 0.02 0.03 0.03 0.05 0.07 0.02 0.02 0.04 0.06 0.16 
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 In terms of spline, two options were compared using original 90 per cent elevation points 

without breaklines as a barrier (Option A) and with barriers (Option B). The results indicate that 

Option B created DEM with the highest accuracy (Table 3-10). This option left many pixels 

without any value (areas overlapped with break lines). Conditional statement and focal statistics 

functions were used to fill these gaps. All statistical parameters indicated that this option (Option 

B, spline with breaklines as a barrier) is the best technique to create DEM for all the study areas.  

 For kriging, the break line data set was converted to data points and then merged with 90 per 

cent of the original data (Option B) to create a DEM. The DEM with barrier (Option B) was 

compared with Option A, which used only 90 per cent of the original data points. The results show 

no improvement in the accuracy of the DEM with barrier; it worsened in some cases (Table 3-10).  

 For TIN, using breaklines as a barrier (Option B) was also compared to the original option 

(Option A). The results show no improvement in the performance of TIN using breaklines (Table 

3-10). 

3.3. Final digital elevation model selection 

The generation of a DEM with greater accuracy than the predicted SLR is crucial for estimating 

the impact of SLR. The State of Qatar is one of very few countries that provide a remarkably high 

spatial resolution of elevation data sets (10 m grid) for most economically and socially active parts 

of the country, with a vertical accuracy of 10 cm. This provides a good opportunity to generate 

high-resolution DEM in order to study the impact of climate change on SLR in Qatar. 

 Three interpolation techniques were investigated to generate a DEM with a horizontal 

resolution of 5 m, namely IDW, kriging (with four different semi-variogram models) and TIN. In 

total, 130 DEMs were generated for the five locations to assess the fitness and performance of each 

interpolation technique using RMSE.  

 In most cases, the IDW interpolation technique performed better than the other two techniques. 

Inverse distance weighting performed well in some areas, such as Al Khor-1, but not in Mesaieed. 

Slopes and autocorrelation were investigated as two factors behind these differences. Slope did not 
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explain the IDW variation in all the locations, but there were some indications that as spatial 

autocorrelation increased the IDW accuracy also improved.  

 Kriging techniques performed slightly poorer than IDW, especially in Doha, Al Thakhira and 

Mesaieed. Kriging (OE) performed better than other types. Kriging performed better in areas with 

higher spatial autocorrelation, except in Doha. The data gaps in the Doha area are particularly high 

because it is highly urbanised, which probably affected the performance of kriging. A similar 

situation was observed in the Mesaieed area. In order to understand the error and uncertainty in 

kriging, PSE maps were produced and they confirmed that the areas with a large proportion of 

missing elevation points, such as Doha and Mesaieed, had high error and uncertainty. Triangulated 

irregular network techniques were poorer than the other two techniques.  

 Overall, the difference between kriging and IDW was not considerable, but with IDW there 

were slightly better results. The average difference between RMSE from the best kriging technique 

and IDW was 5 cm (Table 3-10), with Mesaieed showing the largest difference between IDW and 

kriging. Inverse distance weighting consistently showed better predictions compared to kriging 

and TIN.  

 In this chapter then used breaklines to see if improvements to the DEM could be produced. 

Several methods of incorporation were trialled, using the breaklines as both data points and as 

barriers. Using breaklines as a barrier was only applicable to IDW and spline methods. In most 

cases the spline technique with breaklines as a barrier provided a slightly better DEM than IDW 

without break lines. Producing an IDW with breaklines was not always possible to do with data 

processing limitations, but where possible the results were slightly worse than the spline technique 

with break lines. Adding break line elevations as points produced DEMs with poorer RMSE. 

Therefore, the spline method incorporating breaklines as barriers was selected as optimal to create 

the DEM for studying the SLR in Qatar.  

 The final maps for each study area are shown in Figures 3-33 to 3-37. These will be used in 

the next chapter to model the impact climate change has on SLR in Qatar. 
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Figure 3-33: Final DEM map for Al Thakhira area using spline method and breaklines as a 

barrier and raster calculator to estimate the value of no value pixels. 
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Figure 3-34: Final DEM map for Al Khor-1 area using spline method and breaklines as a 

barrier and raster calculator to estimate the value of no value pixels. 

 

Figure 3-35: Final DEM map for Al Khor-2 area using spline method and breaklines as a 

barrier and raster calculator to estimate the value of no value pixels. 
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Figure 3-36: Final DEM map for Doha area using spline method and brea klines as a 

barrier and raster calculator to estimate the value of no value pixels. 
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Figure 3-37: Final DEM map for Mesaieed area using spline method and breaklines as a 

barrier and raster calculator to estimate the value of no value pixels. 
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Chapter 4: Assessing Sea Level Rise and Mapping Inundation 

4.1. Introduction 

Climate projection explores how the climate will change in the future under various scenarios of 

GHG emissions. In contrast to a prediction, a projection specifically allows for changes in the set 

of boundary conditions, such as an increase in GHG, which may influence future climate. As a 

result, what emerges are conditional expectations (if x happens, then that is what is expected). For 

very long-term projections, scenarios are constructed around what could happen given various 

assumptions and judgements. The IPCC published a series of AR that summarised information on 

climate projections based on the IPCC emission scenarios. The latest report is the fifth Assessment 

Report (AR5) published in 2013. This report provides a clear and up-to-date overview of the 

current state of scientific knowledge relevant to climate change (Stocker et al., 2013).  

 In order to determine the impact of climate change on the environment in the short and long 

term, it is important to evaluate the concentrations of expected GHG and other pollutants in the 

atmosphere. The concentration of these adversely affects the climate, depending on their emissions 

from various sources, natural as well as man-made. 

 Emissions scenarios describe future releases of GHG, aerosols and other pollutants into the 

atmosphere. Along with information on land use and land cover, the scenarios also provide inputs 

to climate models. They are based on assumptions about driving forces, such as patterns of 

economic and population growth, technology development and other factors. Levels of future 

emissions are highly uncertain and scenarios only provide alternative images of the future. They 

provide a tool with which to analyse how driving forces may influence future emission outcomes 

and assess the associated uncertainties. They assist in climate change analysis, including climate 

modelling and impact assessment, adaptation and mitigation. The possibility that any single 

emission path will occur as described in scenarios is highly uncertain (IPCC, 2000). 

 

 

 

http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf
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4.2. The representative concentration pathways 

The RCPs are based on selected scenarios from four models working on integrated assessment 

modelling, climate modelling and modelling and analysis of impacts (Eyring et al., 2010). The 

RCPs are consistent sets of projections of only the components of radiative forcing (the change in 

the balance between incoming and outgoing radiation to the atmosphere caused primarily by 

changes in atmospheric composition), that are meant to serve as input for climate modelling. 

Conceptually, the process begins with pathways of radiative forcing, not detailed socio-economic 

narratives or scenarios. Central to the process is the concept that any single radiative forcing 

pathway can result from a diverse range of socio-economic and technological development 

scenarios. Four RCPs were selected, defined and named according to their total radiative forcing 

in 2100, as shown in Table 4-1 (IPCC, 2007). Climate modellers use global circulation models 

(GCM) to conduct new climate model experiments using the time series of emissions and 

concentrations associated with the four RCPs, as part of the preparatory phase for the development 

of the scenarios in the IPCC's AR5 (Figure 4-1).  

Table 4-1: Overview of RCPs. 

Scenario Radiative forcing 

RCP 8.5 Rising radiative forcing pathway leading to 8.5 W/m² in 2100 

RCP 6.0 Stabilisation without overshoot pathway to 6 W/m² at stabilisation after 2100 

RCP 4.5 Stabilisation without overshoot pathway to 4.5 W/m² at stabilisation after 2100 

RCP 2.6 
Peak in radiative forcing at ~ 3 W/m² before 2100 returning to 2.6 W/m2 by 

2100 
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Figure 4-1: All forcing agents' atmospheric CO2-equivalent concentrations (in parts-per-

million-by-volume (ppmv)) according to four RCPs. Source: Van Vuuren et al. (2007). 

 

 RCP 8.5: This was developed by the MESSAGE modelling team and the integrated 

assessment framework at the International Institute for Applied Systems Analysis 

(IIASA), Austria. The RCP 8.5 is characterised by increasing GHG emissions over time. 

It is representative of scenarios in the literature leading to high GHG concentration levels. 

The underlying scenario drivers and resulting development path are based on the A2r 

scenario detailed in Riahi et al. (2007). 

 RCP 6.0: This was developed by the Asia-Pacific Integrated Model (AIM) modelling team 

at the National Institute for Environmental Studies (NIES), Japan. It is a stabilisation 

scenario where total radiative forcing is stabilised after 2100 without overshoot by 

employing a range of technologies and strategies for reducing GHG emissions. The details 

of the scenario are described in Fujino et al. (2006) and Hijioka et al. (2008). 
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 RCP 4.5: This was developed by the MiniCAM modelling team at the Pacific Northwest 

National Laboratory's Joint Global Change Research Institute (JGCRI). It is a stabilisation 

scenario where total radiative forcing is stabilised before 2100, through the use of diverse 

technologies and strategies for reducing GHG emissions. The scenario drivers and 

technology options are detailed in Clarke et al. (2007). Additional details on the simulation 

of land use and terrestrial carbon emissions are also given by Wise et al. (2009). 

 RCP 2.6: This was developed by the IMAGE modelling team of the Netherlands 

Environmental Assessment Agency. The emission pathway is representative of scenarios 

in the literature leading to low GHG concentration levels. It is a so-called “peak” scenario: 

its radiative forcing level first reaches a value around 3.1 W/m2 mid-century then decreases 

to 2.6 W/m2 by 2100. In order to reach such radiative forcing levels, GHG emissions (and 

indirectly emissions of air pollutants) are reduced substantially over time. The RCP is 

based on the publication by Van Vuuren et al. (2007). Table 4-2 shows the AR5 global 

warming increase (°C) projections for each RCP. 

Table 4-2: AR5 global warming increase (°C) projections. Source: IPCC (2014). 

Scenario 

2046-2065 2081-2100 

Temperature (°C) - Mean and 

likely range 

Temperature (°C) Mean and likely 

range 

RCP 2.6 1.0 (0.4 to 1.6) 1.0 (0.3 to 1.7) 

RCP 4.5 1.4 (0.9 to 2.0) 1.8 (1.1 to 2.6) 

RCP 6.0 1.3 (0.8 to 1.8) 2.2 (1.4 to 3.1) 

RCP 8.5 2.0 (1.4 to 2.6)   3.7 (2.6 to 4.8) 

4.3. Expected global sea level rise 

Global sea levels are projected to continue to rise as the world warms, consequently affecting the 

mean SLR at local levels. The 2014 AR5 has projected that the rate of GMSL rise during the 21st 

century will exceed the rate observed during 1971– 2010 due to increases in ocean warming and 

loss of mass from glaciers and ice sheets. Projections of SLR are larger than in the 2007 fourth 

Assessment Report of IPCC, primarily because of improved modelling of land-ice contributions. 

Table 4-3 shows the AR5 GMSL (m) increase projections for each RCP for the period 2100 relative 

to 1986-2005. 
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Table 4-3: AR5 GMSL (m) increase projections in 2100 relative to 1986-2005 baseline. 

  Sea level rise (m) RCP 4.5  Sea level rise (m) RCP 8.5 

Maximum 0.71 0.98 

Mean 0.53 0.74 

Minimum 0.36 0.52 

 

4.4. Mapping sea level rise – Literature review  

In the past two decades there have been various studies to map the impact of climate change on 

the SLR. These studies used various methods in order to reduce uncertainties and improve the 

accuracy of the inundation mapping outcomes needed for planning and policy making processes.  

Thumerer et al. (2000) studied the impact of climate change on the east coast of England. Flood 

risks were modelled from sea level inundation based on sea defences, land elevations and 

subsidence rates. However, their results showed that there are significant uncertainties associated 

with modelling future SLR. They also highlighted the advantages of GIS as a tool for flood risk 

assessment. 

 Alsahli and AlHasem (2016) used remotely sensed data and GIS to assess the coastal 

vulnerability of Kuwaiti coasts to SLR in four scenarios, with physical (elevation, slope, 

geomorphology) and socio-economic (population, land use, cultural heritage and transportation) 

parameters as measures of impact. They used three steps. Firstly, they classified the DEM layer 

into zero and one values representing areas below and above the projected sea level, respectively. 

Secondly, the areas below the projected SLR were assessed to see if they were connected to the 

sea or not. Finally, they calculated areas of all pixels with an elevation value below the projected 

SLR and connected to the sea. 

 Al-Buloshi et al. (2014) used a simpler approach to assess the impacts of SLR and coastal 

flooding in Oman. The study took account of tides when considering areas at risk of inundation. 

To model the areas that will be affected by sea level inundation, the elevation of the tidal datum 

Mean Higher High Water (MHHW) level was used as the base sea level (Marcy et al., 2011). This 

is defined as the mean height of the highest tide measured at the tidal station. The SLR was added 

on top of this level and the authors suggest this should be the method used when modelling future 

SLR associated with climate change. 
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 Single-value surface models, or bathtub models, have been widely used in the last two decades 

to map sea level inundation as they only use elevation maps and changes in sea level as their main 

inputs. Schmid et al. (2014) report many studies that use this method to map SLR inundation 

(Murdukhayeva et al., 2013; Poulter & Halpin, 2008; Strauss et al., 2012; Titus & Richman, 2001; 

Weiss & Overpeck, 2003). This method does not consider any changes in the land surface, erosion 

or ocean dynamics. Like a bathtub, the model simply projects the water level rise above fixed and 

known surfaces such as the MHHW line. The output of this model provides the potential extent of 

flooding due to SLR caused by climate change. While this method has limitations for detailed and 

site-specific modelling, it is useful for mapping and visualising the potential extent of future SLR 

on a large scale.  

 Webster et al. (2004) suggested that the bathtub method can be improved by considering only 

areas with a direct connection to the sea. Areas with low altitude behind higher altitude areas would 

not be flooded unless there was a channel allowing water to enter. 

 Poulter and Halpin (2008) used lidar DEMs with 6 and 15 m spatial resolution and three 

methods to evaluate the extent and timing of coastal flooding from the sea level. Firstly, they used 

a simple ‘bathtub’ method. They mapped flooded areas where the elevation value of a pixel was 

less than the projected sea level. This method did not consider the hydrologic connectivity of the 

pixel. They reported that this method had been used in previous research by Moorhead and Brinson 

(1995) and Titus and Richman (2001). Chust et al. (2010) reasoned that areas that were not open 

to direct sea inundation should also be included to locate potentially vulnerable areas.  

 In their second and third methods, Poulter and Halpin (2008) considered two hydrologic 

connectivity definitions. Both consider that the cell could be flooded if it were below sea level and 

if it were connected to flooded cells or open water. Two different methods were used to determine 

connectivity to flooded cells or open water. The second method used was the ‘four-side rule’, 

where a pixel was connected in any basic direction (north, east, south and west) to a flooded cell 

pixel, while in their third method they used the ‘eight-side rule’, where a pixel was considered to 

be flooded if the elevation value was less than the SLR and connected to flooded pixels in any 

direction (cardinal and diagonal). 
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 Their results showed that the connected approach (second and third methods) estimated lower 

inundation areas than the bathtub method (no connectivity). Furthermore, areas flooded under the 

four-side rule (second method) were lower than the third method (eight-side rule), because the 

eight-side rule increased the number of connections compared to the four-side rule. This approach, 

proposed by Poulter and Halpin (2008), would be more practical for larger areas (Cooper et al., 

2013). 

 Kane et al. (2015) also used a method similar to the eight-side rule to model the SLR 

vulnerability and salty inundation or groundwater inundation of three coastal areas in the USA. 

They calculated the final SLR vulnerability by ranking each cell based on other parameters, such 

as type and time of inundation, habitat, type of soil, erosion and infrastructure.  

 The disadvantage of the four-side connectivity rule is that it underestimates potential flooding 

impacts, while the eight-side connectivity rule overestimates them (Poulter & Halpin, 2008). The 

four-side rule works better for larger areas while the eight-side connectivity rule is better when an 

overestimated approach is acceptable. 

 Other authors have used visual approaches to select areas open to the sea or open water bodies. 

For example, Webster et al. (2006) found infrastructure in the DEM which can prevent flooding 

by cutting off the area from the sea. The DEM was changed accordingly. Webster et al. (2004) 

went a step further by consulting with engineers to determine and identify areas which should be 

included in the manual selection of flood-prone areas.  

 Based on the reviewed literature, there exist various ways of mapping SLR inundation. For 

this study, the methods used by Poulter and Halpin (2008) (hydrodynamic modelling with four-

side and eight-side rules) are used to identify grid cells as vulnerable to inundation for all the five 

study areas in Qatar. Both methods will be tested, because the eight-side rule overestimates the 

flooded area but also increases the processing time. The four-side rule, on the contrary, 

underestimates the inundation area compared to the eight-side rule, and the processing time is 

lower. It is more practical for a larger area (Cooper et al., 2013).  

 The reason for not selecting a more dynamic model is the data and time available for this 

research. With little variation in the type of soil and insignificant annual rainfall, the coastal area 

in Qatar does not offer a considerable magnitude of tidal activity. Therefore, for modelling the 
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SLR inundation in Qatar, the DEM created in the previous chapter will be used. Four climate 

change scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) above MHHW will be assessed for 

all five areas in this study.  

4.5. Methodology for mapping inundation 

The purpose of this section is to develop a method for mapping inundated areas based on climate 

change scenarios for the five study areas in Qatar. The method consists of six components to 

produce inundation maps for each scenario: 

1- Selection of DEM 

2- Determining the current coastline 

3- Identifying tidal levels in the study area 

4- Quantifying SLR as the result of climate change 

5- Methods to map the spatial extent of inundated areas  

6- Sea level rising mapping 

In contrast to many other studies it was decided that the pits in the DEM would not be filled 

within the study area. Pits are small depressions in the DEM that can occur during DEM production 

(Burrough & McDonnell, 1998). However, within the coastal Qatar landscape depressions in the 

land surface are common and hence it was decided that removing them would not represent the 

situation in the study area. In addition, such depressions can have a large impact upon hydrological 

connectivity, but these tools are not used to a great extent in this chapter.  

4.5.1. Selection of digital elevation model 

The DEM was created in the previous chapter using the spline technique with breaklines as a 

barrier. This provided the most accurate DEM for all studied areas compared to other interpolation 

techniques (see Chapter 3). 

4.5.2. Coastal line 

Sea level changes need to be mapped in relation to the current coastline. The current coastline was 

determined in all the studied areas based on the DEM presented in the previous chapter. The reason 

is because the coastline is dynamic; existing maps of the coastline did not agree with the DEM. 

The current Qatar coastline, provided by the Qatar GIS Centre, represents the Mean Water Height. 



Chapter 4 

105 
 

However, it did not match the 0 m coastal line generated from the DEM. For example, in some 

coastal areas in Doha, these differences were more than 2 km horizontally. 

 To generate a coastline for the study area, the DEM was reclassified into two classes: above 

and below zero metres. Zero was assigned to areas below zero metres and no data for areas above 

zero-metre altitude. This raster file represented the coastline in 2009 (when the elevation points 

were generated). It was converted into a polygon in order for it to be used for mapping inundated 

areas. The elevation points used to generate the DEM for each study area records 0 metres as 

8.0036 metres below the Fundamental Benchmark B (FBMB) located at the north end of the 

runway at the old Doha International Airport. This elevation is based on the Qatar Vertical Datum, 

which was defined in 1970 until 1972 as the mean sea level. Therefore, the coastline produced will 

represent the mean sea level on the DEM. 

4.5.3. Tidal level  

As well as looking at the effect of SLR above the mean sea level, we will also consider the effect 

of tidal extremes in the inundation mapping as more areas will be flooded during unusual high 

tides. For each area, we identified the mean sea level (MSL) (the average between maximum and 

minimum sea level), MHHW and highest observed tide (HOT) for all the five study areas from 

2003 to 2015 (Table 4-4). The NOAA (2020) defined MHHW as “the average of the higher high-

water height of each tidal day observed over the National Tidal Datum Epoch. For stations with 

shorter series, comparison of simultaneous observations with a control tide station is made in order 

to derive the equivalent datum of the National Tidal Datum Epoch” (NOAA, 2020, p.95). While 

the HOT is the “average of all the high-water heights observed over the National Tidal Datum 

Epoch” (NOAA, 2020, p.94). 

 This information was obtained from the Department of Land and Survey and the Ministry of 

Municipality and Environment in Qatar. The tide heights in this table are measured from the Qatar 

Vertical Datum. As this is the same datum as used to measure the DEM, the heights will correspond 

to heights on the DEM. Each study area has a gauging station, except for Al Khor-1 and 2. The 

value of tide for these two study areas was interpolated from a station located in Doha (49.63 km 

from Al Khor-1 and 43.15 km from Al Khor-2) and a station located in Al Thakhira (20.76 km 
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from Al Khor-1 and 27.03 km from Al Khor-2). A simple linear interpolation was used to model 

the relationship between the distance and tidal gauge, then a linear formula was used to determine 

the value of the tide in both Al Khor-1 and 2. 

Table 4-4: Highest observed tide, MSL tide and MHHW tide for all the five study areas 

from 2003 to 2015 (from nearest tidal station measured from the Qatar Vertical Datum). 

Study Areas 

Tide 

Highest Observed Tide 

(m) 

Mean Sea Level  

(m) 

Mean Higher High 

Water (m) 

Al Thakhira 1.32 0.00 0.64 

Al Khor_1 1.34 0.01 0.66 

Al Khor_2 1.35 0.01 0.66 

Doha 1.40 0.02 0.70 

Mesaieed 1.56 0.03 0.81 

 

4.5.4. Sea level rise as the result of climate change 

To examine SLR, two scenarios were selected: RCP 4.5 and RCP 8.5. RCP 4.5 was selected 

because it is a stabilisation scenario where the total radiative forcing is stabilised before 2100 by 

employing a range of technologies and strategies to reduce GHG emissions. RCP 8.5 is 

characterised by increasing GHG emissions over time to represent a higher GHG concentration 

level. For both scenarios, to represent the uncertainty with each projection, the maximum, average 

and minimum SLR were selected in order to investigate the impact in each case (Table 4-4).  

4.5.5. Mapping spatial extent of inundated areas  

The next step in the methodology is to bring all these data sets to model the SLR in each study area 

for both RCP scenarios. To determine flooded areas, three methods were used to determine areas 

under inundation: bathtub, four-side connectivity rule and eight-side connectivity rule. In this 

section, each of these was evaluated. The aim was to select the most appropriate method to produce 

the final inundation map for all areas. To do this, we examined changes under maximum RCP 4.5 

with the HOT using the three methods. Once a final method has been selected, a range of tides and 

RCPs will be considered in the next section.  
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4.5.6. Bathtub method 

To map inundated areas using the bathtub method in ArcGIS, the reclassification function of the 

raster calculator function was used. Areas in the DEM with values lower than the projected SLR 

were labelled as inundated areas and the rest of the terrain labelled as non-inundated areas. These 

areas were converted into polygons and their areas calculated. 

Inundated Area = DEM <= X 

where X = RCP SLR 

4.5.7. Hydrological connectivity methods (four and eight side) 

Among the flooded areas identified by the bathtub method, the next step was to select those 

connected to the sea by using both the four-side and eight-side rule.  

 To implement these rules, the assumption was made that when converted to a polygon, all cells 

connected using the four-side rule will form a continuous polygon, and that cells connected using 

the eight-side rule will not form continuous pixels, but the separate pixels will touch each other 

(Figure 4-2).  

 

Figure 4-2: The difference between the coverage of inundated areas based on 

four-side and eight-side rule hydrologic connectivity to the sea. 

 To identify areas at risk of flooding based on the four-sided rule, the inundated polygons were 

identified which have a direct contact with the coastline (selection by location command in 

ArcGIS). These selected locations were identified, and their areas calculated. To identify additional 
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areas using the eight-sided rule, the additional inundated areas were selected which were connected 

to the identified inundated areas through the four-sided rule. This was performed multiple times 

until no more inundated areas were identified. Both methods are illustrated in Figure 4-2.  

 Table 4-5 shows, as expected, that the bathtub method produces a much larger inundated area 

than the four-side and eight-side rule hydrological connectivity methods. This indicates that many 

areas below the flood line are not connected to the sea and hence would not be flooded. The results 

also indicate that there are few differences between four and eight-side rules, although, as expected, 

the eight-sided rule does produce slightly more flooded areas. The exception to this is Mesaieed, 

where the eight-sided rule produced much larger flooded areas than the four-sided rule (Table 4-

5). 

 As a result, the eight-side rule was selected because it has the potential to overestimate 

connectivity and hence flooding, compared to the four-sided rule, by allowing flow to occur across 

cell corners. It hence represents a worst-case scenario. 

Table 4-5: Total area (km2) inundated in each study area based on maximum RCP 4.5 

scenarios at maximum tide using the bathtub, four-side and eight-side connectivity rule. 

Study areas Area (km2) Methods 
Inundated Area (km2) 

RCP 4.5 Maximum 

Al Thakhira 93.78 

Bathtub 30.19 

Four-side rule 19.54 

Eight-side rule 19.55 

Al Khor-1 11.42 

Bathtub 0.38 

Four-side rule 0.37 

Eight-side rule 0.37 

Al Khor-2 13.62 

Bathtub 1.65 

Four-side rule 0.65 

Eight-side rule 0.65 

Doha 465.04 

Bathtub 7.53 

Four-side rule 3.99 

Eight-side rule 4.00 

Mesaieed 88.24 

Bathtub 38.70 

Four-side rule 4.48 

Eight-side rule 10.29 
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4.6. Results  

The final step was to include the tidal information in the inundation mapping. The total SLR (RCP 

+Tide) was calculated for both RCP 4.5 and RCP 8.5 scenarios (Maximum, Average and Minimum 

RCP scenario) and three tidal states (HOT, MSL and MHHW). 

4.6.1.  Al Thakhira  

The total SLR (SLR from RCP scenario and tidal effect) were calculated (Table 4-6). As expected, 

the HOT effect (1.32 m) is greater than the MHHW (0.64 m) and the MSL (0.00 m). The sea level 

is expected to rise between 1.68 m and 2.03 m in the HOT event under RCP 4.5 by 2100. Under 

RCP 8.5, sea level is expected to rise between 1.84 m and 2.30 m. These SLRs and areas inundated 

are mapped as in Figure 4-3, Figure 4-4 and Table 4-7. 

Table 4-6: Total SLR as the result of RCP scenarios and tidal events in the Al Thakhira 

area. 

 

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed

Tide (1.32) m
2.03 1.85 1.68 2.30 2.06 1.84

Mean Higher High 

Water (0.64) m
1.35 1.17 1.00 1.62 1.38 1.16

Mean Sea Level 

(0.00) m
0.71 0.53 0.36 0.98 0.74 0.52

Scenario 2100 - RCP 8.5

Tide

Scenario 2100 - RCP 4.5
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Figure 4-3: Mapping inundated area in Al Thakhira for RCP 4.5 scenarios and current 

flooding due to HOT. 

 

Figure 4-4: Mapping inundated area in Al Thakhira for RCP 8.5 scenarios and current 

flooding due to HOT. 
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 The results indicate that for both RCPs in Al Thakhira the inundated areas will increase as the 

SLR increases. The SLR (in metres) for the three scenarios following the three tidal events were 

plotted against the flooded areas (in km2). This allows us to show the flooded area as a function of 

SLR, which is mainly dictated by the elevation of the area (Figure 4-5). This figure indicates that 

the increase in flooded areas occurs notably after a SLR of 2.28 m. A map showing why this occurs 

is presented by Figure 4-6. 

Table 4-7: Inundated area (km2) in Al Thakhira based on combined RCP scenarios and 

tidal conditions as a total SLR. 

Scenarios (RCP plus tide) 
Total sea level (m) 

(RCP and Tide) 

Flooded area 

(km2) 

RCP 4.5 Minimum 

(0.36) m 

Mean Sea Level 

(0.00) m 
0.36 0.05 

RCP 8.5 Minimum 

(0.52) m 

Mean Sea Level 

(0.00) m 
0.52 0.08 

RCP 4.5 Average 

(0.53) m 

Mean Sea Level 

(0.00) m 
0.53 0.095 

RCP 4.5 Maximum 

(0.71) m 

Mean Sea Level 

(0.00) m 
0.71 0.424 

RCP 8.5 Average 

(0.74) m 

Mean Sea Level 

(0.00) m 
0.74 0.467 

RCP 4.5 Minimum 

(0.36) m 

Mean Higher High Water 

(0.64) m 
0.98 0.575 

RCP 8.5 Maximum 

 (0.98) m 

Mean Sea Level 

(0.00) m 
1.00 0.696 

RCP 8.5 Minimum 

(0.52) m 

Mean Higher High Water 

(0.64) m 
1.16 0.71 

RCP 4.5 Average 

(0.53) m 

Mean Higher High Water 

(0.64) m 
1.17 0.716 

RCP 4.5 Maximum 

(0.71) m 

Mean Higher High Water 

(0.64) m 
1.35 0.894 

RCP 8.5 Average 

(0.74) m 

Mean Higher High Water 

(0.64) m 
1.38 0.928 

RCP 8.5 Maximum  

(0.98) m 

Mean Higher High Water 

(0.64) m 
1.62 2.459 

RCP 4.5 Minimum 

(0.36) m 

Highest Observed Tide 

(1.32) m 
1.68 11.12 

RCP 8.5 Minimum 

(0.52) m 

Highest Observed Tide 

(1.32) m 
1.84 14.976 

RCP 4.5 Average 

(0.53) m 

Highest Observed Tide 

(1.32) m 
1.85 15.175 

RCP 4.5 Maximum 

(0.71) m 

Highest Observed Tide 

(1.32) m 
2.03 18.501 

RCP 8.5 Average 

(0.74) m 

Highest Observed Tide 

(1.32) m 
2.06 18.87 

RCP 8.5 Maximum  

(0.98) m 

Highest Observed Tide 

(1.32) m 
2.30 23.083 
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Figure 4-5: Relationship between the maximum sea level as the result of RCP (4.5 and 8.5) 

scenarios and tidal condition and the flooded area in Al Thakhira. 

 

Figure 4-6: The elevation in Al Thakhira illustrates the difference between the flooded area 

under different RCP scenarios (numbers in lower panel represent DEM elevation). 
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 The effect of climate change with the HOT represents the worst-case scenario, as the SLR will 

be at the highest level and flooding will cover larger areas. The large area of flooding is mainly 

due to the low elevations in Al Thakhira, and the HOT increases the area’s risk of flooding as a 

result of climate change (Figure 4-7). 

 

Figure 4-7: The effect of climate change and HOT on inundated areas in Al Thakhira. 

 

4.6.2. Al Khor 1 and 2 

The effect of SLR in both Al Khor 1 and 2 was not large, as the elevation in both areas is higher 

and the connectivity with the sea is less when compared to Al Thakhira. The total SLR (Table 4-

8) was just above 2 m maximum, and the areas expected to be flooded were less than 1 km2 (Table 

4-9).  
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Table 4-8: Total SLR as a result of RCP scenarios and tidal events in Al Khor 1 and 2. 

 

 

Table 4-9: Inundated areas in Al Khor 1 and 2. 

 

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed 

Tide (1.34) m
2.05 1.87 1.70 2.32 2.08 1.86

Mean Higher High 

Water (0.66) m
1.37 1.19 1.02 1.64 1.40 1.18

Mean Sea Level 

(0.01) m
0.72 0.54 0.37 0.99 0.75 0.53

Highest Observed 

Tide (1.35) m
2.06 1.88 1.71 2.33 2.09 1.87

Mean Higher High 

Water (0.66) m
1.37 1.19 1.02 1.64 1.40 1.18

Mean Sea Level 

(0.01) m
0.72 0.54 0.37 0.99 0.75 0.53

Tide

Scenario 2100 - RCP 4.5 Scenario 2100 - RCP 8.5

Al khor_1 Al khor_1

Al khor_2 Al khor_2

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest 

Observed Tide 

(1.34) m

0.169 0.207 0.084 0.057 0.266 0.215 0.083

Mean Higher 

High Water 

(0.66) m

0.146 0.024 0.020 0.016 0.068 0.027 0.020

Mean Sea Level 

(0.01) m
0.000 0.152 0.127 0.095 0.162 0.154 0.126

Highest 

Observed Tide 

(1.35) m

0.446 0.218 0.138 0.099 0.363 0.229 0.135

Mean Higher 

High Water 

(0.66) m

0.116 0.332 0.314 0.263 0.418 0.335 0.313

Mean Sea Level 

(0.01) m
0.000 0.146 0.084 0.046 0.312 0.162 0.083

Al khor_2 Al khor_2

Tide

Current flooded 

area based on 2003-

2015 tidal events

Scenario 2100 - RCP 4.5 Scenario 2100 - RCP 8.5

Al khor_1 Al khor_1



Chapter 4 

115 
 

 In Al Khor-1, the inundated area will be 0.266 km2 above the HOT (maximum RCP 8.5), with 

one third of this area currently flooded under the HOT. Also, in Al Khor-2, the maximum inundated 

area will be 0.363 km2 above the HOT. The inundated areas in both Al Khor 1 and 2 are not large 

(Figure 4-8, Figure 4-9, Figure 4-10 and Figure 4-11). 

 

Figure 4-8: Mapping inundated area in Al Khor-1 for RCP 4.5 scenarios and current 

flooding due to HOT. 
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Figure 4-9: Mapping inundated area in Al Khor-1 for RCP 8.5 scenarios and current 

flooding due to HOT. 
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Figure 4-10: Mapping inundated area in Al Khor-2 for RCP 4.5 scenarios and current 

flooding due to HOT. 
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Figure 4-11: Mapping inundated area in Al Khor-2 for RCP 8.5 scenarios and current 

flooding due to HOT. 

 

 The flooded areas in both Al Khor 1 and 2 will increase relatively slowly with the SLR, but do 

not appear to have any large jumps in flooded areas as the sea level increases (Figure 4-12 and 

Figure 4-13). 
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Figure 4-12: Relationship between the maximum sea level as the result of RCP 

(4.5 and 8.5) scenarios and tidal condition and the flooded area in Al Khor-1. 

 

Figure 4-13: Relationship between the maximum sea level as the result of RCP 

(4.5 and 8.5) scenarios and tidal condition and the flooded area in Al Khor-2. 

 Areas currently under flooding as the result of HOT represent a large proportion of the flooded 

areas under most RCP scenarios (Figure 4-14 and Figure 4-15).  
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Figure 4-14: Proportion of current flooding under HOT to RCP scenarios in  

Al Khor-1. 

 

Figure 4-15: Proportion of current flooding under HOT to RCP scenarios in 

Al Khor-2. 
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4.6.3. Doha 

The total SLR as a result of climate change and tidal events ranged from 2.38 m above the HOT 

(Maximum RCP 8.5 with HOT) to 0.38 m (Minimum RCP 4.5 and MSL) (Table 4-10). Sea level 

rise will only create flooding in less than two per cent of the area (7.55 km2) under maximum RCP 

8.5 and HOT (Table 4-11).  

Table 4-10: Total SLR as the result of RCP scenarios and tidal events in Doha. 

 

Table 4-11: Inundated areas in Doha. 

 

 The relationship between SLR and flooded areas shows a significant increase when the SLR 

is above 2 m (Figure 4-16).  

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed 

Tide (1.40) m
2.11 1.93 1.76 2.38 2.14 1.92

Mean Higher High 

Water (0.70) m
1.41 1.23 1.06 1.68 1.44 1.22

Mean Sea Level 

(0.02) m
0.73 0.55 0.38 1.00 0.76 0.54

Tide

Scenario 2100 - RCP 4.5 Scenario 2100 - RCP 8.5

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed 

Tide (1.40) m
1.051 2.952 1.692 0.873 6.508 3.118 1.619

Mean Higher High 

Water (0.71) m
0.310 0.755 0.478 0.278 1.386 0.815 0.459

Mean Sea Level 

(0.02) m
0.000 0.325 0.247 0.177 0.533 0.343 0.244

Scenario 2100 - RCP 8.5

Tide

Current flooded area 

based on 2003-2015 

tidal events

Scenario 2100 - RCP 4.5
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Figure 4-16: Relationship between the maximum sea level as the result of RCP 

(4.5 and 8.5) scenarios and tidal condition and the flooded area in Doha. 

 

 Most of the flooded areas are located north-east and south-east of Doha (Figure 4-17 and 

Figure 4-18). The current flooding due to the HOT will be less dramatic as it will not be more than 

2 m. However, with SLR caused by climate change, flooding will increase notably (Figure 4-19). 
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Figure 4-17: Mapping inundated area in Doha for RCP 4.5 scenarios and current flooding 

due to HOT. 
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Figure 4-18: Mapping inundated area in Doha for RCP 8.5 scenarios and current flooding 

due to HOT. 

 

Figure 4-19: Proportion of current flooding under HOT to RCP scenarios in Doha. 
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4.6.4. Mesaieed  

The level of the sea will rise by a similar height to other study areas, ranging from 0.39 m to 2.54 m 

(Table 4-12). The extent of the flooded area increased proportionally to the sea level. However, 

the rate increased slowly when the sea level remained under 2 m flooding, less than 4 km2. After 

this point, the flooded area increased at a larger rate to more than 14 km2 at a SLR of around 2.5 m 

(Table 4-13 and Figure 4-20). 

Table 4-12: Total SLR as the result of RCP scenarios and tidal events in Mesaieed. 

 

Table 4-13: Inundated areas in Mesaieed. 

 

   

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed 

Tide (1.56) m
2.27 2.09 1.92 2.54 2.3 2.08

Mean Higher High 

Water (0.81) m
1.52 1.34 1.17 1.79 1.55 1.33

Mean Sea Level 

(0.03) m
0.74 0.56 0.39 1.01 0.77 0.55

Tide

Scenario 2100 - RCP 4.5 Scenario 2100 - RCP 8.5

Maximum 

(0.71) m

Average 

(0.53) m

Minimum 

(0.36) m

Maximum 

(0.98) m

Average 

(0.74) m

Minimum 

(0.52) m

Highest Observed 

Tide (1.56) m
2.857 7.435 6.492 0.570 14.261 7.579 6.475

Mean Higher High 

Water (0.81) m
0.379 2.457 2.221 1.176 2.723 2.474 2.192

Mean Sea Level 

(0.03) m
0.000 0.308 0.201 0.141 0.685 0.318 0.195

Tide

Current flooded area 

based on 2003-2015 

tidal events

Scenario 2100 - RCP 4.5 Scenario 2100 - RCP 8.5
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Figure 4-20: Relationship between the maximum sea level as the result of RCP (4.5 

and 8.5) scenarios and tidal condition and the flooded area in Mesaieed. 

 The current flooding under the HOT was above 2.86 km2. This will increase with the effect of 

climate change when the sea level reaches above 2 m (Figure 4-21). Most parts of the north-east 

will be flooded (Figure 4-22 and Figure 4-23). 

 

Figure 4-21: Proportion of current flooding under HOT to RCP scenarios in 

Mesaieed. 
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Figure 4-22: Mapping inundated area in Mesaieed for RCP 4.5 scenarios and current 

flooding due to HOT. 
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Figure 4-23: Mapping inundated area in Mesaieed for RCP 8.5 scenarios and current 

flooding due to HOT. 

4.7. Discussion 

Previous research into SLR is often limited by the coarse resolution of elevation data. This makes 

it difficult to model future SLR associated with climate change (Nicholls, 2004). In this study, a 

high-resolution DEM was used to map flood inundation from SLR simulations. A high-accuracy 

DEM is an important input in modelling future SLR (Gesch, 2018). The elevation data plays an 

important role in determining the extent of the area that will be under water as the result of SLR. 

The chapter also showed that the simple method for doing this is a bathtub method, which simply 

reclassifies all cells below an elevation threshold as at risk of flooding. However, this method does 

not consider hydrologic connectivity (i.e. connectivity to the sea) and the flow direction or slope 

(McGrath et al., 2018). As a result, this method overestimates inundated areas (Webster et al., 

2004).  

 The two approaches that consider hydrologic connectivity (four-side and eight-side) helped to 

overcome the inaccuracy in the bathtub simulation by only considering the areas that connected to 
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the sea. In this study the difference between the flooded areas based on the four-side and the eight-

side rule was not vastly different in all the study areas, apart from Mesaieed. In this case the flooded 

area under the eight-side approach was larger than the four-side. This similarity between the two 

approaches is contrary to the results from Poulter and Halpin (2008), where the eight-side approach 

produced generally higher inundated areas in comparison to the four-side approach. The reason 

might be because the topography of Qatar is very flat. There are, therefore, very subtle changes in 

elevation. Consequently, changes in hydrologic connectivity between the four and eight-side 

approach are low. The eight-side approach considers wider possibilities for the hydrologic 

connectivity and, therefore, was used in this study to improve the bathtub simulation. 

 Another factor in mapping inundation is how high the sea level will be in the future. The 

uncertainty in this prediction will impact the extent of inundation. The two scenarios, RCP 4.5 and 

RCP 8.5, provided a different magnitude of SLRs. However, these projections need to be adapted 

to local conditions by including other factors that can influence the level of sea, such as HOT and 

MHHW. There are wide variations in these from one region to another (Stammer et al., 2013). 

Another source of uncertainty is within the RCP variation (minimum, average and maximum). 

However, these variations were found to be less than the variability between RCPs. For example, 

in Al Thakhira the difference between RCP 4.5 and 8.5 was greater than the difference observed 

within RCP, that is between the minimum, average and maximum scenarios. The internal 

uncertainties do not change through time, but the uncertainties between the RCPs will increase (at 

different rates) with time (Troup & Fannon, 2016). In this chapter, we also demonstrate how 

uncertainty associated with RCP predictions can be quantified and displayed to enable the reader 

to make an informed assessment on the potential impact of flooding or to compare different RCP 

scenarios (Stammer et al., 2013).  

 There were several limitations of this study. In general, it was limited by time and resources 

for undertaking a full uncertainty comparison between different RCPs. Only two RCPs were 

selected, therefore, and minimum, average and maximum values explored within.  

There were other limitations: 
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1- The study could have looked at other timescales as opposed to simply looking at 2100. For 

example, Antunes et al. (2019) looked at SLRs for the Atlantic Coast of Portugal’s 

mainland for 2025, 2050, and 2100 with different sea level scenarios. 

2- The maximum SLR was calculated based on the RCP scenario and the maximum tide from 

a limited range of dates. However, the impact of climate change on SLR flooding is likely 

to be greater if potential storm surges were included in the simulation (Antunes et al., 

2019).  

3- Coastal erosion, especially under rising sea levels, will change the current DEM and this 

was not considered in this study. This could affect the area under the risk of flooding and 

its hydrologic connectivity. Coastal erosion affects the future DEM, and a study by 

Coveney and Fotheringham (2011) estimated that saltmarsh could lose between seven per 

cent of its current area (under low SLR scenario) to 30 per cent (under high SLR). This 

changes the DEM and possibly the inundation patterns. 

4- The approach taken in this study did not consider the drainage systems (e.g. draining pipes 

under roads) in place within the study area and other infrastructures, such as current and 

planned barriers, that effect the hydrologic connectivity. These will affect the inundation 

mapping as the result of SLR. However, including future drainage infrastructures such as 

canals, ditches and culverts remains a challenge in future flood mapping (Gesch, 2013).  

5- Uncertainties associated with all parameters need to be quantified so that the simulation 

can recognise the source and magnitude of those uncertainties. In the following chapter, 

the uncertainties will be studied in detail to provide a better estimation of flood mapping. 
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Chapter 5: Assessing Uncertainty in Sea Level Rise 

5.1. Introduction  

The previous chapter highlighted the potential importance of uncertainty in affecting the SLR 

scenarios. The purpose of this chapter is to assess the potential impact of this uncertainty with the 

SLR scenarios produced in the previous chapter. Before doing this, it is important to define 

uncertainty and other terms that may be used in the uncertainty assessment. Booker and Ross 

(2011) defines these terms as follows: 

 Certainty: “a state, such that evidence to the contrary is below a threshold of disputation”. 

 Precision: “refers to abilities in making good predictions, being exact, being correct, 

maintaining control, operating within specifications, and representing the physical world”. 

The precision cannot be mixed with accuracy, as accuracy measures the difference 

between the actual (true) value and predicted value. 

 Uncertainty: “what is not known precisely” and manifests itself in numerous ways, most 

of which are undetected or considered too difficult to assess. 

 Uncertainty Quantification: “refers to an analysis and assessment process or evaluation 

based upon models, data, expertise, etc”.  

 Confidence: “is the state of feeling sure”. Confidence has “an inverse relationship to 

uncertainty, which is assessed and/or quantified”.  

 

 Assessing uncertainty provides decision makers with a more complete picture about the future 

SLR in Qatar. These uncertainties are inherent in the SLR study for a number of reasons. The two 

that we will focus on in this study are: the accuracy of the DEM and the accuracy of the SLR (RCP) 

scenarios. 

 The accuracy of the DEM has a significant influence on the quality of the inundation mapping 

and the quality of the results produced. Therefore, it is important to understand the magnitude and 

spatial distribution of uncertainty, especially when dealing with decisions related to SLR and 

climate change (Coveney & Fotheringham, 2011). There are a number of sources of error and 
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uncertainties within a DEM which are documented in the literature (Burrough, 1986; Heuvelink, 

1998; Pike, 2002; Wise, 1998). According to existing literature, errors and uncertainties within a 

DEM originate from three major sources: 

 Errors in the elevation data because of its age and sampling density or spatial distribution 

of the elevation points. For example, in some areas, the elevation might change due to 

natural factors, such as erosion, or man-made factors, such as urbanisation. These changes 

depend on the geomorphology (e.g. in desert, the impact of erosion is much greater than 

in the Rocky Mountains). Sampling density also reduces error. Östman (1987), for 

example, reported that an increase in the sampling density reduced the RMSE of a 

manually constructed DEM. 

 Methods used to obtain the elevation maps, such as using field surveying, 

photogrammetry, surface sensing technologies (such as Light Detection and Ranging 

(LiDAR)), Interferometric Synthetic Aperture Radar (IFSAR) or sonar (for bathymetric 

data) and digitising from existing maps. An example of this is when the elevation data was 

validated (Table 3-1); there was an average error of 33 cm, 78.8 per cent of the points had 

errors less than half a metre and 51.5 per cent had errors less than 25 cm. Potential sources 

of these errors are discussed, but one of them is likely to be the difference between the two 

methods for obtaining elevation data.  

 As a result of data analysis. In this study the interpolation procedures are a potential source 

of error. Ten different methods were used to generate DEMs using four interpolation 

techniques (see Table 3-10 in Chapter 3). Each method produced a different RMSE. 

 Apart from the uncertainty in the DEM, there is also uncertainty about the SLR resulting from 

climate change. There are three main sources of uncertainty in the SLR prediction, which are: 

model, scenario and internal variability (Lafaysse et al., 2014). The first source is model 

uncertainty. As the temperature of the ocean increases, melt-back of ice sheets and continental ice 

occurs, leading to a rise in sea level (Hu & Deser, 2013). Sea level rise is a complex event to predict 

because climate change affects many factors, such as thermal expansion of water, inputs from ice 

sheets, changes in land water storage and coastal erosion (Rahmstorf, 2007). It also affects all the 
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dynamical and thermo-dynamical processes over the full ocean column, making SLR a complex 

event to predict (Church et al., 2013). Hence, different climate models predict different SLRs. 

Scenario uncertainty is the second source and is related to the uncertainty of the future GHG 

emissions. These are specified in SLR projections known as RCP scenarios (as described in detail 

in previous chapters). These scenarios can result from a diverse range of socio-economic and 

technological development pathways (IPCC, 2007). Uncertainties tied to the scenarios have a wide 

range of impacts on the projections of the SLR. The final factor is internal variability. This usually 

relates to the accuracy of climate models for predicting the temperature and precipitations at 

national scales (e.g. within Qatar) and constitutes a significant source of uncertainty (Hawkins & 

Sutton, 2011). In terms of SLR, this may be less of an issue in Qatar as it is a relatively small 

country.  

5.2.  Review of the literature 

There are several methods through which uncertainty can be assessed. However, often inundation 

mapping is presented without quantifying the uncertainty information and accuracy assessment, 

which are essential (Gesch et al., 2009). Therefore, the uncertainty assessment is a key element for 

the policy development and decision making process. Not including uncertainty in the analysis 

may lead to policy recommendations which do not capture all the risks and benefits. Consequently, 

the policy will be ambiguous (Pizer, 1999). The amount of climate change that may happen and 

its potential impacts are exceptionally large, including changes in precipitation, frequency and 

intensity and SLR, however the uncertainty about these impacts remains very large 

(Webster,2000).  

 There are many ways to quantify uncertainty in inundation mapping with various degrees of 

complexity. For example, Titus and Richman (2001) used a simple method based on a DEM to 

predict future shorelines in the United States. They accounted for uncertainty by stating that 

flooding would be between the 1.5 and 3.5 m contour. In Australia, the government mapped future 

inundations due to climate change, but they did not quantify the uncertainty level. Instead they 

provided a statement to explain that uncertainty existed in the DEM and that this might affect their 

estimations (OZCoasts, 2012).  
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 The most common method reported in the literature is where the interpolated DEM is 

considered as only one possible representation of the true elevation surface. Multiple simulations 

of the DEM can be generated using MCS to quantify DEM uncertainty. In this study the MCS was 

selected because it is a robust technique in mapping SLR uncertainty by generating random errors 

to simulate uncertainty and generate the probabilities of various scenarios in the simulation 

(Schmid, 2014). Monte Carlo simulations can represent the DEM of the study area as a set of 

probability distributions of possible outcomes (Srivastava, 1996). 

 The MCS creates many DEMs by introducing simulated errors into the DEM in five four steps: 

1- Generating a random error map using statistical representation selected for DEM error.  

2- The random error map is added to the interpolated DEM.  

3- Steps 1 and 2 will be repeated for a number of times to include the distribution of possible 

elevations.  

4- The process of interest, in the case SLRs, will be run a number of times. 

5- All the possible outputs are added together to produce a probability map which quantifies 

uncertainty.  

 Monte Carlo simulations have been used by many researchers to address DEM uncertainty, 

but not necessarily associated with SLR. Hunter and Goodchild (1997) studied the influence of 

simulated changes in elevation at different levels of spatial autocorrelation on slope and aspect 

calculations. They developed a new method to understand the slope and aspect maps with differing 

levels of spatial autocorrelation. They demonstrated that uncertainty in slope and aspect depends 

on the structure of spatial dependence of errors and are inherent in the use of DEMs. They 

concluded that the uncertainty model helped to understand the quality of the slope and aspect 

information derived by using GIS. 

 Liu et al. (2007) used an MCS to assess the effects of vertical error in LIDAR data and 

uncertainty in the tidal datum on the position of the shoreline. They developed a new method to 

determine the shoreline based on processing LIDAR images. They then assessed uncertainty in the 

shoreline positions using MCSs. The shoreline was derived, and the MCS indicated that the high-

water mark was horizontally accurate within 4.5 m at a 95 per cent confidence level.  
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 Several studies have also used MCS to focus on SLR. For example, Leon et al. (2014) 

investigated DEM uncertainty in coastal inundation mapping. They simulated DEM errors using 

MCS by adding one thousand error simulations to the interpolated DEM. The results of their 

analysis indicated, as an example, that when a one per cent probability of flooding was considered, 

the land area was around 11 per cent greater than an analysis which did not consider elevation 

uncertainty. They found that the MCS is an effective approach for uncertainty assessment and 

modelling complex and dynamic phenomena, such as inundation due to SLR.  

 The second source of uncertainty is associated with the SLR. Ruckert et al. (2017) studied the 

impacts of SLR uncertainty on future flood risks. They used a simple bathtub method and projected 

a 100-year flood height (tide and SLR) for San Francisco Bay. They demonstrated that SLR 

uncertainty has a large impact on areas under the risk of inundation. Their case study demonstrated 

that uncertainty increases the 100 years return level by 0.5 m, and the areas at risk of flooding were 

doubled.  

 Schmid et al. (2014) examined different methods of mapping the SLR based on single-surface-

type models. They also developed a new method, Z-score-type, to map uncertainty based on 

elevation. The Z-score technique uses the RMSE of the data and assumes it is normally distributed. 

The researchers then assigned each cell in a DEM a Z-score according to its height above sea level. 

The Z-score is calculated in the same way as a standard score (value – mean / standard deviation), 

but RMSE is used instead of standard deviation (sea level – elevation / RMSE). In order to integrate 

the uncertainty of the SLR into the equation, the RMSE was replaced by a maximum cumulative 

uncertainty of inundation, which is the root-sum-of-squares of standard deviation of elevation and 

sea level. They also concluded that an MCS provides vital information about uncertainty in 

mapping future SLR inundation because of its ability to include various scenarios in the 

simulations.  

5.3. Aims and study area 

In the literature, most of the inundation mapping studies were focused on the uncertainties 

associated with DEM or SLRs. Schmid et al. (2014) developed a Z-score methodology to 

investigate the combination effect of DEM and SLR uncertainty. However, their proposed 
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methodology was limited in addressing other factors, such as hydrologic connectivity, probabilities 

of DEM and SLR representations. Therefore, in this chapter uncertainty from both DEM and SLR 

will be quantified based on probability distribution.  

The aim of this chapter is to: 

 Quantify the impact that uncertainty within the DEM has on inundation 

 Quantify the impact that uncertainty within the amount of SLR has on inundation 

 Compare uncertainty and error from the DEM with uncertainty and error within SLR. 

 Monte Carlo simulations were implemented using IDRISI Selva version 17. This was used to 

quantify the uncertainty in both DEM and RCP. The IDRISI software was used instead of ArcGIS 

because it has a better functionality, especially the random generation procedures to support MCS. 

The Al Thakhira area (93.78 km2) was selected as a case study because it has a reasonable area 

(not too large, like Doha, and not too small, like Al Khor 1 and 2), which is important for having 

a practical processing time. Furthermore, RCP 8.5 was selected because it represents the worst-

case scenario of climate change. The MCS uses the DEM generated in a previous chapter from a 

spline interpolation method as this had the lowest RMSE.  

 For the DEM we have generated two estimates of uncertainty. The first is the uncertainty 

associated with the spatial interpolation and the second was generated from the ground truth data 

sampling undertaken in 2016. For this chapter we focus upon the uncertainty associated with the 

spatial interpolation only. This decision was taken because, for Al Thakhira, only four ground truth 

points were produced, making it difficult to produce an accurate estimate of uncertainty. In 

addition, there were differences in time between the original sampling and the ground truth 

measures, producing further uncertainty on the accuracy measures produced by the ground truth 

sampling. 

5.4. Assessing uncertainty in digital elevation model 

5.4.1. Monte Carlo simulation with random errors and no spatial correlation  

The simulations were conducted in four steps: 
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5.4.1.1. Step 1. Simulating digital elevation model with errors 

As a first step, 100 new real binary images (RAND) were created using a RANDOM model in 

IDRISI, based on normal distribution with a mean of zero and a standard deviation equal to the 

RMSE (0.10). This was the RMSE of the interpolated DEM from Chapter 3. These binary images 

represent known errors to be added to the interpolated DEM. The reason for having 100 simulations 

is to be able to determine the probability of flooding. The 100 times simulation was chosen as a 

balance between the time of data processing and the quality of the outputs. A higher number of 

simulations may produce better outcomes but they have a longer processing time. On the contrary, 

lowering the number of simulations may reduce the processing time but will not capture the entire 

probability distribution, and it is computationally practical for most data sets (Pattengale et al., 

2010).  

 The error maps were then added to the interpolated DEM, creating 100 DEMs with errors 

(RAND_DEM) by using the OVERLAY function in IDRISI (Figure 5-1). 

 

Figure 5-1: Step 1 from MCS: Creating 100 random errors and adding it to the 

interpolated DEMs using Random and OVERLAY functions. 

5.4.1.2. Step 2. Bathtub method 

In this step, the 100 DEMs were reclassified to identify the flooded areas based on the SLR from 

RCP and tidal events (2.06 m). The RECLASS function in IDRISI (Figure 5-2) was used to 

perform the classification of the bathtub for all of the 100 DEMs. The outcome of this step is 100 

images with two classes. Areas above future sea level (unflooded cells) have a zero value, while 

flooded areas have a value of one.  
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Figure 5-2: Step 2 from MCS: classifying area based on the bathtub method using 

RECLASS function. 

5.4.1.3. Step 3. Hydrologic connectivity 

In a previous chapter (Chapter 4), the 8-side rule (using ArcGIS) was used to determine the 

connectivity of flooded cells to the sea in order to eliminate the flooded areas without hydrologic 

connectivity. However, in this chapter a different method was used to assess the hydrologic 

connectivity because of the different functionality of the IDRISI software. This is because in 

ArcGIS an overlay of vector (coastline) and raster layer (flooded area) were used to determine the 

connectivity of flooded areas to the sea. In IDRISI there is no option to overlay vector and raster 

data. However, the two methods achieve the same result.  

 To determine the connectivity of each flooded cell the COST function in IDRISI was 

used (Figure 5-3) to calculate the connectivity of the cells to the sea. The COST 

function measures the distance/proximity surface (also referred to as a cost surface), 

where distance is measured as the least cost (in terms of effort, expense, etc.) in moving 

over a friction surface. The COST function measures the distance by “grid-cell 

equivalents”. Distances are measured in eight directions from any cell, which is 

equivalent to the 8-side rule used in the previous chapter. 

 The output from the previous step (bathtub method) and a raster layer representing the 

sea in the study area were used as inputs for the COST function. 

 Before running the COST function, the inputs from Step 2 were reclassified to give 

unflooded areas a very high value (cell value = 10,000) while flooded cells remain the 

same (cell value = 1). This high value ensured that any flooded areas identified by the 

bathtub method, which is only connected to the sea by unflooded area, obtained a 

remarkably high value (i.e. > = 10,000) on the cost surface. The cost surface was run 

to calculate the cost distance of each cell from the coastline.  
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  Then the outputs from the COST model were reclassified to determine areas connected 

to the sea (with cell value = 1) and not connected to the sea (with cell value = 0) (Figure 

5-4). This was achieved by reclassifying every cell less than 10,000 as flooded and all 

cells greater than or equal to 10,000 as unflooded.  

 

 Figure 5-3: Step 3 from MCS: Determine the areas connected to the sea using COST 

function. 

 

Figure 5-4: Step 3 from MCS: Reclassify the outputs from COST model based on 10,000 

value to determine connectivity to the sea. 

 

5.4.1.4. Step 4. Probability map 

Adding all the final 100 images from Step 3 helped to create a probability map, indicating the 

probability of flooding in each cell (Figure 5-5). Then three scenarios were created to compare the 

error and uncertainty in the interpolated DEM and its impact on flooding. Cells with a flooding 

probability greater than ten per cent, 50 per cent and 100 per cent were identified. 

 

 

 

Figure 5-5: Step 4 from MCS: creating a probability map. 
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 The MCS for Al Thakhira was conducted and the probability map was produced (Figure 5-6). 

In panel (a) the probability is aggregated into ten classes and in panel (b) the probability is 

aggregated to four classes. In panel (b) the first class includes all the cells with the probability of 

0-5 per cent, which represent cells with a “very unlikely” occurrence of flooding. Then, 6-50 per 

cent represent “unlikely” to flood, 51-94 per cent represent “likely” to flood and 95-100 per cent 

“very likely” to flood. This classification was based on the statistical confidence intervals.  

 The probability map (Figure 5-6b) shows that a large part of the study area would be very 

unlikely to become flooded (0-5 per cent). These areas are mainly higher grounds, which will 

remain above future sea level or are disconnected from the coast and are located in the central part 

of the study area. Most of the area with unlikely (6-50 per cent) flooding is located far away from 

the coastline and in the central part of the study area. The areas likely (51-94 per cent) or very 

likely (95-100 per cent) to flood are located near the coast and these areas are particularly large in 

the north and south-east of the study area.  
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Figure 5-6: Probability map of DEM uncertainty in Al Thakhira area for 

average RCP 8.5 scenario and HOT based on MCS. (a) The probability is 

aggregated into ten classes (b) The probability is aggregated into four classes. 

5.4.2. Monte Carlo simulation with spatially correlated random error 

5.4.2.1. Assessing uncertainty in sea level rise 

As described in the previous chapter, RCP 8.5 modelling is based on high GHG concentration 

levels, Riahi et al. (2011). The projected RCP 8.5 SLR with a five to 95 per cent range of 

projections from process-based models will be 0.52 to 0.98 m with an average (mean) of 0.74 m. 

This mean was chosen as it was a better representation of likely future conditions. The SLRs were 

added to the HOT in the Al Thakhira area (1.32 m). The total SLR used for minimum scenario was 

1.84 m, 2.06 m for average and 2.3 m for maximum to assess uncertainty (Figure 4-4 ). 

5.4.2.2. Representative concentration pathways - Monte Carlo simulation 

The no-flood areas were determined as those with a height above the future SLR. Those areas are 

in the central part of the study area. The areas with a likelihood of flooding are located in the 

eastern and south-eastern part under minimum and average scenarios, while the maximum extends 

to a deeper part of the central study area. The minimum scenario represents the likelihood of SLR 
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occurring alongside the coastline, while the maximum (less likely) scenario covers wide areas, 

including minimum and average scenarios.  

 A different method to assess uncertainty in MCS was used to simulate a likely SLR. One 

challenge in doing this was to determine the probability distribution of SLR. One solution was to 

assume that the difference between maximum and minimum RCP 8.5 SLR scenarios represents 

the 95 per cent confidence interval around the average RCP. Random numbers were generated 

using this assumption and added to the sea level. This gave a mean rise of 2.06 m with a standard 

deviation of 0.10. The simulations were conducted following the same steps described in the 

previous section (section 5.4). However, instead of generating 100 DEMs to simulate flooding, 

100 SLRs were generated. The height was generated based on 95 per cent confidence intervals 

around the average of RCP 8.5. The heights were created using the Normal Inverse Formula 

(NORMINV) in Microsoft Excel. This formula uses the Random function (RAND) to select a 

random set of numbers uniformly distributed between 0 and 1 and forces it to create a normally 

distributed set of numbers based on a mean and standard deviation (NORMINV (RAND, Mean, 

Standard Deviation)). 

 Then the results from the 100 sea levels were stacked together to create a probability map for 

RCP (Figure 5-7a), where a zero value represents unflooded areas. The probability of flooding 

changes depending on how many times each pixel was flooded under 100 SLRs. Most of the areas 

around the coastal line have a high probability of flooding, while areas far away from the coast are 

less likely to flood. The non-flood areas also cover most of the central part of the study area. In 

order to make the comparison between the two probability maps, DEM and SLR, the probability 

map was reclassified into four categories based on the likelihood of flooding (Figure 5-7b). 
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Figure 5-7: (a) Probability map of RCP uncertainty in Al Thakhira area based on MCS (b) 

Reclassified probability map into four classes. 

(a) 

(b) 
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5.4.2.3. Comparing uncertainty of digital elevation model to representative concentration 

pathways Monte Carlo simulations  

The comparison of the results between DEM and RCP uncertainty using MCSs is presented in 

Figure 5-8. The RCP simulation predicted two areas (circled in black) with a probability of 6-50 

per cent flooding, while this was not predicted using DEM as flooded areas.  

 

 

Figure 5-8: Comparing reclassified probability map of (a) DEM uncertainty and (b) RCP 

uncertainty in Al Thakhira area based on MCS. 

 The probability maps for both DEM and RCP were divided into four groups: 0-5 per cent to 

represent areas with very unlikely flooding, 6-50 per cent for unlikely flooding, 51-94 per cent for 

likely flooding and 95-100 per cent for very likely flooding. The DEM simulation predicted fewer 

areas as “very unlikely” (0-5 per cent) and “very likely” to flood (95-100 per cent) than the RCP 

simulation. Yet the RCP simulation predicted fewer areas with flood probabilities of 6-50 per cent 

and 51-94 per cent than the DEM simulation (Table 5-1).  
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Table 5-1: Comparison of flooded areas with four probabilities between simulated DEM 

and simulated RCP. 

Probability of flooding (%) 

based on simulation of RCP 

Area 

(km
2

) 

Probability of flooding (%) 

based on simulation of DEM 

Area 

(km
2

) 

0-5% 48.30 0-5% 47.78 

6-50% 2.98 6-50% 4.85 

51-94% 1.59 51-94% 4.49 

95-100% 19.77 95-100% 15.53 

Total 72.64 Total 72.64 

 

5.4.2.4. Combining probability surfaces  

The second method consists of combining the probability maps of elevation (Figure 5-8a) with the 

probability maps of SLR (Figure 5-8b). Both of these were based on MCSs and the probability 

maps were combined using Equation 5-1.  

Overall flooding probability = [Elevfloodprob. × (1- Slrflood prob.) + (Slrflood prob) × (1- 

Elevfloodprob) + (Elevflood prob. × Slrflood prob.) (Equation 5-1) 

 The result (Figure 5-9) shows the area with a probability of flooding based on SLR and 

elevation. There are very few areas with a probability of 51 – 94 per cent. All the other probability 

categories were shown with clearer zones. The specking effect in this map is lower than on the 

combining error map because the two surface probability maps were combined (elevation and 

SLR). The SLR probability map had a perfect spatial correlation because all the cells were provided 

with the same rate of SLR. The elevation probability map was generated with no spatial correlation. 

Hence, combining these two maps reduces speckling.  
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Figure 5-9: Probabiity of flooding from a combination of elevation and SLR uncertainties 

based on the results of MCSs. 

5.4.2.5. Comparison of two methods 

The two methods were compared to show the similarities and differences, which was done in 

several ways. The first was a visual comparison of the two maps (Figure 5-10). This shows a much 

higher probability (95-100 per cent) of the flooding area in the combined probability surface 

compared to the combined error map. A greater speckling on the combining error map is also 

apparent. Finally, the areas at risk of flooding are remarkably similar between the two methods. 
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Figure 5-10: Visual comparison between combined probability surface map (a) with 

combined error map (b) for Al Thakhira area. 

 For the second method, the areas falling in different bands of flooding probability were 

combined (Table 5-2). When the probability surfaces were combined, a smaller area was found to 

be at risk of flooding (i.e. a greater area in the 0 – 5 per cent band). The combined error method 

produced greater areas with a flooding probability between 6 and 94 per cent.  
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Table 5-2: Comparison of flooded areas between combining probability surfaces and 

combining errors in the Al Thakhira area. 

Overall probability of flooding 

(%) (combining probability 

surfaces) 

Area 

(km
2

) 

Overall probability of flooding (%) 

(combining errors) 

Area 

(km
2

) 

0-5 41.20 0-5 38.01 

6-50 7.10 6-50 15.01 

51-94 3.47 51-94 9.21 

95-100 20.87 95-100 10.41 

Total 72.64 Total 72.64 

 

 The final method was to perform a cross tabulation of the two probability maps (Table 5-3). 

Overall, most cells were assigned the same flooding classification. Most differences occur in the 

yellow cells where the probabilities are only one class different. Another observation from the 

tabulation of the two probability maps is that the areas with significant probability of non-flooding 

(0-5 per cent) and flooding (95-100 per cent) when comparing the two methods was small (0.00 

and 0.06 km2). This is an important finding as the two methods are not producing vastly different 

results.  

Table 5-3: Tabulation of the combined probability surface and combined error methods for 

the Al Thakhira area. 

  

Overall probability of flooding (%) 

(combining errors) 

(0-5%) (6-50%) (51-94%) (95-100%) 

Overall probability of 

flooding (%) (combining 

probability surfaces) 

(0-5%) 36.35 4.43 0.42 0.00 

(6-50%) 1.35 4.33 1.30 0.12 

(51-94%) 0.25 1.48 1.27 0.47 

(95-100%) 0.06 4.77 6.22 9.82 

Total area (km2 ) 38.01 15.01 9.21 10.41 
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5.5. Comparing spatially independent to dependent error 

One reason why the produced map has a speckled effect might be because the errors were 

introduced into the interpolated DEM (in the MCS) randomly. This means that the error was 

spatially independent. To understand the importance of spatial autocorrelation in errors and its 

effect on the probability of flooding, the error introduced in the DEM at three levels of spatial 

autocorrelation was examined (Moran’s I of 0, 0.33 and 0.66).  

The objective of this section is to: 

 Include spatial correlated errors in the DEM.  

 Compare the probability of flooding between models with different levels of 

spatially correlated error and to understand the impact of the error’s spatial 

dependency on the results. 

5.5.1. Methods 

Three steps were taken to produce a spatial autocorrelation of errors and compare it to random 

errors in the DEM. A spatially correlated error was generated using the gstat spatial model in R. 

The first step was to obtain the semi-variogram of the interpolated DEM. The interpolated DEM 

was created by using elevation data points and a spline interpolation method in ArcGIS, as 

described in Chapter 3. This DEM has a Moran’s I of 0.66 (Sill = 2.026 and range = 3399.19 m) 

(Table 3-5). The high level of spatial autocorrelation in the Al Thakhira DEM, with RSME of 

0.10 m (Chapter 4) may be due to the nature of the topographic condition in Qatar. It is a very flat 

area, hence high spatial autocorrelation. In the next step, an error was generated using these 

parameters, but the sill was fixed at 2.026 and the range was varied to produce errors with different 

levels of spatial autocorrelation (Moran’s I 0.66, 0.33 and 0). This was done for the area of Al 

Thakhira. 

 Finally, the third step compared the outcome of the flood probability mapping using the three 

levels of spatially correlated error.  
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5.5.2. Results 

Changing the range value affects the level of spatial autocorrelation. The larger the value, the 

higher the level of spatial autocorrelation in the error. The smaller the value, the lower is the spatial 

autocorrelation. The impacts of altering the range for Al Thakhira are presented in Table 5-4. A 

sill of 2.026 m and range of 658.2 m gave the spatial autocorrelation of 0.33, half of the interpolated 

DEM. When the sill was kept at 2.026 m and the range increased to 1516.19 m, the Moran’s I 

increased from 0.33 to 0.66. This means that the spatial autocorrelation in the error increased. 

Finally, the range was lowered to 1 m to get a Moran’s I of zero (no autocorrelation).  

Table 5-4: Simulating spatially autocorrelated errors to achieve a Moran’s I of 0.66 and 

0.33. 

Sill (constant) Range (altered) Autocorrelation (Moran’s I) 

2.026 2000 0.87 

2.026 1660 0.72 

2.026 1560 0.70 

2.026 1525 0.68 

2.026 1515 0.60 

2.026 1516.19 0.63 

2.026 1516.20 0.66 

2.026 1516.20 0.66 

2.026 1500 0.50 

2.026 758.10 0.43 

2.026 658.20 0.33 

 

 For each value of Moran’s I (0, 0.33 and 0.66), 100 simulations of error were produced in the 

R programme. Then each error was combined with the DEM to create a flood probability map for 

three levels of spatially autocorrelated errors (Moran’s I of 0, 0.33 and 0.66) (Figure 5-11).  
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 In the case of Moran’s I of 0.33 and 0.66, the results show a large reduction in areas with a 95-

100 per cent probability of flooding. Increases were seen in areas with a probability of flooding 

ranging from 51 to 94 per cent and 6 to 50 per cent. However, the areas with 0 to 5 per cent 

probability decreased more under Moran’s I of 0.33 than Moran’s I of 0.66. This data is shown in 

Table 5-5. The areas with 0 to 5 per cent flood probability varied between three levels of Moran’s 

I: 47.78 km2, 28.16 km2 and 33.43 km2. These were predicted by Moran’s I at zero, 0.66 and 0.33, 

respectively. The variation in the flooding predictions was slightly greater for 6 – 50 per cent and 

51 – 94 per cent. For flooding with a probability of 95-100 per cent, the area under a Moran’s I of 

zero was much greater than Moran’s I of 0.33 and 0.66. 

Table 5-5: Comparison of flooded areas between flooding probability with different levels 

of spatial autocorrelation (Sill 2.026) (Range 658.20 and 1516.20). 

 

 

 The spatial variation of flood probabilities from the three Moran’s I scenarios indicates that the 

effect of the random errors are exhibited in the form of a sprinkle effect (Figure 5-14).  

 

 

 

 

 

 

 

 

Probability of 

flooding (%) 

Spatial Correlation 0 

Area (km2) 

Spatial Correlation 

0.33 Area (km2) 

Spatial Correlation 

0.66 Area (km2) 

0-5 47.78 28.16 33.43 

6-50 4.85 25.77 19.09 

51-94 4.49 18.23 18.73 

95-100 15.53 0.49 1.39 

Total 72.64 72.64 72.64 
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Figure 5-11: (a) Probability of flooding (%) based on spatial correlation of 0 (b) Probability 

of flooding (%) based on spatial correlation of 0.33 (c) Probability of flooding (%) based on 

spatial correlation of 0.66. 

 (a) 

 (b) 

 (c) 
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 In order to understand the difference between the flood probability maps (Moran I 0.33 and 

0.66), the two results were subtracted from the results with zero spatial autocorrelation. Figure 5-

12 shows the difference between the probability of flooding in the case of DEM and errors with 

zero spatial autocorrelation and in the case of DEM and errors with 0.33 spatial autocorrelation. 

The areas with zero mean there was no difference between the probability values. Positive areas 

mean that the probability of flooding under a spatial autocorrelation of zero was greater than when 

spatial autocorrelation was 0.33. Negative values mean that the probability of flooding under a 

spatial autocorrelation of zero was lower than when spatial autocorrelation was 0.33. 

 

Figure 5-12: The difference in flood probability between zero autocorrelation and Moran’s 

I = 0.33 Sill 2.026, Range 658.20. 

 Furthermore, a map was produced to show the differences in the flood probabilities between 

spatially-dependent errors (Moran’s I = 0.66) and independent errors (Moran’s I = zero, random 

error). The results in Figure 5-13 show the difference between the probability of flooding in cases 

of zero spatial autocorrelation and in cases of 0.66 spatial autocorrelation. Most of the study area 

showed insignificant differences in the flood probability, however, there were some areas with a 

significant difference.  
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Figure 5-13: The difference in flood probability between zero Moran’s I and Moran’s I = 

0.66. Sill 2.026, Range 1516.20. 

5.5.3. Step 2. Varying the value of sill with fixed range values 

In the next step of the methodology the sill value was reduced in order to determine its impact on 

the spatially-correlated error surfaces and on the flooding probability maps. Therefore, this time 

the sill was reduced to 0.5 with the same ranges of 1, 658.2 and 1516.20. This produced errors with 

Moran’s I of 0, 0.33 and 0.66. Example maps of this spatially autocorrelated error are shown in 

Figure 5-14.  
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Figure 5-14: Example map of spatially autocorrelated error from R programme with Moran I = zero, 0.33 and 0.66 (Sill 0.50, Range 1, 658.20 

and 1516.20). 
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 Monte Carlo simulations were produced and the spatial autocorrelation (0.33 and 0.66) 

significantly reduced the areas with 95 – 100 per cent probability, while increasing the areas with 

a probability ranging from 51 to 94 per cent and 6 to 50 per cent. In contrast, the areas of 0 – 5 per 

cent probability decreased more under the 0.33 autocorrelation than 0.66. The difference in the 

value of flood probability between a Moran’s I of 0 and 0.33 was less than ten per cent for more 

than 70 per cent of all the pixels, while between a Moran’s I of 0 and 0.66 it was less than ten per 

cent for more than 66 per cent of the pixels (Table 5-6). These results are similar to those seen in 

Table 5-5.  

Table 5-6: Comparison of flooded areas between flooding probability with different levels 

of spatial autocorrelation. 

Probability of 

flooding (%) 

Spatial Correlation 

0 

Area (km2) 

Spatial Correlation 

0.33 

Area (km2) 

Spatial Correlation 

0.66 

Area (km2) 

0-5 39.70 42.51 45.40 

6-50 11.04 8.70 5.53 

51-94 15.17 16.20 15.14 

95-100 6.73 5.23 6.57 

Total 72.64 72.64 72.64 

 

 The results were then explored in more detail. The first comparison was between the 

probability of flooding based on the random errors (Moran’s I of zero) included in the DEM 

and based on errors with Moran’s I of 0.33 (Figure 5-15). When a difference map was 

produced, the areas with zero were indicative of no difference between the two. Positive values 

mean that the flood probability of simulation with random error (Moran’s I of zero) was greater 

than simulated flood probability with errors with Moran’s I of 0.33, and the negative values 

represent the opposite. 
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Figure 5-15:The difference in flood probability from R between simulating spatially autocorrelated errors (Moran’s I = 0 Sill 0.50, Range 1.00 

and Moran’s I = 0.33 Sill 0.50, Range 658.20).
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 To explore these differences further, a histogram of differences was produced (Figure 5-16). 

The data showed that most of the areas (more than 70 per cent) have a difference of less than ten 

per cent in the probability of flooding. In only three per cent of the pixels there was a difference of 

more than 30 per cent. However, the distribution of the differences was not normal. To identify the 

factors causing the long tail and spike effect in the histogram, areas were investigated on the 

histogram: a_1,2,3 for the long tail and b and c for the high spike effects.  

 

Figure 5-16: Histogram of difference in flood probability from R between (Moran’s I = 0 

Sill 0.50, Range 1.00 and Moran’s I = 0.33 Sill 0.50, Range 658.20). 

 First, those areas were identified and detailed satellite imagery was obtained. The satellite 

images and DEM (Figure 5-17, Figure 5-18 and Figure 5-19) show the location of a1, a2 and a3. 

These appear to be industrial areas and the DEM shows that the area has varying altitude. This is 

why there were large differences in the probability values depending upon spatial autocorrelation. 

When there is spatial autocorrelation, the flooding probability increases. But when the area has 

frequent high and low elevation, the high areas stop the flooding. This is why the probability of 

flooding is lower when Moran’s I is zero compared to Moran’s I of 0.33. This creates a long tail 

in the graph. 
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Figure 5-17: Satellite images showing the location of an area (a1) representing a road 

within an industrial setting, with lower altitude compared to the surrounding areas, as 

shown in the DEM map. 

 

Figure 5-18: Satellite images showing the location of an area (a2) representing a road 

pipeline, with lower altitude compared to the surrounding areas, as shown in the DEM 

map. 
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Figure 5-19: Satellite images showing the location of an area (a3) representing a cooling 

station for a factory, with lower altitude compared to the surrounding areas, as shown in 

the DEM map. 

 The satellite images and DEM (Figure 5-20, Figure 5-21 and Figure 5-22) were obtained for 

the areas indicated on the histogram as spikes b, c1 and c2. The data shows that b, c1 and c2 are 

marshlands, and the DEM shows low-elevation area (marsh) surrounded by higher-elevated areas. 

In these areas, the greater spatial correlation reduces the probability of flooding.  

 

Figure 5-20: Satellite images showing the location of area b, representing low ground 

marshes, located between relatively higher altitude surroundings, as shown in the DEM 

map. 
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Figure 5-21: Satellite images showing the location of area c1, representing low ground 

marshes, located between relatively higher altitude surroundings, as shown in the DEM 

map. 

 

Figure 5-19: Satellite images showing the location of area c2, representing low ground 

marshes, located between relatively higher altitude surroundings, as shown in the DEM 

map. 

 The probability map with random errors (Moran’s I = 0) was also compared to the same map 

using spatial correlation error (Moran’s I = 0.66). The results show few major differences between 

the probability of flooding based on DEM with random errors and errors with Moran’s I of 0.66 

(Figure 5-23). 



Chapter 5 

162 
 

 

 

 

Figure 5-20: The difference in flood probability from R between simulating spatially autocorrelated error (Moran’s I = 0 Sill 0.50, Range 1.00 

and Moran’s I = 0.66 Sill 0.50, Range 1516.20). 
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 The histogram of the difference map between the flood probability with Moran’s I equal to 

zero and Moran’s I equal to 0.66 is shown in Figure 5-24. Almost 90 per cent of the area has a 

difference in flood probability with less than ten per cent. However, the difference in the 

probability histogram was not normally distributed. There were a long tail and spikes in the shape 

of the histogram. To understand the cause, three areas (a, d and e) were identified on the histogram 

for detailed analysis.  

 

Figure 5-21: Histogram of difference in flood probability from R between (Moran’s I = 0 

Sill 0.50, Range 1.00 and Moran’s I = 0.66 Sill 0.50, Range 1516.20). 

 Satellite images and DEM (Figure 5-25, Figure 5-26 and Figure 5-27) for these areas were 

obtained. The satellite images show that the tail in location a is similar to those identified in the 

previous comparison. The spikes in location d1, d2 and e represent marshlands, which generally 

have a low elevation (as indicated in the DEM) and are surrounded by high elevated areas. 
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Figure 5-22: Satellite images showing the location of area d1, representing low ground 

marshes, located between relatively higher altitude surroundings, as shown in the DEM 

map. 

 

Figure 5-23: Satellite images showing the location of area d2, representing low ground 

marshes, located between relatively higher altitude surroundings, as shown in the DEM 

map. 
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Figure 5-24: Satellite images showing the location of area e, representing roads and low 

ground marshes, located between relatively higher altitude surroundings, as shown in the 

DEM map. 

5.6. Discussion 

Assessing uncertainty is crucial for supporting decision-making processes, especially on future 

SLR and climate change. The uncertainties in both DEM and SLR (RCP) scenarios have an impact 

on the outcome of flood probability. Therefore, it is important to study this in more detail.  

  Table 5-7 summarises the main results from the different assessments of uncertainty. The RCP 

simulation showed that there are 48.3 km2 of area with 0-5 per cent probability of flooding (100-

95 per cent probability of not flooding), this means that 66.7 per cent of the area will not be flooded 

as the result of the RCP scenarios. Only 27.2 per cent of the areas had a 95-100 per cent probability 

of flooding. Therefore, only six per cent of the areas have uncertainty over whether flooding or not 

flooding will happened in the future.  

 The simulation of DEM uncertainty provided very similar outcomes, with 65.7 per cent of the 

areas having a probability of flooding of 0-5 per cent. However, there are lower proportions of the 

area identified with a high probability of flooding, only 21.4 per cent with the 95-100 per cent. The 

areas with higher uncertainties increased to 12.9 per cent of the total area. 
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 When the RCP and DEM uncertainties were combined, the proportion of the areas with low 

probability of flooding (0-5 per cent) reduced to 56.7 per cent, but the areas with a high probability 

of flooding (95-100 per cent) increased to 28.7 per cent of the total area. However, the areas with 

uncertainties increased to 14.6 per cent. 

Table 5-7: Results from different scenarios to assess the uncertainties associated with DEM 

and RCP. 

 
 

 The DEM created using elevation points in Chapter 3 is one representation of reality. By 

introducing error into the simulations, 100 representations of reality for the DEM were generated. 

Future SLR is also uncertain, and this was additionally simulated by creating 100 representations 

of SLR.  

 The two methods for assessing the overall impact of these two sources of uncertainty were (1) 

combining probability surfaces, and (2) combining errors, with both producing similar results. 

They predicted large proportions of areas with no flooding (with probability of 0-5 per cent) (Table 

5-3). The probability of flooding for the areas with more than five per cent and less than 95 per 

cent flooding were overestimated when errors were combined, in comparison to combining 

probability surfaces. However, the areas with the highest probability of flooding (96-100 per cent) 

were underestimated by the combining errors. 

 The previous chapter did not take spatial autocorrelation of error into account. This was 

included in this chapter, which allows consideration of its impact on flooding probability. 

Introducing spatial autocorrelation avoided having an immediate neighbour with extreme peaks 

0-5% 48.3 47.78 41.2 38.01 39.7 42.51 45.4

6-50% 2.98 4.85 7.1 15.01 11.04 8.7 5.53

51-94% 1.59 4.49 3.47 9.21 15.17 16.2 15.14

95-100% 19.77 15.53 20.87 10.41 6.73 5.23 6.57

Total 72.64 72.64 72.64 72.64 72.64 72.64 72.64
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and troughs. There are two situations in which spatial autocorrelation had a large influence on the 

flooded areas. First, where there were areas with sudden changes in elevation in the built-up areas, 

for example, long and narrow areas with low elevation (less than 2.2 m) surrounded by large and 

higher blocks of man-made structures with steeper slopes between these structures and the 

surrounding areas. Secondly, large and flat areas with very low elevation (less than 1.60 m), 

surrounded by higher topography, such as mainly marshland areas surrounded by natural elevated 

features. The probability of flooding when errors were random (Moran’s I = 0) was higher than 

the spatially autocorrelated probability map, but there were many small places dotted around the 

study area.  

 The key reason for these differences in the flood probability (when created based on random 

versus spatial autocorrelation) might be due to the changes in elevation and slope. When the 

changes in elevation were man-made, meaning less spatially autocorrelated, the probability of 

flooding was greater as the errors will reduce these random changes. However, when the changes 

in elevations were natural (spatially autocorrelated), the probability of flooding was lower. 

 However, in overall terms, the impact of spatial autocorrelation on the flooding probability 

maps was fairly small. As Table 5-7 showed, the differences between the areas with high flood 

probability (95-100 per cent) were not significant, with 6.73 km2 for zero autocorrelation and 

5.67 km2 for 0.66 spatial autocorrelation. The 0.33 spatial autocorrelation has a smaller area 

(5.23 km2) under high flooding probability. However, for the non-flooded areas (0-5 per cent 

probability) the high spatial autocorrelation for the area was greater. The spatial autocorrelation of 

0.66 overestimated the non-flood area by 14 per cent but this was not a consistent trend in other 

flood probability categories.  

 In the literature, spatial dependence was used as a grid-cell uncertainty model. This model was 

developed by Hunter and Goodchild (1995) to integrate spatial autocorrelation. The grid-cell 

uncertainty model is a highly complex technique and takes more time to set up and implement. 

However, it has been used in numerous studies, such as Hunter et al. (1995), Hunter and Goodchild 

(1997), Murillo and Hunter (1997), Zerger et al. (2002) and Darnell et al. (2010). 
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 Systematic error assessment is a complex process. It requires time (Wechsler, 2006), which 

cannot be achieved in this study due to some constraints, lack of resources and lack of expertise. 

Furthermore, there is evidence in the literature that, even in cases of doing systematic error 

assessment, there is a possibility that the quality of the outcomes may not improve significantly 

(Darnell et al., 2010). This was the case in this chapter. 

 Elevation data can be used to determine areas susceptible to floods. Introducing error in the 

DEM to assess the uncertainty in the accuracy of DEM for representing the actual elevation has an 

impact on the resulting boundaries of the flooded area. However, it is important to recognise that 

the true nature and extent of these errors is unknown. Therefore, the impact of errors added to the 

DEM for assessing uncertainty remains unexplained. “Even with an understanding of the size and 

texture of spatial data uncertainty, it is not possible to determine what is actually ‘out there’ as long 

as there is any amount of uncertainty. All that can be achieved is the generation of representations 

of what may potentially be there, and the use of these potential realisations to develop a stochastic 

understanding of how spatial data uncertainty affects a geographic information application of any 

complexity” (Ehlschlaeger, 1998, p. 6; as cited by Wechsler, 2006). 
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Chapter 6: Critical Area for Barrier Construction 

6.1.  Introduction 

In previous chapters, the key parameters to identify the areas under high risk of flooding as the 

result of SLR were studied. In Chapter 3, the DEM of the coastal area was produced using a variety 

of interpolation techniques. This was used to assess the likelihood of flooding based on different 

climate change scenarios in Chapter 4 and the accuracy of the DEM was considered in those 

assessments. Furthermore, the interdependency and spatial autocorrelation of DEM errors and their 

impact on flooding probability were assessed and reported in Chapter 5. This helped to ensure that 

the resultant flood probability map is the best possible representation of the potential impact of 

climate change on SLR.  

 The objective of this chapter is to identify critical areas for building a barrier to prevent 

inundation as the result of future SLR. Geographic information system tools and multi-criteria 

evaluation (MCE) were used to identify and select the most cost-effective locations to build 

barriers that can prevent land inundation from SLR as the result of climate change. The rationale 

for this chapter is that, in the literature there are many studies using GIS to assess the impact of 

flooding. These frequently overlap flooding extent with land use/land cover data or other measures 

of impact. However, there are fewer studies assessing the most suitable location for dam 

placements in river systems and virtually no studies using GIS as a decision-making tool to assess 

the most suitable location for dams to prevent coastal inundation. Hence this chapter develops a 

relatively new methodology for adapting to the potential impacts of climate change. Through 

discussions with academics in Qatar there was felt to be a real need for research such as this.  
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6.2. Literature review 

6.2.1. Overview 

This literature review will have two sections. The first will provide an introduction to MCE, while 

the other presents a review of studies that have assessed suitable locations for barrier/dam siting. 

6.2.2. Multi-criteria evaluation  

Multi-criteria evaluation is a technique used to make better decisions. It is often used for assessing 

environmental factors (Jiang & Eastman, 2000). Eisenfuhr (2011, page 2) defined decision making 

as a “process of making a choice from a number of alternatives to achieve a desired result”. 

Decision making in relation to site selection (spatial decision) is based on several criteria related 

to the geographic information. Geographic information systems are a particularly useful tool for 

undertaking MCE (Chakhar & Mousseau, 2008). A simple overlay of flooding with land use is 

useful in terms of assessing flood risk but does not consider the relative importance of different 

land-use types. It also makes it challenging to evaluate the relative merits of impacts measured on 

different scales, e.g. area vs flood depth. The advantage of MCE is to provide a tool for decision 

making in selecting the right place to build barriers to prevent flooding in this case. The tool can 

include multiple points of view from different stakeholders when it comes to flood prevention.  

 Geographic information systems are widely used in making decisions on spatial resource 

allocation based on multiple factors and criteria. This is known as MCE in various disciplines and 

environmental planning is one of the main areas. For example, Tiryaki and Karaca (2018) used 

GIS and MCE to produce a flood susceptibility map based on numerous factors, specifically slope, 

aspect, elevation, geology, land use and proximity to the river. Many other examples of MCE exist, 

including in transportation (Jha et al., 2001), urban and regional planning (Ward et al., 2003), waste 

management (Leao et al., 2004), hydrology and water resource (Martin et al., 1999), agriculture 

(Morari et al., 2004), forestry (Kwaku, 2004), natural hazard management (Ayalew et al., 2004), 

recreation and tourism management (Feick & Hall, 2004), housing and real estate (Johnson, 2001), 

geology and geomorphology (Burton & Rosenbaum, 2003), industrial facility management 

(Vlachopoulou et al., 2001) and cartography (Armstrong et al., 2003). 
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 In the past three decades GIS has been widely used in the MCE process and is mainly used in 

two ways (Jiang & Eastman, 2000). The first consists of converting the criteria into Boolean maps, 

meaning that the criteria evaluated is based on a specific threshold of suitability. This is a simple 

binary classification of the criteria as either included or excluded. Therefore, these Boolean maps 

can be seen as constraints because they exclude areas that are not suitable for consideration. The 

constraints can be analysed in GIS by using functions, such as intersection (logical AND), union 

(logical OR) or a combination of both. 

 The second way consists of standardising the criteria. This approach is where other criteria, 

which are called factors, are given degrees of suitability for the decision under consideration. For 

example, in assessing flooding because of SLR, areas closer to the sea have a higher probability of 

flooding than the areas further away from the coastal line. These areas will be given higher values 

to indicate a higher probability of flooding. These criteria are not binary in their suitability, they 

are continuous and can be expressed as a range, 0 to 100, for example. These approaches can be 

combined, for example, to create a suitability map. All the factors are weighted and then multiplied 

by each other. They may then be multiplied by any Boolean constraints. Eastman et al. (1995) 

suggested following a general formula for measuring the suitability: 

Suitability (S) = ∑ (wi Xi) * II Cj                          (Equation 6-1) 

where wi = weight assigned to factor i  

Xi = criterion score of factor i  

Cj = constraint j 

II= The product 

 However, Eastman (1995) highlighted several issues with these traditional uses of MCE in 

GIS:  

 The choice of Boolean operator is critical. For example, some areas might be excluded 

if a single criterion did not pass the threshold when the intersection (AND) procedure 

is used. However, when the union function (OR) is used, an area might be included 

for consideration in the decision even if only a single criterion meets its threshold. 
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 Also, in a Boolean system, in the final suitability map one area with low suitability 

can be compensated by another area with high suitability. 

 In the standardisation approach, the weights increase linearly using a simple linear 

conversion, which might not be the case for all factors. For example, the risk of 

flooding from the SLR does not increase proportionally as the factor of proximity to 

the sea increases. The areas closer to the sea have a greater risk than areas further 

away. There are other factors too, such as elevation. 

 Whenever weights are given to some factors by professionals, there is subjectivity. 

One group might give a higher weight to a factor while others might not. 

 Both approaches have a simple way to manage errors in the decision. There is no 

consideration of the uncertainties associated with those factors; they, therefore, do not 

consider a decision as a probability risk of getting it wrong.  

 Rikalovic et al. (2014) highlights the advantages of using two stages in MCE to select 

locations. This consists of screening and evaluation stages. In the screening stage, a relatively large 

number of potential sites are selected based on several criteria. In the second stage these sites will 

be narrowed down using more detailed criteria to select the most suitable locations. 

 The MCE was selected as a method for site selection to build barriers to prevent flooding from 

SLR as it can integrate many factors in the calculation and can be used in ArcGIS environments.  

6.2.3. Suitable locations for barrier/dam siting 

Most of the research reviewed focused on the suitability of a limited number of sites to protect 

urban areas from flooding due to high rainfall events. Abushandi (2016) studied the possibility of 

building a dam at a single wadi as a flood prevention measure. He used several factors, such as 

land cover type, catchment characteristics and hydrology factors (rainfall and DEM (slope)) to 

select a suitable site for building a dam. The MCE methodology was found to be effective for 

selecting a site in a single wadi to prevent flash flooding.  

 Jozaghi et al. (2018) comment that determining the best location for a dam construction is an 

extremely complex decision. They used MCE and GIS to improve their decision-making process 
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for a dam site selection in Iran. They used an analytic hierarchy process (AHP), a graphical 

representation of the problem, to help understand and solve the problem. They also used the 

Technique for Order of Preference by Similarity to Ideal Solutions (TOPSIS), a method of giving 

priority in MCE. This technique is widely used in MCE for water resource management. Their 

method was based on two main criteria, the elevation and the shape of the valley. They argue that 

this is because the best site for dam construction is where the valley is narrow and the collected 

volume of water for irrigation and domestic water supply is adequate. They also considered factors 

that include geology, land use, sediment, erosion, ground water, volumetric flow rate and other 

hydrological situations. They found that the integration of MCE and GIS improved the dam site 

selection by reducing cost and providing a holistic approach in the process.  

 Moiz et al. (2018) similarly used GIS and MCE for a hydropower site selection in Pakistan. In 

the study they used a wide range of geographic criteria, including DEM, soil type and land use. 

These were integrated with other data sets, such as meteorological data, to develop a tool for a 

preliminary hydropower site selection. The tool calculates discharge and dam height, which, they 

argue, reduces the time for investigations and evaluates sites using a more systematic approach. 

However, they recognise that other factors, such as social factors, need to be incorporated into their 

analysis.  

 Romanelli et al. (2018) used a similar method to classify areas of priority for hydropower 

construction in Brazil. However, this study used as its starting point several proposed dam sites 

and then evaluated each based on environmental conservation priority, geomorphology and socio-

environmental use. Larentis et al. (2010) also studied the application of MCE and GIS technologies 

for selecting a hydropower site in Brazil. However, this analysis was based on evaluating potential 

sites along a pre-existing stream network. Potential dam height and discharge were calculated, but 

there were no estimates of potential upstream impacts. The authors suggest that the method 

provided an effective way to select hydropower sites and a reasonable prediction of the main 

parameters for planning purposes. 

 Capilla et al. (2016) also used MCE and GIS to optimise the site selection process for building 

a reservoir. In this scheme, water is pumped upstream during a period of surplus power but released 
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during high power demand using a normal hydroelectric plant. A two-step MCE was used. First, a 

broad site selection was undertaken based on topography (land flatness), distance between the two 

reservoirs, water availability and storage capacity. Once a potential suitable site had been found, 

the second step was a more detailed screening process using other factors, such as economic, 

environmental and social criteria. Similarly, Fedorov et al. (2016) used DEM, flow direction, river 

network and hydrological data to create multilayers of geo-information. These were then applied 

to a site selection model. The model was based on catchments and sub-catchments generated for 

their study area. They assessed suitability based on the relationship between basin storage capacity 

and the amount of runoff generated in the drainage basin. The method they used was based on self-

regulated flood dam parameters, which included the height of the dam, the geographic location 

along the river and the potential impact of the dam on the surrounding environment. 

 The previous section was focused on dam creation in relation to river flooding. However, the 

coastal area is also at risk of flooding from the sea. This makes these areas vulnerable. Nonetheless, 

there exists limited literature on coastal barrier selection. Li et al. (2017), for example, studied the 

risk of sea flooding in China by using GIS and spatial analysis and modelling multiple typhoon 

scenarios, flood depth, the extent of areas at risk of flooding and type of land use. The study helped 

to identify the effectiveness of current flood barriers and the likelihood of flooding in most 

residential areas. This work contributed to the development of long-term strategies to reduce the 

impact of typhoon flooding. The selection of new barrier sites was yet to be considered. Having 

an effective barrier will provide significant benefits to the people and businesses living and 

operating near the coastal line and at risk of flooding (Davlasheridze et al., 2019). Natural England 

(Risk and Policy Analysis Limited, 2006) provided generic guidance for selecting sites to prevent 

coastal flooding. These include: 

 description of conservation designation and citations, 

 key features, habitats and species, 

 flood history of the site, 

 site objectives and conservation objectives for the area, 

 description of flood risk management (past and present), 
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 future changes to the site (e.g. climate change), 

 impacts of doing nothing (no active intervention), 

 impacts associated with different standards of protection.  

 De Serio et al. (2018) suggested that the criteria used in site selection to build barriers to 

prevent flooding from the sea are driven by those factors contributing to coastal vulnerability. They 

list the main criteria as below: 

1- Physical criteria:  

 Slope 

 Coastline features 

 Wave height 

 Shoreline change rate 

 Sea level rise 

 Tidal data 

 Elevation 

2- Socio-economic: 

 Population 

 Road network 

 Land use 

 Maanan et al. (2018) used coastal erosion as the key indicator of coastal vulnerability in 

Morocco. This study used MCE and GIS, including layers such as population, erosion and SLR as 

the result of climate change. Tonmoy and El-Zeinb (2018) used an indicator-based assessment of 

vulnerability on eight beaches in Australia. This research took a more local approach and engaged 

the local authorities to weight the criteria based on the well-being of beach residents, the well-

being of the residents and the functionality of the infrastructure at the beaches.  

 Boateng et al. (2017) studied coastal vulnerability based on a wide range of factors, including 

geomorphology, coastal elevation, geology, local subsidence, SLR, shoreline change rates, mean 

tidal range, mean wave height and the population density of the coastal areas. These factors were 

used in GIS to develop a coastal vulnerability index (CVI) for Ghana's coastal areas. Other 
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researchers used the CVI based on a wide range of indicators (Cutter et al., 2000; Yohe & Tol, 

2002; Abuodha & Woodroffe, 2010) to analyse the vulnerability of coastal areas. The CVI was 

required to define the vulnerability of the coastal area and the future aspect of the vulnerability 

(Hinkel, 2011).  

 In any siting study, it is important to identify the critical factors that affect the vulnerability of 

the area to flooding. Several studies highlight the importance of area topography (Abushandi,, 

2016; Jozaghi et al., 2018; Moiz et al., 2018; Capilla et al., 2016; De Serio et al., 2018; Boateng et 

al., 2017). Elevation is also an important factor, but it is much more dependent on the magnitude 

of the SLR (Mannan et al., 2018; Boateng et al., 2017). Elevation and SLR determine the flood 

depth, which is an important factor for deciding on the location of barriers (Li et al., 2017). When 

considering the impact of any flooding, this is dependent on how long the water will stay in that 

area, the depth of the flooding and the functionality of the area where the flooding happened. For 

example, the impact of flood depth on a residential area is much greater than flooding in an 

undeveloped area. Therefore, land use is another key factor when assessing impact (Li et al., 2017; 

De Serio et al., 2018; Moiz et al., 2018; Abushandi, 2016). This will influence the site selection. 

 One limitation of previous studies is that they do not take DEM uncertainty into account. This 

is surprising as many studies have demonstrated the impact this uncertainty can have.  

 In addition to a location that minimises impacts, the best place to build a barrier is where the 

catchment boundaries and the shape of the valley is narrow (Jozaghi et al., 2018). This will result 

in a relatively small barrier to protect a large area from flooding. This produces a more cost-

effective solution.  

 In summary, this review has highlighted that determining the best location for barrier 

construction is complex. However, it has shown the benefits of combining MCE and GIS for site 

selection where the focus of the study is on a large scale. The literature has shown that the choice 

of DEM is one of the key criteria in site selection for building barriers to prevent flooding, 

depending on the elevation of the area and the likelihood of water level rise. In terms of assessing 

potential barrier sites, the review highlights the importance of identifying narrow locations to 

minimise costs. In terms of assessment criteria, land use is a common aspect but other studies 
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consider factors such as depth of flooding and how long the area will be inundated. However, most 

of the literature does not consider DEM uncertainty when identifying suitable barrier sites. In spite 

of this, the previous chapter has presented this as an important factor to consider. The proposed 

methodology will identify suitable sites by using a DEM and considering uncertainty within it. It 

will also consider land use, depth of flooding and depth of pooling. A questionnaire will be used 

to weigh these factors within an MCE. Following this screening stage, a more detailed evaluation 

stage will be conducted.  

 The main reason for the questionnaire is to provide information on the weights that should be 

provided to different factors. Without this it would be difficult to know how different factors should 

be weighed against each other. The questionnaire provides a more objective approach in assigning 

weight for these factors. In this study weights were based on the views of coastal professionals 

working in the academic and policy environment.  

 

6.3. Methodology 

6.3.1. Selection of study area  

A small part of the Al Thakhira study area was selected to develop a methodology for identifying 

the critical area to build a barrier to prevent sea inundations. This area was selected based on 

several criteria. It was an individual, potentially flooded basin, not part of any other basin and 

connected to the sea. It was also relatively small to speed processing during this methodology 

development and contained a variety of land uses, including industrial activities, and was therefore 

of economic importance. This study area is presented in Figure 6-1.  
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Figure 6- 1: Study area (a) Al Thakhira (b) Small part of Al Thakhira was selected. 

 There are three main uses of land in the selected study area: industrial sites, roads and 

undeveloped land, with a total area of 256,000 m2. The study area has direct contact to the sea on 

the northern side. 

6.3.2. Factors that may influence flood impact 

The area of flooded land upstream from any cell, as measured by flow accumulation, is a key factor 

to consider when assessing impact. Once this has been identified, potential barrier sites can be 

determined. In a GIS, the flow accumulation function calculates the accumulated flow for each cell 

based on the direction of the flow from the surrounding cells. There is equal weighting for each 

cell (a weight of one is applied to each cell). However, there are other factors that are important to 

consider: (1) the importance of land use within the flooded area, (2) the depth of the flooding, (3) 

the depth of pooling and the depth of remaining water bodies after the flooding. 

 

(a) (b) 
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6.3.2.1. Land use  

Land use is important because it helps determine the economic, environmental and social costs of 

flooding. The six main types of land use in the entire study area of Al Thakhira were residential 

buildings, roads, industrial sites, commercial sites, agriculture and farms and undeveloped land. A 

land-use map was produced by digitising the one from OpenStreetMap (OpenStreetMap, 2018). 

The vector file was converted into a raster format to be used for further analysis. 

6.3.2.2. Depth of Flooding  

The depth of flooding is also another important factor because if the flood depth is only a few 

centimetres the impact will potentially be less than if it is a few metres. The depth of flooding was 

calculated as a difference between the highest SLR scenario, which is 2.06 m under the average 

RCP 8.5 scenario in 2100, and the elevation of the ground using the digital elevation model (2.06 m 

– DEM). The areas with low elevation will have a high depth of flooding while the areas with high 

elevation will have a lower depth of flooding. Areas with an elevation higher than 2.06 m will not 

be flooded. 

6.3.2.3. Depth of pooling 

Water pooling is a small area of still water, typically one formed naturally (Oxford Dictionary, 

2019). It occurs when an area of land is lower than its surroundings. In other words, when the sea 

retreats the water will remain. This implies that the damage may be more severe as there will be 

longer contact with seawater. This will be a particular problem if, for example, this occurs on an 

industrial site.  

6.3.2.4. Weighting the factors that may affect flood impact  

The relative importance of the three factors and how each can be weighed is crucial to produce 

measures of impact that can be used to identify potential barrier sites. To assess relative 

importance, a survey/questionnaire was conducted in Qatar to produce an importance weighting 

for the three main factors. as well as the six types of land use. 
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 The questionnaire was designed to capture the response of participants with a knowledge of 

coastal systems by asking them to indicate the importance of the three main factors. The survey 

focused on the views of experts and professionals working in the area, mainly those inland and 

from water-related professions in Qatar. The questionnaire and an English translation is presented 

in Appendix 1. The key objectives of the questionnaire were to get an independent and unbiased 

view from coastal experts on how to weight the three factors. It is assumed that each stakeholder 

might have a different view on the importance of each land use. The average importance was used 

in the analysis. 

 In the first three questions of the questionnaire, the participants were asked to weigh the three 

main factors in pairs and score them between one and seven, where one is least important and 

seven is most important. Although a five-point scale is commonly used in such surveys, this study 

chose a seven-point scale. This is believed to differentiate participants’ feelings and responses 

more adequately (Krosnick & Presser, 2010). The participants were asked to score two factors at 

a time against each other (in pairs) to account for the recency effect and help them think about both 

factors at the same time. The recency effect happens when selecting different options; respondents 

tend to select the option they find towards the top of the list (Harrison, 2017). 

 Furthermore, there was another question on the importance of the six different types of land 

use. This was to be able to rank the most important land use in case of sea inundations. In this 

question the six categories of land use were listed all together, not in pairs. This method was 

preferred, as a paired approach would have led to a large number of questions. In addition, it made 

it easier for the participants to make a comparison between all the items. The survey participants 

were selected from the Qatar University database of staff, depending on relevant experience and 

interest in climate change, flooding, urban planning and environmental management. The 

questionnaire was sent electronically in both Arabic and English to eliminate any 

misunderstanding and confusion about the questions.  

 The last four questions asked the age, sex and occupation of the participants. This was to assess 

whether the survey was able to obtain information from a range of participants covering a wide 

range of expertise in this area.  
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6.3.2.5. Calculating factor weightings  

Once the questionnaire responses were obtained, they were converted to a weighting for each 

factor. The proportion of responses for each weighting categories was determined, for example, if 

only three participants selected category two, ten participants selected category five and seventeen 

participants selected category seven. The weighting was calculated by multiplying the proportion 

of participants by the value of that category. So, the weighting for category two would be the 

number of participants (three), divided by the total participants (30), then multiplied by two. 

Therefore, the weighting would be 0.2 for category two, 1.67 for category five and 3.96 for 

category seven. By adding up all these weightings for this factor, a total weighting of 5.83 was 

obtained.  

 As the factors were scored in pairs, each of them obtained two weighting values. The average 

was taken as a final weighting for each of them, then the weighting was calculated proportionally 

between the three factors; for example, if the land use scored a final weighing of nine, depth of 

flooding eight and depth of pooling seven, then each of these weightings was divided by 24 (total 

weighting of the three factors) and multiplied by ten. This would result in the weighting being 3.75 

for land use, 3.33 for depth of flooding and 2.91 for depth of pooling. The same approach was used 

to calculate the weighting for each type of land use. 

 To calculate flow accumulation with a weighting for all the three factors and the six land uses, 

one raster file needed to be used in the ArcGIS with a weighting for each cell. To create this 

collective weighting, the map for each factor was multiplied by the final weighting from the survey 

in ArcGIS. The results were then normalised (from zero to ten) by dividing the value of each pixel 

by the maximum value then multiplied by ten. Finally, the three maps were added together to create 

a collective weighting for the flow accumulation calculation. 
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6.3.3. Cost benefit of flood protection options 

6.3.3.1. Calculating flood protection benefits (weighted flow accumulation) 

To calculate the weighted flow accumulation there are two key components. The first is the flow 

accumulation, which is based on the DEM and the subsequent flow direction between different 

cells. One key element mentioned in Chapter 2 was the role of uncertainty and errors associated 

with the DEM. In this chapter these will be incorporated into the assessment. However, we have 

chosen to only consider DEM uncertainty as opposed to SLR uncertainty. This is because the 

purpose of this chapter is to develop a methodology and it was decided that including both would 

add unnecessary complexity in this development stage. Once the method has been determined it 

would be relatively straightforward to include SLR uncertainty.  

 The second component is the weighting of factors affecting the flow accumulation. The flow 

accumulation function in ArcGIS was used to calculate the flow in the study area. This enabled the 

calculation of accumulated flow from the surrounding area (pixels) into each downslope cell in the 

output raster. The flow accumulation provides information on the number of flooded cells. To 

assess flood protection benefits, it is important to consider the three factors (land use, depth of 

flooding and depth of pooling), which provide a measure of flood impact. These can be used to 

weight each cell in the flow accumulation calculation. The steps to calculate weighted flow 

accumulation are now considered. 

6.3.3.2. Flow direction  

Flow accumulation is generated from a DEM by first generating the flow direction. This is one of 

the hydrological factors of a surface which determines the direction of flow from the surrounding 

area (cell in the raster map). The flow direction value for each cell is calculated based on the 

elevation value of the surrounding cells (Jenson & Domingue, 1988). In this process, uncertainty 

in the DEM will be incorporated. This implies that there will also be uncertainty associated with 

the flow direction as a result of DEM. To account for the uncertainty in the DEM in calculating 

flow direction, I used the same MCS method used in the previous chapter (DEM uncertainty only). 
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One hundred DEMs were created with random errors (Figure 6-2, (2)), using the same parameters 

as in Chapter 2. Briefly, 100 new real binary images were created using the RANDOM model in 

IDRISI, based on normal distribution with a mean of zero and a standard deviation equal to the 

RMSE (0.10) of the original DEM. The binary images represent the known errors to be added to 

the original DEM. These were then filled to remove sinks (Figure 6-2, (3)) and create 100 flow 

direction grids (Figure 6-2, (4)). Sinks are filled as opposed to previous chapters as flow 

accumulation is being determined. 

 However, not all parts of the study area will be flooded. Only areas with an elevation lower 

than 2.06 m (the maximum SLR scenario) are concerned. Therefore, the 100 DEMs created in the 

MCS were used to identify areas below 2.06 m and these were combined to provide 100 

simulations of the areas’ flow direction (Figure 6-2).  

 

Figure 6- 2: Monte Carlo simulation to create 100 flow direction. 
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6.3.3.3. Weighted flow accumulation  

The previous section indicated how the three main factors (land use, depth of flooding and depth 

of pooling), as well as each individual type of land use, were provided with weightings. These 

were input as weightings into the flow accumulation calculation in order to make the calculation 

consistent and take uncertainty into account. These were generated separately for each of the 100 

simulations and combined with the land use map to create 100 collective weightings (Figure 6-3).  

 

Figure 6- 3: Monte Carlo simulation to create collective weighting from three main factors 

influencing flow accumulation. 

 Finally, both simulated outcomes from the direction flow and collective weightings were 

brought together to calculate the weighted flow accumulation (100 times) for the study area. From 

this, an average weighted flow accumulation grid was calculated (Figure 6-4).  
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Figure 6- 4: Monte Carlo simulation to create average flow accumulation. 

6.3.3.4. Generating barrier size 

The previous section should calculate, for every cell in the study area, the benefits of preventing 

upstream flooding. This section produces, also for every cell in the study area, the likely size and 

costs of flooding barriers at these locations. To achieve this, the boundary of the potentially flooded 

area (catchment) was determined by using a flood probability map as produced in Chapter 3. The 

flood probability map was calculated using the results from the 100 simulations and reclassified 

into two categories: flooded and unflooded areas. Flooded areas were defined as those with more 

than a zero per cent flood probability. This was converted into lines indicating the boundary of the 

catchment. 

 The next step was to convert the boundary line into ten smaller segment lines. This was to 

make sure that the distance calculated from every point (cell) in the study area is correctly 

measured from one edge of the catchment to the other. The number of lines (polylines in ArcGIS) 

required will depend on the size of the catchment area. The bigger the size, the larger is the number 

of polylines required for selecting the distance between the nearest two polylines. The distance 

between each cell in the study area and the nearest two segment lines was calculated using the 

Proximal Generate Near Table function in ArcGIS. This helped to determine the distance between 

the flow accumulation point and the nearest two segment lines. This is illustrated in Figure 6-5. In 

panel (a), the catchment is divided into two lines and the distance from the one calculated from the 
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red point is determined. In this example the distance is incorrect. In panel (b), the catchment is 

divided into ten segments and the correct distance (i.e. length of barrier) is calculated. The 

subdivision of the catchment boundary ensures that the narrowest distance for each flow 

accumulation point was selected as a potential area to build a barrier. The sum of these two 

distances provides an estimate of a likely barrier length for each point. An estimated barrier height 

was calculated using the flooding depth value at this point. Then the volume of the barrier for each 

point was calculated, assuming that each barrier was a cuboid with a 1 m width (length x height x 

1 m).  

 

Figure 6- 5: Calculating the distance between the two edges of the catchment to determine 

the length of a possible barrier. 

6.3.4. Identifying suitable barrier sites 

6.3.4.1. Barrier size and its relationship to weighted flow accumulation  

For every point in the study area, the relationship between the weighted flow accumulation and the 

barrier size is an indicator to determine suitable barrier locations. Suitable sites are likely to be 

those where weighted flow accumulations are high (i.e. large benefits of protection) but with 

relatively low barrier sizes (i.e. less costly to construct).  

 For every point in the study area, the weighted flow accumulation value was plotted against 

the volume of the barrier to determine potential sites (containing several sites in each area) for 

building the barrier. Potential barrier sites were visually selected based on Figure 6-8. Potential 

sites were then examined in a second-stage process to determine their potential suitability in more 

detail. This second stage is now described. 
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6.3.4.2. Cost-benefits of the site selection 

Potentially suitable sites were selected. To decide on the final site for building the barrier in the 

study area, further analysis was undertaken on a limited number of sites. A more accurate barrier 

volume was generated along with the average flow accumulation (based on the MCS) by 

determining a height profile and the length of each barrier using the profile tools in ArcGIS. The 

flow accumulation at every point along this barrier was obtained by calculating the maximum flow 

accumulation for each simulation and by averaging all the maximum flow accumulations. This 

will allow us to identify the maximum flow that the barrier can prevent in each scenario. Finally, 

the cost of each barrier was divided by the weighted flow accumulation to estimate a cost-to-benefit 

ratio.  

6.4. Results  

The questionnaire was distributed to 50 people from various professions and 42 responses (17 

males and 25 females) were received. Thirteen participants work at Qatar University, 12 work at 

the Ministry of Municipality and Environment-Urban Planning, eight participants work at the 

Ministry of Transport and Communication (land transport), five at Planning and Statistics 

Authority-Information Systems, two at Sultan Qaboos University (geography department) and two 

at the Arabian Gulf University (geo-informatics). 

 The age of participants ranged from 20 to over 51 years old, with ten participants from 20 to 

30 years old, 15 participants from 31 to 40 years old, nine participants from 41 to 50 years old and 

eight participants over 51 years old. 

 As part of the questionnaire the respondents weighed the three factors (land use, depth of 

flooding and depth of pooling) influencing the flow accumulation. This was done in pairs in the 

first three questions. The results (Table 6-1) shows that the majority (over 75 per cent) thought that 

the three factors are important by giving scores of five or more. 
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Table 6- 1: Results from the questionnaire for the first three questions (number of 

responses). 

Question-1: 
How important do you rate the following factors to 

protect Qatar coastal area from flooding?  

Weighting  1 2 3 4 5 6 7 

1. Land use (Residential building, 

commercial, roads, industrial sites 

and undeveloped land) 

1 1 1 1 3 9 26 

2. Depth of flooding (Depth of water 

in flooded area during the flooding) 0 2 2 5 6 6 21 

 

Question-2: 
How important do you rate the following factors to 

protect Qatar coastal area from flooding?   

Weighting  1 2 3 4 5 6 7 

1. Land use (Residential building, 

commercial, roads, industrial sites 

and undeveloped land) 

1 0 2 1 6 9 23 

2. Depth of pooling (Depth of water 

that remains inland after flooding) 2 2 1 5 7 7 18 

 

Question-3: 
How important do you rate the following factors to 

protect Qatar coastal area from flooding?   

Weighting  1 2 3 4 5 6 7 

1. Depth of flooding (Depth of water 

in flooded area during the flooding) 0 2 1 3 5 9 22 

2. Depth of pooling (Depth of water 

that remains inland after flooding) 1 2 3 4 5 5 22 

 

 The responses were surprisingly similar in terms of the importance of these factors, with most 

of the participants agreeing that almost all the factors were important, with little differentiation in 

the weighting they gave to each factor. This may have been avoided if the questionnaire was 

designed in a way that could force the participants to choose between one of two factors. For 

example, if they said one factor is scored highly (e.g. six out of seven) by default the weight for 

the other factor would be low (e.g. one out of seven).  

 In the fourth question the participants assessed the importance of the six land-use categories 

in case of flooding. Residential buildings and roads were the most important land use, with more 

than 50 per cent of respondents giving them the highest score (seven). This was followed by 
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industrial sites, commercial and agriculture and farms, with more than 50 per cent of the 

participants giving a score of five or more. Undeveloped land was the least important, with more 

than 75 per cent of participants giving a score of five or lower (Table 6-2). It was somewhat 

surprising that such similar results were produced for each land use. 

Table 6- 2: Result of the land-use weighting for all six categories (number of responses). 

Question-4: 
How important do you rate the following land uses to protect 

Qatar coastal areas from flooding?    

 Weighting 1 2 3 4 5 6 7 

1. Residential building 0 2 0 1 4 6 29 

2. Roads 1 1 1 1 4 12 22 

3. Industrial sites 0 0 4 1 8 9 20 

4. Commercial 0 1 2 6 7 10 16 

5. Agriculture & Farms 2 1 5 9 8 7 10 

6. Undeveloped land 7 5 7 8 10 2 3 

 

 Based on the participants’ responses, the total weighting for each factor was determined out of 

ten, with the land-use factor scoring highest (8.79 out of ten), followed by depth of flooding (8.42 

out of ten) and depth of pooling (8.01 out of ten). These weightings were normalised (Table 6-3) 

and the final weightings were used when the three factors were combined to create a collective 

weighting. 

Table 6- 3: The final weighting for the main factors influencing flow accumulations. 

Factor Average Weight Final Weight (out of 10) 

Land use 8.80/25.23 *10 3.49 

Depth of flooding 8.42/25.23 *10 3.34 

Depth of pooling 8.01/25.23 *10 3.17 

 

 A similar approach was used to calculate the weighting for each land-use category, giving the 

highest weighting to the residential building (9.1 out of ten), followed by road (8.7 out of ten), 

industrial sites (8.4 out of ten), commercial sites (8.1 out of ten), agriculture and farms (seven out 

of ten) and undeveloped land (5.3 out of ten). In the study area, only three land-use categories 
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existed; these were industrial sites, roads and undeveloped land. All those weightings were used 

to create a collective weighting map. An example is shown in Figure 6-6. 

 

Figure 6- 6: Collective weighting for all three factors influencing flow accumulation. 

 

 The average weighted flow accumulation produced for the selected study area using 100 MCSs 

with collective weightings is shown in Figure 6-7. The value of the flow accumulation ranged from 

zero to over 14,000. The pixel value in the weighted flow accumulation map represents the total 

number of cells that flow into each cell and are weighted by their land use, depth of flooding and 

depth of pooling.  

.
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Figure 6- 7: Average flow accumulation based on the MCS. 

 For each pixel in the average weighted flow accumulation map, the potential barrier volume 

(likely costs) was calculated and plotted against the weighted flow accumulation value (flood 

protection benefits) (Figure 6-8). The flow accumulation map shows that the study area represents 

a flat topography, therefore a small change in elevation will make noticeable changes in the flow 

accumulation. The flow accumulation increases towards the coastal line from the surrounding area.  
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Figure 6- 8: Relationship between flow accumulation and distance between two edges of the 

catchment. 

 The results show that a plot of barrier volume (cost) and weighted flow accumulation (benefits) 

is potentially an effective visual method to select sites for building barriers. Sites with high 

weighted flow accumulations in comparison to their barrier volumes are clear to see. Based on that 

principle, three groups of points were selected at three different distances with the highest flow 

accumulation. These were site-1, site-2 and site-3 (Figure 6-9). In each site, one point with the 

highest flow accumulations was selected. In site-1, the weighted flow accumulation was 1894 and 

the barrier volume was 4.76 m3. In site-2, the flow accumulation was 14,223 and the barrier volume 

was 59.71 m3. In site-3, the flow accumulation was 7977 and the barrier volume was 185.47 m3. 

The reasons for selecting the three sites was to explore the costs and also the benefits at each site 

in more detail.  

 Initially, a fourth site was selected close to site-2, but this site was removed from the analysis. 

This was because, although it had a high flow accumulation in some simulations, these were very 

variable as changes in the DEM led to water leaving the study area and entering the coastline in 

different locations.  
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 Once the three potential sites were identified, further details on each of them were obtained. 

In each site, a straight line connecting the two edges of the catchment were selected as the location 

for the barrier. A cross-section profile of the barrier based on the maximum SLR (2.06 m) was 

determined to calculate the volume of the barrier (assuming a width of 1 m).  

 

Figure 6- 9: The location for the three selected sites. 

 The volume of the barrier in site-1 (blue line) was the smallest, with 11.90 m3. The barrier in 

site-2 (orange line) was 244.13 m3, and the third barrier (black line) had the largest volume of 

2561,87 m3 (Figure 6-10).  
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Figure 6- 10: The profile of the barriers in three sites. 

 Similarly, the summed average flow across each barrier was calculated to obtain a better 

estimate of the flood protection benefits (Figure 6-4). 

 The protected area by each barrier was identified (Figure 6-11). Barrier one protected only 15 

per cent of the study area, while barrier two provided a maximum protection of 96 per cent. The 

barrier in the third site only protected 74 per cent of the area.  
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Figure 6- 11: Protected area from flooding in three selected sites. 
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 The benefits for each site were calculated based on the weighted flow accumulation and the 

cost based on the volume of the barrier. The weighted flow accumulation was divided by the 

volume of the barrier to provide a benefit-cost ratio (Table 6-4). Site-3 was revealed as the lowest 

(6.35) because it has the longest barrier and does not protect the whole study area. This was 

followed by site-1, with a ratio of 30.76. It has the smallest barrier volume and protects a small 

area from flooding. The site with the best benefit-cost ratio was site-2. The ratio of flow 

accumulation to the volume of the barrier for this site was reasonable and protects 96 per cent of 

the study area (Table 6-4). For each barrier, the areas and percentages of different land uses 

protected is also presented in this table.  

 If the cost of the barrier (volume) was the only important factor (not the protected area), the 

barrier at site-1 would be the best option. 

Table 6- 4: Protected areas and the cost-benefit ratio for the three barrier sites. 

 

6.5. Discussion and conclusions 

Providing a robust method to estimate future flooding as the result of climate change is crucial for 

minimising the impact on coastal areas. The main challenge in developing a method is the 

uncertainties associated with many parameters included in the calculations. Taking uncertainties 

into consideration will help policy makers to make better decisions on future planning. This is 

important to justify investment. 

 The reviewed literature showed that there are many methodologies developed for site selection. 

However, most of those studies focused on flooding from rivers. A few of them investigated the 

SLR inundation, however, the uncertainties associated with the factors included in the calculation 

were not considered.  
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 This study has developed a new methodology for identifying critical areas to build barriers for 

protecting coastal areas from sea level inundation. These methods can be used to address the 

challenges of current coastal flooding caused by climate change. There are several areas where this 

study made a contribution by improving the methodology, most notably by including uncertainties. 

Key among these was where the study took DEM uncertainties into account. This study used 100 

simulated DEMs instead of one representation of the ground elevation. This allowed the creation 

of 100 flow directions as inputs to the average flow accumulation. In addition, uncertainty was 

also included in the calculation of impact measures. Measures of impact by depth of flooding and 

depth of pooling also varied according to DEM simulation. Including uncertainties in the site 

selection is a new approach, as previous researchers used one DEM to estimate the potential flood 

risks (Mannan et al, 2018; Boateng et al, 2016 and Li et al, 2017). Only DEM uncertainty was 

taken into account, but future research could incorporate uncertainty in SLR.  

 Another advancement of this study is the use of a questionnaire approach to give weightings 

to factors that were used to develop measures of impact. This reduced the subjectivity in weighting 

the factors in case values were derived from one person and was used for weighting each of the 

individual land uses and for weighting land use against depth of flooding and depth of pooling. 

Surprisingly, the participant weighted all three factors very similarly. This might be due to 

unfamiliarity with a weighting approach, and one solution might be to rank factors forcing the 

participant to select the most important one. However, this method could be improved. It is 

important to understand which views should be considered in site selection studies. One 

development would be to target participants from a wider range of backgrounds and interests rather 

than just academics. This would provide a more representative weighting for each factor. It could 

also have been possible to conduct a survey of key decision makers and stakeholders in the study 

area. Other studies reviewed, as part of this study, did not use questionnaire approaches to develop 

measures of impact accumulation, e.g. Fedorov et al. (2016). Another problem potentially 

identified was that all factors were provided with high impacts by questionnaire respondents. This 

was surprising, as one would expect that much higher values would be given to the protection of 

roads as opposed to unused land, as an example. The reasons for this are unclear but will mean that 
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the methods produced to identify suitable barrier sites will not differentiate hugely between areas 

with different land uses. Future work could use qualitative surveys to understand more fully the 

weightings produced. In addition, it would be useful to repeat such an analysis in different country 

settings. 

 Measures of impact based on weighted flow accumulation are key aspects of this study. When 

selecting a site, the costs of barrier construction are important as well. In this study, the cost was 

estimated based upon the shortest distance between the two sides of the catchment. This process 

was automated in the ArcGIS, allowing us to identify the narrow valley-shaped areas. One 

limitation of this methodology was the time involved in manually splitting the catchment. 

Automating the catchment splitting process would be an important area for further development. 

 In addition, when estimating the volume of the barrier the scoping method simply assumed 

that the barrier was a cuboid shape. Further development using the profiling tools in ArcGIS might 

provide an automatic way of generating a more accurate barrier volume and cost.  

 As part of the methodology, barrier volume was plotted against the weighted flow 

accumulation (measures of impact). This visual method of cost-benefit comparison was found to 

be useful for identifying sites for further analysis. This is an important step when the scope of the 

study covers large geographic areas, minimising the cost and the time of investigation in the site 

selection process.  

 This method has the potential to provide decisions globally, with tools for prioritising decisions 

on where to build barriers to prevent future flooding from SLR. Taking uncertainties at all stages 

of modelling and flood forecasting into account will help decision makers to minimise the risk in 

their planning and investment decision-making process. 

 The method proposed in this study will provide a tool for allocating resources to prevent the 

environmental consequence of climate change and improve future coastal environment. 

 In Qatar, most industrial activities, especially in the oil and gas industry, are concentrated in 

the coastal areas. This study will provide a tool for those companies to plan and manage the risk 

of climate change and mitigate consequences of SLR in the future. The economic benefit of 

protecting those areas from flooding is important for the wider economy of the country. Therefore, 
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prioritising the areas based on the risk of flooding and the identification of the right areas to build 

barriers will help decisions on future investments by companies operating in those areas.  

 The method developed in this study has a wider implication for other countries like Qatar that 

are under the threat of SLR and climate change. The key contributions from the method in 

managing the risk of SLR are: 

 Accounting for DEM uncertainty to provide a better understanding of events, such as 

SLR caused by climate change.  

 The inclusion of stakeholders’ views for weighting the factors in the multi-criteria 

evolution is important. It provides a comprehensive and balanced approach to MCE.  

6.5.1. Limitations and future research 

Several limitations were identified during this study; the key limitations were: 

 Due to time and resource constraints, this method was only validated in a small part of 

Qatar. Future studies need to look at other areas with different topographical 

characteristics in comparison to Qatar, which has a very flat topography. Also, future 

work could look at areas with a wider range of land use and stakeholders. It might also 

be possible to explore the best sites for barrier construction for different stakeholders. 

Different stakeholders may have different views. 

 This study assumed that all barriers have the same shape (rectangular cuboid) to 

calculate the volume; this might not be the case for all the sites. Future work to provide 

more details on the exact shape of the barrier is done in the second stage of site selection. 

It may provide a better understanding of the cost of the barrier at the first stage. 

 In order to compare the benefits of building each barrier, the volume of the barrier was 

compared to stated preferences of impacts. Future work could include a full cost benefit 

assessment to provide a more realistic value for building the barrier. Davlasheridze 

(2019) used various economic models to estimate the cost-benefit ratio of the coastal 

barrier in the USA. This study used many economic factors, including the cost of 



 Chapter 6 

 

200 
 

flooding to residential areas and production losses in manufacturing activities due to 

flood disruption. Such an approach could be developed into this study. 

 Most of the analysis depends on the original elevation point data sets and their accuracy. 

A higher accuracy of elevations for this type of analysis might improve the analysis, 

especially for areas closer to the sea. The RMSE of the DEM in this study was 0.10 m. 

However, in this study a MCS was shown to be an effective way of accounting for the 

uncertainty in the DEM calculation. Therefore, a higher accuracy DEM might not 

improve the site selection greatly but would certainly need much larger processing 

power and time if it led to smaller cell sizes.  
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Chapter 7: Conclusion and Recommendations 

7.1. Overview 

Among the many consequences of climate change, SLR ranks as the most critical. This is because 

more than 20 per cent of the world’s population lives within 100 km of the coast and less than 

100 m above sea level (Nicholls et al., 2007). This means that even a relatively small SLR can pose 

a significant threat to human society. By comprehending the severe impacts of SLR, the scientific 

community has devoted significant efforts to building mathematical models to simulate and project 

climate change based on SLR. These studies, reported in the literature, have projected future SLR 

and indicate that it is not spatially uniform (Barron, 2012; Beatley, 2012; McGuire, 2017). Building 

upon these studies, the aims of this thesis were: 

 To apply and evaluate various spatial interpolation methods and techniques to generate high 

resolution DEMs in complex urban areas. 

 To assess the SLR inundation in a coastal area. 

 To quantify the impact of uncertainty in the DEM and in SLR estimates upon flooding 

projections. 

 To evaluate the importance of taking spatial autocorrelation into account when modelling the 

impacts of uncertainty. 

 To explore methods to identify critical areas for barrier construction to prevent sea level 

inundation. 

 

This chapter will now reconsider each of these research objectives, summarise the main 

findings and consider the wider implications for the scientific literature.   

7.2. Data limitations 

There are several data limitations of the analysis undertaken in this study. First, accessing good 

quality data is limited in Qatar, for example, the elevation data was particularly good in terms of 

spatial distribution, but it was not up to date. The other data sets, such as land use, detailed storm 
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and coastal erosion data sets, were not readily available. Likewise, there were many limitations in 

accessing data in Qatar: 

 The government departments and agencies have long procedures to access data for 

academic purposes. 

 Most of the data sets were hard copy, especially tidal data sets. 

 Most of the data sets were not up to date. 

The other limitation is that, due to time and resource constraints, this research was conducted 

only in parts of Qatar. Future studies need to look at other areas with different topographical 

characteristics in Qatar, and also other areas globally to see whether the techniques developed and 

the results obtained are the same in different settings. 

7.3. Summary of the research findings 

Objective 1: To apply and evaluate various spatial interpolation methods and 

techniques to generate high resolution DEMs in complex urban areas. 

As highlighted in Chapter 1, one key challenge in the flooding literature is the generation of DEMs 

in complex urban areas of a sufficient spatial resolution (Wang et al., 2018). High accuracy DEM 

has been proved to be an important input in modelling future SLR (Gesch, 2018). This is addressed 

in Chapter 3. In this chapter I applied and evaluated a number of different interpolation techniques 

to produce a grid with a spatial resolution of 5 m. This was generated from points with an original 

horizontal resolution of 10 m. In addition, the original points were a bare-earth model, with 

buildings and other features removed to leave “gaps” in the elevation data. Yet these areas are 

important to consider in an evaluation of areas subject to flooding. Hence, we explored a number 

of techniques to account for these data “gaps”. 

 Four interpolation techniques were investigated to generate an accurate DEM, namely IDW, 

spline, kriging (with four different semi-variogram models) and TIN. The DEM was created for 

the five locations (Doha, Mesaieed, Al Khor 1, Al Khor 2 and Al Thakhira) and the performance 

of each interpolation technique was evaluated using RMSE. In this study, the performance of IDW, 

spline, kriging and TIN were assessed in order to generate the most accurate DEM for the studied 
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area. This is justified by the flat nature of the study area. As there is very little evidence in the 

literature on the performance of TIN to generate DEM, it has also been incorporated in Chapter 3. 

 Initially, three different data interpolation methods were used to create the DEM from elevation 

points spaced at 10 m to produce a DEM at 5 m horizontal resolution. These were IDW, kriging 

and TIN. 

 The stated accuracy of the elevation points was ± 10 mm vertical. At the outset of the chapter, 

the stated accuracy of these points was further validated by visiting a number of sites in the study 

area. The result of the survey showed that all 33 visited points had an error of less than a metre, 

with an average error of 33 cm. This meant that 78.8 per cent of the points had errors of less than 

half a metre and 51.5 per cent had less than 25 cm of error. This was lower than the stated vertical 

accuracy of the elevation data and in most cases the recoded elevation in the DEM was lower. 

However, only 33 points were compared, making robust comparison difficult. Also, the validation 

occurred several years after the elevation data was produced and the landscapes may have changed 

in the intervening period. Future research should have many more validation points closer in time 

to when the original survey was taken. Should this occur, then it would be more straightforward to 

validate the accuracy of the original points and incorporate this into analyses. 

 When the main interpolation was undertaken the overall results showed that IDW performed 

better (with lower RMSE value) than kriging, while TIN was the least accurate interpolation 

method (highest RMSE values) in predicting the elevation values. This is not unexpected as most 

of the interpolations were from regularly spaced points (Li & Heap, 2014; Burrough, McDonnell 

& Lloyd, 2015). Overall, the difference between kriging and IDW was not large, but IDW showed 

slightly better results. The average RMSE difference between the best kriging procedure and IDW 

was 5 cm. 

 The DEMs then had to be enhanced by exploring various options to include break lines. 

Breaklines delineated areas within the study area where the elevation changed rapidly, and within 

which there were no elevation data. These commonly occurred in built-up areas, e.g. road 

embankments. The chapter explored incorporating breaklines as a series of points (with their 

elevations attached) or as barriers to interpolation. Breaklines contribute to an increase in the 
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terrain model accuracy in data reduction (Liu et al., 2011). The incorporation of breaklines 

decreases the data density and thus the DEMs produced are adequately accurate.  However, in our 

study, due to ArcGIS limitations, it was only possible to incorporate breaklines as barriers using 

IDW or spline methods of interpolation (spline was not used in earlier simulations due to large 

computational times). The results indicated that using a spline technique, incorporating breaklines 

as barriers, provided a better DEM (with a lower RMSE) in comparison to IDW. 

 One limitation of using barriers in any interpolation is that it leaves “gaps” in the DEM where 

data is not interpolated. In this study we provide data for these “gaps” by replacing the values from 

neighbouring cell values. This is an important step to remove gaps resulting from using breaklines 

as barriers in generating DEM before assessing the accuracy using RMSE. The final DEM had an 

average RMSE in all areas of 0.10 m. The methods used in this section are not reported in the 

literature and may be a guide for future researchers generating DEMs in urban areas. However, 

because the RMSE calculations can only be performed from areas where there is elevation data, 

the true value of these techniques is unknown, i.e. it is difficult to know the true accuracy as we 

have calculated elevation in areas where there are no elevations on the data set. Future work could 

obtain real elevation data from these “gaps” and compare these to the values generated. Filling the 

gaps was required, even when creating DEMs for uniform water surfaces, by using conditional 

statements and functions of focal statistics (Gonçalves & Oliviera, 2004), indicating that this could 

be a better technique to create DEMs for different study areas. A comparison between the DEMs 

created without any smoothing to that extracted by including the gaps showed that the edited DEMs 

were found to have more accuracy in relation to a control DEM obtained from aerial photographs.  

It was recommended that editing based on the knowledge of the terrain can be adopted to increase 

the accuracy of the derived DEMs.   

 Our research demonstrates that different interpolation techniques produce different results and 

that, even within our study areas, no one interpolation technique was superior in all areas. 

Therefore, we encourage future research to explore different methods of interpolation to determine 

the best one for their study area (Li & Heap, 2014; Burrough, McDonnell & Lloyd, 2015). Inverse 

distance weighting, kriging and splines all worked reasonably well, producing similar RMSEs. 
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Triangulated irregular networks performed less well. It was also concluded by Polat et al. (2015) 

that any one interpolation technique cannot be underscored as a superior method of rasterization. 

They also found that applying TIN algorithms for the filtering process produced agreeable results 

for extracting DEMs, and the Natural Neighbour interpolation technique was more efficient in 

analysing terrain features.  It was, however, suggested that the filtering parameters defined by the 

user will affect the results attained. Our research was conducted in relatively flat coastal areas and 

different results may be produced in areas with different elevations; future research needs to be 

expanded to other settings. A comparative evaluation of interpolation techniques has been carried 

out over terrains which are not uniform and it was concluded that different interpolation techniques 

are required for generating DEMs of different terrains (Binh & Thuy, 2008; Arun, 2013; Tan & 

Xu, 2014; El-Quilish et al., 2018). 

Objective 2: To assess the SLR inundation in a coastal area. 

The focal point of Chapter 4 was to develop methods to assess SLR in coastal areas. The literature 

review for Chapter 4 showed a large number of papers that assess SLR using a bathtub method, 

which simply reclassifies all cells below an elevation threshold as “at risk of flooding” (studies 

reviewed in Schmid et al., (2014)). In this chapter, to determine flooded areas, three methods were 

used. Firstly, the bathtub method, and then two further methods to ensure that the potentially 

flooded methods were connected to the sea. These were the four-side connectivity rule and eight-

side connectivity rule (Poulter & Halpin, 2008) and the “eight-sided” rule was chosen by a recent 

study (Fu et al., 2017) as it was intended that overestimation could be more acceptable for planning 

purposes. The eight-side approach considers wider possibilities for hydrological connectivity and 

so is likely to produce a larger inundated area than the four-sided rule. Each of these was evaluated 

to select the most appropriate method to produce the final inundation map for all areas. It was 

somewhat surprising that the different methods did not produce hugely different results, except in 

Doha where the eight-sided rule produced a 0.86 per cent larger inundated area than the bathtub 

simulation. This was assessed and concluded to be due to the nature of the study area. Bathtub 

simulations usually present overestimations of inundated areas (Webster et al., 2004). The 



Chapter 7 

 

206 
 

literature review has shown that in many studies bathtub modelling is used for predicting the risk 

areas affected by SLR. This method is simple and can be used to obtain several SLR possibilities, 

identifying and assessing the associated risk of inundation. Models developed by the bathtub 

approach can be user friendly too. However, this chapter has shown that it is easy to calculate 

connectivity to the sea using the four or eight-sided connectivity rule, potentially producing a more 

accurate result in terms of flooding extent. Therefore, we recommend it for all future studies of 

SLR. The four and eight-sided connectivity rules produce marginally different results, but it is not 

possible to know which presents a more accurate assessment of flooding risk without ground 

truthing of results. 

 Many previous studies consider flooding as the level above the mean sea level (e.g. Mimura, 

2013; Farinotti et al., 2019; Kirezci et al., 2020). This ignores the fact that flooding occurs on top 

of tidal extremes. This was incorporated in this study by calculating the SLR for three tidal states 

(HOT, Mean Sea Level and MHHW). A similar dynamic modelling approach integrated the factors 

of SLR and tides to model flood-hazard ensued by climate change (Barnard et al., 2019). It was 

predicted that the magnitude of flooding could increase the coastal water levels significantly, which 

could amplify the threat to the population and infrastructure along the coast. In terms of climate 

change there is additional future uncertainty as to the level of SLR, so this was calculated for both 

RCP 4.5 and RCP 8.5 scenarios and for the minimum, average and maximum simulations of those 

RCPs. We demonstrate how such uncertainty is relatively straightforward to incorporate into 

assessments of future flooding. We recommend such approaches for future studies. 

 The total SLR (RCP + Tide) was calculated for both RCP 4.5 and RCP 8.5 scenarios 

(maximum, average and minimum RCP scenarios) and three tidal states (HOT, Mean Sea Level 

and MHHW) as mentioned earlier. This chapter demonstrates how uncertainty can simply be 

calculated and presented. The results indicate that, for both RCPs in Al Thakhira, the inundated 

areas will increase as the SLR increases. The large area of flooding would be mainly due to the 

elevations in Al Thakhira being low. The effect of SLR in both Al Khor 1 and 2 would not be large 

as the elevations in both areas are higher in comparison to Al Thakhira. In Doha, the SLR would 

only create flooding in less than two per cent of the area under the maximum RCP 8.5 with HOT. 
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One challenge in producing such estimates of flooding is that it is not possible to know if they are 

correct. They are simulations. Future research could compare current flood extents from high tides 

to those predicted for high tides from our models. This would provide some data on whether the 

results that are produced are accurate or not. Chapter 4 also demonstrates comprehensively how 

uncertainty associated with RCP prediction can be quantified and displayed to enable the reader to 

make an informed assessment on the potential impact of flooding or to compare different RCP 

scenarios (Stammer et al., 2013). However, ensuring that decision makers implement and utilise 

uncertainty information is a challenge for future research (Deitrick-Hirsch et al., 2010). The 

concept of uncertainty inherent in GIS-based modelling, however, is new to decision makers or 

risk managers (Zerger, 2002). There is an urgent need to make uncertainty explicit to these 

professionals by simulating error in deriving spatial models that can be evaluated by decision 

makers with relative ease for risk management. Geographic information systems and spatial 

modelling provide a spatial context in predicting risk, and this is an emerging science that has the 

potential to be applied for diminishing natural hazard risk. Thus, GIS techniques can evolve to 

apply minimum data, with less complexity, and improve the level of risk modelling that integrates 

uncertainty if the inputs by decision makers are considered early in the process. Improved decision 

making can be achieved when the risk mapping is tailor-made to policy goals. All the possible 

interpretations of our flood prediction maps by policy makers in Qatar can be another topic for 

furthering this research. This transformation of GIS into a tool critical to decision making can be 

a new challenge. The map outputs, from both computer and manual sources, can be powerful in 

visualising risk assessment that can aid in decision making (Zerger, 2002). Future studies can focus 

on cartographic representation of analogue maps by including cartographic elements like colour, 

shade, hue, generalisation, symbols and other cognitive variables. This is to improve the human 

interaction aspect that seems to be lacking in GIS, as a GIS researcher is more conscientious about 

the software, spatial data and spatial modelling issues but not on human sensitivity. Future research 

can also consider non-technical issues like assessing the utility of models and applicability of 

spatial data for decision making, which are usually barriers in the successful implementation of 

GIS models regardless of the natural hazard under study. 
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 There are limitations to the work undertaken in this thesis. One such constraint faced is that 

the drainage systems (e.g. draining pipes under roads) within the study area and other 

infrastructures that effect the hydrological connectivity, such as current and planned barriers, were 

not considered. Also, there is no data currently available for such mitigation structures in Qatar. 

These will affect the inundation mapping due to SLR and including future drainage infrastructures, 

such as canals, ditches and culverts, may remain a challenge in future flood mapping (Gesch, 

2013). Also, the tidal flows are different in various locations due to varying coastal configurations, 

and these were not accounted for. It also does not include the impact of wind and wave patterns 

and, as such, it is not fully capable of forecasting floods from events like storm surge. All these 

can be potential topics for future research on inundation risk due to SLR in Qatar. Ground truthing 

existing floods (explore the impact of existing floods) would be one method of assessing the 

potential importance of these. Flood predictions were assessed against ground-truth using social 

media, remote sensing and map data (Rosser et al., 2017) for mapping rapid flood scenarios and 

simple procedures. Social media surveys were found to be critical in flood risk assessment. 

 Future research is also needed to more fully capture SLR. Global SLR scenarios were used in 

this study, but local conditions may lead to different values in the Gulf (El Raey, 2010). A related 

point is that a more detailed consideration of potential storm surges, for example, by looking at a 

much longer sea level data set, would also have been helpful. For future inundation assessment 

studies, the potential change of land topography during SLR and the inundation process should be 

considered to better capture the potential impacts, especially at a local scale. For example, maps 

of land use, elevation and spatial attributes were overlaid to obtain damage units (Jonge et al., 

1996). Depending on the types of land use, four different categories are prone to damage, such as 

public entities, private ownerships, industry and agriculture were derived. First, the possibility of 

flooding of the damage unit was checked by the damage assessment model, based on the flooding 

level exceeding a certain threshold. If there is a possibility of flooding, a function of damage, along 

with the land use type, were applied to estimate the damage.  However, a major limitation of many 

studies on SLR-related inundation mapping is that they consider the coastal topography and 

inundation as static entities, which are greatly dynamic in reality (Leon et al., 2014). They also 
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assume that SLR is a gradual phenomenon and the coastal zone is not impacted much by it, but 

this is apparently incorrect as the coastal zone changes with storm surges or SLR. However, it is 

practically impossible to estimate the future topography. Nevertheless, future research can attempt 

to combine the storm surge modelling and flood mapping with SLR.  

 Another actual change that could be included is the change in population, which cannot be 

known. Future research can also evolve analyses where urban and population growth scenarios are 

included, though this might increase the complexity of the analyses (Mondal et al., 2012; Kim et 

al., 2019). In this study property and/or infrastructure values are not accounted for and the potential 

losses of the same due to coastal inundation have not been estimated. This analysis can be pursued 

in further research endeavours, which can be utilised in deciding local adaptive measures and other 

cost-benefit analysis. Future research on adaptive measures for mitigating coastal inundation due 

to SLR and decision making on investments in coastal management can be built on the current 

findings. They can also address the gaps described above (e.g. Hinkel et al., 2013; Refaat et al., 

2016; Barnard et al., 2019). 

 Coastal erosion, especially under rising sea levels, can change the current DEM and it is 

another phenomenon that was not considered in this study. This could affect the area at risk of 

flooding and its hydrological connectivity (Coveney and Fotheringham, 2011). Further research 

can be focussed on developing models that can overcome all these critical challenges. 

Objective 3: To quantify the impact of uncertainty in the DEM and in SLR estimates 

upon flooding projections. 

In Chapter 5, MCS were used to predict inundation, exploring the uncertainty in the DEM 

alongside uncertainty in the SLR scenario. As well as being scientifically justified, MCS have the 

additional advantage of presenting one probabilistic output (map) as opposed to multiple maps 

(e.g. minimum, maximum, average SLR). To fully assess the potential impact of climate change 

on SLR and consequent flooding, it is paramount to consider uncertainty, providing decision 

makers with a more complete picture of future SLR. 
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 The previous chapter has demonstrated how the methods used to generate DEMs introduce 

additional uncertainties, as highlighted by the different RMSEs. Chapter 2 has outlined sources of 

uncertainty in SLR scenarios. 

 Digital elevation model uncertainty was explored using MCS with random errors (based upon 

the RMSE calculated in Chapter 1). The error was assumed to have no spatial correlation. There 

are several papers in the literature that use such a method (e.g. Openshaw et al., 1991; Fisher,1991; 

Lanter & Veregin, 1992; Holmes et al., 2000; Schmid et al., 2014; Cooper & Chen, 2013; Leon et 

al., 2014). We aimed for 100 simulations to determine the probability of flooding to provide a 

balance between the time of data processing and the quality of the outputs, with a higher number 

of simulations expected to produce better outcomes despite the longer processing time. This was 

followed by the bathtub method, which generated 100 grids of flooded and unflooded areas.  

 Flooded areas connected to the sea were identified. Finally, a probability map was created, 

adding the final 100 images that indicated the probability of flooding in each cell. To compare the 

error and uncertainty in the original DEM and its impact on predicting flooding, three 

reclassifications were produced. The MCS for Al Thakhira was conducted and the probability map 

was produced. In Al Thakhira, an area probability map of DEM uncertainty was created for average 

RCP 8.5 scenario and highest observed tide based on MCS. 

 Monte Carlo simulations were also applied to assess the uncertainty in SLR to produce a 

probability map for the RCP. Although there is much research on DEM uncertainty, there is less 

research on how uncertainties in climate model projections may influence flooding extent (Collet 

et al., 2018), exceptions include Amante (2019). The uncertainty bounds in SLR scenarios (RMSE) 

were based upon the minimum, average and maximum stated SLR for each RCP scenario. 

 In order to make the comparison between the two probability maps, DEM and SLR, the 

probability map was reclassified into four categories based on the likelihood of flooding. The 

uncertainties in both DEM and SLR (RCP) scenarios were shown to have an impact on the outcome 

of flood probability. Most importantly, the probability of flooding for each pixel in both methods 

was compared and found to be reasonably similar. One very visible effect of DEM uncertainty was 
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the specking effect on the flooding probability maps, indicating adjacent cells with very different 

probabilities of flooding. This effect was less visible on the MCS of SLR, as the level of flooding 

rather than the elevation of the land was changed in each simulation. 

 To provide an overall assessment of the impact of uncertainty on flooding associated with SLR, 

we combined the two probability surfaces from SLR and elevation into one surface. There are few 

examples, if any, of this in the literature and we argue this provides a more complete picture of the 

likely impacts of flooding and we suggest for future research. One visual advantage of this 

approach is that the speckling effect seen on the MCS of the DEM is less apparent as the MCS 

from the SLR is a relatively smooth probability surface. It can be emphasised that using two 

probability maps was an important strategy as this method identified the flooded and non-flooded 

areas. 

 The outputs of multiple simulations produced a surface indicating the probability of flooding. 

This was performed on the Al Thakhira area and the probability map showed that a large part of 

the study area was very unlikely to be susceptible to flooding, with a probability of 0-5 per cent. 

These areas are mainly higher grounds, which will either remain above future sea level or are 

disconnected from the coast. Most of the areas with unlikely flooding (6-50 per cent) are located 

far away from the coastline and in the central part of the study area. The areas likely (51-94 per 

cent) or very likely (95-100 per cent) to flood are located near the coast, and these areas are 

particularly large in the north and south-east of the study area. The probability maps of both RCP 

simulations show that 27.2 per cent of the area has 95-100 per cent flooding and those created by 

simulation with DEM uncertainty show that 21.4 per cent of the studied area has 95-100 per cent 

of flooding. The combined output of RCP and DEM shows that the areas with significant 

probability of non-flooding (0-5 per cent) and flooding (95-100 per cent) when comparing the two 

methods was small (0.00 and 0.06 km2). This is an important finding as the two methods are not 

producing vastly different results. 

 This study has shown that MCS have certain limitations. It took a long time and involved using 

multiple packages. It was not an integral part of ArcGIS, a commercial GIS package, and this is a 
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recognised problem. Although the assessment of error is still an important issue on the GIS 

research agenda, few commercial GIS packages incorporate the tools to permit this to occur in an 

easy manner (Duckham & McCreadie, 2002). This is argued to be because there is limited 

agreement on what constitutes “error” and the methods to collect and report it. Another relevant 

research topic could be the prevalence of error in GIS modelling and several methods that were 

described for the estimation of errors propagated. However, not all the methods are applicable to 

all types of processes. None of them are ideal as they involve approximations and some of them 

are time consuming (Heuvelink, 1999), but there is always the possibility of evolving a method 

appropriate for a research problem under study. Unfortunately, clear information about the errors 

related to different attributes studied in GIS is lacking, and if the values for these errors are not 

realistic the error propagation analysis cannot yield sensible results. Hence, performing error 

propagation analyses is not yet the norm in GIS practice and is mostly an exception. It is essential 

that the function of error propagation is added to the products by GIS manufacturers and map 

makers should produce accurate maps routinely, even when accuracy is mandatory. Computing 

output error may not be more significant than error analysis as the partitioning characteristic of 

error analysis lets one calculate how much output error is contributed by each individual input. 

Thus, users can explore how to reduce input error to improve the output quality and can weigh the 

cost benefit of stepping up the sampling. The impacts of input and model error can also be 

compared by using the partitioning property. Geographic information systems come with many 

free computational models, which can be employed by ignorant users who can easily disturb the 

balance between input and the model error, who may apply models to wrong scales or for improper 

purposes or add highly uncertain data to them. This can be avoided when error propagation analysis 

becomes the rule of GIS communities and the users are aware of maintaining spatial data quality, 

as well as the cursory nature of most metadata, the highly specialised nature of error assessment 

techniques such as MCS, and the negative image of the word “error” that usually falls outside of 

research. 
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Objective 4: To evaluate the importance of taking spatial autocorrelation into 

account when modelling the impacts of uncertainty. 

When simulating uncertainty in Objective 3, the models assumed that the error was not spatially 

correlated. This is unlikely and neighbouring cells are unlikely to be extremely different in terms 

of error. One impact of this was the specking of adjacent higher and lower probability cells 

observed in the previous chapter. Another highlight of this research is Objective 4, where the 

potential impact of spatial autocorrelation in error is explored. This is a relatively novel approach 

for flood modelling, particularly in coastal flood modelling, and there are very few similar studies 

using spatial autocorrelation, as per the review of literature. 

 Error was introduced into the original DEM (in the MCS) at three levels of spatial 

autocorrelations (Moran’s I of 0, 0.33 and 0.66). Accounting for uncertainty was a large part of 

this objective and the thesis in general. This often involved using multiple GIS packages, such as 

ArcGIS, IDRISI and R (to simulate spatially correlated error). This again suggests that GIS 

manufacturers should enhance their efforts to add the function of error propagation (Heuvelink, 

1999). More automatic methods of producing such uncertainty assessment, such as error 

simulation tools built into ArcGIS, would have greatly aided this research. This again highlights 

the challenges of incorporating error simulations in commercial GIS packages (Duckham & 

McCreadie, 2002). Three flood probability maps were produced with Moran’s I of 0, 0.33 and 

0.66. 

 The results of Chapter 5 clearly show that the land areas flooded, and locations of these flooded 

areas were not hugely different between the three levels of autocorrelated error. However, the 

overall impact of spatial autocorrelation on the flooding probability maps appears to be fairly 

small, as explained in detail in Chapter 5, based on the tabulated results. For example, when the 

spatial autocorrelation in the error was set to zero, 6.73 km2 of the area was susceptible to a high 

flood probability (95-100 per cent). When spatial autocorrelation in the error was set to 0.66, 

5.67 km2 of the study area was classified as susceptible to a high flood probability. 
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 Where there were differences between the simulations it was possible to explain these based 

upon the nature of the study terrain. Incorporating spatial autocorrelation of error is supported in 

the scientific literature (Darnell et al., 2010), and although relatively complex to incorporate, it did 

produce meaningful results. However, it was not possible to know what the “correct” level of 

spatial autocorrelation of error was in reality. Hence, although different results were produced it 

was not possible to know which provided better representation of the DEM. The research therefore 

reaches no clear results as to whether future research should simulate spatially autocorrelated error. 

Future research could use ground truthing to overcome these issues, as well as find more efficient 

methods for incorporating spatially autocorrelated error into MCS. 

Objective 5: To explore methods to identify critical areas for barrier construction to 

prevent sea level inundation. 

As outlined in the introduction, there are many studies using GIS to assess the impact of flooding 

and also some studies assessing the most suitable location for freshwater dam location. However, 

there are virtually no studies using GIS as a decision-making tool to assess the most suitable 

location for dams to prevent coastal inundation. This is Objective 5. Geographic information 

systems were combined with MCE to identify and select optimal locations to build barriers that 

can prevent land inundation from SLR ensuing from climate change. This piece of work was 

particularly novel as MCS was used to take account of DEM uncertainty. Previous studies have 

not included this step (e.g. Al-Ruzouq et al., 2019; Adham et al., 2018). 

 The key steps of the methodology to select barrier locations were to identify a flow 

accumulation for every point in the study area, with each cell weighted using land use, depth of 

flooding and depth of pooling as a weighting factor affecting the value of the flow accumulation. 

For every point, the cost of building a barrier was then estimated based upon the distance from one 

side of the catchment to the other. The two values were then compared to produce an assessment 

of the cost/benefit ratio of building a barrier at any point in the study area. This study recommends 

that even a moderate investment could have major benefits in terms of protecting areas/people. 
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 This methodology could be crucial for decision makers in Qatar and elsewhere to develop 

strategies to prioritise areas on which to build barriers for preventing future flooding from SLR. 

The methods developed in this study can be applied for flood mapping in other countries like Qatar 

that are under the threat of climate change and SLR. We argue that the methodology has potentially 

wide usage, but as it was developed in a relatively small area in a relatively flat coastal area of 

Qatar, different results may be produced in areas with different elevations. Future research needs 

to be expanded to other settings as has been done in various earlier studies, which showed that 

different terrains require different interpolation techniques (Binh & Thuy, 2008; Arun, 2013; Tan 

& Xu, 2014; Rishikeshan et al., 2014; El-Quilish et al., 2018). In the chapter, MCS were applied 

based upon DEM uncertainty and future work could incorporate additional elements of uncertainty 

explored in this thesis (e.g. SLR uncertainty, spatial autocorrelated error). 

 In this study, MCE was applied to weight the influence of different factors that affect flooding 

impacts. A novel strategy was adopted of questionnaire distribution to people from various 

professions to assess the relative importance of land use, depth of flooding and depth of pooling in 

influencing the flow accumulation. Earlier it was found that translating and adapting English 

language questionnaires for Arabic-speaking people can be challenging (Siddiqui et al., 2017). 

Testing the reliability and validity of English language questionnaires by translation is of great 

value, so an expert committee was constituted to smoothly translate and adapt the questionnaires 

in foreign languages, and it took several months to get an appropriate translation. Our plan to 

present the survey questions in two languages resulted in greater reliability with no cost 

expenditure. The results showed that the majority of respondents gave land-use factors the highest 

score, followed by depth of flooding and depth of pooling. However, it was surprising that many 

factors were similarly rated, with respondents not providing a big difference between land uses, 

such as developed and undeveloped land. There are a number of ways that this could be explored 

further. Examples include follow-up questions to obtain views on the survey or more detailed face-

to-face interviews. Most importantly, face-to-face interviews could be part of the piloting process. 

It may be that a survey based upon western examples is less feasible and culturally appropriate in 

Qatar and surveys could explore this issue in further detail. Papadimitropoulos et al. (2015) discuss 
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the challenges of obtaining an individual’s stated preferences in a nearly Arab country. Some of 

the issues uncovered include a dislike of choice making, the challenges of translation and a high 

level of dissatisfaction with standard interview approaches. These are issues that may be explained 

in future research that can also evolve certain standard questionnaire values that can be set which 

are applicable for Qatar and Middle East regions. 

 Another limitation is that this study considers only coastal inundation associated with SLR. 

One important additional component of flooding not considered is the overwhelming drainage 

systems caused by excessive rainfall from extreme storms. Such flooding could occur concurrently 

with storm surges. In low relief areas, such as the study area, the backup of storm/sewage systems 

has caused major short-term flooding. The reason for this omission is the difficulty of accounting 

for the range of factors, such as impervious surfaces and drainage networks that promote surface 

flooding.  

 The interaction of SLR with a river system was also investigated by developing a 

hydrodynamic river model, as flood mapping by tying up hydrodynamic models with GIS is 

common practice (Mah, 2011). The model not only calculates water levels in the river network but 

also interpolates the levels at points away from the network, taking into consideration the existing 

natural barriers and available flow paths. The flood depths and the possible levels of flooding were 

obtained by subtracting the ground elevation in these points. The effect of SLR could also be 

estimated and a management strategy developed by using this model. It was, however, concluded 

that a river model has more credibility in site-specific hydrological analysis, which includes 

increase of sea levels. The concept of “failure probability” was used to assess coastal flood risk 

arising from different future SLR scenarios (Moftakhari et al., 2017). Sea level rise attributed to 

anthropogenic global warming is a global threat to coastal populations and assets. One driver at a 

time, such as fluvial flooding only or ocean flooding only, is considered for assessing flood hazard 

commonly, whereas in reality coastal cities are at risk of flooding from multiple drivers, such as 

high coastal tide, flood level and flow of river water. Coastal populations and properties can be 

damaged by both oceanic and fluvial surges. A unique bivariate flood risk assessment that takes 

into consideration the potential compounding impacts of the interplay of primary oceanic 
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inundation hazard, water level on the coast and fluvial inundation hazards are presented here 

instead of one flood driver at a time. The findings of this research show that future SLR ensuing 

from warming temperatures increases the failure probability and also intensifies the combining 

effects of different flood drivers mentioned earlier. As Qatar has a porous limestone ground 

structure water rises rapidly when rains occur, inundating the urban areas in the coastal zone. 

Future research could be conducted by taking all these dynamics of coastal regions into 

consideration for obtaining better realistic results. 

 The other limitation of this research was the time involved in manually splitting the catchment 

to calculate barrier length. Automating the catchment splitting process would be an important 

aspect for further research on building barriers. Automatic profile extraction would also produce a 

more meaningful cost estimate at the outset. 

 Another interesting and relevant direction for future research work could be the engineering 

aspects, like analysing the strength required for flood barriers and the factors that might dent these 

structures, including tide gates, culverts, sewage outflows and narrow sea walls, which is beyond 

the scope of this study. Developing hydrodynamic models could also be considered a future 

research exercise that could take into account vital but smaller topographic features related to flood 

mitigation. The MCE is an effective tool for site selection, however, developing an objective 

method to weigh each factor is crucial. The novel approach of questionnaire distribution can 

include more extensive representations from all the stakeholders who can be affected by flooding 

and this can also be crucial in evolving effective strategies that can be adapted to mitigate the 

adverse effects of coastal inundation induced by SLR. 

7.4. Research contributions of this study 

This study provided a methodology based on spatial technology, such as GIS, to provide 

stakeholders with a decision-making tool for a better understanding of uncertainties in climate 

change study and future flood defence planning. A comprehensive literature review on the 

importance of the DEM and the associated uncertainties that can impact the outcome of the climate 

change projections is also presented here. The granularity of the method used in this research 
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provides a tool for local decision making. The high horizontal and vertical resolution DEM plays 

an important role in this approach and the method also integrated the hydrological connectivity to 

the sea as the source of the inundation. 

 Identifying the critical area in studying SLR inundation is crucially important for the decision 

makers to plan to prevent future flooding by building barriers. This study developed a method to 

include factors affecting the site selection by integrating MCE with GIS tools for site selection. 

The factors developed and the weighting assigned are based on experts’ views to take into 

consideration various opinions. 

 Qatar is a small peninsular state which is particularly vulnerable to coastal flooding as several 

urban areas are coastal. This includes the capital city of Doha, which itself is located on the coast 

with a land area of over 100 km2. Doha city and other areas of interest to the present study are all 

adjacent to the shoreline and are economically and politically significant. Furthermore, recent 

developments and megaprojects, like the Lusail neighbourhood, run along the coast. The potential 

impact of climate change is already recognised in Qatar, and the Interim Coastal Development 

Guidelines highlights that at least one main coastal zone is “likely to be inundated due to rises in 

sea level consequent upon global warming” (Ministry of Municipality and Urban Planning, Interim 

Coastal Development Guidelines (2013)). With 18.2 per cent of Qatar’s land area already prone to 

inland flooding, this makes it especially prone to inundation due to SLR. Our research (Chapter 5) 

shows that the areas of likely (51-94 per cent) or very likely (95-100 per cent) flooding are located 

near the coast, and these areas are particularly large in the north and south-east of the study area. 

The report by the Ministry of Municipality and Urban Planning emphasises that most of the regions 

will be highly impacted by 2100 due to SLR related to climate change (Ministry of Municipality 

and Urban Planning, Interim Coastal Development Guidelines (2013)). Any SLR will adversely 

affect approximately 90 per cent of Qatar’s population inhabiting the coastal cities (Ministry of 

Environment, Intended Nationally Determined Contributions Report (November 19, 2015)). Thus, 

the probability of SLR has been identified as an obvious risk in Qatar, and this influenced the 

development of the Qatar National Master Plan and the more recent Climate Change Strategy for 
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the Urban Planning and Urban Development Sector (www.mme.gov.qa/ Qatar Master Plan /default 

.aspx). 

 In summary, this thesis has applied various spatial interpolation methods and techniques to 

generate high resolution DEMs in complex urban areas from coarser resolution point data. These 

methods are applicable to other study sites. These DEMs have been used to assess the potential for 

SLR inundation. We have explored numerous methods for quantifying the impact of uncertainty 

in the DEM and SLR estimates on the flooding projections, which are relatively novel, and can be 

applied in other coastal locations. The thesis has also explored the importance of taking spatial 

autocorrelation into account when modelling the impacts of uncertainty but has not come to any 

firm conclusions on its usefulness. Finally, the thesis develops novel methods to identify critical 

areas for barrier construction to prevent sea level inundation. It is key for future research to attempt 

to ground truth the results produced, as well as explore their benefits in other countries and 

landscape settings.
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