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A B S T R A C T   

Average faces have been used frequently in face recognition studies, either as a theoretical concept (e.g., face 
norm) or as a tool to manipulate facial attributes (e.g., modifying identity strength). Nonetheless, how the face 
averaging process— the creation of average faces using an increasing number of faces —changes the resulting 
averaged faces and our ability to differentiate between them remains to be elucidated. Here we addressed these 
questions by combining 3D-face averaging, eye-movement tracking, and the computation of image-based face 
similarity. Participants judged whether two average faces showed the same person while we systematically 
increased their average level (i.e., number of faces being averaged). Our results showed, with increasing aver-
aging, both a nonlinear increase of the computational similarity between the resulting average faces and a 
nonlinear decrease of face discrimination performance. Participants’ performance dropped from near-ceiling 
level when two different faces had been averaged together to chance level when 80 faces were mixed. We 
also found a nonlinear relationship between face similarity and face discrimination performance, which was 
fitted nicely with an exponential function. Furthermore, when the comparison task became more challenging, 
participants performed more fixations onto the faces. Nonetheless, the distribution of fixations across facial 
features (eyes, nose, mouth, and the center area of a face) remained unchanged. These results not only set new 
constraints on the theoretical characterization of the average face and its role in establishing face norms but also 
offer practical guidance for creating approximated face norms to manipulate face identity.   

1. Introduction 

Average face, the arithmetic mean of the texture and shape of two or 
more faces, has been frequently used to formulate theories of face 
recognition. According to the influential face space framework (Valen-
tine, 1991), the average of all faces one has seen can serve as a face 
norm, the prototype of faces in one’s mind. Such a face norm acts as the 
origin of multi-dimensional face space, within which we encode, store, 
compare, and recognize faces that are all represented as locations in that 
space (e.g., Rhodes, Brennan, & Carey, 1987; Rhodes, Maloney, Turner, 
& Ewing, 2007; Valentine, 1991). Similarly, according to theories of 
category-specific face encoding, the average of all faces of a subcategory 
creates a subordinate-level face norm (e.g., prototype of female faces, 
happy faces, or Asian faces, Bülthoff & Newell, 2004; Jaquet, Rhodes, & 
Hayward, 2008; Leopold, O’Toole, Vetter, & Blanz, 2001; Little, 
DeBruine, & Jones, 2005; Papesh & Goldinger, 2010; Webster, Kaping, 
Mizokami, & Duhamel, 2004). Moreover, people can even establish 

identity-level face norms by averaging various faces of the same person, 
forming stable and robust representations of individual face identities 
(e.g., Burton, Jenkins, Hancock, & White, 2005; Jenkins & Burton, 
2011). Average faces may be also used to form a summary representa-
tion of a set of faces (i.e., ensemble coding), which offers a mechanism 
for us to overcome our limited working memory capacity (Whitney & 
Yamanashi Leib, 2018). Our visual system can extract the mean identity, 
expression, race, and gender of a group of faces rapidly and accurately 
(de Fockert & Wolfenstein, 2009; Haberman & Whitney, 2007; Jung, 
Bülthoff, & Armann, 2017). Neural coding of face identity relative to an 
average face (i.e., norm-based encoding of face identity) has also been 
observed in the face-selective brain areas in humans and nonhuman 
primates (Chang & Tsao, 2017; Leopold, Bondar, & Giese, 2006; Loffler, 
Yourganov, Wilkinson, & Wilson, 2005). 

Although many theories of face recognition share the view that 
average faces are special, little research has empirically investigated the 
recognition of average faces per se and validated the hypothetical role of 
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face averaging in the development of face norms. Previous studies of 
average faces have mainly focused on the social perception of faces (e.g., 
attractiveness or trustworthiness, Rhodes, 2006; Sofer, Dotsch, Wig-
boldus, & Todorov, 2015) but have rarely investigated how we recog-
nize and discriminate average faces. While average faces have been 
widely hypothesized as a mathematical approximation of face norms, it 
remains unclear how the averaging process changes the physical and 
perceptual properties of average faces, and when, with increasing levels 
of face averaging, different average faces become perceptually indis-
tinguishable from each other. Similarly, although many studies have 
used average faces to manipulate the identity, gender or race of faces (e. 
g., Bülthoff & Zhao, 2020; Jaquet et al., 2008; Jiang, Blanz, & O’Toole, 
2006), whether the chosen average faces truly represent the origin of a 
face space or its sub-space (e.g., depicting neutral identity, gender or 
race) has seldomly been validated. Therefore, investigating how the face 
averaging process changes faces physically and perceptually may not 
only advance our understanding of average faces as a theoretical 
concept (i.e., face norm) but also help improve our use of average faces 
as a tool to manipulate face identity (e.g., creating caricatures or anti- 
faces using face morphing, Bülthoff & Zhao, 2020; Jiang et al., 2006; 
Leopold et al., 2001). 

In the present study, we investigated how the face averaging proc-
ess—creating average faces with more and more faces—affects the 
resulting faces and changes our ability to discriminate between them. 
Specifically, we aimed to address four questions. Firstly, we examined 
whether average faces created with an increasing number of faces 
become more similar to each other, and, if so, how this similarity evolves 
with increasing average levels. According to the face space framework 
(Valentine, 1991), the more faces are mixed together, the closer the 
resulting average faces are to the hypothetical facial norm. Hence, 
increasing the average level should make average faces increasingly 
more similar to each other and more similar to the facial norm. Although 
it is fundamental to the face space framework, how the similarity be-
tween the resulting averaging faces changes with increasing average 
levels has not yet been systematically tested (cf. Busey, 1998). We 
addressed this question by creating average faces at 13 average levels 
(using 2 to 80 faces) and then computed their image-based similarity. By 
quantifying the relationship between average level and face similarity, 
we could examine whether, and, if so, how the averaging process 
gradually pushes the average faces toward the facial norm. Note that 
although the change of image-based similarity can be computed via a 
variety of methods, how the face averaging process changes the 
perceptual similarity between average faces, how image-based face 
similarity determines perceptual face similarity, and when the percep-
tual similarity reaches the limit of our face discrimination ability are not 
readily predicted by computational similarity (e.g., Beale & Keil, 1995; 
Bülthoff & Zhao, 2020; Jacques & Rossion, 2006; Rotshtein, Henson, 
Treves, Driver, & Dolan, 2005). 

Our second question was related to both the theoretical character-
ization and the empirical use of average faces as face norms: when do 
average faces become identity-neutral so that they can serve as opera-
tionally defined face norms? Theoretically, face norms are assumed to be 
established based on all encountered faces (Rhodes et al., 1987; Valen-
tine, 1991; Leopold et al., 2001, 2006). In empirical research, however, 
creating such facial norms is technically impossible, because we know 
neither the exact number nor the specific identities of all the faces a 
person has seen. Consequently, researchers often create average faces 
using an arbitrary number of faces to act as operationally defined face 
norms (e.g., 20 to 200 faces, Bülthoff & Zhao, 2020; Loffler et al., 2005; 
Jeffery, Burton, Pond, Clifford, & Rhodes, 2018). We approached this 
question by investigating when average faces become perceptually 
indistinguishable from each other (i.e., approaching a zero-identity 
strength, Leopold et al., 2001, 2006). We had participants perform a 
face discrimination task, deciding whether two average faces created 
using the same number of unique faces (i.e., same average level) 
depicted the same face identity. This task allowed us to infer at which 

average level our participants reached their limit to differentiate be-
tween these average faces. Here we focused on the estimation of the 
limit of face discrimination ability for a relatively homogeneous set of 
faces (i.e., adult Caucasian faces). For one thing, previous studies have 
suggested that people may form distinct face norms for different cate-
gories of faces (e.g., own vs other-race faces; Jaquet et al., 2008; Papesh 
& Goldinger, 2010). For the other, understanding the effect of face 
averaging on a homogenous set of faces may set a baseline for investi-
gating more diverse face sets (e.g., a mixture of own- and other-race 
faces). 

Our third question asked whether image-based face similarity be-
tween average faces determines our ability to discriminate between 
them, and, if so, how. Answers to this question will help reveal whether 
image-based face similarity mediates the influence of the face averaging 
process on face discrimination performance and, if so, when different 
average faces are too similar to each other to be distinguished by our 
visual system. The image-based similarity between two faces has been 
associated with their perceptual similarity (Dobs et al., 2014; Lades 
et al., 1993; Yue, Biederman, Mangini, Von Der Malsburg, & Amir, 
2012). Nonetheless, assessment of such an association often assumes a 
linear relationship (e.g., based on correlation analysis), although our 
perception of face identity is categorical and does not change linearly 
with the physical change of faces (e.g., Beale & Keil, 1995; Bülthoff & 
Zhao, 2020; Jacques & Rossion, 2006; Rotshtein et al., 2005). In the 
present study, we measured image-based face similarity and partici-
pants’ ability to discriminate between average faces at multiple average 
levels and quantified how one may change with the other using curve 
fitting. Moreover, our task also provided an empirical test of how 
recognition of unfamiliar faces may vary depending on stimulus-based 
similarity, as our participants were unfamiliar with the average faces 
and the “parent faces” used to create those average faces. In this respect, 
our findings may have implications for the theoretical distinction be-
tween recognition of familiar and unfamiliar faces (Bruce & Young, 
1986; Hancock et al., 2000; Gobbini & Haxby, 2007; Rossion, 2018; 
Young & Burton, 2018). 

Finally, we investigated how the face averaging process affects par-
ticipants’ gaze behavior when discriminating between faces becomes 
increasingly difficult. Previous studies have shown that how people look 
at faces during face recognition may differ between cultures (Blais, Jack, 
Scheepers, Fiset, & Caldara, 2008), between faces of own- vs. other- 
ethnicities (Brielmann, Bülthoff, & Armann, 2014; Hills & Pake, 
2013), and even between individual observers (Mehoudar, Arizpe, 
Baker, & Yovel, 2014; Peterson & Eckstein, 2013). The landing location 
of fixations when viewing faces can be used to identify two gaze stra-
tegies: holistic fixations and analytic fixations; with the former fixating 
primarily at the center area of the face, which reflects the processing of a 
face as a whole, and the latter fixating mainly at the eyes and the mouth 
areas, which is indicative of part-based processing of faces (Blais et al., 
2008; Chuk, Crookes, Hayward, Chan, & Hsiao, 2017). Discriminating 
between two faces can be relatively easy (e.g., persons of different 
ethnicities) or more challenging (e.g., identical twins). It remains un-
clear whether, and, if so, how people adjust their fixations when a face 
recognition task becomes increasingly challenging. One possibility is 
that we employ more holistic fixation strategy for an easier task when 
scrutinizing individual face parts is not necessary, and we use more 
analytic fixations for a more challenging task when sampling more 
detailed facial information for face comparison is required. Alterna-
tively, we may look at faces in a similar fashion in terms of holistic 
versus analytic fixations, and when face discrimination task becomes 
more demanding, we may simply perform more fixations to either spot 
the difference or confirm the similarity between two faces. We tested 
these hypotheses by monitoring participants’ eye movements and tested 
how the number and the landing location of fixations may change with 
increasing average levels. 
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2. Methods 

2.1. Participants 

Twenty-five people participated in the study (17 females 8 males, 
aged between 19 and 55 years old, mean = 27.5). Data from one 
participant who did not follow the instructions were discarded. All 
participants provided written informed consent and received a mone-
tary compensation for their participation. The study was approved by 
the Ethics Council of the Max Planck Society. 

2.2. Stimuli 

We created the average faces using the face database of the Max 
Planck Institute for Biological Cybernetics and a 3D Morphable Model 
(Blanz & Vetter, 1999; Troje & Bülthoff, 1996). The shape and the 
texture of each 3Dlaser-scanned face were defined by the position and 
color values at 70,000 vertices in a 3D space. To create an average face, 
we computed the arithmetic means of position and color values at each 
vertex across a set of “parent faces” and then rendered them as a new 3D 
face (morph). Therefore, for each average face, all parent faces 
contributed equally during the face averaging process (e.g., each parent 
faces weighted 50% when two faces were averaged together, 25% when 
four faces were averaged, and so forth). In contrast to average faces 
created by morphing 2D images, our face averaging process also con-
siders depth information and the resulting faces can be rotated in 3D 
space to display different views. 

We used 320 Caucasian faces (half were male and half female) to 
create average faces at 13 average levels (AL2 to AL10, AL12, AL16, 
AL32 and AL80). The age of all 160 male faces varied between 19.50 and 
36.75 years old (M = 27.02, SD = 4.21). The age of all 160 female faces 
varied between 18.33 and 32.67 years old (M = 25.44, SD = 3.65). For 
each average level, we created 20 different average faces (10 males, 10 
females) except for two higher average levels (AL32, 10 average faces, 5 
males, 5 females; AL 80, 4 average faces, 2 males, 2 females). Each 
parent face was used only once to create a morph at each average level, 
which resulted in a smaller number of morphs being created for AL32 
and AL80 condition. This strict avoidance of repeated usage of any 
parent faces ensured that potential differences in the responses observed 
at different average levels could not be attributed to specific “parent 
faces” used to create average faces. 

For each trial, we showed two average faces side by side on a com-
puter screen; these two faces were always chosen from the same average 
level, had the same sex and similar mean age across their “parent faces” 
(Fig. 1). Both faces measured about 8 x 11 cm (7◦ x 10◦ visual angle) 
each and were 6 cm apart. For the same condition, the two faces showed 
the same average face from two different orientations (e.g., trial 2S in 
Fig. 1). For the different condition, we showed two different average faces 
(i.e., they were created with completely separated sets of faces) in two 
different orientations (e.g., trial 2D in Fig. 1). To ensure that our task 
tapped into identity processing and prevented participants from using 
an image-matching strategy, we showed one face slightly turning to the 
right (− 5◦) and the other to the left (+7.5◦). The two faces in a trial were 
slightly turned toward each other for half of the trials and were slightly 
turned away from each other for the other half of trials (Fig. 1). 

As mentioned above, we matched the two average faces used in the 
different condition in terms of their mean age and the age range of the 
faces used to create them. To do so, we sorted all 160 faces of each sex 
according to their age and then paired faces that had a very similar age 
to create 80 face pairs. The mean age difference between two faces in a 
pair (i.e., face A and face B) was 1.99 months (SD = 2.83 months; see 
Appendix A for details). For each average face that we created using A 
faces, there was a paired average face that was created with the corre-
sponding B faces. Consequently, these paired average faces had the same 
race, gender, and a very similar mean and range of age of “parent faces”. 
Therefore, in the different condition, we maximized the similarity of the 

average faces in terms of categorical facial information (i.e., they were 
created using the same number of faces that share the same race, same 
gender, and similar age). Meanwhile, we also maximized their differ-
ence in term of the composition of face identities used to create them (i. 
e., they never shared a single “parent” identity). This design helped to 
minimize the potential influence of other face-relevant factors (race, sex, 
and age) on our task, thereby providing a well-controlled way to assess 
the limit of face discrimination ability. 

Each participant had 496 trials in total, resulting from 40 trials (20 
same and 20 different trials) for each average level from AL2 to AL32 
plus 16 trials for AL80 (8 same and 8 different trials). For each average 
level, each average face was used only once in a different trial and once 
in a same trial, except for AL32 (each average face used twice) and AL80 
(each average face used four times) due to the limited number of average 
faces. The position (left/right) and orientation (+7.5◦ or − 5.0◦) of the 
morphs were changed across trials. 

2.3. Eye tracking 

Eye movements were monitored using the Tobii Pro Spectrum (Tobii 
Pro AB, Sweden), with a sampling frequency of 600 Hz. Tobii Studio’s 
default fixation filter of 30◦/s was used to select fixations and remove 
saccades. We defined five areas of interests (AOIs) in all faces to pool 
together fixations located near one of the main facial features: the eyes, 
nose, mouth, center, and the whole face (Fig. 1, AOI). These AOIs are 
similar to those used in our previous study (Brielmann et al., 2014). We 
chose eyes, nose, and mouth regions because they are critical internal 
facial features of face identity. We included the center region because 
previous studies have suggested that our gaze tends to land on this area 
(Peterson & Eckstein, 2012) and that two fixations at this region may 
suffice to face recognition (Hsiao & Cottrell, 2008). Fixation at the 
center region has also been associated with holistic processing of faces 
whereas fixations at the eyes and mouth may reflect analytic processing 
of faces (Blais et al., 2008; Chuk et al., 2017). We recorded the number 
of fixations within each AOI during each trial, which allowed us to test 
whether increasing task difficulty (average level) changes gaze behavior 

Fig. 1. Example of test stimuli and areas of interests (AOI) for eye-movement 
tracking. Each trial displays a pair of average faces in different orientations. 
The numbers (2 to 80) refer to the average level (i.e., how many faces are used 
to create the average face). The letters S and D represent the same and different 
condition respectively. For instance, trial 2S depicts the same average face that 
had been created with two faces, whereas trial 80D depicts two different 
average faces, each created with a set of non-overlapping 80 different faces. For 
AOIs, the eyes, mouth, nose, and whole face are indicated on the right face, 
whereas the center area that overlaps with the eyes and nose areas is shown on 
the left face. The sizes of AOIs in pixels are: eyes, 16,500; nose, 6525; mouth, 
7975; center, 8250; and whole face, 89,460. 
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from holistic fixations (i.e., a glimpse to a central face location) to an-
alytic fixations (i.e., a more distributed gaze at eyes, nose, and mouth 
regions). Note that the center region overlapped with most of the nose 
area and the area between the eyes. These AOIs were identical in size 
across faces and trials (except a few exceptions at average levels 2 and 3 
for less than 2% of all trials), which assured that fixation calculations 
across faces are comparable. 

2.4. Procedure 

After a gaze calibration procedure, participants read an on-screen 
text instructing them that their task was to decide whether two faces 
presented simultaneously showed the same person or not. Participants 
were notified that the difficulty of the task would increase gradually 
during the test. They then performed a short practice session with trials 
representing all average levels. Thereafter, all trials of AL2 were shown 
first, then those of AL3 and so forth up to AL80. We blocked the trials 
according to average level to maximize the consistency of participants’ 
response and gaze strategy within each average level, which would help 
maximize the chance of observing any potential difference in gaze 
behavior due to the change of average level (i.e., task difficulty). We told 
participants that task difficulty would increase systematically to help 
participants reach maximal performance. Participants could take self- 
timed breaks approximatively every 80 trials, followed by a new gaze 
calibration. Each trial started with a 1-s fixation cross followed by a test 
image shown for 4 s maximally. The next trial started once participants 
made a response by pressing corresponding keys or when the 4 s-time 
ran out. 

2.5. Data analysis 

2.5.1. Image similarity 
We used Gabor dissimilarity between two faces to measure image- 

based face similarity, as it often correlates with perceptual similarity 
of faces (Bülthoff & Zhao, 2020; Dobs et al., 2014; Lades et al., 1993; Yue 
et al., 2012). We followed the method described previously to compute 
Gabor dissimilarity (Bülthoff & Zhao, 2020; Dobs et al., 2014). Specif-
ically, we converted face images into grayscale (256 by 256 pixels) and 
then filtered each face image with a Gabor jet [5 scales × 8 orientations 
× 2 phases (sine and cosine), cantered at the intersections of a 10 × 10 
uniform grid] to generate a feature vector. We then computed the 
Euclidean distance between the two resulting feature vectors (one for 
each image) as their Gabor dissimilarity. Therefore, higher Gabor 
dissimilarity represents lower image similarity and a zero value means 
that the two images are identical. 

2.5.2. Linear mixed model (LMM) analysis 
As we have 13 ordered and unevenly spaced levels for the within- 

participants factors such as average level and image-based face simi-
larity, we used a linear mixed model type III tests of fixed effects to 
statistically test the effect of these factors and their interaction with 
other factors (e.g., AOIs for eye-tracking data). The LMM analyses were 
performed using the linear mixed model analysis function in the IBM® 
SPSS® Statistics (v25). For face discrimination performance (e.g., 
d prime or accuracy), we used average level (or its associated mean 
Gabor similarity) as a fixed and repeated factor and the related perfor-
mance measure as the dependent variable. For the fixation data (e.g., 
proportion or density of fixations at individual AOIs), we used average 
level and AOIs as the fixed and repeated factors and the corresponding 
measures of fixations as the dependent variable. We chose the default 
diagonal matrix to model repeated covariance (i.e., within-subjects 
variance-covariance). All reported p values were Bonferroni corrected 
when multiple comparisons were performed. 

2.5.3. Curve fitting 
We used the Matlab fit function to generate the fitting curves. We 

fitted the data with four candidate functions [power function: f(x) =
a*x^b, f(x) = a*x^b + c; exponential function: f(x) = a*exp(− x*b) + c 
and its equivalent function f(x) = a*(1-exp(− (x + b)/c)); logarithmic 
function: f(x) = a*log(x) + b]. We report the best fitting results with the 
values of the coefficient of determination (R2) and root mean square 
error (RMSE). For detailed results of all curve fitting reported here, 
please see Appendix B, Table B.1. 

3. Results 

3.1. Image-based similarity between average faces increased with 
increasing average levels 

We first investigated whether average faces created with more faces 
become more physically similar to each other and, if so, how. For each 
average level, we computed the image-based similarity between two 
average faces in all trials of the different condition. We first computed 
the Gabor similarity using the frontal views. The results showed that face 
similarity increased (i.e., Gabor dissimilarity decreased) with increasing 
average levels (Fig. 2A). Differences between average faces diminished 
rapidly at the lower average levels and this reduction slowed down at 
higher average levels. This nonlinear relationship is fitted nearly 
perfectly with a power function (R2 = 0.99, RMSE = 5.89). We then 
computed face similarity by rotating both faces in each trial to the same 
view (i.e., rotating the face on the right to the same view as the face 
shown on the left). The same pattern of results was observed (R2 = 0.99, 
RMSE = 4.30, Fig. 2B) and the two measures were highly correlated (r =
0.99, p < .001). Note that the fitted power functions in Fig. 2A and B are 
remarkable close to the mathematical description of how average level 
(i.e., the sample size for the averaging process, X) may affect the dif-
ference (i.e., inverse of similarity) between the resulting averages (Y), 
which decreases following a power function of Y = a* X-0.5(see Ap-
pendix C for more details). 

To investigate whether face similarity continues to increase signifi-
cantly at the two highest average levels, we directly compared AL32 vs 
AL80. Independent t-tests revealed significantly higher image similarity 
(i.e., lower Gabor dissimilarity) at AL80 compared to AL32, whether for 
frontal views, t(21.43) = 8.28, p < .001, or for the same-rotation view, t 
(24.57) = 11.70, p < .001 (equal variances not assumed). 

To examine whether average faces created at higher average levels 
are increasingly closer to the facial norm, we used the four average faces 
generated with 80 faces as an approximation to the face norm, and 
calculated image similarity between all average faces and these 
operationally-defined gender-matched face norms. The good fit of a 
power function to the results indicate that Gabor dissimilarity values 
decreased nonlinearly with linearly increasing average levels (R2 =

0.99, RMSE = 5.06, Fig. 2C). This result confirms that average faces 
created at higher average levels are closer to the face norm than those at 
lower average levels. 

3.2. Face discrimination performance decreased with increasing average 
levels 

We measured participants’ performance using response sensitivity (d 
prime), response bias, overall accuracy, and response time (RT). Trials 
that received no response (2.97% of all 11,904 trials) were excluded 
from the following analyses. 

Participants’ response sensitivity decreased with increasing average 
levels (Fig. 3A). A LMM analysis revealed a significant influence of 
average level on response sensitivity, F(12, 46.46) = 44.03, p < .001). 
Such a drop in response sensitivity was rapid for lower average levels (e. 
g., AL2 to AL10) and slowed down for higher ones (e.g., AL32 and 
AL80). This pattern of response is fitted nearly perfectly by an expo-
nential function (R2 = 0.99, RMSE = 0.11). Moreover, participants 
showed significantly above-chance performance (i.e., d’ > 0) for all but 
the highest average levels [AL2-AL32, ts(23) ≥ 7.21, ps < 0.001; AL80, t 
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(23) = 1.26, p = .220; one-sample t-tests]. Average levels also signifi-
cantly affected response bias (Fig. 3B), F(12, 44.76) = 6.01, p < .001. 
One-sample t-tests revealed that participants showed no significant 
response bias at lower average levels (AL2-AL10 and AL16), ts(23) ≤
2.71, ps ≥ 0.162, but a significant conservative bias (i.e., tendency to 
make a ‘same’ response) at higher average levels (AL12, AL32 and 
AL80), ts(23) ≥ 3.39, ps ≤ 0.032. 

Response accuracy mirrored the results of response sensitivity. Ac-
curacy decreased with increasing average levels, dropping rapidly at 
lower average levels and then more slowly at higher ones (Fig. 3C). This 
effect of average level on accuracy was significant [F(12, 40.417) =
46.44, p < .001], and the pattern of response was fitted nearly perfectly 
with an exponential function (R2 = 0.99, RMSE = 0.01). One-sample t- 
tests revealed above chance-level performance (i.e., accuracy = 0.5) for 
all average levels except AL80 [AL2-AL32, ts(23) ≥ 6.03, ps < 0.001; 

AL80, t(23) = 1.36, p = .188]. This decrease in performance was not due 
to a speed-accuracy trade-off. With increasing average levels, RT grad-
ually increased up to a ceiling level around 2.1 s (Fig. 3D). This increase 
was fitted relatively well with an exponential function (R2 = 0.83, RMSE 
= 0.07). Again, the effect of average level was significant, [F(12, 45.67) 
= 3.50, p = .001]. We also analyzed the accuracy and RT data separately 
for the same and different conditions, which showed similar patterns of 
responses to those measured using overall accuracy and RT (see Ap-
pendix D for details). 

To examine whether participants reached their limit of face 
discrimination ability before AL80, we compared their performance at 
the two highest average levels (AL32 vs AL80). Paired t-tests revealed 
significant differences in terms of response sensitivity, t(23) = 3.02, p =
.006, bias, t(23) = 2.11, p = .046, accuracy, t(23) = 4.21, p < .001, but 
not RT, t(23) = 1.86, p = .076. These results indicate that, for a 

Fig. 2. Mean Gabor dissimilarity between two 
morphs as a function of average level. Panels A and B 
show the image similarity computed based on frontal 
view and the same-rotation view (i.e., both faces 
turned to the same orientation as the left face in a 
trial), respectively. Panel C shows the mean image 
similarity between morphs at each average level and 
the morphs of same sex at AL80. Lines represent 
nonlinear least squares fit with a power function. 
Error bars represent standard errors of the means 
(SEM).   

Fig. 3. Participants’ performance as a function of average levels. (A) Response sensitivity; (B) Response bias; (C) Overall accuracy; and (D) Response time. Curves 
represent nonlinear least squares fit with an exponential function. Asterisks indicate significant response bias compared to zero. The dashed line represents chance 
level performance. Error bars represent SEM. 
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homogeneous set of faces like the one we used here, participants were 
still able to differentiate between average faces created with 32 faces but 
lost such capability when the average faces were created using 80 faces. 

3.3. Face discrimination performance decreased nonlinearly with 
increasing image similarity 

To minimize the 12.5◦ difference between two face orientations in a 
trial (one rotated 5◦ to the right and one 7.5◦ to the left, Fig. 1), par-
ticipants might mentally rotate both faces to frontal views, rotate one 
face to match another face’s orientation, or mirror-flipped one face to 
reduce the difference to 2.5◦. We simulated these three potential stra-
tegies to calculate image-based face similarity, and then tested how it 
may determine participants’ face discrimination performance. As shown 
in Fig. 4, the higher the image-based difference between two faces (in 
term of Gabor dissimilarity), the better the face discrimination perfor-
mance, regardless of what type of face similarity was calculated and 
whether the performance was measured as response sensitivity or ac-
curacy. This observation is supported by significant correlations be-
tween any combination of performance and face similarity measures (for 
sensitivity, all rs ≥ 0.864, all ps < 0.001; for accuracy, all rs ≥ 0.780, all 
ps < 0.002). Nonetheless, their relationship is clearly nonlinear. The 
same magnitude of change in image similarity has a larger effect on 
performance when two faces are computationally similar (towards the 
left end of the X-axis) than when they are computationally more 
different (towards the right end of the X-axis). This nonlinear relation-
ship was captured nearly perfectly with an exponential function (for 
sensitivity, all R2 = 0.99, all RMSE ≤ 0.12; for accuracy, all R2 = 0.99, all 
RMSE = 0.01), suggesting that the relationship between face similarity 
and discrimination performance follows Fechner’s law. 

Gabor dissimilarity was larger for mirror flipped faces than when 
computed with frontal view faces or when one of the faces rotated to the 
same orientation as the other. This result suggests that a small difference 
between face orientations (e.g., 2.5◦ for mirror-flipped faces) can 

dramatically reduce image–based face similarity. Paired t-test confirmed 
this observation at all 13 average levels (frontal view vs. mirror flipped 
view, all ts > 5.65, all ps < 0.001; same rotation vs. mirror flipped view, 
all ts > 7.02, all ps < 0.001). This finding may offer an additional ac-
count for the well-documented effect of viewpoint change on face 
recognition (O’Toole, Edelman, & Bülthoff, 1998; Swystun & Logan, 
2019). 

3.4. Increasing task difficulty induced more fixations but did not change 
the distribution of fixations 

Our task became more challenging at higher average levels, as 
revealed by the increasing similarity between different average faces 
and participants’ decreasing face discrimination performance. To 
investigate how task difficulty modulates gaze strategies during face 
comparison, we first counted the total number of fixations participants 
performed during each trial and tested whether more difficult trials 
required more fixations. Fig. 5A shows the mean total number of fixa-
tions for the same and the different condition at each average level. A 
LMM analysis revealed a significant effect of average level, F(12, 80.30) 
= 3.858, p < .001, and a significant effect of trial type, F(1, 546.64) =
27.658, p < .001. The total number of fixations during a face discrimi-
nation trial increased with increasing average levels, and participants 
performed more fixations when the two faces were the same than when 
they were different (see Fig. 5B for representative examples). The 
increasing number of fixations echoes the increasing RT reported above 
(Fig. 3D), as revealed by a significant correlation between RT and the 
total number of fixations (rs ≥ 0.92, ps < 0.001, Fig. 5C). The interaction 
between average level and trial type was not significant, F(12, 80.30) =
0.904, p = .547, although the difference between the same and different 
conditions diminished at high average levels (i.e., AL32 and AL80). 

Next, we tested whether average level affects the distribution of 
fixations across facial features. For each participant and each average 
level, we calculated the percentage of fixations landing at each AOI 

Fig. 4. Face discrimination performance as a function of image-based dissimilarity. Face discrimination performance at each average level was measured using 
response sensitivity (upper row) and accuracy (lower row). Image-based face dissimilarity was computed when two faces were both in frontal view (left column), 
when they were rotated to the same view (middle column), or when one face was mirror-flipped to minimize viewpoint difference (right column). Note that larger 
values along the X-axis represent lower image similarity. Curves represent nonlinear least squares fit with an exponential function (in the format of cumulative 
density function). Error bars represent SEM. 
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when the two average faces were different. We focused on the different 
condition because in the same condition the image-based face similarity 
did not vary across average levels and did not contribute to the increased 
task difficulty. For the results about the distribution and density of fix-
ations obtained for the same condition, see Appendix E. A LMM analysis 
with average level and AOI as repeated factors revealed a significant 
effect of AOI on the proportion of fixations, F(3,694.70) = 368.847, p <
.001. Neither the effect of average level, F(12,125.44) = 0.548, p = .879, 
nor its interaction with AOI, F(36,105.83) = 0.394, p = .999, was sig-
nificant. As shown in Fig. 5D, across all average levels, the eyes attracted 
about one-half of all fixations (53.64 ± 1.86%), and the proportion 
dropped to about a quarter (23.94 ± 1.11%) for the nose area and less 
than one-tenth for the mouth region (8.43 ± 0.71%). Pairwise com-
parisons confirmed that the eyes attracted more fixations than the nose, t 
(483.49) = 13.695, p < .001, and the nose received more fixations than 
the mouth, t(494.974) = 11.727, p < .001. The center area, which 
overlapped with part of the eyes and nose regions, received nearly half 
of all fixations (46.20 ± 1.13%). The proportion is lower than that for 
the eyes, t(487.049) = 3.415, p = .004, but higher than that for the nose 
or the mouth (ts > 14.037, ps < 0.001). Therefore, while participants 
made more fixations with increasing task difficulty, the distribution of 
fixations across AOIs remained unchanged (e.g., eyes > center > nose >
mouth). 

Finally, we assessed if there was a tendency of fixating the center of 
faces when considering the size of AOIs. The observed larger proportion 
of fixation to the eyes area might be due to its larger size compared to 
other AOIs (Fig. 1). To address this issue, for each AOI we computed the 
density of fixations as the number of fixations per 1000 pixels (Fig. 5E) 
and then performed the same LMM analysis as above. We found a sig-
nificant effect of AOI on the density of fixations, F(3,548.05) = 203.525, 
p < .001. The density of fixations was higher for the center area (0.37 ±
0.01) than for the nose (0.26 ± 0.013), t(542) = 6.412, p < .001, which 
was higher than that for the eyes (0.21 ± 0.008), t(461.37) = 3.288, p =
.007, and the eyes showed a higher density than that for the mouth 
(0.08 ± 0.007), t(526.55) = 12.798, p < .001. These results indicate that 
participants’ fixations landed more likely at the center area. The effect of 
average level, F(12,132.534) = 1.741, p = .065, and its interaction with 
AOI, F(36,82.656) = 0.216, p = .999, were not significant. Thus, the 
density of fixations in each AOI remains unchanged across average 
levels. 

4. Discussion 

When average faces are created with an increasing number of faces, 
they become computationally more similar to each other and more 
similar to the hypothetical face norm (which is approximated using the 

Fig. 5. Fixations recorded during the face discrimination task. (A) The total number of fixations as a function of average level for same and different trials. (B) 
Representative examples of eye movement distribution for same and different trials at average levels AL2 and AL32. The orange rectangle in the lower right panel 
illustrates a reference area that covers 1000 pixels. (C) Correlations between the number of fixations and the response time. (D) Distribution of fixations among the 
AOIs as a function of average level. (E) Density of fixations for each AOI (i.e., number of fixations per 1000 pixels of AOI size) as a function of average level. Error bars 
represent SEM. Note that average level AL80 is not shown to scale on the abscissa in panels A, D and E. 
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average faces of 80 identities in our study). Consistent with the view that 
face norms can be established through face averaging, our results show 
that the higher the average level, the more the average faces exhibit the 
hypothetical properties of a face norm (e.g., they become more typical 
and are located increasingly closer to the center of face space, Busey, 
1998; Valentine, 1991). Moreover, we show that gradually increasing 
average level leads to a nonlinear increase of image-based face simi-
larity, irrespective of how we calculated such face similarity (e.g., based 
on frontal view or the same rotated view, Fig. 2). The physical difference 
between two average faces diminishes rapidly at lower average levels 
and then the reduction slows down at higher average levels, following 
nicely a power law. These results provide new insights into how face 
norms are established and stabilized and set constraints on how to create 
an operationally defined face norm to manipulate various properties of 
faces. 

If our visual system uses face averaging to establish identity-neutral 
face norms, our results suggest that we may not use all encountered faces 
the same way to form face norms. The increase of image-based similarity 
between average faces slows down with increasing average levels and 
the corresponding change of face discrimination performance suggest 
that faces encountered earlier may play a more important role in 
establishing a stable face norm than those seen later. This view is 
consistent with the pivotal role of early face exposure in the develop-
ment of face space and expert face processing system (Crookes & 
McKone, 2009; de Heering, de Liedekerke, Deboni, & Rossion, 2010; 
McKone, Crookes, Jeffery, & Dilks, 2012). Faces seen earlier (e.g., the 
critical period during early infancy) may be used to rapidly construct a 
face prototype, which will then undergo further fine-tuning with the 
input of faces encountered later. Consistent with this idea, qualitative 
difference between the encoding of frequently encountered faces (e.g., 
own-race faces) and faces rarely seen (e.g., other-race faces) emerges 
within the first year of life (Kelly et al., 2007). Similarly, children who 
have been blind since early infancy can learn to differentiate between 
human faces and face-like objects in about 6 months after their sight 
recovery (Gandhi, Singh, Swami, Ganesh, & Sinha, 2017). These results 
suggest that our visual system can create an effective face prototype, 
based on the exposure to early-encountered faces, to differentiate be-
tween familiar and unfamiliar faces and between human faces and face- 
like objects. These results also raise an interesting question, that is, 
whether our ability to form a face norm using a limited number of faces 
is associated with our face recognition ability. Previous studies have 
shown that norm-based face encoding, measured indirectly using the 
face identity aftereffect, is correlated with individual differences in face 
recognition ability (Dennett, McKone, Edwards, & Susilo, 2012; Rhodes, 
Jeffery, Taylor, Hayward, & Ewing, 2014). Therefore, it is possible that 
the development of face norms, such as the importance of early and late 
encountered faces in establishing a stable face norm, may vary between 
super-recognizers and prosopagnosics. To reveal the potential link be-
tween face norm creation and face recognition ability, future study 
could test how the averaging process affects the physical and perceptual 
properties of average faces with people varying in their face recognition 
ability. 

Increasing the average level produced both a nonlinear increase of 
the computational similarity between the resulting average faces and a 
nonlinear decrease of face discrimination performance. Participants’ 
face discrimination performance dropped from a near-perfect level 
when two faces were averaged to chance level when 80 faces were 
averaged (Fig. 3). Increasing the average level also changes participants’ 
response strategy. They tended to make a “same” response at higher 
average levels (e.g., AL32 and AL80), even though the two different 
average faces were created using completely separated sets of faces. 
Moreover, the perception of face similarity (hereby indicated by per-
formance on a face identity matching task) follows a logarithm scale of 
image-based face similarity, as indicated by a good fitting of exponential 
functions (Fig. 4). These results indicate that the relationship between 
physical and perceptual similarity during the face averaging process also 

follows Fechner’s law, as observed in other aspects of face perception 
(McKone, Aitkin, & Edwards, 2005). 

The influence of face averaging on face discrimination performance 
also sets constraints on the creation of operationally defined face norms. 
Our participants reached the limit of their face discrimination ability at 
AL80. In terms of the face space metaphor (e.g., Busey, 1998; Valentine, 
1991), this result indicates that average faces created with 80 distinct 
face identities are located too close in face space to be distinguished 
from each other. Note that the fitting of our data suggests that such 
perceptual limit may be reached at a lower average level than the AL80 
(Figs. 2, 3A, and C). Future research with more fine-grained average 
levels may help pinpoint a more precise cut-off point for the limit of our 
face discrimination ability. Therefore, to safely approximate the face 
norm of a homogeneous population as we tested here (e.g., same race, 
sex, and similar age), one may need to create an average face out of 80 or 
more different face identities. Given that a person may know thousands 
of people and encounter much more faces in real life (Jenkins, Dowsett, 
& Burton, 2018), our result suggests that people could establish an 
identity-neutral face norm using a small fraction of faces they have 
encountered. Meanwhile, even for our well-controlled homogeneous set 
of faces, participants’ face discrimination performance was still signifi-
cantly above chance at AL32. This result suggests that the average of 32 
face identities is not close to the hypothetic face norm enough to be 
identity neutral. Therefore, caution should be taken when such average 
faces are used as face norms to modify the strength of face identity. 

Our study also demonstrates that image-based face similarity is 
tightly related to face discrimination performance. We found a nonlinear 
relationship between average level and participants’ face discrimination 
performance (Fig. 3), which was mediated by a nonlinear relationship 
between image-based face similarity and face discrimination perfor-
mance (Fig. 4). These results were consistently observed across three 
simulated strategies that participants may use to offset the viewpoint 
difference between the two average faces (i.e., rotate both faces to 
frontal view, rotate one face to the same view of another face, or mirror 
flip one of the two faces). Discrimination between two unfamiliar faces, 
such as the average faces created in the present study, varies substan-
tially from chance-level to near-perfect performance depending on 
stimulus-based face similarity. Such stimulus-based variation in unfa-
miliar face processing should be considered when investigating the 
distinction between familiar and unfamiliar face recognition (Bruce & 
Young, 1986; Gobbini & Haxby, 2007; Hancock et al., 2000; Rossion, 
2018; Young & Burton, 2018). For instance, caution should be taken 
when such distinction is based on the different performance of the same 
group of participants on separate sets of familiar and unfamiliar faces. 
This is because the difference between the processing of familiar and 
unfamiliar faces can vary remarkably depending on their intra-stimulus 
similarity. To rule out the potential influence of face similarity on the 
qualitative distinction between familiar and unfamiliar face recognition, 
the same set of faces should be used. The effect of face similarity can 
then be controlled by testing participants familiar or unfamiliar with 
those faces (e.g., Bruce, Henderson, Newman, Burton, & M., 2001; 
Noyes & Jenkins, 2017; Ritchie et al., 2015), by testing participants 
before and after a face familiarization procedure (e.g., Bonner, Burton, 
& Bruce, 2003. Clutterbuck & Johnston, 2005), or by a cross over design 
(as used in the study of the other-race effect in face recognition; e.g., 
Hills & Pake, 2013; Zhao, Hayward, & Bülthoff, 2014). 

The relationship between image-based face similarity and face 
discrimination performance also offers new insights into the limit of face 
discrimination ability. Leopold et al. (2001) have manipulated the 
identity strength of faces by morphing between an original face and the 
average face (i.e., face norm), and they found that people needed about 
11% of identity information for 50% accuracy in recognition. Wilson 
and colleagues (Gao & Wilson, 2013; Wilson, Loffler, & Wilkinson, 
2002) have shown that 6–8% of geometric change between two syn-
thetic faces is required to reach a 75% accuracy in face discrimination. 
In our study, the mean Gabor dissimilarity between two average faces is 
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about 70 at AL32 and about 50 at AL80. The latter is close to the ex-
pected Gabor dissimilarity for a chance level performance according to 
the fitting of our data (about 45, Fig. 4). For the face stimuli used in our 
study, the mean Gabor dissimilarity between all same-gender faces was 
300. In comparison to this typical difference between two faces, our 
participants can still differentiate between two very similar faces when 
the face-based difference drops to a quarter of the typical difference (i.e., 
70/300) but they are unable to do so when it further drops to one-sixth 
of the typical difference (i.e., 50/300). These results provide an addi-
tional criterion for choosing an appropriate average level to approxi-
mate a face norm. 

When discriminating between two average faces became more 
challenging, participants performed more fixations to scrutinize the 
faces at a fine-grained level. However, the distribution of fixations across 
core face features remained unchanged. Whether the two average faces 
were created using two faces (i.e., visually different) or 80 faces (i.e., 
very similar), the eyes region always attracted most of the fixations (a 
half), followed by the nose (a quarter) and the mouth (one-tenth). These 
results are consistent with previous studies showing that the eyes region 
is important for face identification and receives the majority of fixations 
during face comparison (Armann & Bülthoff, 2009; Schyns, Bonnar, & 
Gosselin, 2002). Therefore, to cope with the increasing task difficulty, 
our participants adopted an efficient gaze strategy —sampling more 
detailed facial information (i.e., with additional fixations) without 
changing the way of information sampling (i.e., stable distribution of 
fixations). Note that participants performed more fixations for the same 
trials than for the different trials. This finding suggests that participants 
may initially use their fixations to spot the diagnostic difference between 
two faces rather than to confirm their similarity. Once such diagnostic 
difference is identified, participants stop scanning. 

Our participants also showed a tendency to fixate at the center area 
of the face, particularly when taking the sizes of AOIs into consideration 
(Fig. 5). Fixating at the center area of faces is argued to be optimal for 
face recognition (Eckstein & Peterson, 2013; Peterson & Eckstein, 2012; 
Hsiao & Cottrell, 2008) and is indicative of holistic face processing (Blais 
et al., 2008; Bombari, Mast, & Lobmaier, 2009; Chuk et al., 2017). That 
is, faces are perceived as a whole rather than as a combination of in-
dependent facial parts (Maurer, Le Grand, & Mondloch, 2002; Rossion, 
2013; Zhao, Bülthoff, & Bülthoff, 2016). Our participants used such 
holistic fixations similarly across all average levels, irrespective of task 
difficulty. This finding contradicts the idea that participants would use 
less holistic fixations and more analytic fixations when the face 
matching task becomes increasingly demanding. This unvarying distri-
bution of fixations across all average levels suggests that we do not scan 
averaged faces (approaching face norms) and individual faces differ-
ently. Therefore, changing task difficulty alone is insufficient to alter the 
unique and stable eye movement patterns of individual observers (e.g., 
Mehoudar et al., 2014). In contrast, qualitative change of fixation 
strategy (e.g., from holistic to analytic) often occurs when the faces 
being viewed are different from what we usually see (e.g., faces of other 
races or upside-down orientation, Brielmann et al., 2014; Chuk et al., 
2017; Hills & Pake, 2013). 

Face averaging, by definition, is affected by both the quantitative 
aspect (e.g., number of faces and the order of exposure) and the quali-
tative aspect (e.g., the typicality/distinctiveness of faces) of faces that 
are being averaged. Our study focuses primarily on the quantitative 
aspect and counterbalances the influence of the quality aspect (e.g., we 
used all “parent faces” non-repeatedly at all average levels). How exactly 
the quality of faces may modulate the effect of face averaging remains 
unclear. For instance, it has been shown that distinctive faces are located 
further away from the more typical faces and the face norm (Valentine, 
1991; Wallis, 2013), however, how distinctive faces may influence the 
formation of face norms remains to be elucidated. One possibility is that 
newly encountered very distinctive faces are discounted in the 

formation of face norms (i.e., as outliers), as they deviate substantially 
from both the individual face exemplars and the norm created from 
those faces. Consistent with this idea, our visual system can form a 
summary representation of facial expression by averaging most exem-
plars while discarding extreme outliers (Haberman & Whitney, 2010; 
see also Alvarez, 2011). Another possibility is that newly encountered 
distinctive faces contribute more to the representation of face variability 
(i.e., variance) than the face norm (i.e., the mean). By systematically 
varying the distinctiveness of faces added to the face averaging process, 
future research may help differentiate between these possibilities. 

Our results about the effects of the face averaging process on 
perceptual and image-based face similarity are based on a homogeneous 
set of faces (i.e., faces of the same race, sex, and similar age from a 
database of 320 Caucasian adult faces), as we aimed to minimize the 
influence of identity-independent information (e.g., sex, age and race) 
on face averaging. Whether our findings apply when more diverse 
parent faces are used (e.g., faces of different races or age) requires 
further research. Previous studies have shown that people form sepa-
rable face norms for different face categories (race, sex, or age, Jaquet 
et al., 2008; Little et al., 2005; Papesh & Goldinger, 2010). Therefore, 
establishing face norms for a more diversified face set may not involve 
face averaging across face categories (e.g., own- and other-race faces). 
Given that other-race faces are located densely close to each other in 
face space and close to their norm, due to a lack of expertise with these 
faces (Papesh & Goldinger, 2010; Valentine, 1991; Wallis, 2013), we 
may reach the limit of our face discrimination ability at a lower average 
level for other-race faces than for own-race faces. Hence, if people form 
multiple face norms for faces of different races, how the face averaging 
process affects faces and face discriminations for each race might vary. 

In summary, although average faces have been frequently used both 
as a theoretical concept and a practical tool in face recognition research, 
some fundamental aspects of average faces remain to be empirically 
validated. By combining 3D-face averaging, eye movement tracking, 
and image-based similarity analysis, here we show that an increasing 
average level leads to both a nonlinear increase of image-based face 
similarity and a nonlinear decrease of face discrimination performance. 
The influence of face averaging on face discrimination performance (i.e., 
perceptual similarity) is mediated by image-based face similarity, and 
the relationship between the perceptual and physical face similarity 
follows Fechner’s law. Our ability to differentiate between average faces 
drops rapidly at lower average levels and then the drop rate slows down 
at higher average levels. For the faces of a homogeneous population (e. 
g., the same race, gender and similar age), our visual system seems to 
reach its limit to discern between two average faces when they are 
created with 80 different identities. Moreover, when differentiation 
between two average faces becomes increasingly demanding, we adapt 
our fixation strategies accordingly by increasing the number of fixations 
without changing its distribution across facial features. These results not 
only help improve the use of average faces as an approximate of face 
norms but also help us understand how faces may be represented and 
recognized in a modernized face space framework (e.g., Chang & Tsao, 
2017; O’Toole, Castillo, Parde, Hill, & Chellappa, 2018). 

Credit authors statement 

Isabelle Bülthoff: Idea and Conceptualization 
Isabelle Bülthoff and Mintao Zhao worked equally on all other 

aspects of the study and its writing 

Acknowledgements 

This research was supported by the Max Planck Society. We would 
like to thank the reviewers for their very constructive comments and 
thank Karin Bierig for synthesizing the stimuli and collecting the data.  

I. Bülthoff and M. Zhao                                                                                                                                                                                                                       



Cognition 216 (2021) 104867

10

Appendix A 

Age matching for creating average faces for the different condition 
To ensure that the mean parent ages of both average faces in a trial of the Different condition were similar to each other and similar to the mean 

parent ages of the other average faces in trials of the corresponding Same condition, we paired all “parent faces” according to their age. To create any 
average face at any average level, we used the paired faces to create each yoked average face. Fig. A.1 shows that 159 of 160 pairs had an age dif-
ference smaller than 1 year.

Fig. A.1. Age difference between the 160 pairs of “parent faces” used to create the average faces.  

Appendix B  

Table B.1 
Results of all the curve fitting reported in Figs. 2, 3, and 4 in the main text.  

Image similarity as a function of AL  

Frontal view Same rotation To AL80 

Function R2 RMSE R2 RMSE R2 RMSE 

f(x) = a*x^b 0.99 5.89 0.99 4.30 0.98 5.06 
f(x) = a*x^b + c 0.99 6.11 0.99 4.51 0.99 3.47 
f(x) = a*exp(− x*b) + c 0.97 9.68 0.98 8.78 0.98 6.11 
f(x) = a*log(x) + b 0.93 14.78 0.92 14.94 0.86 14.43 
Performance as a function of AL  

Sensitivity (d’) Accuracy RT 
Function R2 RMSE R2 RMSE R2 RMSE 
f(x) = a*x^b 0.87 0.36 0.87 0.05 0.68 0.10 
f(x) = a*x^b + c 0.98 0.15 0.98 0.02 0.75 0.09 
f(x) = a*exp(− x*b) + c 0.99 0.11 0.99 0.01 0.83 0.07 
f(x) = a*log(x) + b 0.97 0.16 0.92 0.04 0.70 0.09  

Performance (d’) as a function of image similarity  
Frontal View Same Rotation Mirror Flipped 

Function R2 RMSE R2 RMSE R2 RMSE 
f(x) = a*x^b 0.88 0.35 0.87 0.36 0.69 0.56 
f(x) = a*x^b + c 0.96 0.20 0.96 0.22 0.98 0.13 
f(x) = a*exp(− x*b) + c 0.99 0.11 0.99 0.12 0.99 0.10 
f(x) = a*log(x) + b 0.98 0.15 0.97 0.17 0.82 0.42 
f(x) = a*(1-exp(− (x + b)/c)) 0.99 0.11 0.99 0.12 0.99 0.10 
Performance (accuracy) as a function of image similarity  

Frontal View Same Rotation Mirror Flipped 
Function R2 RMSE R2 RMSE R2 RMSE 
f(x) = a*x^b 0.87 0.05 0.86 0.05 0.63 0.08 
f(x) = a*x^b + c 0.90 0.04 0.91 0.04 0.92 0.04 
f(x) = a*exp(− x*b) + c 0.99 0.01 0.99 0.01 0.99 0.01 
f(x) = a*log(x) + b 0.93 0.04 0.92 0.04 0.69 0.07 
f(x) = a*(1-exp(− (x + b)/c)) 0.99 0.01 0.99 0.01 0.99 0.01 

Note. Results of the goodness of fit for the functions plotted in the figures are shown in bold. The two exponential functions are mathematically equivalent. 

Appendix C 

Mathematical expectation of the difference between the averages of increasing number of samples from a Gaussian distribution. 
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Assume we have a Gaussian distribution, N(μ, σ2), then the averages (means) of X samples from this distribution, A, also follows a Gaussian 
distribution, N(μ, σ2/X). The expected value of the square difference between two such averages, Ai and Aj, will be E[(Ai – Aj) 2] = 2 σ 2/X. So, its root 
mean square distance, √2 σ *X-0.5, goes down with the increasing sample size with a rate of X-0.5, which is close to our fitting of power function as 
shown in Fig. 2A, B. 

Appendix D 

Accuracy and RT data for the same and the different trials, respectively. 
Fig. D.1 below shows that both the same and the different condition showed a nonlinear decrease of response accuracy and a nonlinear increase of 

RT. Response accuracy on the different condition dropped faster with increasing average levels compared to that for the same condition. The patterns 
of responses are similar to the overall accuracy and RT data reported in Fig. 3 in the main text.

Fig. D.1. Participants’ response accuracy and RT as a function of average level and trial condition (same vs different). Curves represent nonlinear least squares fit 
with an exponential function. Error bars represent SEM. 

Appendix E 

Distribution and density of fixations observed for the same trials. 
The proportion and density of fixations recorded on the same condition (Fig. E.1) are similar to those observed for the different condition (Fig. 5D 

and E in main text). For the proportion of fixations, A LMM analysis with average level and AOI as repeated factors revealed a significant effect of AOI, 
F(3,676.64) = 347.091, p < .001. Neither the effect of average level, F(12,105.16) = 0.375, p = .970, nor its interaction with AOI, F(36,96.69) =
0.275, p = .999, was significant. Across all average levels, about one-half of all fixations (51.99 ± 1.77%) landed at the eyes region, a quarter (24.47 ±
1.01%) at the nose area and one-tenth (9.61 ± 0.71%) at the mouth region. For the density of fixations, the same analysis revealed a significant effect 
of AOI, F(3,567.21) = 196.24, p < .001. The effect of average level, F(12,136.67) = 0.769, p = .681, and its interaction with AOI, F(36,90.43) = 0.225, 
p = .999, were not significant. Pairwise comparison revealed a higher density of fixations at the center (0.41 ± 0.011) than at all other AOIs (eyes: 0.23 
± 0.008; nose: 0.30 ± 0.014; mouth: 0.10 ± 0.008), all ps < 0.001. Therefore, increasing average level (and consequently task difficulty) does not alter 
the gaze strategies used to differentiate between two average faces. 
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Fig. E.1. The distribution and density of fixations across AOIs as a function of average level. Note that average level AL80 is not shown to scale on the abscissa. Error 
bars represent SEM. 

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2021.104867. 
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