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evidence for the intrinsically 
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in vision
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David Kane1 & Jesús Malo2

the responses of visual neurons, as well as visual perception phenomena in general, are highly 
nonlinear functions of the visual input, while most vision models are grounded on the notion of a 
linear receptive field (RF). The linear RF has a number of inherent problems: it changes with the 
input, it presupposes a set of basis functions for the visual system, and it conflicts with recent studies 
on dendritic computations. Here we propose to model the RF in a nonlinear manner, introducing 
the intrinsically nonlinear receptive field (INRF). Apart from being more physiologically plausible 
and embodying the efficient representation principle, the INRF has a key property of wide-ranging 
implications: for several vision science phenomena where a linear RF must vary with the input in 
order to predict responses, the INRF can remain constant under different stimuli. We also prove that 
Artificial Neural Networks with INRF modules instead of linear filters have a remarkably improved 
performance and better emulate basic human perception. Our results suggest a change of paradigm 
for vision science as well as for artificial intelligence.

In vision science, the receptive field (RF) of a neuron is the extent of the visual field where light influences the 
neuron’s response. In the “standard model” of vision the first stage is a filtering operation consisting of multiply-
ing the intensities at each local region of an image stimulus by the values of a filter (the weights of the RF), and 
summing the resulting  intensities1; this weighted sum may then be normalized by the responses of neighbor-
ing neurons and passed through a pointwise nonlinearity. Many scientists have come to accept this linear plus 
nonlinear (L+NL) formulation as a working model of the visual  system2, and while there have been considerable 
improvements on, and extensions to, the standard model, the linear RF remains as the foundation of most vision 
models. The inspiration for Artificial Neural Networks (ANNs) came from early, classical models of biological 
neural networks, and for this reason they are also based on the linear RF, which is their  cornerstone3,4.

But there are a number of problems that are inherent to considering the RF as having a linear form, of which 
we will highlight three.

Adaptation makes the linear RF change with the input. For all species, adaptation is a key property 
that any neural system must have; in particular in the human visual system it is present in all stages, from the 
photoreceptors in the retina all the way to the  cortex5. Adaptation constantly adjusts the sensitivity of the visual 
system to the properties of the stimulus, bringing the survival advantage of making perception approximately 
independent from lighting conditions while quite sensitive to small differences among neighboring  regions6,7; 
this happens at very different timescales, from days and hours down to the 100ms interval between rapid eye 
movements, when retinal neurons adapt to the local mean and variance of the signal, approximating histogram 
 equalization8. In this way, adaptation allows to encode neural signals with less redundancy, and is therefore 
an embodiment of the efficient representation  principle9,10, an ecological approach for vision science that has 
proven to be extremely successful across mammalian, amphibian and insect  species11–14 and that states that the 
organization of the visual system in general and neural responses in particular are tailored to the statistics of the 
images that the individual typically encounters, so that visual information can be encoded in the most efficient 
way, optimizing the limited biological resources.

Due to the fact that the visual system is nonlinear, it can be shown that the linear RF can’t be a fixed, con-
stant property of a  neuron1,15,16. It is visual adaptation which modifies the spatial receptive field and temporal 
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integration properties of neurons depending on the input; in fact, under a basic L+NL formulation, adaptation 
simply means “a change in the parameters of the model”17.

The conclusion is that the RF of a neuron is not determined by its biological wiring but has different sizes, 
preferred orientations or even polarity (ON/OFF) for different  stimuli18–20.

In vision models the RF is characterized by finding the linear filter that provides the best correlation between 
the visual input and some specific response data, be it psychophysical like brightness perception magnitude or 
neurophysiological like spike train timings, and for that data the model can normally achieve an excellent fit. 
But there is much evidence showing that model performance degrades quickly if any aspect of the stimulus, like 
the spatial frequency or the contrast, is  changed1,15; the fact is that vision models and ANNs use RFs that are 
constant, or they don’t have general rules, valid for all inputs, as to how the RFs or the nonlinearities should be 
modified depending on the stimulus.

The linear RF presupposes a set of basis functions for the visual system. The visual system is 
nonlinear, and therefore it has no basis functions. Vision scientists, although aware that neurons are nonlinear, 
model their responses by probing the visual system with a variety of mathematically elegant basis functions like 
spots, edges or gratings, which are ideal for analyzing linear systems but that for nonlinear systems have no par-
ticular  meaning2; in fact, the estimated linear RF changes with the basis set  used21. Models based on the linear 
RF are not tests of how well the RF describes the neuron’s behavior, they have been obtained simply by assuming 
that the neuron performs a linear summation followed by a nonlinearity and then searching for the best-fitting 
L+NL model.

Studying neurons using the complete set of possible stimuli, which according to the theory would be the only 
way to characterize the system with total confidence, is a task of impossibly high complexity, requiring in the 
order of 101000  tests2. As experimental constraints impose to use just a tiny fraction of tests, the nonlinearities 
that are mapped are forced to be quite smooth. Therefore, nothing guarantees that the behavior of the visual 
system for all inputs, and in particular for complex stimuli as those given by natural scenes, can be characterized 
from studying a reduced set of stimuli.

The linear RF is questioned by more recent works in vision science. Cortical neurons produce 
all-or-nothing action potentials instead of analog values, i.e. neurons are highly nonlinear, and more recent 
studies have rejected the hypothesis that individual neurons can be modeled as a linear RF followed by an output 
 nonlinearity22, showing instead that each thin branch of the elaborate dendritic tree of a neuron could be com-
puting many different nonlinear combinations of its  inputs2,23,24.

Weaknesses in the state-of-the-art. The linear RF limitations in predicting neuron responses to 
complex stimuli have been known for many years, and a wide variety of approaches have been introduced to 
model the nonlinear nature of visual phenomena, e.g. nonlinear  subunits25, divisive  normalization26, feedback 
 connections27, neural-field  equations28, nonlinear  geometry21, nonlinear centre-surround  interactions29, hierar-
chical  models30, fitting ANNs to visual  data31, or training ANNs to perform a high-level visual  task32, to name 
some of the most relevant lines of research.

However, we must remark that all these approaches are still grounded in the notion of a linear RF. And what 
we currently have is that state-of-the-art vision models and ANNs, with their linear RFs, have very important 
weaknesses in their predictive powers.

In visual perception and color imaging, the general case of the image appearance problem is very much 
open: for natural images under given viewing conditions, there are neither fully effective automatic solutions 
nor accurate vision models to predict image appearance, not even in controlled scenarios like cinema  theaters8. 
This is a very important topic for imaging technologies, which require good perception models in order to 
encode image information efficiently and without introducing visible artifacts, for proper color representation, 
processing and display.

In computer vision, some of the well-known and most relevant problems of ANNs can be described as a 
failure to emulate basic human perception abilities. For instance ANNs are prone to adversarial attacks, where 
a very small change in pixel values in an image of some object A can lead the neural network to misclassify it as 
being a picture of object B, while for a human observer both the original and the modified images are perceived 
as being  identical33; this is a key limitation of ANNs, with an enormous potential for causing havoc. Another 
example is that the classification performance of ANNs falls rapidly when noise or texture changes are introduced 
on the test images, while human performance remains fairly stable under these  modifications34. The difficulty of 
modeling vision with ANNs is a topic that is garnering increasing  attention35,36.

In neuroscience, back in 2005 the standard model was able to explain at the most a 40% of the data variance 
in  V12. That same year, Carandini et al.1 commented that the fact that the linear RF component per se, which 
they say is “the bread and butter of the standard model”, can explain just a small fraction of the response variance 
of cortical neurons, is a sobering realization that leaves little room for the optimistic hope that matters could 
be fixed adding more modulatory terms or nonlinearities. Confirming their assessment, fifteen years later the 
standard model (via a goal-driven deep ANN) is just able to explain around 50% of the data variance in  V137.

Olshausen38 states that the problem is not in the lack of data but in the lack of a proper conceptual framework 
with which to analyze the data: the main obstacle is the standard model itself, which rather than be revised needs 
to be discarded altogether as it is the wrong starting point.
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Proposed approach: the intrinsically nonlinear receptive field (INRF)
In the classical model, the linear RF response at location x is expressed as a weighted sum of the input I at 
neighboring locations yi:

More recent studies of single-neuron activity consider sigmoidal nonlinearities σ(·) at  dendrites22,39, yielding a 
nonlinear summation model:

We now remark the following three points about dendritic computations, that will be the basis of our proposed 
formulation: 

1. Poirazi et al. mention that with the model of Eq. (2) predictions are far from  perfect39, and suggest as a pos-
sible reason that a single nonlinearity σ may not be adequate for all branches.

2. There are mechanisms that enable individual dendritic branches to act as nonlinear  units24.
3. There is feedback from the neuron soma to the  dendrites23.

In this paper we introduce the concept of an intrinsically nonlinear receptive field (INRF), a single-neuron sum-
mation model that we define in this way:

where for simplicity we have used the notation mi = m(x, yi),wi = w(x, yi).
In the INRF, as schematized in Fig. 1, some dendrites are linear and their contributions are summed with 

weights mi , while some other dendrites are nonlinear and their contributions are summed with weights wi (fol-
lowing points 1 and 2 above). The nonlinearity σ is shifted by a local average of the signal around point x, given 
by the convolution with the kernel g, i.e. 

∑

j g(yj − x)I(yj) = g ∗ I(x) . This shift value could be obtained by 
the dendrites from feedback from the soma (following point 3 above), and is represented in Fig. 1 by an arrow.

Our INRF model is a model of summation alternative to the linear RF. The final neural output would be INRF 
followed by a nonlinearity such as rectification, divisive  normalization26, etc.

properties of the inRf
The INRF can’t be efficiently expressed in L+NL form. A key point about the INRF model derives 
from the fact that the nonlinearity σ is a function of x, because it depends on the local average g ∗ I(x) . As a 
consequence, the INRF model can not be expressed as a weighted average of the input passed through some 
nonlinearity: the same point yi will have a different nonlinear transform applied when it is contributing to point 
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Figure 1.  Schematic of single-neuron spatial summation with a INRF. Contributions of linear dendrites are 
summed with weights mi . Contributions of nonlinear dendrites are summed with weights wi . The nonlinearity 
σ is shifted by a local average g ∗ I(x) of the signal I around point x, and this value is obtained by the nonlinear 
dendrites through feedback from the soma, represented by an arrow.
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x1 than when it is contributing to point x2 , i.e. σ(I(yi)− g ∗ I(x1)) vs σ(I(yi)− g ∗ I(x2)) . This also implies that 
the INRF model is not shift invariant, and therefore it can not be expressed as a convolution. In other words, 
the INRF can’t be expressed as a usual two-layer neural network, and for this reason we say that the INRF is 
intrinsically nonlinear and fundamentally different from the traditional nonlinear subunit summation models 
pioneered by Shapley and  Victor40, as those models do follow the regular L+NL paradigm.

In fact, it would be extremely inefficient to express the INRF in the conventional L+NL framework. To under-
stand the problem, let us concentrate on the term of INRF with the nonlinearities, call it R(x), and assume for 
simplicity that the kernel g is very narrow and can be considered like a delta function:

In order to compute the response at location x, R(x) adds up the contributions from all neighbors yi . For each 
yi , R(x) computes the difference between I(yi) and I(x), passes this difference through the nonlinearity σ , and 
multiplies this by the weight wi that depends on x and yi : the resulting number is what yi contributes to R(x). If 
we wanted to express R(x) using filters, we would need to have a different filter for each neighbor yi , with each 
of these filters Fi being zero everywhere except for having a value of +1 at yi and a value of −1 at x:

Next the nonlinearity σ would have to be applied to the result of each filtering operation, yielding an intermediate 
image J where the value at each location yi is

Finally, this image should be convolved with kernel w, producing the response at each location x:

As a result, computing the INRF for a single point x in an image with N discrete locations (or pixels) would require 
N + 2 convolutions (one convolution per neighbor plus a final convolution with w for R(x), plus another convolu-
tion with m), when the classical linear RF needs just one convolution for the whole image, of course. For example, 
a INRF in a one-megapixel image would require over a million linear filters to be expressed in L+NL form.

A linear RF is a specific case of the INRF. In common scenarios the INRF simplifies to a linear RF. For 
instance, if σ is just a linear scaling ( σ(z) = αz ), or when the contrast differences are not too large so that they 
fall inside the linear range of σ , then we can show that the INRF model becomes the classical linear RF of Eq. (1):

where ŵi , ĝi are just scaled versions of wi , gi . Furthermore, if the kernels m, g are Gaussians, and kernel w is a sum 
of a wide and a narrow Gaussian as argued  in41 for lateral inhibition in the retina, then we see that the resulting 
kernel k can have the form of a Difference of Gaussians (DoG) linear RF, a stalwart in vision  science42.

The INRF embodies the efficient representation principle. Sapiro and  Caselles43 showed that the 
following partial differential equation (PDE) performs histogram equalization:

where x denotes the spatial location, the input signal I is in the range [0, 1] and 1
2
 is the spatial average of I. The 

steady state of Eq. (9) is an image with a flat histogram:

We can see how if we replace the global mean average 1
2
 with a local mean average 

∑

i miI(yi) , we introduce 
locality also in the sign summation term through weights wi , we regularize the sign function turning it into a 
sigmoid σ , and we consider a very narrow kernel g (akin to a delta function), then Eq. (10) turns into Eq. (3) 
and we have exactly our INRF model.

Thus, we can argue that the INRF approximates local histogram equalization and for this reason it’s an 
embodiment of the efficient representation principle. Therefore, modeling the RF of retinal ganglion cells with 
a INRF could explain how these neurons are able to perform a constrained form of histogram equalization in 
the very short time interval between rapid eye  movements8, at the same time providing another justification for 
the center-surround properties of their  RFs44 when the kernels m, w, g are Gaussians. Histogram equalization 
achieves a similar statistical goal as divisive normalization, a canonical computation in the  brain26 that sets the 
neural responses to more finely cover the available range and to become invariant to global properties such as 
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lightness, contrast or orientation  texture30. But histogram equalization (of the distribution of the norm of neural 
signals) is better at reducing redundancy than normalization, and the INRF is biologically plausible unlike other 
mechanisms for redundancy reduction that are also derived from Barlow’s principle such as radial  factorization45. 
In image processing, histogram equalization is a classical technique to improve image appearance and it has 
been used in a variational model for perceptual color  correction46, whose gradient descent equation has a term 
that is a particular instance of the INRF model; this links as well our INRF formulation with the very effective 
color enhancement model of Rizzi et al.47.

Furthermore, we can relate the INRF to another successful vision science theory, that of the Wilson–Cowan 
 equations48, which have a long and thriving history of modelling cortical low-level  dynamics28. It has recently 
been  shown49 that the Wilson–Cowan equations are not variational, in the sense that they can’t be minimizing an 
energy functional. The simplest modification that makes them variational yields a model whose main term has 
the form of an INRF. This modified model accomplishes local histogram equalization, and predicts brightness 
perception phenomena better than the original Wilson–Cowan model.

Applications of the INRF for vision science. The INRF has a key property of wide-ranging implica-
tions, our results show: for several vision science phenomena where a linear RF must vary with the input in order 
to predict responses, the INRF can remain constant under different stimuli.

Visual neuroscience. A constant INRF can qualitatively explain the very puzzling neurophysiological data by 
which OFF cells in V1 turn into ON cells when the spatial frequency of the stimulus  increases20.

We recall that neurons in the ON pathway respond to stimuli above the average level, while neurons in the 
OFF pathway respond to stimuli below the average level. Under the standard model, the experimental data  in20 
is quite striking because it suggests that the neuron changes the pathway it belongs to (ON or OFF) depending 
on the input, and modeling this phenomenon with a linear RF requires not just a minor modification of the RF 
with the input but a complete inversion of polarity of the RF as the spatial frequency changes.

With the INRF formulation, on the other hand, we can use a fixed INRF and predict the data: when the stimu-
lus spatial frequency is low the INRF responds to inputs below the average, and when the spatial frequency is high 
the same INRF responds to stimuli above the average; see Fig. 2. In this case the nonlinearity σ in our model is 
approximately a sinusoid (see “Methods”), hinting at possible connections of the INRF with the nonlinear time 
series analysis of oscillations in brain  activity50.

Visual perception. Figure 3a shows the result of a psychophysical experiment. Participants were asked to adjust 
the luminance values of a series of circular patches lying over a uniform surround (example images are shown 
in the second row of the figure) until all brightness steps from one circle to the next are perceived to be identical 
from black to white, i.e. observers create a uniform brightness scale. Each curve in Figure 3a represents, for a 
given uniform background, the average over all observers of the brightness perception function. We can see how 
the slope of each brightness perception curve increases around its corresponding background luminance level. 
This effect is called “crispening”, and it’s a very complicated perceptual phenomenon to  model51 as it’s very much 
dependent on the input. For instance, if in the experiment above the uniform surround is replaced by salt and 
pepper noise of the same average (example images are shown in the bottom row of the figure), the crispening 
virtually disappears, see Fig. 3c.

We have found that the same INRF, i.e. using a fixed set of parameters for our model, can adequately predict 
how crispening happens with uniform backgrounds, see Fig. 3b, and how it is abolished when the background is 
salt and pepper noise, see Fig. 3d. Our extremely simple brightness perception model consists of just two stages: 
the first one is a Naka–Rushton equation to model photoreceptor  response42, and the second step is a INRF that 
models the responses of retinal ganglion cells, where kernels m, w are simple Gaussians, g is a Dirac delta and 
the nonlinearity σ is an asymmetric sigmoidal function with different exponents for the positive and negative 
regions (see “Methods”).

Figure 2.  OFF cells become ON cells when the spatial frequency of the stimulus increases. Each panel plots 
the cell response at the center region as a function of the input value at said region, stimulus shown in inset (red 
circle denotes center region, which has a gray value inside the input range). The response is computed in this 
manner: the input stimulus is convolved with a small Gaussian to simulate retinal blur, then the INRF is applied 
to it and finally the result is rectified (see “Methods”). Notice how in the left and middle-left panels the cell 
behaves as an OFF cell, since it responds only to stimuli below the average level of 0.5, while the reverse happens 
for the middle-right and right panels, where the cell responds only to stimuli above the average and therefore 
behaves as an ON cell.
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If, after the Naka–Rushton stage, one were to use the classical L+NL formulation with a Difference of Gauss-
ians (DoG) kernel and a pointwise nonlinearity instead of the INRF, it would be possible to optimize its param-
eters so that the L+NL model fits the psychophysical data and predicts crispening for the uniform background 
condition, as shown by the red curve in Fig. 4a. But then this L+NL model would not be able to replicate the 
psychophysical data for the salt and pepper surround, as seen in Fig. 4b: it still predicts crispening in this case, 
when for observers crispening has disappeared. Conversely, we can fit the L+NL model to the salt and pepper 
background condition, obtaining a different set of parameters than for the uniform background condition (see 
“Methods”). Now, as expected, the L+NL model qualitatively replicates the perceptual data for the salt and pepper 
surround (magenta curve in Fig. 4b) but not for the uniform background case (see Fig. 4a).

Figure 3.  Brightness perception curves (average over all observers) show “crispening” at the surround 
luminance level when the background is uniform (a), but the phenomenon disappears for salt and pepper 
background (c). A model based on the INRF that uses Gaussian kernels for m and w qualitatively replicates both 
cases (b,d) with a fixed set of parameters, which is not possible with a DoG, linear RF formulation.
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We can use the INRF-based model for brightness perception just described, call it INRF-B, to produce an 
image quality metric, call it INRF-IQ, in the following way. Given a reference image I and a distorted version of 
it ID (e.g. ID may have noise, blur, compression artifacts, etc.), we pass each of them through INRF-B and then 
compute the root mean square error (RMSE) between the results: INRF-IQ(I , ID ) = RMSE(INRF-B(I),INRF-B(ID
)). Despite the fact that INRF-B has only five parameters (namely � , the standard deviations of the Gaussians m 
and w and the two exponents of σ ) that have been optimized for the brightness perception experiment in less 
than 10 synthetic images, INRF-IQ reaches a correlation value with the mean opinion scores (MOS) of observers 
on the large scale database  TID201352 that is comparable to the correlation of a state-of-the-art deep learning 
perceptual metric like  LPIPS53,54, that has 24.7 million parameters and has been trained on more than 160, 000 
natural images, with close to 500K human judgements for labeling pair-comparison preferences. See Table 1 and 
“Methods”. With a further refinement of the five parameters w.r.t. the TID2013 database, the INRF-IQ achieves 
a 77% correlation with the MOS. Very importantly, when the INRF-IQ is implemented as a sequential stack of 
two INRF-B modules (i.e. having 10 parameters) the correlation with the MOS increases to 81% , showing that 
the addition of concatenated layers is beneficial for the INRF formulation, like it is for linear RFs.

Another very interesting example is that of White’s illusion, a brightness illusion in which two identical 
gray areas are perceived as being different due to their disparate surrounds. Vision models based on a linear 
RF can reproduce the illusion, but they fail to match the psychophysical data when bandpass noise is added to 
the  image56. The INRF model with a fixed set of parameters is able to replicate White’s illusion and predict the 
observers’ response when different types of bandpass noise are added, see Fig. 5 (the INRF also allows to predict 
this data if incorporated into a neural field model as done  in49).

We have been able to qualitatively reproduce as well the perceived spatial asymmetries for lights and darks 
using a constant INRF. In the “irradiation illusion”, a white square over black background is perceived as being 
larger than a black square over white background. This phenomenon can be reproduced with a L+NL model that 
changes with the  stimulus57, but we are able to model this illusion simply with a fixed INRF, see Fig. 6.

Remarkably, the results shown in Table 1, Figs. 3, 5 and 6 have all been obtained with the same set of parameter 
values (see Table 5): a standard deviation of 0.81◦ for m, a standard deviation of 2.77◦ for w, a value of � = 3.875 , 
g being a Dirac delta and the nonlinearity σ being σ(z) = z0.625 when z ≥ 0 and σ(z) = −|z|0.775 when z < 0 
(for details on the optimization process to find these parameter values see “Methods”).

All the visual perception experiments considered are instances of brightness perception, and the INRF units 
used could be thought as modeling retinal ganglion cells. Hence they are preceded by some sort of photorecep-
tor nonlinearity, but that is not a central part of the model, it is only required in this brightness context. An 
indication that this is not a crucial part of our model lies in the fact that different photoreceptor nonlinearities 
have been used for the four visual perception experiments (see “Methods”), yielding good results with the same 

Figure 4.  A simple L+NL model, consisting of a difference of Gaussians (DoG) linear RF followed by a 
pointwise nonlinearity, has to change with the input in order to reproduce the crispening phenomenon. When 
the model is adjusted to the uniform background condition (red curve), it qualitatively replicates brightness 
perception for the uniform background case (blue curve, left) but not for the salt and pepper surround case 
(blue curve, right). The reverse happens when the model is adjusted for the salt and pepper background 
condition. Both the DoG filter and the nonlinearity change with the stimuli (see “Methods”).

Table 1.  Pearson correlation with Mean Opinion Scores (MOS) in TID2013  database52 for different image 
quality metrics: PSNR,  SSIM55,  LPIPS53,54, INRF-IQ (proposed in text).

PSNR SSIM LPIPS INRF-IQ

Correlation with MOS 57% 65% 76% 74%
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INRF applied afterwards. In any case we see INRF as a summation model that could be applied at other layers 
downstream without this previous nonlinearity.

Application of the INRF to artificial neural networks. Finally, we have tested the idea of modifying 
a convolutional neural network (CNN), replacing each of its linear filters by a INRF while keeping all other 
elements of the architecture the same and maintaining the number of free parameters, then training this new 

Figure 5.  A model based on the INRF qualitatively predicts the observers’ response to White’s illusion when 
bandpass noise is added. Given 6 different levels of bandpass noise frequency, our model presents the same 
trend as the observers’ data published  in56. This is particularly striking when comparing our results with those 
shown  in56, where none of the vision models that were tried, based on linear RFs, were able to replicate this 
behaviour.

Figure 6.  Light/dark asymmetry (“irradiation illusion”): a white square over black background (left) is 
perceived as being larger than a black square over white background (right). This phenomenon can be 
reproduced with a L+NL model that changes with the  stimulus57. Instead we model the irradiation illusion with 
a fixed INRF followed by clipping in the range [0, 1] (see “Methods”).



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16277  | https://doi.org/10.1038/s41598-020-73113-0

www.nature.com/scientificreports/

network and comparing the performance with the original CNN. We’ve done this experiment for an image clas-
sification task, using two architectures and the four benchmark databases that are regularly used in the literature. 
As shown in Table 2, in all cases the INRF-based ANN outperforms the CNN in terms of classification error, 
with wide improvements that go from 10% for MNIST to a remarkable 45% for SVHN. Preliminary tests on a 
20-layer residual network using the CIFAR10 dataset show a 5% improvement for the INRF network over the 
CNN. We have also subjected our INRF-based ANN to four different forms of adversarial attacks, and in all cases 
it’s remarkably more robust than the CNN, as shown in Tables 3 and 4.

Discussion
We have presented the INRF and demonstrated that it has a number of remarkable advantages with respect to the 
classical linear RF. The INRF, introduced as a physiologically-plausible single-neuron summation model that is 
consistent with more recent studies on dendritic computations, embodies the efficient representation principle 
and provides an explanation for the ability of retinal cells to perform very rapid histogram equalization. For 
several phenomena in visual neuroscience and visual perception, the INRF is shown to have the capability of 
remaining constant for different inputs while the linear RF must change with the stimulus, indicating that the 
INRF might actually be determined by the cell’s wiring. Furthermore, we have been able to find a set of parameter 
values with which a single INRF element (emulating the output of retinal ganglion cells) is able to qualitatively 
predict perceptual responses in situations as diverse as the “crispening” effect, appearance of visual distortions 
in an image quality database, White’s illusion and the irradiation illusion. This supports the argument that the 
INRF is an adequate form of RF to model visual phenomena, and suggests that, as with the linear RF, better 
predictions could be achieved by stacking INRF elements in cascade, so that results in one stage are refined in 
the next. The INRF is also shown to be extremely effective in improving the performance of ANNs in terms of 
classification error and robustness to adversarial attacks.

In many common scenarios the INRF reduces to the linear RF, but in general it can’t be expressed efficiently 
in L+NL form. In our opinion, this has been the key reason why a model like INRF has not been proposed 
before, despite the wide variety of approaches that over the years have been introduced to model the nonlinear 
nature of visual phenomena: as all these vision models follow the L+NL paradigm (because they are grounded 
in the notion of a linear RF), they are not able to implement operations like the ones involved by the INRF 
unless there is an explosion in the dimension of the linear part. Furthermore, we argue that a model like INRF 
would most definitely not have appeared if we had followed the current trend of studying vision by using deep 
 ANNs37: while it is true that goal-driven ANNs are the state of the art in predicting cortical responses, by their 
own design they can’t yield a model that falls outside the regular L+NL paradigm. While possible in theory, in 
practice the chances of obtaining the INRF from the hidden layers of an ANN trained for some visual task are 
virtually zero, as this could only come after designing and training a colossal, unprecedented in size and highly 
inefficient network architecture.

Table 2.  Comparison of classification error between a CNN and the equivalent network using INRF elements 
instead of linear RF filters.

Dataset CNN INRFnet

MNIST 0.48 0.43

CIFAR10 24.28 16.78

CIFAR100 57.01 48.8

SVHN 6.26 3.41

Table 3.  Accuracy against whitebox adversarial attacks on the MNIST dataset.

Attack 
methods

FGSM 
( ǫ = 0.1)

FGSM 
( ǫ = 0.2)

FGSM 
( ǫ = 0.3) DeepFool

Carlini–Wagner 
( L2)

Carlini–Wagner 
( L∞)

CNN 88.14% 44.69% 11.03% 52.01% 4.18% 42.5%

INRFnet 93.14% 62.23% 33.42% 65.27% 7.24% 58.06%

Table 4.  Accuracy against whitebox adversarial attacks on the CIFAR10 dataset.

Attack 
methods

FGSM 
( ǫ = 0.05)

FGSM 
( ǫ = 0.1)

FGSM 
( ǫ = 0.15) DeepFool

CNN 13.27% 12.26% 10.79% 47.63%

INRFnet 19.3% 16.6% 15.6% 57.46%
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There are many interesting questions that spring up from our proposed model, some of which we’re currently 
investigating. We’re also interested in analyzing how changes in σ affect the model, and specifically if there are 
any advantages in a generalized version of it where the nonlinearity is not just shifted but also allowed to change 
in shape as a function of spatial location x. For visual perception, we are assessing the ability of our model to 
predict color appearance phenomena. Another important aspect is that of transmission of information, which 
goes beyond redundancy reduction (or histogram equalization) in the  response58. Future research should quan-
tify the ability of INRF layers in information transmission from the stimuli into the internal image representa-
tion, where the nature of the noise in INRF units (not considered in this work) will be of paramount relevance, 
 following59,60. And for ANNs with INRF modules, we’re studying other configurations (GAN, autoencoder and a 
recurrent version), the mathematical properties of the INRFnet that make it more resistant to adversarial attacks, 
the potential of an INRFnet to replicate visual illusions better than  CNNs61, and INRFnet implementations for 
input signals other than images.

To conclude, our results suggest a change of paradigm for vision science as well as for artificial intelligence, 
and open up groundbreaking opportunities for vision research that can potentially bring a game-change in the 
field, by constituting the new building block with which to produce neural models that perform better in predict-
ing the responses to natural stimuli. The potential effect of fully reaching this goal is immense for vision science, 
allowing to better understand how the brain processes signals, to help establish and analyze neural circuits, to see 
in which way neural signals relate to visual perception, and to develop accurate models of image appearance. This 
in turn would permit to create methods to produce uniform test batteries for easier replication of experiments 
in neuroimaging and psychophysics, develop better image processing and computer vision algorithms for many 
different key problems simply by minimizing perceptual error metrics, manufacture cameras and displays that 
faithfully match our perception, tailor them to individuals suffering from a visual deficiency, etc. The INRF can 
allow to create ANNs that perform more similarly to a human observer, in the sense that they become robust to 
adversarial attacks, easier to train, and have better generalization properties. These are all some of the most sig-
nificant problems currently affecting ANNs, hence the potential impact of our proposal may be quite substantial 
given the ubiquity of ANNs in research and the industry.

Methods

OFF cells become ON cells when the spatial frequency of the stimulus increases. The plots in 
Fig. 2 were obtained in the following manner. We consider a 1D stimulus I of width 512 points, consisting of 
alternating black and white segments of width b as background and a superimposed center segment of value u 
and width 64. In order to simulate retinal blurring, I is convolved with a Gaussian kernel of standard deviation 
4, yielding Ib . Next, the INRF model is applied to Ib with the following parameters: the kernels m and g have a 
width of 85 and a constant value of 1/85, the kernel w has a width of 512 and a constant value of 1/512, � = 1000 
and the nonlinearity σ has the form σ(z) = sin(πz) if |z| < 0.5 , otherwise σ(z) = sign(z) ∗ (sin(πz))2 . This 
result is rectified, yielding the final output O, our model of the cell response, whose center point has some value 
v. We repeat this process for different values of the center region in the stimulus, varying u from 0 (black) to 1 
(white). Each panel in Fig. 2 plots the resulting curve of cell response values v as a function of stimulus intensity 
u, for a given bar width b.

Modeling crispening with the INRF. Apparatus and subjects. Stimuli were displayed on a Philips 109B 
CRT monitor of 1280 by 960 pixels and 75 Hz and a luminance range from 0.65 to 75 cdm−2 in a purpose built 
laboratory. The display was viewed at a distance of 58 cm so that 64 pixels subtended 1 degree of visual angle. 
There were 13 participants in total, all with corrected to or normal vision. Informed consent was obtained from 
all participants. All procedures complied with the declaration of Helsinki and were approved by the ethical 
committee of the host institution: Comité Ético de Investigación Clínica, Parc de Salut MAR, Barcelona, Spain.

Psychophysical experiments on perceptual linearisation. Subjects viewed eleven uniform circles with 1 ◦ diam-
eter laying upon the horizontal meridian of the monitor and separated by 1 ◦ horizontal gaps. The leftmost circles 
were always black and the rightmost circles always white and the intermediary circles began with a random 
luminance value. There were two psychophysical experiments performed. The uniform background luminance 
levels in Experiment 1 were 0.65, 19.24, 37.83, 56.41, 75.00 cd/m2 . Experiment 2 used a salt (white) and pep-
per (black) background and the ratio of black to white pixels was varied from 0 to 100%. Each subject had to 
manipulate the luminance of the nine intermediary circles until they appeared to vary, from left to right, in a 
perceptually linear manner from black to white.

Replicating the psychophysical data using an INRF model. The brightness perception curves produced by the 
INRF model in Fig. 3 were obtained as follows. Let Lk represent one of the stimuli images shown in the second 
and fourth rows of the figure, taking values in the range [0,  100]. We first apply a Naka–Rushton equation 
modelling photoreceptor  response42: Ik(x) = Lk(x)

n/(Lk(x)
n + Sn) , where n = 0.74 and the semi-saturation 

constant S is calculated using the formula S = 0.5 · 18+ 0.5 · 100.63∗log10(bk)+1 obtained  from62, where bk is the 
average luminance value of the input Lk . Then, the INRF model from Equation (3) is applied to I = Ik , yielding 
an output image Ok . The parameters for the INRF model are the following: m and w are Gaussian kernels with 
standard deviation equal to 52 and 178 pixels, respectively, g is a delta function, � = 3.875 , and the nonlinearity 
σ is σ(z) = z0.625 when z ≥ 0 and σ(z) = −|z|0.775 when z < 0 . Each curve in Fig. 3b,d plots the value of a Ok 
image at the center of the eleven circles.
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Results shown in Fig. 4 are obtained by adjusting a simple L+NL model:

with m a linear kernel, DoG a kernel defined as a difference of two Gaussian kernels, σ a sigmoid function 
and � a scalar parameter balancing both terms. The L+NL model of Eq. (11) is applied to the output Ik of 
the Naka–Rushton equation with the same parameters as mentioned above. For the uniform background case 
(Fig. 4a), m is a Gaussian kernel with standard deviation equal to 52, the Gaussian kernels that compose DoG 
have a standard deviation of 30 and 60 pixels respectively, � is equal to 2 and σ is σ(z) = z0.5 when z ≥ 0 and 
σ(z) = −|z|0.7 when z < 0 . In the case of salt and pepper background, m is again a Gaussian kernel with stand-
ard deviation equal to 52, the standard deviation of the Gaussian kernels of DoG is 40 and 50 pixels respectively, 
� = 10 and σ is σ(z) = z0.9 when z ≥ 0 and σ(z) = −|z|0.9 when z < 0 . The plotted curves represent the output 
value of the model at the center of each of the eleven circles.

A simple image quality metric based on the INRF. The results reported in Table 1 were obtained as 
follows.The images from the TID2013 dataset and the values for MOS, PSNR and SSIM for each image were 
downloaded from the webpage of the authors  of52. Pearson correlation with MOS in TID2013 for LPIPS was 
obtained  from54. The INRF-IQ metric for a pair of reference R and distorted D images is calculated as fol-
lows. The images are converted from sRGB to CIELAB color space. Note that transform to CIELAB to compute 
lightness plays the role of the Naka–Rushton photoreceptor nonlinearity used in the other experiments. Their 
respective lightness channels ( LR and LD ) are then passed through the INRF model (3) with the same param-
eters of the brightness perception experiment, i.e. m and w are Gaussian kernels with standard deviation equal 
to 52 and 178 pixels, respectively, g is a delta function, � = 3.875 and the nonlinearity σ is σ(z) = z0.625 when 
z ≥ 0 and σ(z) = −|z|0.775 when z < 0 . The application of the INRF model to LR and LD yields, respectively, the 
output images OR and OD , and the root mean square error between them is our proposed image quality metric: 
INRF-IQ(R,D) = RMSE(OR,OD).

Modeling White’s illusion with noise using the INRF. The results for this experiment are shown in 
Fig. 5. They were obtained in the following manner. The goal was to model the results presented  in56 where 6 
different levels of bandpass noise were added to the original illusion. We follow the same paradigm proposed in 
there for showing the strength of the illusion in vision models. In particular, for each noise level, they compute 
the result of the different methods for 25 realizations of the noisy image and average them in order to guarantee 
the results are stable. From this average image, they compute the mean in the two grey-level patches where the 
illusion occurs. Finally, the strength of the illusion is defined as the difference between these two values, but 
with a fixed polarity that is defined as the polarity found in the original White illusion. In our case, we use the 
INRF model explained for crispening (but without the Naka–Rushton part, as we are emulating the experiment 
 of56 in which there is not need to convert to photoreceptor values), and we also compute our model on 25 noisy 
realizations in order to have stable results. As seen in Fig. 5 our model presents the same trend as the observers’ 
data. This is particularly striking when comparing our results with those shown  in56, where none of the state-of-
the-art linear RF vision models that were tried were able to replicate this behaviour with fixed parameters. Our 
parameters are the same -in terms of visual angles- as in the crispening and image quality tests, and they are the 
following: kernel m is a Gaussian of standard deviation 54 pixels, kernel w is a Gaussian of standard deviation 
183 pixels, g is a Dirac delta, the nonlinearity is σ(z) = z0.625 when z ≥ 0 and σ(z) = −|z|0.775 when z < 0 , and 
� = 3.875.

Modeling the irradiation illusion with the INRF. The results in Fig. 6 were obtained in the following 
manner. This is a 1D example where the input stimulus has width 1024 points, values 0 or 1, with a central step 
(corresponding to the square in the 2D case) of width 400 points. First, the input is convolved with a Gaussian 
of standard deviation 20 to emulate retinal blur. Then, the photoreceptor response is emulated with a Naka–
Rushton equation of the form NR(v) = v/(v + 0.18) , where the semi-saturation constant has been chosen to be 
0.18 as it corresponds to a mid-gray value. Next, the INRF is applied with the following parameters: kernel m 
is a Gaussian of standard deviation 100, kernel w is a Gaussian of standard deviation 342, g is a Dirac delta, the 
nonlinearity is σ(z) = z0.625 when z ≥ 0 and σ(z) = −|z|0.775 when z < 0 , and � = 3.875 . Finally, the result is 
clipped within the range [0, 1].

Optimization process for the INRF for visual perception. The results shown in Table 1, Figs. 3, 5 and 
6, correspond to the application of the INRF model to the “crispening” effect, an image quality metric, White’s 
illusion and the irradiation illusion, respectively. In this instance of the INRF model kernels m, w are simple 
Gaussians, g is a Dirac delta and the nonlinearity σ is an asymmetric sigmoidal function with different expo-
nents p, q for the positive and negative regions ( σ(z) = zp when z ≥ 0 and σ(z) = −|z|q when z < 0 ). All these 
results have been obtained with the same set of parameter values (see Table 5): a standard deviation of 0.81◦ for 
m, a standard deviation of 2.77◦ for w, � = 3.875 , p = 0.625, q = 0.775 . The optimization process to find these 
parameters values was as follows.

First, for the “crispening” effect, the standard deviation of m was chosen to match the radius of the circular 
patches and the standard deviation of w was chosen to match the distance between patches so that neighbor-
ing patches had no influence; the parameters �, p, q were selected by visual inspection of the results. This set of 
parameter values provided also excellent results for the image quality metric application, but were found to be 

(11)LN(x) =
∑

i

miI(yi)− �σ(
∑

j

DoG(yj − x)I(yj)),
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sub-optimal for White’s illusion. Then, the parameters were optimized (using Matlab’s fmincon function) so as to 
provide a good fit of the INRF results to the observer data on White’s illusion. This final set of parameter values, 
which is the one detailed above, was verified to work also for the “crispening” effect and the image quality metric, 
as well as for the irradiation illusion.

An INRF-based convolutional neural network. The INRF model can be fully integrated within a con-
volutional neural network (CNN) framework. To do so, we just replace the convolution with linear filters in the 
convolutional layers by INRF-modules based on the proposed model (Eq. (3)) and we keep all other elements of 
the architecture the same (activation functions, batch normalization, dropout, and fully connected layers). Each 
of these INRF-modules is a multi-channel implementation of Eq. (3) where the kernel g is just a Delta function 
and m and w are the same kernel, which is the one to be learned. More details on this formulation can be found 
in the Supplementary Material S1. The code for our implementation can be downloaded from https://github.
com/alviur/INRF.

In order to compare the performance of our proposed model with regards to a standard CNN we present 
a case study on image classification. More in detail, we look at four standard datasets:  MNIST63,  CIFAR1064, 
 CIFAR10064, and  SVHN65 without any preprocessing (e.g. whitening or histogram equalization) or data aug-
mentation strategy (input images are normalized in the range [0, 1] ). Both our model and the standard CNN 
present the same general architecture, as we just replace the convolutions (and bias) by the INRF-modules. The 
architecture in the case of the MNIST database has 2 convolutional layers followed by a fully-connected layer. 
The convolutional layers have 5× 5 filter size with 32 and 64 channels. After each convolutional layer, 2× 2 max 
pooling and ReLU activation layers are used. Finally a fully-connected layer with 500 hidden nodes is used. In 
the case of the CIFAR10, CIFAR100, and SVHN datasets, we use a CNN architecture  (following66,67) with 3 con-
volutional layers (192 channels in all the layers), followed by a global average pooling with kernel size 8 before a 
fully-connected output layer. Additionally to activation and pooling layers (disposed after the first two layers), 
batch normalization layers were added after each convolutional layer.

In MNIST, CIFAR10, and CIFAR100 we use a train-validation split strategy (the training set corresponds to 
90% of training data and validation to 10%) to find the best parameters and report performance in the test set. 
For SVHN we prepared the data as seen in previous works: 400 samples per class from the training set and 200 
samples per class from extra set are used as validation set, the remaining 598,388 images (mixing up training and 
extra set) are used for training. We report the error in the test set using the best model in the validation set. We 
train in all the datasets using Adam optimizer and a � value (for INRFnets) of 1.1 for MNIST, 2.0 for CIFAR10 
and CIFAR100, and 1.0 for SVHN. Table 2 presents the results in terms of the percentage of classification error 
in each dataset using a CNN and the same architecture with INRF (INRFnet). The INRF always reduces the 
error of the equivalent CNN architecture, with an improvement that ranges between 10% and 45% . Finally, in 
preliminary tests for the case of a 20-layer CNN, we use the same architecture, hyperparameters, data preproc-
essing, data augmentation and training procedure used by He et al.68 in their ResNet20 CIFAR10 experiment. 
We use � = 0.1 and a weight decay of 0.0003 for the INRFnet, and obtain an improvement of 5% over the CNN, 
the error going down from 9.4% to 8.9%.

Results from Tables 3 and 4 were obtained from attacking the CNN and INRFnet that obtained the best 
accuracy results for the MNIST and CIFAR10 datasets respectively in the previous experiment. We used four 
white-box adversarial attacks: the Fast Gradient Sign Method (FGSM)69,  DeepFool70, and Carlini & Wagner L2 
and L∞  methods71 in the MNIST-trained networks and FGSM and DeepFool for CIFAR10-trained networks. 
For all the attacks we used their implementations from the Adversarial Robustness Toolbox (ART)72.

Received: 19 December 2019; Accepted: 11 September 2020

Table 5.  Summary of the vision science experiments performed with different instances of the INRF model 
and the corresponding choice of parameters. Except for the OFF/ON cells experiment (first row), the results 
for the other four experiments have all been obtained with the same set of parameter values.

Experiment Nonlinearity on input Kernel m Kernel w Kernel g � Nonlinearity σ(·)

OFF/ON cells None Constant (size = 85 px) Constant (size = 512 px) Constant (size = 85 px) 1000 sin(πz) if |z| < 0.5 , 
sign(z) ∗ (sin(πz))2 otherwise

Crispening Naka–Rushton eq. (semisatura-
tion  from62, n = 0.74) Gaussian (std = 0.81◦) Gaussian (std = 2.77◦) Delta function 3.88 z0.63 if z ≥ 0 , −|z|0.78 if z < 0

Image quality metric Power law (lightness channel 
from CIELAB) Gaussian (std = 0.81◦) Gaussian (std = 2.77◦) Delta function 3.88 z0.63 if z ≥ 0 , −|z|0.78 if z < 0

White’s illusion Power law (gamma-corrected 
data) Gaussian (std = 0.81◦) Gaussian (std = 2.77◦) Delta function 3.88 z0.63 if z ≥ 0 , −|z|0.78 if z < 0

Irradation illusion Naka–Rushton eq. (semisatura-
tion = 18, n = 1) Gaussian (std = 0.81◦) Gaussian (std = 2.77◦) Delta function 3.88 z0.63 if z ≥ 0 , −|z|0.78 if z < 0
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