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Abstract—Gamut mapping is the problem of transforming the colors of image or video content so as to fully exploit the color palette of

the display device where the content will be shown, while preserving the artistic intent of the original content’s creator. In particular, in

the cinema industry, the rapid advancement in display technologies has created a pressing need to develop automatic and fast gamut

mapping algorithms. In this article, we propose a novel framework that is based on vision science models, performs both gamut

reduction and gamut extension, is of low computational complexity, produces results that are free from artifacts and outperforms

state-of-the-art methods according to psychophysical tests. Our experiments also highlight the limitations of existing objective metrics

for the gamut mapping problem.

Index Terms—Gamut mapping algorithms, wide gamut imaging, color reproduction, vision models for color and contrast,

gamut mapping for cinema
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1 INTRODUCTION

THE range of colors that a device is able to reproduce is
called its color gamut. A very common and convenient

way of describing colors is to ignore their luminance compo-
nent and just represent the chromatic content on a 2D plane
known as the CIE xy chromaticity diagram, shown in Fig. 1.
In this figure the tongue-shaped region corresponds to the
chromaticities of all the colors a standard observer can per-
ceive. Most existing displays are based on the trichromacy
property of human vision, creating colors by mixing three
well-chosen red, green and blue primaries in different pro-
portions. The chromaticities of these primaries determine a
triangle in the CIE xy chromaticity diagram, and this triangle
is the color gamut of the display in question. Therefore, for
any given three-primary display there will be many colors
that we could perceive but the display is not able to generate,
i.e., all the colors with chromaticities outside the triangle
associated to the display. Also, devices with different sets of
primarieswill have different gamuts. For this reason, in order
to facilitate inter-operability a number of standard distribu-
tion gamuts have been defined, and for cinema the most rele-
vant ones are shown in Fig. 1: DCI-P3 [1] is the standard
gamut used in cinema postproduction and recommended for
digital cinema projection, BT.709 [2] is used for cable and
broadcast TV, DVD, Blu-Ray and streaming, and BT.2020 [3]
is a very wide color gamut for the next generation UHDTV,
currently only achievable by some state-of-the-art laser

projectors. Fig. 1 also shows Pointer’s gamut [4], which cov-
ers all the frequently occurring real surface colors; we can see
how only BT.2020 is able to completely include Pointer’s
gamut.

The adaptation to a standard gamut implies altering the
range of colors (and contrast) of the original content. This pro-
cess is either carried out within the camera in live TV broad-
casts (or low-budget movie productions), or performed off-
line by expert technicians in the cinema industry. In practice,
for the purpose of modifying the movie gamut, colorists at
the post-production stage build 3D look-up-tables (LUTs) for
each movie or specific scenes in it. These LUTs contain mil-
lions of entries and colorists only specify a few colors manu-
ally, while the rest are interpolated regardless of their spatial
or temporal distribution [5]. Subsequently, the resulting
movie may have false colors that were not originally present.
To tackle this problem, colorists usually perform intensive
manual correction in a shot-by-shot, object-by-object basis.
This process is difficult, time consuming and expensive, and
therefore it makes an automated procedure called gamut
mapping (GM) very desirable: GM transforms an image so
that its colors better fit the target gamut.

In general, there are two types of GM procedures. First is
gamut reduction (GR), in which colors are mapped from a
larger source gamut to a smaller destination gamut. A com-
mon situation where GR is necessary is when a movie
intended for cinema viewing is displayed on a TV [6], [7].
Second is gamut extension (GE), that involves mapping col-
ors from a smaller source gamut to a larger destination
gamut. For example, wide-gamut state-of the-art displays
often receive movies that are encoded with limited-gamuts
as a precaution against regular (or poor) display devices;
therefore, we cannot exploit the full color rendering poten-
tial of these new devices unless we use a GE procedure [5].
The process of GE is gaining importance with the introduc-
tion of new display technologies and laser projectors [8], [9].
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These newdisplays use pure (very saturated) color primaries
which enable them to cover much wider gamuts, so now a
tablet screen may have a DCI-P3 gamut for instance, while
all the content it shows comes in the smaller BT.709 standard.

At this point, we present a clarification on how gamut
reduction and gamut extension differ practically. Gamut
reduction is required, not optional, when the colors of the
input image fall outside the display’s gamut; without GR,
the display will reproduce the image with artifacts and loss
of spatial detail. On the contrary, gamut extension is not
essential, rather it is considered as an enhancement opera-
tion [10]. For example, BT.709 footage presented as it is on a
wide-gamut BT.2020 display device won’t show any visual
artifact, it’s just that we will be missing the color rendering
potential of the wide-gamut screen.

As a main contribution, in this paper we present a frame-
work for gamut mapping that is based on models from
vision science and that allows us to perform both gamut
reduction and gamut extension. It is computationally effi-
cient and yields results that outperform state-of the-art
methods, as validated using psychophysical tests. Another
contribution of our research is to highlight the limitations of
existing image quality metrics when applied to the GM
problem, as none of them, including two state-of-the-art
deep learning metrics for image perception, trained over
large and very large scale databases (20,000+ images in one
case, 160,000+ in the other) is able to predict the preferences
of the observers.

We believe our results are of importance to the computer
vision community for two main reasons. First, because they
provide another example that drawing insights from vision
science and developing algorithms based on vision models
can yield state-of-the-art performance for computer vision
applications. And second, because our results demonstrate
how deep learning approaches are not yet suitable to emu-
late perception with an adequate degree of accuracy, even
when using very large databases with a huge number of
human annotations. This begs the question of whether this
failure is due to limitations in the network architecture, or
rather a more intrinsic issue is at hand, as for instance it has
been argued that the convolution-based spatial summation
of artificial neural networks cannot constitute a proper
model of how biological networks process information [11].

2 RELATED WORK

A large number of gamut mapping algorithms (GMAs) have
been proposed in the literature, we refer the interested reader
to the comprehensive book of Morovic

̆
[10]. GMAs can be

divided into two main categories: gamut reduction algorithms
(GRAs) and gamut extension algorithms (GEAs). Both GRAs
and GEAs can further be classified into two sub-classes: global
and local. Global (also known as non-local or non-adaptive)
methods map colors of an image to the target gamut indepen-
dently, while completely ignoring the spatial distribution of
colors in the image.Whereas local (also knownas spatial)meth-
ods modify pixel values by taking into account their neighbor-
hoods; as a result, two identical values surrounded by different
neighborhoodswill bemapped to twodifferent values.

Global GRAs. One class of global GRAs consists of gamut
clipping methods [12], [13], [14]. Gamut clipping is a very
common approach to perform gamut reduction where colors
that lie inside the destination gamut are left untouched while
those colors that fall outside are projected onto the destination
gamut boundary. In order to produce reduced-gamut images,
gamut clipping techniques use particular strategies andmap-
ping directions. For example, clipping chroma of the out-of-
gamut (OOG) colors along lines of constant hue and lightness
[15]; clipping each OOG color by seeking a minimum DE dis-
tance to the destination gamut boundary along lines of con-
stant hue, this method is referred as hue preserving
minimum DE (HPMINDE) [16]; clipping colors of low lumi-
nance and high luminance differently, thereby providing a
special treatment to bright colors in order to avoid excessive
chroma loss [17]. Clipping GRAs, due to their inherent behav-
ior, project whole OOG color segments into single points on
the target gamut, and therefore they may reproduce images
with a visible loss of detail and color gradients. To avoid this
sort of issue, another class of global GRAs are called gamut
compression algorithms. These methods modify all colors of
an input image, both inside and outside the target gamut.
Such functionality enables compression GRAs to map OOG
color segments to in-gamut color segments (instead of single
points), though the results they produce may lack in satura-
tion, specially when the difference between the source and
target gamuts is large. Many compression GRAs have been
proposed in the literature [18], [19], [20], [21], [22]. Some
GRAs take an hybrid approach in which a combination of
clipping and compression is used to performgamutmapping;
see for example [23]. A few GRAs [24], [25] make use of soft-
clipping that squeezes colors near the target gamut boundary
in order to accommodate the OOG colors.

Local GRAs. The frequency-based local GRAs [26], [27],
[28] first reduce the gamut of the source image using a
global method, and then in the second stage the high fre-
quency image detail (obtained by using a spatial filter) is
added to the reduced-gamut image. In these GRAs, another
stage of gamut clipping is integrated to process the resulting
image in case the spatial filtering operation places a few pix-
els outside the destination gamut. Local GRAs that are
inspired from the Retinex framework perform spatial com-
parisons to retain source image gradients in the reproduced
images [29], [30], [31], [32]. Some spatial GRAs [33], [34],
[35], [36], [37] pose gamut mapping as an optimization
scheme where, given a source image and its gamut mapped
version, the aim is to keep perturbing the gamut mapped

Fig. 1. Gamuts on CIE xy chromaticity diagram.
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image until its difference w.r.t. the source image is mini-
mized according to an error metric. Finally, an image
energy functional [38] is introduced to decrease the contrast
of the input image in order to perform gamut reduction.

Global GEAs. While the majority of the published GMAs
deal with the problem of gamut reduction, the case is very
different for gamut extension: only a few works have been
proposed in this direction. One simple solution to perform
gamut extension is to take any compression GRA and use it
in the reverse direction [39], [40], [41]. However, this way of
approaching GE may yield images that are unnatural and
unpleasant in appearance. The pioneering global GEAs [42],
[43] map limited-gamut printed images to the wide gamut of
HDTV in two stages: first the lightness is mapped using a
non-linear tone reproduction curve, and second the chroma
is extended along lines of constant hue and lightness. A few
methods [44], [45] perform gamut extension using functions
learned from user studies. Unlike the aforementioned GEAs,
some global methods [46], [47], [48] first classify the colors of
the input image according to a criterion, and then perform
gamut extension differently for each class. For example,
labelling each color of a given image as skin or non-skin [46];
dealing with objects of low chroma and high chroma differ-
ently [47]; identifying certain memory colors such as green
grass and blue sky, and rendering them independently [48].
Other approaches [49], [50] propose three types of exten-
sions: chroma extension, extension along lines from the ori-
gin, and adaptive mapping that is a compromise between
the first two strategies. Some global GEAs [51], [52], [53] aim
at preserving skin tones in the reproduced images.

Local GEAs. The local GEAs extend colors by taking into
account their spatial distribution in the input image. This
property certainly makes local GEAs adaptive and flexible
but at the same time far more complex and computationally
expensive than global GEAs. The multilevel GEA [54] in its
first stage extends the source gamut using a non-linear hue-
varying function, and in the second stage applies an image-
dependent chroma smoothing operation to avoid an over-
enhancement of contrast and to preserve detail in the final
image. Recent works [38], [55], [56] perform spatial gamut
extension using partial differential equations. In particular,
the contrast of the input image is enhanced by minimizing
an energy functional [38]; a monotonically increasing func-
tion [55] is applied on the saturation channel of the input
image in HSV color space that allows to increase contrast
without decreasing the image saturation values; and the
GEA [56] operates only on the chromatic components of
CIELAB color space, while taking into account the analysis
of distortions in hue, chroma and saturation.

In this paper we propose a novel framework that over-
comes several issues of current GM approaches, performing
both GR and GE at a low computational cost and where the
results are free from spatio-temporal artifacts. In the next sec-
tionwewill start by brieflymentioning some facts andmodels
from the vision science literature that form the basis of our
GM framework, that is going to be introduced in Section 4.

3 SOME VISION FACTS AND MODELS

FOR GAMUT MAPPING

Light reaching the retina is transformed into electrical signals
by photoreceptors, rods and cones. At photopic light levels,

rods are saturated and the visual information comes from
cones, of which there are three types, according to the wave-
lengths they are most sensitive to: L (long), M (medium), and
S (short). The response of all photoreceptors is non-linear
and, for a single cell without feedback, can be well approxi-
mated by the Naka-Rushton equation [57], which is a partic-
ular instance of a divisive normalization operation [58], i.e., a
process that computes the ratio between the response of an
individual neuron and someweighted average of the activity
of its neighbors, and this in turns allows the photoreceptor
response to adapt to the average light level therefore opti-
mizing its operative range.

Photoreceptors do not operate individually though, they
receive negative (inhibitory) feedback from horizontal cells,
which receive excitatory input from cones and generate
inhibitory input to cones. Cone output goes to bipolar cells,
that also receive lateral inhibition from horizontal cells and
from another type of retinal neurons called amacrine cells.
Bipolars feed into retinal ganglion cells (RGCs), which also
receive input from amacrine cells, and the axons of the gan-
glion cells form the optic nerve, sending visual signals to
the lateral geniculate nucleus (LGN) in the thalamus, where
the signals are re-organized into different layers each pro-
jecting to a specific layer in the cortex. There are numerous
axons providing feedback from the cortex to the LGN, but
their influence on color vision is not known [59].

The lateral inhibition or center-surround processing, in
which a cell’s output corresponds to the difference between
the activity of the cell’s closest neighbors and the activity of
the cells in the near (and possibly far) surround, allows to
encode and enhance contrast therefore being key for effi-
cient representation, and is present at every stage of visual
processing from the retina to the cortex. The size of the
receptive field (the visual region to which a neuron is sensi-
tive to) tends to increase as we progress down the visual
pathway. Lateral inhibition is often modeled as a linear
operation, a convolution with a kernel shaped as a differ-
ence of Gaussians (DoG). In recent studies, the surround
receptive field of RGCs is modeled as a sum of Gaussians
[60]. RGCs produce an achromatic signal by combining
information coming from the three cone types (L+M+S),
and produce chromatic opponent signals by performing
center-surround processing on signals coming from cones
of different types: (L+M)-S roughly corresponds to “Yellow
- Blue” opponency, and L-M to “Red - Green”. Achromatic
and color-opponent signals are kept separate in the LGN
and onto the cortex.

There are two types of bipolars, one that is excited by
light increments but does not respond to decrements, and
the other that responds only to light decrements; they are
organized in parallel channels that separately transmit
lightness and darkness, and that are maintained separate
from the retina to the cortex throughout the whole visual
pathway.

In the vision science literature the response of a cell is often
(but not exclusively)modeled as a linear operation (weighted
summation of the neighbors’ activity, e.g., for lateral inhibi-
tion) followed by a non-linear operation (e.g., rectification, so
as to consider only increments or decrements, but not both).
For the linear part, DoG filters and oriented DoG (ODoG) fil-
ters are useful in predicting many perceptual phenomena
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[61], while common models for the non-linear part include
rectification, divisive normalization and power-laws. For
instance, non-linear photoreceptor response followed by lin-
ear filtering produces bandpass contrast enhancement that
correlates with the contrast sensitivity function (CSF) of the
human visual system [62].

The purity of a color is represented by its saturation S
that expresses the amount of white that the color has: an
achromatic color has S ¼ 0, and blood red color has the
same hue as pink, but higher saturation. The value of S can
be computed from a combination of the achromatic and the
chromatic signals. There is evidence in region V1 of the
visual cortex, but not in the retina nor LGN, for cells tuned
to S and for neural activity correlated with S [63], with a
possible neural mechanism to this effect proposed in [64].

Finally, and very importantly for the GM problem, we
shall mention the so-called Helmholtz-Kohlrausch effect,
that implies that brightness perception depends on lumi-
nance and chrominance: color patches of the same lumi-
nance but different hue appear to have different brightness,
as well as color patches of the same luminance and hue but
different saturation (the higher the saturation, the higher
the perceived brightness). As a consequence, if we were to
modify the saturation of a color while preserving all other
attributes, its brightness would appear to change. The inter-
action between achromatic and chromatic signals that pro-
duces brightness perception has been shown to happen at
V1 [65], not before; there are some models for this, e.g., [66],
[67], with a review in [68].

4 PROPOSED GAMUT MAPPING FRAMEWORK

In this section we first describe the basic functionality of our
gamut extension and gamut reduction methods, and later
provide implementation details in Section 4.3.

4.1 Gamut Extension

In previous works we have shown how a contrast enhance-
ment method, implemented as a partial differential equa-
tion that minimizes a certain energy, produces gamut
extension when applied independently to the R, G and B
channels of an input image [38], but also when applied just
on the color opponent channels [56] or just on the saturation
channel [55]. See Fig. 2 for an illustration.

Based on this gamut extension ability that contrast
enhancement has, and considering some of the vision mod-
els enumerated in the previous section, we now propose the
following basic gamut extension method: perform contrast
enhancement on the saturation channel by center-surround
filtering (using a model of lateral inhibition), followed by
rectification so as to ensure that the saturation does not dec-
rease (based on a model of nonlinear processing by single
neurons and the existence of ON and OFF pathways), and
finally modify the brightness to account for the Helmholtz-
Kohlrausch (H-K) effect (using a modified model of bright-
ness based on neural activity data).

Basic GE method:

1) The inputs are an image sequence, whose gamut we
want to extend, and the specifications of the source
and target gamuts.

2) Convert each input frame into HSV color space
(see Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPAMI.2019.2938499,). We will
keepH constant.

3) Using the specifications of source and target gamuts,
define a linear filter Ke similar to a DoG. This filter
is then convolved with S, obtaining S1 which is
contrast-enhanced. Fig. 3a (left) shows an example
Ke filter.

Fig. 2. Contrast enhancement produces gamut extension. Top row: (a) Input image, (b) enhancing the contrast of all channels in RGB [38],
(c) enhancing the contrast of chroma in CIELAB [56], and (d) enhancing the contrast of saturation in HSV [55]. Bottom row: corresponding gamuts in
CIE diagram. Note that the source gamut (black) and target gamut (red) are fixed as they correspond to the gamut of the display devices.

1780 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 5, MAY 2021

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2938499
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2938499


4) Add a constant value image C to S1, obtaining S2.
This step attempts to preserve the mean of the origi-
nal image.

5) Rectify ðS2 � SÞ and produce S3 ¼ S þ rectifiedðS2�
SÞ, where rectifiedðS2 � SÞ ¼ maxðS2 � S; 0Þ. This
ensures that S3ðxÞ � SðxÞ for each and every pixel x,
i.e., that the process increases the saturation for all
pixels with respect to their value in the original
image.

6) ModifyV to compensate for theHelmholtz-Kohlrausch
effect, correcting V so that perceived brightness does
not change for those colors whose saturation has been
modified. This is done using a simplified version of the

model by Pridmore [67] that yields V1 ¼ V S
S3

� �r
.

7) The final result is the image with channels ðH;
S3; V1Þ.

See Fig. 5 comparing the original image (left) with the inter-
mediate result replacing S with S3 (middle) and the final
result with both S3 and V1 (right).

As an enhancement to the method we can add a logistic
function t after step (4) that linearly combines S2 with the
original S, giving more importance to S in the case of low-
saturated values so as to preserve skin tones and other mem-
ory colors: S2

0 ¼ ð1� tðSÞÞS2 þ tðSÞS. The shape of function
tðSÞ is shown in Fig. 4 and the formula is:

tðSðxÞÞ ¼ 1� 1

1þ 0:55e�1:74SðxÞð Þ2
: (1)

The values used in Eq. (1) have been chosen in the following
manner. We first collect a dataset of several images contain-
ing skin tones, less saturated natural objects and memory

colors. Next we perform gamut extension on these images.
Finally, we empirically search for the parameter values in
Eq. (1) such that the final reproduced images look natural
and pleasant. Note that none of the images from this dataset
were included in the final evaluation of GEAs.

4.2 Gamut Reduction

Essentially, gamut extension can be seen as the inverse of the
gamut reduction problem [10]. Since GE can be achieved by
contrast enhancement, GR can be obtained by decreasing
contrast, as we proved in [38]. In [69] Kim et al. showed that
convolution with Ke minimizes a functional that has a term
for contrast enhancement; if we change the sign of this term,
then the minimization of the functional performs contrast
decrease and the solution is achieved by convolution with a
new kernel Kr. Fig. 3b (right) shows an example Kr filter.
Following the idea presented in Section 4.1, where convolu-
tion of S with some kernel Ke yields GE, then GR could be
performed by convolutionwith a kernelKr that is the inverse
(in Fourier space) of a kernel that would performGE.

Basic GR method:

1) The inputs are an image sequence, whose gamut we
want to reduce, and the specifications of the source
and target gamuts.

2) Convert each input frame into HSV color space. We
will keepH constant.

3) Use a linear filter Kr, similar to a sum of Gaussians,
to convolve with S, obtaining S1 which is contrast-
decreased.

4) Add a constant value image C to S1, obtaining S2.
This step attempts to preserve the mean of the origi-
nal image.

Fig. 3. Examples of kernel used in our framework: (a) For gamut
extension. (b) For gamut reduction.

Fig. 5. Comparison of gamut extension results: (a) Input image, (b) extended-gamut image ignoring the H-K effect, and (c) extended-gamut image
considering the H-K effect.

Fig. 4. Logistic function used to give weights to each pixel of the input
image.
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5) Rectify ðS � S2Þ and produce S3 ¼ S � rectifiedðS�
S2Þ, where rectifiedðS � S2Þ ¼ maxðS � S2; 0Þ. This
ensures that S3ðxÞ � SðxÞ for each and every pixel x,
i.e., that the process decreases the saturation for all
pixels with respect to their value in the original
image.

6) ModifyV to compensate for theHelmholtz-Kohlrausch

effect: V1 ¼ V S
S3

� �r
.

7) The final result is the image with channels ðH;
S3; V1Þ.

See Fig. 6 comparing the original image (left) with the
intermediate result replacing S with S3 (middle) and the
final result with both S3 and V1 (right).

While one pass of this basic method already performs
GR, we have found that it gives better results to iterate steps
(2) to (4) with a sequence of filtersKr of progressively larger
spatial extent, keeping fixed after each iteration all pixels
whose colors have become in-gamut. Fig. 7 shows the evolu-
tion of the filters, the image gamut and the image.

4.3 Implementation Details

4.3.1 Computation of the Convolution Kernel

The kernelKe for GE is computed as

Ke ¼ F�1 1

1� gð1920 � FðvÞÞ

 !
; (2)

Fig. 6. Comparison of gamut reduction results: (a) Input image, (b) reduced-gamut image ignoring the H-K effect, and (c) reduced-gamut image con-
sidering the H-K effect.

Fig. 7. Effect of increasing kernel size on image gamut. Row 1: Example of kernels with progressively larger spatial extent. Row 2: Reduced-gamut
images corresponding to each kernel. Last column: Evolution of image gamut that progressively decreases with an increase in the spatial extent
of the kernel.
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where F denotes the Fourier transform, v is a normalized
2D Gaussian kernel and g is a positive constant. As men-
tioned above, the shape of Ke is similar to a difference of
Gaussians, see an example in Fig. 3 (left).

The kernelKr for GR is computed as

Kr ¼ F�1 1

1� gð2120 � FðvÞÞ

 !
; (3)

where g is in this case a negative constant. The shape ofKr is
similar to a sumof Gaussians, see an example in Fig. 3 (right).
The motivation for the form ofKe andKr kernels is given in
theAppendix, available in the online supplemental material.

4.3.2 Computation of Optimal g Value

The basic GR method that we have proposed in Section 4.2
is already capable of mapping the colors of a wide-gamut
image to a small destination gamut. However, we observed
that the same method yields better results if used iteratively
in the following manner. At iteration level one we apply
steps (2)-(4) of the basic GR method with g ¼ 0. This will
provide us back with the original image for which we check
if there are some pixels that lie inside the destination gamut.
If there are, we mark these pixels as a part of the final
reduced-gamut image and these values will not be modified
in subsequent iterations. We move to the next iteration and
apply again steps (2)-(4) of the basic GR method but now
with a slightly decreased g value (for example, setting
g ¼ �0:05) for the kernel in Eq. (3), and then check whether
any of the pixels that were outside the gamut at the previ-
ous iteration are now moved inside the destination gamut:
we select those pixels for the final image and leave them
untouched for the following iterations. We keep repeating
this process until all the out-of-gamut colors are mapped
inside the destination gamut. This iterative procedure
implies that in the case of gamut reduction there will be a
unique g value that will provide us with an optimal
reduced-gamut image. This g value is the one that is just
sufficient enough to bring all the out-of-gamut colors to
inside the target gamut.

In the case of gamut extension, the gamut of the optimal
result (in terms of appearance) usually does not extend to
the target gamut boundaries, it lies somewhere in between
the source and the target gamuts. This implies that for an
input image there can be many g values that we can use to
produce corresponding extended-gamut images (some
over-enhanced, some under-enhanced) and then we need to
choose the one which is optimal. However, selecting the
optimal image would require visual inspection. To address
this issue, we present an automatic procedure to find a
good-performing value for g that allows our GEA to adapt
itself for any combination of source and destination gamut
according to the content of the input image.

Given a pair of source and destination gamuts (3-primaries
triangles), we compute the area of the source gamut (SGarea)
and the destination gamut (DGarea), and find the difference
between them as

dg ¼ jSGarea �DGareaj: (4)

Considering the color differences between the source and
target gamuts (dg), we define gbase

gbase ¼
ffiffiffiffiffi
dg

3
p

; (5)

where the cube root function used in Eq. (5) has been chosen
based on tests we performed for several combinations of
source and destination gamuts, and it provides us with an
initial gbase value.

For each image, we created gamut extended images
using several different values of g. Then by subjectively
comparing these reproduced images with the wide-gamut
reference images, we manually found the most faithful
(optimal) reproduction and therefore its corresponding g

value. While analyzing histograms of the saturation compo-
nent of various optimal images, we observed a trend that
our GEA requires a small g value if the input image has a
large percentage of low-saturated pixels. Whereas a large g

value is needed for the input image that has a large percent-
age of high-saturated pixels. Thus, we modify the gbase

value to obtain the optimal g value as

g ¼ gbase þ ðTS � PLSÞgbase; (6)

where TS is a threshold to define the saturation level below
which all the pixels will be considered as low-saturated col-
ors, and PLS denotes the percentage of low-saturated pixels
in the input image. In this paper, considering that the satu-
ration channel of the input images are in the range [0,1], we
use Ts ¼ 0:3. The images that we use for the computation of
Ts are not included in the final evaluation of GEAs.

4.3.3 Temporal Aspect

Both for GR and GE our method is applied independently to
each frame of the video input.We have not needed to impose
any sort of temporal consistency to our algorithm and this is
due to the effectively large size of the kernels we use, which
remove or strongly reduce the influence of sudden changes
andmake the results stable and the framework very robust.

4.3.4 The HDR Case

The input is assumed to be of standard dynamic range (SDR),
as it is done in the GM literature. This assumption would
correspond (going back to the vision fundamentals men-
tioned in Section 3) to having as input image for our GM
framework the signal generated by the photoreceptors. The
reason for this is the well known fact that the Naka-Rushton
equation that models photoreceptor responses optimizes
the performance efficiency of cones and rods by adapting the
possibly high dynamic range (HDR) input intensities to the
SDR representation capabilities of photoreceptors [70]. In
fact several successful tone mapping approaches (that con-
vert HDR images into SDR) in the computer graphics and
image processing communities use non-linear curves based
on theNaka-Rushtonmodel (e.g., [71], [72]).

Therefore, if the input video to be gamut-mapped is in
HDR, our framework requires that it is tone-mapped first
and then processedwith ourGMalgorithm. This is consistent
with theworkflow for GMofHDR content proposed in [73].

The output of our GM method will also be in SDR form.
If it were required for it to be in HDR, then an inverse tone
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mapping method should be applied to the output, preferra-
bly respecting the artistic intent present in the material as in
the case of [74].

5 PSYCHOPHYSICAL EVALUATION

The goal of gamut mapping for cinema is to develop GMAs
that reproduce content respecting as much as possible the
artist’s vision, because it is an important feature that a GMA
should have in order to be adopted by the movie industry.
This could be achieved by including the reference images
in the psychophysical tests that act as a stand-in for the con-
tent creator’s intent. Therefore we conduct psychophysical
experiments in order to compare the performance of the
proposed GMAs with other methods in cinematic condi-
tions using a digital cinema projector (Barco-DP-1200 [75])
and a large projection screen.

5.1 Viewing Conditions and Evaluation Protocol

To emulate real cinema-like conditions, we used a large hall
with the ambient illuminance of 1 lux and the illumination
measured at the screen was around 750 lux. During the
experiments there was not any strong colored object present
in the observers’ field of view. We used a glare-free screen
that was 3 meters wide and 2 meters high. Each observer was
instructed to sit approximately 5meters away from the screen.

In this study, we used a forced-choice pairwise compari-
son technique to gather raw experiment data (indepen-
dently) for both gamut reduction and gamut extension
problems. Each observer was shown three images simulta-
neously on the projection screen: the reference image (in the
middle) and a pair of reproductions (one image on the left
side and the other on the right side of the reference image).

We asked each observer to make selections according to
these instructions: a) if there are any sort of artifacts in one of
the reproductions, choose the other, and b) if both of the
reproductions have artifacts or are free from artifacts, choose
the one which is perceptually closer to the reference image.
In pair comparison evaluation [21], in order to calculate dif-
ferences among n chosen GMAs, observers need to compare
nðn� 1Þ=2 number of pairs for each test image. For a given
pair of reproductions, a score of 1 is given to the reproduc-
tion which is selected by an observer, and a score to 0 to the
other reproduction. For each test image, the responses of an
observer were stored in a n� n raw matrix where the value
in column i and row j denote the score given to GMA i as
compared with GMA j. To compute accuracy scores from
the raw psychophysical data, we use the same approach as
in the work of Morovi�c [21] (see Chapter 5 of his thesis), that
is based on Thurstone’s law of comparative judgment [78].

Finally, a corpus of 15 observers participated in each of
the experiments we performed in our lab, as this is the num-
ber of observers for pair comparison tests that is suggested
by several technical recommendation documents (e.g., [79],
[80]). All the observers (12 male and 3 female with ages in
the range of 23 to 36 years) had normal color vision as tested
with the Ishihara’s test of color deficiency.

5.2 Image Media

The DCI-P3 wide-gamut test images that we used in evalu-
ating GEAs and GRAs are, respectively, shown in Figs. 8
and 9. (Note that these are sRGB images because we are lim-
ited to the sRGB standard to show results on paper.) Some
of these test images were taken from the publicly available
datasets [76], [77], while others were from [56] and from
mainstream feature films.

5.3 Experiment 1: Evaluation of GEAs

In the case of the psychophysical evaluation of GEAs, the
first step is to create limited-gamut input images. This is
achieved by applying a clipping operation on the DCI-P3
reference images in order to map the out-of-gamut colors to
the boundary of the BT.709 gamut (or any other desired
gamut). In order to perform clipping we used the xyY color
space, and clip chromaticities of the out-of-gamut colors of
a given image to the boundary of the destination gamut
towards a focal point that is the white point ‘D65’. The
experimental gamuts that we use in this paper are depicted
in Fig. 10, and their primaries are listed in Table 1. The

Fig. 8. Wide-gamut test images used in the evaluation of GEAs. First
three original images are from [76], images 4-7 are from [77], images 8-
18 were captured by the authors and the rest of the images are from
mainstream movies.

Fig. 9. Wide-gamut test images used in the evaluation of GRAs. First five
original images are from [77], the last four were captured by the authors
and the rest of the images are from mainstream movies.

Fig. 10. Gamuts on chromaticity diagram.
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procedure for computing the g value that we use for the ker-
nel in Eq. (2) is presented in Section 4.3.2, and the standard
deviation for v is set to one-third of the number of rows or
columns of the input image (whichever is larger). In the for-
mula of brightness modification in step 5 of the basic GE
(see Section 4.1), we set r ¼ 0:35.

5.3.1 Experimental Setups for GE

We have defined the following two different experimental
setups for the evaluation of GEAs.

1) Setup 1: Mapping from small gamut to DCI-P3 gamut.
As quantum dot displays [81] and laser projectors
[82] with their extended gamut capabilities are
becoming popular, in the near future the common
case will be to have large color differences between
the standard gamut and the gamut of the display.
Therefore, this setup is created to investigate how
different GEAs will perform when the difference
between source and target gamuts is large. To this
end, we map the source images from the small ‘Toy’
gamut (slightly smaller than the BT.709 gamut) to
the large DCI-P3 gamut. On the chromaticity dia-
gram, the difference in gamuts for this setup is
nearly equal to the difference between BT.709 and
BT.2020. This represents the future scenario where
we need to show on a wide-gamut display some con-
tent that was mastered for TV.

2) Setup 2: Mapping from BT.709 to DCI-P3 gamut. In this
setup we mimic the practical situation where the
source material has BT.709 gamut and we map the
source colors to the colors of the DCI-P3 gamut.

5.3.2 Competing GEAs

For each set-up, we compare the proposed method with the
top-ranked GEAs in a recent work [56]). These GEAs are
briefly explained as follows.

� Same Drive Signal (SDS) method linearly maps the
RGB primaries of the source gamut to the RGB pri-
maries of the destination device gamut, therefore
making the full use of the gamut of the target
display.

� Hybrid Color Mapping (HCM) is a combination of the
SDS algorithm and the true-color algorithm. The
true-color algorithm represents the input image in
the target gamut without applying any extension.

The HCM algorithm [50] analyzes the saturation
of the input image and then linearly combines the
output of the true-color method and the SDS method

R
G
B

2
4

3
5
HCM

¼ ð1� kÞ
R
G
B

2
4

3
5
true�color

þk

R
G
B

2
4

3
5
SDS

; (7)

where k is a mixing factor that works as a function of
saturation:

kðSÞ ¼
0; if S � SL
S�SL
SH�SL

; if SL < S < SH

1; if S � SH

8<
: ; (8)

SL and SH are constants to define the ranges of satu-
ration for the mixing function k, and their values
that we used in our experiments are SL ¼ 0:8 and
SH ¼ 1 as defined in [56].

The method of HCM aims at preserving natural
colors by leaving unchanged the low-saturated colors
such as flesh tones, whilemapping the high-saturated
colors using the SDSmethod.

� GEA of Zamir et al. [56] is a spatially-variant GEA,
implemented as a PDE-based optimization proce-
dure, that performs gamut extension in CIELAB color
space by taking into account the analysis of distor-
tions in hue, chroma and saturation.

5.3.3 Results of GEAs Under Experimental Setup 1

and Setup 2

Once the reproductions were obtained by applying GEAs
on the input images of both setups, we conducted a psycho-
physical evaluation separately for each setup using the 15
observers mentioned in Section 5.1.

Fig. 11a presents the accuracy scores computed by ana-
lyzing the psychophysical data of the setup 1 where it can
be seen that, when the difference between the source gamut
and the destination gamut is large, the proposed GEA yields
images that are perceptually more faithful to the reference
images than the other competing algorithms. The observers
declared SDS [50] as the least accurate method, whereas the
algorithm of [56] ranked second.

In Fig. 11b we present results for the setup 2 where it can
be seen that, when the color difference between the source-
destination gamut pair is small, our algorithm ranks first,
followed by the HCM algorithm [50] and the method of [56].

5.4 Experiment 2: Evaluation of GRAs

This section is devoted to examining the image reproduction
quality of competing GRAs. To obtain the reduced-gamut

TABLE 1
Primaries of Gamuts

Gamuts
Red

Primaries
Green

Primaries
Blue

Primaries

x y x y x y

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046
BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Toy 0.570 0.320 0.300 0.530 0.190 0.130

Fig. 11. Accuracy scores of competing GEAs: 15 observers took part in
each experiment and 30 images were used.
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images, we apply the proposed GRA on the saturation
channel of the input images by using the proposed GRA in
an iterative manner (over the g parameter) as described in
Section 4.3.2. The other parameter for the kernel in Eq. (3) is
the standard deviation for v, which is equal to one-twentieth
of the number of rows or columns of the input image (which-
ever is larger). In the formula of brightness modification in
step 5 of the basic GR (see Section 4.2), we set r ¼ 0:20.

5.4.1 Experimental Setups for GR

All the competing GRAs receive as input the wide-gamut
DCI-P3 images and generate reproductions for the follow-
ing two different experimental setups.

1) Setup 1: Mapping from DCI-P3 gamut to a small gamut.
We created this particular setup with a large differ-
ence between source and target gamuts, nearly as
large as it is between BT.2020 and BT.709 gamuts.
An experimental setup with such large difference in
gamuts allows us to not only evaluate the perfor-
mance of competing GRAs reliably but also provides
us an indication of how these GRAs might perform
when BT.2020 content becomes commonly available
and needs to be mapped to BT.709 displays or DCI-
P3 cinema projectors. To compute the results using
the competing GRAs, we map the colors of the 15
DCI-P3 test images shown in Fig. 9 to the challenging
smaller ‘Toy’ gamut.

2) Setup 2: Mapping from DCI-P3 to BT.709 gamut. Color-
ists perform this gamut reduction procedure by
using 3D LUTs (as we mentioned in more detail in
the introduction.) Therefore, we engaged a profes-
sional colorist from a post-production company to
use their own in-house 3D LUTs and apply them on
our DCI-P3 test images in order to create reduced-
gamut BT.709 images. We also perform GR using the
following competing GRAs.

5.4.2 Competing GRAs

� LCLIP [15] clips the chroma of the out-of-gamut col-
ors to the destination gamut boundary along lines of
constant hue and lightness.

� Hue PreservingMinimumDE (HPMINDE) [16] involves
clipping of the out-of-gamut color to the closest color,
in terms of DE error, on the boundary of the destina-
tion gamut along lines of constant hue.

� Alsam and Farup [29] proposed an iterative GRA that
at iteration level zero behaves as a gamut clipping
algorithm, and as the number of iterations increases
the solution approaches spatial gamut mapping.

� Schweiger et al. [25] make use of a compression func-
tion that squeezes colors near the destination gamut
boundary in order to accommodate the out-of-gamut
colors. This is a method proposed and used by the
British Broadcasting Corporation (BBC).

5.4.3 Results of GRAs Under Experimental Setup 1

and Setup 2

The 15 observers that took part in the GR experiment for
setup 1 were the same observers that participated in the
evaluation of the GE algorithms. The analysis of psycho-
physical data gathered for GRAs is presented in Fig. 12a. It
can be seen in this figure that the proposed GRA produces
images that are perceptually more faithful to the original
images than any other competing method. It is evident from
Fig. 12a that observers did not prefer the HPMINDE algo-
rithm in most of the tests images, and therefore rated it as
the least accurate method. The algorithms of Schweiger
et al. [25], Alsam and Farup [25] and LCLIP [15] are, respec-
tively, ranked second, third and fourth by the observers.

For the experimental setup 2 we also ran the psychophys-
ical tests with 15 observers, of which 9 had experience in
image processing and the other 6 were skilled technicians
(colorists and editors) from a post-production company.

In order to reduce the number of pair comparisons, in this
particular setup we opted to use the reproduced images of
the top three ranked methods from setup 1 and the reduced-
gamut images created by using the custom LUT of the same
post-production company. Fig. 12b shows the result for all
the observers. Observers preferred the in-house LUT results
over the othermethods, with our GRA being ranked second.

More specifically, we can focus our attention on the result
for this experiment when considering only the 6 skilled tech-
nicians. This result is shown in Fig. 13. In this case, we can
see that the trend is very similar to the one obtained by the 15
observers (the ranking of the algorithms is not modified), but
also that the skilled technicians are more inclined to select
the in-house LUT of their post-production company, proba-
bly because theymight bemore inclined to select the solution
they are used to working with. Also, the use of a LUT is well
suited for the case of DCI-P3 to BT.709 reduction, where the
blue primary is essentially the same for both gamuts, and the

Fig. 12. Accuracy scores of competing GRAs: 15 observers took part in
each experiment and 15 images were used.

Fig. 13. Accuracy scores of competing GRAs for the skilled technicians
case. The experiment was performed by Six experts, and 15 images
were used.
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differences in the other two primaries are rather small: how-
ever, for larger gamut differences, the LUT approach might
be hard to generalize.

5.5 Video Results

In order to test the temporal coherencewe apply the proposed
gamut reduction and gamut extension methods to all frames
of videos independently. We confirm that the results pro-
duced by our algorithms are free from artifacts. The videos are
available at http://ip4ec.upf.edu/GamutMappingVideos.

6 DOES ANY ERROR METRIC APPROXIMATE OUR

PSYCHOPHYSICAL RESULTS?

In this section we evaluate if there exists any image metric
able to predict the result of our psychophysical test, follow-
ing the same strategy we used for the GE case in [56]. To
this end we consider a total of 10 metrics: a perceptually-
based color image difference (CID) metric [83] particularly
tailored for the gamut mapping problem, its more recent
extension iCID [36], CIEDE00 [84], the metrics presented in
[85] such as Laplacian mean square error (LMSE), structural
content (SC), normalized absolute error (NAE), peak signal-
to-noise ratio (PSNR), and absolute difference (AD), and
finally two very recent, state-of-the-art deep learning met-
rics for perceived appearance, PieAPP [86] and LPIPS [87],
learned from human judgements on large image databases.
All these metrics are full-reference, and therefore, they have
access to the reference images, as do the observers in our
experiments.

In order to perform a fair comparison to our experiment,
we consider the metrics as if they were observers in our pair
comparison test. This means that, for each metric, we will
run all the possible comparisons, and in each comparison
we will give a 1 to the image with better metric value and a
0 to the image with worse metric value. Later, we will apply
the Thurstone Case V analysis [78] to each of the image met-
rics to end up with the preference values for each of the
methods. These preference values will therefore be compa-
rable to the ones shown for the psychophysical analysis in
our previous section. For readers interested in the exact
numerical values of the metrics (e.g., the mean value for
each method, etc.), we provide them in the supplementary
material, available online.

Fig. 14 shows the result of the aforementioned analysis.
Each of the experimental setups is individually colored

with a color code where the hue goes from pure red for
the lowest value to pure green for the highest one. There-
fore, for any metric to be able to predict the psychophysi-
cal results, its color code should match that of the results
of the observers, shown in the last row. We can see that
there is only one specific case where we could argue
that this is happening, the NAE metric in the first setup
of gamut extension. However, the same metric is not able
to predict the observers’ response in any of the other
three cases.

It is interesting to mention that the CID and iCID metrics,
which were specifically developed for gamut mapping, do
not match the observer data; one possible reason is that
these metrics were designed for input images in the BT.709
gamut, while in this paper the input images are in DCI-P3,
which may explain the limitations of CID and iCID in the
context of our problem.

Another significant result is that two state-of-the-art
deep learning metrics, PieAPP [86] and LPIPS [87], designed
to predict perceptual image error like human observers
and based on large scale datasets (20 K images in one case,
160 K images in the other) labeled with pair-comparison
preferences and, in the case of [87], using close to 500 K
human judgements, are not able to predict the observers’
preference in any of the experimental set-ups that we have
tested. This result is important, as it suggests that current
deep learning approaches are not accurate enough for vali-
dating (and therefore developing) GM methods for cinema
applications, although it’s not a surprising result in the
sense that several very recent works have also shown how
large or very large scale image databases (250,000+ images)
can be used to train deep neural networks to predict user
preference but whose performance decays remarkably
when used on images that belong to some other dataset dif-
ferent from the one used for training [87], [88].

In summary, there does not seem to be an adequate met-
ric that is able to predict the preference of observers for GM
results. This has two important consequences. First, that in
order to evaluate gamut mapping methods, we still need to
rely only on psychophysical studies. However, conducting
subjective studies is operationally difficult, hard to replicate
from experiment to experiment, economically costly and
may require special equipment (cinema projector, large
screen, etc.). Second, that we cannot develop GM methods
or optimize GM results simply by maximizing an image
appearance metric or minimizing an error metric (as it is
done in other contexts, e.g., [89]), which of course would be

Fig. 14. Comparison between the results of different image metrics and the results from psychophysical evaluation. Metrics were considered as
observers in a pair comparison experiment. Each experiment is color coded individually. Color codes are green for the best result and red for the
worst one.
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extremely practical. Therefore, the results presented in this
section point out the importance of working towards defin-
ing better metrics for the gamut mapping problem that are
able to predict the observers’ preference, which we strongly
believe would be of great importance for the color imaging
community.

7 CONCLUSION

We have introduced a GM framework based on some basic
vision science facts and models. The algorithms for GE and
GR are simple, of low computational complexity, produce
results without artifacts and outperform state-of-the-art
methods according to psychophysical experiments.

We also tested a number of established and state-of-the-
art objective metrics on the results produced by the GM
methods we have compared, and we have observed that
these metrics correlate poorly with the choices made by the
observers. Therefore there is a need for developing an image
quality metric for GM: this would be a very significant con-
tribution, as it would greatly simplify the validation of new
methods and would also allow to optimize GM results by
optimizing said metric.
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