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Abstract Year-round variability in the Ross Gyre (RG), Antarctica, during 2011–2015, is derived using radar
altimetry. The RG is characterized by a bounded recirculating component and a westward throughflow to the
south. Two modes of variability of the sea surface height and ocean surface stress curl are revealed. The
first represents a large-scale sea surface height change forced by the Antarctic Oscillation. The second
represents semiannual variability in gyre area and strength, driven by fluctuations in sea level pressure
associated with the Amundsen Sea Low. Variability in the throughflow is also linked to the Amundsen Sea
Low. An adequate description of the oceanic circulation is achieved only when sea ice drag is accounted for in
the ocean surface stress. The drivers of RG variability elucidated here have significant implications for our
understanding of the oceanic forcing of Antarctic Ice Sheet melting and for the downstream propagation of
its ocean freshening footprint.

Plain Language Summary The Ross Gyre is one of the main current systems of the Southern Ocean
and conveys heat toward the cold continental shelves of the Antarctic Pacific sector, thus impacting the
stability of diverse ice shelves. Due to the seasonal sea ice cover, measurements are sparse and little is known
about the variability of the gyre’s circulation and its driving forces. Here we use satellite radar altimetry to
generate new light on the Ross Gyre variability. Two key aspects are identified: (i) large-scale variability of the
sea surface height driven by the zonal winds that flow around Antarctica and (ii) changes in area and strength
of the gyre, which are linked to a regional center of low pressure that modulates the local meteorology
and sea ice conditions. This same pressure system regulates the strength of the coastal currents, which
potentially impacts on the distribution of key oceanic properties toward the Ross Sea. The processes
identified in this study have strong implications for our understanding of the oceanic forcing of Antarctic Ice
Sheet melting and for the downstream propagation of its ocean freshening footprint.

1. Introduction

The Ross Sea (RS; Figure 1a), Antarctica, is a region where mixing of distinct water masses and complex
interactions with the cryosphere lead to the production and export of dense water, with global-scale impacts
(Orsi & Wiederwohl, 2009). This region is sensitive to climatic changes, and perturbations in the water mass
transformations that it hosts influence the properties and quantity of Antarctic Bottom Water exported to
the global thermohaline circulation (Jacobs & Giulivi, 2010; Schmidtko et al., 2014). Offshore lies the cyclonic
Ross Gyre (RG; Figure 1a), an important regional component of the Southern Ocean, which controls the
proximity of the warm waters of the Antarctic Circumpolar Current (ACC) to the RS continental shelf, where
they may drive ice shelf melting (Paolo et al., 2015; Rignot et al., 2013) and increasing sea level (Rye et al.,
2014). Recent estimates of RG strength from numerical models and inverse approaches suggest a
recirculating transport of ~15–30 Sv (Chu & Fan, 2007; Mazloff et al., 2010; Nakayama et al., 2014), though this
value varies among simulations (Wang, 2013). Due to the difficulty of measuring ice-covered regions, little is
known about the RG variability.

Radar altimetry is an accurate tool for measuring changes in the surface ocean circulation. However, sea ice
has hampered the assessment of sea level around Antarctica by remote sensing, limiting understanding of
oceanic variability to ice-free periods (Rye et al., 2014). Measurement of sea surface height (SSH) in
ice-covered regions became feasible with the method of Peacock and Laxon (2004), in which the specular
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signal returned from sea ice leads is recovered. In the Arctic Ocean, radar altimetry has been widely used to
assess the SSH variability and associated oceanic circulation (Armitage et al., 2016; Bulczak et al., 2015; Giles
et al., 2012; Mizobata et al., 2016), providing a new perspective on that basin. Recently, Kwok and Morison
(2015) demonstrated the potential use of radar altimetry to study the ice-covered Southern Ocean, with
Armitage et al. (2018) showing that the large-scale wind curl modulates nonseasonal variability of austral
SSH, including within the subpolar (Ross and Weddell) gyres.

Figure 1. (a) Time-mean DOT and geostrophic velocity (2011–2015). Mean positions of the RG (black) and the sbACC (red)
identified in the present work. Green line is the sbACC from Orsi et al. (1995). Light (dark) gray thick line depicts time-mean
15% sea ice concentration for summer (winter). Thin gray lines are 1,000-, 3,000- and 4,500-m isobaths. Thick red line
marks the throughflow section. (b) Time-mean DOT (2011–2015) overlaid by monthly RG (white) and sbACC (purple)
contours. Time-mean RG, sbACC, sea ice concentration, and bathymetry are depicted as in panel (a). (c) Monthly Ross Gyre
sea surface height and (d) its annual cycle. (e) Monthly Ross Gyre area and (f) its annual cycle. (g) Monthly westward BT and
(h) its annual cycle. (i) Monthly zonal throughflow and (j) its annual cycle. Circles (squares) markers in (j) denote periods of
�1 (+1) standard deviation from the detrended mean used in the composite analysis (Figure 3). Shades in the annual cycle
panels are the standard error from the time series. Horizontal gray lines in (c) to (j) are the respective time-mean values.
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Here we assess the RG circulation using radar altimetry from CryoSat-2, to generate new insight into its
seasonal and interannual variability and its forcing mechanisms.

2. Data and Methods
2.1. Altimetric Data

Gridded along-track SSH measurements acquired by CryoSat-2 (Wingham et al., 2006) between November
2010 and February 2016 were used. CryoSat-2 operates in different modes in the Southern Ocean: Low-
Resolution Mode in the open ocean away from sea ice, Synthetic Aperture Radar (SAR) over sea ice, and
SAR Interferometric in coastal regions. SSH data in ice-covered areas were processed following the method
of Peacock and Laxon (2004), which distinguishes between specular echoes from leads and diffuse echoes
from sea ice. Open-ocean SSH data were processed using standard techniques. A seasonal offset between
the lead and open-ocean data was identified, caused by the different retrackers used to fit the altimeter
return echoes; this was added back to the lead data to correct the bias (Armitage et al., 2016, 2018;
Bulczak et al., 2015; Giles et al., 2012). The open-ocean bias between the SAR and Low-Resolution Mode
was corrected in the same way. The bias-corrected SSH was then referenced to the EGM2008 geoid (Pavlis
et al., 2012) to create dynamic ocean topography (DOT). Use of a different geoid does not significantly affect
our conclusion; see supporting information. Along-track data ±3σ from the mean were removed. The data
were then binned onto a regular grid spacing 0.5° (latitude) by 1° (longitude) and smoothed with a 300-
km radius Gaussian filter to remove small-scale signals absent from the geoid. Zonal (u) and meridional (v)
surface geostrophic currents were derived as u = � (g/f)(dη/dy) and v = (g/f)(dη/dx), where g is acceleration
due to gravity, f is Coriolis parameter, η is DOT, and y and x are meridional and zonal distances. The estimated
uncertainty for the gridded SSH is 1.5 cm (see supporting information). Hereafter, we will refer to the DOT
minus its 2011-2015-mean as SSH, and the errors shown are standard deviation (standard error) for the
time-mean (annual cycle) estimates.

2.2. Investigation of Drivers of RG Variability

Monthly wind stress, wind stress curl, ocean surface stress, and ocean surface stress curl (OSC) were calcu-
lated. Wind data were obtained from ECMWF/ERA-Interim reanalysis (Dee et al., 2011). Sea ice concentration
(SIC) data are from National Snow and Ice Data Center (Cavalieri et al., 1996), and sea ice drift data are from
the Polar Pathfinder Daily Sea Ice Motion (Tschudi et al., 2016). All data sets were linearly interpolated onto
the SSH grid and restricted to the time period of January 2011 to December 2015, that is, years with all
months. The total ocean surface stress in each grid cell is as follows:

τ!¼ α τ!ice�water þ 1� αð Þ τ!air�water

where
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and α is SIC, ρair is 1.25 kg/m3, ρwater is 1,028 kg/m3, Cd and Ciw are, respectively, the air-water and ice-water
drag coefficients set to 1.25 × 10�3 and 5.50 × 10�3 (Tsamados et al., 2014). Here we considered a constant
Ciw and stagnant ocean as a first assessment of the leading-order impact of sea ice on ocean surface stress. A
sensitivity test showed that our results are qualitatively independent of the chosen Ciw (Figure S2).

The relation between SSH and OSC was assessed via Maximum Covariance Analysis (MCA) using singular
value decomposition, whereby the covariance patterns of the cross-covariance matrix are extracted
(Wallace et al., 1992). We conducted this analysis for January 2011 to December 2015, and geographic coor-
dinates between 150–290°E and south of 60°S to span the ice-covered region. Both data sets had their means
and linear trends subtracted.

Two climatic indices were used to evaluate the atmospheric large-scale influence over the RG: the Antarctic
Oscillation (AAO, also known as Southern Annular Mode; Thompson & Wallace, 2000) and the Amundsen Sea
Low (ASL; Hosking et al., 2016) indices. The AAO is a proxy for the strength of the midlatitude Southern Ocean
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westerlies. The ASL is a semiannually varying center of low pressure located in the Amundsen Sea (Figure 2a)
that modulates a significant fraction of atmospheric and sea ice variability in West Antarctica (Turner et al.,
2013). Relationships with other climatic indices (e.g., ENSO) were examined but found not significant, likely
due to the relatively short time span of the satellite data set.

GRACE RL05-Mascon Ocean Bottom Pressure anomalies from CSR (Save et al., 2016) were used to evaluate
altimetric SSH and its barotropic component (Figure S3). Hereafter, p values are not given if the correlation
coefficient is above the 99% confidence level.

2.3. Characterization of the RG

Two key aspects of the RG circulation are examined: (i) the area and intensity of the gyre’s recirculating com-
ponent and (ii) the westward near-slope flow (hereafter, throughflow) adjacent to the RG recirculation cell.
This current is important in exchanging waters between the ACC and the continental shelf of the RS (Orsi
& Wiederwohl, 2009). The RG boundary was taken as the highest closed DOT contour in each month
(Figure 1b), following Foukal and Lozier (2017). The southern boundary of the ACC (sbACC) was defined as

Figure 2. (a) First sea surface height (SSH) Maximum Covariance Analysis (MCA) pattern for 2011–2015. AS = Amundsen Sea; BS=Bellingshausen Sea. (b) First ocean
surface stress curl (OSC) MCA pattern. (c) SSH PC1 (black) and OSC PC1 (red) alongside Antarctic Oscillation index (blue), all normalized to have unit variance. (d)
Second SSH MCA pattern. (e) Second OSC MCA pattern. (f) SSH PC2 (black) and OSC PC2 (red) alongside Amundsen Sea Low index (blue), all normalized to have unit
variance. Antarctic Oscillation and Amundsen Sea Low indices are inverted. The 2011–2015 averaged 15% SIC is represented by the thick gray line in MCA maps.
Black thin lines represent 1,000-, 3,000-, and 4,500-m isobaths. Squared covariance explained by each MCAmode is indicated in the legends of (a) and (d). Correlation
coefficient and p value between the PCs are depicted in (c) and (f). In (b) and (e), sea level pressure anomaly is regressed onto the SSH PCs. Green (magenta) lines
represent negative (positive) sea level pressure every 1-hPa interval. Black thick line is 0 hPa.
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the �2-m DOT contour, which was the lowest contour that never intersects Antarctica, and coincides with a
DOT gradient maximum (Figure 1b). We estimated the gyre’s barotropic transport (BT) assuming no vertical
shear. Therefore, the BT overestimates the net transport of the RG, because available estimates suggest a bar-
oclinic transport of approximately 8 Sv (Gouretski, 1999). Consequently, the BT likely also overestimates the
transport variability, because the gyre’s baroclinic structure is omitted (due to lack of subsurface measure-
ments). However, comparison of SSH with gravity-derived Ocean Bottom Pressure anomalies indicates that
the barotropic mode dominates transport variability for the monthly interannual time scales considered here
(Figure S3), so that the BT does generally characterize transport variability. We define BT as the maximum
meridional integral of the vertically integrated zonal velocity between the gyre’s southern boundary and
its center, marked by the regional minimum in DOT (Wang, 2013). The throughflow was quantified as the
monthly mean zonal velocity across a section extending between the gyre’s southern boundary and a point
100 km from the coast along 153°W; this longitude is representative of the westward flow across 140–170°W.
Data close to the coast were excluded in this analysis due to geoid uncertainties (Figure 1a).

3. Results
3.1. Recirculation Within the RG

SSH within the RG exhibits substantial month-to-month variability (Figure 1c), with maxima of ~1.4 ± 1 cm in
August–November and minima of ~ � 3.5 ± 0.7 cm in April (Figure 1d). The RG time-mean area during the
study period is ~1.84 ± 0.47 × 106 km2 and integrates strong semiannual and higher-frequency variability
(Figures 1e–1f). The largest area is observed in May (~2.20 ± 0.22 × 106 km2) and November
(~2.30 ± 0.14 × 106 km2), and the smallest at the end of winter and, most prominently, in summer (a decrease
of ~36% from November). A clear areal decline is observed in 2015, when the RG spans ~0.80 × 106 km2 in
March–April (Figure 1e). Area and SSH display a marginally significant correlation (r = 0.41, p = 0.05),
suggesting a weak coupling between these features. The BT exhibits a time mean of ~23 ± 8 Sv, and large
variability. A weakening of the gyre is observed in 2015 (Figure 1g), concurrent to the reduction in area.
RG strengthening is highly correlated with its expansion (r = 0.84), pointing to common drivers. The mean
seasonal cycle in gyre strength exhibits two periods of intensification, in May and November, when the BT
peaks at ~30 ± 4.6 Sv (Figure 1h). Gyre weakening is observed in February (~17 ± 2.8 Sv) and September
(~18 ± 2.9 Sv), a reduction of ~40% from May/November.

3.2. Throughflow

The RG throughflow may flow onto the continental shelf of the RS, or westward of Cape Adare (Figure 1a).
During the study period, the mean zonal throughflow is ~4.3 ± 0.8 cm/s (Figure 1i). Its variability of 0.8 cm/s
corresponds to a BT of ~6 Sv, based on a mean depth of 4,000 m and a mean distance of 200 km
(Figure 1b). Extreme maxima and minima of ~6.3 and ~2.7 cm/s occurred in April 2012 and September
2015, respectively. The mean seasonal cycle displays a peak velocity of ~4.8 ± 0.5 cm/s in April–May. From
May to October, velocity decreases by ~19%, reaching a minimum of ~3.9 ± 0.4 cm/s, similar to summer
values. A second intensification of the throughflow occurs in November, when the zonal velocity rises
to ~4.6 ± 0.1 cm/s.

4. Discussion

Radar altimetry captures well many features of the ice-covered RG, including its mean position (160°E–40°W,
south of the sbACC, and constrained by topography) and eastern boundary at 140°W (Chu & Fan, 2007;
Gouretski, 1999). Near the RS shelf break, observed geostrophic speeds are ~1–2 cm/s, increasing to
>3–4 cm/s around Cape Adare and Cape Colbeck (Figure 1a), in agreement with modeling studies
(Assmann et al., 2003; Padman et al., 2009; Rickard et al., 2010). The ~23 ± 8 Sv time-mean BT is within the
range of previous estimates of ~15–30 Sv (Chu & Fan, 2007; Mazloff et al., 2010; Nakayama et al., 2014).
The semiannual cycle of the RG (Figures 1f and 1h) endorses model-based predictions, which suggested
low (high) volume/strength in solstitial (equinoctial) periods (e.g., Dellnitz et al., 2009; Duan et al., 2016) in
response to wind forcing.

Across the Southern Ocean, wind plays the main role in controlling SSH variability on the time scales
considered here (Gill & Niiler, 1973; Vivier et al., 2005). However, local sea ice cover impacts momentum
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transfer to the ocean (Martin et al., 2014; Tsamados et al., 2014 and may modulate the oceanic response (Kim
et al., 2017). To examine the atmospheric and sea ice forcings on RG dynamics, we performed a MCA using
SSH and OSC for 2011–2015 over the West Antarctic sector.

The first MCAmode (MCA1), which explains 47% of the squared covariance between SSH and OSC (Figures 2a
and 2b), identifies a large-scale structure extending from the ice-covered regions toward the Southeast
Pacific between 90 and 150°W (also represented by the first EOF mode of SSH, Figure S4). MCA1 represents
the effect of Ekman pumping associated with wind-induced ocean stress on SSH variability, because
OSC-driven convergence (divergence) of the local Ekman transport induces an increase (decrease) of SSH.
Both principal components of MCA1 (PC1) are strongly coupled (r = 0.80) and correlate with RG SSH
(r = 0.87 and r = 0.64 for SSH PC1 and OSC PC1, respectively), and with the AAO index (r = �0.62 and
r = �0.54, respectively; Figure 2c). This suggests that sea level variability in the West Antarctic sector,
including the RG, is regulated by large-scale meridional Ekman transport forced by circumpolar zonal winds,
which removes (adds) mass from (to) the coastal region (Armitage et al., 2018; Vivier et al., 2005). South of the
RG, the MCA1 patterns (Figures 2a and 2b) display opposite spatial footprints, although this does not affect
RG SSH. The cause of this feature is unclear, and its occurrence is sensitive to the choice of Ciw.

The second MCA mode (MCA2), which explains 30% of the squared covariance between SSH and OSC
(Figures 2d and 2e), contrasts the coastal and open-ocean regions (also seen in the second EOF mode;
Figure S4). Both principal components of MCA2 (PC2) are coupled (r = 0.80; Figure 2f). The coastal signal
(Figure 2d) is identified as the southern mode (Aoki, 2002; Hughes et al., 1999; Kusahara & Ohshima, 2009)
—a band of coherent oceanic pressure variability around Antarctica forced by circumpolar winds that is
challenging to extract from conventional altimetry due to sea ice cover (Hughes & Meredith, 2006). The
Southeast Pacific signal (100–130°W; Figure 2d) is seemingly an extension of the barotropic almost-freemode
(Webb & de Cuevas, 2003; Weijer, 2015) resulting from wind-induced mass convergence/divergence
(Boening et al., 2011; Ponte & Piecuch, 2014). This mode is intensified during 2015—a year of exceptional
El Niño conditions (Santoso et al., 2017).

The patterns represented by MCAs are large-scale manifestations relative to the domain. In the MCA2, for
instance, those representations stem from the low-pressure system centered in the Amundsen-
Bellingshausen Seas (Cohen et al., 2013; Figure 2), which receives forcing from ENSO and AAO/Southern
Annular Mode via atmospheric teleconnections (Clem et al., 2017; Yuan, 2004). Propagation of atmospheric
planetary waves from the tropics affects the regional sea level pressure (SLP) and atmospheric circulation
(Dutrieux et al., 2014; Steig et al., 2012; Turner et al., 2017; Yuan, 2004). Whereas many works have addressed
large-scale controls on the ASL (e.g., Raphael et al., 2016; Turner et al., 2013), none have to date discussed the
connections and responses between the ASL and RG.

MCA2 correlates with changes in RG area (r = 0.69 for SSH PC2 and r = 0.56 for OSC PC2) and BT (r = 0.61 for
SSH PC2 and r = 0.51 for OSC PC2). Both PC2’s are related to the ASL index (r = �0.47, p < 0.05 for SSH PC2;
and r = �0.62, p < 0.01 for OSC PC2; Figure 2f). This suggests that the ASL contributes to regulating the RG
variability represented by the MCA2 (i.e. the gyre’s area and strength). Periods when the RG is larger and
intensified are associated with a cyclonic atmospheric circulation (negative OSC/SLP) anomaly over the
Southeast Pacific/Amundsen-Bellingshausen Seas, likely strengthened during La Niña condition (Dutrieux
et al., 2014). Ekman transport divergence induces a relative reduction of the SSH north of the gyre
(Figure 4), enabling its outer boundary to move/expand northeastward (Figure S5). Only small changes are
observed in the southern and northern boundaries of the gyre because of topographic constraints.
Further, the anomalous cyclonic forcing enhances westward surface stress along the RS shelf break and
thereby accelerates the gyre’s southern limb, resulting in a coupling between area and BT. The converse
RG response is observed for anomalous anticyclonic forcing, as in 2015 when the gyre contracted and
weakened (Figures 1e and 1g) likely in association with El Niño (Santoso et al., 2017).

MCA2 also illuminates the controls of throughflow circulation and is correlated with the throughflow
magnitude (r = 0.57, p< 0.01 and r = 0.47, p< 0.05 for SSH PC2 and OSC PC2, respectively). The throughflow’s
drivers are most clearly illustrated by composites of anomalies in OSC, ocean surface stress, and SLP for
periods of elevated (Figure 3a) and reduced (Figure 3b) westward velocity, based on ±1σ (Figure 1i). When
the throughflow is anomalously strong, a negative SLP anomaly between the Antarctic Peninsula and
~140°W is developed, which generates a cyclonic circulation that intensifies westward surface stress along
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the continental shelf, and thereby promotes a southward Ekman transport anomaly (Figure 3a), raising the
SSH along the coast (not shown). Consequently, the pressure gradient between the continental shelf and
slope increases, leading to a geostrophic acceleration of the throughflow. Periods of anomalously weak
throughflow are characterized by opposite atmospheric and oceanic patterns (Figure 3b). Those anomalies
originating in the Bellingshausen Sea (Figures 3a and 3b) follow f/H contours in accordance with
barotropic southern mode dynamics (Hughes et al., 1999). This is in line with slope current variability
elsewhere around Antarctica (Mathiot et al., 2011; Núñez-Riboni & Fahrbach, 2009), although baroclinic
effects may also be substantial (Kim et al., 2016). The throughflow and BT correlate at r = 0.49, indicating a
significant level of covariance. Both circulation components are invigorated by anomalous cyclonic forcing
in the Amundsen Sea.

The Amundsen Sea has hosted dramatic changes in melting of its floating ice shelves (Paolo et al., 2015) due
to variable influx of warm deep waters onto the continental shelf (Jenkins et al., 2016; Rignot et al., 2013). This
variability is thought to be primarily controlled by zonal winds modulating currents along the shelf break
(Thoma et al., 2008). Wind-induced Ekman pumpingmay also influence the depth of the on-shelf thermocline
and affect melt rates (Christie et al., 2018; Dutrieux et al., 2014; Kim et al., 2017). These processes agree with
those documented here, not least in their association with the ASL. Although the ASL’s dominant feature is
variability, it has also experienced a deepening trend during autumn (Turner et al., 2013). This variability
and trend will affect the throughflow, which transports freshwater from the Amundsen Sea toward and

Figure 4. Schematic of the processes involved on the expansion and intensification of the Ross Gyre (RG) and throughflow.
A negative sea level pressure (SLP) anomaly is formed north of the Amundsen Sea Embayment, which generates a cyclonic
circulation over the region. This lowers sea level to the north via Ekman dynamics, allowing a northeastward migration
of the RG outer boundary. Further, a westward surface stress anomaly is created over the gyre’s southern boundary,
accelerating the RG. Southward Ekman transport piles water up over the continental shelf, increasing sea surface height
(SSH) and the cross-shelf pressure gradient and thereby intensifying the throughflow.

Figure 3. Anomaly composites for periods of (a) strongest and (b) weakest throughflow (Figure 1i). Ocean surface stress
curl pattern is shown by the colors, ocean surface stress by vectors, and sea level pressure (hPa) by black lines. Time-
mean 15% sea ice concentration (magenta) and isobaths of 1,000 and 3,000 m (gray) are depicted.
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beyond the RS (Nakayama et al., 2014), with consequences for the regional budgets of heat and freshwater
and for dense water formation (Jacobs & Giulivi, 2010). Our findings also suggest that the RG responds to the
ASL forcing, and a future deepening of this feature might expand and intensify the gyre, in accord with
climate models (Meijers et al., 2012) and sea ice drift trends (Holland & Kwok, 2012).

Finally, we note that a realistic representation of wind momentum transfer into the ocean was only achieved
when we accounted for sea ice cover over the RG (Figures S6–S8). An enhancement of sea ice concentration
partially damps the wind momentum transfer into the ocean, especially as sea ice drift reduces toward the
coast. This leads to a positive OSC anomaly under ice-covered areas (Figure S8). Thus, two key points were
better represented by the OSC than the wind stress curl: (i) convergence within the RG during winter, which
explains the increase of SSH (Figure S6); and (ii) convergence along the Antarctic continental shelf, which
intensifies the throughflow (Figures 3a and S7 and S8). Therefore, sea ice cover must be considered to
achieve an adequate representation of the surface stress and thus to elucidate the changing forcing on
the ocean and its response.

5. Conclusions

Radar altimetry is used to investigate RG variability from November 2010 to February 2016. SSH variability is
dominated by a large-scale barotropic response to OSC anomaly forced by the AAO (Figure 2), showing
minimum (maximum) sea level during late summer/early autumn (winter/spring). Conversely, gyre area
and strength vary with a semiannual cycle forced by the ASL. The deepening of SLP over the Southeast
Pacific/Amundsen-Bellingshausen Seas generates a cyclonic circulation cell that reduces SSH north of the
RG via Ekman divergence (Figure 4). The relative reduction of SSH to the north facilitates a northeastward
expansion of the gyre’s outer boundary. Further, the gyre is intensified by a westward ocean stress anomaly
over its southern boundary. The ensuing southward Ekman transport anomaly raises SSH over the
continental shelf and accelerates the westward throughflow by increasing the cross-slope pressure gradient.
The SLP center may have greater impact over the RG transport or the throughflow, depending on its location
and strength.

Our study is necessarily limited to ocean surface currents; however, we have shown that significant new
understanding of ocean dynamics in ice-covered regions can be attained, with implications for future climatic
changes (Holland & Kwok, 2012; Rye et al., 2014). It is important that continuity of radar altimeter missions is
achieved, in order to fully exploit the techniques used here and gain insights over longer periods. Finally,
concurrent subsurface measurements are a high priority to elucidate the relationships between surface
circulation changes and the transports of heat and other key properties in the interior of the ocean (Jacobs
& Giulivi, 2010).
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