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Based on a large dataset containing thousands of real-world networks ranging from genetic, protein interaction,               
and metabolic networks to brain, language, ecology, and social networks we search for defining structural               
measures of the different complex network domains (CND). We calculate 208 measures for all networks and                
using a comprehensive and scrupulous workflow of statistical and machine learning methods we investigated              
the limitations and possibilities of identifying the key graph measures of CNDs. Our approach managed to                
identify well distinguishable groups of network domains and confer their relevant features. These features turn               
out to be CND specific and not unique even at the level of individual CNDs. The presented methodology may                   
be applied to other similar scenarios involving highly unbalanced and skewed datasets. 
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1. Introduction 
It is becoming a popular belief that the present century is about complexity [1]. Network science appears to be                   
the philosopher’s stone of complex systems as they not only offer important insights into previously intractable                
systems but they also represent the primary tool in answering highly critical questions ranging from human                
resource management in a company, to cascading power network failure or drug design [2, 3]. 
In its basic form the network model is made of elements of utter simplicity, nodes representing constituents or                  
states of the system and edges depicting interactions, relationships or processes involving two such elements.               
These simple ingredients can give rise to practically limitless configurations, referred to as the network’s               
topology, which can be mapped to concrete or abstract realizations of systems and phenomena.  
In recent years the number of network measurables has grown steadily, propelled by the fast paced buildup in                  
the corpus of available data [4] backed up by the unyielding Moore’s law and equivalents on computational,                 
transmission and storage capabilities. Node degree, the number of first neighbors reachable from a given node,                
and the large scale properties of its distribution are sufficient for grasping the essence of certain types of                  
network and the systems they model. Universal laws governing the evolution of widely different systems have                
been discovered relying on this simple measure [5-8]. Exploring the role of cliques, i.e., fully connected                
subgraphs, appears to be the right approach in studying for example the structure and functioning of the human                  
connectome [9, 10]. The quantitative description of other systems requires network measures of varying degree               
of complexity and intuitiveness. Prominent examples include concepts like small-world-ness of social and web              
networks [4, 11], modularity, hierarchical clustering, special motifs and robustness in the study of cellular               
networks, like metabolism or protein-protein interactions [12-18], as well as cycles and k-core distributions              
responsible for the stability of the vascular system of leaves, different ecological systems or financial networks                
[19-22]. Some dynamical processes on networks can be mapped to synchronization phenomena [23-24], which              
can be characterized by the ratio of extremal values of the Laplacian matrix of the network. The interplay                  
between global, local and asynchronous phases are influenced by the degree correlations in the network which                
also affects its controllability and percolation properties [25-32]. Epidemic, rumor and information spreading in              
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biological, social and technological networks are affected predominantly by the properties of the underlying              
connectome [33]. For instance, the leading eigenvalue of the probability transition matrix is related to the speed                 
of the dynamics on the network [34]. Different centrality measures were proposed to identify important nodes of                 
the networks in various scenarios [35, 36]. An important body of research involving network science targets the                 
understanding of mechanisms behind the formation, and evolution of real networks. A typical approach starts               
off from common sense premises on the relevant elements and processes of the modelled complex systems and                 
assumes some foreseeable effects on various network measures. In many cases, however, it is not trivial, which                 
are the network features to look at. It is also common practice to compare real networks to null models created                    
by constrained randomization of the network [37]. Nonetheless, due to the inherent biases of the different                
techniques the results appear to tell us not so much about the networks themselves as about the interaction of the                    
randomization process with the particular network topology that is being investigated. Recent advances in              
creating null models, such as in [38, 39], avoid blatant biases given a specific constraint, like keeping the degree                   
sequence, e.g., with the configuration model, the Havel-Hakimi algorithm or degree preserving randomization             
[35, 40]. Yet the question remains as to which is the right set of measures to be kept constant in the different                      
real-world scenarios. In summary all the above mentioned methods try to capture specifics of complex network                
domains (CNDs) without comparing them directly with other CNDs. Our work is based on the view that in order                   
to exploit the potential of network theory in the study of a complex system one first has to identify the                    
distinctive properties of the underlying network. In other words connections between the system’s defining              
properties and its network measures should be formulated in light of the relationships between other classes of                 
real networks and the same network measures. Here we propose to identify the network measures that best                 
define the different types of real networks. These expectations were also formulated by Costa et al [41]. There                  
the authors offered detailed instructions on the classification procedure in terms of the data analysis methods                
popular at the time. Later research shows that there are network measures that can identify certain types of                  
real-world networks with a relatively high accuracy [42, 43]. Rossi and Ahmed [42] investigated 530 real-world                
networks along with 483 synthetic networks, using 11 graph measures. They concluded that in general networks                
are already distinguishable using only three or four measures. Another work is based on 986 real-world                
networks and 575 generated ones and 8 descriptive features [43]. There, the authors determined pairs of                
measures that optimally separate the different types of network domains based on the feature importances               
returned by the Random Forest supervised classification algorithm.  
In this work we present a comprehensive analysis which aims to provide a tool for answering the question to                   
what extent and under what circumstances there is an optimal parameter space of the real-network that one                 
wants to examine. Our focus is the space of those network structure measures wherein CNDs form                
distinguishable regions. Following Rossi and Ahmed [42] our primary indicator will be the performance scores               
of supervised classification models. We emphasize, however, that “recognizing” network domains represents the             
means rather than the goal. Therefore the study is limited to simple graphs and non-trivial network measures. By                  
trivial measure we mean one that is obvious to the naked eye, e.g., most of the brain networks in the data set are                       
excessively large while the edge density of road networks are conspicuously below average due to their                
geometric nature. For the same reason our networks are stripped down to undirected and unweighted edges as                 
these extra degrees of freedom would shadow the structural properties of interest. Generated (random) networks               
such as Erdős-Rényi or Barabási-Albert are shown to be easily distinguishable from real networks [42]. Thus                
present work will not cover them.  
Instead of arbitrarily picking fashionable network measures we employ a systematic methodology for             
discovering these. Also we use an up-to-date machine learning methodology in order to avoid several pitfalls.                
We attempt to lay out a route that can help those struggling with such highly unbalanced and skewed data as that                     
of graph measures in a real-world network scenario. In the following the terms CND and (network) domain,                 
group or class will be used with equivalent denotation. Similarly graph measures will be also referred to as                  
network features or structural properties. 
 
2. Methodology 
In order to extract the relevant properties of CNDs we pursued the following scheme: collect raw network data                  
from public repositories, standardise them by applying a systematic preprocessing procedure then select the              
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relevant features specific to each CND by the machine learning framework developed for this purpose based on                 
consecutive filtering  and wrapping procedures (See Section 2.4.1 and 2.4.2) [44]. 
 
2.1. Raw network data 
We compute 208 different topological network measures on 4367 real-world networks from 27 different              
domains (​F​IG. 1). These networks originate from Network Repository (​http://networkrepository.com/​) [45],           
BioGRID (​https://thebiogrid.org/​) [46], BioModels (​https://www.ebi.ac.uk/biomodels/​) [47], transport networks        
(​http://transportnetworks.cs.aalto.fi/​) [48] and the CommunityFitNet corpus [49] from the Index of Complex            
Networks (ICON) (​https://icon.colorado.edu/​). Groups with less than 10 elements were aggregated into the             
group named “other”. 

 
F​IG. 1.​: ​Number of networks used in the study. Groups with less than 10 elements are collected under the name                    
“other”. Its content is detailed on the right hand side of the figure. The meaning and origin of different network                    
groups are explained in Table S1 in the Supplementary Material. 
 
The collected and preprocessed data is made available online at          
https://github.com/MateJozsaPhys/CNDinvestigation​. Data sources, algorithms and missing values are indicated         
therein. The highly unbalanced nature of the dataset can be observed by comparing the broad range of sizes on                   
the logarithmically scaled axis in ​F​IG. 1.  
 
2.2. Preprocessing 
We converted the collected networks to undirected, unweighted graphs, without parallel edges or self-loops and               
only retained the giant component. Bipartite graphs were replaced by their one-mode projections. These              
simplifications offered multiple benefits. In line with our main objectives it preserved only information on their                
“pure” non-trivial topology while extending the range of applicable network measures. 
 
2.3. Quantitative analysis 
We limited ourselves to network measures that are easier to implement and computationally not overly costly.                
The 208 calculated topological measures include both global and local properties.. The node/edge-level             
measures were transformed to global measures by taking their average, minimum-, maximum values and their               
moments up to order four. Moments were calculated after normalizing the distribution by dividing it by its                 
maximum value. The computational complexity of measures depends on a variety of topological descriptors,              
like the number of nodes, density of edges, or the average of path lengths, and so on [36]. By upper limiting                     
memory usage and computational time a valid measure was returned in 99,8% of the runs.  
Networks missing more than 20% of the 208 measures were removed from the dataset. Similarly, features not                 
calculated for at least 80% of the networks in a domain were discarded altogether for the given domain (​F​IG.                   
2A.). In the other cases missing values were compensated for by imputation on a domain-by-domain basis. It is                  
common to use a fixed value such as the domain mean or the median [50, 51]. However, in our case this method                      
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would produce spurious markers of the domain that would mislead the classification algorithm and would make                
the identification of the group trivial. Therefore missing values were replaced by random numbers distributed               
uniformly between the first and third quartiles of the valid values for the particular domain. Given the very small                   
ratio of missing values their effect is negligible.  
Also, to avoid the above mentioned trivial classifications along constant dimensions, we removed all features               
that had more than 80% constant values inside a CND. As a result the number of features was reduced to 164.                     
Features which were constant in more than 80% of cases, for instance structural holes, were also discarded [4].  

 
F​IG. 2.​: A) ​Illustration of handling missing data in the dataset. The lightness of the color of squares associated                   
with a domain-feature pair represents the ratio of missing values. Features not calculated in more than 20% in                  
the given group were discarded. In all other cases missing values were replaced by uniformly randomized                
values between the first and third quartiles of the distribution of valid values for the given group-feature pair. 
B) Feature-to-feature Pearson correlation matrices showing the differences in correlations among all 208             
features. Lighter colors represent higher correlation coefficients. Each correlation matrix corresponds to a             
CND and is clustered by hierarchical agglomeration. One can notice the fundamental differences in the               
correlation patterns by comparing the sizes and distribution of clusters. 
 
The measures calculated in the study are summed up in Table S2 in the Supplementary Material, explaining the                  
abbreviations and providing information on their implementations. 
 
2.4. Feature selection 
The number of network measures and that of the networks is comparable requiring a drastic reduction in the                  
former. Because of the intrinsic connections between measures, for instance, cliques occur in larger size and                
number in denser networks, and for better interpretability the number of features again has to be reduced. ​To                  
that end we applied two subsequent fundamental feature selection methods. First the computationally less              
expensive filtering followed by wrapping. While filter methods characterize the intrinsic properties of data in               
the absence of a classifier, wrapper methods measure the relevance of features based on the performance of a                  
supervised classifier [44]. By choosing appropriate learning algorithms the negative effect of correlations in the               
data can, to a large extent, be mitigated (see Section 2.4.2). However, reducing correlations is also an important                  
means in finding dominant topological features. Here we consider both linear and non-linear correlations as               
intrinsic indicators for the filtering (see Section 2.4.1) and the Random Forest classification model will               
constitute the core of the wrapper. 
 
2.4.1. Filtering 
Interestingly, despite the general mathematical connections between network features the correlations exhibit            
no universality. The feature-to-feature Pearson correlation patterns in ​F​IG 2B. show fundamental differences             
across groups. Therefore the filtering was made separately for each group of networks. Linear correlations were                
reduced by removing one from each pair of features with a coefficient bigger than 0.9. Subsequently, non-linear                 
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correlations were cut down by repeating the above procedure using Spearman correlation coefficients. The              
number of retained features was between 21 and 48 depending on the group.  
 
2.4.2. Wrapping 
Consistent with our objective to discover the distinguishing properties of a CND from others we applied a                 
One-vs-Rest classification scheme. After testing a variety of competing supervised learning classifiers            
including Logistic Regression, Support Vector Machine and K-Nearest Neighbour classifier we conclude that             
Random Forest is the most suitable for a highly nonlinear and unbalanced One-vs-Rest classification setup               
applied here [52-55]. The parameters of Random Forest could be relatively easily tuned for optimal behaviour as                 
opposed to other models. In order to avoid overfitting the maximum depth of a tree was set to three.he number                    
of trees in the forest were chosen to be 100. Balancing over subsamples of trees was applied to moderate the                    
effect of class imbalances (see ​F​IG. 1). As a check we repeated the classification procedure using                
undersampling, i.e., including only a subset of elements (networks) from the larger classes (CNDs). In most                
cases we obtained only small perturbations in the results ruling as unjustified the loss of valuable data due to                   
undersampling. The performance of the classifier was estimated through the F1 score, the harmonic mean of                
precision and recall values, being a good alternative for the popular ROC AUC (Area Under the Receiver                 
Operating Characteristic Curve) score which appears not to capture the true performance of the minority class                
(the “One” in the “One-vs-Rest”) in highly unbalanced scenarios [56]. To improve the generalization power of                
our model the F1 scores were calculated applying repeated stratified k-fold cross validation, with five folds,                
repeated three times [54]. 
Let us recall the original motivation behind the pursued classification task, namely, obtaining a handful network                
measures that may help in understanding the modelled complex system. As such we limit our query to no more                   
than three distinguishing features per CNDs. To take advantage of the strength of both popular feature extraction                 
methods, i.e. the bottom-up forward selection and the top-down backward elimination, we used a new, modified                
forward selection [44]. The method used here differs from the original forward selection method in that it does                  
not derive feature triplets from pairs, rather both are constructed from the first 15 elements based on their F1                   
scores in one dimension (​F​IG. 3).  

 
F​IG. 3.​: ​Illustration of the modified forward selection procedure. First, the model is fitted with each of the                  
features one by one (left panel). The best performing 15 features are combined into all possible doublets and                  
triplets. The model is then fitted separately with each of the proposed combinations of features. Cross                
validation is repeated three times and averaging over all splits is applied. The figure illustrates the case of                  
affiliation networks. 
 
As a consistency check and a study of the modified forward selection method we estimated the overlap between                  
the high performing feature pairs and triplets. This was done as follows: the first 10 feature doublets were                  
selected and completed to triplets, each pair being combined with the remaining 13 features, producing 130                
triplets. The size of the intersection of the so-obtained set with the best performing 130 triplets expressed in                  
percentage can be interpreted as a measure for the consistency of the procedure (​F​IG. 5A). 
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2.5. The perspective of unsupervised learning 
One can discover intrinsic properties of the data also by applying dimensionality reduction techniques. For a                
dataset that has so many nonlinear properties the unsupervised learning method t-Distributed Stochastic             
Neighbor Embedding (t-SNE) seems a more appropriate tool as opposed to the popular Principal Component               
Analysis (PCA) [57, 58]. ​F​IG. 4. demonstrates the clear superiority of the nonlinear method. On the downside,                 
however, one cannot interpret quantitatively the distances between groups in the embedded space. Moreover the               
output depends sensitively on the parameter known as perplexity related to the average size of the clusters. For                  
a proper operation perplexity has to be tuned on a case by case basis. Given the above particularities of the                    
unsupervised classification methods they did not contribute to the final results.  

 
F​IG. 4.​: ​Illustration of the embedded and projected space from t-SNE unsupervised classification and PCA into                
two-dimensions. Here the perplexity value used by t-SNE was 30. Also the elements of the groups were limited                  
to 500 by random undersampling so that the dataset is not dominated by the largest group. The groups which                   
are seemingly well separated are marked with polygons. One can notice here that t-SNE can capture better the                  
intrinsic properties of the data in contrast to PCA. This can be explained by the fact that the abundance of                    
nonlinearities in the dataset makes the classification impossible with a linear model like PCA. 
 
3. Results 
Comparing the two-dimensional mapping of PCA and t-SNE on ​F​IG. 4 suggests that the data has many                 
nonlinear relations thus nonlinear  partitioning is to be favored over linear methods. 
The results of the filtering described in Section 2.4.1 show a strong domain dependence of the feature-feature                 
correlations (see ​F​IG. 2B). After reducing the number of strongly correlating (C​Pearson > 0.9) features we cannot                 
come up with a feature set which even remotely suits all network groups. Modest correlation values between the                  
measures proposed in [42, 43] and the features emerging after our procedure suggest that indeed the set of                  
relevant features can be fundamentally different at the level of individual CNDs. According to the nonlinear                
t-SNE unsupervised data reduction technique there are network domains which are well separable in low               
dimensions (​F​IG. 4). Complementing this with the appropriate nonlinear supervised learning algorithm and the              
right choice of parameters and scores described in the methodology one can nominate a few “well behaving”                 
networks. These are the metabolic-, cheminformatics-, animal interaction-, affiliation-, Facebook-, retweet- and            
tissue networks. The classification score of these CNDs exceeds 0.7 in dimensions less than three (​F​IG. 5B)                 
suggesting the existence of characteristic structural properties. The associated measures, however, are not             
unique but replaceable with strongly correlating ones. Also in most of the cases, except for Facebook networks,                 
the best measures do not stand out clearly from the rest, rather the score values are gradually decreasing (​F​IG.                   
6). 
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F​IG. 5. ​Results of the network classification in up to three dimensions according to the modified forward                 
selection method described in Section 2.4.2. 
A) Extent to which the best performing feature triplets encompass the best performing feature pairs. One can                 
notice that the percentage of overlapping is dependent on the CNDs, indicating that the original forward feature                 
selection would fail in some cases to determine the best feature triplets. 
B) ​Distribution of F1 scores resulting from the fitting with different combinations of one, two and three features.                  
In the case of two and three-dimensions only the best 100 scores are represented. Red triangles represent the                  
scores of the triplets used in [42] while purple triangles mark the performance of feature pairs used in [43]. The                    
distributions are characterized by medians and quartiles, occasionally with outliers. The groups are arranged              
from left to right by the median of the F1 score of the classification by a single feature. One can distinguish the                      
“well-behaving” networks, which are separable in this scenario, i.e. the F1 score of classification exceeds 0.7                
(well above random classification). 
 
Note here also that the definition of relevant features is dimension dependent. In three dimensions one can get                  
completely different leading features than in two dimensions, leading to the underperformance of the original               
forward feature selector (​F​IG. 5A). 
 

 
F​IG. 6.​: Distinguishing features of CNDs discernible by a single feature. Text boxes contain the names (top to                  
bottom) of the defining feature singlets with F1 score bars below (left to right). Green numbers indicate the                  
number of other features that highly correlate (C​Pearson > 0.9) with the nominated feature. Table S2 contains                 
comprehensive details on all features including their implementation. 
 
4. Conclusions 
Many emergent phenomena in complex systems can be understood through the mathematical indicators of the               
underlying network topology. Each complex system has its own characteristics and these are connected in               
nontrivial ways to the structural properties of the associated network. The preference of authors for certain                
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mathematical indicators over others for describing complex networks often lacks clear justification and appears              
to follow changing trends. One of the aims of the current work is to capture these measures in action, and                    
investigate their true relevance. We started from the premise that the defining topological measures of a CND                 
should perform well when employed by a classification algorithm. Multiple previous research on network              
classification were based on fewer network domains and performed the classification using an arbitrarily chosen               
subspace of network measures [42, 43]. In the current work a more heterogeneous dataset and a much more                  
complete feature set is used. A consistently constructed machine-learning methodology was applied on             
topological measures extracted from a large number of real networks. Information on the directionality of edges,                
weights, temporality, signs, multi-edges and multiple components were ignored. Bipartite networks were            
replaced by one-mode projections. The two-dimensional output of unsupervised data reduction algorithms, like             
the popular linear PCA and the non-linear t-SNE, indicate strongly nonlinear relationships between the network               
measures and producing a very skewed and complex distribution of points in the feature space. Correlation tests                 
suggest that these relationships are also highly domain dependent thus relevant features should only be defined                
relative to individual network domains. A modified forward selection method was applied which combines the               
advantages of the two alternative methods in machine-learning, forward-selection and backward-elimination.           
Our results show that many network groups are structurally distinguishable using their raw topology, and up to                 
three mathematical descriptors. These network domains include metabolic-, cheminformatics-, animal          
interaction-, affiliation-, Facebook-, retweet- and tissue networks. Future research should compare the relevant             
measures obtained here with the measures determined by null models . Contrary to previous results the existence                 
of a universal feature set which can identify any type of real network cannot be confirmed. The prominence of                   
leading features is also domain dependent. For instance, Facebook networks have two relevant features, while               
metabolic networks are equally separable from the rest based on a large number of features. Note, however, that                  
this result should be taken with a grain of salt. Obtaining a high classification score does not exclude the overlap                    
of the domains in the feature space. If a class is densely crammed into a small subspace it becomes easily                    
“recognizable” even though other classes populate the same region. This can lead to spurious results for                
redundant datasets. For instance the genome scale metabolic networks are the full biochemical maps of different                
organisms and are constructed from metabolic pathways which are common among many phenotypes, resulting              
in redundancy of this type of networks. Also the classification of CNDs is not always clear in the repositories.                   
Social networks for example may contain Facebook and retweet networks while the infrastructure domain may               
include road and transportation networks. We found that some groups are poorly distinguishable from each               
other. This may be due to the scrupulous preprocessing and the limited dataset. However, if classification is the                  
primary goal one can also take into consideration the ignored degrees of freedom such as directionality or edge                  
weights. Based on the identified set of features relevant for these domains, one can take this investigation further                  
and search for the forces driving their evolution by considering the optimization of the given topological                
descriptors or comparing them with null models restricting the important features to come up with other relevant                 
properties.  
According to our reported experience the merger of network science and machine learning provides redoubtable               
means to scientists. However, it is still in its infancy and as such full of pitfalls. In our opinion the rapid                     
development of these two fields will soon provide mature solutions to the problems presented here and will                 
revolutionize the way we view and make use of complex systems.  
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