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Abstract

We extend the 2-representation theory of finitary 2-categories in two separate
fashions. For the first, we examine certain 2-categories with infinitely many objects,
called locally finitary 2-categories, and for the second we examine certain
2-categories with infinitely many isomorphism classes of indecomposable
1-morphisms, called (locally) wide finitary 2-categories. In both cases, we extend
various classification results relating to transitive and simple transitive
2-representations to the new setting, and provide examples where this new theory
applies. Most prominently, we generalise the classification of simple transitive cell
2-representations of fiat 2-categories by cell 2-representations to the locally finitary
setting (and further extend it to the weakly fiat case), and we generalise to both
settings the classification of all transitive 2-representations of weakly fiat

2-categories as equivalent to 2-representations associated to coalgebra 1-morphisms.
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Introduction

The study of the 2-representation theory of finitary and fiat 2-categories, pioneered
by Mazorchuk and Miemietz in | | through [ | and further explored by
those authors and others in | I [ | etc., is a powerful new tool in
representation theory. There are important applications of this theory to certain
quotients of 2-Kac-Moody algebras (see | ]) and to Soergel bimodules (see for

example | D).

However, while powerful, the setup used to date in this theory has multiple
restrictions, primarily relating to finiteness conditions. Specifically, the theory
considers 2-categories which have only finitely many objects and whose
hom-categories have finitely many isomorphism classes of indecomposable
1-morphisms and finite-dimensional spaces of 2-morphisms. The relaxation of these
restrictions would enable the study of a much wider class of examples using

techniques analogous to those for 2-representations of finitary 2-categories.

This thesis examines some relaxations of these finiteness conditions. The first
approach is to allow countably many objects in the 2-categories, which we call
‘locally finitary’ 2-categories. While this may seem a comparatively mild
generalisation, it already enables the study of multiple interesting examples that
were previously inaccessible, including a much wider class of quotients of
2-Kac-Moody algebras. The second approach combines this with allowing countably
many isomorphism classes of indecomposable 1-morphisms, which we call ‘(locally)

wide finitary’ 2-categories. This is a powerful generalisation, though this thesis is
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only an initial step along this route.

In the first part of this thesis, we give the generalisation of multiple finitary results
to the locally finitary case. Of specific note, in Theorem 3.3.5 we construct for any
transitive 2-representation of a locally weakly fiat 2-category an equivalent ‘internal’
2-representation of comodule 1-morphism categories, analagously to a major result in
[ ]. In Theorem 3.4.32, a generalisation of the primary result in [ I,
we further classify all simple transitive 2-representations of strongly regular locally
weakly fiat 2-categories as being equivalent to cell 2-representations. We then utilise
the latter result to classify all simple transitive 2-representations of cyclotomic 2-Kac-

Moody algebras in Corollary 3.5.41.

We follow this with a specialisation of the locally finitary setup to the case where
the 2-categories have an additional graded structure. In this setup, we show in
Theorem 4.3.9 and Corollary 4.3.10 that the previously constructed internal
2-representations associated to a transitive 2-representation can be viewed as a
‘degree zero' construction in a canonical fashion. We use this result by considering
again cyclotomic 2-Kac-Moody algebras, demonstrating in Theorem 4.4.5 that any

simple transitive 2-representation is in fact a graded 2-representation.

Proceeding this, we move to considering locally wide finitary setup. After defining a
more general environment to work in, we again prove in Theorem 5.6.14 the
existence of the internal 2-representation of comodule 1-morphism categories
equivalent to transitive 2-representations. We also provide two classes of examples
of this theory. First, we examine locally wide finitary 2-categories associated to
infinite dimensional bound path algebras, where we show the coalgebra 1-morphisms
underlying the comodules 1-morphism categories are particularly pleasant. Second,
we demonstrate that the theory of locally wide finitary 2-categories applies to
2-categories of singular Soergel bimodules for any Coxeter system with finitely many

simple reflections.

The structure of the thesis is as follows. After this introduction, Chapter 2 provides an

overview of various concepts from category theory and algebra that we will be using,
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most prominently an overview of the 2-representation theory of finitary categories of
[ ] through [ ] (starting in Section 2.3), as well as the theory of coalgebra

and comodule 1-morphisms from | | (starting in Section 2.5).

In Chapter 3, we move on to considering locally finitary 2-categories. We begin
with definitions of the basic concepts, before moving on to the generalisation of
the initial sections of | ]. The first notable results are Theorem 3.3.5 as
well as Theorem 3.3.9, which classifies the simple transitive 2-representations for
locally finitary 2-categories associated to certain infinite dimensional algebras. Along
the way, we give some minor results demonstrating that the cell structure of the

2-category remains pleasant in this generalisation.

The second half of Chapter 3 focusses on generalising results from the Mazorchuk-
Miemietz series of papers, particularly [ | and [ ]. The eventual goal
of this section is Theorem 3.4.32. Section 3.5 reviews the theory of 2-Kac-Moody
algebras before presenting an application of Theorem 3.4.32 by demonstrating that
cyclotomic 2-Kac-Moody algebras of given weights are locally weakly fiat 2-categories,

and thus submit to the aforementioned theorem.

This chapter is followed by the closely related Chapter 4, where we examine the
specialisation to locally G-finitary 2-categories for some countable abelian group G.
We construct a degree zero 2-category associated to such a 2-category, and use
it to construct a degree zero coalgebra 1-morphism for a given graded transitive 2-
representation of the original 2-category. This setup allows us to prove Theorem 4.3.9
and Corollary 4.3.10. Finally, we apply this to the cyclotomic 2-Kac-Moody categories
of given weights, showing that their cell 2-representations are all graded transitive

2-representations, leading to Theorem 4.4.5.

Chapter 5 moves on to the locally wide finitary portion of the thesis. It begins by
explaining the categorical construction of pro-categories (from | ]) and
Adelman abelianisation (from | ]), before utilising them to derive larger
2-categories in which internal comodule 1-morphism categories live. This allows us

to prove Theorem 5.6.14.
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We then present two applications of this theory. The first, found in Section 5.7,
considers (locally) wide finitary 2-categories associated to bound path algebras. In
this situation, we prove in Corollary 5.7.13 that the coalgebra 1-morphisms
underlying the internal 2-representations live not just in the pro-category of the
Adelman abelianisation of the wide finitary 2-category, as the base theory proves,
but legitimately within the wide finitary 2-category itself.  For the second
application, found in Section 5.8, we demonstrate that the 2-category of (singular)
Soergel bimodules associated to an arbitrary Coxeter system with finitely many
simple reflections is a locally wide finitary 2-category. This allows the
aforementioned theory to be applied to it, and is a much wider class of examples
than has previously been studied using finitary 2-representation theory. Specifically,

papers such as [ ] only consider finite Coxeter systems.



The Basics

2.1 General Category Theoretic Definitions

We begin by recalling some definitions in category theory that we will find useful.
We draw the following from [ | unless otherwise stated, though that book calls

k-linear categories ‘k-categories’.

Definition 2.1.1. A category 6 is additive if:

e For objects i,j € 96, the hom-set Homg(i,j) is an abelian group
(Homeg(i,j),+) such that composition of morphisms is bilinear; that is,

fo(9g+h)=fog+fohand (f+g)oh=foh+goh.

® 6 has all finite biproducts - that is, given any finite set B of objects of G,
the direct sum and direct product of B exist and are equal, such that the
composition of the injection and projection morphisms is identity on the

elements of B. We denote the biproduct of C'and D as C ® D.

e There is a zero object 0 € 6 such that idy is the zero element of Homg (0, 0).

Definition 2.1.2. A functor F : € — 6’ between additive categories is called
additive if it preserves biproducts and the abelian group structure of the hom-sets.
Explicitly, for objects C, D of 6 and morphisms f, g of 6, F(C® D) = F(C)®F(D)

and F(f +g) = F(f) + F(g).

Definition 2.1.3. Given a field k, an additive category 6 is a k-linear category if

each Homg(1, j) has the structure of a k-vector space such that composition is k-
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bilinear. Explicitly, for k1, k2, ks € k and morphisms f,g,h € 6, k1 fo(keg+ksh) =
kikof o g+ kiksf o h, and (k?lf + kzg) o ksh = kiksf o h 4+ koksg o h.

If € is a k-linear category and i € 6, then Homg(i,i) is a k-algebra with

composition as multiplication.

Definition 2.1.4. Given a field k, an additive functor F : € — €’ of k-linear
categories is k-linear if it also preserves the k-linear structure of the hom-sets.

Explicitly, for k € k and f a morphism in 6, F'(kf) = kF(f).

Definition 2.1.5. An object A in an additive category 6 is indecomposable if

whenever A =2 B ® C as a biproduct, either B =0 or C' 2 0.

Definition 2.1.6. An additive category 6 is Krull-Schmidt if every object is a direct
sum of finitely many indecomposable objects and if each indecomposable object has

a local endomorphism ring.

Definition 2.1.7 (via | | I11.1). Given an additive category @, the split
Grothendieck group [6] of € is the abelian group generated by the isomorphism
classes [A] of € modulo the relation [A & B] = [A4] + [B].

Definition 2.1.8 (via | ]). Let € be an additive k-linear category. A class .#

of morphisms in 6 is a two-sided ideal of 6 if:

e .7 contains the zero morphism Ox for all objects X € 6.
e lf ffg:i—je Fand A\, €k, then A\f + ug € 7.

o If f € .7 and g and h are morphisms of 6, then go f o h € .Z whenever this
is defined.

We set Hom 4(i,j) = {f € Homg(i,j)|f € #}. Each Homy(i,j) is a
k-subspace of Homg(i,j). We thus define the quotient category 6/.# whose
objects are the same as €, and whose hom-sets are defined as
Homg, #(1,j) = Homg(i,j)/Homy(1,3). Composition is given by

l9] o [f] = [9f]-
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Definition 2.1.9. Let S be a set of objects in an additive category 6. The additive
closure add S is the smallest full subcategory of 6 containing S that is closed under

direct sums and direct summands.

Definition 2.1.10. Given a k-algebra A, we let A-Mod denote the category of
(left) A-modules with module homomorphisms, and A-mod the category of finite
dimensional (left) A-modules with module homomorphisms.  Similarly, given
k-algebras A and B, we let (A-B)-biMod denote the category of (A-B)-bimodules
with bimodule homomorphisms, and (A-B)-bimod the category of finite

dimensional (A-B)-bimodules with bimodule homomorphisms.

Definition 2.1.11. If (¥,®,I) is a monoidal category with tensor product ® and

tensor unit I, a category 6 enriched over X has:

e A set of objects Ob(6).

e For each pair of objects C' and D, a hom-object 6(C,D) € F. For our
purposes, we will generally be using monoidal categories whose objects are
sets with extra structure, so that we can refer to these hom-objects as e.g.

hom-(vector) spaces.

e Families of F-morphisms oc p g : 6(D, E) ® 6(C,D) — 6(C, E) and id¢ :
I — 6(C,C) that follow the standard axioms for composition and identity in

a category.

2.2 General Algebraic Definitions

In this section, we will be reviewing various standard definitions from the general
theory of algebras that will be used at various points in later chapters, as well as

some useful results. These definitions are primarily taken from | ].

Definition 2.2.1. An algebra A over a field k is self-injective if it is injective as a

module over itself.
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Definition 2.2.2. A self-injective algebra A over a field k is weakly-symmetric if, for

any projective A-module P, top P = soc P.

Definition 2.2.3. Two idempotents e and f in an algebra A are orthogonal when
ef = fe=10. An idempotent e is primitive if it cannot be written e = e] + eo where
e1 and ez are non-zero orthogonal idempotents. A set {e;|i € I} of idempotents is

complete if > e; = 1.
i€l

Definition 2.2.4. Let A be an algebra over a field k with a complete set of primitive

orthogonal idempotents {e;|i € I}. We say that A is basic if i # j implies Ae; % Ae;.
If M is an A-module and S is a simple A-module, we let [M : S] denote the
multiplicity of S in the composition series of M.

Definition 2.2.5. Given a k-algebra A and an A-module M, a pair of sets

{z;i € Ml|i € I} and {f; € Hom(M, A)|i € I}

for some set I is a dual basis for M if for all m € M:

e fi(m) =0 for all but finitely many i;

el

We now state a useful result about projective modules, often called the Dual Basis

theorem:

Proposition 2.2.6 (| |, Lemma 2.9). An A-module P has a dual basis if and
only if it is projective.

This allows us to derive the following two results.

Lemma 2.2.7. If P is a finitely generated projective A-module, then every dual basis

of P is finite.
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n

Proof. If p € P then p = > a;p; for some generating set {py...,p,}. Take a dual
i=1

basis {x;|j € J}, {fjlj € J}. Then for p € P,

p= Z fip)z; = Z(fj(z aipi)x;) = Z(Z ai [ (pi)) ;.

jeJ jeJ =l jeJ i=1

For each p; there are only finitely many j such that f;(p;) # 0. It follows that the set
of these over all the p; is also finite, and thus there is a finite set F' = {f;,,..., fi,}

such that if f; ¢ F, then f;(p) =0 for all p € P. The result follows. O

Lemma 2.2.8. If A is a k-algebra, P is a finitely generated projective A-module and
M is some other A-module, then Hom 4 (P, M) = Homa(P, A) ®4 M.

Proof. By Lemma 2.2.7 P has a finite dual basis {z1,...,z,}, {f1,..., fn}. Thus

if ¢ € Hom (P, M), for any p € P we have

due to ¢ being a module homomorphism. We define maps

a: Homy (P, M) — Homy (P, A) @4 M

and
B :Homa(P,A) ®4 M — Homu (P, M)
by
a(¢) = a3 fil@) = 3 i @ o)
i=1 i=1
and

BO gi@ng) =Y gny.
o j=1

We wish to show that a and 3 are mutually inverse module homomorphisms.
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It is easy to see that Sav = idyom, (P ar)- Let

Zgj ®nj € Homa (P, A) @4 M
j=1

n
and let p= )" fi(p)z; € P. Then
i=1

B gi@n)p) = gi(p)n;
i=1 j=1
=> 5O filp)zi)n,
j=1  i=1

= Z Z fi(p)g;(xi)n;

j=1i=1

= Z fi(P)(Z g5mj) ().
=1 =1

If follows that

aB(d_ g5 ®n;)(p) =Y filp)(_ gimy) (@)
j=1 i=1 j=1
=Y fi®()_gilwin)
i=1 j=1
(2 figi(z;)) @ nj.
=1 =1

J

But for p € P, Y fi(p)gj(zi) = gj(p) by the definition of the dual basis, and
i=1
thus af()_ gj ®nj) = > gj @ ny, hence aff = idyom ,(P,a)2,0m, and the result
J=1 g=1
follows. O

A rich vein of algebras we will be tapping for examples in this thesis are what are

called bound path algebras of a quiver.

Definition 2.2.9. A quiver is an ordered quadruple I' = (T'g, 'y, s,t), where:

e Iy is a set, whose elements we call vertices;
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e I'y is a set whose elements we call arrows;

e s,t: 'y — Ty are functions that pick out the source and target vertices (or

domain and codomain vertices respectively) of each arrow.

In essence, a quiver is a directed multigraph with loops.

Definition 2.2.10. Given vertices a and b of a quiver I', we say that a path p of
length [ from a to b is a set of [ arrows {p1,...,pi} such that s(pi+1) = t(p;) for
1 <i<l s(p1) =aand t(p;) = b. Thatis, a path is a sequence of consecutive
arrows that begins at a and ends at b. We define s(p) = s(p1) and t(p) = t(p;). We

also associate to each a € I'g a path of length 0 which we denote e,.

If we define composition of paths p and ¢ as their concatenation g x p whenever
t(p) = s(q), and let R be the set of paths of I', then (', R) forms a category in the

obvious fashion.

Definition 2.2.11. Given a quiver I" and a field k, the path algebra kI' of I" over

k is the algebra formed as the free vector space over the set of paths of I' with

o . gxp ift(p) =s(q) _
multiplication being defined on paths as gop = and extending

0 otherwise

linearly.

Definition 2.2.12. Given a quiver I' and a path algebra kI', let kI'; denote the ideal
generated by all paths of I' of length at least . A bound path algebra B of kI is
a quotient B = kI'/I, where I is an ideal of kI' such that there exists some k with

K[}, C I C kD',

Definition 2.2.13. A multisemigroup S consists of a set S and an associative
binary operation x : Z(S) x Z(S) — £(S). The binary operation is generally
written with infix notation, and for a,b € S we commonly write a x b for {a} = {b}.
We require the the binary operation to satisfy (U Fi) * @ = U(F = @) and
Q * (U P) = U (Q = P;) for any indexing set ZIejand any subsitls P,Q C S.
Inforrrillly, a mulliilsemigroup resembles a semigroup, but the composition of two
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elements is a subset of the multisemigroup rather than a single element. This

operation is then extended to subsets via the obvious unions.

2.3 Finitary 2-Categories and their 2-Representations

The majority of this thesis will be concerned with generalisations and specifications of
the representation theory of certain types of 2-category, named finitary and (weakly)
fiat 2-categories, which were defined and initially studied by Mazorchuk and Miemietz
in their series of papers | | through | ], and then by those authors and
others in later papers such as [ | and | ]. Although we will rarely be
considering these basic constructions directly, they will be useful tools for proving
many results later in the thesis, and we will thus be recalling the definitions and

various results below for reference.

2.3.1 Bicategories and 2-Categories

We start by giving the definition of a 2-category, as well as those of 2-functors and

2-natural transformations. These definitions are drawn from those in | ]

Definition 2.3.1. A bicategory % is defined with the following data:

e A collection of objects, which we denote by i, j, ....

e For each pair of items i, j € €, a category €'(1, j) of morphisms between them.
The objects of ¥ are called I-morphisms, which we generally denote XY, ...

or F,G, ..., and the arrows are called 2-morphisms, which we generally denote

a,B,. ...

e Functors cijx : €(3,k) X €(4,j) — €(i,k) where ¢;5x((Y, X)) =: Y 0o X and
cijx((B,a)) =: Bog a. We also have functors 1; : 1 — %(i,1); that is, a

1-morphism 1; : i — i for every i. We often write Y X for Y o X.
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o Natural isomorphisms defined by the commutative diagrams:

1><Cijk

C(k,1) x €(j,k) x €(4, ) (k1) x €(i,k)

¢k X1 l icikl

%(3,1) x (i, ) %(i,1)
¢(i,j) x1 1x%(4,3j)
1x11i \ ljxll \
Cg(i,j)x%(i,i)ﬁ%(i,j) %(J,J)X%(I,J)ﬁ%(l,\])

We thus have 2-morphisms

azyx : (ZY)X =5 Z(Y X)

rxy : X1; — X

We also require as axioms that the following two diagrams commute:

(W2)Y)X 2 (w(zy) X
(WZ)(YX) W((ZY)X)
\ 1xa
W(Z(Y X))

( )

Y1)X = Y(1X
Y X

For notational aesthetics, we refer to the hom-set between two 1-morphisms F., G :
i — j as Homg(; j)(X,Y) rather than the uglier (1, j)(X,Y). In addition, we
denote the vertical composition of 2-morphisms « and 3 (that is, when they are both
in the same hom-category) as /3 oy «, and their horizontal composition (that is, the

image of the pair («, 3) under the functors c;jx defined earlier) as 5 op a.

Definition 2.3.2. If the a, [ and r as defined above are identities, that is when
(ZY)X = Z(YX) and 1X = X = X1, we call € a 2-category, or occasionally a

strict 2-category when addition clarity is needed.
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Definition 2.3.3. Given bicategories ¢ and ¢”, a bifunctor F' = (F, ) is given by

the following data:

e A function F': Ob¥ — Ob¥”".
e Functors Fij : €(i,j) = €¢'(Fi, Fj).

e Natural isomorphisms  defined by the commutative diagrams:

€(3,k) x €(i, j) = €(i,k)

Fj,kXFi,j\L lFik

%' (F3,Fx) x €'(Fi, Fj) ¢'(Fi, Fx)

¢(i,1)

1

1 - ‘K’(Fl Fi)
We thus get 2-isomorphisms
oxy : FY o FX 2 F(Y o X)

i 1 & F1;.

1

We also require the following diagrams to commute:

(FZoFY)oFX P F(ZoY)o FX 2~ F((ZoY) o X)

FZo(FY o FX)—>FZoF(Y oX)—>F(Zo (Y 0 X))

FXOIL/FIHFXOFIL;L*)F(XO]]_I)

'r’i J{FT‘
FX FX

1), 0 FX 2% F150 FX —%> F(1;0 X)

l'i lm

FX FX.

Definition 2.3.4. If ¢ and ¢’ are 2-categories and the above ¢ are identities, we

call F' a 2-functor.
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We will also be using the 2-categorical equivalent of a natural transformation,

specifically for 2-functors:

Definition 2.3.5. Given two 2-categories 4 and % and 2-functors F,G : € — A,
a 2-natural transformation o : F — G is defined by the following data:
e l-morphisms ox : FX — GX for C € ¥.

e Natural transformations

¢(C, B) —°% p(FC, FB)

GCBi Gon \L(UB)*
%’(GC, GB) W— %’(FC’, GB)
oc

where given a 1-morphism h : X — Y we notate the natural induced functors
by hy : €(C,X) = €(C,Y) and h* : €(Y,B) — ¢(X,B). Thus by the

diagram we get 2-morphisms o : Gfooc — opo F'f.

We further require that (agoHid)oV(idoHUf) = 04y and that Glgooc = ocoFlc.

We also mention here opposite 2-categories. It is possible to reverse 1-morphisms,
2-morphisms or both, and in general different notation is used for each. However,
for the purposes of this thesis, we only require the situation where both 1-morphisms

and 2-morphisms are reversed, hence:

Definition 2.3.6. For a 2-category %, we define the 2-category €°P to have the

same objects as ¢, with €°P(1,j) = €(j,1)°P.

2.3.2 Finitary 2-Categories and 2-Representations

We now move on to defining 2-representations of 2-categories, following the ideas in
[ |1 | etc.. To begin, we define some specific 2-categories that will be the
targets for 2-representations, similar to how GL(V) is the target for a representation

in classical representation theory.

Let k be an algebraically closed field. We denote by 2l the 2-category whose objects

are small k-linear Krull-Schmidt categories, whose 1-morphisms are k-linear additive
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functors and whose 2-morphisms are natural transformations. We further denote
by 52[{ the full sub-2-category of 2 with objects those categories o7 such that .o/
has only finitely many isomorphism classes of indecomposable objects, and such that
dim Hom/(i,j) < oo for all i,j. We finally define SRy as the full sub-2-category
of 2l whose objects are equivalent to A-mod for some finite dimensional associative

k-algebra A.

Definition 2.3.7. An object of Ql”{ is called a finitary category.

We now state a fairly strong finiteness condition we need to impose on a 2-category
% to allow the following theory to apply. The bulk of this thesis will be concerned

with relaxing or removing parts of this restriction.

Definition 2.3.8. A 2-category % is finitary over k when it has finitely many objects,
and when %(1,j) € Ql{ for every i and j. We further require that horizontal

composition is additive and k-linear, and that 1; is indecomposable for all i.

Definition 2.3.9. A finitary 2-category % is weakly fiat if:

e It has a weak object-preserving anti-autoequivalence (—)*; that is a bifunctor
(=) : € — %°P such that i* = i for an object i and such that
(FG)* = G*F* for 1-morphisms F' and G (the latter isomorphism giving the
nomenclature of ‘weak’ to the anti-autoequivalence. Note that this ‘weak’ is
unrelated to the ‘weakly’ in ‘weakly fiat’ - the latter stems from the absence

of an involutive structure, as defined below).
e For any 1-morphism F' € (i, j) there exist 2-morphisms « : F' o F* — 1;
and B :1; — F* o F such that the internal adjunction axioms
(aopidr) oy (idp oy ) = idp
and
(idps o @) oy (Bop idp+) = idp~

hold.
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We let *(—) denote the inverse of (—)*.

Definition 2.3.10. If @ is a weakly fiat 2-category such that (—)* is a weak

involution, then we say % is a fiat 2-category.

We now define a 2-representation or, more precisely, various types of 2-representation
of a 2-category. These are 2-functors into 2-categories whose objects are 1-categories.
In pleasant cases, this allows us to study properties of the 2-category via studying

the properties of these 1-categories.

Definition 2.3.11. Given a finitary 2-category %, a 2-functor M : ¥ — Cat is a
2-representation. Similarly, a 2-functor M : ¥ — 2 is an additive 2-representation,
a 2-functor M : ¢ — Qli is a finitary 2-representation and a 2-functor M : ¥ — Ry

is an abelian 2-representation.

Definition 2.3.12. If ¥ is a fiat 2-category whose objects are small fully additive
k-linear categories, whose 1-morphisms are additive k-linear functors and whose
2-morphisms are natural transformations, then we define the defining additive
2-representation | : € — i as the natural injection of ¥ into . Similar

definitions exist for the finitary and abelian cases.

The defining 2-representation is only useful in limited circumstances. However, we
introduce below the principal 2-representations, which retain some of the uses of the
defining 2-representation (e.g. for forming further 2-representations), but are more

generally applicable.

Definition 2.3.13. For a finitary 2-category € and i € € an object of €, we define
the ith principal additive 2-representation P; : € — i as Py = €'(i,—); that
is, it takes an object j € % to the category %(i,j), the 1-morphism F' to the
functor defined by post-composition with F', and the 2-morphism « to the natural
transformation defined by horizontal composition with a.. Since % is finitary, this is

a finitary 2-representation.

Definition 2.3.14. Two 2-representations M, N : ¥ — Cat of a finitary 2-category



Chapter 2: The Basics 25

are equivalent if there is a 2-natural transformation ® : M — N such that ®; is an

equivalence for each i.

Given a 2-representation M of a finitary 2-category %, we define for notational

purposes Ml = ][] M(i). This coproduct is taken in Cat.
ie?

2.3.3 Cells and ldeals

By definition, the collection of indecomposable 1-morphisms in a finitary 2-category
¢ splits into finitely many isomorphism classes. We denote by S(%) this finite
set. We identify the isomorphism class [F] of a 1-morphism F' with F itself in the
following sections for ease of notation. Per [ ], we can introduce three partial
orders < g, <z and < y on S(%) as follows: F' < g G precisely when there exists
some 1-morphism H € % such that GG is a direct summand of H o F'. Similarly,
F <4 G precisely when G is a direct summand of F' o H for some 1-morphism H,
and F' < 7 G precisely when G is a summand of H o F'o K for some 1-morphisms

H and K.

Definition 2.3.15. We call the equivalence classes of < ¢ the .Z-cells (or left cells)
of ¢, those of <z the %Z-cells (or right cells) of ¢ and those of < , the 7 -cells
(or two-sided cells) of €. We notate these equivalence relations as .Z, # and _#

respectively.

As a note, [ | among other papers phrases this differently, by considering S(%)
as a multisemigroup with unit with FoG = {H € S(%¢)|H is a summand of F'oG}.
Letting ToF = |J; TioF for T' = {T;};, we say that F' < ¢ G if S(€)oG C S(€)oF.
Similarly, F' <4 G if GoS(€¢) C FoS(¥) and F < 5 G if S(¢) 0G0 S(¥) C

S(€)o FoS(%). Itis not hard to see that these two definitions are equivalent.

Definition 2.3.16. We say a _¢-cell ¥ is regular if any two .Z-cells contained in ¥
are not comparable by <. We say it is strongly regular if we further have that the

intersection of any .Z-cell in § and any Z-cell in ¥ is a single element.
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If FF and G are in the same Z-cell, then let F: i — j and G : k — 1. There is
some H : j — m such that G is a direct summand of H o F': i — m. Thus we must

have i = k. Similarly, if they share a #-cell, we must have 1 = j.

Definition 2.3.17. Let 4 be a finitary 2-category and let M be a finitary
2-representation of 4. Then we define the annihilator Anngy (M) of M to be the
two-sided-ideal of & consisting of all 2-morphisms of % annihilated by M (this

exists by [ | Section 4.2).

We now quote a definition and a result from | |:

Definition 2.3.18. A _7Z-cell ¥ is idempotent if there exist F,G, H € ¥ such that

H is a direct summand of F'G.

Lemma 2.3.19 (| | Lemma 1). Let € be a finitary category and M a finitary
2-representation of €. We let €\ denote the finitary 2-category €/ Anng (M), and
let #(¢m) denote the poset of 7 -cells of 6\ under < . Then - (6m) has a

unique maximum element. This _Z -cell is idempotent.

Also note that any element of .’(ép) corresponds to a _#Z -cell of .

Definition 2.3.20. The unique _Z-cell of € corresponding to the #-cell of %\

identified above is called the apex of M.

We now present two useful alterations to the concept of an ideal of a category:

Definition 2.3.21. If ¥ is a k-linear 2-category, we define a left 2-ideal .F of € to
have the same objects as %, and for each pair i, j of objects an ideal .¥ (i, j) of the
1-category (i, j) which is stable under left (horizontal) multiplication with 1- and
2-morphisms of €. We can then similarly define right 2-ideals and two-sided 2-ideals.

We call the latter simply 2-ideals.

Definition 2.3.22. For a k-linear 2-category % and a 2-ideal . of %, we can define
the quotient 2-category € /. as follows: the objects and 1-morphisms of €/.F are

the same as those of %’; the hom-sets between 1-morphisms are defined as

Hom(g/j(l’J)(F7 G) == Hom(é’(lyJ)(F, G)/Homj(l’J)(F, G)
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Horizontal composition of 2-morphisms is given in the standard fashion: [a] o [f] =
[a o /6]

Definition 2.3.23. Given a 2-category ¥ and a 2-representation M of %, an ideal
J of M is a collection of ideals .F(i) € M(i) which is closed under the action of
¢ in that for any morphism f € (i) and any 1-morphism F' € €, M(F)(f) is a

morphism in ¥ if it is defined.

Definition 2.3.24. Given a finitary 2-representation M of a finitary 2-category ¥
and an ideal .F of M, we define the quotient 2-representation M /.J by setting
(M/S)(G) = M(j)/F(j) for any object j € €. The definition of an ideal of
a 2-representation immediately gives that M /. has a canonical structure of a 2-
representation of € given on morphisms by (M/%)(F)([f]) = [M(F)(f)] for a

morphism f € 4l and a 1-morphism F € %.

Definition 2.3.25. Let ¢ be a finitary 2-category and let ¥ be a #Z-cell in €. We
say that ¥ is non-trivial if it contains some non-identity 1-morphism. Otherwise, ¥

is trivial. We similarly define trivial and non-trivial .Z- and Z-cells.

Definition 2.3.26. A 2-category ¢ with a _Z-cell § is §-simple if, for any non-trivial
2-ideal .# C %, there exists F' € ¥ such that idp € .¥.

We have a useful theorem from [ |:

Theorem 2.3.27 (| ] Theorem 15). Let € be a fiat 2-category and § a non-zero
J -cell of €. There there is a unique 2-ideal .9 of € such that € /. is §-simple.

2.3.4 (Simple) Transitive 2-Representations and Cell

2-Representations

In classical representation theory, a lot of information about the representations of a
group can be gleaned from studying its irreducible representations. In 2-representation
theory, we desire a similar construction, which turns out to be the concept of a simple
transitive 2-representation. We start by defining transitive 2-representations, taking

these definitions primarily from | ]
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Definition 2.3.28. Given a 2-representation M of a 2-category € and a collection

of objects { Xy }rex in A, we define the M-span of the Xy, Gym({Xk}), to be

GMm({Xk}) = add{M(F)X,|k € K,F € €(i, j) for some i,j € €}.

Defining

GMm({X;}) (k) = add{M(F)X;|j € J,F € €(i,k) for some i € ¢},

it is immediate from the definition that Gn({X}) is a sub-2-representation of M.

Definition 2.3.29. Let ¥ be a finitary 2-category and let M be a finitary
2-representation of ¥. We say that M is transitive if for any i € € and any

non-zero X € M(i), Gm({X?}) is equivalent to M.

To move on to simple transitive 2-representations, we first need the following Lemma

from [ |:

Lemma 2.3.30 ([ | Lemma 4). Let M be a transitive 2-representation of a
finitary 2-category 6. There exists a unique maximal ideal .# of M such that .%

does not contain any identity morphisms apart from for the zero object.

Definition 2.3.31. We say that a transitive 2-representation M is simple transitive

if the maximal ideal of M given in Lemma 2.3.30 is the zero ideal.

To see that this concept does indeed reflect that of irreducible representations (i.e.
simple modules when viewing the theory from a module-theoretic perspective), let
M be a simple transitive 2-representation of a finitary 2-category %, and let .# be
an ideal of M. If .# does not contain any identity morphisms for non-zero objects,
it is zero by the definition of a simple transitive 2-representation. Assume idy; € &
for some object M. Since M is transitive, for any other object N € Jl, there exists
some 1-morphism F' of % such that N is a summand of M(F)M. But since .¥ is
closed under the action of €', M(F)(idas) = idngryar € #, and since .7 is closed

under pre- and post-composition, we can compose idyg(ryys with the injection and
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projection morphisms for N to derive that idy € .#. But then for any f: N — N’
in M, f = foidy, and thus f € .# and .# contains all morphisms of Jl. Therefore
M has no ‘proper’ ideals, which gives a direct analogue of the definition of a simple

module.

While in general there exist transitive 2-representations that are not simple transitive,
we can always quotient out by the maximal ideal to derive a simple transitive 2-

representation:

Definition 2.3.32. Given any transitive 2-representation M of a finitary 2-category
%, let .Z be the unique maximal ideal previously defined, and denote by M » the

quotient of M by .#, called the simple transitive quotient of M.

The most important example of simple transitive 2-representations that we will be
considering throughout this thesis is that of cell 2-representations. We give here an

equivalent definition to that given in | |

Let ¢ be a finitary 2-category with a #Z-cell § and an Z-cell £ C . Welet i =iy
be the object of € which is the domain of every F' € &. This is a single object by
the note at the end of Subsection 2.3.3. For each j € ¥, we define a subset N« (j)
of Pi(j) by N¢(j) = add{FX|F € [] €(k,j),X € £}. Ng thus defines a map
from the object set of ¥ into 2. To l:rfjke this a 2-representation, of €, we take a
1-morphism F' to the functor defined by left composition with £, and a 2-morphism

« is taken to the natural transformation defined by left horizontal composition with

Q.

By a similar proof to that of Lemma 2.3.30, Ng has a unique maximal ideal not
containing any identity morphisms for non-zero objects, and we can take its simple

transitive quotient:

Definition 2.3.33. The simple transitive quotient of this 2-representation, viewed as
a representation of % via quotients and restriction, is the cell 2-representation of €

corresponding to the Z-cell £. We generally denote this as Cg.

Definition 2.3.34. A trivial cell 2-representation is a cell 2-representation
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corresponding to a trivial Z-cell.

2.4 Abelianisations of Additive Categories

We now define a process of obtaining from a finitary (2-)category an associated
abelian (2-)category. In fact, we will examine two related processes, with the first

originating in [ |

Definition 2.4.1. Let 6 be an additive category. We define the injective classical

Freyd abelianisation 6 of ‘€ as a quotient of the arrow category of ‘€ given as follows:

e Objects of € are morphisms f: X — Y of €.

e Morphisms of € are commutative squares x . y modulo those squares
s
X —=Y'
f/

for which there exists a morphism p : Y — X'’ such that g = ¢f.
The projective classical Freyd abelianisation B is defined dually.

By (the dual of) | ] Theorem 1.4, € is an abelian category if and only if 6
has weak cokernels (technically that source also requires weak finite coproducts, but
since an additive category contains all finite biproducts by definition this requirement
is immediately satisfied). For our purposes, we use that this is true if 6 is a finitary

category, and thus in that case € is indeed abelian.

While we may wish to extend this directly to abelianising 2-categories, the resulting
abelianised ‘2-category’ will only be a bicategory. Instead, we turn to a variant of the
classical Freyd abelianisation first deployed in [ | Section 3.2 specifically to
fix this problem. That paper uses finitary (2-)categories as its setting, but we present

below a more general definition.

Definition 2.4.2. Given an additive category @, the injective fan Freyd abelianisation

%6 of 6 is an additive category that is defined as follows:
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e Objects of 6 are equivalence classes of tuples of the form (X, k,Y;, fi)icz+
where X and the Y; are objects of €, the f; are morphisms of 6, and k is a
non-negative integer such that Y; = 0 for ¢ > k. Two tuples are equivalent if

they only differ in the value of k.

e A morphism from (X, k,Y;, f;) to (X',k',Y/, f!) is an equivalence class of

(2

tuples (g, hij)i jez+ where g : X — X" and h;; : ¥; — Y are morphisms of 6
such that f/g = > hj;f; for each i, modulo the (g, h;;) such that there exist

J
g+ Y = X" with }Sqifi = g.
(2
e Identity morphisms are (idx,d;jidy;) and composition is given by (¢’ h;;) o

The projective fan Freyd abelianisation is defined dually.

As noted in [ |, 6 is indeed an additive category, with biproducts given by
(X kYL e (XY ) = (X e X max{k,k'},Y' @ Y", fla f),
and is equivalent to 6. In particular, 8 is thus an abelian category when € has weak

cokernels.

We expand the definition to 2-categories with additive hom-categories such that
composition respects additivity (with locally finitary 2-categories being an example).

Given such a 2-category %, we define & as follows:

e The objects of & are the same as those of % .
e ¢(i,j) =¢(4,3)

e Composition of 1-morphisms is defined as follows:
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(F,Gik, ;) o (F',G}, k', o)) = (FF',H;, k + K, 8;), where:

FoG@,, 1=1,... K
Hi: Gi_k/OF/7 Z:k/+1,,k/+k

0, else

and

idpop o, i=1,... kK

Bi=womidp, i=k+1,... K +k

0, else.

e Identity 1-morphisms are (1;,0,0,0).

e Horizontal composition of 2-morphisms is defined component-wise.
Let ¥ be an additive 2-category and M an additive 2-representation of %. The
injective abelianisation M of M is defined such that M(i) = M(i). This is easily

seen to be a 2-representation of ¥ with component-wise action. Further, it has the

structure of a & 2-representation with the action defined by

(F7 Givkvai) © (M7Niak,afi) = (FMa Hlvk + kl?.gi)v

where:

FN;. i=1,..., K

Hi=qG,_wM, i=k+1,... K +k

0, else;

Ff;, i=1,... K

9i = (ci_p)nr, =Kk +1,... kK +k

0, else.

The action of 2-morphisms is defined component-wise.
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2.5 Coalgebra 1-Morphisms and Comodule Categories

An important tool we will be using is the concept of coalgebra 1-morphisms associated

to a 2-representation. These were initially developed in [ | based on material
from [ |, though we lean more on the somewhat less opaque presentation
found in [ ]

Definition 2.5.1. Let ¥ be a 2-category. A coalgebra 1-morphism of € is an ordered
triple (C, uc, ec) where C : i — i is a 1-morphism of € and pc : C — C o C and

ec : C — 1; are 2-morphisms of . We require them to satisfy the axioms

(idc om pe) ov o = (e om ide) oy pe

and

(idc om €c) ov pe = ide = (ec om ide) oy pc.

Definition 2.5.2. Let ¥ be a 2-category with a coalgebra 1-morphism (C, uc, o).
A (left) comodule 1-morphism of C'is an ordered pair (M, pyr) where M i — j is
a 1-morphism of € and ppr: M — C o M is a 2-morphism of €. We require them

to satisfy the axioms

(idc omr par) ov pavr = (e om ide) ov par

and

(EC o Idc) oy PM = IdM

Let € be a finitary 2-category and let M be a finitary 2-representation of €. Let
S € M(i) for some object i of €. For the category 6(i) = [[ (i, ]j) we have
the evaluation functor evg : (i) — ML given by evg(F') — nggfor a 1-morphism
F:1i— jand evs(a) = ag for a 2-morphism a : F' — G. As | | notes, this

functor has a left adjoint.

Definition 2.5.3. We refer to this left adjoint as the internal cohom-functor (at S),

and denote it by [S, —] : M — B(1).
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From [ | Lemmas 4.3 and 4.4, [S,S] is a coalgebra 1-morphism and [S, T
is an [S, S]-comodule 1-morphism for any M € Jl. We denote the category of
comodule 1-morphisms of [S,S] by comod¢([S, S]) and its subcategory of injective
comodules by injy ([S, S]). These can be considered instead as 2-representations of
% and % in a natural fashion; when considering them as such we denote them as

comody([S, S]) and injy([S, S]) respectively.

Theorem 2.5.4 ([ | Theorem 4.7). Let M be a transitive 2-representation
of € and let S € M(i) be non-zero.  Then there is an equivalence of
2-representations of € between M and comody ([S,S]) which restricts to an

equivalence of 2-representations of ¢’ between M and inj,([S, S]).



The Extension to Infinitely Many

Objects

As was mentioned previously, the definition of finitary 2-categories includes multiple
finiteness restrictions, and we aim to relax some of these over the following thesis.
Initially, we will examine the most straightforward generalisation, that of allowing
infinitely many objects in our 2-category. To avoid having to consider size issues, we

will always assume that our 2-categories have countably many objects.

Many of the results in this chapter have proofs that work essentially identically to the
finitary case. However, we have needed to construct novel proofs when the finitary
proofs would fail to generalise. Once we have laid out the definitions, we will indicate

at the beginning of each (sub)section whether the proofs found there are novel.

3.1 Locally Finitary 2-Categories

Definition 3.1.1. A 2-category % is locally finitary over k when:

€ has countably many objects.

€ (i,j) € Qlé for every i and j.

Horizontal composition is additive and k-linear.

1; is indecomposable for all i.
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This terminology follows the standard practise of referring to a 2-category as being
‘locally [property] 2-category’ when each of its hom-categories is a [property] category

(e.g. locally abelian 2-category, locally triangulated 2-category etc.).

Definition 3.1.2. Given a set of objects i = {ijy,...,1i,}, we denote the sub-2-
category generated by the ij; (i.e. with objects iy,...,1,, and with hom-categories

% (ij,1x) for all j and k) by €3, and call it a full finitary sub-2-category.

Much of the language and approach of finitary 2-categories carries over immediately

to the locally finitary case, using these full finitary sub-2-categories.

Definition 3.1.3. A locally finitary 2-category € is locally weakly fiat if every full
finitary sub-2-category i of € is weakly fiat. Similarly, a locally finitary 2-category
% is locally fiat if every full finitary sub-2-category of % is fiat. Equivalently, ¥
is locally weakly fiat if there exists a weak object preserving anti-autoequivalence
(—=)* : € — € that obeys the same axioms as in Definition 2.3.9, and it is fiat if

(—)* is an involution.

Definition 3.1.4. Given a locally finitary 2-category %, a 2-functor M : ¥ — 2
is an additive 2-representation of ¢, a 2-functor M : ¢ — Ql{ is a finitary 2-

representation of ¥ and a 2-functor M : € — Ry is an abelian 2-representation.

Definition 3.1.5. For a locally finitary 2-category 4 and i € € an object of &, we
define the ith principal (additive) 2-representation P; : € — < as Py = € (i, —)
in a similar fashion to before. Since € is a locally finitary 2-category, this is a finitary

2-representation.

We present an important example of a locally finitary 2-category. Let A = {A; }ics be
a countable collection of basic self-injective connected finite dimensional k-algebras.

We define the locally finitary 2-category %4 as follows:

e The object set of of €4 is the set I given above. We associate each i with
(small categories equivalent to) Aj-mod for the purpose of defining 1- and

2-morphisms below.
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e The 1-morphisms in @4(i,j) are taken to be direct sums of functors from
Aj-mod to Aj-mod which have summands isomorphic to sums of the identity

functor and functors given by tensoring with projective (A;-A;)-bimodules.

e The 2-morphisms of €4(i, j) are all natural transformations of the functors

that form the 1-morphisms in €4(i, j).

This is indeed a locally finitary 2-category by a similar argument to that found in
[ ] Section 7.3, and indeed is actually a locally weakly fiat 2-category (again,

by a similar argument to that found in | ] Section 5.1).

Take A as before. Let Z; denote the centre of A;. We can identify Z; with
Endy, (1), and we denote by Z; the subalgebra of Z; that is generated by idyg,
and all elements of Z; which factor through 1-morphisms given by tensoring with

projective (A;-A;)-bimodules.

We now choose subalgebras X; of Z; containing Z;, and let X = (Xq,...). We
can then define a sub-2-category €4 x of €4 which has the same objects and 1-
morphisms, and the same 2-morphisms except that Endch’X(]li) = X;. We present

the generalisation of Lemma 12 in | |:

Lemma 3.1.6. €4 x is well-defined and locally weakly fiat.

Proof. We mirror the proof of [ ] Lemma 12, with extra detail to clarify for
our situation. To show that €4 x is well-defined, we need to show that it is closed
under horizontal and vertical composition. First, Endch’X(]li) = X; is a k-algebra,
from which it follows immediately that €4 x is closed under vertical composition.
For horizontal composition, since we already have that %4 is well-defined, we only
need to check morphisms involving the 1;. If we have a composition Fo G :1 — i
with F' and GG indecomposable, then 1; is only a direct summand of F o GG if both
F and G are isomorphic to 1;. Any horizontal composition of two 2-morphisms
¢or 1 € X; can be decomposed so that without loss of generality ¢ and ¢ both act

on indecomposable 1-morphisms. Then we must have by the previous reasoning that
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¢ and ¢ and both members of X;. But then as A; = A; ®4, A;, it follows from
X; being a subalgebra that it must also be closed under horizontal composition as

required.

We already know that %4 is locally weakly fiat. As the only difference between %4
and €4 x is the endomorphisms algebras of the 1;, which are 2-morphisms, €4 x still
contains F* for any given F. However, we still need to justify that the adjunction
2-morphisms are contained in ¢4 x, i.e. that I and F* remain adjuncts. The
adjunction 2-morphisms have some 1; as either source or target. The adjunction 2-
morphism from 1; to 1; for some i is idy,, which is in €4 x by definition. Any other
adjunction 2-morphism goes between 1; and some 1-morphism that is a direct sum
of indecomposables not including 1;, and is thus contained within €4 x by definition,

giving the result. O

There are times where we wish to consider the situation where the A; are not
necessarily basic. Given a non-basic algebra A, let {el;,... et ely, ... el } be a
complete set of primitive idempotents of A; such that Aielfj o~ Aiefl if and only if
Jj =1, and otherwise e]i“je}i’l = 0. Letting €® = e}, +ely + - +ei,,, we define the
basic algebra A% associated to A; as A% = ePA;el (see | | Section 1.6 for

further discussion). Note that if A; is basic, then A? = A;.

Given a countable collection A = {A;}ic; of not-necessarily basic self-injective
connected finite dimensional k-algebras, we define A® = {A%}ic; and define

%A = € 40, the latter as defined previously.

3.2 Cells, Ideals and Multisemigroups

The definitions for (2-)ideals are mutatis mutandis those for finitary 2-categories, as
they are defined in an entirely local manner. However, things are more complicated
when it comes to cells, and require some care compared to the finitary setup. To

explain in detail, we need to first define the Green's relations for multisemigroups (see
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Definition 2.2.13 for a defiition of a multisemigroup). These are originally defined for
multisemigroups in | |, based on the original definition for semigroups in [ ]
To recap, if (S, *) is a multisemigroup with = € S, then the principal left ideal of x is
the set L, = SxU{x}, the right principal ideal is R, = xSU{x}, and the two-sided
principal ideal is J, = SxSUSxUxSU{z}. This gives rise to equivalence relations
L, # and J where eg. v~y yif L, = L,. For the multisemigroup S(%) of
a locally finitary 2-category, this is precisely the same definition as for .Z-, %- and

_ -cells given for finitary 2-categories.

However, there are two additional Green's relations. One is 57 = Z N4, and the
other is &, defined as the meet of .Z and % in the poset of equivalence relations -
that is, it is the smallest equivalence relation to contain both . and Z. It is not

always true that 2 = £ o #Z = % o L. The best we can say is the following:

Proposition 3.2.1. 2 = |J (£ o %)°".
iEN
Proof. Since X, % C £ o %, and since Z is the meet of .Z and #, it follows
that 2 C |J (£ o #)°". However if £ and % are contained in an equivalence
1EN

relation M, then it follows from transitivity that (£ o Z)°* C M for all i. Thus
U (&L 0 %)° C 9, and the result follows. O
1€EN

We cannot assume that ¥ = _¢ for multisemigroups, and thus we need to apply

care when considering a locally finitary 2-category. That said, we are able to recover

useful results, as follows:

For the rest of the subsection, let € be a locally finitary 2-category with
multisemigroup of indecomposables S(%’), on which we have Green's relations %,
K, Jv, D¢ and H. Given a full finitary sub-2-category Z of €', we have that
S(AB) C S(€). Let Ly, Zn, Jz Pz and Hy denote the Green's relations of
S(#), which we consider as equivalence relations on S(#). We can extend these
to equivalence relations on S(%) by setting 23 = 25 U Ag(g) for 2" one of the
Green's relations and A the diagonal equivalence relation. We first show that all

the Green's relations on % barring %, are determined by the Green's relations on
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the full finitary sub-2-categories.

Proposition 3.2.2. Let x denote the set of full finitary sub-2-categories of €. Then

U Zz = L. A similar result holds for %4 and Fe.
Bex

Proof. All three results have similar proofs - we will give the full proof for .%». When
(F,G) € U Zaz, either (F,G) € Ag) and F = G or there exists some # € x
such that&(??,(G) € Ly If F =G then (F,G) € L. If (F,G) € £ then there
exist H,K € S(#) such that F' is a direct summand of HG and G is a direct
summand of K F'. But then it follows that /' ~¢_ G and thus (F,G) € % and

U Z» C Z.
PBex

Conversely, if (F,G) € Zg, then there exist some H, K € S(%) such that F is
a direct summand of HG and G is a direct summand of KF. Now let Z be a
full finitary sub-2-category of ¢ that contains F,G, H and K. Thus (F,G) € %,

and hence (F,G) € |J Z». Therefore % C |J L», and Ly = |J Ly as
Bex PBex BeEx
required. O

Proposition 3.2.3. In the same setup as above, | Pu = Y.
Bex

Proof. If (F,G) € % then as by Proposition 3.2.2 %, = |J £, without loss of
Bex
generality (F,G) € Ly for some % € x. By the definition of P4, (F,G) € Z4.

Thus (F,G) € U 2%, and hence %4 C |J Zy. Similarly, Zy C |J Z5. But
Bex Bex Bex

then as %y is the join of £ and %y, we must have that Z4 C |J Z4.
Bex

For the opposite inclusion, let (F,G) € |J Z%. Then from Proposition 3.2.1

Bex

Dy = \J(LuoRz)°. Therefore there exists some n € 2N and H; € S(%) for
1EN
0 <% < n such that

F=Hy~g, Hi ~p4 Hy~gy -+ ~gy Hi1 ~2,5 Hy =G
Then by Proposition 3.2.2,

(Hi,Hit1) € L = (Hi, Hiy1) € L,
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and

(Hini—i-l) c z@gg = (Hi,HZ‘+1) (S ;@%.

Therefore (H;, Hi+1) € P¢ for all i. But as Z is an equivalence relation it follows
that (F,G) € Z¢. Thus |J 9% C P4 and the result follows. O
Bex

We can also give a useful result for sufficiently nice _#-cells of ¢

Theorem 3.2.4. Let § bea #-cell of ¢ such that every 7 -cell of § is non-empty.
Let L5, Z3, D3 and Zg denote the restrictions of the Green's relations of ¢ to ¥ .
Then f; Og@g :%g O.iﬂg = .@g = /g.

Proof. The proof of [ | Proposition 28 b) is local and generalises immediately,
proving that £y o %y = #y0.Ly = _Z¢. Finally, it is immediate from the definitions
that £y o Zy C Y3 C _Zg, and thus the remaining equality follows directly from

the prior equalities. O

From this result, we can define strongly regular _#-cells in the same fashion as the

finitary case:

Definition 3.2.5. A _Z-cell § of € is strongly regular if any two .Z-cells of § are
not comparable under < &, and each #7-cell of § contains precisely one isomorphism

class. If only the first condition holds, then ¥ is called regular.

We will show later that being (strongly) regular in the locally fiat setup will give a
much more pleasant structure to the Green's relations than the general case, but this

will need more structure.

We also define transitive 2-representations identically to the finitary case. Explicitly,
a finitary 2-representation M of € is transitive if for any object N € Jl, Gn(N) is

equivalent to M. This leads to the first relevant result for locally finitary 2-categories.

Lemma 3.2.6. Let M be a transitive 2-representation of €. There exists a unique
maximal ideal .# of M such that .# does not contain any identity morphisms apart

from the zero object.
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Proof. We mirror the proof for the finitary 2-category case given for | ] Lemmas
3 and 4. Since Ml = [] M(i) is a coproduct of additive categories, .# is uniquely
determined by its mor:)icigsms between indecomposable objects. In particular, if idy €
Z for some Y and some ideal ., then we can pre- and post-compose this with
injection and surjection morphisms to find that idx € .# for each indecomposable
summand X of Y. If X € JM is indecomposable, then we know that End , X is
a local algebra. Further, by definition, idx ¢ .#, and therefore .# NEnd 4 X is a
proper ideal of End_, X, and is thus contained in its radical. Further, the sum of any
two subspaces of a radical is still contained in the radical. Thus the sum of all ideals
of Jl which do not contain idx for any (indecomposable) X still has this property.
Since we have only countably many isomorphism classes of indecomposable objects in
JL, this argument still holds when we consider ideals that do not contain idx for any

indecomposable X (and hence do not contain any identity morphisms for non-zero

objects), and the result follows. O

Definition 3.2.7. A transitive 2-representation M is simple transitive if the maximal

ideal of M given in Lemma 3.2.6 is the zero ideal.

The definition and notation of a cell 2-representation is mutatis mutandis that found

in Definition 2.3.33.

3.2.1 Example: ¢4 x

We now examine the cell structure and cell 2-representations of ¢4 and €4 x in
detail. Up to isomorphism, the non-identity indecomposable 1-morphisms of %4 or
Ca,x are of the form

Ajey Q espAs ®a; —

where i,j € I and es1,...,ei,, (respectively eji,.. .,ejnj) are a complete set of

primitive orthogonal idempotents of A; (respectively Aj). For notational
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compactness, we define
i
Fy' = Ajej Qu eipAs @4, —

in €4 or €4 x. We also denote A;f = Aje;®esrA; for the corresponding bimodule.

Excluding the trivial _#-cells, there is a single _#-cell of €4 x consisting of all the

Ajeir R ejiA;. The L-cells are of the form
Ly ={Ffljel=1,...n4}
and the Z-cells are of the form

Ry ={FjFliel k=1, ns}.

Let L;, be an Z-cell as defined above. The corresponding 2-representation N;; =
N,, has as indecomposable objects Fjilk € Nig(j) for I = 1,...n5. A bimodule
homomorphism o : A;f — A;ﬁl is defined by its image on ej; ® ey, and is thus
a k-linear combination of homomorphisms of the form ¢, : A;f — Ailﬁl where
Pap(ey ®eir) = a®b for a € ejyAjejm and b € ejpAsesr. Additionally, idFjilm =

Desmes, (abusing notation to let ¢, refer both to the bimodule homomorphism and

the corresponding 2-morphism in €4 x).

Proposition 3.2.8. Let .F be the unique maximal ideal of N;; not containing any
identity morphisms for non-zero objects (so that Ni/.F is a cell 2-representation).
Then its components F(j) C Nii(j) are matrices of k-linear combinations of

morphisms of the form ¢, with a € A5 and b € R = rad es Aje;y.

Proof. Since the Nj,(j) are additive categories, composing elements of [[.F(j)
J
with biproduct injections and projections it is sufficient to consider the elements
of [[.F(j) that are morphisms between indecomposable objects. We refer to this
3

process as an injection-projection argument. First, given any a,a,y € Aj, 3,0 € A;

and b,b" € rad esp A€k, Pa,8PapPr.6 = Praa,sbs AN Pap + Pap = Papier- Since
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R is a two-sided ideal of ej;pA;jeir, this implies that .F is indeed an ideal of V.
Further, if idF;lk € J(j) then e;r € R, which is a contradiction as R is a proper ideal
J

of e;pAjes,. Hence F does not contain idx for non-zero X € WN;.

To show that .F is €4 x-stable, it is again sufficient by an injection-projection
argument to consider the action of indecomposable 1-morphisms of ¢4 x. Stability
under the action of any 1 is clear by definition. Let F" € €ax(j,1) and

Pab Fjif — Fjitk € J(j). Then

Nik(F) (Pap) = Pernieym @ Pap Al @4, A — Al @4, ALY
Under the isomorphism

A;JLZL ®A; A?f = A1, Qk e5mAjejr Qk eipAs = (Aii)@dimeijjejt7
the element

(Soeln,ejm ® @a,b)(eln & €im ® €js ® eik:) =e1n ® €im ®a®b

dim 5, Aje;e

maps first to ey, ® ej,a @ b and then to é vgein, ® b, for some v, € k.
Since b € R, this implies that Nik(Ff,T)(wayb) 2117(1) giving €4 x-stability.

It remains to show that .¥ is the unique maximal such ideal. If it is maximal, then
by Lemma 3.2.6 it is immediate that it is unique. Thus assume for contradiction
that there exists some other ideal & O .F such that K does not contain idy for any
non-zero F. Choose some o € ¥ \ .¥. By injection-projection arguments we may
assume that o is a morphism from FJ.ilk and FiF. Thus o = Z: ©ayb, for some t
with a, € ey Ajey and b, € espAjes. -

If b, € R for some v, then by definition ¢,, 3, € F C K, and thus without loss of

generality b, ¢ R for all v. But then by | | Lemma 1.4.6, e;;, — b, € R for all
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v, and hence

t t
o+ E Pay,ei—by — § Pay,esr = P, av,eir EX.
v=1 v=1

But since F is €4 x-stable, by tensoring w5~ o, With ©e,,, ¢, Similarly to above

and composing with injection and projection morphisms, we derive that 2z, , e, € K

for some non-zero z € k. But this implies idp:« € K, a contradiction. Thus .¥ is
jm

indeed maximal, and the result follows.

3.3 Coalgebra and Comodule 1-Morphisms for Locally

Finitary 2-Categories

We now present the generalisation of a collection of constructions and results in
[ | to the locally finitary situation. Most of the proofs are straightforward
generalisations, but Lemma 3.3.8 and Theorem 3.3.9 are novel proofs, for reasons
explained later in this section. We initially take % to be a locally finitary 2-category.
The definition(s) of abelianisation given in Section 2.4 are sufficiently general to
already cover the locally finitary case. Indeed, since each hom-category € (i, j) of €
is a finitary category, its abelianisation €'(1, j) is indeed abelian.

Given any S € M(i), we define an evaluation functor evs : [] €(i,3) — [] M(3)
which takes FFto F'Sand o : ' — G to ag : F'S — G,%S%Since evg nj'éfs each
F € (i, j) to an object in M(j), it follows that this functor has a left adjoint if and
only if each of the component evaluation functors evg; : €(i,j) — M(j) does so.
But the latter case is the finitary case, where such adjoints exist by e.g. [ ]
Section 4.1, and thus there exists some left adjoint [S,—] : [ M(j) — [] €(i,3)
(we choose this notation to be suggestive of an internal (Jcil;phom). Wefet(ﬁen have

the following generalisation of [ | Lemma 5.

Lemma 3.3.1. With the above notation, [S,S] has the structure of a coalgebra
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I-morphism in €(i,1).

Proof. We mirror the proof of | ] Lemma 5. The image of id(g 5) under the
adjunction isomorphism Homg ([S, S1, [S, S]) — Homm (S, [S, S]S) gives a non-zero

morphism coevg : S — [S,S]S. This gives the composition

coevg [S,S] coevg
_—

(S, S][S, S]S from S to [S, S][S, S]S. But then

S S, S]S

as

Homy (S, [S, S][S, S]S) = Hom([S, S], [S, S][S, S]),

again by the adjunction isomorphism, this gives us a non-zero comultiplication 2-

morphism [S, S| — [S, S][S, S].

For the counit morphism, we again use the adjunction isomorphism to derive that
Homp (S, S) = Homm (S, 15 S) = Home([S, S],1;), and thus choose the (non-zero)
image of idg under this isomorphism. We denote the comultiplication 2-morphism
by Ag and the counit 2-morphism by eg. We will now show that the axioms for a

coalgebra hold.

We first wish to show that the morphism (es op id(g g)) ov Ag = idjg 5. We note

that
HOmcé([S, S}v [S> S]) 2 HOIH%([S, SHS? S]a [Sv S]) oy Homﬁ([sa S]’ [Sa SHS’ S])a

and using the adjunction between evg and [S, —] and the representation isomorphism

on the second hom set (eg oy id[57s]) oy Ag corresponds to
M{(es oy idis,s1)s © (M([S, S]) coevg o coevs).
Since id[g,g) corresponds under the isomorphism to coevg, it is sufficient to show that
M(es op idig,s))s © (M([S, S]) coevs) o coevs = coevs .

Diagrammatically, we wish to show that the upper right half of the diagram



Chapter 3: The Extension to Infinitely Many Objects 47

S, S][S, S]S

w\ Coev

coevg [S’ S]S
commutes. But M(ES oy idg ) = M(es)s,5)s, and by the definition of a natural

Mi(esonidis,s))s

transformation

Mi(es)s,515 © M([S, S]) coevg = coevg oM(es)s-

We thus wish to show that

coevg oM(eg)s o coevg = coevg,

which is the lower left half of the above diagram. But as coevs € Hompg (S, [S, S].5),
we can consider M(eg)gs to be the action of eg on the functor Homps (.5, [S, S]—) in

a similar fashion to above. Thus using the isomorphism of functors as before,

M(eg)s o coevg = €5 oy idjg g] = €5,

and hence M(eg)g o coevg = idg, giving the required result.

For the other half of the counit axiom, M(id(s ) on €5)s = M([S, S])M(es)s.

Therefore

M(id(s,5) o €5)s © M([S, S]) coevg o coevg
M([S, ST)(M(es)s o coevg) o coevg
= M([S, S])(idg) o coevg

= coevg

which gives us the desired result, with the middle equality following from the above

paragraph.
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We also need to show that

(idis,s1 om As) oy Ag = (Ag oy idig,g)) ov Ag.

Using a similar method to above, this is equivalent to showing

M(id[s,5) o As)s o (M([S, S]) coevg) o coevg

= M(Ag oy id(g,g))s o (M([S, S]) coevg) o coevs .

Diagramatically, this means showing that the diagram

coevg M([S,S]) coevg
_—

§— 5, (5,58 S, S]S, S]S
S, 5] M(Asopidjs,s))s
lM([s,spcoevS
S, S][S, S]S S, S1S, S][S, S]S

M(idis,s10nAs)s
is commutative.

Using the principles outlined above,

M(Ag op idig,s))s © M([S, S]) coevs o coevg, s
=M(Ags)s,515 © M([S, S]) coevs o coevg

=M([S, S][S, S]) coevg oM(Ag)s o coevg,

while

M(id(s 510mAs)soM([S, S]) coevg o coevg = M([S, S])(M(Ags)socoevg)ocoevs .

But applying the isomorphism of 2-representations given above,

M(Ag)s o coevg — Agoyidig g = Ag M([S, S]) coevg ocoevg .
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Therefore

M([S, S][S, S]) coevs oM(Ag)g o coevg

=M([S, S][S, S]) coevs oM([S, S]) coevg o coevg,
while
M([S, S])(M(Ag)s o coevg) o coevg

=M([S, S])(M([S, S]) coevg o coevg) o coevg

=M([S, S]) coevg oM(]S, S]) coevg o coevg
and the result follows. O]

We define comody([S,S]), comody([S,S]), injx([S,S]) and injy([S,S]) as in
Section 2.5. Each [S, T can be considered as an [S, S]-comodule 1-morphism in a
canonical fashion. First define a map coevgr : T' — [S,T]S in .4 by taking the

image of id[g 7 under the adjunction isomorphism

Homy ([S,T7,[S,T]) = Hom _4(T,[S,T]S).

This gives a morphism

M([S, T))(coevs) : [S, T]S — [S,T][S, 58,

and we take the image of the composition M([S,T])(coevg) o coevgr under the

adjunction isomorphism

Hom 4 (T, [S, T[S, S]S) = Homy([S, T1, [S, T[S, S])

to be the canonical coaction 2-morphism. It is straightforward to check that the
comodule axioms hold, and we denote this 2-morphism by pig 7}, or pr when there

is no confusion.
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For the rest of the section we will assume that % is a locally weakly fiat 2-category
unless otherwise noted. Using the previous construction, we can now define a functor
© : A — comody([S,S]) by setting O(T") = ([S,T], pr) and by ©(f) = [S, f].
While this is a functor between categories, we in fact have the following generalisation

of [ | Lemma 4.4:

Lemma 3.3.2. The functor © (weakly) commutes with the action of ¢ and defines

a morphism of 2-representations.

Proof. The proof given in [ | proves that [S, XT] = X[S,T] in € for any
1-morphism X in € by referring to only hom-categories between three objects of ¥.

The proof is therefore entirely local and generalises immediately. O

We can also present generalisations of Lemmas 4.5 and 4.6 in [ |:

Lemma 3.3.3. For any I-morphism X in € and any C € comodg([S, S]) there is

an isomorphism Homomody (5,57) (Cs X [S, S]) = Homg (C, X).

Proof. The proof given in | | is an entirely local proof, and thus generalises

immediately. O

Lemma 3.3.4. © factors over the inclusion injy([S, S]) < comody([S, S]).

Proof. We mirror the proof given for [ | Lemma 4.6, with some extra
detail to clarify it for our situation. We first consider the case where T' = X S for
some l-morphism X € €(4,j). By Lemma 3.3.2, we have that
[S,T] =[S, XS] = X|[S,S]. By the definition of a comodule, [S,S] is injective in
comody ([S, S]). We claim that, because ¢ is fiat, XS, S] is also injective. To see
this, the existence of internal adjunctions in % gives that
Homcomody (5,57) (—» X [9: S]) & Homeomody (15,57 ("X — [5, 5]), and as the latter is
exact by the injectivity of [S,S] and *X having both left and right adjoints, so is
the former. But now as M is transitive, any T is isomorphic to a direct summand

of some X S. The result follows. O
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We can now give the generalisation of Theorem 4.7 in | |

Theorem 3.3.5. Let M be a transitive 2-representation of ¢ and let S € M(i)
be non-zero. Letting © be the functor defined above, © induces an equivalence of

2-representations between M and comody ([S, S]). This restricts to an equivalence

between M and inj, ([, S]).

Proof. The proof given in | | generalises without issue to the locally finitary
case. The references to | ] Lemmas 4.4, 4.5 and 4.6 in that proof are
replaced by Lemma 3.3.2, Lemma 3.3.3 and Lemma 3.3.4 here. O

If we are working in a locally fiat 2-category, we can use the involution to get the dual
result. For an algebra 1-morphism A in &, we can denote by modz(A) the category
of right A-module 1-morphisms, and by proj_(A) the full subcategory of projective A-
module 1-morphisms, with mod_(A) and proj_(A) the respective 2-representations.
Then the proof of Corollary 4.8 in [ ] generalises immediately to the locally

finitary case, and we get the following:

Corollary 3.3.6. There exists a algebra 1-morphism ||S, S|| in € and an equivalence

of 2-representations between M and modz(|| S, S

S, 5.

), which restricts to an equivalence

between M and proj_(

Returning to the locally weakly fiat case, Corollary 4.10 in | ] is an explicitly

local corollary, and thus also generalises immediately:

Corollary 3.3.7. For i € ¥, consider the endomorphism 2-category <f; of i in €.
There is a bijection between the equivalence classes of simple transitive
representations on <7; and simple transitive representations in ¢ which are non-zero

at i.

We can use this to provide a simple proof of the general case of Theorem 15 in
[ |]. Indeed, we need a new proof of this general case: the [ | proof

applies the Perron-Frobenius theorem to a matrix whose rows and columns are
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indexed by elements of S(%). The Perron-Froberius theorem, however, only applies
to finite square matrices, and in the locally finitary case S(%) can have infinitely

many elements.

Before the general proof, we will give a simple proof of the connected version of that
Theorem. Even this proof has an advantage over that of the connected proof given
in [ | Theorem 15, in that it does not utilise the (fan) Freyd abelianisation.
This allows it to be more easily generalised to settings where a different version of

abelianisation is used (e.g. the setup in Chapter 5 below).

Lemma 3.3.8. Let A be a connected basic self-injective finite dimensional k-algebra.
Then for every simple transitive 2-representation of €4 there is an equivalent cell 2-

representation.

Proof. We consider a larger fiat 2-category € axi. This category has two objects
and *i. We identify the former with a small category o equivalent to A-mod and
the latter with a small category equivalent to k-mod. The category Gaxi(*, *) is
taken to be @4 (*,*) and the category @Ak (K, *i) is taken to be Gy (*k, *x). The
1-morphisms between x and x (respectively x and x) are direct summands of
direct sums of functors isomorphic to tensoring with projective (k-A)-bimodules
(respectively projective (A-k)-bimodules). The 2-morphisms are natural

transformations.

The endomorphism 2-category of % is equivalent to %4. Further, if we have an
indecomposable 1-morphism Ae; @y e;A @4 — in Caxi(*, *), then Ae; is an (A-k)-

bimodule and e;A is a (k-A)-bimodule, and hence this factors over .

We denote by %, the endomorphism 2-category of i, and claim that any simple
transitive 2-representation of it is equivalent to the cell 2-representation. Let M be a
simple transitive 2-representation of %.. As the 1-morphisms in %, are all of the form
12{” for some m € Z7, let N € M(x;) be indecomposable. Then as M is transitive
and M(xy) is idempotent complete, M 22 id®"(N) =2 N®" for any M € M(%y) and

for some n € ZJ. It follows from Proposition 3.2.8 that for the Z-cell % = {1,,}



Chapter 3: The Extension to Infinitely Many Objects 53

of ¢, P,, = Ny, = Cg, as radk = 0. Let & : P,, — M be a morphism
of 2-representations defined on objects by ®(F') = M(F)(N) and on morphisms by
®(f) = M(f)n. We can abuse notation and equate ® with @, : P, (%) — M(*y).
It is immediate from the prior discussion that ® is essentially surjective on objects

and faithful.

To show that & is full, let X be the %-stable ideal of M(xy) generated by
rad Endpg(N). Since N is indecomposable, we can apply similar reasoning to the
proof of [ ] 1.4.8 to show that Endn(V) is local and rad Endpy (V) is the
unique maximal ideal.  Assume for contradiction that idy; € H for some
M € M(x). Then by standard injection-projection arguments idy € K. But since
any morphism f : N®™ — N®" is an m x n matrix of elements of Endp(N), this
implies that idy = i fikigi where fi,g; € Endm(N) for all i and
k; € rad Endy(NV) for aIIz:z',1 i.e. that idy € rad Endy(V), a contradiction. Hence
H does not contain idy; for any M € M(xy). But since M is simple transitive by
assumption, this implies that ¥ = 0 and thus that Endym (V) = k. It follows
immediately that ® is full, and thus an equivalence of 2-representations as we

wished to show.

Returning to the main aim of the proof, if A = k then we are done by the above
work. Hence assume that A # k. Using the previous paragraph and Corollary 3.3.7,
we know that there is a unique equivalence class of simple transitive 2-representations
of FaxKk that is non-zero on x.. We now claim that if a 2-representation N of %4«
is non-zero on *, then it is either non-zero on x; or equivalent to the trivial cell

2-representation on %4.

If Ae; ® e;A acts in a non-zero fashion on N(x) for some i or j, then as it factors
through N (), we must have that N () is non-zero. Therefore assume that Ae; ®y.
e; A acts as the zero functor for every i and j. Then the only 1-morphisms in €4 (x, *)
that act non-trivially on N(x) are direct sums of 1.. In particular, if N € N(x) is
indecomposable, then for any M € N(x), M = N®" for some n. But this is

equivalent to the cell 2-representation for the trivial -Z-cell by a similar argument to
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above.

It follows by Corollary 3.3.7 that there is only one equivalence class of simple transitive
2-representations on %4 that is not equivalent to the identity cell 2-representation,
and as we know that €4 has a cell 2-representation for the maximal _#-cell (which

by assumption is distinct from {[1.]}) the result follows. O

This leads to the main theorem of this section:

Theorem 3.3.9. i) Let A= {A;i|i € I} be a countable collection of basic self-
injective connected finite dimensional k-algebras and let X = {X;|i € I} be
a collection of subalgebras X; C A; as defined in Subsection 3.2.1. Then
any non-zero simple transitive 2-representation of €4 x is equivalent to a cell

2-representation.

i) For any Z-cells %5, and %i; in €ax, Cg, and Cg,, are equivalent

2-representations.

Proof. We first prove i) and ii) in the case where X; = A;. If A = {k} then we
are done by the proof of Lemma 3.3.8. Assume that A # {k}. Let M be a simple
transitive 2-representation of ¢4. Assume that there is some j such that M(j) =0

and let i be such that M(i) # 0. Then
Ajeir O e A5 ®a; Ajejm @k einAs @4, —
is the zero map for any primitive idempotents e;; and ej,. But in particular
Aseip @k ejmA; ®a; Ajeim K eindi = (Asesr R eindy)® dmesmAsesm,

and this implies that Aje;; QK eimA; ®4, — is the zero map on M(i) for any j
and m. But by a similar argument to Lemma 3.3.8, this means M is equivalent to a
cell 2-representation for an identity cell. Thus if M is not equivalent to a trivial cell

2-representation, it must follow that M is non-zero on every i.
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Assume that M(j) # 0 for all j € €4, and choose some i € €4. By Lemma 3.3.8,
every simple transitive 2-representation of %4, is equivalent to a cell
2-representation, and in particular there is only one equivalence class of simple
transitive 2-representations that is not equivalent to the trivial cell 2-representation.
But as every simple transitive 2-representation of ¥4 not equivalent to a trivial cell
2-representation is non-zero when it restricts down to %4, it follows from
Corollary 3.3.7 that there is only a single equivalence class of simple transitive
2-representations of %4 not equivalent to a trivial cell 2-representation. This gives
claim ii) in this case. Since €4 has a cell 2-representation for the maximal _#-cell,

claim i) in this case follows.

For the general case, the arguments above and in the proof of Lemma 3.3.8 do not

depend on the endomorphism of 1;, and thus generalise immediately. O

3.4 Locally Weakly Fiat and Strongly Regular ¢ -Cells

We now move on to extending results from the Mazorchuk—Miemietz series of papers
to the locally finitary case, with the eventual aim of generalising [ | Theorem
18 to show that any simple transitive 2-representation of a strongly regular locally
weakly fiat 2-category is equivalent to a cell 2-representation. Here we are using
the projective Freyd abelianisation rather than the injective equivalent as we did
above. The projective case is in general preferable, but we were forced to use the

injective case above to derive left exactness for various constructs, as is discussed in

[ I

3.4.1 General Properties of the Abelianisation

We start by giving some general properties of the action of 1-morphisms of a locally
weakly fiat 2-category % on its i-th abelian principal 2-representation P;. The
isomorphism classes of indecomposable projectives and simples are indexed by the

isomorphism classes if indecomposables in %, and we denote them as Pr and Lp
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respectively. The proofs in this subsection are generally straightforward
generalisations, with occasional adaptations for moving from fiat proofs to weakly

fiat ones.

Proposition 3.4.1. Let F,G be indecomposable 1-morphisms of €. Then F Lg # 0

is equivalent to F' <o G*.

Proof. This is a generalisation of [ ] Lemma 12. Though the proof is similar,
there are alterations needed due to how adjunctions work in the (locally) weakly fiat

case.

We assume that G € €(1,j) and F € €(j,k). We first claim that F'Lg # 0 if and
only if there exists some indecomposable H € %(i,k) such that
Hom?(ix)(PH,FLg) # 0. The ‘if’ direction is immediate, as if such an H exists
we have a non-zero mapping, which must go to a non-zero object. Conversely, if
FLg # 0, then it must have a non-zero projective presentation, from which the

claim follows.

We then use the adjointness between F' and *F' to get

0 7é HOHIm(PH, FLg) = Homm(*F o) HP]li; LG),

where we use that Py = H Py, by construction of the abelianisation. As *F o H Py,
is projective and L is simple, this inequality is equivalent to saying that Pg = G Py,

is a direct summand of *F o HPy,, i.e. G is a direct summand of *F o H. This gives

that *F' <4 G, and applying —* gives us the result. O
We will now present the generalisations of | | Lemma 13 and Corollary 14,

whose proofs are entirely and explicitly local and thus generalise immediately, with
similar minor adjustments to accommodate for moving from the fiat to the weakly
fiat setup. We recall from Section 2.2 the notation [M : S| for the multiplicity of a

simple module S in the composition series of M.
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Lemma 3.4.2. For F,H, K € S(¥¢), [FLx : Ly] # 0 implies H <o K. If
H < g K, there exists some M € S(€) such that MLy : Ly] # 0.

Corollary 3.4.3. Let F,G,H € S(¥). If Ly occurs in the top or socle of H L,
then F € L.

Proposition 3.4.4. Let £ be an Z-cell of € with domain 1i.

e There is a unique submodule K = K¢ of Py, such that every simple
subquotient of Py, /K is annihilated by any F' € £ and such that K has

simple top Lg,, for some Gy € £ such that FLg, # 0 forany F € &.

e Forany '€ &, FLg, has simple top L.

Proof. These are parts a) and b) of [ | Proposition 17. The proof given there
for those sections is local and does not depend on * being an involution, and so

generalises immediately. O

In keeping with the finitary case, we denote G¢ as the Duflo involution of &£. One
of the most useful results regarding the Duflo involution (justifying calling it an

‘involution’) is:

Proposition 3.4.5. G,G% € &.

Proof. This is the generalisation of claims c) and e) of | | Proposition 17. That
section of the proof is again local and does not utilise * being an involution, and hence

also generalises directly. O

From this, if ¥ is strongly regular and &£ C ¢, then £ N *Z = {G4}.

Proposition 3.4.6. For a maximal, strongly regular ¢ -cell § of € and for ', H € ¥,

there exists some integer mp iy such that H*oF = mp gy K, where { K} = Rp-NZLp.

Proof. This is a direct consequence of ¥ being strongly regular and maximal, and of
ZL-cells being closed under indecomposable direct summands of left 1-composition

and Z-cells under indecomposable direct summands of right 1-composition. O



Chapter 3: The Extension to Infinitely Many Objects 58

Proposition 3.4.7. For any F' € S(%), F* ~ 4 F.

Proof. This is a generalisation of | ] Lemma 26, and the proof given there only
involves morphisms between at most three objects of ¥’ and uses a result generalised

as Proposition 3.4.5, and thus generalises to the locally finitary case without issue. [

We now taker ¥ to be a locally weakly fiat 2-category and consider the
2-representation M = Cg, the abelianisation of the cell 2-representation for some
ZL-cell £. We use Pr, Ir and Lp to refer to projectives, injectives and simples in
J respectively. For the remainder of this section and the following two, by
quotienting % by the 2-ideal generated by all idp such that ' £ § (for § the
Z-cell containing &), we can assume without loss of generality that ¥ is the
unique maximal _Z-cell of & (see Subsection 3.4.3 for more details). We now

generalise the first parts of | | Proposition 30:

Proposition 3.4.8. The projective object Pr is injective for any F € &£.

Proof. We mirror the proof for the above citation, with extra clarifying details. By
adjunction,

Hom—;(Lgy,, F*Lr) = Hom(FLg,,LF).

By the comment at the end of Proposition 3.4.6, L is the simple top of F'Lg, and
hence the latter space is non-zero and one-dimensional. Since Lg,, is simple, this

therefore implies that Lg,, injects into F*Lp.

Let I be an injective object in some C« (i) and let Lx be one of its simple quotients
with K € &£. Then Lg, is a subquotient of the object K*I which is injective
as K* is exact. Using Proposition 3.4.1 and the strong regularity of ¥ we have
that GoLy = 0 unless H =2 G¢. Therefore GgLy = 0 unless H &£ Gy. By
Proposition 3.4.4, G¢Lg, has simple top Lg, and Lg, appears in the top of the
object GK*I, which is injective as G is exact. It follows that Pr appears as a
quotient, and thus a direct summand, of FGK*I, which is injective as F' is exact.

The result follows. O



Chapter 3: The Extension to Infinitely Many Objects 59

Proposition 3.4.9. Forany F € §, F*Lp = I, .

Proof. We mirror the proof of | | Proposition 38 a). By the proof of
Proposition 3.4.8 Lg,, injects into F*Lf, and hence by strong regularity, F*Lr has
simple socle Lg,,. In particular, it follows that F*Lf is indecomposable. But as L¢,,
injects into F*Lp, it follows that F*Lg is a direct summand of Ig,, giving the

result. O

3.4.2 The Regularity Condition and some Other Results

We move on to examining a property of strongly regular _#-cells called the regularity
condition. The proofs in this subsection are direct generalisations of the finitary

setup. We quote a 1-categorical result, [ | Lemma 13:

Proposition 3.4.10. Let B be a finite dimensional k-algebra and G an exact
endofunctor of B-mod. Assume that G sends each simple object to a projective
object. Then G is a functor isomorphic to tensoring with a projective bimodule

(which we call a projective functor).

Before stating the regularity condition result, we give a lemma we will need for it.

Proposition 3.4.11. Let § be a strongly regular 7 -cell of a locally weakly fiat
2-category €, and let m : § — ZT be defined as *F o F = mpH ® K, with
no indecomposable direct summand of K belonging to §. Then m is constant on

Z-cells of §.

Proof. This is a generalisation of | ] Proposition 1, and we mirror the proof
found therein. Let &£ be an Z-cell in ¥ and let C5 and Cg be the corresponding
cell 2-representation and its abelianisation respectively. For FJH € &£, by
Proposition 3.4.1 and Proposition 3.4.5 we can immediately derive that FLy = Pp
if H = G4 and zero otherwise. Since every element of & has the same source
object, we can apply Proposition 3.4.10 which gives that, for each F' € &, C(F)

is an indecomposable projective functor.
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For each j € ¢, let Aj denote the basic algebra such that Cg(j) is equivalent
to Aj-mod. Let {ej1,...,ej,,} be a complete set of pairwise orthogonal primitive
idempotents in Aj. Then without loss of generality, each Cy(F) is the projective

functor Ajejs @K es1A; ®a, — for some s € {1,...,n;5}.

It follows from Proposition 3.4.8 that Aj is self-injective when ¥ is maximal. There

is thus some permutation o; € Sy, such that (ejs4j5)* =2 Aje It follows that

jo(s):
Cy (F*) is the projective functor Aieiq (1) Ok ejsA; ®a; —. By taking the tensor
product, mp+ = dim(eilAieiUi(l)) which is independent of the choice of I € &£.
Since I+ F™* is a bijection from & to the %-cell of § containing G¢,, m is constant
on the Z-cell. But by Proposition 3.4.5 every %-cell contains a Duflo involution,

and hence the result follows. O

We can use this to derive the following:

Proposition 3.4.12. For § a strongly regular maximal ¢ -cell in ¢ and any F € &

FGgg = mGyF.
Proof. This is a generalisation of | ] Proposition 29, and the proof there
generalises immediately to this setup. O

3.4.3 Restricting to Smaller 2-Categories

In this subsection we examine cell 2-representations of quotients of locally weakly fiat
2-categories, using entirely novel proofs. Let € be a locally weakly fiat 2-category
and let § be a strongly regular #Z-cell of 4. We construct a 2-ideal .#¢g of &
that is generated by 2-morphisms idp for F' £ ; §; that is, #«g4(i,j) consists of
2-morphisms between 1-morphisms in %’(i, j) that factor through a direct sum of
1-morphisms F' with F' £ ; F. We also define <y to be the maximal 2-ideal of ¢
such that idp ¢ J<y for any F' € . We define 2-categories ¢4y = ¢ /I¢y and
C<3 = € /I<g. We also define Cfgj to be the sub-2-category of 6zy closed under

direct sums and isomorphisms and generated by the 1; fori € ¥ and by F € §.
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Proposition 3.4.13. J45 C J<5.

Proof. By the definition of <y it suffices to show that idp ¢ J«g for any F € §.
n

Assume otherwise for contradiction. Then for some F € ¥, idp = ) fridg, gk
k=1

where Gy L ¥, gx : F — G, fr : G — F for all k.

Since F' is indecomposable, by using similar arguments to the proof of | ]
Corollary 1.4.8, for each k either frgr is nilpotent or it is an automorphism. If
frgr is nilpotent for all k£, then as nilpotent morphisms form an ideal so is idg, a
contradiction. Therefore there exists some k such that figx is an automorphism, say
with inverse h. But then (hfy)gr = idp = F = G} and by construction F' € § and

Gr ¢ ¥, a contradiction. The result follows. O

Proposition 3.4.14. The image of § remains a ¢ -cell in ngg-

Proof. Let £ be an Z-cell in ¥ and let F' € £. First, by Proposition 3.4.13, idp ¢

Fgg forany F' € §, and so End_; (F') # 0, and hence F' # 0 in %gj. For the Duflo
4]

involution G of & we know by strong regularity of § that FGgy = F®™ in € for

some positive m. Since the composition of the injection 2-morphism F' — F'Gg with

the projection 2-morphism FGy — F'is idp, the direct sum structure is preserved

in 474 and so Gy <y F in 67,

Conversely, again by strong regularity of ¥, F*F = Gg” for some positive n in %, and
consequently by a similar argument to above ' < ¢ Gy in 6«3 and &£ is contained in
an Z-cell in €¢g. But it is immediate from the definitions that if F' <o H in €4y,
then F' <¢ H in € and thus &£ is precisely an .Z-cell in €xy. Applying adjunctions

gives the corresponding result for Z-cells and the result follows. O

For an Z-cell £ of ¥ we recall the finitary 2-representation Ng : 4 — Ql{ given by
Ng(j) =add{FX|F € [] €k, j),X € £} and set Ny = [] N(j), with class of

= jew
morphisms Ar(WNg).

We define two 2-representations of €x¢. First let Ngj D Cgg — Qli be defined
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by N27(3) = add{FX|F € [] %xs(k,j),X € £}. Second, we define the 2-
ke?
representation Ng /.J¢g by setting

(Ng/Izg)(3) = Nz (3)/(Ar(Ng) N Izg (1, 3)),

where i is the source object of &, with the obvious induced action of €«y.

Proposition 3.4.15. N§,g and Ny /J¢g are equivalent as 2-representations of €y g.

Proof. By construction there is a bijection between objects of J\f;g and Ne / Jzg and

it suffices to show that for F,G € N¢(j),

HomN§g (F,G) = Homn, /.9, (F, G).

But
HomNg/ng (Fa G) = Hom./\f:f (Fa G)/(Hom./\fgz (Fa G) N jﬁ](ia J)
= Homg (F, G) /(Homg (F, G) N Izg(1, ))
= Homy, (F, G)
= HomN§3 (F,G)
as required. ]

By Proposition 3.4.14 § descends to a _#-cell of ‘Kg}, which we will also denote
by §. We can thus define the 2-representation Né of ngg in the standard fashion.
We can consider Néj as a 2-representation of ngg by restriction. We define the
2-representation (Ng)? of %gg as the full sub-2-representation of N§g generated

by F' € ¥ and closed under isomorphism.

Proposition 3.4.16. Né is equivalent to (N¢)? as 2-representations of‘fgj.

Proof. By construction, if we have 1-morphisms F,G € ‘ﬁgg such that F,G € J\g
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and F,G € (Ng)? then

Hom .5 (F, G) = Homy,)s (F, G)

F
£

and thus it suffices to demonstrate an essential bijection between objects in the

component categories of the 2-representations.

If F' e Né,(j) is indecomposable, then F' is a direct summand of GX for some
X € £ and some G € [] ‘Kgg(k,j). But then G is a direct sum of elements of ¥
ke?

and thus F' € §. As we can also consider G to be in [[ €xg(k, j), it follows that
ke?

F e (Ng)?(3).

Conversely, let F' be an indecomposable object in (N%)?(j). Then F € ¥ and

F'is a direct summand of GX for some X € &£ and G € [] €xg(k,j). Hence
ke?

X <g F. But by the definition of a strongly regular ¢-cell, different .Z-cells of ¥

are incomparable under <. Thus we must have that F' ~o X and F € &. But

then F is a direct summand of 1;F and since 1 € ‘Kgg, the result follows. O

We now consider the cell 2-representations. Let Cs denote the 2-representation of
% corresponding to &£. This corresponds to the quotient of N¢ by the maximal
% -stable ideal < not containing idg for any ' € £. We define similar ideals 3{55
and %é of Nég and Né respectively. We let Cég and Cé denote the respective

cell 2-representations.

Proposition 3.4.17. Ar(Ng(j)) N Izg(i,j) € K.

Proof. By the construction of K<, it suffices to show that idp ¢ Ar(Ng(j)) N
Fgzg(i,3) forany F € £. But if idp € Ar(N%(j)) N I¢g(i,j) for some F € &£ C
¥, then in particular idp € Fzg(i,j) for some F' € ¥, which we showed was a

contradiction in the proof of Proposition 3.4.13, and we are done. ]

Corollary 3.4.18. C has a natural structure of a ¢ g 2-representation, and further

is equivalent to Céy as 2-representations of %55 :
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Proof. By Proposition 3.4.17, quotienting N¢ by K< factors through quotienting
by Ne N Fgg, giving the first statement. For the second, by Proposition 3.4.15
Ny /Jxg is equivalent to N?‘g. It thus suffices to show that 3’{;} is the image under

this equivalence of the image of < in the quotient.

Let o : N — Ny /Fgg denote the canonical quotient functor. It is straightforward
to see that the preimage Q of 3{5‘7 is a @-stable ideal of M. We will show that
Q C 37{5%5. Assume for contradiction that idr € Q for some F' € £. Since idr ¢ J¢g
by the proof of Proposition 3.4.13, this implies that idp € %g, a contradiction.
Therefore @ does not contain idg for any F' € &£, and thus @ C <. Hence
57555 C 0(Hg). But by definition idp ¢ o(Hg) for any ' € £. Therefore by

definition o(H¢) C 3{;‘7 and the result follows. O

The cell 2-representation Cég has the structure of a 2-representation of ‘ng by
restriction, and we can take the full sub-2-representation (C<)? where the generating

objects in the component categories are those in ¥.

Proposition 3.4.19. (C<)? is equivalent to Cé as 2-representations of‘ﬁgj.

Proof. By Proposition 3.4.16 it suffices to prove that the restriction (K<)? of 3{&%5
to (Ng)7 is equal to %é. By construction idp ¢ (%) for any F € &£, and thus

(F)? C %g’;. It remains to show that %é C ().

Let @ denote the % -stable ideal of Néj generated by %é. We will show that
Q@ C 8{55. Assume for contradiction that idr € @ for some F' € &. Then using a
similar component argument to previous proofs, we have that idp = BN?Z‘?(K)@)CM,
WhereV:G%Hisin%é,KS/5,@:F—>KG3ndﬁ:KH—>F. We

immediately see that F' is a direct summand of KG and KH.

Let S € ¥ be a 1-morphism such that SE' # 0 in ¥«g, which exists as ¥ is strongly
regular. Then idgp = S(iddrp) = S(8)SK(v)S(a). But for a indecomposable
summand V of SF, V > , S, and as SK # 0, it follows that V' € ¥. Hence by

pre- and post-composing with injection and projection 2-morphisms it follows that
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idy = B/SK(y)d for some 8/ and /. Without loss of generality V € & (e.g. by
taking S = G<), and by a similar argument to before every indecomposable
summand of SK is in ¥. Hence idy € 5’{‘7, a contradiction. Hence @ C 3@5, and

thus %é C (HK<)? and the result follows.

O]

Corollary 3.4.20. The restriction of the cell 2-representation Cy of € to ‘ng is the

corresponding 2-representation.

Proof. This is a direct consequence of combining Corollary 3.4.18 and

Proposition 3.4.19 given Proposition 3.4.14. O

3.4.4 The Action of Indecomposables on Simples

Our aim in this section is to prove the following theorem:

Theorem 3.4.21. Let € be a locally weakly fiat 2-category with § a strongly regular
F-cell in € and & an L-cell in §. Then for F € & and H € §, HLf is an

indecomposable projective in ] C(i).

To prove this, we first give a supplementary lemma.

Lemma 3.4.22. et F,H € §. Then HLp is either zero or injective-projective in

Ce.

Proof. If HLg # 0, then by a variant of Proposition 3.4.1, F’* and H are in the same
ZL-cell, and so HLp is a direct summand of K F*Lp for some K by strong regularity

of ¥, which by Proposition 3.4.8 and Proposition 3.4.9 is projective-injective. O

To prove the theorem given the above, it suffices to prove that HLp is
indecomposable. We mirror the proof given for [ | Proposition 30, using the
references given above. Let R denote the Z-cell in § containing F. By strong

regularity of ¥, there is a unique G € Rp such that GLp = 0. But this implies that
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GLr # 0, and thus GLs # 0 as F and G share a %-cell. It thus follows from
% N*% = {Gg} that G is a Duflo involution.

As we have already proved GLp is projective, it follows that GLy 2 kPp for some

positive integer k. We now compute F*GgLF in two separate fashions. First,
F*GLp 2 kF*Pp 2 kF*FLp = k:mFPG%.

However by construction F™* is in the same Z-cell as G*, and as G is a Duflo
involution, it follows that F* is in the same Z~cell as G. Thus F*GLp = mPgx.
But by Proposition 3.4.11, m is constant on %-cells, and so £k = 1 and the result

follows for this specific case.

The general case generalises immediately from the proof given in | ]

Proposition 30, using Proposition 3.4.11, and thus the result follows.

3.4.5 ¢$-Simple, ¥-Full and Almost Algebra 2-Categories

Definition 3.4.23. Let % be a locally finitary 2-category and M a 2-representation
of €. We say that M is 2-full if for any 1-morphisms in & the representation map
Homg (F, G) — Homgp, (MF, MG) is surjective. Fora #-cell § of €, we say M is

F-2-full if for every F,G € ¥, the representation map is surjective.

For this section, we will assume that % is a locally weakly fiat 2-category that contains
a unique non-trivial strongly regular _#-cell § and that & is #-simple. The proofs
within this section are semi-straightforward generalisations, though moving from fiat

proofs to the weakly fiat case requires some more work than previously.

We now state our initial main theorem for this section, a generalisation of [ ]
Theorem 13. Let M = Cg, the abelian cell 2-representation for some .Z-cell £ C §.
We recall that for a countable collection A = {A4;|i € I} of basic self-injective
connected finite dimensional k-algebras, with X = {X;|i € I} a set of subalgebras

X; of A; distinguished by certain properties as defined in Section 3.1, there is an
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associated locally weakly fiat 2-category €4 x.

Theorem 3.4.24. There exist some A and X such that € is biequivalent to € x.

Proof. We start by generalising the proof of [ ] Theorem 13, with some extra
detail for clarity. For i € 4, let A; be a finite dimensional connected basic k-algebra
such that M(1i) is equivalent to A;-mod. Letting Z; be the centre of A;, we define
X; = M(Endg (1)) € Z;. We can define an action of M(F) on €4 x for ' € §
using the equivalence between M (i) and A;-mod. Then by the definition of the cell
2-representation, each M(F') for F' € ¥ is a projective functor in End(J/l), and since
each M(1;) acts as the identity, this implies that M factors through €4 x, and thus
M corestricts to a 2-functor from ¢ to €4, x. By construction M is surjective up to

equivalence on objects (and indeed is bijective on objects).

We will show that each

Mi“]' : %(I,J) — %A,X(iaj)

is an equivalence. Since ¢ is J-simple it follows that M; j is faithful. To show
that M, j is essentially surjective on 1-morphisms, by construction a 1-morphism in
%a,x is equivalent to tensoring with a projective (A;-Aj)-bimodule. In particular,
any indecomposable (A;-Aj)-bimodule will take a simple module to either zero or
to an indecomposable projective module. But by the construction of €4 x and
Theorem 3.4.21 these are precisely M(F') for F' indecomposable, giving essential

surjectivity.

By the construction of €4, x, M is surjective when applied to End4(1;). For any
other hom-space Homy (F, G) with F,G # 1;, by the definition of ¥-2-fullness, it
clearly suffices to show that M is F-2-full. We will do this and show the remaining

cases as a three step process: we will show that

Hom%(Gg, ]]-i) — HOHIM(i) (M(Ggg), M(]ll))



Chapter 3: The Extension to Infinitely Many Objects 63

is surjective for the Duflo involution G, that this implies surjectivity for any

and then derive that each M j is indeed full.

These three steps are the generalisations of [ ] Theorem 9 (specifically the
proof of that Theorem), Proposition 6 and Corollary 8 respectively. To give the
generalisations, we thus first need to generalise [ | Lemma 7. While this is
a l-categorical statement, the way in which we use it requires us to give a slight

generalisation and thus manipulate the proof a little:

Lemma 3.4.25. Let A be a countable product of finite dimensional connected k-
algebras and let e and f be primitive idempotents of A. Assume that F' is an exact
endofunctor of A-mod such that FL; = Ae and FL, = 0 for any other simple
Ly % Ly. Then F is isomorphic to the functor F' given by tensoring with the

bimodule Ae Ry fA, and moreover

Homfmk(Fv idA—mod) = HOIHA(AG, Af)

Proof. As e and f are primitive idempotents, they each belong to A, and A for finite
dimensional connected components A, and Ay of A. Thus without loss of generality

we can restrict F' to A’-mod, where A’ = A, x Ay, which is a finite dimensional

connected algebra. Hence we can apply the original form of the lemma in [ |
and the result follows. O
Using Lemma 3.4.25 and Proposition 3.4.4 we can generalise the proof of | ]

Theorem 9 directly, since it is a local proof which does not use any properties of

involutions. We give our version of that result:

Proposition 3.4.26. The representation map

HOIIl(g(Gg, ]li) — HOHlM(i) (M(Ggg), M(]li))
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is surjective.

However, the proofs of [ | Proposition 6 and Corollary 8 do use that —* is an
involution in that paper. For Proposition 6 we will give an adaptation of the whole

proof, reworked to avoid the involution issues.

Proposition 3.4.27. Assuming that the representation map

Homg (F, 1) — Homyy5)(M(F), M(1;))

is surjective for F = Gy and j = i, then it is surjective for any F' and j.

Proof. Without loss of generality F' € €(j,j). Let H,K € & for some Z-cell £
of ¥ and assume that H, K € %(j,k). By strong regularity HK* = aX for some
X € ¥ and some non-negative integer a. Since ¥ consists of a single Z-cell, we can
vary H and K over & to get any element of ¥, and in particular we can choose H and
K such that HK* = aF for some non-negative integer a. To show that HK™* # 0,
note K*Lg = Ig, € Cx(j) by Proposition 3.4.9 (which still applies to the cell
2-representation case) and further HIg, # 0 as HLg,, # 0 by Proposition 3.4.4. It

follows that HK™ # 0.

*

Similarly, * K H = bG¢ for some non-negative integer b. In addition, since —* is an
anti-auto-equivalence, it follows that
Homy (H, K) = Homy (K™, H").
Applying adjunctions, we have that
Homgy (H, K) = bHomy (G, 1;), Home (K™, H*) = a Homg (F, 15).

Evaluating Homy (H, K) at Lg,, is surjective, and thus

HomM(j)(HLGQ,KLGy) = bHOInM(i)(GggLG%,LGy).
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Applying Proposition 3.4.4 gives that G¢Lg, has simple top Lg,. Therefore the

space Homyy(;)(GLay, Lay) is one-dimensional and

b = dim HomM(j)(HLG&,,KLGy).

Let L; denote a multiplicity-free direct sum of all simple modules in M(j). By
adjunction Homyg;)(K*Ly, H*Lj) = aHomyy;)(FLy,Ly). By Proposition 3.4.1
K*Lg # 0 for Q € & if and only if @ is in the same Z-cell as K. But then by
strong regularity K = ). Thus by Proposition 3.4.9 K*L; = Ig,. By a similar
argument H*L; = I, and the left side of the above isomorphism is isomorphic to

EndM(i) (IGB).

As I is a direct summand of HK™, it follows that Lg is the only summand of L;
not annihilated by F. By Theorem 3.4.21 FLg is an indecomposable projective in
M(j), and thus by strong regularity we must have FLx = Pgy. Therefore

dim Homyg(5)(FLyj,Lj) = 1 and a = dim Endygs) (Tay, )-

From Lemma 3.4.22 it follows that HLg, is an indecomposable projective in Jl
with simple top Ly, and is thus isomorphic to Py. It follows that Ig, = Pgr.
Using Proposition 3.4.26 we can apply Lemma 3.4.25 to Hom¢ (G, 1;), and thus

Homy (Gg,1;) = EndM(i) (Png)-

We now show that dim Endpg;)(Pg,) = dimEndys)(Pgz). Take some finite
dimensional k-algebra A such that M(i) is equivalent to A-mod. We can thus
consider P, to be isomorphic to Aeg, for some idempotent eq, of A. Hence

Endyg(s)(Pay) = Enda-mod(Aecy, ) = ey, Aeg,, . But on the other hand

End A mod(Aegy,) = Endmoed-a(ecy 4) = End - mod(Aesay));

where ¢ is the permutation defined by the weakly fiat structure on &. But by this

same structure e, (g,) = €Gz,, 1-€. Aeq (i) is isomorphic to ng*f.
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We thus have that

dim Homy (G, 11) = dim Endp ;) (Pey, ) = dim Endp ) (Pes, )-

Using the above results and Lemma 3.4.25, we have

dim Homy (H, K) = dim HOHlM(j) (HLG;D , KLg, ) dim EndM(i) (PG§ )

= dim HomM(j) (Pg,Px)dim EndM(i) (PG;%)

and

dim Homy (K™, H*) = dim Homg (F, 1;) dim Endyg(s) (T, )

= dim Home (F, 1;) dim Endpgs) (Pe, ).

As € is F-simple,

dim Homg (F, 15) < dim Homg, (M(F'), M(1;))

and applying Lemma 3.4.25 we see the latter is equal to dim Homyy ;) (Pu,Pk).

Dividing by Endp(;)(Pcs, ),

dim HOmM(j)(PH, Px) = dim Homg (F, 1;)
< dim Homg, (M(F), M(1;))

= dim HomM(j) (PH, PK)

where the last equality follows by applying Lemma 3.4.25. Therefore

dim Homg (F, 1;) = dim Homg, (M(F'), M(1;)).

Since the representation map is injective by $-simplicity of 4, we get surjection and

the result is proved. O
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Proposition 3.4.28. Let H, K € § N%(j,k). If the representation map
Homy (G, 15) — Hompy;) (M(Ge ), M(14))
is surjective, then so is the representation map
Homy (H, K) — Hompy (M(H), M(K)).

Proof. The proof is mostly an immediate generalisation of the one for | |

Corollary 8, except that */K H needs to be read for K*H. O

From this it follows immediately that M is #-2-full and each Mj; is full. Therefore

the main theorem is proven. O

3.4.6 Reducing to the ¥-Simple Case

The above result is useful because cell 2-representations classify all simple transitive
2-representations for ¢4 x by Theorem 3.3.9. However, as it stands, it limits the
categories we can expand this to. This section aims to bypass this restriction. We
will assume for this section that € is a strongly regular locally weakly fiat 2-category.

The proofs in this section are straightforward generalisations.

Lemma 3.4.29. Let M be a simple transitive 2-representation of €. Then there
exists some 7 -cell § such that M factors over €«3 and the restriction M‘i ¥ of this

to ‘gg g ls still simple transitive.

Proof. The first part of the proof of | ] Theorem 18, which generalises
immediately to our setting, gives that there is a unique maximal _#Z-cell of ¢ that
does not annihilate M. We choose ¥ to be this unique maximal _#-cell. This is
(the generalisation of) the apex as defined in 2.3.20. If F' is a 1-morphism of &

such that F' is not annihilated by M, then consider the _#-cell & containing F'. As
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_J -cells are partially ordered by <;, we must have that K <; §. Therefore passing

to zg we can assume that ¥ is the unique maximal _Z-cell of €.

We note that M restricts to a 2-representation Még of ngg- The argument given
in the proof of [ ] Theorem 18 generalises immediately to the locally weakly

fiat case, and it follows that M‘;j is simple transitive as required. O

By construction, ngj has ¥ as its unique maximal _#-cell. We now give the following

generalisation of [ | Lemma 18:

Lemma 3.4.30. There is a unique 2-ideal .9 of‘ﬁgj such that ngj/f is $-simple.

Proof. The proof of this result generalises immediately from that of | | Lemma

18. U

We let €3 denote this quotient. We denote by My the restriction of M to %y
(with Mg the corresponding coproduct category). We claim that My is a transitive
2-representation of €3. To see this, since § is the unique maximal _#-cell not
annihilated by M, it follows immediately that ker(M) C ¥. Second, let N € Jlyg,
and let F' € §. Since M is a transitive 2-representation, any M € Jl is isomorphic
to a direct summand of GF'N for some 1-morphism G € . But by the construction
of Z-cells, all indecomposable summands of GF are in ¥, and thus GF € €y and

hence My is indeed transitive.

As ¢y is a F-simple category with a unique non-trivial two-sided ideal, it is
biequivalent to €4 x for some A and X. By a simple generalisation of a previous
result, any simple transitive 2-representation of any ¢4 x is equivalent to a cell
2-representation. We thus have that My is equivalent to (Cg)g for some Z-cell £
of §. We now provide a lemma that, along with Lemma 3.4.29, will allow us to

generalise | | Theorem 18:

Lemma 3.4.31. If M is a simple transitive 2-representation of ¢ such that My is
equivalent to some cell 2-representation of €y, then M is equivalent to some cell

2-representation of € .
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Proof. The second half of the proof of | ] Theorem 18 generalises immediately.

O]

Hence we have:

Theorem 3.4.32. Any simple transitive 2-representation of € is equivalent to a cell

2-representation of €.

Proof. This is a direct consequence of applying Lemma 3.4.31 to the result of

Lemma 3.4.29. O

3.5 An Application: 2-Kac-Moody Algebras

We present an immediate application of even this initial generalisation of finitary
2-representation theory to the locally finitary setup, which is the classification of the

simple transitive 2-representations of 2-Kac-Moody algebras.

3.5.1 Classical Kac-Moody Algebras

We begin by defining (1-)Kac-Moody algebras. We take our definitions, results and
notation as a mixture of those given in [ | and | |, since each has some
benefits and drawbacks. We work over some (algebraically closed) field k unless

otherwise stated.
Definition 3.5.1. For a finite index set I, a square matrix A = (a;;)i jer over Z is
a generalised Cartan matrix if it satisfies:

i) ai =2;

i) ai; < 0if i # j;

iii) a;; =0 if and only if a;; = 0;
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If A is symmetrisable by a diagonal matrix, we denote by D = diag(d;|i € I) the

symmetrising matrix.

Definition 3.5.2. A Cartan datum is an ordered quintuple (4, P,II, PV, 1Y) where:

i) A is a symmetrisable generalised Cartan matrix,

ii) P is a free abelian group of finite rank, called the weight lattice,
iii) II = {a; € P|i € I} is a set of elements of P called the simple roots,
iv) PV =Hom(P,Z) is called the dual weight lattice, and

v) IV = {h;|i € I} C PV is the set of simple coroots.
We require these to satisfy the following properties:

i) <hi,Oéj> = Q5 Vi,5 €1,
ii) IL is linearly independent, and

iii) Vi € I dA; € P such that <hj,Ai> = 52-j Vi,5 € 1.

The A; are called fundamental weights.

Definition 3.5.3. We define the set of dominant integral weights to be
Pt ={Xxe P|(h;,\) €Zf Viel}.

Definition 3.5.4. We define a free abelian group Q = € Zo, called the root
i€l
lattice, and let QT = Y ZJa;. If a = 3" ki € QT, we define the height of o to

el el
be |a| = 3" ki.

We define h = k@7 PY. As A is symmetrisable, there is a symmetric bilinear form (-|-)

2(ai]A)
(ailai)

on h* that satisfies (o;|aj) = d;ai; and (hi, A) = forany A € h* and i € I.

We also have a partial ordering on h* defined by A\ >y if and only if A\ — € Q.
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Definition 3.5.5. The Kac-Moody algebra g associated with the Cartan datum
(A, P,II, PV, 11V) is a Lie algebra generated over k by the elements ¢;, f; (i € I)

and h € PV subject to the Lie bracket relations:

[h,h] = 0 for h, W € PV;

e, fi] = dijhi;

o [h,e] = (h,a;)e; for h € PY;

[h, fl] = —<h,04i>fi for h € Pv;

(ade,) "%ie; = 0 if i # j;

(ady,) i f; = 0if i # j.

Here ad : g — End(g), « — ad, is defined as ad,(y) = [z, y]

We define g (respectively g_) as the subalgebra of g generated by the e; (respectively

the f;), and for a € Q, we let

0o = {z € g|[h, z] = (h,a)x Vh € b}.

It can be shown that:

Proposition 3.5.6 (] | Proposition 2.1.4). There are vector space

decompositions

e g=g, ®hdg_ (the triangular decomposition);

e g= P g withdimg, < co Va € Q (the root space decomposition).
acqQ

Definition 3.5.7. If a # 0 and g, # 0, then we justify the name of the above
decomposition by calling « a root of g, g, the root space attached to o and dim g,

the root multiplicity of a.

Since g is a Lie algebra, we can also consider its universal enveloping algebra:
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Definition 3.5.8 (Proposition 2.1.6, | ). The universal enveloping algebra
U(g) for a Kac-Moody algebra g is the associative unital algebra over k (with unit)

generated by e;, f; (¢ € I) and some k-basis H of h such that:

hh' = h'h for all h,h' € H;

] eifj — fjei = 6Z]h7, fori,j el
e he; —eih = (h,a;)e; forhe b, i€ I;

o hfz — flh = —<h,04i>fz' for h € f), 1€ I;

1—ay;

o X (CDF()e " el = 0 fori i

17&2"7. —Qji l—a;;i—k . .
© X VN = 0fer i g,
=0
Definition 3.5.9. Similarly to the Lie algebra itself, we define the subalgebras U (g),
U%g) and U~ (g) of U(g) to be those generated by the ¢;, h and the f; respectively.

We also define the root spaces to be
Us =Ugs(g) = {u € Ulhu — uh = (h, B)u for all h € h} for 5 € Q;

Uy = Uj (9) = {u € Ulhu — uh = (h, B)u for all h € b} for § € Q.

Proposition 3.5.10 (Proposition 2.1.7, | 1). 1. As a vector space,
Ule) = U™ (g) @ U%(g) ® U (9)-

2. As a vector space, U(g) = @ Ug.
BeR

3. As vector spaces, U*(g) = @ Ugc.
peq

We now examine the representation theory of Kac-Moody algebras, and in particular

we focus on a type of representation called weight modules.
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Definition 3.5.11. A module M of a Kac-Moody algebra g is a weight module if it

has a weight space decomposition V.= @ V,, with
peb*

Ve={veV|hv=puh)v Vhebh}.

Such a vector v is called a weight vector of weight ;1. We denote the set of i such

that V}, # 0 as wt(V).

Definition 3.5.12. For A\ € b*, we let D(\) = {1 € b*|u < A}. Then we can
define a category O(g) which consists of weight modules over g where every weight
space V,, has finite dimension, and where there exist Ai,...,\, € b* such that
wt(V) C OlD()\i). We take the morphisms to be g-module homomorphisms. Note

(2
that O(g) is closed under finite direct sums, finite products and quotients.

As is standard for such situations, we ideally wish to classify these representations.

We can indeed classify all irreducible g-modules in 6(g).

Definition 3.5.13. A weight module V' of g is a highest weight module with highest

weight A € bh* if there exists a nonzero vy € V, the highest weight vector such that

o c;uy=0 Viel,
e hvuy = (h,\)ux Yh € b;

e V=U(g)u

We note that dim V) =1 and dim V), < oo for any p € wt(V), and V = @ V.
HSA

Hence a highest weight module is an element of O(g) for any A.

We now wish to construct an irreducible highest weight module.

Definition 3.5.14. Fix A\ € h* and let J(\) be the left ideal of U(g) generated by
h — A(h)1 for h € b and all the ¢;. We denote the quotient of U(g) by J(\) as

M(X), and call it the Verma module.

Proposition 3.5.15 (] | Proposition 2.3.3). 1. M(\) is a highest weight g-

module with highest weight \ and highest weight vector 1 + J(\).
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2. Every highest weight g-module with highest weight A is a homomorphic image
of M(M).

3. As a U(g) -module, M(\) is free of rank 1, generated by the highest weight

vector vy,.

4. M () has a unique maximal submodule.

We denote by N () the maximal submodule of M ()), and set V() = M(\)/N(A).

We then get the following result:

Proposition 3.5.16 (| | Proposition 2.3.4). Every irreducible g-module in O(g)

is isomorphic to V() for some \ € h*.

3.5.2 Quantum Deformations of Kac-Moody Algebras

Our application, rather than being based directly on categorifications of Kac-Moody
algebras, bases itself off the categorification of a quantum deformation of a Kac-

Moody Algebra. We present the theory for this here, again pulling from [ | and

[HKO2].

(ovilog) d

Definition 3.5.17. Let ¢ be an indeterminate and set ¢; = ¢~ 2 = ¢“. For
m,n € Z§, we set [n]; = “=0r [n];! = [Ty [Kli, [7], = pragipra

The concept of a quantum deformation is replacing integers with these ‘quantum

integers’'.

Definition 3.5.18. The quantum group U,(g) associated with the Kac-Moody
algebra g (equivalently with the Cartan datum (A, P,II, PV,I1V)) is an associative

algebra over k(q) generated by the e;, f; and K, (h € PY) subject to:

o Kop=1, KpKp = Kpyw for h,h/ S Pv;

o KneiK p = q'™®e;; Ky fiK_p = ¢ f; for h € PY;

Kagh; =K—d;n,
T

o ¢ifj — fiej = 04—
qi—4q;
7
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1—ai; o
) kzo (_1)k[1_kaij]ie;_alj kejef =0ifi #j;
1ai g pleagi—k o,
) kzo (D[ Sl =0 for i £

If we define U,f(g) and U, (g) as the subalgebras of U,(g) generated by the ¢; and
fi respectively, and Ug(g) the subalgebra generated by the K}, then we again have

a triangular decomposition Uy (g) = U, () ® U (g) ® U, (g), and if we define
Uy(8)a = { € Uy(0)|KpzK _p, = ¢ avh € PV},

we further get the weight space decomposition U,(g) = @ Uy(9)a.
ac®

We will wish to work with the idempotent completion U, (g) of U,(g). As defined in

[ ] 23.1.1, for any a, 5 € @, we define

oUa(9)s = Uy(@)/( Y (Kn —a™)Uye) + 3 Usle)(h — a")),
hePV hePV

and set Uy(g) = @ oU,(g)s. The local identities are the image of 1y, (g) under
a,BEQ

the natural projection maps.

We now move on to the representation theory of the quantum variants, drawing from

both | | and | ]. This will be important for defining the categorification of

the Kac-Moody algebra.

Definition 3.5.19. For a Kac-Moody algebra g and its associated quantum group

Uq(g), a Uy(g)-module M is a weight module if it decomposes as M = @ M,
pneprP

where M, = {v € M|Kyv = ¢'""v Vh € PV}.

Definition 3.5.20. Similarly to above, we define a highest weight module M of U,(g)

of highest weight A to be a Uj,(g)-module with a highest weight vector vy € M such

that:

1. ejup =0Vi el

2. Kpvp = ¢y Vhoe PY
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3. M = Uq(g)vA.

Again, we have a unique irreducible highest weight module V;(A) for each A € P.

Definition 3.5.21. A weight module M is integrable if for each m € M there exists
some positive integer s such that e;m = f’m = 0 for any ¢ € I. We say that the ¢;

and f; act on M locally nilpotently if this holds.

Proposition 3.5.22. [[ | Proposition 2.3]

a) If M is an integrable highest weight module of weight A, then M = V,(A).

b) For vy a highest weight vector in V,(A), fﬂhi’AHlvA =0Viel.

(2

Let A = Z[g, ¢!, and €™ = 4 and £ = L. We define Ua(g) to be the

[n];! [n];!”
A-subalgebra of U,(g) generated by the e(n), the fi(") and Kj, for h € PV.

7

Definition 3.5.23. We define the A-form Va(A) of Vi (A) as Va(A) = Ua(g)va.

As with the classical case, we can find the (quantum) Verma module and use that
to derive the irreducible highest weight module of weight A. In this case, let the left
ideal J,(A) <1 U,(g) be generated by the ¢; and by K — ¢»N1 for h € PY. We
then let M, (A) = Uy(g)/J4(A). As before (] | Proposition 3.2.2), M,(A) is a
highest weight module with a unique maximal submodule N,(A), and the quotient

is Vg(A).

3.5.3 Khovanov-Lauda-Rouquier Algebras

We now examine Khovanov-Lauda-Rouquier algebras, and particularly their
cyclotomic algebras, and show that we can use them to construct an object that
decategorifies to the Va(A) defined above. We follow | | throughout the

following two subsections.

We work with a Cartan datum (A, P, 11, PV, IT") with indexing set I as we did with

Kac-Moody algebras. We also use a (non-negatively graded) baseringk = @ k.
TLGZZQ
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We first define a matrix Q(u, v) over k[u,v] such that Q;;(u,v) = Qj;(v,u) and

0 ifi =
Qij(u,v) =

> tijipqufv? i i #j
p,q>0

where 2 j.p g € K_a(a;]a;)—(ailas)p—(a;la;)q and tij;—a;;,0 € kg . In some sense, @ is a
matrix that measures the degree and fashion that symmetry is broken in the definition
below. Later, we will specify to a trivially graded field, so that ¢; ;., ; is zero whenever
p+ %q # —aj;. Despite this trivial grading, this still allows for non-trivial definitions

of Q.

As a quick notational note, we let S, be the symmetric group on n letters, and we

denote by s; the transposition (7,7 + 1).

Definition 3.5.24. Given a Cartan datum (A, P,II, P¥,I1V) and a matrix (Q;;) as
defined above, the Khovanov-Lauda-Rouquier (KLR) algebra R(n) of degree n as
the associative algebra over k generated by e(v) for v € I"™, x for 1 < k <n and 7

for 1 <1 <n —1 subject to the following:

o c(v)e(V) =0,e(v), Y elv)=1;

veln

o 11 = xix), TRe(v) = e(V)xy;

e 1ie(v) =e(sw))m, v = TR if |k =1 > 1;
o Tre(V) = Quyupy (Ths g1 )e(V);

—6(1/) if | = k, Vg = V41

o (T — xsk(l)Tk)e(V) =3e) ifl=k+4+1,vp =vpi1
0 otherwise;
o (Tha1TEThe1 — ThTh+1Tk)e(V) =

QVkYVkJFl (zk7$k+1)7ka+2,Vk+1 (Th+2,Tr1)
Tk —Tk+2

if vp = g2

0 otherwise.
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The e(r) form a complete set of orthogonal idempotents. Further, this can be
considered in some sense a deformation k[x1,...,z,] ® kS,. Then the matrix @
measures the amount by which this deviates from kS, - specifically, in S, 522 =1,
$iSi+15i = Si15iSi+1 and s;s;5 = s;s; if |0 — j| > 1, and @ determines how the 7
deviate from this.

As some particular and universal examples, R(0) = k, and R(1) = (P ke(i))[z1].
We can apply a Z-grading on R(n) via dege(v) = 0, degzre(v) = (Z(il[,k|a,,k) and

degmie(v) = —(ay,|ay,,,). Here the a; are the simple roots.

We now define some operators that will be useful later on. We extend our notation

for Sy, from earlier to let s,; € S, be the transposition switching a and b, and we

can thus let S, act on @@ Kklzi,...,x,]e(v) via transposing the z;. Also, we let
veln
eap = »,  e(v). Wecan now define the operator 9, , on @ Kkz1,...,z,]e(v)
veI™ vo=uy veln

as

Sabf — f

Cr9abf == a,by

Tg —

and for compactness of notation we write 9, = 0y q+1-

As we are wanting a comparison to the Kac-Moody case for categorification, we
would like to be able to consider this from the case of a single weight. We split 1
into subsets by defining I® = {v = (v1,...,v,) € "y, +---+a,, = B}. We then

define e(8) = >_ e(v), and can then define the following:
velb

Definition 3.5.25. The Khovanov-Lauda-Rouquier algebra at 3 for 3 a root of weight
nis R(B) = R(n)e(B) = €@ R(n)e(v). This is precisely the elements of R(n) that

velp
can be written to end with e(v) for some v € 7.

There is some further useful notation, namely

Bi)= Y elw)eRB+a),

VGIB+D% » Vn1=1

ei,f)= Y e(w)€R(B+a)

velPte =1



Chapter 3: The Extension to Infinitely Many Objects 84

and similar definitions for e(n,i) and e(i,n). To give some useful intuition for this,
fixing vp4+1 = @ in some sense gives a copy of the ‘identity’ > e(v) of R(3) inside
R(B + ;). Notably, we can consider e(3,7)R(5 + «;) as ayleelff: R(3) module, as if
e(v) € I8+ with v = 1, then ay+Fay, =Ftoi—a,,,, =B+ai—a; =f

which allows an inclusion map from R(/3) and thus a left action by multiplication.

Similarly, R(5 + «;)e(3,1) has the structure of a right R(3)-module.

A lot of our work here will be with various types of modules over the R(/3). However,
as our elements of R(n) have a grading, we also wish to place a grading on the

modules:

Definition 3.5.26. For 8 € Q™, we let R(3)-Modz o denote the (abelian) category
of Z-graded (left) R(S)-modules with morphisms homogeneouns bimodule
homomorphisms of degree zero. Here we let [n] denote the n-fold composite of the
grade shift endofunctor on R((3)-Modzo: for a Z-graded R(S)-module

M = > My, we define M[n] by M[n] = My_,.
kez

3.5.4 Cyclotomic KLR Algebras

While standard KLR algebras are useful, they have issues that mean they are not
suitable for our purposes. In particular, they are not in general finitely generated as
k-modules. We instead turn to quotients of them that are finitely generated. To
begin, let A be a dominant integral weight; that is, A € PT.

(hi,A)
For each i € I, take some monic polynomial a(u) = 3 ¢ xuf

k=0
(hi, A) where c; ) € Ky(a,ja,) and c;0 = 1. For our purposes, we can take al*(u)

hi:A)=k of degree

to simply be a}(u) = u!hM. For 1 < k < n, we can now define a®(x3) =

> ap, (wr)e(v) € R(n).

veln

Definition 3.5.27. The cyclotomic Khovanov-Lauda-Rouquier algebra R*(j3) of

weight 3 at A is defined as the quotient algebra RM(B) = m, with
RM0) = k. We note that RMn) = @ RMB) = graresam

|Bl=n

These are much more amenable for our purposes:
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Theorem 3.5.28 (| ] Corollary 4.4). For any 8 € QF, RM(B) is a finitely

generated k-module.
The RA(B) inherit the Z-grading of R(j), since we are quotienting out by a
homogeneous polynomial in R(f3).

We now wish to construct functors between the R*(3)- Mod that will correspond to

the e; and f; in the Kac-Moody case when we apply the decategorification process.

Definition 3.5.29. For each 7 € I, we define functors
E . RMB + oy)-Mod — RA(3)-Mod

EM - RMB)-Mod — RM(B + ay)- Mod

EMN) = e(B,i)N = e(B,i)R*(B + o) @pa(syan N

EMf) = e(B.i)f = ideipiyrr(sran @ f

and

FMNM) = RMB + cw)e(B, 1) @pagsy M
FMf) = idgagrane(s) © f-
We notate e(3,7)RMB + ;) as ¢; and RM(B + oy)e(3, 1) as fi.

Theorem 3.5.30 ([ ] Theorem 4.5). RMB 4 ay)e(B,1) is a projective right
RM(B)-module, and e(8,i)R™( + ;) is a projective left R™(3)-module.

Corollary 3.5.31 ([ ] Corollary 4.6). 1. EX  sends finitely — generated

projective modules to finitely generated projective modules.

2. FiA is exact.

We will actually be doing the decategorification with a grade shift of the EZA functor:

we will use EAM[d;(1 — (hi, A — B8))] to line things up properly.
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We now mention the analogues of the e; f; — f;e; equation in the definition of quantum

groups.

Theorem 3.5.32 (] | Theorem 5.1). For j # i, there exists a natural

isomorphism F]AEf\[[—(ailaj)]] = EiAFjA.

Theorem 3.5.33 ([ | Theorem 5.2). Let A\ = A — 3. Then we have natural

isomorphisms as follows:

1. If (hi, ) > 0, we have an isomorphism

(hi7>‘>_1
FrEMN-2d]® &5 [2kdi] = E}F).
k=0

2. If (h;, \) <0, we have an isomorphism

—(hiX)—1
FAEM-2d4i] & EMFM o €D [-2(k + 1)dy].
k=1

We can now talk precisely about the (de)categorification. Given 3 € Q*, we denote
by R™(B)-proj the category of finitely generated projective graded R*(5)-modules

with morphisms given by tensoring with projective (R*(3), R*(3))-bimodules. By

Theorem 3.5.30 and Corollary 3.5.31, the following diagram has exact arrows:

FA

RA(B) — proj — RMB+ i) — proj

EM1-(hiA—B)]

These thus descend to isomorphisms F; and E; on the Grothendieck group

[RM-proj] = @ [R™(B)-proj]. Further, we have the result:
peQ*

Lemma 3.5.34 (| | Lemma 6.1). For all i,j € I,

(hi,A—B)
i, Fjl =6 Y [((hiy A= B) — 25+ 1)di].

s=1

We can examine [R*-proj] as a Ua (g) module by letting the e; and f; act as E; and

F; respectively.
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We state the main result of | |:

Theorem 3.5.35 (| ] Theorem 6.2). As Ua(g) modules, [R-proj] = Va (A).

3.5.5 2-Kac-Moody Algebras

We now have enough structure to define a 2-Kac-Moody algebra from an algebraic
standpoint. First, let U,(g) be the quantum group associated to a Kac-Moody
algebra, and let V(A) be its irreducible highest weight module for some A € P*. Let
Uq(g) be the Lusztig idempotent completion. We then categorify the endomorphisms

of its highest-weight module for this following [ | as the 2-category Z:

e The objects of %, are the weights A such that V/(A), # {0}. Writing A = A—p
for some 3, we identify these with (small categories equivalent to) the module

categories R™(3)-proj.

e The 1-morphisms of % are direct summands of direct sums of the identity 1-
morphisms and of compositions of 1-morphisms isomorphic to functors formed
by tensoring with tensor products of (grade-shifts of) the ¢; and §; as defined in
Definition 3.5.29 (at any weight § below A). Following that section, we denote
the functor given by tensoring with ¢;[g] by E*[g] and the functor given by

tensoring with f;[g] as F[g].

e The 2-morphisms are the bimodule homomorphisms between the bimodules
that correspond to the 1-morphisms. This implies that, for any Zj (A, i), the

spaces of 2-morphisms are finite dimensional.

Definition 3.5.36. We call this construction the cyclotomic 2-Kac-Moody category

of weight A associated to a Kac-Moody algebra U(g).

Theorem 3.5.37. %\ is a locally finitary 2-category.

Proof. We wish to show %) (A, u) € Ql[’; for all weights X\ and p. We already have that

the (2-)morphisms form a finite dimensional space and as R*(f3) is indecomposable



Chapter 3: The Extension to Infinitely Many Objects 88

for all 8, 1, is indecomposable for all A. It thus remains to show that there are
only finitely many isomorphism classes of indecomposable objects. The objects for
this category are generated by products and direct summands of the E;l: and the
F;1, for arbitrary weights (. Let @ : A — u be a general 1-morphism. We wish
to show that Q € add({F;, ... F;,1,} U{F}, ... F} Ey, ... Ex, 1} U {05,1,}) for

some choice of i,, j, and k..

If Q is of the form MlEiAFjAMg = M]_EZAF]-A:H.GMQ for some products M7 and M,
and some weight ¢, then if i # j, MiE}F My = MiFEMMy. If i = j then we
can use Theorem 3.5.32 and the fact that composition distributes over direct sums

to get one of the two following cases, depending on e:

o If (hi,e) >0,

(hie)—1
MlEZAEAMQ = MlFZAEZAMQ[[—(aJal)ﬂ D @ My Mo [[k(e|ey)].
k=0

o |f <hi,€> S 0,

—(hs,e)—1
ME}FMM o @ MiMy[—(k — 1)(aifon)]
k=0

l> MlFiAEf\MQ[[—(ai\ai)]].

In the second case, Q@ = M1 EAFAM, € add(M; FAEXM,), while in the first case
Q € add({M1 FAEMMy, My Ms}).

Let R be some formal product of the EZA and the FiA, which we will notate as

R = TJOEﬁTJIEg EAT]n where each Tj, is a possibly empty product of the

in

FA Ty, = FA .. F, welet |T},| = I. Define the finite non-negative integer

Len(R) = 3> > |T},| the length of R. Note that if T}, = 0 for all & > 0, which
m=1qg=m

corresponds to R = Ffl\ . FZ/;EJA1 . EJAm for m,n > 0, then Len(R) = 0. Further,

Len(Q) = Len(M; EXFAMy) = Len(My FAEMM) + 1
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and Len(Q) > Len(M;Ms). Finally, if Len(Q) > 0, there exists a subproduct Ef\FJA
somewhere in (), and we can apply one of the above operations to it. If Len(Q) > 0,
@ is thus contained in the additive closure of finitely many 1-morphisms of strictly
lesser length, and as length is non-negative, proceeding recursively will terminate in

finite time, giving the claim.

We claim that there are only finitely many F/... F 1y : A — p and only finitely
many Ff} e F]/:nE,fl . ~-E;/€\n]1A : A — p. For the first case, given FZ-A]l,\ takes A to
A—q;, a simple combinatorial argument shows there can only be finitely many of them
from A to u. Specifically, choose a; such that = X\ — i a;cy. If a; = max{a;, 0},
the number of such F;, ... Fj is equal to the numb;r:10f distinct ordered tuples

containing a; many «; for all i. Indeed, in the poset of weights below A where A is

the highest weight, if 4 £ A, then none of these exist.

For the F\ ... FA B .. Ep 1), write A = A — > bic, where all the b; are non-
negative. Then as the EZA move up the poset of Weié;hts, by a similar argument to the
previous one, there are only finitely many possibly non-zero products E{{\l ...E,’}n]l,\ :
A — § with A > § > A. Then by another similar argument, for any such § there are
only finitely many possible products Fj[} .. .F](T\n]lg : 0 — . Thus there are in total

only finitely many FJ/} . Fj{\nEl{g\l e Eé\n]l)\ © A — u as we required.

Each of these morphisms has a finite number of indecomposable direct summands.
We thus find that % (A, ;) can only have finitely many isomorphism classes of

indecomposable objects.

We can in fact say more than this.

Proposition 3.5.38. %, is a locally fiat 2-category.

Proof. We prove that the 1-morphisms E; and F; have adjoints, and the other 1-
morphisms will be an immediate consequence through composition. We claim that

the adjoint of EXy[2] is Fr o, [2 — %(1 + (a4, A))] and that the adjoint of
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FMA[2] is EMya, [z — L2290 (1 = (a4, A))].

To see this, consider F* = RMB + ay)e(B,14) ®@pa(g) — and ignore grading for the
moment. The right adjoint of this is therefore HomRA(ﬁJrai)(RA(B + ay)e(B, i), —).

But since R*(3 + a;)e(B,1) is projective over RY(B + «;), this is isomorphic to

Hom pa (54 o) (R (B + ai)e(B,), RMB+ ) @ pa(say) —

This is isomorphic to

Homy (R (B + ai)e(B,4), k) @pa (51ay) —

because RA(3 + ;) is symmetric. But by another application of this symmetric
property, this is then isomorphic to e(3,1)RM(6 + ;) QRA(B4as) — = EX. Finally,

the grading is a consequence of the comment before Theorem 3.5.32. O

Further, this 2-category will turn out to be strongly regular. However, to prove this
we need to extend our definition of a cyclotomic 2-Kac-Moody algebra to a wider

setup. This definition is a generalisation of a construction from | | Section 7.2

Definition 3.5.39. Choose a set of positive weights A = {Ay,...,A,} C PT.
Without loss of generality we assume that A; £ A; for i # j. We define a 2-category

%), the truncated cyclotomic 2-Kac-Moody algebra, as follows:
1. The objects of % are ordered pairs (3,i) where 3 € QT and 1 < i < n,
modulo an equivalence relation where (3,i) ~ (v,7) if A; — 8 = A; —

2. The 1-morphisms of %) are the additive closure of (grade shifts of ) the identity
1-morphisms and morphisms of the form EZA and FZ-A, as in the cyclotomic 2-

Kac-Moody algebra case, with identical relations to that situation.

3. The 2-morphisms are identical to the single weight case.

This 2-category is well-defined. First, if (8,i) ~ (v,7), then if (8 £ ay,i) and

(7 £ g, j) are both objects in the 2-category, A; — (8 £ ax) = Aj — (v £ ax), so
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(B £ ag,i) ~ (v =+ ax,j). Second, at a given object (3,i), the entwining relations

for FyEy and EyF) depend on the value of (hy, A; — ), so if (v,7) ~ (B,4) then

(hkvA] - ’Y> = <hk7AZ - B>

A further useful point is that, using the interchange structure and Theorem 3.5.37
for distinct F; and Ej, if (§,7) and (v, ) are objects of € such that there does
not exist Ay with both A; — 3 < Ay and Aj — v < Ay, then 2\ ((8,1),(7,J)) =
U\((7,7),(B,i)) = 0. We also define the notation AP as AP = {A|3i,35,\ =

A; — B}, the set of weights below at least one of the A;.

That this 2-category is locally weakly fiat follows immediately from the above
considerations, since the internal adjoint 1-morphism and adjunction 2-morphisms
will remain identical to the traditional case. We will combine this with the following

result (recall the definition of ‘strongly regular’ from Definition 3.2.5):

Theorem 3.5.40. For any A, %) is strongly regular.

Proof. We mirror the proof for [ | Theorem 21. We first consider the _#-cell
JFa, containing 1, for some A; € A. If we quotient out by the maximal 2-ideal in
%) which contains idlAi but not any identity 2-morphisms for a 1-morphism not in
Jn;, the resulting 2-category is equivalent to one of the form %g, where © is the
unique set of highest weights such that ©7 = AP \ {A;} (see [ ] Section 9 for

more details). It is thus sufficient to prove that Ja, is strongly regular.

Let & denote the Z-cell of 1,,. From the proof of Theorem 3.5.37, any element of
< is in the additive closure of l-morphisms of the form F...FA and
F) .. FAED . EA. But since any element of & must have source object A; and
any morphism of the form FlA . FT{L‘EZA ...E) with source object A; must
necessarily be zero (as A; is a highest weight in the 2-category), it follows that &

consists of direct summands of products of the Fj.

~

Let L be an indecomposable object in Rgi—proj. Since Rf)\i & k, we have that
L=k By| ] Theorem 5.7 and | | Theorem 4.4, the mapping that takes

an F € &£ to FL induces a bijection between &£ and the set of isomorphism classes
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of indecomposable objects in ] RAi-proj. We define two algebras, A = @ R
n>0 n>0

and B = @ RJi. Since every element X € & can be expressed as X1, and as
n>1

1p,M = 0 for any M € B-proj, it follows that XM = 0 for any X € &£. We now

consider the (projective) abelianisation Cg of the cell 2-representation for &£.

By the construction of the abelianisation, C(X) can be considered as a functor
from k-mod to RMi (8) — mod for some positive weight /3. This can consequently be
considered as an endofunctor of k x R (3)-mod. Further, since the only projective
it is non-zero on is L, which it must take to an indecomposable projective, it follows
from [ ] Lemma 13 that C%(X) is an indecomposable projective endofunctor.
By consideration of sub-categories of the domain and of the range where this functor
acts trivially or does not map to respectively, we can indeed say that C%(X) is an
indecomposable projective functor from k-mod to A-mod. But by this projectivity,

for any Y € &, C4 (X o Y*) is also indecomposable.

We claim that this implies that X o Y* is itself indecomposable. For assume that
XoY* =V @W for non-zero V and W. Then without loss of generality Co (W) =
0. But since ¥ is a maximal 2-sided cell, we must have for every indecomposable
summand W’ of W that W’ € §. But then by construction, C%(W’) # 0 and hence

C4 (W) # 0, a contradiction. The claim follows.

Hence if X # X' then XY* # X'Y* and if Y # Y/, XY* # XY'. Further,
the set {X o Y™} is a set of indecomposables that forms a Z-cell by construction
and hence by Theorem 3.2.4 is a _#Z-cell that contains 1,,, and thus is equal to ¥.
Fixing X and varying Y clearly gives a #-cell in ¥, and fixing Y and varying X
gives an Z-cell, and therefore this process must exhaust all such .Z- and Z-cells. In
particular, the intersection of any .Z-cell with any %Z-cell is thus a unique element.

Thus ¥ is strongly regular, and the result follows. O

Corollary 3.5.41. Every simple transitive 2-representation of a truncated cyclotomic

2-Kac-Moody algebra is equivalent to a cell 2-representation.

Proof. By Theorem 3.5.37, Proposition 3.5.38 and Theorem 3.5.40, a truncated
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cyclotomic 2-Kac-Moody algebra is a strongly regular locally weakly fiat 2-category.

Therefore applying Theorem 3.4.32 gives the result immediately. O



A Specialisation to Graded 2-Categories

4.1 Initial Definitions

During this chapter, we always take G to be a countable abelian group unless
otherwise stated. We start by defining G-graded (2-)categories and their

G-envelopes, following the ideas in [ | Section 3.5.

Definition 4.1.1. Let A be a k-algebra and let G be a countable abelian group. We
say that A is G-graded if we have a decomposition A = @ A, of A into a direct

geCG
sum of vector spaces such that AjA;, C Agyp,.

For notational purposes, we say that if A is a G-graded vector space and g € G, then

Alg] is a G-graded vector space isomorphic to A such that Afg], = Ap—,.

Definition 4.1.2. Let A be a G-graded k-algebra. We say that A is G-graded-finite

dimensional if it has a G-grading A = @ A, such that each A, is finite dimensional
geG

as a k-vector space. In particular, this implies that Ag is a finite dimensional k-

algebra.

Definition 4.1.3. The category k-Modg has as objects the G-graded k-vector spaces,
and as morphisms finite linear combinations of homogeneous linear maps of arbitrary
degree g € G. We define the full subcategory I]<—Mod%;lc to contain the G-graded k-
vector spaces that are G-graded-finite dimensional. We let k-Modg o and [|<—1\/[od£“’3Gf70
denote the subcategories of the above categories with the same objects but with

morphisms only those homogeneous linear maps of degree zero.
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Definition 4.1.4. We define a G-graded category to be a category enriched over
the monoidal category k-Modg,o. Explicitly, if € is a G-graded category, it has G-
graded hom-spaces of morphisms such that composition respects degree (and hence

all identity morphisms are of degree zero).

To give an explanation for why we take k-Modg,o to enrich over as opposed to k-
Mod¢ (and similarly with [I<-Mod§;f70 below), composition in an enriched category is
given by a collection of morphisms -4 g ¢ : Hom(B, C') x Hom(A, B) — Hom(A, C)
(in the category that is being enriched over) that respect certain axioms. In the
case of G-graded vector spaces, a homogeneous element of V' x W is a pair (v, w)
where v and w are homogeneous in V' and W respectively, and deg(v, w) = degv +
degw. We wish for composition in our enriched category to respect degree; that
is, if f and h are arbitrary homogeneous morphisms, deg(fg) = deg(f) + deg(g).
That is, deg-4,B,c((f,h)) = deg((f,h)). This implies that the -4 p ¢ have to be

homogeneous of degree zero, hence the construction.

Definition 4.1.5. We define a G-graded finitary category to be an additive
idempotent complete category enriched over the monoidal category I]<—Modng0 with

a finite set of isomorphism classes of indecomposable objects.

When G = {e} is the trivial group, the above definition is precisely that of a finitary

category first defined in [ |

Definition 4.1.6 ([ ] Section 3.5). Let 6 be a G-graded category. We define
its G-envelope @ as a category with objects defined formally as symbols of the form

X[g] where X is an object of € and g € G. We set hom-spaces as
Homg (X[g], Y[h]) = Home (X, Y)[h — g1,

and composition of morphisms is given by the obvious inheritance from €. We also
use the notation X[g][h] = X[g + h]. If € is a G-graded finitary category, we call

@ a G-finitary category.

We denote by idx 4 : X — X[g] the canonical shift of the identity isomorphism for
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any object X € 6 and any g € G, which is homogeneous of degree g with inverse
idxg],—g-
Definition 4.1.7. Let € and & be G-finitary categories. We say that a functor

F :6 — 9D is a G-graded functor if it respects the structure of the grading and the

envelope. Explicitly, this means the following:

e For X an object of 6 and g € G, F(X|[g]) = F(X)[g].

e For X and Y objects in 6, Fxy : Hom(X,Y) — Hom(FX,FY) is
homogeneous of degree zero; that is, deg(F(«)) = deg(a) for any

homogeneous morphism a.

Definition 4.1.8. Let k-Caty denote the category whose objects are (G-graded
categories and whose morphisms are all G-homogeneous functors between them.
Let I]<—Catgc";f denote the category whose objects are (G-graded finitary categories and
whose morphisms are all G-homogeneous functors between them. This is a
monoidal category where the tensor product is products of categories and the tensor
unit is the G-graded category with one object whose only morphisms are scalar

multiples of the identity.

Definition 4.1.9. We define a G-graded 2-category as a category enriched over k-
Catg. Explicitly, it has G-graded hom-spaces of 2-morphisms such that horizontal
and vertical composition both respect degree. We define a locally G-graded finitary
2-category to be a category with countably many objects enriched over [I<—CatgGf such

that each identity 1-morphism is indecomposable.

Definition 4.1.10. Let % be a G-graded 2-category. We define the G-envelope
2-category € of ¢ by taking the same objects as %, and defining each
hom-category %(i,j) as the G-envelope of the category €(i,j). We further
require that composition respects the envelope; that is, for 1-morphism X[g] and
Y[h], X[g] o Y[h] = (X o Y)[g + h] wherever this makes sense. We also define
horizontal and vertical composition of 2-morphisms as the obvious induction from
composition in €. If € is a locally GG-graded finitary 2-category, then we say that

its G-envelope is a locally G-finitary 2-category.
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Again, if we take G = {e} to be trivial, a locally G-graded finitary or locally G-finitary

2-category is a locally finitary 2-category in the sense of Chapter 3.

Definition 4.1.11. Let ¥ be a locally G-finitary 2-category. If there exists a weak
equivalence —* : ¥ — %°P such that for any 1-morphism X € %(i,j) there are
natural homogeneous 2-morphisms o : X o X* — 13 and 8 : 15 — X o X* of degree
zero such that (aopidx)oy (idx oy 8) = idx and (idx+oga)oy (Bogidx+) = idx+,

*

then we say that ¥ is a locally weakly G-fiat 2-category. If —* is an involution, we

say that % is locally G-fiat.

4.2 2-Representations and ldeals

We first examine 2-functors for the graded setup, again following | ]

Definition 4.2.1. Let ¥ and % be locally G-finitary 2-categories. We say that a
2-functor F' : € — # is a G-graded 2-functor if each F; 5 : €(4,j) — #B(Fi, Fj)

is a G-graded functor.

Definition 4.2.2. Let ¥ and % be locally G-finitary 2-categories, and let P,Q :
€ — % be graded 2-functors. We say that a 2-natural transformation oo : P — Q) is
a (G-graded 2-natural transformation if, for each 1-morphism X € €, the associated

2-isomorphism ax is of degree zero.

We denote by Qllf'gf the 2-category which has as objects G-finitary categories, as
1-morphisms k-linear additive graded functors, and as 2-morphisms natural

transformations of these.

We now recall the definition of a 2-representation from | ], and give its

specification to this setup.

Definition 4.2.3. Let ¥ be a locally G-finitary 2-category. A G-finitary
2-representation is a G-graded 2-functor from % to QL[kG‘gf. An abelian
2-representation is a 2-functor from % to the category Rix. We denote

2-representations as M, N etc.,, except for the ith principal representation
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P; = %(i,—). We denote the 2-category with objects G-finitary 2-representations
of ¥, 1-morphisms graded 2-natural transformations and 2-morphism modifications
by %g-afmod. We say that two G-finitary 2-representations M and N are
equivalent if there exists a graded 2-natural transformation ® : M — N such that

®; is an equivalence for each i.

There are multiple concepts that we have previously defined that still apply to our
case. We retain the concepts of .Z-, #-, Z- and _#-orders and cells, as well as the
concepts of strongly-regular and Z-strongly regular cells. ldeals in 2-representations

and 2-ideals also apply with no issues.

4.3 Degree Zero Sub-2-Categories

We wish to generalise the idea of a coalgebra 1-morphism in the 2-category and
the related theory to locally G-finitary 2-categories. However, there turn out to be
significant obstacles to this approach - in general, locally G-finitary 2-categories are

not particularly pleasant structures to work with for 2-representation theory. Most

prominently, the method of abelianisation given in | | is not guaranteed to
give an abelian category. Explicitly, as was shown in [ |, the process of injective
(respectively projective) abelianisation given in section 3 of [ | results in

an abelian (2-)category if and only if the original (2-)category has weak kernels
(respectively weak cokernels). This is a criterion that fails for many cases of locally
G-finitary 2-categories. Later in this thesis we will be considering a more powerful

abelianisation, but there is use in the following specialisation.

We instead consider locally restricted G-finitary 2-categories; that is, locally
G-finitary 2-categories where the hom-spaces of 2-morphisms are not only
graded-finite dimensional, but also finite dimensional in totality. In this case, they
are simply locally finitary 2-categories, but with extra structure on the hom-spaces
of 2-morphisms. We will use this extra structure to prove facts about the coalgebras

constructed in | | is the case of G-finitary 2-representations of the
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2-category. To do this, however, will require introducing a specific sub-2-category.

Let 6 be a G-finitary category. We define the subcategory €y by taking the objects
of 6y to be the same as the objects of €, but taking the morphisms to be only those
morphisms of 6 that are homogeneous of degree zero. Though this construction
removes most of the morphisms of €, it does not lose any information: if p: X — Y
is a homogeneous morphism of € of degree g, then there is a corresponding morphism

p—g : X[g] — Y that is homogeneous of degree zero, and is thus in 6.

Let % be a locally G-finitary 2-category with a G-finitary 2-representation M. We
define a sub-2-category % to have the same objects as %, and we set the hom-
categories to be 6p(i, j) = (€¢'(i,j))o for all objects i, j € €. This implies that the
1-morphisms of % are also the same as those of €. Further, it is still the case that
1; is an indecomposable 1-morphism for each object i € ¥. However, €y is not a
locally finitary 2-category - since we can no longer guarantee that F' = F'[¢] for any
non-zero g as the canonical isomorphism idg, is of non-zero degree, in general 6
has infinitely many isomorphism classes of indecomposable 1-morphisms. However,

in the restricted case, this will turn our to be a surmountable problem.

Similarly, we define the 2-representation M of %) to by setting My(i) = (M(1))o
for all objects i of %y. This is naturally a 2-representation of %,, as given a
1-morphism F[g] € %, we have the functor Mg(F[g]) being defined as the
restriction of M(F[g]) to My(i), since by the definition of a 2-representation,
M(F[g])m,n - Homap (M, N) — Homm(FM[g], FN[g]) is a homogeneous map
of degree zero, and so restricts to a morphism between the degree zero subspaces.
Further, as horizontal and vertical composition in % are also defined to preserve
degree, the restriction of M(a) for a : F© — G a 2-morphism of degree zero to
My(a) : Mo(F) — My(G) is also well defined. We also notate Mo = [[ Mo(i)

i€%o
in a similar fashion to JL.

Assume that M is transitive.

Proposition 4.3.1. Let € be a locally G-finitary 2-category and let M be a
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transitive 2-representation of €. The 2-representation My of 6y is also a transitive

2-representation.

Proof. Let M, N € Jly with N indecomposable. It is sufficient for the proof to
find F' € € such that N is isomorphic to a summand of FFM in Mg, i.e. via an
isomorphism that is homogeneous of degree zero. Since M is transitive, we have
some [ € € such that there exists an isomorphism @ : FM — N @& N” in Jl for
some N” € Jl. We therefore have morphisms ¢ : N — FM and o : FM — N such

that o = idy.

Setting the homogeneous decompositions ¢t = > 9 and 0 = ) 09, we see from

geG geG
comparison of degree with idy that for g # 0, > o9~ = 0 while 3 oM™ =
heG heG

idy. Since N is indecomposable, by standard nilpotent arguments there exists a

g € G such that ¢9.79 is an automorphism.

We thus have some p € End 4 (N) such that po9.79 = idy. But as idy and ¢9:79
are homogeneous of degree zero, so too must p be. Thus we have homogeneous
morphisms : ™9 : N — FM and po9 : FM — N in Jl such that po9.79 = idy. We
now set I/ = F[g]. We thus have the corresponding morphisms 1, : N — FM and
pa? , : FM — N that are homogeneous of degree zero and such that po? 1,7 = idy.

The result follows. O

Corollary 4.3.2. If M is a simple transitive 2-representation of €, then My is a

simple transitive 2-representation of 6.

Proof. Assume that M is simple transitive, and let ¥y be a %p-ideal of My. F
therefore generates a €-ideal .F of M. If = 0 then 9 = 0. Therefore assume
that ¥ # 0. As M is simple transitive, there exists some X € Jl such that
idx € .F, and by standard injection/projection arguments we may assume that X is
indecomposable. Then idx = Zn: ;Y B; for v € Fy for all ¢ and «y, 5; € A for all
i.  Then by a standard niIZp:oltency argument there exists some ¢ and some

morphisms o/, 3" € Jl such that idy = /v = > a7, with the latter sum
g,heG
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being the decomposition of o/ and ' into homogeneous components. Again by a
nilpotency argument, there exist some k,! € G such that idx = o} ;6;. But idx
and ~; are both homogeneous of degree zero, and therefore k = —I[. But then
By o X[kl — X and o}, : X — X[k] are morphisms in Jly such that
idxr) = ﬂ’_kv_kmakk € Jo. Hence if Fy is nonzero it contains some non-zero

identity morphism, and the result follows. O

A further result we wish to have is that if % is a locally restricted G-finitary 2-
category, then the (injective) Freyd abelianisation of %y, %, is indeed a locally
abelian 2-category. In fact, this is true for the projective Freyd abelianisation as well,

and by [ |, it is sufficient to show the following:

Proposition 4.3.3. Let 6 be a restricted G-finitary category. Then 6y has weak

kernels and weak cokernels.

Proof. Let p: X — Y be a morphism in 6y. Consider the full subcategory 6, of

Qo closed under isomorphisms and generated by
add{X,Y, H[¢g]|H € 6y indecomposable, g € G, Home, (Y, H[g]) # 0}.

Since the total dimension of hom-spaces in 6 is finite, given any indecomposable
H € 8 there are only finitely many g € G such that Hom% (Y, H) # 0, and hence
only finitely many ¢g € G such that Home, (Y, H[g]) # 0. Since 6 has only finitely
many G-orbits of isomorphism classes of indecomposables and since X and Y each
have only finitely many indecomposable summands, G, contains only finitely many
isomorphism classes of indecomposable 1-morphisms. It is additive and idempotent
complete by construction, and as a subcategory of a category with finite dimensional
hom-spaces it also has finite dimensional hom-spaces. Since it also inherits being

k-linear, 6y, is actually a finitary category.

There thus exists a weak cokernel wcokerp : Y — L of p in €p,. We claim that
wcoker p is a weak cokernel of p in €y. For let m : Y — K be a morphism in 6

such that mp = 0. If m = 0, then we clearly have the zero morphism L — K
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satisfying the weak cokernel diagram. If m # 0, then by the definition of €, we
have m € €p . Thus as wcoker p is a weak cokernel in 6, we have a morphism
q : L — K satisfying the weak cokernel diagram, which also satisfies the diagram in
Bp. Hence p does indeed have a weak cokernel and thus 6y has weak cokernels. The

weak kernel case is precisely dual to the above argument, and the result follows. [

Corollary 4.3.4. Let € be a locally restricted G-finitary 2-category. Then %, has

weak cokernel 2-morphisms and weak kernel 2-morphisms.

Corollary 4.3.5. Let € be a locally restricted G-finitary 2-category with a G-finitary

2-representation M. Then %y is a locally abelian 2-category and Jly is an abelian

category.
Proof. This is a direct consequence of applying the preproof to Theorem 4 in | |
to Corollary 4.3.4. O

4.3.1 Grading Coalgebras

For this section let ¥’ be a locally restricted G-finitary 2-category and let M be
a G-finitary 2-representation of . Choose T' € M(j) and S € M(i). Following
[ | and Section 3.3 we construct a functor (which we denote I') from %'(4, j)
to k-mod which takes F' to Hom (T, F'S), and a functor I'g from %5(i, j) to k-
mod which takes F' to Homy, (7, F'S). We can extend these uniquely to left-exact

functors I" and I'y from €(i, j) and %p(i, j) respectively to k-mod.

We now introduce the equivalent of the representative 1-morphisms in | ]
Section 4.1. Since Iy is left exact, by | | Section 8, it is pro-representable; that
is, a small filtered colimit of representable functors. However by definition %y(i, j)
has enough injectives and the functor category is closed under small filtered colimits,

and thus the functor is in fact representable. We denote this representative by [S, T')o.

We have the following analogy of a result in [ | (Lemma 4.2) that we will

find useful:
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Lemma 4.3.6. Forany H € [] %u(i,j),
i€%

Hom%(T, HS) = Homﬁ(ijj)([S, T](), H)
in k-mod.

Proof. Take H € 6y(i,j). Then H has an exact sequence H — F| — F, where
Fi € %p(i,j) for both i. We have left exact functors Homp, (7', —S) and
Homg ([S, To, —) and a diagram

Homyy, (7', HS) Homg, (S, T]o, H)

HOIHMO(T, FlS) s Hom@([S, T]o,Fl)

HomMO(T, FQS) — Hom@([s, T]O,FQ)

of vector spaces. The result then follows from an application of the five lemma. [

The functor I is representable by [ ], with representative 1-morphism [S, T7.

Proposition 4.3.7. If S = T, then i = j and A% =[S, S] has the structure of a
coalgebra 1-morphism in € (i,1) and A§ = [S, S]o has the structure of a coalgebra

I-morphism in 6y(i,1).

Proof. The first result is Lemma 3.3.1 and the second result is mutatis mutandis the

first.

4.3.2 The Main Results

Let €, 6y, A° and AOS be as in the previous section. The reason we wish to study Ag
is that we do not a priori know anything about the component degrees of the internal
2-morphisms for the counit and comultiplication 2-morphisms for A°. However, we

know by definition the corresponding component 2-morphisms for Ag have to be
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homogeneous of degree zero. We will show that we can take A° to be precisely Ag
with its counit and comultiplication 2-morphisms. We use the natural inclusion of

%o into € to state the following lemma:

Lemma 4.3.8. Forany F € ¢(i,1) and H € 6y(i,1), in k-mod

Homy (H, F) = @Homﬁ(H,F[[g]]).
geG

Proof. Let H = (X,k,Y;,a;), using the Freyd abelianisation notation from
Definition 2.4.2. Then as F' = (F,0,0,0), a morphism from H to F' in € is of the
form [(p,0)] with p : X — F a morphism in ¢ and the equivalence relation is
spanned by those p such that there exist ¢; : Y; — F with > ¢qa; = p. We let
p = Y pg for some finite sum. Assume that [(p,0)] is equivalent to [0] with
morphgiiris ¢; as specified. Since H € %y(i,1), the o; are homogeneous of degree
zero. In particular, if we decompose each ¢; as ¢; = > ¢, then by comparison of
degree if follows that p, = Zqi,gai. Therefore ifh[e(g, 0)] is a general morphism
from H to F, then [(p,0)] = ZZ [(pg,0)] where the equivalence relation is spanned

geG
by those p, such that there exist g4, : ¥; — F homogeneous of degree g such that

Pg = Z i, g Qi -
(A

We thus define the map

€D Homy, (H, F[g]) — Hom (H, F)
geG

by taking " [(pg,0)] to [( D pg,0)]. This is clearly a vector space homomorphism,
geG geG
and the above working shows that this map is well-defined and injective. If we have

some [(p,0)] € Homg (H, F), then as [(p,0)] = > [(pg,0)], and as any p, : H — F
geG
corresponds to a degree zero 2-morphism p, : H — F|[g], the assocaited 2-morphism

> [(pg,0)] € D Homg, (H, Fg]) maps to [(p,0)], the map is surjective and we

geG geqG
have the required isomorphism. O

This isomorphism ‘commutes’ with composition in the following fashion: if o €

Hom@(K, H) for some 1-morphism K, and we abuse notation by also letting «
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refer to the equivalent 2-morphism in &, then for any p € Homy (H, F), poa =

[ (pg,0)] o = > [(pg,0)] o @, with a similar process up to some grading shifts
geG geqG
occurs with post-composition.

We can now give the main result of the chapter, which we split into a theorem and

a corollary for readability.

Theorem 4.3.9. A° =~ Ag iné€.
Proof. For F € €(i,1) or éo(1,1),

Homwm (S, F'S) = Homp (S, F'S)

and similarly

Hompg, (S, F'S) = Hompy, (S, F'S).

By the definition of the grading on M,

Hom (S, F'S) = @ Hompm, (S, F[lg]S).
geG

But by the definition of AS,

@D Homm, (S, Flg]S) = @5 Homg, (AF, Fg])-

geG geG

Applying Lemma 4.3.8 for H = A5, we have that Hompg(S, F'S) = Homg (A5, F)

for all F' € €'(i,1). But by the definition of the representative,
Homy (S, FS) = Homg (AS, F)

and A% is unique with this property up to isomorphism, hence A% = AOS as required.

O]

Corollary 4.3.10. We can choose a representative of the isomorphism class of AS
in € such that, when considered as a coalgebra 1-morphism, its coalgebra and

comultiplication 2-morphisms have components homogeneous of degree zero.
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Proof. We take the representative A5 of the isomorphism class. We have the

following diagram of vector spaces:

HOHll\/[0 (S, S) Homﬁ(Agv 11)
Homys (S, S) Homg (A7, 1)

where the vertical arrows are the natural inclusions and the horizontal arrows are the
representation isomorphisms. By choice of AS, this diagram is strictly commutative.
Taking idg in Homp, (S, .S), its image along the top path is the image of ¢y under
the natural injection (i.e. €y considered as a 2-morphism in &) while the image
under the lower path is the counit of Ag as a coalgebra in €. It follows that this
counit is equal to €y, and thus has components (or more accurately, non-zero
component) homogeneous of degree zero. By constructing similar diagrams for the

coevaluation and hence comultiplication 2-morphisms, the result follows. O

4.4 Comodules

We briefly study the structure of comodule 1-morphisms of this ‘homogeneous’
coalgebra 1-morphism. Let comody([S,S]) denote the category of AYN-comodule
1-morphisms in %, and denote its full subcategory of injectives by injﬁ(AS). We
have the following proposition, which is identical to the locally finitary case but

whose proof we give here for notational purposes.

Proposition 4.4.1. [S.T] is a right [S,S]-comodule I1-morphism for any

T € [jer M(3)-
Proof. To find the comodule 2-morphism, we first note that
HomM(j)(T> [S7 T]S) = Homi([sa T]7 [Sa T])>

and so we let 6 : T — [S,T]S be the (non-zero) image of idgq) under this
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isomorphism. We thus have a composite

[S,T]coevs,s
—

T % 18,718 S, TJ[S, S]S.

But we again have that
Homm (T, [S, T[S, S]S) = Home ([S, T, [S, T[S, S])
and we denote the image of the composite under this isomorphism by
p:[S,T] = [S,T][S, S].
It is straightforward to verify that p satisfies the comodule axioms. O

Similar to the previous section, we can consider [S, Ty and construct dp and pg. These
are definable because id(s 1, exists, and as coevg g has components homogeneous
of degree zero by Corollary 4.3.10, so does My([S,T]o)coevss. The proof that
[S,T)o = [S,T] in € is mutatis mutandis to that given in the previous chapter

for AS = A5, as is the proof that we can choose [S,T] to have a coevaluation

2-morphism with components homogeneous of degree zero.

4.4.1 An Application: 2-Kac-Moody Algebras

Consider the Khovanov-Lauda-Rouquier algebras we examined in Subsection 3.5.3
and their cyclotomic quotients examined in Subsection 3.5.4. As noted in these
sections, there is a Z-grading on KLR algebras, which is preserved in the cyclotomic
quotient, since the quotient ideal is generated by a homogeneous polynomial.
Considering then the definition of the locally fiat 2-category %\ found in

Subsection 3.5.5, the following is an immediate consequence:

Proposition 4.4.2. %) is a locally (restricted) Z-finitary 2-category.

We set RM = @ R™(n), where R(n) is the cyclotomic KLR algebra of degree n
n>0
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as defined in Subsection 3.5.4.

Proposition 4.4.3. The indecomposable 1-morphisms of the form (Q11,Q2, where

the Q; are 1-morphisms in %y, form a maximal ¢ -cell in %) .

Proof. Since the hom-categories of %, are idempotent complete, an indecomposable
1-morphism of the form @11, Q> is isomorphic to a direct summand of a functor of
the form Mje; @y eaMa @®pa —, where the e; are primitive idempotents in R? and
My and M> are products of the ¢; and §;. In particular, we have that Mie; = RAey

and ea My = ea RN, It follows that such a bimodule is a projective RA-RA-bimodule.

Similarly, given some 1-morphism () that corresponds to a functor M @pa —, we
can choose primitive idempotents e and f of R* such that eM f # 0. Then for any

R @y f'R (¢’ and f’ primitive),
R @ eRY @pa M @pa RMf @ f'RM = (RN @y f/RM)®™,

where m = dimeM f. Thus M ®pa — < ; R @y f'R* ®pa —. This shows
in particular that any indecomposable 1-morphism isomorphic to a summand of a
functor of the form RAe @y fR™ @pza — (for e and f primitive) is _#-equivalent to

any other 1-morphism isomorphic to a functor of the same form.

It is immediate from the previous paragraph that the _#-cell containing (the
indecomposable summands of) functors of the form R ®y fR» @ pa —, for e and
f primitive, is maximal, and it remains to show that these functors exhaust the
isomorphism classes of members of the _#-cell. By construction e(3,i)R*(8 + a;)
is a projective right RM(S + a;)-module (and hence a projective right R*-module),
while by Theorem 3.5.30 it is a projective left R™(f)-module (and hence a
projective left R*-module). A similar argument gives that R*(8 + a;)e(B,1) is a
projective left and projective right R™-module. As a consequence, every

1-morphism in %) is both left projective and right projective.

Let M be some (R*-R")-bimodule with Q = M ® pa — such that there exist primitive
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idempotents e and f with Q >z Rhe @y fRA ®pa — in . This means that there
are some 1-morphisms T'®za — and S®@pa — in % such that M is a direct summand
of

T @pa Rhe @y fRY @pa S = Te @y 5.

Since T is left projective and S is right projective, M thus decomposes over k and is a
summand of a bimodule of the form Re’ @y f'R? for some primitive idempotents ¢’

and f’. Both of the remaining claims follow immediately, and the result is proved. [

Lemma 4.4.4. Every cell 2-representation of %) is a graded simple transitive 2-

representation.

Proof. Let § be a _#-cell in %,. By considering the 2-category %, ; as defined
in Subsection 3.4.6, without loss of generality § =: §a is the highest ¢-cell of %},
which by Proposition 4.4.3 is the indecomposable 1-morphisms that factor over A.
Since these all correspond to tensoring with a projective (R*-R™)-bimodule, we can
embed ) into the 2-category €r associated to R (c.f. Subsection 3.2.1; since
the R™(3) are not necessarily basic, see specifically the definition at the end of that
section). In fact, we claim that this embedding is an equivalence between %% and

U5 -

To see this, by [ ] Theorem 4.4 ¥ contains R e @y for all primitive idempotents
e of RM. But then as ¥ is strongly regular, it is closed under adjunctions and hence
contains k ®y fR" for all primitive idempotents f. But then as ¥ is closed under
direct summands of compositions, it also contains R%e @i fR® for all primitive
idempotents e and f. Therefore § not only embeds into %R, but also essentially

surjects, giving the required equivalence.

This means that any .Z-cell of o will give an equivalent cell 2-representation by
Theorem 3.3.9, and we choose a particularly useful one. Consider the Z-cell ‘4.
which embeds into €% as (the finite dimensional elements of) add{R* ® k}. To
construct the cell 2-representation, we first construct the transitive (but not

necessarily simple transitive) 2-representation N g (c.f. Definition 2.3.33). This is
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a graded 2-representation by construction, and thus to show the cell
2-representation is graded it suffices to show that the ideal # of the
2-representation we quotient by to form the simple transitive quotient is
homogeneous. But given some indecomposable R e ®y k for some idempotent e,
we recall from Proposition 3.2.8 that .# is generated by morphisms of the form
Pab : Rhe @ k — RMe @y k where Yaple ®1) = eae ® b, with b € radk. But
radk = 0, and hence .# = 0, which is trivially a homogeneous ideal. The result

follows. O

This gives us the following result:
Theorem 4.4.5. Any simple transitive 2-representation of % is in fact a graded

2-representation, and is equivalent to a cell 2-representation.

Proof. This is a direct consequence of combining Lemma 4.4.4 and Corollary 3.5.41.

O]



Wide Finitary 2-Categories

The final chapter of this thesis concerns a more complicated generalisation, where we
relax the requirement that each hom-category in the 2-category contains only finitely
many isomorphism classes of indecomposable 1-morphisms. While doing so, we will
also relax the requirement that the hom-spaces of 2-morphisms are finite dimensional.
To do this, we will need a construction that we have not used previously, that of the

pro-category (and our own definition of a pro-2-category).

5.1 Pro-(2-)Categories and Ind-(2-)Categories

Definitions and results in this section are drawn from | |, primarily Section 8,

unless otherwise specified.

Definition 5.1.1. A non-empty category [ is filtered when:

e For all objects i, j € I there is another object £ and morphisms ¢« — k, j — k.

e For any pair of morphisms f,g : @ — j there is a morphism h : j — k such

that hf = hg.
The dual of a filtered category is a cofiltered category. Explicitly:

e For all objects 7, j € I there is another object k£ and morphisms k — i, k — j.
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e For any pair of morphisms f, g : i — j there is a morphism h : kK — 4 such that

fh = gh.

This allows us to give one definition of the pro- and ind-categories of a category.

Definition 5.1.2. Let 6 be a category. The pro-category Pro(€) of 6 is a category
whose objects are cofiltered diagrams of € (i.e. functors I — 6 where I is a
cofiltered category). We denote this as X = (X;);er or X = l'glielX,- (dropping
the labelling category where there is no confusion). Morphism sets are defined as
Homp,,()(X,Y) = lim; colim; Homg (X, Y;) (with the limit and colimit taken in

Set).

Dually, the ind-category Ind(€) of € is the category whose objects are filtered
diagrams of €, denoted X = (X;)jc;r or X = liﬂielXi (again dropping the
labelling category where there is no confusion). Morphism sets are defined as

Hompy gy (X, Y) = lim; colim; Homeg (X5, Y5).

There is an alternate way to define these which we will also use when convenient.
For a category 6, let 6" denote the presheaf category of 6; that is, the category of
contravariant functors from 6 to Set. € embeds into 6" via the functor h : € — €"
given by h(X) = Homg(—, X). Any presheaf that is isomorphic to such an h(X) is

called a representable presheaf. We have the following standard result:

Proposition 5.1.3 (| | Proposition 3.4). Any presheaf is (isomorphic to) a

colimit of representable presheaves.

This allows us to give the following definition, which is equivalent to the one given

above (see [ ] Section 8.2).

Definition 5.1.4. Given a category 6, the ind-category Ind(€) is the full
subcategory of 6" whose objects are those presheaves which are isomorphic to a

filtered limit of representable presheaves.

The equivalence is taking a filtered diagram X = hngXZ in 6 to its colimit L(X) in
6", with the natural bijection from Homy,q()(X,Y") = Homgn (L(X), L(Y)).
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Dually, we let 6" denote the category of covariant functors from € to Set. Since
this means €Y = (6°P)", any such covariant functor is a colimit of ‘corepresentable’
functors, i.e. functors isomorphic to ones of the form Homg(X, —) for X € 6.

Hence we have a similar definition:

Definition 5.1.5. Given a category 6, the pro-category Pro(6) is the full
subcategory of 6V whose objects are those covariant functors which are isomorphic

to a cofiltered limit of corepresentable functors.

The equivalence is given by taking a cofiltered diagram X = @ZXZ in 6 to its limit

L(X) in8Y.

Given a functor ' : € — @, it is possible to extend it to a functor
Pro(F) : Pro(6€) — Pro(®). The action of Pro(F') on objects is straightforward:
for an object X' = lim; X;, Pro(F)(X) = @ZF(XZ) For morphisms, given any
hom-set Homg(P,Q) in S, F  induces a morphism in Set
Fpg : Homg(P,QQ) — Homg(FP,FQ). Therefore given any X = (X;)icr,

Y = (Y})jes in Pro(€), we have maps
F; j : Homg(X;,Y;) — Homg (F'(X;), F(Yj})).
These therefore induce a map
Pro(F')x y : colim; lim; Home (X;,Y;) — colim, lim; Homg, (F(X;), F(Y;)),

which is the required map from Homp,,4)(X,Y) to Homp,qg) (FX, FY).

5.1.1 The 2-Categorical Construction

Let € be a bicategory. We will construct a pro-bicategory Pro(%). The objects of
Pro(%) as the same as the objects of 4. The 1-morphisms of Pro(%’) are cofiltered
diagrams of 1-morphisms of . We will construct the 2-morphisms of Pro(%)

explicitly and carefully, and then use those constructions to define horizontal and
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vertical composition of 2-morphisms.

As in the 1-categorical case, for 1-morphisms X = @iGIXi and Y = @jEJY-,
we define Homp,o4)(X,Y') = lim; colim; Home (X, Y;), with the limit and colimit
taken in Set. Explicitly, for a fixed j, an element of colim; Home (X;,Y;) is some
[a] € (]I Homg (X, Yj))/ ~, where for a; : X — Yj and ay, : Xpy = Yj, o] = [ou]
if thereleelxist 2-morphisms 3; : X; — X; and S5, : X; — X} in the diagram of X

such that o; oy B; = ay oy Bi. Therefore,

h]mcolimi Homc,g(Xi,Yj) = {([O‘j])j € H((HHom%(Xian))/ ~)|
jeJ el

Vo 1Y) = Y, [pov aj] = [ag]},

where the ¢ are 2-morphisms in the diagram of Y.

The vertical composition of two 2-morphisms is given by the standard construction
for pro-categories. This construction is somewhat complicated, but is as follows:
Let X = T&lieri, Y = @njEJYj and Z = I'LmkeKZk be 1-morphisms in Pro(%).
Considering the X; and Z; as 1-morphisms in Pro(%¢’) by the natural embedding, we

first have that
Hompo()(Xi,Y) = {(ar) € [ ] Home (X3, Vi) Ve : Yy = Yi, 0 ov oy, = au},
kek

while Homp,)(Y,Z;) = [ Homg(Yy, Z;)/ ~, with the previously defined
keK
equivalence relation.

We thus define a function
Homp,o(4)(Xi, Y) X Homp,o4) (Y, Zk) — Hompo) (X, Z;)

by ((ow),[B]) — B ov ap, where we have 3 : Y, — Z;. We claim that this is a
well defined map. For assume 3 ~ v for some v : Y, — Z;. Then there exists

some 2-morphisms ¢ : Y, — Y, and € : Y}, — Y, in the diagram of Y such that
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B oy § = oy e. But then by the definition of the o we have that

Boy ap = oy doy amy =70y €oy amym =70y Qg

as we require.

From here, we will proceed by first taking the colimit for X and then the limit for Z.

Thus, we first define a function
Homp,o () (X, Y) x Homp,o4) (Y, Z)) — Homp,o4)(X, Zj)

by (([ax])k, [B]) = [Bovay] for B :Y, = Z; and oy, : Xy, — Yj. We claim that this
is well defined: assume that there is some set of 2-morphisms d;, : X,,, — Y} such
that aj ~ 0y for all k € K. Then there exist some 2-morphisms oy, : X, — X,
and 7 : X, — X, such that o, = oy, for all k. Then Bay,0, = Bopmy, ie.
Bay ~ By and [Bay] = [Bp] in Homp,) (X, Z;) and combining this with the

reasoning in the prior paragraph gives the required result.

Finally, we define a function
Homp,)(X,Y) x Homp,q4) (Y, Z) = Homp,() (X, Z)

by (([ex])k, ([B1])i) = ([Bi ov ax])i- By the previous paragraphs this is well defined,
and we claim that this is an element of Homp,,4)(X, Z). Forif ¢ : Z; — Zp, is a
2-morphism in the diagram of Z, then by the definition of the 5}, [p oy 5i] = [Bm]-
Therefore [p oy () oy ax)] = [Bm ov au], and the result follows. We also note that

the identity 2-morphism on X is ([idy;]).

For composition of 1-morphisms, given two composable 1-morphisms X = Liéniein
and Z = @keKZk, we define the composite as X o Z = @nszl o Zy,; that is, the
diagram with 1-morphisms X; o Z;, and 2-morphisms oy 3 : X; 0 Z;, — Xj 0 Z;,
where o : X; — X; is a 2-morphism in the diagram of X and 8 : Z;, — Z; a 2-

morphism in the diagram of Z. In particular, the identity 1-morphism of i in Pro(%)
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is the trivial diagram consisting of 1; and idy,.

It remains to define the horizontal composition of 2-morphisms. Given 1-morphisms
X = limer Xy, Y = limje;Y), Z = limpegZp and W = limye Wi, and
2-morphisms ([ax])r : X — Z and ([fi]); : ¥ — W, we define the horizontal

composition ([ag]) om ([B1]) : XY — ZW to be ([a]) om ([81]) = (o o Bi))-

This is well-defined: first, if ax ~ v, and 5; ~ §;, then there exist some 2-morphisms
a, b, ¢, d such that aoy ag = coy i and boy 8; = doy §;. Then using the interchange

law,

(aop b) oy (o on i) = (aoy o) o (boy By) = (cov i) on (doy 0n)

= (cog d) oy (yk om &)

and thus (ay o B;) ~ (v om 0;). Second, for a fixed Y; and W; (considered
as trivial cofiltered diagrams), [y o 3] = [ax] o [5i] by definition. Therefore if
@ : Zyp — Zpy is a 2-morphism in the diagram of Y and o : W; — W, is a 2-morphism

in the diagram of W, we have that

[(pon a)oy (ar o B)] = [(wov ar) om (o oy By)] = [ oy ag] op [0 oy B]

= [am] o [Bn] = [aum om Bnl.

We now check the coherence and identity axioms for the new bicategory. Let X =
@ieIXi, Y = @jeJYj and Z = @keKZk be 1-morphisms in Pro(%¢’). The
diagram for the 1-morphism (X oY")oZ has as component 1-morphisms (X;oY})oZy,
ranging over all ¢ € I, j € J and k € K. For the 2-morphisms, for any f : X; — X,
in the diagram of X, g : Y; — Y}/ in the diagram of Y and h : Z}, — Z;, in the
diagram of Z there is a 2-morphism (f of g) o h. Similarly, X o (Y o Z) has as

component 1-morphisms X; o (Y o Z};) and component 2-morphisms f oy (gop h).

Weletax,y; z, (X;0Yj)oZy, — X;o(Y;0Z}) denote the associativity 2-isomorphism

in €. We claim that the associativity 2-isomorphism (X oY)oZ — X o (Y oZ)is
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([ax;v;,z,])- That this is well defined and is indeed a 2-morphism in Pro(%’) follows
directly from the definition of the associativity 2-isomorphisms in €. We first claim

oo . . L - -1 .
that it is a 2-isomorphism with inverse ([axi,yj,zk])'
(laxiv;,2)) ov ([axi v, 2,)) = ([ax.v5,20 ov axiy, 2,]) = ([id(x,0v002,)

as required.

It remains to prove the pentagon axiom. That is, to prove that

(lax, v, (zw)ul)) ov (laxyy,, 2w )

=((lidx.]) orr (lay; z, w])) ov (lax; (v 2),0,2]) ov ((ax, v;.2.]) on ([idw])).

But

((lidx,]) om ([av;, 2, m])) ov (lax, (v 2),0.2]) ov (([ax,,v;,2.]) om ([idw]))
=(lax,,v;,z o idwy]) ov (lax, (v 2y, w]) ov (lidx; om ay; 2, wy])
=([(ax,,v;,2, om idw,) ov ax, (v z),,.w, ov (idx; om ay; z, wy)])
:([aXi,Yj,(ZW)kl ov G(Xy)ij,zk,wl])

=(lax, y;,(zw))) ov (laxyy,;, 20 mi))

as required with the first, second and fourth equalities coming from our prior
definitions of horizontal and vertical composition of 2-morphisms, and the third
coming from the pentagon axiom for €. In a similar fashion, we can show that if
px; : 1;X; — X; and vy, : X;1i — X, are the right and left unital 2-morphisms in
¢, then ([px,])i : 11X — X and [(¢x;)] : X1; — X are the right and left unital

2-morphisms in Pro(%).

Proposition 5.1.6. In the setup of the prior paragraphs, if € is a strict 2-category,

Pro(¥) is a strict 2-category.

Proof. If ax,;Y;,%, = idXiijk for all 4, j and k, then ([aXi7)/j7Zk]) = (['dXZYJZk]) =
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idxyz as required, and similarly for the left and right unital 2-morphisms. ]

When € is a strict 2-category, we call Pro(%) a pro-2-category. There are different
definitions of pro-2-categories found in the literature, for example | ]. The root
of the difference between that paper and this thesis is that, since our focus is on
2-categories stemming from categorification of 1-categories, we focus our attention
on the hom-categories, with the objects being often comparable to indexing of
components. We therefore consider the pro structure in the sense of cofiltered
diagrams of 1-morphisms. In comparison, [ ] consider the whole 2-category
and hence, for example, constructs the pro-2-category such that the objects are

co-2-filtered diagrams of objects in the base category.

5.2 Wide Finitary 2-Categories

We now define the main 2-categories we will be studying in this chapter.

Definition 5.2.1. A category 6 is wide finitary if it is an additive k-linear
Krull-Schmidt  category with countably many isomorphism classes of
indecomposable objects and where the morphism sets are k-vector spaces of
countable dimension. We define the 2-category Qlff to have as objects wide finitary
categories, as 1-morphisms k-linear functors, and as 2-morphisms natural

transformations.

Definition 5.2.2. A 2-category % is locally wide finitary if:

€ has countably many objects.

For any objects i,j € ¢, €(i,j) € anlff.

Horizontal composition is biadditive and k-linear.

For each object i € €, the identity 1-morphism 1; is indecomposable.

If the 2-category only has finitely many objects, we refer to it just as a wide finitary

2-category.
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Definition 5.2.3. A wide finitary category € is sparse at an indecomposable object
F € € if the set {H € 6|H indecomposable, Homg(F, H) # 0} contains only
finitely many isomorphism classes of objects. 6 is cosparse at an indecomposable
object F' € 6 if the set {K € 6|K indecomposable, Homg (K, F') # 0} contains
only finitely many isomorphism classes of objects. A wide finitary category 6 is sparse
if it is sparse at every indecomposable object, and is cosparse if it is cosparse at every

indecomposable object.

As an immediate observation, since any object in € is a direct sum of finitely many
indecomposable objects, this is equivalent to saying that the condition holds for any

object in 6.

Definition 5.2.4. A locally wide finitary 2-category % is sparse (resp. cosparse) if
%€ '(i,j) is sparse (resp. cosparse) at every non-identity indecomposable 1-morphism

in (1, j) for every pair of objects i,j € ¥.

Proposition 5.2.5. Let € be a locally G-finitary 2-category. Then 6y is a locally
wide finitary 2-category, is both sparse and cosparse, and has finite dimensional hom-

spaces.

Proof. The former claim is shown in the discussion immediately following the

definition of %p; for the latter claim, see the proof of Proposition 4.3.3. O

Definition 5.2.6. Let ¥ be a locally wide finitary 2-category. If there exists a weak
equivalence —* : ¥ — %°P such that for any 1-morphism X € %'(i,j) there are
natural 2-isomorphisms o : X o X* — 1; and 3 : 13 — X* o X with equalities
(aopgidx) oy (iddx oy 8) =idx and (idx+ og a) oy (B oidx+) = idx«, then we say
that % is a locally wide weakly fiat 2-category. We notate the inverse of —* by *—.

If —* is an involution, then we say that % is locally wide fiat.
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5.3 2-Representations, Cells and Ideals

Definition 5.3.1. Let ¥ be a locally wide finitary 2-category. A 2-representation of
% is a strict 2-functor from % to Cat. A wide finitary 2-representation of % is a
strict 2-functor from % to Qlﬁ’f. A abelian 2-representation is a strict 2-functor from
% to the 2-category AbCat of abelian categories with additive functors and natural

transformations.

We can again define left, right and two-sided orders (<1, <g and < respectively),
and hence left, right and _#Z-cells in the standard fashion. Since we are no longer
necessarily working with only finitely many isomorphism classes of indecomposable
1-morphisms, we can no longer assume that cells are finite in size or that there are
only finitely many of them, even within a single hom-category. Indeed, we present a

somewhat pathological example below:

Consider first a 2-category ¥ defined as follows: & has only one object x. Z(x, %) is
additive and k-linear, with indecomposable 1-morphisms consisting of 1, and F[z]
for z € Z, with composition defined by F[z] o F[y] = F[z+y] ® F[z+y+1]. For
2-morphisms we set Homgy (F[z], F[y]) = 0.k and extend additively. This clearly
gives us a wide finitary 2-category. In addition, it is clearly sparse and cosparse.
However, F'o F[[z] = F[z] & F[z+ 1], while F[-1] o Fz+1] = F[z] @ F[z +1].
Therefore, F[z] ~1 F[z + 1] for any z, and thus we only have two .Z-cells, one
containing the identity 1-morphism and an infinitely large one containing all the F'[z].

We get similar results for - and _# -cells.

Now construct the category 4 as a disjoint union of countably many copies of Z. It
is clearly a locally wide finitary 2-category, and is still sparse and cosparse. However,

by construction, it now has infinitely many infinitely large cells.

We might assume that there is an analogue of strongly regular _#-cells, and that a
strongly regular locally wide fiat 2-category might display more pleasant structure.

It is certainly true that the proof | | Proposition 28 b) is powerful enough to
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generalise to the locally wide finitary setting, giving the following result analogous
to Theorem 3.2.4 and allowing us to define strongly regular #-cells and strongly

regular locally wide finitary 2-categories in a similar fashion to previously.

Theorem 5.3.2. Let ¢ be a locally wide finitary 2-category and let § be a ¢ -cell
of € such that every 7-cell of § is non-empty. Let Ly, #y, Y3 and Zg denote

the restrictions of Green's relations to §. Then Ly 0o #y = Xy o0 Ly = Dy = 5.

Definition 5.3.3. A locally wide finitary 2-category % is strongly regular if each

F€-cell of § contains precisely one isomorphism class of indecomposables.

Unfortunately, beyond the obvious restriction on the size of 7#-cells, even being
strongly regular does not induce any further size limits on Z-, %- or _Z-cells.
Consider a 2-category & with a single object, and whose indecomposable
1-morphisms consist of the identity 1-morphism 1, and of 1-morphisms F;; for
i,j € Z, where composition is defined by Fj; o Fj; = Fj;. We have a _Z-cell
containing only the identity 1-morphism, which is trivially strongly regular, and then
a _f-cell containing all the Fj;. Its Z-cells are of the form &; = {Fj,|x € Z}, and
its Z-cells are of the form R; = {F;|ly € Z}. The L-cells are clearly incomparable
under the left order, and &; N R; = {Fj;}, and therefore the #-cell in indeed
strongly regular. However, the #-cell and all its component Z-and Z-cells are
infinite in size. We can again take 4 to be countably many disjoint copies of Z, to
form a strongly regular locally wide finitary 2-category with infinitely many infinitely
large _Z-cells. For those interested in semi-group theory, % is the 2-category

induced by the rectangular band on Z x Z (see | ).

We take the standard definitions of a 2-ideal of a 2-category and an ideal of a 2-
representation. We can also give some miscellaneous results that generalise with
minimal changes from the (locally) finitary proof. We begin with the generalisations

of | | Lemma 16 i), Lemma 18 and Theorem 15.

Lemma 5.3.4. Let € be a locally wide finitary 2-category and ¢ a 2-ideal of €. If
idp € % for some indecomposable 1-morphism F, then idg € % for any

indecomposable 1I-morphism G such that F' < ; G.
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Proof. The proof of | | generalises to the locally wide finitary setting without

issue. O

Lemma 5.3.5. Let € be a locally wide finitary 2-category with a unique maximal

J-cell §. Then there is a unique 2-ideal .% of € such that € /.7 is §-simple.

Proof. Let F' € ¥(1,j) be an indecomposable 1-morphism of €. Since € (i, j) is a
Krull-Schmidt category, Endy (F") is local. Therefore, any proper ideal of Endy (F)
is contained in rad Endy (F'). The proof of | ] Lemma 18 therefore generalises

to the locally wide finitary setting. O

Theorem 5.3.6. Let ¢ be a locally wide finitary 2-category and let § be a ¢ -cell
of €. Then there is a unique 2-ideal .9 of € such that € /.7 is §-simple.

Proof. The proof of | ] Theorem 15 generalises immediately given Lemma 5.3.5.

O

5.4 (Simple) Transitive and Cell 2-Representations

For the duration of this section, we take 4 to be a locally wide finitary 2-category.

Definition 5.4.1. A wide finitary 2-representation M of % is transitive if for any
M € JL, the 2-representation induced by Gng(M) is equivalent to M. Equivalently,
M is transitive if for any M, N € Jl, N is isomorphic to a direct summand of

M(F)(M) for some 1-morphism F' of %

We present another iteration of [ ] Lemma 4, for our specific setting.

Lemma 5.4.2. Let ¥ be a locally wide finitary 2-category and let M be a transitive
finitary 2-representation. There exists a unique maximal ideal F of M which does

not contain the identity morphism of any non-zero object.

Proof. We adapt the proof given in | ] (and the generalisation for

Lemma 3.2.6) for our situation. The M(1i) are still additive categories and we can
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still form the coproductl = J] M(i) in Cat. Further, the structure of ideals of
ie?

M does not depend on the number of indecomposable objects in any M(1i), and so

given an ideal K of M that does not contain any identity morphisms of non-zero

objects, the coproduct X = [] K(i) is still an ideal of /L.
ie?

Further, the M(i) are Krull-Schmidt, and thus by definition for X an
indecomposable object, Endpy(X) a local algebra, and & N Endp(X) is still a
proper ideal of Endn(X). As the argument given in [ | is a ‘pointwise’
argument that considers the endomorphism ring of each indecomposable X

separately, and since an infinite sum of ideals is still an ideal, the proof generalises.

O]

Definition 5.4.3. Let M be a transitive 2-representation of ¥, and let .F denote the
maximal ideal as given in Lemma 5.4.2. If F = 0, then we say that M is a simple
transitive 2-representation. Given a transitive 2-representation M and its ideal .7,
we can form the simple transitive quotient 2-representation M = M /.7, called the

simple transitive quotient of M.

We define the cell 2-representations of € is a similar fashion to previous settings.
Given the pathological examples given above, in general the cell 2-representations
are wide finitary 2-representations - the Z-cells, regardless of any other comparable
1-morphisms, may contain infinitely many isomorphism classes of indecomposable
1-morphisms. As before, we notate the cell 2-representation of % corresponding to

a . ZL-cell £ by Cg.

Definition 5.4.4. Let M be a wide finitary 2-representation of a locally wide finitary
2-category €. Then M is sparse (cosparse) if M(1i) is sparse (cosparse) for each i

in 6.
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5.5 Adelman Abelianisation

5.5.1 1-Categorical Construction

While the fan Freyd abelianisation presented previously has been useful for our needs,
it only constructs a legitimately abelian category when the original category has weak
kernels or weak cokernels (depending on whether projective or injective abelianisation
is performed). We present below a more powerful version of abelianisation. The basic
construction is due to | ], but we will again present an equivalent but more

complicated version to ensure we retain a 2-category once finished.

Definition 5.5.1. Let € be an additive category. We construct the Adelman

abelianisation € as follows:

e The objects of @ are quintuples (Y, X, Z «, ), where X, Y, Z are objects of
€and a:Y — X and 8 : X — Z are morphisms of 6.

e Morphisms of @ are equivalence classes of triples (s,r,t) : (V, X, Z,c0, B) —
Y X" Z' o p') where s : Y - Y, r: X - X' andt: Z — Z are
morphisms of 6, modulo those triples (s, r,t) that satisfy a homotopy relation,
explicitly triples (s,r,t) for which there exist morphisms p : X — Y’ and

q:Z — X' such that o/p+¢B =r.
e Composition of triples is given by (s,r,t) o (s',7',t') = (ss',rr’, tt").
e |dentity morphisms are of the form (idy,idx,idz).

Definition 5.5.2. Let € be an additive category. We construct the fan Adelman

abelianisation € as follows:

e The objects of € are equivalence classes of sextuples of the form

Yi, X, Zi, i, Bir k)i icp+ With Vi, X, Z; €6 and oy 1 Y; — X, B : X — Z;
J J 1,€ J J J

morphisms in ¢. We require that for all 4,5 > k, Y; = Z; = 0. Two sextuples

are equivalent if they only differ in the value of k.
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e Morphisms in € from (Yi, X, Zj, 04, Bj, k) to (Y, X', Z}, 04,8, k') are
equivalence classes of triples (sij,7,tmn);i jmnez+ Where 7 : X — X/,
sij 1 Yy — Yj’ and tyy : Zy, — Z], are morphisms in 6, with the equivalence
relation being spanned by triples that satisfy a homotopy relation, explicitly
triples (sij, r, tmn) such that there exist p; : X — Y/ and ¢; : Z; — X' such

that Za;pi + quﬁj =7.
? J

e Composition of triples is given by
(3;]'7 T’/, t;nn) S (Sij7 r, tmn) = (Z S;jsila 71/7'7 Z t/zntmz)~
l z
e Identity morphisms are of the form (d;5idy;, idx, 0mnidz,, )i jmnez+-

Similarly to the fan Freyd abelianisation from [ |, this can be thought of as
a variation of the traditional Adelman abelianisation with multiple objects at the left

and right, as in the diagram:

Y; A
\oi V
B2

}/ZL'XHZQ

7N

While eventually both the Y; and the Z; will be zero, the minimal ¢ and j where this
occurs will in general not be identical. However, giving a single bound that is the

larger of the two simplifies the already somewhat unwieldy notation.

In a similar fashion to [ 1, % is additive and is equivalent to the traditional
Adelman abelianisation via the assignment

®B;
_)

and is hence abelian. Further, € embeds into € via the assignment
X — (0,X,0,0,0,0) and f : X — Y — (0, f,0). As mentioned in | ], its

image is the full subcategory of injective-projectives of %. Let Ig : 6 — € denote
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this canonical embedding of € into €.

An important consequence of this construction is the following theorem due to
[ |, using the aforementioned equivalence of categories between % and the

original Adelman abelianisation:

Theorem 5.5.3 (| | Theorem 1.14). Let 6 be an additive 2-category, and let
F : 6 — ¢ be a additive functor into an abelian category . Then there is a unique

(up to natural equivalence) exact functor F*° : @ — ol such that F°lg 2 F.

If € has finite dimensional hom-spaces, then the dimension of

Homg (Y3, X, Zj, v, B, k), (Y{,X’,Z},ag,ﬁé-,k’)) is bounded above by

[] dimHomg(Y;,Yy,) - dimHomg(X,X)- [ dimHomg(Z;,2)),

i<k,m<k’ j<kn<k’

and thus € also has finite dimensional hom-spaces. More generally, if € is a small

additive category, then so is @.

5.5.2 2-Categorical Construction

Let ¥ be either a locally wide finitary 2-category or a locally G-finitary 2-category.

We define the fan Adelman abelianisation € of € as follows:

e The objects of % are the same as those of .

—

e For any objects i,j € €, ‘g(i, j) =%(i,]), i.e. the hom-categories of % are

the fan Adelman abelianisations of the hom-categories of .

o Composition of 1-morphisms is defined by
(Kva ijaiu@jv k) o (}/;'/7X/7 Z;,Oé;, ;ak/) = (‘/tiaXX/7 Wj77175]7k + k/)7

where:
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Vi

\

Yio X/,

X O}/i/—k’

X o Z,
Zj—k/ OX/a

0,

\

a; oidyr,

H /
idx ooy,

|dX o 6‘;7
Bj— ©idxr,

0,

1=1,...,k
t=k+1,..., k+ K

else,

j=1,... K
i=K+1,... K +Ek

else,

jg=1,...k
j=kK+1,... K +k

else.

e Identity 1-morphisms are (0,1;,0,0,0,0).

e Horizontal composition of 2-morphisms is defined component-wise.

The embedding of each 1-category @6(i,j) as the projective-injectives of B(1, j)

leads to the embedding of € as a sub-2-category of 2

If € is a locally wide finitary 2-category or a locally G-finitary 2-category, let M be a

wide finitary 2-representation or a G-finitary 2-representation respectively. We define

the fan Adelman abelianisation M of M by setting 1/\/1\(1) = M(T) for each object i

of €. This has the natural structure of a 2-representation of ¥’ by component-wise

action.

In addition, similar to |

—

M((EaXa Z]va’mﬁjak))(vaManafhgjak/) = (Szverjvhlvljvk+ k/)v where:

], we can make M a 5922—representation by setting
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M(Y;))M, i=1,...,k
Ri= S M(X)N;_y, i=k+1,....k+k

0, else,

M(X)P;,  j=1,....k

Tj=IM(Z;, )M, j=K+1,....K +k

0, else,
M(O[Z')M, izl,...,k
hi= S M(X)fi, i=k+1,..  k+F
0, else,
M(X)gj, jzl,...,k/

lj = 4 M(Bj—1)m,

0,

j=kK+1,... K +k

else.

5.5.3 Beligiannis Abelianisation

While we will mostly be using the fan Adelman abelianisation due to it being
(relatively) simple to explicitly construct, there is another ‘universal’ abelianisation
that we will occasionally be referring to due to the process of its construction,

originally defined in [ |

Definition 5.5.4. Given an additive category 6, we define the (fan) Beligiannis

abelianisation € = (B)(= (€)) to be formed by taking the (fan) injective

abelianisation of the (fan) projective abelianisation of 6.

By [ | Theorem 6.1 (1), this is equivalent to taking the (fan) projective

abelianisation of the (fan) injective abelianisation of 6. Further, by | |
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Theorem 6.1 (4) this has the same universal property as 6 does in Theorem 5.5.3,

and hence B and 6 are canonically equivalent.

5.6 Constructing the Coalgebra 1-Morphism

While we have a method of producing an abelianisation of a (locally) wide finitary
(2-)category, we cannot immediately generalise the construction of the coalgebra 1-
morphism from | ], or indeed the algebra morphisms from [ ] Section
7.8, as these both assume finiteness conditions that we lack. We thus need to expand

to a larger setting.

Let € be a locally wide finitary 2-category and let M be a transitive 2-representation
of €. Choose S € M(i). We define 6; := [] ¥(i,j). We also define the notation
Bi(j) = €(i,3). We define a functor ev;G:%C@i — Jl by evg(F) = FS and for
a:F = G, evg(a) = ag. We let evgj denote the restriction and corestriction of
evg to B6i(j) and M(j) respectively. By composing with the natural injection of il
into J, we can consider evg,; to be a functor from 6;(j) to M(J\) Since M(J\) is
an abelian category, we can use the universal property of the Adelman abelianisation

—

to extend evg ; to an exact functor évg : B1(j) — M(]). These then combine to

—  —~

give us a functor evg : 6; — J.

Proposition 5.6.1. We can take évg to be evaluation at S.

Proof. We will show that evaluation at S is an exact functor from (g(i, j) to M(J)
for any j. Then since e/vs\,j is the unique up to equivalence exact extension of evg j,
it must be equivalent to evaluation at S. For simplicity of notation we work in
the non-fan Adelman abelianisation, since we are in essence dealing with a pair of

1-categories, and thus it is equivalent to the fan case.

Consider some short exact sequence in 8 (3),



Chapter 5: Wide Finitary 2-Categories 130

0 0 0
which we also notate as 0 — X 5 Y % Z — 0 for brevity. Since %i(j) is an abelian

category and f is monic, Im f =Y and so f = kerg. But by | | Theorem 1.1,
we thus have an explicit construction for ker g (up to isomorphism), namely
(TR g1 —z

g2 —1 y2 0
Yo Zy——=Y I DLy ——> 71 DY

(170)J/ (170)l l(o,l)
1

Yy — 2 v, —2 v

But the evaluation of this at S is

(y1)s 0 (g1)s (—21)s
(92)s (=1)s (y2)s 0
YoS & Zs 15 ® Z9 15 Y38
(1:0)i (170)l i(al)
Y,S (y1)s Y,S (y2)s YyS

and since ﬁ(J) is an Adelman abelianisation, this is the kernel of gs. Thus fg is

monic and since ﬁ(]) is abelian, im fg = ker gg.

It remains to show that gg is epic. But g is epic, and since %(J) is abelian, it is thus
a cokernel of some morphism h : W — Y. But again using [ ] Theorem 1.1 and
a similar procedure to above, we derive that gg is the cokernel of hg : WS — Y S,
and thus is epic. Therefore fg is monic, gg is epic and im fg = ker gg, and hence the

sequence 0 — XS S yS9 78 5 0is exact in ﬁ(J) and the result follows. [

Before continuing, we wish to define the action of the pro-2-category Pro(%?) on

— ~

Pro(Jt). We define this component-wise: since we have the action of € (i,j) on
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—~

M(1i), i.e. a bifunctor ev_(—) : €(i,j) x M(i) — M(j), we can take the pro-
functor Pro(ev_(—)) as the action by using a similar process to the definition of
a pro-2-category in Subsection 5.1.1. In particular, keeping S as above and taking

—

X = @ZXZ S PI‘O(C@i(j)), we have that XS = mZXZS S PI‘O(M(J))

Proposition 5.6.2. Pro(évg) is evaluation at S.

—

Proof. Let X = lim;X; € Pro(®i(j)). Then
Pro(6vsy)(Xi) = lim;(evs;(Xy)) = lim; X;8 = XS
by Proposition 5.6.1, and the result follows. O

We recall here a pair of results from | |, though we give the dual versions thereof:

Lemma 5.6.3 ([ | Proposition 8.11.4). Let 6 be a category equivalent to a small
category and let @ be a category. Then a functor F' : € — & has a pro-adjoint if

and only if it is right exact.

Lemma 5.6.4 (| | Proposition 8.11.2). Let 6 and @ be categories. Then a

functor F' : € — @ has a pro-adjoint if and only if Pro(F') has a left adjoint.

Proposition 5.6.5. Pro(evy) has a  left  adjoint, denoted

o~ —

[S,—] : Pro(Ml) — Pro(6;).

Proof. By construction évg is an exact functor, which by Lemma 5.6.3 is equivalent
to évg having a pro-adjoint, which by Lemma 5.6.4 is equivalent to Pro(évg) having

a left adjoint, as required. O

We are especially interested in [S,S], since we will show that [S,S] has the

—

structure of a coalgebra 1-morphism in Pro(6;(i)) when % is sufficiently pleasant.
An  element m  of Homy, ) (X,Y) acts as a  function

Hompro(%(i))([s, S, X) — Hom,, )([S, S],Y) via composition. But using the

B(1)
adjunction isomorphism, this can also be considered as a function

Hompro(ﬁ(i))(S,XS) — HomPro(ﬁ(i))(S,YS) via composition with mg.
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~

Proposition 5.6.6. /f ¢ is a locally wide weakly fiat 2-category and G, H € Pro(%),
Homy, | (FG,H) = Hompm(%;)(G, F*H) for any F' € €.
Proof. For a 1-morphism F' € (i, j), the evaluation and coevaluation 2-morphisms

a: FF* — 1j and § : 1; — F*F still exist in Pro(¢) and End, . (G) =

(%)
Endg(G) for any G € €, we still have that (« op idp) oy (idp o 5) = idr and
(idpxoga)oy (Bopidp+) = idp+, and thus F' and F* still form an internal adjunction

as required. ]

An immediate consequence is the following:

Corollary 5.6.7. Let ¢ be a locally wide weakly fiat 2-category, M a wide finitary

—

2-representation of € and X,Y € Pro(Jl). Then

Hompm(/ﬁ)(FX, Y) = Homp (X, F*Y)

(L)
for any F € €

Proposition 5.6.8. [S, S| has the structure of a coalgebra 1-morphism in Pro(‘%(i)).

Proof. We construct comultiplication and counit 2-morphisms for [S, S] analogously
to the proof of Lemma 3.3.1. For the comultiplication, by construction of the

adjunction we have an isomorphism of hom-spaces

Hom ([S,S],[S,S]) = Hom (S, Pro(evg)[S, S])

Pro(%(i)) Pro(M(i))

S, [S,5]S),

= Homp,, g5, (

with the equality following from Proposition 5.6.2. Let coevg : S — [S,S]S be the

image of id[g g under this isomorphism. We can thus form the composition

([S, S]coevg) o coevg € Hom (S,[S, S][S, S]S).

Pro(M(1))
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But again by the adjunction isomorphism,

Hom

proi(ay (5 [5: 8118, 819) = Homy, 2 (1S, 51,5, S][S, S)).

We take the coevaluation 2-morphism dg to be the image of ([S, S] coevg) o coevg.

For the counit 2-morphisms, we have the adjunction isomorphism

S, :ﬂ_lS) = Hom & ([S, S],:ﬂ_l)

Hom Pro(€(1))

S,S) = Hom

Pro@i(1)( Pro(M(1))

We thus take the counit 2-morphism eg to be the image of idg under this isomorphism.

Showing that dg and eg satisfy the coalgebra axioms is mutatis mutandis the

arguments given in Lemma 3.3.1, giving the result. O

Proposition 5.6.9. Let T € M(j). Then [S,T] is a comodule I-morphism over
(5, 5].

Proof. The proof is directly analogous to the discussion found directly after

Lemma 3.3.1. O

We denote the category of comodule 1-morphisms over [S,S] by
comodpro(@([S, S]), which we abbreviate to comod([S, S]) when it does not cause
confusion. Similarly to Section 2.5, we denote the corresponding 2-representation of

Pro(%?) by comod, . ([S,S]) or comod([S,S]). This allows us to define a

Pro(%)
functor © : M — comodpro(%;)([S, S]) given on objects by T' +— [S,T] and on
morphisms by f — [S, f]. We denote by Forgg : comodpm(@([é’, S]) — Pro(®)

the canonical forgetful functor.

Proposition 5.6.10. © s indeed a functor.

Proof. It is sufficient to show that [S, f] : [X,T] — [S,7'] is a morphism in

comodpro(%y)([S, S]) for any morphism f: T — T" in Jl. Specifically, the diagram
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S, 7] ———[S,T][S, 8]
[Svf}l \L[SvﬁoHid[S,S]
(S, T"] o 15, T[S, 5]

needs to commute. We will show this by showing that the images of the sides under

the adjunction isomorphism are equal.

For notation, let coevgr denote the image of idjgy) under its adjunction
isomorphism. Letting n be the unit of the adjunction and o the counit, we have

that np = coevgr, and given o € Hom ([S,T], F), the image of a under the

Pro(%)
adjunction isomorphism is given by ag o )7 = a5 o coevg . Similarly, the image of

f S Hompm(ﬁ) (T, FS) is 77[S,T] oy [S, f]

Under the transferral of the action in the previous paragraph, ([, flop id(g g)) ov pr

maps to
([S, flom id[S, S])s o [S, T] coevs ocoevsr = [S, fls,5)5 © [S, T| coevg o coevs T .

We wish to show that the diagram

coevg,

T —218,7]8 (S, T[S, 5]S

fl i[sﬁf]s l[sﬂ[s,sm
T/ coevg lﬁ’ T/]S [ [57 T/] [Sv S]S

[S,T] coevg
_—

S, T"] coevg

commutes. The right hand square does in fact commute, since M([S, f]) is a natural
transformation. For the left hand square, the image of coevgy of = 17/ o f under
the adjunction isomorphism is o(g 77 oy [S, 17 o f]. But by the triangle identities for
adjunctions, o(g 77 ov [S, 7 © —] = [S, =], and therefore the image of coevg v of
is [S, f], and the reverse isomorphism takes [, f] to [S, f]s o coevsr, giving the

required isomorphism.

Thus

S, flis,s15 © [S, T] coevs o coevsr = [S, T'] coevg o coevg pv of.

Similarly, pps oy [S, f] maps to (pr)s o [S, fls o coevgr, which again by the

commutativity of the left square above is equal to (p77)s o coevgr of. We thus
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wish to show that
(pr7)s o coevg i of =[S, T'] coevg ocoevgr of.

But using the adjunction isomorphism and the definition of p7/, we have that
(S, T"] coevg o coevgr — prp — (pr)s © coevg v,

and the result follows.

O

Definition 5.6.11. We define the image of JMl in comod([S,S]) to be the full
subcategory [S, ] of comod([S,S]) with objects (those objects isomorphic to)
{([S, T, pr) € comod([S, S])|T € AL}. Similarly, we define [S, 4L(1)] to be the full
subcategory of comod([S,S]) with objects (those objects isomorphic to)

{([S, T}, pr) € comod([S,S])|T € M(i)}.

By definition the image of © is contained in [S, #L]. Further, we can give [S, /L] the
structure of a locally wide finitary 2-representation [S, M] of € by setting [S, M](i) =
[S, (1)1, (1S, M](F)([S,T]) = [S,M(F)T] and ([S, M](e))r = [S, M(e)7]. For

the rest of this section, assume that % is a locally wide weakly fiat 2-category.

Proposition 5.6.12. O defines a morphism of 2-representations of € between M

and comod([S, S]).

Proof. We mirror the proof of | ] Lemma 4.4. We will first show that

~

[S, FT| = F[S,T] for any F' € €(1,j). Indeed, for any G € Pro(¢’)(1, j) we have

Homy, .z ([S, FT],G) = Homyp, 4 (FT, GS)

%) ()

= Homyp, . iy (T, F*GS)

= HomPrO((g)([S, T), F*Q)

= Hompro(lg)(F[S, T],G)
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from which the claim follows.

The rest of the proof is a direct generalisation of the remainder of the proof of

[ | Lemma 4.4. O

~

Proposition 5.6.13. For any F' € Pro(6(1)), [S, F'S] = FIS,S] is a cofree S, S]-
coalgebra; that is, for any comodule X € comod(][S,S]),

Homcomod([S,S])(Xv F[Su S]) = HOIl’lP X, F)

I‘O(((o;)(

Proof. We  construct the relevant adjunction. We again  define

~

Forg : comod([S,S]) — Pro(6(i)) to be the forgetful functor. Let
evig,s] - Pro(6(i)) — comod([S, S]) be defined for a 1-morphism F € Pro(6(i))
as ev[S,S|(F) = (F[S,S],idp oy dg) and for a 2-morphism 8 : F — G as
evis,s](8) = B o idss). This is indeed a functor because the diagram

F[S, 8] — 2215 pig §[s, 8]

Bomid(s, s l iﬁOHid[s,S] (5,5]
G[S, 5] — G[S, S][S, 5]
idgopds

clearly commutes. We claim that ev(g g is a right adjoint of Forg, from which the

result follows immediately.

To see this is indeed an adjunction, we will define the unit and counit. The unit
Nt Ideomod((s,s)) — €V(s,s) o Forg is defined by nx ,,) = px, and the counit by

o : Forgoevigg — Id by o = idp o €5. The left triangle identity is thus

Pro(%)
expressed for X € comod([S,S]) by x Fo—rg(pXLX[S’ 9] Jldxemes % which
is the composite (idx o €s) o px, which is idx by the comodule axioms. The right

triangle identity is expressed for F' € Pro(%(i)) by

id OHESOHid[S,S]

FS, S] — 1% pis, ][5, 5] S s, )

i.e. the composite
(idp oy (es o idg 5))) ov (idp o 65) = idp o ((es o id(g,g)) ov ds),

which is equal to idp oy id[5 g by the coalgebra axioms. We are thus done. 0
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Theorem 5.6.14. © define an equivalence of 2-representations of € between M and

15, M.

Proof. We mirror the proof of | ] Theorem 4.7. By definition, O is
essentially surjective when corestricted to [S, ], and it remains to show that it is

fully faithful. To start, consider F'S,GS € Ml for F,G € €. Then we have

Homomod((s,57) (O(F'S), O(GS)) = Homeomod((s,s)) (F[S, ST, G[S, S])
~ Homp,, 5 (FIS, 51, G)
> Homy,, (1S, 5], F*G)
~ Hom 4 (S, F*GS)

= HOIHJM(FS7 GS)

But now since M is a transitive 2-representation, for any 17,15 € Jl there exist
some 1-morphisms F,G € % such that T} is a direct summand of F'S and 15 is a
direct summand of GS. Thus by pre- and post-composing with injection and
projection morphisms, and using that © preserves biproducts, we derive that
Homomod((s,s)) (©(T1), ©(T2)) = Hom 4 (T1,T2). Hence © is fully faithful, and the

result follows. O

5.7 Application: Bound Path Algebras

Let A be a connected non-unital self-injective bound path algebra over k. We notate
by V4 the set of vertices of the underlying quiver of A, and without loss of generality
we notate that V4 C Z. For our purposes, we also assume that every element of V4
has finite total vertex degree. In this case, A has the following property: A has an
orthogonal set of primitive idempotents {e;|i € V4} such that A = ' @ e;Aej, and
such that Ae; and e;A are finite dimensional over k for all 7,5 € ‘Z/Z.ev\?Vithout loss

of generality the e; are the paths of length 0.

As an example, consider the algebra A,;, stemming from the infinite zigzag quiver;
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that is, the quiver with vertices labelled by the integers and arrows a; : « — ¢+ 1 and
b; 1 i+ 1 — i such that a® = b?> = 0 and ab = ba. In this case, V4 = Z, and Agig is

generated by e;, a; and b; subject to the following conditions:

e {e;|i € Z} is a set of idempotents fitting the above property;
e a; € ejp1Az06i; by € e;Azgei41 for all 4;

e a2 =02=0 and ab = ba.

We have a pleasant classification of the finite dimensional projective modules of A:

Proposition 5.7.1. Every indecomposable projective module of A-mod is of the form

Ae; for some i € A.

Proof. It is clear that each Ae; is an indecomposable projective module, and thus
it suffices to show that they exhaust the indecomposable projective modules. Let
M be some finite dimensional A module. Since it is finite dimensional, it has a
composition series {0} = My C My C --- C M, = M. Let Ly = M;/M;_; be
the tth (simple) composition factor. Let i; € V4 be such that e;, Ly # 0. Then we
have surjections Ae;, — L; and M; — L;. By the universal property of projective
modules, this implies there is a homomorphism Ae;, — M; making the resulting
diagram commutative.

These morphisms compile to form a surjection ¢ : ET} Ae;j, — M. In particular, if
M is bijective, then ¢ is a split epimorphism by theti;iversal property of projective
modules (applied to M), and hence M is a direct summand of GnB Ae;,. The result
follows. - O

As an example, in A,;,-mod, the indecomposable projective A,iz¢€; is four-dimensional

as a k-vector space, with a canonical basis {e;, a;, b;—1,a;b; = bi_1a,_1}.

From the prior paragraphs, it follows that the indecomposable projective (A-A)-
bimodules are of the form Ae; @y ejA for 7,5 € V4. For compactness of notation,

we set A;; = Ae; @y e;A. This allows us to construct a 2-category %4 as follows:
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e %4 has one object, which we associate with (a small category equivalent to)

A-mod.

e 1-morphisms are isomorphic to direct summands of direct sums of the identity
and of functors isomorphic to tensoring with Ae; ®y e;A for 4,5 € V4. For

compact notation, we set Fj; = Ae; @ ;A Q@4 — = Ajj @4 —.

e 2-morphisms between [Fj; and F,,, are considered to be bimodule
homomorphisms. For 2-morphisms to or from the identity, we consider the
identity as tensoring with A, and take bimodule homomorphisms in this case
(these are technically bimodule homomorphisms in (A-A)-biMod, as A is not

necessarily a finite dimensional A-module).

We will not be working directly with €4 because the endomorphism hom-space of the
identity is not in general necessarily finite dimensional, and indeed is not necessarily
of countable dimension. For example, let I' be a quiver on Z where there is one arrow
i — i for each i € Z and no other arrows. Define A = kI'/kI's. Then the image of
each e; under a bimodule homomorphism ¢ : A — A is independent of the image of
any other ¢;, and as dime; Ae; = 2, this implies that dim Endg, (1;) > 2/Zl. While
this can be viewed as a somewhat degenerate example, we will also show later that the

same inequality holds for Endrg) . :ﬂ.i , thOUglI the reasoning is more complicated.
A
zig

To fix this, we introduce a generalisation of the €4 x definition given in Section 3.1:

Definition 5.7.2. Let %4 be as defined above. Let Z denote the subalgebra of
Endy, (1.) generated by idg, and by any 2-morphism that factors over a non-identity
1-morphism. Let X denote a local subalgebra of Endy, (1,) containing Z. The 2-
category 4 x is defined to have the same objects, 1-morphisms and 2-morphisms

as ¢4 with the exception that Endy, | (1) = X.

Proposition 5.7.3. €4 x is a Krull-Schmidt 2-category.

Proof. €4 x is an additive idempotent complete 2-category by definition. Since Fj;
is indecomposable and Endg, , (Fj;) is finite dimensional, Endg, , (Fi;) is local by

a standard argument. We chose Endy, (1) to be local, completing the proof. [
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We will show that such €4 x exist for certain classes of path algebras.

Proposition 5.7.4. Let A be a bound path algebra with underlying quiver T" 4. Then
rad A is generated as an ideal by the equivalence classes of all paths in I" 4 of length

at least 1.

Proof. Fix a basis 9% of A such that e; € % for all i € V4. The classification of

rad A in the statement is equivalent to saying that rad A = (] A\ E;, where E;
i€z

is the set of all elements of A that have a multiple of e; as a summand. It is thus

sufficient to show that the A\ E; are precisely the maximal proper left ideals of A.

If A\ E; is a left ideal of A, it is maximal since if A\ E; C J for some ideal J,
then there is some e; + a € J with e; not a summand of a. But then by definition
a € A\ E;, and thus a € J and hence e; € J, and we must have that J = A. It

remains to show that A\ E; is a left ideal.

Leta € Aand r € A\ E;. A\ E; is clearly a subspace of A. Assume for contradiction

that ar ¢ A\ E;. Then ar = e; + b for some b. Set » = > rj, with 7, € ejAey,

jkeZ
and a = ) a;y with a, € e Aey,. Thene; +b= > a;nrji. Hencee;is a
I,mezZ 7.k, l,meZ

summand of some a;,,,7;. This is only possible if k = j =1 =m = i. But ¢; is not
a summand of 7, and since A = kI'4/I for I C (kI 4)2, it follows that e; cannot
be a summand of a;r;, a contradiction. Hence ar € A\ E; and hence A\ E; is a left

ideal of A.

Finally, let I be some maximal proper left ideal of A. If e; € I for all ¢, then for
anya € A, a =a i €i; for some finite collection of the ¢;, and hence I = A, a
contradiction. But fc;elzn there is at least one i such that ¢; ¢ I, and from the above
reasoning it follows that I C A\ E;, and hence I = A\ E; as I is maximal. The

result follows. O

Corollary 5.7.5. Let A be a bound path algebra with underlying quiver I 4. Then
rad® A is generated as an ideal by the equivalence classes of all paths in T 4 of length

k. In particular, there is some integer m such that rad™ A = 0.
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Proof. For the first claim, we proceed by induction. Proposition 5.7.4 provides the
base case. Assume that rad®*~! A is generated as an ideal by the equivalence classes of
all paths of length k — 1. It immediately follows that rad® A contains the equivalence
classes of every path of length k. Conversely, let a € rad* A. Then a = f: 7;b;
for some m, where r; € rad A and b; € rad*! A for all i. But then a is a :Jlm of
elements of the form axp1ypr_12, where x,y,z € A, pp is (an equivalence class of)
a path of length 1 and pi_1 is (an equivalence class of) a path of length £ — 1. In
particular, this summand can further be written as a sum of elements of the form

vprw, where py is (an equivalence class of) a path of length k. The first result

follows.

For the second statement, we note from the definition of A that A = kI'4/I with
(kI'4)r C I for some finite k. That is, the equivalence class of every path of length

at least k is zero, and the statement follows. O

Proposition 5.7.6. Let A be a bound path algebra and let Z C End(4-4)-bimod(A)
be as defined in Definition 5.7.2. Then Z is a local k-algebra.

Proof. If V4 is finite then this is the finitary case which has already been proved in
[ | Section 4.5. Therefore assume V4 = Z. We claim that the subspace I
generated by all bimodule endomorphisms that factor over some A;; is a maximal
proper left ideal of Z. If I is a proper left ideal, it is immediately maximal - if
J D I, then there must be an element of the form id4 +v € J for v € I. But then
v el =wveJ, and therefore idy € J and J = Z. That [ is an ideal is clear - by
definition it is closed under addition, and composing an endomorphism that factors
over some A;; with another endomorphism still results in an endomorphism that
factors over the same A;;, and hence I is closed under composition with elements of

Z. It remains to show that I is proper.

Assume for contradiction that id 4 is a member of I. Then without loss of generality

S
idg = > moy forop : A — A;j, and 7 © A, — A for ij,5; € Z and s finite.
=1

S
We can therefore construct the column morphism o = (07)1=1,..s : A = @ Aij,
=1
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S
and the row morphism 7 = (7);=1,..s : @ Ajj, = A such that 7o = id4. In
=1
particular, this implies that o; is a split monomorphism, and thus in particular a
S
monomorphism. This is a contradiction since A is infinite dimensional and @ A;,;
=1

is finite dimensional. Therefore I is indeed proper.

We now claim that it is the unique maximal left ideal. For let J be a maximal proper
left ideal of Z. If J = I, then it must contain an element of the form ids + v for
v € I. But since v is nilpotent (say with nilpotency degree k), (kil(—v)j)(idA—i—v) =
idg 4+ (—1)kv¥ = id4 € J, a contradiction. Hence I is the ur?i_q(:Je maximal proper

left ideal of Z and we are done. O

Proposition 5.7.7. Assume that A-mod is a Frobenius category. Then €4 x is a

(locally) wide weakly fiat 2-category.

Proof. If V4 is finite, then the statement has been proved in [ | Lemma 45 and
[ | Section 4.1. Therefore asssume V4 = Z. Let * denote the unique object in
©a,x. It is immediate from the definitions that €4 x (x,*) is additive and k-linear.
Since the isomorphism classes of Fj; are in bijection with Z x Z and there is a single
isomorphism class of identity 1-morphisms, there are countably many indecomposable
1-morphisms up to isomorphism. We proved in Proposition 5.7.3 that €4 x is Krull-

Schmidt, and thus €4 x is a locally wide finitary 2-category.

To show that €4 x is weakly fiat it is sufficient to show that each Fj; is part of an
internal adjunction. Since A-mod is a Frobenius category, by Proposition 5.7.1 it
follows that the dual of any Ae; in A-mod is isomorphic to Ae,(; for some
permutation o of Z, which we refer to as the Nakayama bijection. We claim that

the right internal adjoint of Fj; is Fy To show this, we mirror the proof of

)i
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[ ] Lemma 45, adjusted to our setup. Given some M € A-mod, we have that

Hom g moa(Ae; @k ejA, M) = Homy. moa(ej A, Homa. moea(Aei, M))
= Homy mod (€5 A, e; M)
>~ Homye mod(€; A4, ;A @4 M)
=~ Homye mod (€54, k) @k ;A @4 M

= (ejA)" @k e;A®a M.

But as noted, (e;A)* = Ae,(j), giving the claim. O
By [ | Remark 4, A,;z-mod is a Frobenius category. We consider the 2-category
A, explicitly by examining the bimodule homomorphisms:

A morphism ¢ : F;; — F,,, must take e; ®e; to an element of ¢; A i€, @ €, Azige;.
Thus, HomggAZig (Fij, Fan) = 0 whenever [i —m| > 2or [j —n| > 2. If [i —m| =
|7 —n| = 1, then the hom-space is 1-dimensional, if |i — m|+|j —n| = 1 it is
2-dimensional and if [ — m| = |j — n| = 0 then the hom-space is 4-dimensional.
Similarly, consider a bimodule homomorphism ¢ : Az — Ajge; Qx ejAzig. Given
some idempotent ey, we have that epp(er) = p(er) = p(ex)er, and thus p(ex) €
erAzigei Qu ejAziger. Thus if [i — j| > 2, at least one of exAjige; and e;Azigey, is
zero, and hence HomchZig(]l*,Azigei QK €jAsg) = 0. If |i — j| = 2 the hom-space
is 1-dimensional, if |i — j| = 1 the hom-space is 4-dimensional and if i = j the

hom-space is 6-dimensional.

A bimodule homomorphism ¢ : A,ige; ®k ejAsie — Ayig is determined by its image

on e; ® ej, and since e;p(e; ® ej)e; = @(e; ® ej), p(e; @ ej) € e;Asgej. Thus if

li —j| > 2, Homg, (Fjj,15) =0. If |[i — j| = 1 the hom-space is 1-dimensional,
zig

and if ¢ = j the hom-space is 2-dimensional.

Finally, we examine End(Azig_Azig)_biMOd(Azig) and Z,;. If we have a bimodule
endomorphism ¢ such that ¢(e;) = e; for some i, then ¢(a;) = a;p(e;) = a;, but

v(a;) = p(ei+1)a; which implies that ¢(e;11) = e;+1. A similar argument applies
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for b; and e;_1, and therefore by bidirectional induction we derive that ¢(e;) = e;

for all i« € Z, and hence ¢ = id 4.

If v(e;) = bia;, then p(a;) = 0 and thus (e;+1)a; = 0, and thus p(e;+1) is either
(a scalar multiple of) b;11a;4+1 or 0. However, this choice can be made freely, and
it follows that a basis of End(Azig_Azig)_biMOd(Azig) consists of the identity and of
homomorphisms of the form ¢y, where I C Z and ¢;(e;) = bia; if i € I, and 0
otherwise. The set of these ¢y is thus in bijection with the powerset of Z, and hence

Endg,  (1;) has uncountable dimension.
zig

Regarding Zig, we can write ¢;, as o;7;, where 7; : Agig = Agiglit1 Ok €ir1 A
is given by 7i(e;) = 0i;b; ® a;, and 0y @ Ajigeit1 Rk €ir14sg — Asig given by
oi(ei+1 ® eiy1) = e;iy1. Consequently, Z,i, is generated by id4 and by those ¢
where I is a finite subset of Z. By Proposition 5.7.6, Z is a local algebra and

therefore €4, 7 is a locally wide weakly fiat 2-category.

In general,
Aij @4 Ay =2 Ae; @y ejAey, @y e A 2 (Ay) P dmeider,
~ pPdime;Aey .
It follows that Fj; o Fyy = F} . In particular, the Z-cells of €4 are of

the form &£; = {Fj;|i € Z} (and £, = {1.}) while the Z-cells are of the form
R; = {F;;|j € Z} (and R, = {1.}). It thus follows that F}; ~ oz Epy for any
i,j,m,n € Z, and hence there are two Z-cells: 7, = {1.} and 7 = {F};|i,j € Z}.
But since it is clear that 1, > g F;; for any i,j € Z, it follows that, on €4 x, the
# partial order agrees with the & partial order, and the _#-cells are precisely the

P-cells. Further, since £; N R; = {F};}, both _#-cells are strongly regular.

This allows us to construct the cell 2-representations corresponding to €4, x. Choose

some j € Z and consider the Z-cell Z;. Then

add{FX|F € ¢,X € Z;} = add{F,, Fijlm,n,i € Z} = add &;.
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We denote this 2-representation of 4’4 by IN;. To recall some notation, we define
the bimodule homomorphism ¢, 5, : Aj; = A by pap(ei ® €j) = a®b. These ¢4

span Hom4_4)-bimod (Aij, Ax1). We have the following useful result:

Lemma 5.7.8. The maximal ideal F of N; that is €4 x-stable and does not contain
any identity morphism for non-zero objects is generated as a collection of k-vector

spaces by the set {¢,|b € rad ejAe;}.

Proof. The proof of this result generalises mutatis mutandis from the proof given for

Proposition 3.2.8. ]

In the case of €4,,,, rad e; Ae; is a 1-dimensional vector space spanned by a;b;.

zig!

We denote the cell 2-representation corresponding to &; by C;. In this case, we
will show that we can give a stronger result that Proposition 5.6.8. Specifically, we
will show that for an object S € C;(i), [S,S] is a coalgebra 1-morphism in €4 x
(or more precisely, its image under the forgetful functor Forgg : comod([S, S]) —
Pro(ﬁ,\x) lives in the image of @4 x under the canonical injection 2-functor). Let

Bax = Cax(x, %)

Proposition 5.7.9. The functor ev; : 64 x — Cj(x) given by ev;(F) = FF}; and
evj(a) = a oy idp;; is right adjoint to the functor Forg : C;(*) — 64 x given by

Forg(F') = F and Forg(a) = a.

Proof. We will prove the adjunction by constructing the unit and counit adjunctions.
By injection-projection arguments, it is sufficient to consider the components of the
counit and the unit on indecomposable 1-morphisms/indecomposable objects. By a
similar argument to the working in the proof of Proposition 3.2.8, Homg, (Fij, 1)
consists of homomorphisms of the form ¢, : A;; — A where @,(e;®e;) = a € e;Ae;.
On the other hand, Homcj(FZ-j, F};) consists of homomorphisms of the form Paye;
Aij — Ajj where g .. (e; ® ;) = a®@ej for a € e;Aej. Similarly, the morphism
space Homcj(Fij, Fy, Fj;) consists of linear combinations of morphisms of the form

Pa,be; Where pope.(e;®ej) =a®@b®e; for a € e;Aey, and b € e Ae;. In addition,
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again by a similar argument to the working in the proof of Proposition 3.2.8, the
morphism space Homg, . (Fij, Fyi) consists of linear combinations of morphisms of

the form ¢, 5 : Ajj — A where g (e, ®ej) = a®b with a € e;Aey, and b € ¢ Ae;.

We define the unit morphisms 7, € Homcj(*)(Fij,Eijj) as Mkl = Pe;eje;- FOr
the counit €, we first define €7, € Homch,X(Fjj,]l*) as €1, = @¢;. We then define
€r, € Homg, \ (FrFjj, F) as €p, = idp, oy €1,. It is straightforward to show

that these satisfy the unit/counit axioms, and the results follows. O

Corollary 5.7.10. Let C; be a cell 2-representation of €4 x. Then there exists
some object S € [ (Cj(i)) such that the restriction of Forgg to [S, [] (C;(1))]
i€6a,x i€?
factors over [] % x(1,]).
j€Ca,x
Proof. By Theorem 5.6.14 for any S € 6; there is an equivalence of 2-representations
between C; and [S,M], where [S, —] is the right adjoint of Pro(evg) as defined

previously. By Proposition 5.6.2, Pro(evg) is evaluation at S. If we set S = Fjj,

then it follows by Proposition 5.7.9 that [S, 6;] = Forg(6;) C 64 x as required. [

We can say more. To begin, we present the generalisation of [ ] Corollary

4.10 to the locally wide fiat case:

Proposition 5.7.11. Let € be a locally wide weakly fiat 2-category, and let i € €.
Denoting by €; the endomorphism 2-category of i in &, there is a bijection between
equivalence classes of simple transitive 2-representations of ¢; and equivalence classes

of simple transitive 2-representations of € that have a non-trivial value at i.

Proof. The (injective version of the) proof given in | | assumes only the
existence of the equivalence of 2-representations between M and [S, M], given here
in Theorem 5.6.14. Beyond that we only need that for S € M(i), [S,S] lives in

Pro(‘fA;E i)), which remains true by definition. O

We can now generalise Lemma 3.3.8 to our setup:
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Theorem 5.7.12. Any simple transitive 2-representation of ¢4 x is equivalent to a

cell 2-representation.

Proof. We again consider the larger 2-category 64« x xk, defined mutatis mutandis
as in the proof of Lemma 3.3.8. The endomorphism 2-category %, of i is identical
to that found in the referenced proof, and thus in particular all simple transitive
2-representations of it are equivalent to the cell 2-representation on it. Finally, any
1-morphism Ae; @ e; A of €4 x still factors over *, and hence the rest of the proof

of Lemma 3.3.8 generalises without issue. O

Corollary 5.7.13. Let M be a simple transitive 2-representation of €4 x. Then
there exists some object S € JMl such that the restriction of Forgg to [S, M| factors

over 6.

Proof. This s a direct consequence of combining Corollary 5.7.10 and Theorem 5.7.12

O

5.8 Application: Soergel Bimodules

We give a second application of this theory by demonstrating that the 2-category
associated to a collection of Soergel bimodules is in fact a (locally) wide finitary
2-category. For the purposes of this section, assume that k is an algebraically closed

field of characteristic 0.

5.8.1 Soergel Bimodules: the Definitions

We begin by defining Soergel bimodules, which were originally defined in [ ],
though we draw our definitions here more from the summary paper | ], with

some alterations for our specific case.

Definition 5.8.1. Given Z-graded algebras A and B, we denote by

(A-B)- zbiMody , the category whose objects are graded (A-B)-bimodules and
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whose morphisms are homogeneous graded bimodule homomorphisms of degree

ZEro.

Definition 5.8.2. A (finite) Coxeter matrix M is a symmetric square matrix with
entries in Z* U {oo} where the diagonal entries are 1 and the non-diagonal entries

are at least 2.

Definition 5.8.3. A Coxeter system is a pair (W, S) where W is a group and S is a

finite subset such there is a presentation of W of the form

(s € S|(sr)™™ = e whenever m;; is finite.)

where M = (mg,)sres is a Coxeter matrix. The elements of S are called simple
reflections and any element w € W that is conjugate to some s € S is called a

reflection.

There does exist theory for the generalisation where S may not be of finite cardinality
which could be of interest in the 2-representation setting, but that is outside the scope

of this thesis.

Definition 5.8.4. Let (W, S) be a Coxeter system and let © € W. An expression of
x is a tuple (s1,s2,...,8,) € S™ for some finite n such that z = sys2...s,. This
expression is reduced if n is minimal, and in this case we call it the length of =z,

denoted I(z).

Definition 5.8.5. Given a subset I C S, we denote by W the subgroup of W
generated by I. This is generally called the parabolic subgroup associated to I. By
construction, (W7, I) is a Coxeter system. If W7 is a finite subgroup, we say that [ is
subgroup-finite. If I is subgroup-finite, we denote by w; the unique longest element

of W[.

Note that [ | calls subgroup-finite subsets ‘finitary’ subsets, but this presents

obvious confusion issues for this thesis, leading to the alternate nomenclature.

Definition 5.8.6. For subsets I,J C S let W\ W/W denote the set of double
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cosets of W with respect to W; and W. For a double coset p € W; \ W/W, we

let p_ denote the unique element of minimal length in p.

Definition 5.8.7. Let V' be a (k-)representation of W. For a subset X C W, we
let VX denote the subspace of V invariant under every element of X. We generally

notate V{%} =: V¥ for simplicity.

Definition 5.8.8. Let V be a finite dimensional representation of W. We say V is

a reflection faithful representation of W if:

e The representation is faithful.

e codim V¥ =1 if and only if w is a reflection.

By [ | Proposition 2.1, any Coxeter system has a reflection faithful
representation. Let R = S(V*) be the symmetric algebra on V*, graded such that
V* is in degree 2. There is a natural action of W on R given by
w(f(v)) = f(w™v) forany w € W, f € R and v € V. Thus given any subset
I C S or element w € W we can define R* and R’ to be the subalgebras of R
invariant under w and W respectively. We note that, since k is of characteristic 0,

R is a graded-free R'-module for any I C S. We recall the following result from

[Will1]:
Proposition 5.8.9 (| | Lemma 4.1.3). For I C J subgroup-finite subsets of S,
R! is a finitely generated graded free R”-module. In addition,

Homp, noa (R [H(wr) — U(w,)], R”) 2 R [I(wr) — l(w,)]-

Definition 5.8.10. Let I,J C S and let p € W;\ W/W;. Set K = INp_Jp_~'.
The standard module indexed by (I,p,J), which we notate IR;, is an object of

(R'-R7)- zbiMody  that as a ring is equal to RW. The bimodule actions are given

by:

e rm=rmforreR! andmeIRg;
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o mr =m(p_r) forr € r’/ and m € 'Ry

Of primary interest for us is the case where the double coset p contains the identity

e. In this case, we drop the p from the notation and simply write 'R”.

Definition 5.8.11. Let I, J, K C S be subgroup-finite sets. We define two functors
based on J and K, both (following | ]) notated as “9X based on the following

conditions:
e If J C K then we have
T9K  (R'-R7)- zbiMody o — (R'-R")- zbiModz
given on objects by Y95 (M) = Mg« [I(wy) — I(wg)] with the obvious action

on morphisms.

e If K C J then we have
T9K  (R'-R’)- ,biMod, o — (R'-R¥)- ;biMody 4
given on objects by Y95 (M) = M ®@ps RE and on morphisms by 79X (f) =

f®idgx.

o If K =J, we set 79X to be the identity functor on (R/-R”)- zbiModz .

Since the definition of 0% has mutually exclusive components, there is never any
ambiguity in its use, and this multi-part definition allows for more compact definitions

later.

This allows us to define the bicategory of singular Soergel bimodules:

Definition 5.8.12. The bicategory of singular Soergel bimodules %), = %y,s)p has
objects enumerated by the subgroup-finite subsets I of S. We abuse notation by also
referring to the object associated to I C S as I. The hom-categories A(I,J) are

the smallest additive subcategories of (R7-R!)- zbiMody  subject to the following:
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1. By(1,J) is closed in (R’-R')- ;biMody , under taking isomorphisms, direct

summands and Z-grading shifts.
2. 'R" is a 1-morphism in %, (I, 1) for all objects I € %,.

3. If B€ By(I,J), then 795 (B) € %,(I, K) whenever this is defined (i.e. when

K is subgroup-finite with either K C J or J C K).

We take composition of 1-morphisms and horizontal composition of 2-morphisms
to be tensor products over then common algebra (i.e. for B € #(1,J) and C €

B(J,K), CoB=B®gs Cc PB(,K)). We note that 1; = RI.

As noted in Section 1 of | |, this is equivalent to setting %,(I, J) as the smallest
full additive sub-category of (R!-R”)- zbiMody  containing all objects isomorphic

to direct summands of shifts of objects of the form
RD ®pn R @Rt Qpina RIn

withI =1, CJ; DIy C--- CJ,_1 DI, =J subgroup-finite subsets.
Definition 5.8.13. The 2-category of singular Soergel bimodules % = By s) is

defined as a 2-category biequivalent to %,.

The endomorphism sub-2-category % of the object & is referred to as the 2-category

of Soergel bimodules.

5.8.2 Soergel Bimodules: the Structure

We now demonstrate that the 2-category of singular Soergel bimodules is in fact a
locally wide fiat 2-category. We first give a special case of [ | Lemma 6.24,

adapted to the language used in this thesis:

Lemma 5.8.14. The hom-category B(2, ) is a Krull-Schmidt category.
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The proof of | ] Lemma 6.24 adapts without issue to any other hom-category

in 4, giving the following lemma:
Lemma 5.8.15. For any objects I and J of B, A(I,J) is a Krull-Schmidt category.

Lemma 5.8.16. The 2-category % is a locally wide finitary 2-category.

Proof. Since we took the Coxeter system (W, S) such that S is a finite set, # has
finitely many objects and thus certainly at most countably many objects. Since for
any subgroup-finite I and J %,(I, J) is a sub-2-category of (R!-R”)- zbiMody it is
certainly additive and k-linear with countable dimension hom-spaces of 2-morphisms,

and hence so is #(1,J).

There are only countably many (R!-R”)-bimodules of the form
R" ®@pn R” @poy - ®@po,_y R

forl =0L c J1 DIhb C - C Jy1 D I, = J subgroup-finite subsets, and
hence there are only countably many grade-shifts of these. Since each of these
has only finitely many indecomposable direct summands, it follows that %,(I, J)
(and hence #(I,J)) has countably many isomorphism classes of indecomposable
1-morphisms. By construction the identity 1-morphisms are indecomposable, and
finally by Lemma 5.8.15 the hom-categories are Krull-Schmidt. This completes the

proof. O

In fact, we can say more:

Lemma 5.8.17. The 2-category % is a locally wide fiat 2-category.

Proof. It is a consequence of [ | Proposition 5.10 that R® s RQp— € AB(D, D)
is self-adjoint for any s € S, and it thus follows that the endomorphism 2-category
of & is locally wide fiat. That the auto-involution extends to the whole of % comes
from using a straightforward generalisation of | | Proposition 5.10 to the singular

Soergel bimodule setup. O
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This is a much wider array of Soergel bimodule 2-categories that can be studied
than under simply finitary 2-representation theory. To give a clearer view of this, we
will relate the Soergel bimodules to the Coxeter-Dynkin diagrams associated to the
Coxeter groups. We will not discuss Coxeter-Dynkin diagrams in detail (see [ ]
Chapter 5 for a detailed study), but briefly they are graphs whose edges are labelled

with positive integers which fully classify Coxeter groups.

Original finitary 2-representation theory can only cover finite Coxeter groups. These
are classified by three infinite families of Coxeter-Dynkin diagrams (called A,, B,
and D,,), as well as a small finite set of exceptional diagrams. The wide finitary
theory detailed herein instead applies to any Coxeter-Dynkin diagram with finitely
many nodes, including not only the affine Coxeter-Dynkin diagrams, but also a wide

array of wild Coxeter-Dynkin diagrams.

Theorem 5.8.18. Let # = PByy,5) be the 2-category of singular Soergel bimodules
associated to a Coxeter system (W, S) with S a finite set. Let M be a transitive
2-representation of 9. Then there exists a coalgebra 1-morphism C' in Pro(@)
such that M is equivalent as a 2-representation to a subcategory of the category of

comodule 1-morphisms over C'.

Proof. Lemma 5.8.17 gives that £ is a locally wide fiat 2-category, and we can thus

apply Theorem 5.6.14 to get the result immediately. O
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