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Abstract  

 

Purpose 

Dynamic susceptibility-contrast magnetic resonance imaging (DSC-MRI) is widely used 

for cerebral perfusion measurement, but dependence on operator input leads to a time-

consuming, subjective, and poorly-reproducible analysis. Although automation can 

overcome these limitations, investigations are required to further simplify and accelerate 

the analysis. This research focuses on automating arterial voxel (AV) and brain tissue 

segmentation, and model-dependent deconvolution steps of DSC-MRI analysis.  

Methods 

Several features were extracted from DSC-MRI data; their AV- and tissue voxel- 

discriminatory powers were evaluated by the area-under-the-receiver-operating-

characteristic-curve (AUCROC). Thresholds for discarding non-arterial voxels were 

identified using ROC cut-offs.  

The applicability of DSC-MRI time-series data for brain segmentation was explored.  

Two segmentation approaches that clustered the dimensionality-reduced raw data were 

compared with two raw−data-based approaches, and an approach using principal 

component analysis (PCA) for dimension-reduction. Computation time and Dice 

coefficients (DCs) were compared.  

For model-dependent deconvolution, four parametric transit time distribution (TTD) 

models were compared in terms of goodness- and stability-of-fit, consistency of perfusion 

estimates, and computation time.  

Results  

Four criteria were effective in distinguishing AVs, forming the basis of a framework that 

can determine optimal thresholds for effective criteria to discard tissue voxels with high 

sensitivity and specificity.  

Compared to raw−data-based approaches, one of the proposed segmentation 

approaches identified GM with higher (>0.7, p<0.005), and WM with similar DC. The 

approach outperformed the PCA-based approach for all tissue regions (p<0.005), and 

clustered similar regions faster than other approaches (p<0.005).  
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For model-dependent deconvolution, all TTD models gave similar perfusion 

estimates and goodness-of-fit. The gamma distribution was most suitable for perfusion 

analysis, showing significantly higher fit stability and lower computation time.  

Conclusion 

The proposed methods were able to simplify and accelerate automatic DSC-MRI analysis 

while maintaining performance. They will particularly help clinicians in rapid diagnosis 

and characterisation of tumour or stroke lesions, and subsequent treatment planning and 

monitoring.  
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Chapter 1: Introduction 

 

1.1. Background 

 

Since its development around the late 1980s as a T2/T2
*-weighted perfusion imaging 

modality, dynamic susceptibility-contrast magnetic resonance imaging (DSC-MRI) has 

continued to evolve and extend its application into the diagnosis, management, and 

treatment monitoring of different brain diseases (Jahng et al., 2014, Essig et al., 2012, 

Calamante, 2012, Cha et al., 2001, Vonken et al., 2000, Mouridsen et al., 2006a, 

Mouridsen et al., 2014). It is the current standard for quantifying cerebral perfusion, 

which is defined as the rate of blood delivery to brain tissue. Cerebral perfusion 

determines the transfer of oxygen and nutrients, as well as the removal of waste through 

blood in brain capillaries. It is therefore a key parameter for assessing tissue viability and 

vascularity, brain function and oxygen supply, as well as for identifying and 

characterising lesions.  

Perfusion measurements can provide clinicians with crucial insight about the 

identification, characterisation, and progress of mass lesions (Welker et al., 2015). 

Abnormalities in perfusion parameters, such as cerebral blood flow (CBF), cerebral blood 

volume (CBV), mean transit time (MTT), can indicate pathologies like tumour, ischaemic 

stroke, moyamoya disease, intracranial neoplasm, haemorrhage, multiple sclerosis, and 

Alzheimer’s disease. For example, malignant tumours show high CBV resulting from the 

increased metabolic demand following angiogenesis (Essig et al., 2012). In high grade 

glioma, the immature and leaky vessels lead to an increase in the permeability parameters 

that measure the leakage from the intravascular to the interstitial space (Sourbron and 

Buckley, 2013). Regions like the ischaemic penumbra can be characterised by decreased 

perfusion, but with normal diffusion (i.e. the diffusion-perfusion mismatch) (Calamante, 

2012). For subjects with arterial abnormalities, such as stenosis, occlusion, or moyamoya 

disease, the rise in MTT (and corresponding fall in CBF) of the pathological regions 

assists diagnosis (Jahng et al., 2014).  

Cerebral perfusion information can be captured with several imaging modalities, such as: 

positron emission tomography (PET), dynamic contrast-enhanced computed tomography 
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(DCE-CT), and perfusion MRI. PET involves injecting a radio-labelled bio-compound, 

such as fluorodeoxyglucose, which emits gamma radiation to indicate the accumulation 

of the bio-compound in a region as a function of time. Its limitations include: low spatial 

resolution, exposure to ionising radiation, long acquisition time leading to patient 

discomfort, sensitivity to natural metabolism and certain medications, necessity of co-

registration to structural images, high cost of operation, and limited availability of PET 

centres with a cyclotron (Eugene and Abass, 2019, Grandin et al., 2005). A low-cost 

alternative is dynamic contrast-enhanced computed tomography (DCE-CT), which 

involves administering an iodinated contrast agent and dynamically imaging its first pass 

through a region (Miles, 2004, O'Connor et al., 2011, Grandin et al., 2005). However, this 

method also has challenges, including exposure to ionising radiation, necessity of patient 

preparation (e.g. beverage prohibition, bladder evacuation), long acquisition time leading 

to high chances of patient discomfort and motion artefact, as well as restricted anatomical 

coverage (Suetens, 2009). Lastly, perfusion MRI, a widely used cerebral perfusion 

imaging modality, quantifies perfusion and permeability by tracking the passage of an 

exogenous (i.e. externally injected) or endogenous (i.e. internally available) tracer with 

high temporal resolution MRI sequences.  

Compared to DCE-CT, perfusion MRI exhibits higher soft-tissue contrast, allowing the 

acquisition of higher resolution brain images. It has no associated risk of ionising 

radiation and can be used to examine a larger population including pregnant women and 

younger individuals. It is also more suitable for patients with renal insufficiency, diabetes, 

and dehydration. Compared to PET, perfusion MRI is more available in clinics and it 

offers a less expensive, faster imaging modality with better contrast, but no ionising 

radiation exposure. For these benefits, perfusion MRI is chosen to extract cerebral 

perfusion information from the brain in this work.   

There are three types of perfusion MRI: DSC-MRI, dynamic contrast-enhanced (DCE)-

MRI, and arterial spin labelling (ASL). Conventionally, DSC-MRI is used for measuring 

cerebral perfusion and DCE-MRI, a T1-weighted perfusion imaging modality, is applied 

to measure brain-tissue permeability (Sourbron and Buckley, 2013). ASL, on the other 

hand, extracts absolute CBF utilising labelled blood; the Look-Locker method with 2D 

or 3D excitation is used for single-time-point or dynamic acquisitions (Jahng et al., 2014).  
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Among these perfusion MRI modalities, the signal-to-noise ratio (SNR) is lower and 

acquisition procedures are more complex in ASL. The acquisition time is also longer, 

especially when larger brain coverage is required. Additionally, there are multiple 

implementations of ASL with no consensus regarding the ‘best’ choice, which is often 

decided on the basis of the scanner model, manufacturer, and software available rather 

than scientific considerations (Borogovac and Asllani, 2012). The need for sequence 

development and associated technical expertise has further limited its clinical 

applications. Among DSC- and DCE-MRI, the latter exhibits much lower SNR, lower 

contrast-to-noise in the first pass for perfusion estimation, and needs longer image 

acquisition time. It has to maintain a trade-off between spatial and temporal resolution, 

SNR, and anatomical coverage (O'Connor et al., 2011). Moreover, for DCE-MRI, image 

acquisition and post-processing with pharmacokinetic modelling are complex (Essig et 

al., 2013). On the other hand, DSC-MRI is the standard cerebral perfusion imaging 

modality with its widely available and easy-to-use processing tools (Essig et al., 2013). It 

allows acquisition and visualisation of images from the whole brain within 1−2 minutes. 

Therefore, DSC-MRI is currently more suitable than DCE-MRI and ASL for rapid, 

simple, but effective examination of subjects with brain diseases, such as tumour or stroke 

(Jahng et al., 2014). Additionally, the wide availability of DSC-MRI allows 

investigations—like the present work—to further confirm the validity of their inferences 

(Essig et al., 2013). Considering all these aspects, DSC-MRI was selected as the MRI 

modality of choice for the glioma patient cohort presented in this work.  

In DSC-MRI, dynamic T2/T2
*-weighted images are acquired through gradient-recalled-

echo or spin-echo echo-planar imaging sequences during the passage of an exogenous, 

but intravascular, Gadolinium-based contrast agent (GBCA). The paramagnetic GBCA 

causes each voxel to demonstrate a transient T2/T2
* signal, which is then analysed to 

extract perfusion parameters. The output signal is the convolution of two time-dependent 

functions: the GBCA concentration input from the artery, referred to as the arterial input 

function (AIF); and the response of the tissue to that input, referred to as the tissue impulse 

response, I(t).  

Despite its afore-mentioned advantages over DCE-MRI and ASL, DSC-MRI requires 

expert Radiologists’ input during analysis. For example, AIF detection requires a 

Radiologist to place a cursor on the candidate voxels and identify arterial voxels (AVs) 

using visual feedback, such as the shape characteristics of the signal time courses (STCs) 
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or concentration time courses (CTCs) (Patil et al., 2013, Yin et al., 2014, Mouridsen et 

al., 2006a). Another intermediate step that often adds a human component to any MRI 

analysis is the segmentation of brain regions. Human expertise is needed either to 

manually delineate the desired region, create a manually-labelled atlas to which images 

are registered, or combine different manual or automatic segmentation methods to 

segment the brain. Such manual interventions make the analysis more subjective, time-

consuming, and less reproducible than automatic approaches, and are thus more prone to 

producing sub-optimal results. For these reasons, many research groups advocate 

increased automation of the analysis steps. The present work looks into the automation 

of three intermediate analysis steps, namely AIF detection, tissue segmentation, and 

perfusion quantification, as described below.  

Conventionally, automatic AIF detection applies an algorithm to identify AVs based on 

their typical CTC features, such as: a large area under the curve, early bolus arrival, high 

peak concentration, low bolus width, small first moment, and a short time to peak. To 

discard the soft-tissue voxels, different thresholds are applied to the criteria characterising 

these features (Yin et al., 2014, Yin et al., 2015, Mouridsen et al., 2006a). To date, these 

criteria thresholds have been empirical and there has been no attempt to systemically 

determine their appropriate ranges. No study has compared the individual AV-

discriminatory power of different criteria. Furthermore, many automatic AV detection 

studies used off-the-shelf clustering algorithms to group the raw CTCs with similar 

dynamics. Instead of clustering these high-dimensional data, clustering their 

dimensionality-reduced version can potentially simplify and accelerate AV-detection.   

Automatic segmentation can be achieved by clustering similar brain-tissue intensity 

signatures. However, for DSC-MRI, the signal intensities vary as a function of time for a 

voxel. Hence, the label assigned to the voxel will also vary as a function of time. To 

overcome this issue, similar dynamics can be grouped together by clustering the DSC-

MRI time-series data. However, the high dimensionality of the raw data increases the 

complexity and computation time of the overall segmentation. The segmentation can 

potentially be accelerated and simplified if the dimensionality-reduced data are clustered 

instead of the raw data. 

After AIF determination and tissue class identification for a given region of interest 

(ROI), an automated analysis quantifies its perfusion parameters. First, a unique response 
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function, I(t), is determined by removing the contribution of AIF from the tissue output 

signal with either a model-independent or model-dependent deconvolution method. 

Instead of estimating I(t) at every time point, like the model-independent variant, the 

model-dependent methods assume realistic, yet flexible, analytical forms of I(t) with only 

two or three free parameters. An automated workflow then fits several parametric 

signals—resulting from a range of initial guesses of free parameters—to the measured 

data. When the fit converges, the corresponding free parameters are used to generate 

perfusion estimates. Conventionally, I(t) is derived from parametric models of the transit 

time distribution (TTD): the density function of the transit times necessary for the GBCA 

particles to traverse the capillary tubes distributed over a region of interest (ROI). 

Although many parametric forms of TTD have been proposed, further investigations are 

necessary to compare their computational benefits—such as rapidity, simplicity, or 

stability—towards an automated approach.   

 

In this thesis, two main developments to the above-mentioned automations are 

investigated: methods to assist automatic AIF detection and brain segmentation; and an 

evaluation of the utility of several analytical forms of I(t) for use in automated perfusion 

quantification. These aims are detailed in the following section.  

 

 

1.2. Aims 

 

The first aim of this research is to develop methods that assist automatic AIF detection. 

The individual effectiveness of different AV-detection criteria is evaluated. The optimal 

criteria thresholds for soft-tissue-voxel elimination are then systematically investigated.   

 

The second aim of this research is to explore the applicability of DSC-MRI data for 

automatically segmenting brain regions. The utility of a dimensionality-reduced feature 

space in brain segmentation is compared to other raw-data-based and dimension-

reduction-based segmentation approaches.  
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The third aim of the research is to compare different parametric forms of I(t). Three 

previously published models of TTD are compared with a proposed model to ascertain 

whether any model gives at least one computational benefit.  

 

1.3. Thesis outline  

 

Chapter two presents the clinical utility, technical terminologies, basic theory, acquisition 

protocol, and analysis techniques of perfusion MRI, especially DSC-MRI. The 

knowledge gaps of different intermediate DSC-MRI analysis steps are also introduced.  

Chapter three, the first Methods chapter, details the investigation performed to assist 

automatic AV detection. Several features are extracted from each CTC and the power of 

each feature in discriminating the AVs from the available brain voxels is evaluated 

through receiver operating characteristic curves. Then, a framework is established for the 

determination of criteria thresholds that can optimally discard tissue voxels.  

Chapter four proposes two novel, feature-based segmentation approaches that cluster a 

dimensionality-reduced version of the original raw data space. First, the individual 

powers of several signal features to discriminate different tissue regions are evaluated. 

The most powerful features are then included in the dimensionality-reduced space. The 

segmentation performance and computation time of these feature-based approaches are 

compared to two approaches that cluster the raw data for segmentation, and also to an 

approach that implements principal component analysis for dimension reduction prior to 

clustering and segmentation.   

Chapter five describes and compares three already published and one proposed 

parametric forms of TTD. For each TTD, non-linear regression is performed to estimate 

the free parameters of TTDs, which were then used to quantify the perfusion parameters. 

The TTDs are compared in terms of the goodness and stability of the fits between their 

resultant parametric signals and the measured data, the consistency of their perfusion 

estimates, and the overall computation time.  

Chapter six concludes the thesis by summarising the major findings and the limitations 

of the present research before outlining future directions.  
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1.4. Data and computational apparatus  

 

All the analyses of this thesis were performed on a dataset derived from DSC-MRI scans 

of 35 low-grade glioma patients (23 male, 12 female) in a previously-published, 

institution review board approved study (Law et al., 2006). The DSC-MRI data were 

acquired at 1.5T (Siemens Vision/Symphony; Siemens Healthineers, Erlangen, Germany) 

with a gradient-recalled-echo echo-planar imaging sequence during the first pass of a 

standard dose (0.1 mmol/kg) bolus of gadopentetate dimeglumine (Magnevist, Berlex 

Laboratories, Wayne, NY). Imaging parameters were: TR/TE: 1,000/54 ms, field of view, 

230 × 230 mm; section thickness, 5 mm; matrix, 128 × 128; in-plane voxel size, 1.8 × 1.8 

mm; interslice gap, 0%–30%; flip angle, 30°; signal bandwidth, 1470 Hz/pixel. Contrast 

was injected at a rate of 5 ml/sec, followed by a 20 ml bolus of saline at 5 ml/sec. A total 

of 60 images were acquired at one second intervals, giving a total acquisition time of one 

minute. The injection coincided with the fifth image, so that the bolus would typically 

arrive at the fifteenth to twentieth image. 

The image processing, and quantitative and statistical analyses were performed using 

MATLAB 2016-2019a (The MathWorks, Natick, MA, United States). For some analyses, 

such as generation of the receiver operating characteristic curves and execution of 

repeated measures analysis of variance (ANOVA), the Statistical Package for the Social 

Sciences (SPSS) software was used (IBM Corp. Released 2017. IBM SPSS Statistics for 

Windows, Version 25.0. Armonk, NY: IBM Corp.). All these analyses were executed 

using a personal laptop workstation, running the 64-bit Windows 10 operating system 

with a 2.50−2.70 GHz Intel® core™ i5-7200U central processing unit (Microsoft, 

Redmond, WA, United States). 
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Chapter 2: Background 

 

2.1. Perfusion and Perfusion MRI: Brief Introduction  
 

Cerebral perfusion describes the rate of blood flow to brain tissue (Calamante, 2012). 

Blood carries oxygen and nutrients and, hence, cerebral perfusion can characterise the 

delivery of oxygen and nutrients to living brain tissues (Jahng et al., 2014). Perfusion 

measurement through magnetic resonance imaging (MRI), first introduced in the mid-

1980s, is a cerebral haemodynamic assessment technique that involves acquiring high 

temporal resolution MR images during the passage of a Gadolinium (Gd)-based contrast 

agent (GBCA). Perfusion MRI can provide crucial inferences to altered cerebral perfusion 

for several pathological conditions, such as tumour, acute ischaemic stroke, intracranial 

neoplasm, haemorrhage, multiple sclerosis, and Alzheimer’s disease (Sourbron and 

Buckley, 2013, Mouridsen et al., 2014, Calamante, 2012). 

 In this chapter, the applications of perfusion MRI are briefly given to highlight its clinical 

utility. These will be followed by the description of relevant technical terminologies, 

different perfusion MRI modalities, standard image acquisition protocol, and analysis 

techniques.   

 

2.2. Perfusion MRI: Clinical Applications  
 

In this section, the clinical applications of perfusion MRI with regards to brain tumours 

will be briefly introduced and discussed.  

 

2.2.1. Brain tumours  

 

Cancer cells accumulate rapidly and cause a significant increase in the metabolic demand 

of affected brain regions (Guzman-de-Villoria et al., 2012). To satisfy this increased 

demand, new immature vessels are created. This causes the tumour region to exhibit 

abnormally high perfusion and permeability (i.e. contrast agent leakage from tissue). 

When tumours become malignant, the neo-vasculature becomes abnormal, demonstrating 
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high vascular density and disorganised vessel architecture. The ability of perfusion MRI 

to diagnose these mass lesions makes it highly useful in brain tumour-related applications. 

By identifying abnormalities in tissue perfusion or permeability, perfusion MRI can 

differentiate malignant regions from healthy brain parenchyma (Nagesh et al., 2007, 

Jahng et al., 2014, Boxerman et al., 2006). For example, the significant rise of cerebral 

blood volume (CBV, defined in Section 2.3) facilitates the diagnosis of tumours and their 

differentiation from pseudo-tumoural inflammatory lesions (Essig et al., 2012). 

Moreover, GBCA takes a long time to pass through the tortuous vasculature of tumours. 

In such cases, perfusion imaging shows high mean transit time (MTT, discussed in 

Section 2.3) (Yin et al., 2014, Calamante, 2013). As the grey matter-white matter contrast 

for MTT is low, it can be used for visual identification of the pathological regions more 

effectively. For histopathological diagnosis, biopsy guided by perfusion imaging 

improves the discrimination of malignant tissue (Essig et al., 2012).  

 

2.2.2. Glioma grading  

 

The diagnostic utility of perfusion MRI is further complemented by its ability to 

characterise the mass lesions. Grading the glioma plays a crucial role in deciding whether 

the post-surgery treatment plan should include adjuvant chemo- or radiotherapy. Using 

perfusion-MRI, high-grade glioma—World Health Organisation (WHO) grades III and 

IV—can be differentiated from its low-grade variants (WHO grades I and II) with 

sensitivity and specificity ranging from 72.5−100% and 55−96.8%, respectively 

(Guzman-de-Villoria et al., 2012, Emblem et al., 2008). Relative CBV (rCBV, defined in 

Section 2.3), a widely used perfusion parameter, has strong correlation with angiographic 

estimates of vascularity (Sugahara et al., 1998), histological estimates of microvascular 

density (Cha et al., 2003), and choline—a marker of tumour aggressiveness (Guzman-de-

Villoria et al., 2012, L Boxerman et al., 2006, Tzika et al., 2003).  

 

Visual inspection of the perfusion images can give an initial idea about the integrity of 

blood brain barrier (BBB): a physical barrier that limits the leakage of GBCA from blood 

to the central nervous system (CNS). High-grade glioma demonstrates a large number of 

leaky vessels. T1-weighted perfusion imaging can quantify the GBCA leakage through 

these vessels and thereby characterise high grade glioma regions.  
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2.2.3. Tumour histology differentiation  

 

Perfusion MRI facilitates discrimination between the neoplastic aetiologies of masses and 

also between neo- and non-neo-plastic aetiologies of lesions (Welker et al., 2015). For 

example, the low rCBV of primary lymphoma can be used to distinguish it from 

glioblastoma multiforme (GBM) (Hartmann et al., 2003) and certain metastases from 

high-grade astrocytoma (Kremer et al., 2003, Leu et al., 2016). Peritumoural oedema, a 

characteristic feature of malignant glioma, can also be identified and distinguished from 

metastases through CBV. In cases of diagnostic uncertainty in differentiating primary 

tumours from metastatic lesions, perfusion MRI can improve confidence (Essig et al., 

2012, Cha et al., 2001).  

 

2.2.4. Treatment planning  

 

Surgical resection is often the treatment of choice for high-grade glioma (Essig et al., 

2012). Perfusion MRI helps surgeons to decide whether to attempt resection and whether 

to follow it by post-operative radiation therapy, chemotherapy, or both.  

The macroscopic tumour regions visible in T1-weighted perfusion images facilitate the 

preliminary identification of the gross tumour volume. T2-weighted perfusion images 

indicate the clinical target volume through hyper-intense lesions. As a result, a safety 

margin for the possible microscopic spread is obtained. Additionally, perfusion MRI can 

guide stereotactic biopsies and other surgical interventions of highest-grade regions of 

glioma (Welker et al., 2015). It is also used to post-operatively assess the success of 

partial or total resection by identifying residual tumour (Nagesh et al., 2007, Essig et al., 

2012). A set of unenhanced and contrast-enhanced CT and MRI imaging often assists the 

treatment planning of high-grade glioma patients through radiotherapy. 

 

2.2.5. Treatment monitoring and survival prediction  

 

Perfusion MRI not only assists treatment planning, but also facilitates the evaluation of 

drug response, and prediction of tumour progression and survival. The performance of 

anti-angiogenic drugs in decreasing the permeability and vascular density of affected 

regions can be evaluated, which assists in monitoring the response to drugs (Skinner et 
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al., 2016b, Zhu et al., 2005, Jahng et al., 2014, Bjornerud and Emblem, 2010, Vonken et 

al., 2000). The perfusion parameter MTT can provide important information about 

treatment response by capturing any decline in perfusion pressure (Ibaraki et al., 2007, 

Nagesh et al., 2007). Additionally, some studies have showed that early CBV changes 

during radiotherapy can predict response to treatment (Bjornerud and Emblem, 2010, 

Vonken et al., 2000). 

The parameter rCBV assists prediction of the progression-free survival: an indicator of 

the success of treatment, measured as the time from treatment to death from any cause or 

to disease progression—based upon an onset of clinical symptoms or follow-up 

assessments using Response Evaluation Criteria In Solid Tumours (RECIST) criteria 

(Therasse et al., 2000). For both high- and low-grade glioma, patients with rCBV < 1.75 

showed higher mean progression-free survival. For rCBV > 1.75, the progression-free 

survival is not significantly different for low- and high-grade glioma (Law et al., 2006). 

rCBV is also a better predictor of disease course than histological analysis (Law et al., 

2003).  

From the above discussion, the clinical utility of perfusion MRI for the diagnosis, grading, 

and treatment of brain tumours is evident. These applications require quantification of 

different perfusion parameters, the most important of which will be introduced in the 

following section.   

 

2.3. Perfusion MRI: Parameters of interest 
 

Cerebral blood flow (CBF) is defined as the rate at which blood is delivered to the brain 

tissue. It is measured in millilitres of blood per 100 grammes of brain tissue per minute 

(ml/100g/min) (Calamante, 2013, Yin et al., 2014). The white matter (WM) contains 

myelinated axons and transmits impulses between peripheral nervous system and the grey 

matter (GM), which contains the cell bodies, axon terminals, and dendrites and executes 

the more demanding task of processing information. Due to their different cellular 

constituents and metabolic demands, GM and WM exhibits marked contrast in their CBFs 

(Helenius et al., 2003). Typical values of CBF are 60 ml/100g/min for grey matter (GM) 

and 20 ml/100g/min for white matter (WM) (Guzman-de-Villoria et al., 2012). CBF 

evaluates the rate of exchange of oxygen and nutrients, as well as removal of waste from 
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brain tissue. Therefore, it can inform clinicians about tissue viability, vascularity, brain 

function, and oxygen supply, and can assist the identification and characterisation of 

lesions.  

Cerebral blood volume (CBV) is defined as the fraction of the tissue volume occupied by 

blood, with units of millilitres of blood per 100 grammes of brain tissue (ml/100g) 

(Guzman-de-Villoria et al., 2012, Calamante, 2012). As mentioned above, a larger 

fraction of blood traverses the GM than the WM to meet the metabolic demand. Hence, 

GM exhibits higher CBV than WM, with typical values of 4 ml/100g for GM and 2 

ml/100g for WM (Calamante et al., 2000, Calamante, 2012). Due to difficulties in 

measuring absolute CBV, relative CBV (rCBV) is often reported, which is the CBV 

relative to an internal control, such as contralateral normal WM or arterial concentration 

time curve (Jahng et al., 2014, Guzman-de-Villoria et al., 2012). As discussed in Section 

2.2, CBV and rCBV can serve as important imaging bio-markers for tumour diagnosis, 

grading, low-grade to high-grade transformation, recurrent tumour discrimination from 

pseudo-progression, and overall treatment response assessment (Leu et al., 2016). 

Mean transit time (MTT) is defined as the average time taken by blood to pass from the 

arterial inflow to the venous outflow, measured in seconds (Guzman-de-Villoria et al., 

2012). Typical MTTs for healthy GM and WM are 4 s and 4.8 s respectively (Calamante 

et al., 2000, Calamante, 2012). Abnormalities in MTT can indicate pathology as it is 

sensitive to change in perfusion pressure. In addition to the applications of MTT described 

in Section 2.2, increases in MTT can suggest perfusion reserve impairment in ischemic 

stroke and chronic occlusive cerebrovascular disease (Ibaraki et al., 2007). The 

relationship between the CBV, CBF and MTT is given by the central volume theorem 

(Perl et al., 1975):   

CBV
MTT=

CBF
  .      (2.1) 

Several semi-quantitative or heuristic parameters, often referred as ‘summary parameters’ 

(Jahng et al., 2014, Calamante, 2012), can be easily quantified from perfusion data 

without intensive DSC-MRI analysis. These summary parameters are effective in 

representing physiological mechanisms when measuring relative changes in perfusion 

dynamics for a subject or a group of patients (Gordon et al., 2014). Some of the important 

summary parameters are discussed below.  
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Time to peak (TTP) measures the time taken for the perfusion MRI signal time curve 

(STC) to reach its minimum intensity. When signal is converted to concentration 

estimates, TTP measures the time at which the concentration time curve (CTC) reaches 

its maximum. For stroke patients, it can successfully discriminate infarcted from non-

infarcted voxels (Christensen et al., 2009).  

Bolus arrival time (BAT) is defined as the time taken by the GBCA to arrive at the voxel 

of interest after its injection. It reflects the sum of all processes that controls the GBCA 

delivery to the tissue of interest (e.g. injection rate, cardiac output, regional blood flow, 

etc). Contralateral regions with high contrast in BAT may indicate unilateral carotid artery 

stenosis (Welker et al., 2015, Jahng et al., 2014).   

Tmax represents the time taken by the tracer bolus to reach the tissue site after arriving at 

the arterial site (Calamante, 2013). This parameter reflects the delay and dispersion of the 

bolus and allows the characterisation of macrovascular perfusion (Jahng et al., 2014, 

Mundiyanapurath et al., 2016, Calamante et al., 2010).  

Relative recirculation (rR) is defined as the extent to which the STC recovers back to the 

baseline from its minimum value (Jackson et al., 2002). It represents the intravascular 

trapping of GBCA, an attribute observed in malignant capillary beds due to areas of low 

perfusion pressure (O'Connor et al., 2011).  

Thus far, only the perfusion parameters have been discussed. When applied with high 

temporal resolution and sufficiently long acquisition times, perfusion imaging can 

additionally quantify parameters related to permeability, which determines the leakage of 

the GBCA from the intravascular to extravascular extra-cellular space (EES) (Johnson et 

al., 2004, Sourbron and Buckley, 2013). Detailed discussion on these permeability 

parameters, their measurements and clinical utility can be found in several published 

studies (Johnson et al., 2004, Law et al., 2004, Sourbron and Buckley, 2012, Sourbron 

and Buckley, 2013, Artzi et al., 2015, Essig et al., 2012, O'Connor et al., 2011, Sourbron 

et al., 2004, Sourbron et al., 2009). The present research prioritises perfusion parameters 

and, hence, permeability parameters are discussed only briefly, as follows.  

The volume of extravascular extracellular space (EES), ve, is the volume of interstitial 

space, given as a fraction of total tissue volume. In high grade glioma, leaky BBB leads 

the blood containing extravasated GBCA to occupy more EES volume, which increases 

the ve. 
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The volume transfer constant, Ktrans, is the rate at which GBCA is delivered from plasma 

to the EES, per unit time, tissue volume, and arterial plasma concentration. The 

permeability surface area product (PS) gives the same rate with respect to capillary 

plasma concentration (Sourbron and Buckley, 2013, Heye et al., 2016). As an indicator 

of vascular permeability, Ktrans has been widely used in tumour grading, identifying 

disease progression, and assessing treatment response of anti-angiogenic and anti-

vascular therapies (Skinner et al., 2016a). A rise in PS indicates angiogenesis; while its 

decrease confirms response to anti-angiogenic drugs (St Lawrence and Lee, 1998).  

For quantifying the above-mentioned perfusion parameters (CBF, CBV, MTT, etc), T2- 

or T2
*-weighted perfusion imaging is conventionally used, while  permeability parameters 

are quantified with T1-weighted perfusion imaging. The variants of perfusion imaging 

will be introduced in the next section.   

 

2.4. Perfusion MRI: Types 
 

There are two main approaches to perfusion imaging: one that uses exogenous contrast, 

typically an injected GBCA; and another that uses magnetically-labelled blood as 

endogenous contrast, without any external injection. Three of the most popular perfusion 

MRI modalities—two exogenous and one endogenous—will be discussed in this section.  

 

2.4.1. Dynamic susceptibility contrast MRI (DSC-MRI)    

 

Dynamic susceptibility contrast MRI (DSC-MRI) is the standard brain perfusion imaging 

modality (Sourbron and Buckley, 2013). The process involves injecting an exogenous 

GBCA and tracking the passage of the bolus with a high temporal resolution T2/T2
*-

imaging sequence (Jahng et al., 2014). This imaging approach dates back to 1990 when 

Rosen and colleagues  (Rosen et al., 1990) analysed T2/T2
*-weighted echo-planar imaging 

(EPI) along the lines of Axel (Axel, 1980) and others’ work on computed tomography 

(CT).  

Due to its paramagnetic properties, GBCA affects the surrounding tissues by altering the 

local magnetic field. The resultant susceptibility gradient causes a transient signal drop 
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on T2/T2
* images during bolus passage. DSC-MRI assumes an intact BBB and neglects 

GBCA extravasation to the EES (Jahng et al., 2014, Calamante, 2012, Guzman-de-

Villoria et al., 2012). This assumption of intravascular GBCA distinguishes DSC-MRI 

from the other exogenous perfusion MRI modality, dynamic contrast-enhanced MRI, 

which is discussed in the next section.  

 

2.4.2. Dynamic contrast-enhanced MRI (DCE-MRI) 

 

Dynamic contrast-enhanced MRI (DCE-MRI) is the standard perfusion imaging modality 

for regions outside the brain. The process involves injecting an exogenous GBCA and 

acquiring T1-weighted MR images before, during, and after the GBCA injection. This 

approach of perfusion imaging was proposed by Tofts (Tofts and Kermode, 1991) as an 

extension to the approaches used in nuclear medicine research. It is routinely applied in 

perfusion analysis of breast, prostate and muscle tissues (Jahng et al., 2014).  

Unlike DSC-MRI, the intactness of the BBB is not a pre-requisite for DCE-MRI. When 

GBCA extravasates to EES, due to its paramagnetic property, the T1-shortening increases 

the haemodynamic signal. The rate of GBCA extravasation from blood to EES of a tissue 

is controlled by perfusion, permeability, and the surface area of the capillaries. DCE-MRI 

can measure these perfusion and permeability-related parameters for regions inside and 

outside the brain. Figure 2.1 shows typical dynamic data acquired from DCE and DSC-

MRI from different brain regions.  

 

 

Figure 2.1: (a) Segmented dynamic contrast enhanced MRI (DCE-MRI) image of brain (b) 

Typical DCE-MRI signals from different brain regions (c) Segmented dynamic susceptibility 

contrast MRI (DSC-MRI) image of brain (d) Typical DSC-MRI signals from different brain 
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regions. Figure reproduced from the work of Artzi et al. (2015), with permission from Springer 

Nature 1. Abbreviations: GM, grey matter; WM, white matter; CP, choroid plexus.  

 

2.4.3. Arterial spin labelling (ASL)  

 

Arterial spin labelling (ASL) provides a means of measuring absolute cerebral perfusion 

without any external GBCA injection. The technique, first developed by Williams and 

colleagues in 1992 (Williams et al., 1992), involves magnetically-labelling the incoming 

blood and obtaining what is referred to as a ‘label’ image. This ‘label’ image is then 

subtracted from a ‘control’ or ‘reference’ image obtained with unlabelled blood. The label 

image shows the passage of protons through capillaries and their diffusion in the tissue 

water space after a certain delay. When the label is subtracted from the control image, all 

static effects are cancelled and the resulting difference signal is proportional to blood flow 

during the delay (Jahng et al., 2014). 

 

Conventionally, DSC-MRI is used for perfusion analysis and DCE-MRI is applied for 

permeability measurements (Sourbron and Buckley, 2013). However, either of them can 

be used to obtain both perfusion and permeability information with some modifications 

to the imaging protocols or analysis (Skinner et al., 2016b, Singh et al., 2007, Sourbron 

et al., 2009, Law et al., 2004, Johnson et al., 2004). In this thesis, assisting perfusion 

analysis is the primary focus and, therefore, in the rest of this chapter, the acquisition 

protocols and analysis of DSC-MRI will be presented.  

 

2.5. DSC MRI: Data acquisition protocol 
 

To track the GBCA bolus, DSC-MRI protocols sample the MRI signal with a high 

temporal resolution of 1−2 s (Zanderigo et al., 2009, Jahng et al., 2014, Guzman-de-

Villoria et al., 2012). As a rule of thumb, the temporal resolution should be lower than 

 
1 Reprinted by permission from Springer Nature Customer Service Centre GmbH; Springer Nature; 

Neuroradiology; Human cerebral blood volume measurements using dynamic contrast enhancement in 

comparison to dynamic susceptibility contrast MRI ; Moran Artzi et al, Copyright (2015); Copyright license 

no: 4962600138009.  
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the typical MTT value of the tissue to avoid inaccurate STC measurements (Jahng et al., 

2014). For image acquisition, an echo-planar imaging (EPI) readout is conventionally 

performed as it can acquire up to 15−20 slices in a time interval of approximately 1.5 

seconds (O'Connor et al., 2011, Calamante, 2012).  

Either gradient-recalled-echo (GRE) or spin-echo (SE)-EPI sequences are used as the 

basis of the DSC-MRI acquisition, depending on the dosage of administered GBCA, 

investigated vessel size, and required signal-to-noise ratio (SNR). GRE-EPI is sensitive 

to both micro- and macro-sized vessels, though more to the latter. On the other hand, SE-

EPI is more sensitive to micro-vessels (i.e. capillary size vessels) (Jahng et al., 2014). For 

SE-EPI, signal changes are highest for vessels of 1−2 μm diameter; whereas GRE-EPI 

exhibits the highest signal for vessels of 3−4 μm diameter (Guzman-de-Villoria et al., 

2012). The SNR for GRE-EPI is typically lower than SE-EPI as the large vessels 

experience static field inhomogeneities, which result in signal losses.  Hence, large-vessel 

contamination is a major disadvantage of GRE-EPI. However, for SE-EPI, the dephasing 

of spins due to field inhomogeneities is refocused and therefore the signal drop is less 

apparent and contrast to noise ratio is lower than that of GRE-EPI (Jahng et al., 2014).  

Among different GBCAs, gadobenate dimeglumine and gadobutrol are reported to show 

better performance in distinguishing lesion enhancement and improved diagnostic power 

(Kuhn et al., 2007, Rowley et al., 2008, Essig et al., 2012). The standard practice is to 

administer GBCA at a dose of 0.1 mmol/kg or 0.2 mL/kg of the body weight, although 

double dose can be administered to produce better image quality in cases of diagnostic 

uncertainty for SE-EPI (Jahng et al., 2014). The GBCA should be injected at a rate of 3−5 

ml/s followed by a 20−40 ml saline flush to minimise the bolus spread (Calamante, 2012).   

Some of these protocols need adjustments when the integrity of the BBB is compromised, 

and GBCA can extravasate. GBCA leakage results in ‘T1-shine through’: an unwanted 

T1-effect in DSC-MRI, which is represented by the rise of the recovery segment of 

dynamic signal above the baseline. This causes underestimation of CBV as the area above 

the baseline (contributing as a negative blood volume) is subtracted from the area below 

the baseline. To reduce this T1-effect, several adjustments can be undertaken, for 

example: administering double the conventional GBCA concentration to decrease the 

injection volume and reduce the extravasated volume; increasing repetition time (TR); 

reducing the flip angle; injecting a small dose 5−10 min before the scan to pre-saturate 
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EES and raise the baseline; or administering dysprosium-based GBCAs, which have 

stronger T2
*-shortening effects and negligible T1-shortening effects (Calamante, 2012, 

Guzman-de-Villoria et al., 2012, Rempp et al., 1994, O'Connor et al., 2011).   

 

2.6. DSC-MRI: Central convolution equation  

 

The DSC-MRI data obtained from a voxel of interest (VOI) through the above-mentioned 

acquisition protocol is dependent on two time-dependent functions: the GBCA input to 

the VOI and the response of the corresponding tissue to that input. This response is 

dependent on the residue function describing the amount of GBCA remaining in the VOI. 

In this section, the residue function is introduced prior to the derivation of the central 

convolution equation, which relates the time dependent output to input and response 

functions.   

 

2.6.1. Residue function and transit time distribution 

 

The residue function, R(t), describes the probability that a tracer molecule is still in the 

VOI at time t after entering at t = 0 (Jahng et al., 2014). For a tissue region of interest, let 

us assume that a quantity, Q, of tracer enters at a t = 0.  The amount of tracer leaving the 

region between time t and t + dt is therefore: Q × hi(t) × dt, where hi is the transit time 

distribution: the density function of the transit times necessary for the GBCA particles to 

traverse capillary tubes of different lengths distributed over the VOI. The amount of tracer 

remaining in the tube will be given by:  

 .    (2.2) 

Thus, for the ROI,  

.     (2.3) 

For the whole period of GBCA passage, equation 2.3 needs to be integrated by parts in 

the limit of 0 to t. This gives the following two relationships between R(t) and h(t): 

( ) ( )iQ R t dt Qdt Q h t dt = − 

( ) ( )iR t dt dt h t dt= −
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.               (2.4) 

     .       (2.5) 

R and h must conform to several constraints to represent real tissue microvasculature. 

First, h(0) = 0, i.e., blood cannot traverse the tissue instantaneously. This means the 

corresponding GBCA residue should be equal to unity at t = 0, i.e. R(0) = 1. Second, as t 

 , h  0, R  0 i.e., all of the GBCA must eventually exit the tissue assuming the 

BBB is intact. This condition also implies that h should be normalised: i.e., its integral 

should be unity (Sourbron and Buckley, 2013). Third, the tissue residue should decrease 

as time passes, which is conveyed by an R that is smooth, monotonic, and a decreasing 

function of time (Mouridsen et al., 2006b). Finally, the form of h must be such as to avoid 

producing an exponential R, which would imply that there are paths with infinitely small 

capillary transit times (Schabel, 2012) and also that a fraction of the tracer extravasates 

instantaneously (Sourbron and Buckley, 2013). This is not possible for DSC-MRI as the 

indicator is assumed to be intravascular (Leu et al., 2016). 

 

2.6.2. Derivation of the generic equation for perfusion imaging  

  

According to the principle of conservation of mass, the mass of a GBCA within a VOI at 

time t, mc,voi(t), is the difference between the accumulated masses that have entered via 

an artery and left the VOI in a time interval [0, t], denoted by mc,voi,in (t) and mc,voi,out (t), 

respectively: 

  . (2.6) 

Here F is the volume flow—assumed to be constant over time—Ca(τ) is the time course 

of the GBCA concentration in an artery feeding the tissue of interest (also known as the 

arterial input function, AIF), and Cven(τ) is the GBCA concentration time course at the 

venous outlet.  

0

( ) 1 ( )

t

R t h d = − 

( )
dR

h t
dt

= −

, , , , ,

0 0

( ) ( ) ( ) ( ) ( )

t t

c voi c voi in c voi out a venm t m t m t F C d F C d   = − = − 
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Cven(τ) can be calculated from the convolution of cart(τ) and the transit time distribution, 

h(t). Therefore:  

.    (2.7) 

Substituting equation 2.7 and the delta function, δ(t), into equation 2.6 gives:  

.   (2.8) 

Changing the order of the integration and rearranging gives:  

       ,  (2.9) 

and substituting by  inside the square brackets of equation 2.9, leads to:  

,  (2.10) 

Applying this to equation 2.4 and incorporating the delta function:  

          .   (2.11) 

Combining equations 2.11 and 2.10 then provides:  

.  (2.12) 

When the blood volume flow F is normalised by the mass of the volume Vvoi with density 

ρ, CBF is obtained. Thus, CBF =  and so . Substituting the F 

of equation 2.9 for this expression and then substituting the part inside the square brackets 

of equation 2.9 by equation 2.12 gives: 

.   (2.13) 

( ) ( ) ( )ven ac t C h t d  
+

−

= −

,

0
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The GBCA concentration within any VOI, Ct, is defined as the mass of the GBCA per 

unit volume of the VOI: namely, . So, the above equation can be re-arranged 

as:  

.   (2.14) 

The integral of equation 2.14 represents a convolution operation. The tissue concentration 

Ct is given by the following equation, where  denotes convolution:                                                               

.    (2.15) 

A parameter, kh, must be included to account for the difference in haematocrit levels 

between capillaries and large arteries. The following expression gives the value of kh: 

        .                (2.16) 

Here lv stands for large vessel and sv stands for small vessel. The typical values of H(lv) 

and H(sv) are 0.45 and 0.25 respectively (Yin et al., 2014, Calamante, 2013). Finally, 

taking kh into account, equation 2.15 becomes: 

.    (2.17) 

Equation 2.17 is the central convolution equation of perfusion analysis. It states that the 

concentration of GBCA in a tissue at time t is the integral of several GBCA contributions 

that have already entered the tissue at times t' (where t' < t), given by Ca(t'), and that still 

remain in the tissue at t, given by R (t – t'). The inclusion of CBF in the equation indicates 

that the tissue concentration is proportional to perfusion. The ratio ρ/kh serves as another 

essential scaling factor. The values of ρ and dimensional constant kh have been modelled 

as 1.04g/ml and 0.73, respectively (Peruzzo et al., 2011, Rempp et al., 1994, Mouridsen 

et al., 2006b).  

Thus far, different time-dependent functions and their contributions to the signal output 

of a voxel are introduced. The following section discusses the intermediate steps for 

analysing this dynamic output signal and thereby quantifying the perfusion parameters.   
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2.7. DSC-MRI: Analysis 
 

Once the dynamic images have been acquired, background voxels are excluded via a 

suitable noise threshold. Skull stripping is performed afterwards to extract the brain 

voxels. After necessary pre-processing, noise reduction, and motion correction, the details 

of which are outside the scope of this thesis, all dynamic data from the brain voxels are 

analysed with the steps described in this section.  

 

2.7.1. AIF detection 

 

As evident from equation 2.17, the dynamic signal output of a tissue depends on the 

convolution of the arterial input (i.e. AIF) with the impulse response function (i.e. I(t) = 

CBF × R). Therefore, to estimate the perfusion parameters, the AIF needs to be known 

along with the measured output data, Ct. Knowledge of the AIF is also essential to isolate 

the microvascular information about a tissue (i.e. perfusion parameters) from other non-

tissue related confounding factors, such as injection protocols, macro-vascular structure, 

and cardiac output (Calamante, 2013, Calamante, 2012).  

Global AIF—an idealised arterial input for every brain voxel—can be detected either 

manually or automatically. In manual AIF detection, an experienced operator places a 

cursor on the candidate voxels, typically in the middle cerebral arteries (MCA) or internal 

carotid arteries (ICA), and uses visual feedback of the STCs or CTCs to identify arterial 

voxels (AVs) (Patil et al., 2013, Yin et al., 2014, Mouridsen et al., 2006a). For a magnetic 

field strength of 1.5T, AVs are commonly measured from the M1 segment of the MCA. 

At 3T, the signal from the M1 region of the MCA can approach the noise floor due to 

complete de-phasing during the GBCA passage. Consequently, the AIF selected from this 

segment does not adequately represent its true shape (Yin et al., 2014, Calamante, 2013). 

To avoid such truncation artefact, the AIF should be measured from the M2 or M3 

segments of the MCA. Alternatively, in some brain tumour studies, the venous output 

function is obtained from the sagittal sinus as a surrogate for AIF, taking the delayed 
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arrival of GBCA to the vein in account. This alternative to AIF is simple to determine and 

is robust against distortions caused by partial volume effect (PVE) (O'Connor et al., 

2011). Regardless of the detection site, the manual procedure is subjective, time-

consuming, poorly reproducible; and often imposes the risk of sub-optimal voxel 

selection (Mouridsen et al., 2006a, Rempp et al., 1994).  

An alternative to manual AV detection is the automatic search for the CTCs with 

characteristics resembling those of a typical AIF, such as high peak concentration, fast 

washout of the bolus, high area under the CTC curve, and lower width of the bolus (Yin 

et al., 2014, Yin et al., 2015, Mouridsen et al., 2006a). It is often assisted by a clustering 

algorithm, which groups similar dynamics. The cluster that contains the AIFs is  identified 

by applying some of the above-mentioned criteria. The final AIF is then obtained by 

aligning and averaging the CTCs that belongs to the selected cluster. This automatic AV-

detection method discards the human component from the analysis, decreases the 

computation time, and increases the reproducibility and objectivity (Calamante, 2012). 

During automatic AV detection, non-arterial voxels are discarded at first by applying 

thresholds on criteria that describe different CTC characteristics. To the knowledge of the 

author, optimal thresholds for these criteria have not been studied systematically, nor has 

their individual AV-discriminating power been compared. In Chapter 3, these knowledge 

gaps are addressed. 

  

2.7.2. Brain segmentation using DSC-MRI time-series  

 

After determining the global AIF, regions of interest (ROIs) are placed in GM, WM, or 

lesion regions, for which perfusion parameters are estimated. Each ROI typically contains 

several brain voxels whose dynamic signals are averaged to increase the SNR. For an 

end-to-end automated analysis, this manual placement of ROI can be replaced by more 

objective, rapid, and reproducible automatic brain region segmentation.  

There are several brain segmentation techniques. Manual segmentation techniques use 

Radiologist expertise to delineate the desired regions; intensity-based methods use the 

contrast in voxel intensity; atlas-based techniques register the image on an atlas created 

from a cohort of healthy participants; surface-based methods use the surface feature of a 
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region; and hybrid methods combine two or more segmentation methods (Despotovi et 

al., 2015) (further detailed in Chapter 4). Most of these methods are computationally 

complex and require the data to be transferred to other processing platforms, making the 

entire analysis time-consuming for clinical setting. In Chapter 4 of this thesis, 

investigations are performed to overcome these limitations. Brain regions are segmented 

using the DSC-MRI time-series data; the utility of dimension-reduction in simplifying 

and accelerating the segmenation is explored.  

 

2.7.3. Impulse response function measurement  

 

After AIF determination and tissue class identification for a given ROI, its perfusion 

parameters are calculated from I(t): the product of CBF and R(t). To determine I, the 

contribution of AIF must be removed from the tissue output, Ct, through a process called 

deconvolution. This deconvolution is ill-posed: a small amount of noise in the data (i.e. 

Ct and AIF) introduces massive oscillations in the solution (i.e. ringing in R) (Calamante, 

2012). To improve the stability of this ill-posed deconvolution, there are two main 

approaches: model-independent and model-dependent deconvolution, which are detailed 

as follows.  

 

2.7.3.1. Model-independent deconvolution  

 

Model-independent deconvolution estimates I(t) at every time point, without assuming 

any model for underlying tissue vasculature. There are two approaches to de-convolve 

equation 2.17 under this method: Fourier transformation and the algebraic approach. 

 

In the Fourier transformation approach, the convolution theorem of the Fourier transform 

(FT) is implemented. This theorem states that the convolution of two functions in the time 

domain is equal to their multiplication in the frequency domain. The impulse response 

function, I(t)=F×R(t), can be obtained by Fourier transformation of equation 2.17:  

  

                                             { ( )} CBF { ( )} { ( )}t a

h

f C t f C t f R t
k

  

=    , 
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1
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h t
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
=  =  .                      (2.18) 

 

Here, 𝑓{  } and 𝑓−1{   } denote the Fourier transform and inverse Fourier transform, 

respectively. This method of I(t) calculation is highly sensitive to noise and requires 

application of dampening filters, such as the Wiener filter (Gobbel and Fike, 1994, Rempp 

et al., 1994).   

 

The algebraic alternative of the model-independent deconvolution method starts by 

expressing the equation 2.17 in discretised form: 

  

1
( ) CBF ( ) ( )

i

i a j i jj
C t t C t R t t

=
=  −  .           (2.19) 

This equation can be expressed as:  
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The equation 2.20 was solved with singular value decomposition (SVD) (Knutsson et al., 

2010, Ostergaard et al., 1996) with the process described as follows.  

 

The matrix A can be written as: 

 

          TA = ULV ,                                           (2.21) 

 

where U and V are orthogonal matrices and columns of U are the eigenvectors of AAT, 

where AT is the transpose of A, and L is the diagonal matrix of corresponding eigenvalues 

(Mouridsen et al., 2006b). Since all of the matrices on the right side of equation 2.21 are 
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invertible, AT can be obtained and a solution for r can be found through the following 

equation: 

 

CBF t  = -1 Tr VL U c .                                         (2.22) 

 

Noise in the data introduces high frequency components that result in small, but non-zero 

singular values of L, which should otherwise be zero in noiseless conditions. Such small 

L values correspond to oscillations in R, making it physiologically unviable by violating 

the constraint of monotonicity.  

 

To overcome the oscillations in R, small L values are discarded by regularisation, which 

can be regarded as a noise-filtering approach. Several studies have taken different 

approaches for selecting how much noise to filter (Calamante, 2012). However, each 

approach has its own limitations, which are described briefly as follows.  

 

Standard truncated SVD (sSVD) regularises r by assuming values of L under a certain 

threshold, PSVD, to be zero. However, the CBF is highly dependent on the PSVD and a PSVD 

> 20% often results in CBF underestimation (Zanderigo et al., 2009).  

 

Ostergaard et al. proposed PSVD as a function of SNR of the MRI image and found unique 

thresholds for GM and WM (Ostergaard et al., 1996). To make PSVD independent of the 

tissue type, Liu et al. proposed it as a function of SNR of the CTC at its peak 

concentration. However, the optimal number of iterations needed to find such a function 

was complex to determine (Liu et al., 1999). 

Generalised cross validation (GCV) and the L-curve criterion (LCC) were used to find 

the optimal PSVD for the CTC of each pixel (Sourbron et al., 2004). Despite being 

comparatively robust methods of threshold selection, they underestimated the CBF in the 

presence of delay (Zanderigo et al., 2009).  

Block circulant SVD (cSVD) allowed local selection of PSVD for each CTC (Wu et al., 

2003b). The method could not remove the oscillations and negative values of R(t). 

Oscillation limited cSVD (oSVD) iteratively repeated cSVD until the oscillation in R 

came below a certain limit (Bjornerud and Emblem, 2010, Wu et al., 2003b). Ibaraki et 

al. measured delay with pixel-by-pixel least squares fitting and eliminated its effect by 



53 
 

time-shifting the CTC before performing SVD (Ibaraki et al., 2005). However, the 

method was more sensitive to noise than SVD (Zanderigo et al., 2009) and, like cSVD 

and oSVD, was still affected by dispersion.  

The Gaussian process deconvolution used Gaussian priors to estimate R for individual 

time points (Andersen et al., 2002). The resultant R was much smoother than that of other 

studies and comparable to SVD at high SNR (Zanderigo et al., 2009). The Tikhonov 

regularisation method (TIKH) applied an oscillation penalty. Compared to SVD, it was 

less sensitive to dispersion and produced smoother R (Calamante et al., 2003). However, 

these two methods failed to eliminate the negative values of R(t) (Calamante et al., 2003).  

In summary, regularisation through a model-independent approach could not conform to 

the constraints of monotonicity and non-negativity. Moreover, delay and dispersion 

caused CBF underestimation and MTT overestimation. For subjects with arterial 

abnormalities, such as stenosis or occlusion, or moyamoya disease, the model-

independent approach may fail to convey explicitly what has caused the overestimation 

of MTT: the underlying pathological condition, the delay, or the dispersion.  

 

2.7.3.2. Model-dependent deconvolution 

 

The above-mentioned shortcomings of model-independent deconvolution can be 

overcome by model-dependent deconvolution approach which involves assuming a 

flexible, yet physiologically plausible, parametric model of the I(t) with several free 

parameters. The steps involved in basic model-dependent approach can be briefly 

described as follows: 

   

• To characterise the tissue microvasculature, a trial analytical form of h is assumed 

with several free parameters q1, q2, …. , qn; where n is the number of free 

parameters. The R is then derived from h(t; q1,q2, …., qn) by equation 2.4. To 

create a realistic h and R, the free parameters are constrained to their 

physiological limit, as mentioned in Section 2.6.1. Several studies have proposed 

different parametric models for h(t) (Mouridsen et al., 2006b, Koh et al., 2001, 

Schabel, 2012, Larsson et al., 2017). However, no study, to the knowledge of the 

author, has compared the most suitable models. In Chapter 5, three already 
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published and one proposed model of h(t) are compared to ascertain whether any 

model provides at least one computational benefit.  

• Once the parametric form of residue fucntion, R(t; q1,q2,……., qn), is achieved, it 

is convolved with the manually or automatically determined AIF to create a trial 

concentration function, 
~

tC , as per equation 2.17. The flow, F, is included as 

another free parameter in the analytical expression of the 
~

tC . 

• Non-linear least square fitting then tries to find values of the free parameters (i.e. 

F, q1, q2, ……., qn) that minimise the difference between estimated 
~

tC  and 

measured Ct.  

• When the least-squares fitting converges to its global minimum, the optimal 

values of the free parameters are obtained, which are used to calculate R.  

• The perfusion parameters (i.e. CBV, CBF and MTT) are calculated from R with 

the process described in the next Section 2.7.4.  

 

In summary, the model-dependent approach produces an R that complies with all the 

constraints imposed on it to be a physically viable representation of tissue 

microvasculature. Unlike its model-independent variants, which need to estimate R at 

every time point, the R here is described through two or three parameters only (Mouridsen 

et al., 2006b). Moreover, Ostergaard et al. showed that for the model-dependent 

approaches, the flow estimates are independent of vascular delay (Ostergaard et al., 

1999). For these reasons, a model-dependent approach is used in the current thesis to 

estimate perfusion parameters.   

 

2.7.4. Perfusion parameter measurement  

 

Once R is measured by either the model-dependent or model-independent approach, the 

perfusion parameters are quantified from it by the process described in this section.  

2.7.4.1. CBF 
 

The CBF is the maximum value of I(t)(Sourbron and Buckley, 2013). The R(t) is 

normalised to have a maximum value of unity using CBF as the normalisation factor. If 
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the arterial input reaches the voxel of interest with no delay, the initial value of the I(t) (= 

F × R(t)) is the CBF, as R(0) = 1. However, if the arterial blood reaches the voxel of 

interest after a time delay δ, R(t) reaches a maximum at δ, i.e., R(δ) = 1. In such case, the 

value of  I(t) at t = δ is the CBF (Østergaard, 2005).  

 

2.7.4.2. MTT 
 

The MTT is the expectation value of the transit time distribution, h(t) (Wirestam, 2012). 

The expectation value, θ, of a density function f(x) can be obtained from the following 

equation:                                                                        

   ( )xf x dx =    .                (2.23)                                                    

Similarly, the expectation value of a TTD is obtained by:   

0

MTT ( )th t dt



=  .                                                            (2.24) 

Equation 2.24 can be used to establish a relationship between R(t) and MTT. Substituting 

equation 2.5 into equation 2.24 will result in: 

0 0
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MTT ( )

t t
dR

h d d
d


    


= =   .                                 (2.25) 

Integrating by parts will lead to:  

0 0

( )
MTT ( ) ( )

t t
dR

d tR t R d
d


   


= = +  .    (2.26) 

Meier and Zierler showed that, when t → ∞ then 𝑡𝑅(𝑡) → 0 (Meier and Zierler, 1954). 

This leads to:  

0

MTT ( )R t dt



=  .                                                 (2.27) 
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2.7.4.3. CBV 
 

To derive an expression for CBV, first the central convolution equation (equation 2.17) 

is integrated over time:  

0 0

CBF [ ]t a

h

C dt C R dt
k


 

=      .   (2.28) 

Fubini’s theorem  (Fubini, 1907) states that  

[ ]f g dt fdt gdt =     .    (2.29) 

Applying this to equation 2.29,  
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From the central volume theorem, F = CBV/MTT; this and equation 2.27 reduce equation 

2.30 to:  
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   .               (2.31)                     

 

The perfusion quantification steps mentioned above can be executed either for a manually 

selected ROI placed at GM, WM, or lesion pixels of a subject, or for every brain voxel to 

create perfusion parameter maps for the brain. In the present study, manual ROIs are 

placed at GM and WM regions of a pre-selected slice and perfusion estimates are obtained 

from them through model-dependent deconvolution.  

Automation of the above-discussed steps can ensure an objective, rapid, and reproducible 

analysis. However, further investigations are necessary in order to make the automatic 

methods more straightforward, systematic, as well as data- or imaging protocol-

independent. In the subsequent methods chapters, investigations will focus assisting the 
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automation of three intermediate steps of perfusion analysis: AIF detection (Chapter 3), 

brain segmentation (Chapter 4), and the model-dependent deconvolution (Chapter 5).  
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Chapter 3: A Comparison of Criteria for Automatic Arterial Input 

Function Detection in DSC-MRI 

 

3.1. Introduction  
 

For the short acquisition duration of a typical dynamic susceptibility-contrast magnetic 

resonance imaging (DSC-MRI) scan and low dosage of administered Gadolinium-based 

contrast agent (GBCA), tissues are generally assumed to be linear and stationary 

(Sourbron and Buckley, 2013, Sourbron and Buckley, 2012, Koh et al., 2011). This means 

that the link between the tissue inlet and the outlet flux of GBCA, defined through the 

transit time distribution (described in Section 2.6.1), is independent of the bolus injection 

time and injected concentration; and dependent on transit time t only. Hence, like any 

other linear time-invariant system, the tissue concentration output is defined by the time-

dependent GBCA concentration input and the impulse response of a tissue, I(t): the 

product of cerebral blood flow (CBF) and residue function, R(t). This is shown in the 

central convolution equation 2.17 (Chapter 2) and Figure 3.1.  

 

  

 

 

  

 

 

Figure 3.1: Similarity between a linear time-invariant (LTI) system and typical parenchymal 

tissue. Symbols: H(t), the response function of an LTI system; AIF(t), arterial input function; 

CBF, cerebral blood flow; R(t), residue function. For both cases, the output is a convolution of 

the input and the response of the system.  

 

To solve the central convolution equation and quantify the perfusion parameters, it is 

necessary to have prior knowledge about the time-dependent arterial input. This time 
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course of the GBCA in an artery feeding the tissue of interest is defined as the arterial 

input function (AIF). The AIF plays an important role in measuring the cerebral blood 

volume (CBV), as equation 2.31 requires the area under the AIF to obtain the CBV. 

Furthermore, an erroneously-quantified, broad AIF would obscure the microvascular 

contribution towards the broadening of the peak of the tissue concentration time curve 

(CTC), resulting in underestimation of mean transit time (MTT). Accurate AIF detection 

is, therefore, an essential preliminary step for perfusion parameter quantification 

(Calamante, 2013, Calamante, 2012).    

AIF can be detected either manually or automatically. As described in Chapter 2 (Section 

2.7.1), manual detection involves visual inspection of CTCs in regions containing the 

middle cerebral artery (MCA) and internal carotid artery (ICA). The AIF is then identified 

using several shape characteristics, such as a high area under the CTC curve (AUC), high 

peak concentration (PeakConc), low time to peak (TTP), low bolus width (measured by 

full width at half maximum, FWHM), and quick washout (indicated by a low first 

moment, FM). This manual search is subjective, time-consuming, poorly reproducible, 

and runs the risk of selecting sub-optimal voxels (Patil et al., 2013, Yin et al., 2014, 

Mouridsen et al., 2006a). For example, in acute stroke patients, a manual process fails to 

identify the necessary local AIFs (Mouridsen et al., 2006a). Moreover, for some subjects, 

the CBF estimated from manually-detected AIF misleads about the actual hemispheric 

location of the pathology (Peruzzo et al., 2011). Therefore, more accurate, objective, 

rapid, and reproducible automatic alternatives for AIF detection are highly recommended 

for future routine perfusion analysis (Calamante, 2013, Mouridsen et al., 2006a, Yin et 

al., 2015, Yin et al., 2014, Peruzzo et al., 2011).   

In automatic AIF detection, an algorithm is applied to identify arterial voxels (AVs) based 

on their afore-mentioned CTC characteristics. Different criteria have been proposed to 

describe these characteristics; regardless of the criteria used, a threshold must be applied 

to initially separate the AVs from soft-tissue voxels. For example, if AUC is used as the 

AIF detection criterion, the mean AUC over all brain voxels is calculated and any voxel 

with an AUC greater than 60% of the mean brain AUC, for example, is assumed to be 

arterial.  

Detecting AIF solely by applying heuristic thresholds on certain criteria can increase the 

uncertainty and subjectivity, as the thresholds are often dependent on the datasets and 
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imaging protocol (Peruzzo et al., 2011, Calamante, 2013). A feasible addition to this 

thresholding procedure is the time-series clustering of CTC data, which groups arterial 

CTCs with similar dynamics and distinguishes them from tissue and noisy CTCs with 

different dynamics. This clustering further refines the threshold-based AIF detection and 

increases both the objectivity of the method and its robustness against noise (Peruzzo et 

al., 2011).  

In the next section, several previous studies that address the different intermediate steps 

of automatic AIF detection, such as thresholding, clustering, removal of noise and CTC 

shape-artefacts, will be reviewed before introducing the aims and research questions of 

the present study.  

 

3.2. Literature review 
 

Along with tissue-voxel-elimination thresholds, many AV-identification studies have 

applied clustering algorithms to replace or alleviate the operator bias or manual workload, 

and at the same time increase the processing speed. Several of these studies are reviewed 

in the following section.  

 

3.2.1. AIF detection with k-means clustering  

 

For rapid, objective, and automatic identification of AIF, Mouridsen et al. used 

thresholding followed by a standard k-means clustering (Mouridsen et al., 2006a). This 

study describes a successful clustering-based automatic AIF detection method that has 

motivated many succeeding studies, including the present work.   

Mouridsen et al. first computed the area under the curve (AUC) and roughness index (RI) 

of each CTC. Then, unique thresholds were applied to each of these criteria to discard 

tissue voxels and voxels with irregular CTCs, respectively. The remaining CTCs were 

divided into five clusters—based on their different dynamics—using an off-the-shelf k-

means clustering algorithm (Everitt et al., 2011). The five clusters corresponded to five 

different tissue regions: grey matter (GM), white matter (WM), arterial blood, venous 

blood, and ‘other’ regions, for example, ventricle containing cerebrospinal fluid (CSF). 
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Each cluster was represented by a centroid. The time-series clustering was performed 

twice. After the first run, the CTCs represented by the centroid with the lowest FM were 

taken as input to the second run. From the output of the second run, the centroid with the 

lowest FM was chosen as the one containing the arterial CTCs. The study also analysed 

the sensitivity of the resultant cerebral blood flow (CBF) to the variation of the AUC and 

RI thresholds.  

The results show that the AIFs obtained with the manual and automatic algorithms had 

excellent agreement. The agreement between the CBFs of the operator-dependent and 

this automatic method was similar to that between multiple operator-dependent methods. 

A later study by Peruzzo et al. (discussed in Section 3.2.3) showed that this method 

provided CBVs similar to those obtained by simulated AIF for signal-to-noise ratios 

(SNRs) ranging from 5 to 50. Moreover, for this SNR range, the similarity between 

automatic and simulated AIF was comparable to other studies (Peruzzo et al., 2011, 

Rempp et al., 1994, Ibaraki et al., 2005).  

A limitation of the study was that the method was applied only to healthy elderly subjects, 

not patients with brain diseases. Peruzzo et al. (2011) showed that this method produces 

more false positives (FPs) than other methods for a range of SNRs. Moreover, the method 

did not search AIF from all the available brain voxels, rather analysed only two manually-

selected slices that intersect the MCA. This manual component decreases the objectivity 

and increases the overall processing time in a clinical setting. To establish a rapid, 

reproducible, and inclusive AV-detection that searches all brain voxels of all slices, this 

published method can be modified by either changing the clustering algorithm or reducing 

its input data dimension (i.e. data mining). In the present work, this k-means clustering is 

applied to a dimensionality-reduced version of the entire dataspace to identify AIF from 

all the brain CTCs (see Section 3.4.4 for details).  

 

3.2.2. AIF detection with modified k-means clustering  

 

Like the work of Mouridsen et al. (2006), Bjornerud and Emblem (2010) used k-means 

clustering for automatic AIF detection, but modified the algorithm in line with the work 

of Hadjiprocopis et al. (2005). Their method was applied to glioblastoma patient data and, 
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therefore, informs the present study regarding the applicability of k-means clustering for 

AIF selection in the clinical setting.   

In this modified k-means clustering, the assignment of each CTC (i.e. datapoint) to a 

cluster-representative centroid was decided through a probability function. The nearer the 

CTC to a cluster, the higher the probability of its assignment to the cluster centroid.  The 

centroid with the highest PeakConc and lowest FM was considered to contain the 

candidate CTCs. Out of the candidates, five CTCs with the lowest FM were averaged to 

create the final AIF. To decrease shape-related errors in AIF, they used a partial volume 

(PV)-correction based on the steady state concentration of arterial and venous voxels.  

A limitation of the work is that the AIFs were not compared to those obtained by other 

methods, such as those of Rempp et al. (1994), Murase et al. (2001b) or Ibaraki et al. 

(2005). Another limitation is that the method is only suitable for DSC-MRI imaging 

protocols that are insensitive to the T1-shortening effect of the GBCA (discussed in 

Section 2.5). Moreover, no thresholding was applied to discard soft-tissue CTCs. As a 

result, the clustering stage had to deal with a large number of CTC inputs, which may 

slow down the process and make it unsuitable for analyses that demand rapid processing 

(such as perfusion analysis of stroke). There is scope to improve the method by 

investigating the optimal thresholds and implementing data-mining approach to 

accelerate the clustering (Wang et al., 2006a). These two aspects are covered in the 

present study.  

 

3.2.3. AIF detection with agglomerative hierarchical clustering  

 

Peruzzo et al. (2011) established a more sophisticated AIF detection approach than those 

of Mouridsen et al., and Bjornerud and Emblem by improving the thresholding and 

clustering stage. By comparing different clustering-based AIF detection methods, their 

work informs the present study about the suitability of different clustering algorithms for 

AIF detection.  

Peruzzo et al. first fitted the first pass of each CTC with a gamma-variate function to 

remove recirculation (Peruzzo et al., 2011). They then applied thresholds to the AUC and 

TTP to discard PV-affected and delayed CTCs, respectively. Next, agglomerative 

hierarchical (AH)-clustering was applied to separate the remaining voxels iteratively into 
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two clusters represented by two centroids. Of these two, the centroid with highest 

PeakConc was selected as the one representing AVs. The method was applied to both 

simulated and clinical datasets.  

For the simulated dataset of SNRs ranging from 10–50, the algorithm was able to 

discriminate AV with fewer FPs than other published methods. For clinical data, the study 

yielded AIFs with characteristics comparable, if not superior, to manually detected AIF. 

The spatial locations of the automatically found AVs were validated by expert clinicians.  

A limitation of the work is that the removal of tissue voxels depended on a complex 

gamma-variate fitting, which may increase the time-complexity and negatively impact 

analyses that require rapid processing, such as acute stroke. Another limitation is that the 

study applied thresholds only on two criteria: AUC and TTP. There is scope for a 

systematic investigation of optimal thresholds of different criteria, including those two. 

The present study explores these aspects.  

 

3.2.4. Comparative analysis of AH, k-means, and c-means clustering 

   

To overcome the lack of reproducibility and stability of the AIF detection with k-means 

and c-means, Yin et al. (2014) proposed an AH clustering method and provided a 

comprehensive comparison between these three methods.  

Although AH was already used for clustering in the work of Peruzzo et al. (Section 3.2.3), 

Yin et al. applied thresholds to AUC and RI instead of AUC and TTP to discard tissue 

and motion- or physiological pulsation-affected voxels. An extra criterion—the ratio of 

the post-bolus steady-state value (SS) to the AUC of gamma-variate fitted CTC first pass 

(SS: AUC1st ratio)—was used to remove PV-affected CTCs, which was not done by 

Peruzzo et al. In this study, the feasibility and performance of the method was compared 

to those achieved with the k-means (Mouridsen et al., 2006a) and c-means clustering 

(Murase et al., 2001b).The three methods were applied to both simulated and clinical 

datasets.  

Compared to k- and c-means clustering, the new method produced AIFs that are more 

congruent with the simulated AIF—with lower root-mean-square error (RMSE) and 

percentage of FPs—for a range of SNRs. For the clinical dataset, the method produced 
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similar AIF to those expected. The final AIF had significantly higher PeakConc and AUC 

than those obtained by the other two methods. The method was also more reproducible 

than k- and c-means.  

A limitation of the method was its significantly-higher execution time than the k- and c-

means. Besides this, only healthy subjects were examined, so the clinical efficacy of the 

method was not confirmed. There is scope to investigate whether a similar AIF-detection 

can be achieved with a simpler and faster clustering method or whether an optimal AUC 

threshold can be systematically determined. Both of these aspects are explored in the 

present work.  

 

3.2.5. Comparative analysis of Ncut, k-means and c-means clustering  

 

As an extension of their previous work with AH clustering (Section 3.2.4), Yin et al. 

proposed another clustering method—normalised-cut (Ncut) (Jianbo and Malik, 2000)—

for AIF detection to increase its robustness (Yin et al., 2015).  

Similar to their previous work, discussed in Section 3.2.4, the method was compared to 

k-means-clustering (Mouridsen et al., 2006a) and the FCM-clustering-based AIF 

detection (Murase et al., 2001b) for simulated and clinical datasets. Before clustering the 

clinical dataset, the SS: AUC1st criterion and thresholds on AUC and RI were applied to 

discard tissue and motion-, PV-, or physiological pulsation-affected voxels.  

For the simulated dataset, the Ncut method showed lower FP, higher AUC and RMSE 

than those of the k-means and c-means clustering. For the clinical dataset, the Ncut-based 

detection gave AIF similar to manually detected ones. The AIF had significantly higher 

PeakConc and lower FWHM than those of other two methods.  

A shortcoming of the algorithm was its significantly longer execution time than the k-

means and c-means clustering. Therefore, it is unsuitable for analyses that demand rapid 

processing (such as, perfusion analysis of stroke). Additionally, similar to their previous 

work (Yin et al., 2014), only healthy subjects were examined and clinical efficacy was 

not confirmed. Future work can include investigation of less complex and faster 

clustering methods and re-assessment of applied AUC thresholds. These aspects are 

explored in the present study.  
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3.2.6. Summary of threshold-based AIF detection studies  

 

All of the afore-mentioned studies used some sort of clustering mechanism to aid AV 

detection. However, many studies have applied thresholding alone, without any clustering 

to identify AVs. For example, Rempp et al. calculated different features of CTC: 

PeakConc, moment of maximum concentration (MMC) and FWHM (Rempp et al., 1994). 

The mean of FWHM and MMC (FWHMm and MMCm, respectively) were calculated 

along with their standard deviations (sFWHM and sMMC, respectively). In the first stage, the 

CTCs with FWHM and MMC below FWHMm – 1.5 × sFWHM and MMCm – 1.5 × sMMC 

were selected as candidate AIFs. Then, 25% of these CTCs with the highest PeakConc 

were finally selected and averaged to obtain final AIF. Another work used the ratio of 

PeakConc and MMC as selection criteria; the five voxels with the highest PeakConc to 

MMC ratios were averaged to produce the desired AIF (Ibaraki et al., 2005).  

The performance of these threshold-based methods was highly dependent on the imaging 

protocol and participating subjects, and thresholds were too stringent in several cases 

(Peruzzo et al., 2011). Specifically, the method of Rempp et al. produced higher FPs and 

underestimated CBV for low SNRs. On the other hand, the method of Ibaraki et al. 

overestimated CBV (Peruzzo et al., 2011). In the present study, clustering is combined 

with thresholding to avoid these limitations and establish a more robust and operator-

independent method.  

 

3.3. Aims  
 

As can be seen from the review above, it is common to apply empirical thresholds to 

different AIF detection criteria to discard soft-tissue voxels. However, to the author’s 

knowledge, optimal thresholds for these AIF selection criteria have not been studied 

systematically, nor has the individual effectiveness of each criterion been compared.  

The literature review also shows that many AIF detection studies used conventional 

clustering methods—such as, k-means, c-means, hierarchical or normalised-cut 

clustering—to group similar time-series (i.e. CTCs) (Mouridsen et al., 2006a, Emblem et 

al., 2009, Yin et al., 2014, Yin et al., 2015, Guijo-Rubio et al., 2018). However, most of 
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the studies have applied their clustering method to just one or two manually-selected 

slices. When applied to CTCs from all slices during a less-operator-dependent search, the 

clustering method has to work on a high-dimensional data space. This increases the time 

complexity of the overall analysis and often provides sub-optimal results (Wang et al., 

2006a). A more robust, simpler, and faster alternative to this raw−data-based clustering 

can be feature-based clustering, where a dimensionality-reduced space containing several 

CTC features is clustered (Guijo-Rubio et al., 2020, Wang et al., 2006a). The underlying 

assumption is that CTCs from functionally similar tissue regions will have similar 

features, and will thus be clustered together in the feature-space. To the knowledge of the 

author, no study has investigated the feasibility of feature-based clustering for AV 

detection.  

Focusing on the above-mentioned knowledge gaps, the aim of the present work is to assist 

the automatic detection of a ‘global’ AIF: an idealised representation of dynamic arterial 

input to every voxel. The following research questions will be addressed in the present 

chapter:  

1. Which of the AIF selection criteria can independently produce plausible AIFs? 

2. Can any new criterion perform as well, if not better, than already established 

criteria? 

3. What criteria thresholds can be used to optimally discard non-arterial voxels? 

4. How sensitive and specific is the threshold of each effective criterion in discarding 

tissue voxels? 

 

3.4. Materials and Methods 
 

3.4.1. DSC-MRI data 

 

The data were derived from MRI scans of 35 low-grade glioma patients in a previously 

published, institution review board approved study (Law et al., 2006) with the acquisition 

details mentioned in Chapter 1 (Section 1.4). In this thesis, the investigations explore 

assistive techniques that can contribute to  a simplified, fully-automated DSC-MRI 

analysis. To serve as an exploratory investigation towards that goal, nine subjects were 
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chosen here; subjects with relatively smooth signal variations, and no noticeable motion-

related artefacts were preferred.  

Figure 3.2 (a) shows seven brain images obtained at different times, t, during the 

administration of GBCA in one subject. The figure shows that, as the GBCA enters a 

voxel, at t ≈ 21s, the signal intensity decreases; when the GBCA washes out, at t ≈ 35s, 

the signal intensity starts to recover. The signal intensity does not recover back to the 

original value due to the recirculation of GBCA. This recirculation does not arise from 

the return of the traversed GBCA back to the voxel, as the name suggests. Instead, it arises 

from the simultaneous passage of a fraction of GBCA that has been shunted through the 

renal and coronary circulations, or organs such as the thyroid, kidneys, or lymph nodes, 

to reach the voxel via the heart (Calamante, 2013). This recirculation eventually ceases, 

and the signal intensity returns to the initial baseline value; however, due to the relatively 

short acquisition time of 60s for the present study, this typically cannot be seen.  

Figure 3.2 (b) shows a typical normalised signal intensity time course (St / Spre) for an 

ROI placed in the caudate nucleus, where Spre is the baseline signal and St  is the raw 

signal. As per routine MRI perfusion processing, the first six images were discarded, as 

they did not demonstrate an equilibrium signal for the baseline calculation (Kao et al., 

2010); this was also confirmed by visual inspection of STCs. Spre is therefore calculated 

as the mean of the signal intensity values from the seventh image till the image preceding 

the bolus arrival.  

The STC shown in Figure 3.2 (b) can be divided into three distinct periods: the baseline 

period showing a constant signal intensity (from 0 – 20s). This represents the native tissue 

intensity before the arrival of the GBCA. The next period demonstrates a transient 

intensity variation (from 21 – 37s) representing the effect of GBCA passage through the 

voxel. The last period is the recirculation (after 37s) showing a second smaller and wider 

transient intensity variation.  
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Figure 3.2: (a) DSC-MRI at different time points during GBCA administration. (b) A typical 

normalised DSC-MRI signal intensity time course obtained by averaging signals from the ROI in 

the caudate nucleus (shown in the inset) and then dividing by baseline signal intensity. The three 

different periods: baseline, first passage, and recirculation are marked.   

 

3.4.2. Data pre-processing 

 

Initially a noise threshold was applied to exclude background voxels and isolate the 

comparatively higher-intensity brain and skull pixels. The ‘regionprops’ function in 

MATLAB extracted the ‘solidity’ property of the remaining regions. Solidity refers to the 

area fraction of a region as compared to its convex hull: the smallest convex polygon that 

can contain the entire region. Skull pixels fill a very small proportion of its convex hull. 

This low-solidity skull region was then removed applying a threshold; suitable 

background- and skull-elimination thresholds were empirically determined from a 
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preliminary study on three subjects. After thresholding, the dynamics only contained 

typical brain voxels: GM, WM, arteries, veins, ventricles, and lesions (if any), as shown 

in Figure 3.2(a) and inset of 3.2(b).   

The STC was then converted to CTC through the process described as follows. Each 

DSC-MRI signal was assumed to be related to concentration, C, through the following 

equation (Patil et al., 2013):  

                                                  
( )C

t preS S e−= , (3.1) 

where ᴧ(C) is a function of concentration that depends on whether GBCA is present in 

large or small vessels. 

For arterial bulk blood (i.e. large vessels), the relaxivity was represented by a quadratic 

equation that better reflects the relationship between concentration and change in 

relaxation rate than a linear relationship (Patil et al., 2013, Patil and Johnson, 2013). The 

form of ᴧ(C) was given by: 

     
2( ) ( )C qC pC TE = +   ,      (3.2) 

where q and p are constants that depend on the external magnetic field strength, B0, and 

TE is the echo time of the acquisition pulse sequence. At a B0 of 1.5 T, q = 0.74 s-1mM-2 

and p = 7.2 s-1mM-1; at B0 = 3 T, q = 2.61 s-1mM-2 and p = 0.49 s-1mM-1 (Patil and Johnson, 

2013, Patil et al., 2013). The present work used a B0 of 1.5 T and a TE of 47 ms.  

After conversion of signals to CTCs, a noise-filtering step was added to discard the CTCs 

that suffered from PVE-, noise-, or motion-related artefacts. Such artefactual CTCs 

demonstrate a high RI, defined as: 

                                                    
'' 2

0

( ( )) ,

T

RI C t dt=   (3.3) 

where C''(t) is the second derivative of CTC with respect to time (Guzman-de-Villoria et 

al., 2012, Yin et al., 2014) and T is the total acquisition time. Twenty five percent of the 

CTCs with the highest RI were removed as per the practice of several published automatic 

AIF detection studies (Yin et al., 2014, Mouridsen et al., 2006a, Peruzzo et al., 2011, Yin 

et al., 2015). Additionally, CTCs with an apparent bolus arrival time (BAT) below 15 s 

were discarded since the bolus typically arrived between 15 to 20 s in the present imaging 
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protocol. Any CTC showing a peak at or after the 45th time point (i.e. 45 s) was rejected; 

this is because CTCs with such late peaks cannot originate from AVs when the acquisition 

time is 60 s.  

 

3.4.3. Feature extraction  

 

Several criteria (or features) are thought to characterise AIF (Mouridsen et al., 2006a, Yin 

et al., 2015, Peruzzo et al., 2011). In this work, ten criteria are extracted from each CTC 

and their effectiveness as well as optimal thresholds are investigated. The criteria are 

defined as follows.  

1. Area under the CTC (AUC): The high transient signal drop in the first passage 

and recirculation for AVs is reflected by a high AUC of the arterial CTCs 

(Mouridsen et al., 2006a, Yin et al., 2015). The AUC of any CTC, Ct(t), was 

calculated using the following equation:  

AUC 
0

( )

T

tC t dt=   .    (3.4) 

2. Full width at half maximum of the CTC (FWHM): GBCA in AVs experiences 

no dispersion and thus arterial CTCs demonstrate lower spread or FWHM in the 

bolus first pass than those of tissue and venous voxels (Rempp et al., 1994).   

3. Peak concentration (PeakConc): The high transient signal drop and absence of 

GBCA dispersion in AVs causes its CTCs to have a higher peak than tissue CTCs.  

4. First moment of the CTC (FM): FM is defined as the center of gravity of the 

bolus and calculated using the following formula: 

FM
0

( )

T

tt C t dt=    ,     (3.5) 

In arteries, GBCA washes out quickly; therefore, arterial CTCs show a lower FM 

(Rempp et al., 1994, Mouridsen et al., 2006a, Peruzzo et al., 2011).  

5. Time to peak (TTP): TTP is defined as the time elapsed from the injection of 

GBCA till the time the CTC reaches its peak concentration. For arterial CTCs, the 

earlier arrival and quick rise of bolus concentration (due to the absence of 

dispersion) will translate into a shorter TTP (Peruzzo et al., 2011).   
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6. Bolus arrival time (BAT): BAT is the time at which the GBCA CTC first 

increases beyond the level of the noise  (Peruzzo et al., 2011). The tissue voxels 

receive GBCA after a certain time delay. Consequently, a typical AV will have an 

earlier bolus arrival and a shorter BAT than tissue voxels.  

7. Mean time duration (MTD): MTD is proposed in the present study as the mean 

time duration of the bolus first pass, quantified as the time difference between the 

BAT and the end of the first pass, Tend: 

    MTD BATendT= −  .                 (3.6) 

Here, Tend is taken as the first time point after the TTP where the concentration 

value reaches within one standard deviation of the post-bolus concentration (Patil 

and Johnson, 2011). The post-bolus concentration was calculated by averaging 

the concentration values of the last ten time points (Yin et al., 2015). Earlier bolus 

arrival and quick washout should ultimately result in smaller MTDs for AVs.   

8. Mean wash-in rate (MWI): MWI is defined as the average rate at which the bolus 

rises to the peak from the BAT. MWI can be calculated from the following 

equation: 

                                      MWI
TTP BAT

PeakConc
=

−
 .                                                   (3.7) 

An arterial CTC quickly rises to the peak and has a high PeakConc; thus, MWI in 

AVs will be higher than those in other voxels (Newton et al., 2016).  

9. Mpeak: Several previous studies included Mpeak as a parameter to distinguish AVs 

(Yin et al., 2015, Yin et al., 2014). Mpeak combines three criteria through the 

following equation:  

 

                                        
TTP FWHM

peak

PeakConc
M =


 .                                (3.8) 

The high PeakConc, low TTP, and low FWHM of AVs produce an Mpeak that is 

different to other voxels. Mpeak is included in this study to compare its AV detection 

ability as a combinational criterion to that of already published and proposed 

criteria.  

10. Mean washout rate (MWO): MWO is defined as the rate at which the GBCA 

concentration drops from PeakConc to the concentration value at the end of the 

first pass.  
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MWO
TTP

end

end

PeakConc C

T

−
=

−
                                              (3.9) 

Where, Cend is the concentration at the end of the first pass at time Tend.  

 

To the author’s knowledge, the criteria MWO and MTD have not previously been used 

but are proposed in this study as two potential ‘stand-alone’ AIF detection criteria to 

answer the second research question for this chapter (i.e. can any new criterion perform 

as well, if not better, than already established criteria?). Figure 3.3 shows a typical AIF 

with seven of the features listed above. 

         

Figure 3.3: A typical arterial input function (AIF) in arbitrary units (A.U.) taken from one of this 

study’s subjects with different features labelled. The AIF is taken from one of the arterial voxels 

detected through the steps described in Section 3.4.4. Abbreviations: AUC, area under the curve; 

FWHM, full width at half maximum; PeakConc, peak concentration; FM, first moment; TTP, 

time to peak; BAT, bolus arrival time; MTD, mean time duration; Tend, end timepoint of bolus 

first pass.  

 

3.4.4. Identification of nominally-true AVs 

 

To measure the individual effectiveness of each criterion in distinguishing AV, 

nominally-true AVs were detected semi-automatically in five stages as follows.  
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3.4.4.1. Thresholding  
 

The acquisition and processing of the data was performed according to Sections 2.4 and 

3.4.2, respectively. Instead of searching for AIF from a manually-drawn ROI in the MCA 

or ICA like many previous studies, the algorithm searched for nominal AVs from all brain 

voxels of all slices. Consequently, the automatic algorithm had to search a huge number 

of voxels. To ease this otherwise extensive and time-consuming search, a thresholding 

stage was used to eliminate voxels that cannot be considered arterial.  

For this ground truth generation step, the thresholds were empirically established based 

on several previous studies (Peruzzo et al., 2011, Mouridsen et al., 2006a, Yin et al., 2015, 

Yin et al., 2014). As compared to AVs, tissue voxels show wider boluses (high FWHM), 

slower washout (high FM), lower PeakConc, and a smaller AUC (Peruzzo et al., 2011, 

Mouridsen et al., 2006a, Rempp et al., 1994). To exclude such soft-tissue voxels, fifty 

percent of boluses with the highest FWHM and twenty percent of boluses with the highest 

FM were rejected. All remaining CTCs with AUCs lower than 40% of the maximum 

AUC (AUCmax) and with PeakConc lower than 30% of the maximum PeakConc 

(PeakConcmax) were discarded.  

The low thresholds identified all the nominal AVs at the cost of also identifying many 

false AVs. To further refine the algorithm and group the similar concentration dynamics, 

a subsequent clustering stage (see Section 3.4.4.3) was used. Before clustering, the 

dimension of the raw data was reduced by the process described in the next section.  

 

3.4.4.2. Feature space creation 
 

From the CTCs of the N voxels that remained after thresholding, ten features (as listed in 

Section 3.4.3) were extracted. Next, the CTC of a voxel was replaced by a ten-

dimensional feature vector, where each dimension contained one of the extracted features. 

These N feature vectors created a new feature space, F. While all the original CTC data 

create a raw data space, S, of dimension N × 60 (as there are 60 time points), the F space 

has a reduced dimension of N × 10. Thus, the F space had more information in a smaller 

number of dimensions, potentially making the subsequent computation simpler, faster, 
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and less sensitive to noise, as claimed by Wang et al. (2006a) and Guijo-Rubio et al. 

(2020). This F space was taken as the input to the subsequent clustering stage.  

 

3.4.4.3. Clustering  
 

The clustering algorithm used in this work involved distance metrics (e.g. Euclidean 

distance measurement, detailed later in this section), which are sensitive to magnitude 

variations, different scales, or units of measure of the data. Features with larger magnitude 

outweigh others and yield inaccurate cluster outcomes (Mohamad and Usman, 2013). To 

solve this problem, each feature (i.e. dimension) of the F space was given a uniform scale 

ranging from 0.1 to 0.9 through min-max normalisation (Mohamad and Usman, 2013).  

Standard k-means clustering was applied to the normalised F space with the steps as 

follows (Arthur and Vassilvitskii, 2007, Lloyd, 1982, Raykov et al., 2016, Taxt et al., 

1992, Kanungo et al., 2002):  

1. Initialisation step: The clustering algorithm started with creating k 

random cluster centroids, wj (where, j = 1, 2, …., k), in the F space. The 

value of k was set as five, like many similar automatic AIF selection 

studies, to represent five different type of CTCs putatively corresponding 

to GM, WM, arterial blood, venous blood and ‘other’ regions (e.g. 

ventricles) (Mouridsen et al., 2006a, Yin et al., 2014, Bjornerud and 

Emblem, 2010). 

2. Distance calculation step: Distances between each data point, Fp, to the 

centroids (i.e. wj’s) were calculated. There are several proposed distance 

measurements for k-means (such as, Euclidean, Chebyshev, Manhattan, 

Mahalanabis, Spearman, Jaccard, etc.), out of which Euclidean distance 

is most-commonly used (Raykov et al., 2016) and is chosen here for its 

simplicity.  Each data point was assigned to one of the centroids wj to 

which it was closest, with the shortest Euclidean distance. This was done 

by minimising the following objective function J:  
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      where n is the total number of features.  
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3. Centroid updating step: The centroids were updated by taking the mean 

of all data points included in a specific cluster calculated from step 2.  

4. Iteration step: Steps 2-3 were repeated until one of the following 

conditions was met: no more re-locations occurred for a data point—that 

is, the distance between each data point to their assigned centroids could 

not be minimised further—or the algorithm had reached its pre-defined 

maximum number of iterations of 1,000. 

 

3.4.4.4. Centroid Selection  
 

The clustering stage divided the normalised F space into five clusters with high inter- and 

low intra-cluster variability. Each cluster is represented through a centroid. The CTCs 

belonging to the centroid(s) that had the highest AUC or highest PeakConc were taken as 

the candidate AIFs. These two criteria were chosen as they are representative of the most 

prominent characteristic of an AIF: the large signal drop.  

 

3.4.4.5. Manual AV selection  
 

At the final stage, all candidate AIFs were inspected visually and those that appeared 

plausible to be considered as AIF were recorded as the nominal AIFs. This five-stage 

process was applied to the datasets from all nine subjects.  

In MATLAB (R2018a, Natick, MA), ten AIFs were plotted at a time and any CTCs that 

were accepted by the operators were retained. This process continued until 30 AIFs were 

selected, on which the above process was repeated to find the best candidate (this time 

five CTCs were plotted at a time). The process continued until the candidate number was 

below 10, as would be expected from a typical subject. Figure 3.4 provides a schematic 

diagram for the entire nominal AIF detection process.  
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Figure 3.4: Schematic diagram of semi-automatic nominal AV detection. Manual intervention is 

marked with blue coloured box. Abbreviations: AUC, area under the curve; AUCmax, maximum 

of area under the curve over all voxels; PeakConc, peak concentration; PeakConcmax, maximum 
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of peak concentration over all voxels; N, number of voxels left after thresholding; CTC, 

concentration time curve; AIF, arterial input function; AV, arterial voxel.  

 

3.4.5. Study on the effectiveness of the criteria  

 

To answer the first research question for this chapter regarding the individual AV-

detection effectiveness of each criterion, two investigations were performed: initially on 

a single subject as per the schematic diagram of Figure 3.5 and then on all subjects. One 

of three subjects that had similar final AIF (detected from Section 3.4.4) was chosen for 

this investigation. The data acquisition, pre-processing, thresholding, and clustering 

stages were the same as in sections 1.4, 3.4.2, 3.4.4.1, and 3.4.4.3, respectively.  

Like Section 3.4.4.3, the clustering algorithm produced five centroids. The next task was 

to find which of the ten criteria could effectively identify the centroid that contains the 

AIFs. Each of the ten criteria was used in turn as a sole centroid selector. For example, 

when the effectiveness of the AUC was investigated, the centroid with the maximum 

AUC (AUCmax) was selected. On the other hand, to investigate the effectiveness of the 

FM, the centroid with the minimum FM (FMmin) was chosen. The centroids with 

maximum PeakConc, MWI, Mpeak, and MWO and minimum BAT, TTP, FWHM, and 

MTD were selected in their respective turns. Finally, for each criterion, CTCs associated 

with the selected centroid were aligned and averaged to produce the final AIF. All ten 

final AIFs were then plotted to visually compare the effectiveness of the criteria to select 

the correct centroid.  
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Figure 3.5: Schematic diagram for studying the individual effectiveness of each of the ten criteria. 

Abbreviations: CTC, concentration time curve; AIF, arterial input function; AUC, area under the 

curve; FWHM, full width at half maximum; PeakConc, peak concentration; FM, first moment; 

TTP, time to peak; BAT, bolus arrival time; MTD, mean time duration; MWI, mean wash-in rate; 

Mpeak, a combination of multiple criteria (equation 3.8); MWO, mean wash-out rate. Subscript 

‘max’ and ‘min’ refers to the maximum and minimum value of the corresponding criteria for 

choosing the centroid.  
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After the above single-subject investigation, the effectiveness of each criterion to 

distinguish AV was quantified for all subjects. Receiver operating characteristic (ROC) 

curves were generated for each criterion for all nine subjects using the nominal AVs 

(identified for each subject in Section 3.4.4). The areas under the ROC curves (AUCROC) 

were quantified to evaluate the power of each criterion in distinguishing AVs from tissue 

voxels, and the mean AUCROC over all subjects was measured along with the standard 

deviation (SD). The value of AUCROC ranges from 0 to 1. The nearer the AUCROC to 1, 

the greater the power of a criterion in discriminating AVs from other voxels (Bland, 

1995).  

The published criteria that produced average AUCROCs lower than 0.5 were considered 

unsuccessful in independently selecting realistic AIFs and were excluded from the 

subsequent investigation that identified the optimal threshold for each effective criterion. 

 

3.4.6. Investigation of Optimal Threshold for effective criteria 

 

This part of the study aims at answering the third and fourth research questions for this 

chapter (i.e. what criteria thresholds can be used to optimally discard non-arterial voxels; 

and how sensitive and specific is the threshold of each effective criterion in discarding 

tissue voxels?).  

For the effective criteria, the thresholds to optimally discard the soft tissues were 

quantified as follows. A cut-off point was identified from the ROC curve of each effective 

criterion created in Section 3.4.5. The cut-off was set at the point with highest Youden 

index calculated with the following formula (Krzanowski and Hand, 2009): 

    Youden Index = Sensitivity + Specificity – 1.   (3.11) 

For each subject, the optimal threshold of each criterion was presented as a percentage 

difference from the mean criterion value over all the brain voxels. The mean and SD of 

these optimal thresholds were reported along with their mean (SD) sensitivity and 

specificity in distinguishing and discarding non-arterial voxels.  
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3.4.7. Statistical Analysis  

 

The AUCROCs of the criteria were analysed statistically to assess their effectiveness. The 

present experimental design has one measurement variable—AUCROC—and two nominal 

variables. One of the nominal variables is ‘criteria’ with ten categories to represent ten 

criteria. Another nominal variable is ‘subject’ with nine different categories. Each value 

of one nominal variable (i.e. criterion) is found in combination with each of other nominal 

variable (i.e. subject).  Due to this design, two-way analysis of variance (ANOVA) was 

performed to test the hypothesis that the population means of AUCROCs are equal for 

different criteria and for different subjects (McDonald and Delaware, 2009). It needs to 

be noted that there was only one AUCROC for each combination of the nominal variables. 

This caused the two-way ANOVA to be performed without replication, and, therefore, it 

was assumed that there exists no interaction between the nominal variables.  

To verify the above-mentioned hypothesis, 45 different hypotheses had to be checked. To 

reduce the Type-I error of this multiple testing, the p-value was calculated using 

Bonferroni correction, where the significance level of 0.05 was divided by the number of 

hypothesis tests. Hence, the present work used p = 0.001 for each pairwise comparison 

(Bland, 1995). The two-way ANOVA analysis was performed in MATLAB (R2018a, 

Natick, MA).  

 

3.5. Results 
 

3.5.1. Nominal AVs  

 

Table 3.1 shows the total brain voxels (NBV), number of candidate voxels (NCV) that were 

obtained after the centroid selection stage of Section 3.4.4.4, and the number of voxels 

that were finally accepted as AVs after visual inspection (NAV) in Section 3.4.4.5. 

Comparing the NBV and NCV, it can be stated that the thresholding and clustering steps 

decreased the number of voxels to be visually inspected by an average of 300-fold with 

AUC and 292-fold for PeakConc; thus, the need for intensive manual labour is 

considerably reduced.  
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Table 3.1: Number of total brain voxels, NBV (number of voxels left after pre-processing stage, 

see Figure 3.4), candidate voxels, NCV (number of voxels that were chosen by centroid selection 

step) and arterial voxels, NAV (number of voxels that were finally selected by visual inspection) 

for each subject with area under the curve (AUC) and peak concentration (PeakConc) as the 

centroid selection criteria. In the parenthesis, output voxels of interim steps (i.e. NCV and NAV) are 

presented as percentages of the voxels input to that step (i.e. NBV and NCV, respectively)   

 

Subject  NBV 

Centroid selection criteria: AUC   Centroid selection criteria: PeakConc 

NCV (% of 

NBV) 
NAV (% of NCV) NCV(% of NBV) NAV (% of NCV) 

Subject 1 37859 192 (0.51) 7 (3.6) 160 (0.42) 7 (4.37) 

Subject 2 60390 172 (0.28) 2 (1.16) 74 (0.12) 2 (2.7) 

Subject 3 50077 63 (0.13) 7 (11.1) 65 (0.13) 7(0.11) 

Subject 4 61626 177 (0.29) 6 (3.4) 219 (0.36) 7 (3.2) 

Subject 5 56199 294 (0.52) 10 (3.4) 452 (0.8) 10 (2.2) 

Subject 6 50928 340 (0.67) 5 (1.47) 202 (0.4) 5 (2.5) 

Subject 7 62150 137 (0.22) 3 (2.19) 180 (0.29) 3 (1.67) 

Subject 8 59367 115 (0.19) 6 (5.22) 169 (0.29) 7 (4.14) 

Subject 9 57155 140 (0.24) 7 (5.0) 155 (0.27) 7 (4.52) 

    

 

Figure 3.6 (a) shows the final AIFs for one of the subjects. The spatial locations of the 

AVs for that subject are shown in the inset. Figure 3.6(b) shows typical spatial locations 

of AVs at the M1, M2 and M3 segments of the MCA (Zaro-Weber et al., 2012). It can be 

seen that the locations of AVs for the subject are in good agreement with those found in 

M2 and M3 segment—middle and right panel of Figure 3.6(b). These spatial locations of 

AVs were also congruent with those of the large vessels in the sulci, as found by 

Wismuller et al. (2006).             
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           (b) 

Figure 3.6: (a) Arterial input functions (AIFs) of finally selected arterial voxels (AVs) for one 

subject, with inset showing the spatial locations of the AVs for the subject with arrows (the red 

arrow indicates an ROI that contains four AVs); (b) Spatial locations of AVs (white boxes) at 

different segments of middle cerebral artery (MCA) with their intensity dynamics. The AVs 

located specifically at M2 and M3 segments are congruent with the identified AVs. Figure (b) is 

reproduced from the work of Zaro-weber et al. (2012), with permission from Wolters Kluwer 

Health, Inc 2.  

 
2
Olivier Zaro-Weber, Walter Moeller-Hartmann, Wolf-Dieter Heiss, et al; Influence of the Arterial Input Function on 

Absolute and Relative Perfusion-Weighted Imaging Penumbral Flow Detection; Stroke, 2012; 43(2): 378-385; 

https://doi.org/10.1161/STROKEAHA.111.635458; Copyright license no: 4963000305742. 

https://doi.org/10.1161/STROKEAHA.111.635458
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3.5.2. Effectiveness of criteria  

 

The results of the effectiveness study for one subject are presented in the first part of this 

section, whereas the results of the effectiveness study for all the subjects are presented in 

the second part.  

 

3.5.2.1. Investigation on a single subject  
 

Figure 3.7 shows the finally selected AIFs from each criterion for one subject. Every 

criterion was used in turn as the cluster centroid selector and the resultant AIF of each 

was plotted to produce the figure. The criteria AUC and PeakConc yielded AIFs in line 

with the expected characteristics: high AUC, high PeakConc, early arrival, and quick 

concentration rise. The criteria Mpeak and MWI also yielded plausible AIFs, with 

satisfactory rate of concentration rise and fall, but lower peak values than criteria AUC 

and PeakConc. All other criteria failed to produce plausible AIFs for the subject.  

 

 

Figure 3.7: Final AIFs achieved with each of the ten criteria for one of the nine subjects (different 

to the one used for generating Figure 3.6). Abbreviations: a.u., arbitrary units; AUC, area under 

the curve; FWHM, full width at half maximum; PeakConc, peak concentration; FM, first moment; 

TTP, time to peak; BAT, bolus arrival time; MTD, mean time duration; MWI, mean wash-in rate; 

Mpeak, a combination of multiple criteria (equation 3.8), MWO, mean wash-out rate.  
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Table 3.2 gives the feature values for the resultant AIFs obtained from each centroid 

selection criterion. From the table, it can be noted that when centroid with the maximum 

PeakConc (PeakConcmax) was chosen, the resultant AIF had the highest peak, MWI, and 

AUC, as well as low FWHM, and high MWO. All the temporal-parameter-based criteria 

(FWHM, FM, TTP, BAT, and MTD) failed to produce satisfactory AIF.  

 

Table 3.2:  Comparison of the ten features of the resultant AIFs obtained with each of the ten 

centroid selection criteria.   

   Note: Feature values obtained from successful criteria are highlighted in bold.  

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; PeakConc, 

peak concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival time; MTD, mean 

time duration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8); 

MWO, mean wash-out rate. Subscript ‘max’ and ‘min’ refers to the maximum and minimum 

value of the corresponding criteria for choosing the centroid. 

 

Figure 3.8(a) and (b) show the ROC curves for the shape-parameter-based criteria and 

temporal-parameter-based criteria, respectively, for the subject. Table 3.3 gives the 

AUCROC for each criterion for the subject. Figure 3.8(a) and Table 3.3 illustrate the high 

effectiveness of AUC, PeakConc, MWI, Mpeak, and MWO in independently identifying 

 

Centroid 

selection 

criteria 

Feature Values of finally selected AIF 

AUC FWHM PeakConc FM TTP BAT MTD MWI Mpeak MWO 

AUCmax  25.81 8.76 2.04 33.35 27 20 18 0.49 0.0087 0.17 

FWHMmin 5.12 7.09 0.61 28.77 26 20 14 0.10 0.0033 0.058 

PeakConcmax 26.41 7.72 2.05 34.3 26 22 16 0.51 0.010 0.18 

      FMmin  5.36 7.09 0.64 28.68 26 20 13 0.11 0.0035 0.061 

TTPmin 11.93 7.95 1.09 31.64 26 19 14 0.16 0.0053 0.10 

BATmin 11.24 7.88 1.03 31.6 26 19 14 0.15 0.0050 0.10 

(MTD)min 5.06 7.75 0.48 31.27 27 20 13 0.069 0.0023 0.047 

MWImax 21.14 9.16 1.70 32.46 27 20 16 0.24 0.0069 0.16 

(Mpeak)max 17.59 6.01 1.70 33.33 26 22 15 0.43 0.011 0.19 

MWOmax 15.92 9.56 1.1 34.41 30 31 15 1.1 0.0038 0.15 
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the AIFs through high AUCROCs. Figure 3.8(b) and Table 3.3 show the inability of other 

criteria through low AUCROCs.  

   

 

 

(a)                                                                                        (b)  
Figure 3.8: (a) Receiver operating characteristic (ROC) curves for AUC, PeakConc, MWI, Mpeak, 

MWO for one subject. (b) ROC curve for FWHM, FM, TTP, BAT, MTD for one subject. 

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; PeakConc, peak 

concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival time; MTD, mean time 

duration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8); 

MWO, mean wash-out rate. 

 

Table 3.3: AUCROCs of different criteria for the chosen subject  

Criteria AUC FWHM PeakConc FM TTP BAT MTD MWI Mpeak MWO 

AUCROC 0.975 0.178 0.992 0.160 0.215 0.223 0.070 0.968 0.991 0.976 

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; PeakConc, peak 

concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival time; MTD, mean time 

duration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8); 

MWO, mean wash-out rate. 
 

3.6.2.2. Investigation on all subjects  

 

Table 3.4 shows the mean AUCROC with the SD for each criterion over all subjects. Figure 

3.9 presents these data in a bar-chart. For all nine subjects, the temporal-parameter-based 
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criteria FWHM, FM, TTP, and BAT failed to identify the AIFs, as can be seen from their 

low AUCROCs. The shape-parameter-based criteria AUC, PeakConc, Mpeak, and MWI 

showed AUCROC that are significantly higher than those of temporal-parameter-based 

criteria (p < 0.001, exact p-values given in Appendix 1: Table 1). All of the shape-

parameter-based criteria were equally effective, with no significant difference between 

their AUCROC (p > 0.001, exact values given in Appendix 1: Table 1). MWI gave a 

comparatively lower AUCROC with a high SD, indicating the uncertainty of AV 

identification solely with MWI. Out of the proposed two criteria, MTD and MWO, 

although the former failed in identifying AV (as the mean AUCROC < 0.5), the latter 

provided AUCROC similar to those of other effective criteria (p > 0.001, exact p-values 

are given in Appendix 1: Table 1).  

 Table 3.4: Mean AUCROC(SD) of different criteria for all nine subjects. 

 

Figure 3.9: Bar chart for mean AUCROC (SD) for different criteria. The error bars represent SDs. 

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; PeakConc, peak 

concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival time; MTD, mean time 

duration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8); 

MWO, mean wash-out rate. 

Criteria AUC FWHM PeakConc FM TTP BAT MTD MWI Mpeak MWO 

AUCROC 
0.98 

(0.01) 

0.16 

(0.05) 

0.99 

(0.01) 

0.15 

(0.04) 

0.17 

(0.06) 

0.22 

(0.14) 

0.067 

(0.03) 

0.77 

(0.21) 

0.99 

(0.004) 

0.97 

(0.01) 

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; PeakConc, peak 

concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival time; MTD, mean time 

duration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8); 

MWO, mean wash-out rate. 
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3.5.3. Optimal threshold for individual criteria  

 

For each criterion, the optimal thresholds were presented as a percentage difference from 

the mean value of that criterion over all voxels of a subject. Due to the poor performance 

of FWHM, BAT, FM, TTP, and MTD as individual AV-selection criteria, they were not 

included in the optimal threshold analysis.  

Figure 3.10 shows the optimal threshold ranges in boxplots for the five effective criteria. 

Table 3.5 gives the mean (SD) of the optimal threshold (first row), and the mean (SD) of 

sensitivity and specificity in distinguishing and discarding non-arterial voxels (second 

and third row, respectively) over all subjects. The table shows that a threshold of nearly 

60% above the mean AUC can identify an AV candidate with 100% sensitivity and 95.5% 

specificity. The optimal thresholds for PeakConc and Mpeak have higher variability and 

thus higher uncertainties than those of AUC; however, their sensitivity and specificity 

values are comparable. For MWI and MWO, the optimal thresholds were both above and 

below the mean value (in Figure 3.10, mean value of a criterion is denoted by percentage 

threshold of 0%) and SDs were higher (see Table 3.5, first row). This suggests that MWI 

or MWO cannot individually remove tissue voxels with high certainty. The low 

sensitivity with high SD of the MWI threshold also indicates its unsuitability for 

discarding tissue voxels.  
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Figure 3.10: Box-plot of optimal thresholds for different criteria shown as percentage above the 

corresponding criterion mean over all voxels. Median of the optimal thresholds are represented 

by red lines; interquartile range by blue boxes; the upper and lower quartile of the threshold values 

by upper and lower whiskers. Abbreviations: AUC, area under the curve; PeakConc, peak 

concentration; MWI, mean wash-in rate; Mpeak, a combination of multiple criteria (equation 3.8), 

MWO, mean wash-out rate. 

 

Table 3.5: Mean (SD) of optimal threshold (represented as % above the overall criteria mean) 

together with the mean (SD) of achieved sensitivity and specificity in distinguishing and 

discarding non-arterial voxels 

Criteria AUC PeakConc MWI Mpeak MWO 

Mean (SD) 

Threshold (% 

above overall 

criteria 

mean) 

64.23 

(22.52) 

145.82 

(63.17) 

27.17 

(42.29) 

118.83 

(69.92) 

18.30 

(33.49) 

Mean (SD) 

Sensitivity 
100 (0.00) 100 (0.00) 63.6 (41.2) 100 (0.00) 100 (0.00) 

Mean (SD) 

Specificity 

 

95.5 (0.84) 98.4 (1.16) 95.2 (2.27) 98.0 (1.28) 95.5 (1.68) 

Abbreviations: AUC, area under the curve; PeakConc, peak concentration; MWI, mean wash-

in rate; Mpeak, a combination of multiple criteria (equation 3.8), MWO, mean wash-out rate. 
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3.6. Discussion  
 

The primary aim of the study was to investigate the effectiveness of ten criteria in 

identifying AVs independently. For the effective criteria, the study systematically 

determined the optimal ranges for tissue-elimination thresholds. The study also served as 

a preliminary investigation into the feasibility of feature-based clustering for automatic 

AV selection.  

AUC, PeakConc, Mpeak, and the proposed MWO were found to be the most effective AV 

detection criteria. The reported optimal thresholds of AUC, PeakConc, and Mpeak can 

successfully discard soft-tissue CTCs. Detailed discussion of the findings, potential 

clinical applications, limitations, as well as future scopes of the present work will be 

presented in the following sections.  

 

3.6.1. Nominal AVs  

 

The semi-automated AV identification obtained a list of plausible AVs as the ground truth 

for the subsequent effectiveness analysis. Many published studies searched for AIF from 

only one slice or a pre-selected region (Mouridsen et al., 2006a, Murase et al., 2001a, 

Peruzzo et al., 2011); whereas the present work performed a more extensive search of 

AVs from all brain CTCs of all slices. Additionally, the present work used less stringent 

thresholds compared to other studies (Mouridsen et al., 2006a, Yin et al., 2015, Yin et al., 

2014). This causes selection of all possible AIFs at the cost of selecting many false 

candidates. However, the subsequent clustering step refined the algorithm and helped 

reduce the number of FPs by grouping features originating from similar dynamics.   

The AIF identification described in this work used feature-based clustering instead of 

clustering of raw CTCs. Feature-based clustering is reported to increase the robustness of 

the clustering step and decrease the time-complexity (Wang et al., 2006a). For example, 

the time-complexity of k-means clustering is O(IkdN) where I is the total number of 

iterations, d is the dimension of each object (i.e. voxel), N is the number of voxels, and k 

is the number of clusters. Through the transformation from N × 60-dimensional raw space 

to N × 10-dimensional F space, the value of d reduces from 60 to 10 and, consequently, 

the time-complexity is decreased.  
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The clustering step decreased the workload of manually inspecting a large number of 

CTCs that were left after the thresholding stage. However, the number of candidate AIFs 

to be visually inspected after the clustering step (i.e. NCV) was still high for some subjects, 

such as subjects 5 and 6 (see Table 3.1). When PeakConc was used as the centroid 

selection criterion, the NCV was much higher (except for subjects 2 and 6). This might be 

due to the erroneous inclusion of PV-affected CTCs in the list of AIFs; these CTCs 

survived the thresholding stage due to their ‘peaked’ shape. However, they may not 

necessarily have high AUCs, and therefore including AUC as a supplementary centroid 

selection criterion could decrease the NCV, and thus, the manual workload. Saying that, 

even with AUC, many NCV are still left to inspect. This is because of the less stringent 

thresholds. It is expected that, any future studies will be able to eliminate tissue voxels 

better if they set their unique data-specific thresholds for AUC and PeakConc using the 

framework presented here; then, their nominal AV identification step will produce fewer 

NCVs. 

Although this procedure of nominal AIF detection is somewhat subjective, it is no more 

so than the reference-standard method of manual selection. For the sample subject, the 

spatial locations of the final AVs were congruent with those found in different studies 

(Zaro-Weber et al., 2012, Wismuller et al., 2006). However, there is scope to execute a 

more rigorous and systematic quality control. For example, the spatial locations of finally 

selected AVs could be assessed by multiple expert Radiologists, then comparing the inter-

operator agreements to the agreements between individual operators and the automatic 

algorithm.  

 

3.6.2. Comparison of criteria effectiveness  

 

Several criteria have been applied collectively in many previously published studies to 

obtain the candidate and then the final AIF (Mouridsen et al., 2006a, Peruzzo et al., 2011, 

Rempp et al., 1994). However, no study has reported the effectiveness of each criterion. 

The present work investigated this aspect and showed that AUC and PeakConc are highly 

effective in producing plausible AIF. All other previously-published temporal-

characteristic-based criteria (such as BAT, TTP, FM, and FWHM) failed as independent 

AV selectors. Nevertheless, when these temporal parameters are combined with certain 
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shape parameters, such as for the criterion Mpeak, they can assist the detection of plausible 

AIFs. The proposed MWO performed similarly to the already published successful 

criteria—AUC, PeakConc, and Mpeak—and can thus be considered in any future automatic 

AV selection studies.  

 

3.6.3. Optimal thresholds  

 

This study established a general framework for the determination of optimal tissue-

elimination thresholds. Many previous studies have applied thresholds that were 

empirical, based on prior insight and expertise of the researchers regarding the data, or 

dependent on the underlying imaging protocols. However, those studies lacked complete 

systematic analysis or explicit justification behind the application of those specific 

stringent thresholds. Only one study investigated the sensitivity of the CBF to the 

variation of AUC and RI thresholds (Mouridsen et al., 2006a). In contrast to that study, 

optimal threshold ranges were determined for five criteria (including AUC) without 

computationally intensive voxel-by-voxel CBF quantification. Hence, the present study 

offers substantial information in regard to tissue-elimination thresholds without 

increasing the computational burden. The threshold-determination framework can be 

used by other centres and future studies to set the specific thresholds for their dataset. 

The prescribed optimal threshold range for AUC is congruent with the range that created 

CBF maps within an acceptable inter-operator agreement in a previous study (Mouridsen 

et al., 2006a). For other criteria, no such study was found to validate their reported optimal 

thresholds. However, as the optimal threshold for AUC is consistent with a previous 

work, thresholds for other criteria are expected to be in the acceptable range for clinical 

applications. Saying that, the thresholds for MWO and MWI are highly variable. By using 

larger sample sizes, future studies can further assess their thresholds and improve the 

proposed framework.   

For discarding non-arterial voxels in future studies, the application of optimal thresholds 

should be followed by a clustering stage. Otherwise, a vast number of CTCs will be left 

from which the candidate AIFs would have to be selected by a cumbersome manual 

inspection. This will ultimately increase the computation time and operator bias. To 



92 
 

simplify and accelerate the clustering stage, future studies can opt for feature-based 

clustering, whose feasibility can be validated from this study.  

 

3.6.4. Clinical applications 

 

Many aspects of the present study can be applied to routine clinical perfusion analysis. 

The AIF detection described in Section 3.4.4 can be implemented in the clinical setting 

for robust, rapid, and less-Radiologist-dependent perfusion analysis of different 

pathologies, such as glioma, ischaemic stroke, multiple sclerosis, and Alzheimer’s 

disease.   

For some pathologies, rapid processing and urgent decision making are of crucial 

importance. For example, in the typical ‘time is brain’ situations, such as acute ischaemic 

stroke, approximately 12 km of myelinated fibre is destroyed in one minute, at a rate of 

720 km/h (Calamante, 2013). For perfusion analysis of such pathologies, the proposed 

feature-based clustering can offer a fast and simple AIF detection by reducing the time-

complexity of the clustering stage. 

The proposed framework for optimal threshold determination can assist any AIF 

detection task that applies a thresholding stage. Future perfusion studies can use the 

presented methods on their data to establish data-specific optimal thresholds. At the very 

least, the presented thresholds can be used as a reference for other sites, patient studies, 

or imaging protocols. However, the thresholding stage should not be used as a ‘black box’ 

to blindly discard soft-tissue CTCs. The CTCs that remain after thresholding should be 

further assessed by expert operator, or by including at least some low-level manual quality 

control, to decide whether higher or lower thresholds would be beneficial for the datasets 

in hand.  

The present study can be used to establish an end-to-end automatic AIF detection 

algorithm. The proposed systematically-determined optimal thresholds can initially 

discard the tissue voxels; and then feature-based clustering can rapidly group the CTCs. 

The feature-based clustering can be made more effective, rapid, and robust by including 

only the features with high AV-discriminating power—identified by the present study.  
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The performance of the algorithm can then be evaluated using AIF detected manually or 

semi-automatically (for example, as per Section 3.4.4).  

The findings of the study can also be implemented to assist local-AIF detection. For 

example, published local-AIF detection methods (Tabbara et al., 2020, Willats et al., 

2011) can be accelerated if their raw-data-based clustering step is replaced by the 

proposed feature-based clustering. Some local-AIF detection studies used criteria, such 

as effective BAT (different to BAT described in 3.4.3), to initially segment the brain into 

territories that had similar vascular supply (Willats et al., 2011). These territories were 

iteratively re-defined until each tissue voxel got assigned to a local AIF. Criteria more 

suitable than effective BAT can be created by considering the criteria effectiveness 

information presented here.  Moreover, the thresholding stage of these local AIF detection 

studies can be improved by using the proposed optimal-threshold-determination 

framework.  

 

3.6.5. Limitations 

 

The limitations of the present work are as follows. Only nine subjects were included in 

the study. Statistical certainty can be affected by this limited number of samples. A future 

study with a larger sample size can validate the inferences.  

The present method only assists the ‘global’ AIF search. For patients with ischaemic 

stroke or arterial abnormalities, such as stenosis or occlusion, moyamoya disease, this 

global AIF can be highly affected by delay and dispersion; therefore, using it may result 

in inaccurate perfusion estimates (e.g. CBF underestimation) (Tabbara et al., 2020, 

Calamante, 2013). Instead, a local arterial input to the voxel of interest (i.e. local AIF) 

provides better perfusion estimates by considering the effects of delay and dispersion 

(Willats et al., 2011). Ample studies are available on isolating or considering the effects 

of delay and dispersion (Mehndiratta et al., 2013, Mouannes-Srour et al., 2012, Sourbron 

and Buckley, 2013, Sourbron and Buckley, 2012, Bjornerud and Emblem, 2010). 

Nevertheless, to the knowledge of the author, the use of global AIF has not been reported 

to be inappropriate for glioma patients who do not have any history of arterial 

abnormalities—the patient cohort studied in this work. Local AIF detection is therefore 

kept as a future scope of this study.  
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A further limitation is that the work is not entirely free of human intervention. Manual 

input was required to create a collection of nominal AIFs for the subsequent evaluation 

(the coloured box in Figure 3.4). AIFs could have been simulated by a gamma-variate 

function with known scale and shape parameters. The RMSE between candidate AIFs 

and ‘true’ AIF could then be used to evaluate the accuracy of the AIF detection approach 

(Peruzzo et al., 2011, Yin et al., 2014, Yin et al., 2015). However, in this study, in vivo 

patient datasets were used instead of simulated datasets, as the latter often fails to 

represent CTC variations in patient data.  

The applied k-means clustering algorithm also possesses limitations. First, it is highly 

dependent on the randomly selected initial centroid (Rasyid and Andayani, 2018). This 

randomness can reduce its stability and reproducibility, and create sub-optimal results 

(Raykov et al., 2016). To avoid these limitations, the number of iterations was kept very 

high, as per many previous AIF selection studies (Bjornerud and Emblem, 2010, 

Mouridsen et al., 2006a, Yin et al., 2015, Yin et al., 2014). Second, the Euclidean distance 

used in k-means clustering treats the data space as isotropic; that is, all clusters are 

assumed to be spheres with equal radii around their centroids (Raykov et al., 2016). 

Moreover, the density of each sphere is assumed to be equal. For real subjects, however, 

the size of AIF, GM, and WM clusters and the number of elements (i.e. voxels) in them 

should be different; so, the assumption of equal radius and density fails. Additionally, any 

outlier in the feature space can significantly affect the linear Euclidean feature space and 

drastically impair the performance. To overcome this limitation, k-medoids or k-medians 

clustering can be used instead of k-means, and the Mahalanobis distance can be used 

instead of the Euclidean distance (Raykov et al., 2016). Nonetheless, k-means clustering 

was used only to simplify and accelerate the otherwise time-consuming AV search. So, 

despite the above-mentioned limitations of k-means clustering, their effects are expected 

to be trivial to the overall inferences made in the present study. Moreover, compared to 

fuzzy c-means clustering (Murase et al., 2001a), another simple clustering algorithm, k-

means clustering is more successful as the latter gave higher agreement between the CBFs 

achieved with manually selected AIF and those with automatic method (Mouridsen et al., 

2006a). 
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3.6.6. Future scopes  

 

In future improvements of this work, more patients will be recruited to increase the 

statistical power of the analysis. Additionally, the spatial locations of the finally identified 

AVs can be assessed by multiple expert Radiologists.  

A new criterion can be established by combining the most favourable AV identification 

characteristics. The effective criteria identified by this study can be used for such 

combination. Different analytical expressions of the novel criterion can be investigated 

to obtain the one with the highest power to discriminate AV from tissue and venous 

voxels.  

The feature extraction step (Section 3.4.3) can be extended to extract features that can 

identify PV-affected voxels. PV-affected CTCs can be simulated and an approach similar 

to the effectiveness study (Section 3.4.5) can compare the individual PV-discriminatory 

power of different features. The study can also be extended to assist PV-correction by 

finding the venous voxels; the ratio of steady state concentrations of the identified AIF 

and VOF will give the PV-correction factor (Bjornerud and Emblem, 2010).  

Brain segmentation can be a potential extension of the presented strategy of categorising 

regions on the basis of their dynamics. Future studies can collect different CTC or STC 

features that are unique for different tissue regions. Feature-based clustering can then 

group functionally similar tissue regions based on their distinctive shape characteristics. 

This can potentially develop a simple, fast, but accurate automatic tissue or lesion 

segmentation technique using DSC-MRI data. This idea is explored in Chapter 4 of the 

thesis.  

 

3.7. Conclusion  
 

In this study, the individual effectiveness of different arterial voxel selection criteria was 

compared. Besides this, systematically-obtained optimal threshold ranges for soft-tissue 

elimination were suggested for the effective criteria. Out of the previously-published 

criteria, area under the CTC, peak concentration, and Mpeak were able to independently 

identify arterial voxels. Thresholds suggested for these criteria can discard tissue voxels 
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with high sensitivity and specificity. One of the proposed two criteria—mean washout 

rate—was as effective as these three criteria in identifying AV. The optimal thresholds 

can work as references for any future tissue voxel elimination work. The criteria 

effectiveness can inform Radiologists about which criteria to prioritise when assessing 

the arterial candidacy of any CTC. Finally, the study indicates the feasibility of feature-

based clustering, an approach that can accelerate and simplify automatic AV 

identification methods. 
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Chapter 4: Application of Feature-based Clustering on DSC-MRI 

data for tissue segmentation 

 

 

4.1. Introduction  

 

Image segmentation is the process of assigning each image pixel to a unique class. Brain 

image segmentation distinguishes the grey matter (GM), white matter (WM), 

cerebrospinal fluid (CSF), artery, vein, and sinus from one another. It is also used for 

differentiating pathological regions from normal brain tissues. For dynamic 

susceptibility-contrast enhanced magnetic resonance imaging (DSC-MRI), accurate 

segmentation is crucial for all the subsequent analyses that lead to the quantification of 

perfusion parameters, characterisation of pathological regions, assessment of the success 

of surgical planning, clinical intervention, and treatment response (Despotovi et al., 2015, 

Hadjiprocopis et al., 2005). Segmentation methods can be categorised as manual, 

intensity-based, atlas-based, surface-based, and hybrid (Despotovi et al., 2015). These 

methods are briefly described below.  

 

4.1.1. Manual Segmentation  

 

Manual segmentation requires Radiologists to delineate the target structure based on their 

expertise using region-drawing tools (e.g. Insight Segmentation and Registration Toolkit 

(ITK)-SNAP). These methods are intensive, time consuming, error prone, affected by 

operator bias, and difficult to reproduce, as reported by several intra and inter-operator 

variability studies (Vansteenkiste, 2007, Collier et al., 2003, Despotovi et al., 2015).  

 

4.1.2. Atlas-based segmentation 

 

In the atlas-based segmentation approach, a labelled reference atlas or template is created 

from a specific population of healthy subjects. The brain MR images that need to be 
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segmented are registered to this atlas, usually through affine registration (Despotovi et 

al., 2015). To create a satisfactory atlas, the population images need to undergo manual 

delineation. Although it saves time for Radiologists, this approach still suffers from some 

of the above-mentioned shortcomings of manual segmentation, such as operator bias and 

lack of reproducibility. This technique may cause regional inaccuracies due to registration 

errors (Hadjiprocopis et al., 2005), fail to segment complex structures due to their 

anatomical variability, and face difficulties segmenting brain MR images that contain 

lesions, as the atlas is obtained from a healthy population. 

 

4.1.3. Surface-based segmentation  

 

Surface-based segmentation with deformable models, first developed by Kass et al., 

creates closed parametric surfaces to describe the region boundaries (Kass et al., 1988). 

These parametric surfaces are affected by the shape of the investigated object, the 

approximation theories that fit the deformation model to the measured data, and 

constraints imposed on the temporal and spatial variation of the shape. The surface is 

deformed by two forces, external and internal, through a complicated iterative relaxation 

process. The external forces are derived from the local edge-based information and 

attempt to deform the surface towards the desired feature. The internal forces are 

computed from within the surface to ensure its smoothness during the deformation. This 

segmentation method is computationally intensive, and dependent on the initial estimates 

of the approximation theory and edge information. This dependence on edge information 

also makes the method sensitive to noise (Despotovi et al., 2015).  

 

4.1.4. Intensity-based segmentation  

 

Intensity-based segmentation distinguishes regions based on their inherent contrast in 

intensities (Despotovi et al., 2015). This segmentation can be achieved through 

thresholding, region-growing, clustering, or classification methods. Thresholding is the 

simplest of intensity-based methods, where a threshold is applied on intensity histograms. 

This method is sensitive to tissue and radiofrequency inhomogeneities (Hadjiprocopis et 

al., 2005). The region-growing variant extracts connected regions with similar intensities, 
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starting from a manually-drawn or automatically-initialised seed point. Its challenges 

include finding the seed points and setting the homogeneity criterion. Thresholding and 

region-growing methods are sensitive to noise and partial volume effect (PVE). In 

classification methods, a large number of labelled MR images is used to train the 

algorithm that is later used to segment test images. This supervised learning method is 

manual-input-dependent, complex, and time-consuming, as well as sensitive to noise and 

operator bias (Despotovi et al., 2015). Lastly, with clustering methods, the similar-

intensity pixels putatively originating from similar tissue regions are clustered with an 

off-the-shelf clustering algorithm, e.g. k-means clustering, fuzzy c-means (FCM) 

clustering, or hierarchical clustering (Coleman and Andrews, 1979). Instead of using a 

separate training dataset, these unsupervised learning methods use the available intensity 

data to train themselves. They are less time consuming, and less sensitive to noise and 

operator bias than their supervised variants.   

 

4.1.5. Hybrid segmentation  

 

A hybrid segmentation method is created by combining several segmentation approaches. 

For example, Xue et al. segmented 3D MRI sections by combining minimum-error global 

thresholding with spatial-feature-based FCM clustering (Xue et al., 2003). Ortiz et al. 

combined self-organising maps and entropy-gradient clustering to produce an improved 

MR images segmentation method (Ortiz et al., 2014). More examples of hybrid 

segmentation methods can be found in the review of Despotovi et al. (2015). To optimise 

these hybrid segmentation methods, operators need to adjust many parameters using their 

prior expertise and understanding of the segmentation mechanisms. The combination of 

different segmentation methods ultimately increases the complexity of hybrid 

segmentation approaches.  

 

Out of the above-mentioned techniques, intensity-based segmentation through clustering 

is preferred in this study as it can offer a computationally-simpler, faster automatic 

alternative to manual segmentation, while still maintaining accuracy. However, for DSC-

MRI, as the intensity of any voxel varies as a function of time, the voxel label assigned 

by intensity-based segmentation varies across different time points. Hence, clustering the 
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intensity value at a certain time point cannot produce reliable segmentation. Segmentation 

can be facilitated by taking the dynamic signals as inputs and clustering the voxels with 

similar signal dynamics. This method is commonly referred to as time-series clustering 

(Wang et al., 2006a, Guijo-Rubio et al., 2020).  

The following section will review several studies that applied clustering to different types 

of brain-MRI data for tissue segmentation before presenting the aims and research 

questions of the present work.   

 

4.2. Literature review 

 

To assist automatic tissue segmentation, intensity-based methods have been applied to 

different MRI modalities. With minor modifications, some of these techniques can be 

implemented on DSC-MRI data to generate further-simplified, rapid, and robust 

segmentation. In this section, a few of these intensity-based brain segmentation methods 

are reviewed.   

 

4.2.1. Intensity-based segmentation with modified k-means clustering 

 

Intensity-based segmentation of diffusion-weighted imaging (DWI) was performed by 

Hadjiprocopis et al. using clustering methods. The method has already been implemented 

for automatic arterial input function (AIF) detection in DSC-MRI analysis (Bjornerud and 

Emblem, 2010) and, with a few modifications, can potentially be applied to brain 

segmentation.  

Hadjiprocopis et al. used a modified k-means clustering for segmentation instead of the 

standard statistical parametric mapping (SPM), which is less successful for DWI 

segmentation due to the low spatial resolution and inherent geometric distortions of the 

data. The rule for assigning a datapoint to a cluster was modified by including a 

probability function that prioritised the datapoints nearer to the cluster centroid.  The 

feature space of a voxel included its own intensity value, as well as the intensities of the 

voxels that were two co-registered slices above and below the slice containing the voxel 

of interest. This inclusion of additional intensity information from other slices increased 
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the dimension of the feature space and maximised the orthogonality between different 

tissues. The method was compared to SPM for both synthetic and real brain data.  

The segmentation method was less affected by radiofrequency and tissue inhomogeneities 

than SPM. For the synthetic datasets, the segmentation method was comparable to with 

SPM, with similar sensitivity, specificity, and accuracy, with a lower misclassification 

percentage. For real brain data, there were large areas of agreement between the method 

and SPM. The main discrepancies were around the ventricles—the method classified 

fewer voxels as CSF than SPM02.    

The study had three limitations. First, including intensity information from other slices 

increased the complexity; the greater the number of slices, the more times the clustering 

algorithms had to run separately. Second, for the synthetic data, partial-volume negatively 

affected the WM segmentation at the WM-CSF border and gave false positives (FP) at 

the WM-GM border. GM and CSF voxels were misclassified near the GM-WM and CSF-

ventricle borders, respectively. Third, for real brain data, fewer voxels were classified as 

CSF and more voxels were classified as WM compared to SPM (Hadjiprocopis et al., 

2005). Nevertheless, the work presents a reproducible and unbiased fully-automated 

segmentation technique.  There is scope to apply this technique to DSC-MRI data. Further 

work can assess whether this clustering can be applied to dimensionality-reduced DSC-

MRI data in order to both simplify and accelerate segmentation. Both of these aspects are 

explored in the present research.   

 

4.2.2. Intensity-based segmentation of glioma volumes with c-means clustering  

 

Instead of clustering the intensity of the MRI data with k-means clustering, Emblem et al. 

applied FCM-clustering to segment the glioma volumes from T2-weighted, fluid 

attenuation inversion recovery (FLAIR), and post-contrast T1-weighted images (Emblem 

et al., 2009). They used knowledge-based FCM-clustering to divide T2-weighted images 

into three classes—glioma, non-brain, and normal-appearing GM and WM—based on 

one image feature: pixel intensity value. The cluster with the highest mean pixel intensity 

represented glioma. For FLAIR images, the clustering divided the tissues, based on pixel 

intensity, into four classes: glioma, non-brain, normal-appearing GM and WM, and fluid 

and vessels. For T1-weighted images, a three-class FCM was applied on all tissues.  
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The knowledge-based FCM compared well with manual methods in its ability to 

automatically detect glioma regions. It was both more sensitive and two-times faster; 

however, it gave more FPs than the manual method and is thus less conservative.  

The limitation of the study was that the segmentation approach can be affected by 

inhomogeneity of the B0 and B1 magnetic fields of the MRI scanner. Furthermore, the 

large vessels were not excluded, which caused misclassification of the pixels adjacent to 

them due to PVE (Emblem et al., 2009). The solutions to these confounding factors were 

complex and required operator expertise. Nevertheless, the research showed that FCM-

clustering can provide simple and objective segmentation, which can be explored for 

glioma segmentation in the present DSC-MRI data. The clustering method can be 

extended to investigate its applicability in distinguishing not only lesion regions, but also 

GM, WM, CSF, and arteries.  

 

4.2.3. Segmentation of DSC-MRI using a single feature 

 

Features extracted from dynamic perfusion data can be clustered to facilitate 

segmentation. This idea was explored by Bjornerud and Emblem (2010), who segmented 

GM and WM automatically—without referring to structural data—by clustering a single 

feature of the dynamic concentration data.  

Bjornerud and Emblem removed non-brain voxels prior to clustering by determining the 

noise level using Otsu’s method (Otsu, 1979). All connected voxels above the noise level 

were selected by a seed-growing algorithm. To eliminate pathological regions, cluster 

analysis divided the tissues into two classes—normal and pathological—based on a single 

feature: the pre-contrast intensity. Voxels with high pre-contrast intensity were assumed 

to be pathological—either tumour or oedema. After eliminating abnormal and non-brain 

voxels, the remaining concentration time curves (CTCs) were clustered into three 

classes—blood, GM, and WM—based on one feature: the area under the CTC curve 

(AUC). The cluster with the highest AUC corresponded to blood, the lowest AUC to WM, 

and any AUC in between to GM voxels.  

The method reliably identified GM and WM and could avoid large-vessel bias, which 

produces false positives (FP) in structural image-based GM identification. This approach 
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also simplified the segmentation process as no co-registration of structural and DSC-MRI 

images was necessary.  

The limitation of the study was that it did not include healthy controls, and the masks for 

normal-appearing tissues may still have contained abnormal tissues (Bjornerud and 

Emblem, 2010). This simple segmentation approach is extended in the present study by 

including more features of the signal time curves (STCs) in the feature space to achieve 

better orthogonality between tissue regions.  

 

4.2.4. Clustering a dimensionality-reduced version of the original data space 

 

The afore-mentioned idea of clustering a multi-dimensional feature space, instead of raw 

DSC-MRI data, was inspired by the work of Wang et al. (2006b), who proposed a general 

framework for grouping similar time-series by clustering their dimensionality-reduced 

versions.  

Wang et al. extracted features from a variety of time-series data by applying different 

statistical operations, such as trend, skewness, periodicity, kurtosis, etc. The study then 

clustered a dimensionality-reduced version of the raw data space created from these 

‘global’ features. An empirical evaluation was performed to compare this characteristics-

based clustering (CBC) to the raw–data-based clustering using the benchmark datasets 

typically used for data mining.  

The results with hierarchical clustering showed that the dimensionality-reduced feature 

space could efficiently cluster time-series with similar patterns. Experiments on the 

feature-set with self-organising map clustering could identify same features with stable 

clusters. The study concluded that more robust and accurate outcomes can be achieved 

by clustering lower-dimension versions of the original data space. Further, the CBC 

simplified and accelerated the clustering process and showed lower sensitivity to missing 

data.  

The major limitation of the study was that the extracted feature-set was not consistent for 

all types of time-series data; for every new application, it was necessary to find the most 

suitable features. A greedy forward search was suggested as a general mechanism for 

finding the most suitable feature-set for any application in hand. There is scope to apply 
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this CBC method to DSC-MRI time series clustering for brain segmentation. In the 

present study, this CBC method constitutes the base of the two proposed feature-based 

segmentation approaches (for details, see Sections 4.4.7.1 and 4.4.7.4). 

 

4.2.5. A popular dimension-reduction method and its prospects for brain 

segmentation  

 

As mentioned above, dimension reduction can offer simple and fast clustering of dynamic 

DSC-MRI data. One of the popular dimension-reduction techniques is principal 

component analysis (PCA), whose applicability to DSC-MRI analysis is explored by 

Akbari et al. (2014).  

Akbari et al. performed PCA on raw DSC-MRI signals to investigate whether principal 

components (PCs) provide any complementary information about peritumoural regions, 

for which conventional perfusion parameters yield little information. A support vector 

machine (SVM) used PCs to produce heterogeneity scores within these regions.  

The variance of the heterogeneity scores indicated the overall heterogeneity score for a 

subject, which conventional DSC-MRI cannot quantify without a corresponding 

pathological region. The research identified highly-infiltrated peritumoural areas that 

were obscured in conventional perfusion analysis. It also reported that the first six PCs 

are sufficient for capturing 99% of the variance of the original DSC-MRI data.  

While the applicability of this study in clinical routines is limited due to the unavailability 

of PCA and SVM in clinical workstations (Akbari et al., 2014), it proved the utility of 

PCs in discriminating different perfusion dynamics. The present research extends this 

work by extracting PCs from DSC-MRI signals from all regions and investigating the 

ability of PCA-based dimension reduction to discriminate the perfusion dynamics of 

different tissue regions.  
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4.2.6. Segmentation using PCA-based dimension reduction and clustering  

 

A more direct application of PCA in segmentation can be found in the work of Kaya et 

al. (2017), where the segmentation performance of different PCA-based-dimensionality-

reduction methods is compared. This work assisted the present study to choose an 

appropriate PCA-based approach for segmenting DSC-MRI data.  

The study aimed at segmenting T1-weighted MR images. Along with conventional PCA, 

four different PCA methods—probabilistic PCA (PPCA), expectation-maximisation-

based PPCA (EM-PPCA), generalised Hebbian algorithm, and adaptive PC extraction—

were used to reduce the dimensionality of the data prior to applying k-means and FCM 

clustering. These PCA variants were compared in terms of their reconstruction errors and 

the Euclidean distances between original and processed images. The PCA method with 

the lowest error value was considered to be the most powerful.  

PPCA and EM-PPCA were reported as the most powerful dimension reduction tools that 

could maintain most of the information of the raw data, regardless of the image 

dimension. They avoided the problem of overfitting and missing data as they used 

probabilistic methods to find the dimensionality-reduced space for large-variance or 

large-scale datasets. Effective clustering outcomes can be achieved by incorporating k-

means clustering with these two PCAs (Kaya et al., 2017).  

The complexity of the otherwise powerful PPCA and EM-PPCA limits their applications; 

nevertheless, this research indicated that clustering can be amalgamated with PCA-based 

dimension-reduction methods for identifying lesions. In the present study, the proposed 

dimensionality-reduction-based segmentation approaches were compared with the 

conventional PCA-based segmentation approach (see Section 4.4.7.3).  

 

4.3. Aims  

 

The aim of the present study is to investigate the applicability of feature-based clustering 

to DSC-MRI data for brain segmentation. In feature-based clustering, several features 

extracted from the raw data are used to create a dimensionality-reduced feature space, 

which is then clustered. For different types of time-series data, feature-based clustering 
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approaches were reported to be more efficient, faster and more robust than clustering the 

raw data (Wang et al., 2006b, Guijo-Rubio et al., 2020).  

The primary hypothesis of the present research is that a dimensionality-reduced space not 

only decreases time-complexity but also improves segmentation. A second hypothesis is 

that the proposed dimensionality-reduction-based segmentation can outperform at least 

one of the currently available dimensionality-reduction-based segmentation approaches. 

To test the above-mentioned hypotheses, this study addresses the following research 

questions: 

1. Which signal features are most effective for the segmentation task? 

2. Can feature-based time-series clustering approaches provide better segmentation 

than their raw–data-based variants?  

3. Can the proposed dimensionality reduction provide better segmentation than any 

available dimensionality-reduction approach?   

 

 

4.4 Materials and Methods 
 

4.4.1. Raw data space (R) creation 

 

The DSC-MRI data were acquired with the process described in Chapter 1 (Section 1.4). 

A raw data space, R, was populated with 256 DSC-MRI signals from manually-selected 

pixels of the nine subjects. This R space was segmented in this study with different 

approaches. The subjects had visually-comparable arterial supply with similar peak and 

width. Real-subject dynamic signals were used instead of a simulated data, which are 

often obtained by convolving an assumed parametric form (e.g. exponential) of residue 

function with a gamma-variate form of AIF (Peruzzo et al., 2011, Mouridsen et al., 2006a, 

Yin et al., 2015, Yin et al., 2014). Real-subject signal was preferred as the gamma-variate 

function fails to replicate the recirculation in real DSC-MRI data and is, therefore, often 

only a partial representation of a real-subject AIF. Additionally, there is no consensus 

between researchers in regard to the most inclusive parametric form of residue function. 

The different signals of the R space are described as follows.  
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• GM and WM signals: Thirty-six GM and thirty-six WM signals were selected 

from the normal-appearing caudate nucleus and frontal lobe, respectively. As 

prescribed by Ostergaard et al., typical GM and WM time-series show a signal 

peak decrease (SPD) of 40% and 17% from baseline, respectively (Ostergaard et 

al., 1996). For the present study, GM and WM signals had SPDs between 35-50% 

and 10-25%, respectively.   

• Lesion signals: A total of 15 signals were taken from visually-identifiable lesion 

pixels of two subjects.  

• Arterial input function (AIF) signals: For each subject, an AIF was created by 

aligning and averaging the CTCs of arterial voxels (AVs) that were chosen 

manually with the process described in Section 3.4.4 of Chapter 3. These nine 

AIFs were then converted to signal time estimates using quadratic equations for 

relaxivity proposed by Patil and Johnson (2013). The non-linear equation was 

used as it better reflects the relationship between concentration and change in 

relaxation rate than a linear equation (Patil et al., 2013, Patil and Johnson, 2013, 

Calamante et al., 2009, van Osch et al., 2003, Bjornerud et al., 2002).  

• CSF signals: Twenty CSF pixels were identified from different subjects and their 

signals were collected.  

• PV-affected signals: Thirty PV-affected signals were created according to the 

process described in several simulation studies (Peruzzo et al., 2011, Yin et al., 

2014, Mouridsen et al., 2006a, Yin et al., 2015). In this process, each PV-affected 

signal was taken as a linear combination of arterial, GM, and WM signals with 

random weights.  

• Background signals: Lastly, 110 constant intensity signals were included as 

background signals. To resemble typical background signals having signal to 

noise ratio (SNR) of 30, noise modelled as a zero mean Gaussian function was 

added, in line with the work of Peruzzo et al. (2011) and Yin et al. (2015).   

 

These STCs were not converted to CTCs as the noise in the concentration (but not signal) 

is dependent on amplitude and this conversion can distort useful information (Akbari et 

al., 2014). The baseline, transient drop, and recovery of the signals, even from 

functionally similar regions, may vary due to the unique vascular arrangements of 

different subjects. To account for such inter-subject variation, each signal was normalised 
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by dividing the signal intensity of each time point by the baseline signal intensity, Spre, 

determined by the method described in Section 3.4.1 of Chapter 3. 

The R space represents a small-scale version of a typical brain slice. Although, in a typical 

brain slice, many similar tissue pixels are located closer to each other, the 256 signals 

were randomly distributed over the R space. Hence, there is no certainty about the 

proximity of two identical regions. This was done purposefully to make the segmentation 

task more challenging for the proposed and available segmentation approaches.  

 

4.4.2.  Signal time series from different brain regions 

 

Figure 4.1 shows non-normalised DSC-MRI signals from different tissue regions 

mentioned in Section 4.4.1. All signals, except those taken from background or affected 

by PV, are taken from one subject. The PV-affected and background signals are simulated 

as discussed in Section 4.4.1. Noisier version of these R-space signals were also created 

by adding zero-mean Gaussian noise to the R space using the approach taken by Peruzzo 

et al. (2011).    

 

Figure 4.1: Raw, non-normalised DSC-MRI time-series from different brain regions of one 

subject. The background and partial volume (PV)-affected signals are created as per the 

discussion of Section 4.4.1. It can be seen that signals from different regions differ in their 

features, like the initial drop, recovery, width, and baseline intensity. Abbreviations: AIF, arterial 

input function; GM, grey matter; WM, white matter; CSF, cerebrospinal fluid.  



109 
 

 

Figure 4.1 shows that the signal time-series from different brain regions are unique and, 

therefore, they can be categorised using different characteristic features. The next section 

extracts several such features from the R-space signals in order to investigate their 

applicability in distinguishing different brain regions. 

 

4.4.3. Feature extraction  

 

From each element (i.e. dynamic signal) of the above-mentioned R space, the nine 

features were extracted. A similar approach was adopted by Wang et al., where several 

global features (e.g. trend, skewness, kurtosis, seasonality, periodicity, etc.) were 

extracted from benchmark time-series datasets used for data mining (Wang et al., 2006a) 

(see review Section 4.2.4). However, in this study, features are extracted specifically for 

brain segmentation, under the expectation that the distribution of these features will be 

distinctly different for different tissue classes and similar for identical classes; this is true 

when each region is supplied with similar arterial input (Calamante, 2013). Although the 

R space contained DSC-MRI time-series from different subjects, this assumption is still 

valid as the chosen subjects had similar AIFs.  The extracted features are described as 

follows.  

1. Effective drop percentage (EDP):  The ratio of maximum signal drop (MSD) to 

the standard deviation of pre-bolus signal (SDspre) was expressed as a percentage 

and referred to as the effective drop percentage, EDP:  

EDP
MSD

100%

preSSD
=   .     (4.1) 

Signals from each tissue region show unique MSDs. Consequently, EDP will be 

different for different regions. Furthermore, any voxel with MSD < 3 × SDSpre is 

suggestive of either CSF, infarct, or background (Kane et al., 2007).  By taking 

the ratio of MSD to SDSpre, EDP allows these regions to be separated from others.  

2. Area over normalised signal time curve (AOC): The area below the baseline, 

Spre, and over the normalised STC, St(norm), was calculated by subtracting the area 
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under the normalised curve (AUC) from the total area below baseline (Spre × T) 

with the following formula: 

 

AOC AUCpreS T=  − ,   (4.2) 

where T is the total acquisition time, and AUC
( )

0

T

t normS dt=  . For normalised STC, 

Spre = 1. Substituting Spre and AUC in equation 4.2 gives:  

     
( )

0

AOC

T

t normT S dt= −   .   (4.3) 

Each type of tissue has their unique CBV, which is proportional to the AUC of CTC 

(equation 2.31 of Chapter 2). Therefore, when analysis is performed on STCs, each 

tissue region should have a unique AOC.  

3. Variance: The variance, σ2, of an STC was calculated with the following formula: 

  

                                                  
2 2

2 1  = − ,    (4.4) 

where μ1 and μ2 are the first and second raw moment of the STC, respectively. 

This variance indicates the spread of the signal and can be regarded as an 

alternative measure for the full width at half maximum (FWHM). As tissue and 

lesion STCs are dispersed differently to arterial STCs, the variance can be used to 

distinguish them from arterial regions.  

 

4. L2 Norm: For a time-series 1{ }T

t tS = , the Lp norm is given as follows (Mohajer et 

al., 2010):  

                                       

1/ p

p

p t

t

L S
 

=  
 
 .      (4.5)  

Here, the value of p can be any integer. The value of p is set as 2 for calculation 

of the L2 norm. Mohajer et al. used the L2 norm of dynamic-contrast-enhanced 

MRI time-series data to cluster breast tumour regions (Mohajer et al., 2010). 

Compared to healthy tissues, signals from lesions are wider, with greater intensity 

drops and slower recovery towards the baseline. So, for a lesion voxel, the signal 

intensity drops to values smaller than those of GM and WM voxels. Consequently, 

the square root of the summation of their squares (i.e. L2 norm) is also lower. 
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Furthermore, signals from different regions should have different L2 norms due to 

their unique intensity drop and recovery, which can assist in distinguishing them 

from one another. While EDP only takes the maximum signal drop into account, 

this feature reflects the shape of the entire time-series and can reveal additional 

information about the signal drop and recovery pattern.   

5. Mean time duration (MTD): The mean time duration for the drop of a signal is 

referred to as MTD, which is quantified as the time difference between the bolus 

arrival time (BAT) and the end of the first pass, Tend, in this study with the formula:   

MTD BATendT= − .                         (4.6) 

Tend was taken as the first time point after the minimum signal intensity time point 

where the signal was within one standard deviation of the post-bolus signal (Patil 

and Johnson, 2011). The post-bolus signal was calculated by averaging the signal 

intensity values of last ten time points (Yin et al., 2015).  

Signals from lesions are wider, with high MTDs, and those from AVs are expected 

to have lower width and MTD. Therefore, MTD can distinguish lesion voxels and 

AVs from other tissues.  

 

6. Third principal component (PC3): PCA captures the variation of the raw data 

in a dimensionality-reduced space. Each PC is the projection of the data onto a 

direction that captures a certain amount of the variance of the original data (Akbari 

et al., 2014). That is, the first principal component (PC1) is the projection of the 

raw STCs onto a direction that captures the highest raw data variance, the second 

component (PC2) is the projection towards the direction of second highest 

variance and so on.  

The first four PCs of DSC-MRI are associated with four unique aspects of the 

shape of STCs (Akbari et al., 2014). PC1 conveys information about the global 

baseline, and PC2 reflects the drop of the signal with respect to the baseline. EDP 

was preferred over PC1 and PC2 as it conveys somewhat similar information to 

the combination of PC1 and PC2 but provides more explicit insight about signal 

variation with one less dimension. On the other hand, the third component, PC3, 

relates to the steepness of both the drop and the recovery of signals. As none of 

the present features captured the rate of fall or recovery, PC3 was included as a 

potential unique feature.  
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7. Percentage signal recovery (PSR): PSR is defined as the percentage of signal 

intensity recovered at the end of the bolus first pass, relative to the baseline value. 

PSR is given by the following equation:  

MSD
PSR 100%

MSD

end

pre

S

S

−
= 

−
.    (4.7) 

Here, Send is the signal value at time point Tend. PSR is known to be dependent on 

the rate of blood flow (Mangla et al., 2011). Lesions in glioblastoma multiform 

show significantly higher PSR than metastatic lesions (Cha et al., 2007), whereas 

in lymphoma, PSR is more than 100% as the signal rises over the baseline. Hence, 

PSR gives useful information for characterising lesions.  Although the purpose of 

the present study was not to distinguish between lesions, PSR was included to 

investigate its applicability in segmentation.  

 

8. Fourth principal component (PC4): The fourth principal component (PC4) is 

controlled by the baseline and its recovery pattern (Akbari et al., 2014). PSR, 

mentioned above, also quantifies similar signal characteristics. However, the 

variation in PC4 is dictated not only by the recovery pattern, but also by the 

intensity drop (Akbari et al., 2014); therefore, PC4 is expected to convey 

somewhat different information to PSR and was included in the work as another 

potential unique feature.  

 

9. S1 to S6 ratio (S1/S6): S1/S6 is the ratio of the signal intensity at the first time 

point (S1) to that of the sixth time point (S6). Kao et al. and Akbari et al. reported 

that in the first few time points of DSC-MRI, CSF pixels show a higher signal 

intensity (Kao et al., 2010, Akbari et al., 2014). The ratio of S1/Spre to S6/Spre—

equal to S1/S6—was found to provide higher value for CSF and oedema than 

other regions. This ratio can therefore be used to separate CSF pixels from the 

others. The present work included this feature to investigate its potential in 

distinguishing other regions along with CSF.  

 

Figure 4.2 provides a pictorial representation of the signal parameters needed to calculate 

the above-mentioned nine features.  
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Figure 4.2: A sample DSC-MRI signal-time course showing the parameters necessary to calculate 

nine features. PC3 and PC4 are not included in the figure as they cannot be explicitly shown. Area 

over the curve (AOC) and L2 norm were measured from the normalised signal, where the latter 

uses the signal drop at every time point and is therefore not included in the figure to maintain 

clarity. Abbreviations: Spre, baseline signal; SDSpre, standard deviation of Spre; BAT, bolus arrival 

time; MSD, maximum signal drop; VAR, Variance; Tend, end time point of first pass; MTD, mean 

time duration; Send, signal intensity at end of bolus first pass.  

 

4.4.4. Feature space creation  

 

In DSC-MRI, each of all N brain voxels is characterised by a dynamic signal with 60 time 

points. This creates a high-dimensional signal space, S, of dimension N × 60. To reduce 

the time-complexity and increase the robustness of any computation on the S space, its 

dimensionality-reduced version is created in this section.  

As explained before, with N = 256, the R space can be regarded as a small-scale version 

of the S space. A feature space, F, was created by replacing each element of the R space 

(i.e. dynamic signal) by a feature vector that contains nine features described in Section 

4.4.3. Hence, the R space was converted to a dimensionality-reduced F space of 

dimension 256 × 9. The underlying assumption behind such dimension reduction is that 
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functionally similar tissue regions have similar perfusion dynamics and therefore similar 

signal features. So, features from different regions will be distributed in distinct clusters 

over the multi-dimensional F space, and any standard clustering algorithm can achieve 

the desired partition between these clusters for the purpose of segmentation.  

All nine features that constitute the dimensionality-reduced F space may or may not prove 

effective for segmentation. A preliminary study was performed to identify the most 

suitable feature-set, that is, the features with the highest powers for discriminating 

different regions (further discussed in Section 4.4.5). By finding the optimal number of 

features, M, the dimension of the F space was further reduced from 256 × 9 to 256 × M.  

 

4.4.5. Effective feature space (Optimisation of M) 

 

The features that convey the most relevant information may vary across applications 

(Wang et al., 2006a). Before applying the feature-based segmentation approaches, it is 

therefore necessary to evaluate the individual power of each feature in discriminating 

different regions and thereby answer the first research question for this chapter (namely, 

which signal features are most effective for the segmentation task?).  

With the nine extracted features, there are 29 – 1 = 511 possible combinations of features 

for the F space; analysis of the effectiveness of each combination in distinguishing 

regions (i.e. the discriminatory power, DP) is therefore impractical. Instead, the optimal 

number of features, M, was determined through the two investigations as follows:  

• Distribution of features: The first investigation was performed to find how well-

clustered the features were. For every well-clustered feature of the F space, the 

feature values from the same regions should be grouped together and those from 

different regions should be well-separated. All the feature values were brought to 

the same scale (0.1 to 0.9) by min-max normalisation and their distributions for 

different regions were visually assessed. The features for which different tissue 

regions yielded non-overlapping clusters were regarded as well-clustered.  This 

somewhat qualitative initial investigation was supported by another more-

quantitative analysis.  
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• Individual discriminatory power of features: The individual power of each 

well-clustered feature in discriminating tissue regions was evaluated by 

generating receiver operating characteristic (ROC) curves. True tissue labels from 

the R space were used as ground truth information for calculation of the ROC 

curve. The area under the ROC curve (AUCROC) quantified the DP of each feature. 

The value of AUCROC ranges from 0 to 1; the nearer the AUCROC to 1, the higher 

the DP of a feature was (Bland, 1995).  

To generate an ROC curve, it is also necessary to know whether a larger or smaller 

value of a feature produces a positive segmentation result for a region. For the 

segmentation of lesions, larger EDP, AOC, variance, and MTD, and smaller L2 

norm should provide positive results. For WM segmentation, smaller EDP, AOC, 

variance, and MTD, and larger L2 norm should provide positive results.   

 

 

4.4.6. Clustering 

 

After determining the optimal dimension of the F space, it was clustered using 

unsupervised learning methods, such as standard k-means and k-medoids clustering. Prior 

to clustering, each feature of the F space was given a uniform scale ranging from 0.1 to 

0.9 through min-max normalisation (Mohamad and Usman, 2013). As discussed in 

Chapter 3 (Section 3.4.4.3), this prevented any of the dimensions of the F space from 

outweighing others, which would have yielded inaccurate cluster outcomes (Mohamad 

and Usman, 2013). Normalising the R space eliminated the bias due to PVE or saturation 

(Mouridsen et al., 2006a). However, normalising can lead to the amplification of noise in 

low amplitude CTCs (Wismuller et al., 2006). The present study avoided this problem by 

working with STCs instead of CTCs.  

After normalisation, the clustering algorithm was applied on the F space (for feature-

based clustering) and the R space (for raw–data-based clustering) (Wang et al., 2006a, 

Guijo-Rubio et al., 2020). During the clustering stage, computational simplicity was 

prioritised. Although the standard k-means algorithm is simple to implement, scalable for 

larger datasets, and adaptable to different data types, it has several limitations (as 

described in Section 3.6.5 of Chapter 3). These include high sensitivity to outliers, low 

sensitivity to rotation and translation of the dataset, low accuracy for datasets requiring 
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non-spherical (e.g. elliptical) clusters, and low adaptability to datasets needing different 

cluster densities (Raykov et al., 2016). Some of these limitations are overcome in this 

research by improving the centroid selection and the cluster assignment step (steps of k-

means clustering is discussed in Section 3.4.4.3).  

The centroid selection step was improved by replacing k-means clustering with k-medoids 

clustering algorithm, whose centroid selection step makes it more robust against outliers 

(Kaufman and Rousseeuw, 2005). An additional benefit of the k-medoids clustering is its 

lower time-complexity than that of k-means (Velmurugan, 2010). This k-medoids 

clustering algorithm was applied on both the F and R spaces separately, which created 

two segmentation approaches: ‘kmed-feature’ (proposed in this work) and ‘kmed-raw’, 

respectively.  

The cluster assignment step was improved by adding a probability-based cluster 

assignment method to the distance measurement step of k-means clustering. This was 

implemented by Hadjiprocopis et al., originally for DWI segmentation (Hadjiprocopis et 

al., 2005). Again, this modified k-means clustering (discussed in Section 4.4.7.4) was 

applied on the F and R spaces, creating two more segmentation approaches: ‘POA-

feature’ (proposed in this work) and ‘POA-raw’, respectively, where POA stands for 

probability of assignment.  

The performance of above-mentioned feature- and raw−data-based segmentation were 

compared to answer the second research question for this chapter (namely, can feature-

based time-series clustering approaches provide better segmentation than their raw–data-

based variants?). In addition to these four approaches, a PCA-based segmentation 

approach—motivated from the work of Kaya et al. (2017)—was included in this study, 

where PCA was performed prior to k-medoids clustering (discussed in Section 4.4.7.3). 

This segmentation approach was included to address the third research question for this 

chapter: namely, how the performance of proposed and currently-available dimension-

reduction-based approaches compare. These five segmentation approaches are discussed 

in detail in the following sections.  
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4.4.7. Segmentation approaches 

  

4.4.7.1. Feature-based k-medoids clustering (kmed-feature):   
 

The kmed-feature approach is proposed in this work as an extension of the work of 

Bjornerud and Emblem (2010) (see Section 4.2.3). In contrast to segmenting the CTCs 

using a single feature—AUC—the present study used multiple STC features to classify 

tissue regions.  

The kmed-feature approach performs k-medoids clustering with a Euclidean distance 

measure on the normalised F space. Partitioning around medoid (PAM) is the most 

common algorithm for finding suitable partition with k-medoids clustering. It is suitable 

for data with fewer than 3,000 elements and implemented here as the F and R space had 

256 elements.  

The steps of PAM are given as below (Kaufman and Rousseeuw, 2005):  

1. Initialization step: Randomly select k number of medoids from the 256 

data points. In the present work, k was set as 5 to segment the R space 

into five regions: GM, WM, AIF, lesion, and ‘other’.   

2. Assignment step (BUILD step): Assign each data point, Fp, of the F 

space to the medoid wj with shortest Euclidean distance where j = {1, 2, 

…., k}.  

3. Medoid Updating step (SWAP step): For each cluster, take wj as the 

centroid and calculate the total cost of configuration:  
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where, n is the number of features in the F space. Then, re-calculate the 

CF with Fp as the medoid instead of wj. If this new CF is lower than 

before, take Fp as the new medoid for the cluster. This step essentially 

computes the average dissimilarity of Fp to all other data points in the 

same cluster with the same medoid, wj. 
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4. Repetition Step: Repeat steps 2-3 until no change of the assignments (or 

total cost of configuration) occurred or the maximum number of 

iterations of 1,000 is reached.  

 

The k-medoids clustering yielded five centroids and assigned a label to each pixel of the 

R space. The classification of centroids is described as follows. A label-representative 

STC was created by aligning and averaging all the signals with the same label. These 

label-representative STCs were then inspected visually to classify them as GM, WM, 

AIF, and lesion STCs. The assigned class for a tissue region was the same as that of its 

label-representative STC. All the segmentation approaches described below followed this 

manual classification technique.  

 

4.4.7.2. K-medoids clustering on raw data (kmed-raw):  
 

The ‘kmed-raw’ segmentation approach was built in line with methods proposed in 

several published studies for automatically detecting the AIF (Peruzzo et al., 2011, 

Mouridsen et al., 2006a, Yin et al., 2015, Yin et al., 2014, Murase et al., 2001a). The only 

difference between the above-mentioned ‘kmed-feature’ and this ‘kmed-raw’ approach is 

the data space on which the clustering algorithm works. In the kmed-feature approach, 

the k-medoids clustering worked on the F space, whereas, in kmed-raw, the R space was 

clustered. Therefore, the medoid updating step calculates the total cost of configuration 

by the following formula: 
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Where, Rp is a non-medoid point in the R space and T is the total number of time points.  

 

4.4.7.3. K-medoids clustering on principal-component-created feature space (kmed-PCA):  

 

The third segmentation approach involved PCA and k-medoids clustering to segment the 

brain regions. As mentioned before, the approach was motivated from the work of Kaya 

et al. (2017). Although Kaya et al. reported PPCA or EM-PCA as the most effective 
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dimension-reduction tools (see Section 4.2.6 in review), conventional PCA (explained 

briefly in Section 4.4.2) was used in this study for simplicity.  

PCA converted the R space to a dimensionality-reduced P space that is different to the 

presently-proposed F space. The PCs of the R space were obtained as a score matrix, 

where the rows were the observations of the R space (i.e. signals of the R space) and the 

columns were the PCs of each observation, arranged in descending order. Akbari et al. 

suggested that the first six PCs capture more than 99% of the variance in the STC (Akbari 

et al., 2014); therefore, the P space was created from the first six columns of the score 

matrix.  

The approach then applied k-medoids clustering on the normalised P space with a 

Euclidean distance measure. Essentially, this kmed-PCA and the kmed-feature differed 

only in the data space on which the clustering was applied. For the kmed-feature (in 

Section 4.4.7.1), the clustering was applied on the F space, whereas for the kmed-PCA, 

the clustering was applied on the P space. The medoid updating step used the following 

formula to calculate the total cost of configuration:  

2
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where c is the number of principal components and Pp is a non-medoid datapoint of the P 

space.  

 

4.4.7.4. Feature based k-means clustering with POA measure (POA-feature):  
 

The POA-feature approach performed a modified k-means clustering on the F space. The 

algorithm, originally proposed by Hadjiprocopis et al. (2005), is described as follows:  

1. Initialization Step: Select k random cluster centroids in the normalised F 

space. As before, the number of centroids was set as five to cluster the 

brain phantom into five regions.  

2. Distance calculation step: Calculate the distance between a point, Fp, to 

centroids wj with the following formula:  
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where n is the number of features of the F space.  

3. Probability of assignment calculation: Calculate the probability of a 

point, Fp, belonging to each of the cluster centroids by the formula:  
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The nearer an Fp is to a certain cluster, the higher the value of the 

numerator and the higher the probability, Pp, j, that Fp is assigned to the 

centroid of that cluster.  

4. Cluster assignment step: Assign each Fp to the cluster for which its Pp,j 

is highest.  

5. Centroid updating step: The average position of all the Fp values in a 

cluster is chosen as the new cluster centroid. The cluster centroids 

therefore act as the center of gravity of specific cluster spaces created by 

their members.  

6. Repetition step: Repeat steps 2-5 until no more relocation of Fp is 

necessary or the maximum number of iterations of 1,000 is reached.  

 

 

4.4.7.5. K-means clustering on raw-data with POA measure (POA-raw): 
 

This segmentation approach, named as ‘POA-raw’, clustered raw time-series data (i.e. 

the R space) with k-means clustering with POA measure. This segmentation approach 

was used in the work of Hadjiprocopis et al. to segment DWI (Hadjiprocopis et al., 2005). 

POA-raw and POA-feature differed only in the data space on which the clustering was 

applied. For POA-raw, the clustering was applied on the R space, whereas for POA-

feature the clustering was applied on the F space. Therefore, the distance measurement 

of the clustering method (Step 2 of Section 4.4.7.4) is modified into the following 

formula:  
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where Rp is a point in the R space.  

 

 

4.4.8. Evaluation of segmentation approaches  

 

Finally, to assess the effectiveness of each segmentation approach, the label assigned by 

each method was compared to the ground truth label for every pixel of the R space. The 

performance of segmentation approaches was reported in terms of their accuracy, 

precision, sensitivity, and specificity calculated by the following equations:  

TP+TN
Accuracy

TP+TN+FP+FN
=  ,   (4.14) 

TP
Precision = 

TP+FP
  ,    (4.15) 

TP
Sensitivity = 

TP+FN
,    (4.16) 

TN
Specificity = 

TN+FP
 ,    (4.17) 

Here, TP = number of true positives, i.e. instances when a segmentation approach 

correctly identifies the positive tissue class; FP = number of false positives, or instances 

when the segmentation approach incorrectly identifies the positive tissue class; TN = 

number of true negatives, or instances when the segmentation approach correctly 

identifies the negative tissue class; and FN = number of false negatives, or instances when 

the segmentation approach incorrectly identifies the negative tissue class.  

The Dice similarity index or Dice coefficient (DC) was calculated to evaluate the 

agreement between the ground truth and an assigned label. DC was calculated with the 

following equation:  

2TP
DC = 

2TP+FP+FN
 .    (4.18) 



122 
 

DC ranges from 0 to 1, where 0 indicates a total disagreement and 1 indicates total 

agreement between an assigned label and the ground truth. A satisfactory segmentation 

approach should show a DC > 0.70 (Zou et al., 2004).  

Each segmentation approach was repeated ten times. During each repetition, the 

clustering step was iterated 1,000 times with a randomly selected initial centroid. These 

random initialisations resulted in different cluster outcomes and corresponding deviations 

in DCs. The mean and standard deviation (SD) of the above-mentioned performance 

parameters were reported. The mean and SD of time duration of the clustering stages 

were measured for all five approaches, for both conventional and noisy R space.  

 

4.4.9. Statistical analysis  

 

Statistical analyses were performed on DC as it summarises the performance of any 

segmentation approach. Hence, the present experimental design has one measurement 

variable—DC, with ten observations (representing ten repetitions), and one nominal 

variable—segmentation method, with five categories representing five approaches. Due 

to this design, a one-way analysis of variance (ANOVA) was used to test whether there 

were any significant differences between the DCs obtained from the five segmentation 

approaches (McDonald and Delaware, 2009).  

One-way ANOVA had the null hypothesis that there were no differences between the 

population means of the DCs of different approaches. Ten hypotheses had to be checked 

to verify this null hypothesis. To reduce the Type-I error of this multiple testing, the p 

value was calculated using Bonferroni correction, where the significance level of 0.05 

was divided by the number of hypothesis tests. Hence, the present work used p = 0.005 

(Bland, 1995) for each pairwise comparison. The one-way ANOVA analysis were 

performed in MATLAB (R2018a, Natick, MA).  

For the individual DP analysis of the effectiveness study (Section 4.4.7), the statistical 

package for the social sciences (SPSS) software was used (IBM Corp. Released 2017. 

IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp). 
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4.5. Results   

 

4.5.1. Effectiveness of features 

 

4.5.1.1. Distribution of features  
 

Figure 4.3 shows the distribution of the nine features for different brain regions. From the 

figure, a visual inspection indicates which features were well-clustered and could be 

suitable for feature-based segmentation. EDP, AOC, Variance, and L2 norm were well-

clustered for different tissue regions. MTDs showed marginally overlapping clusters for 

GM, WM, and CSF regions. All other features showed severely overlapped clusters, and 

therefore were not included in the subsequent individual effectiveness analysis. 

 

Figure 4.3: Boxplot showing the distribution of normalised feature values for different tissue 

regions. Colours to represent regions: red, arterial input function (AIF); black, grey matter (GM); 

blue, white matter (WM); yellow, partial volumes (PV); green, cerebrospinal fluid (CSF); 

magenta, lesion. For each region: the median of any feature value is represented by the 

corresponding coloured horizontal line, interquartile range by the corresponding coloured box, 

99% confidence bounds by the corresponding coloured vertical lines, and outliers (of each region) 

by red crosses.  
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Abbreviations: EDP, effective drop percentage; AOC, area over curve; Var, Variance; L2, L2 

norm; MTD, mean time duration; PC3, 3rd principal component; PSR, percentage signal recovery; 

PC4, 4th principal component; S1/S6, intensity ratio of first image to sixth image.  

 

4.5.1.2. Individual discriminatory power of features:  
 

Table 4.1 shows the mean AUCROCs, with their standard errors (SEs), obtained from 

different well-clustered features for different regions. EDP, AOC, variance, and L2-norm 

showed higher effectiveness (AUCROC > 0.7) for GM, AIF, and lesion segmentation, and 

therefore were included in the final F space. L2-norm had an additional advantage of 

distinguishing WM with higher power than other features. The MTD was included in the 

F space as its values for different regions were less overlapping than PC3, PSR, PC4, 

S1/S6 and its individual effectiveness for GM and WM segmentation was high (near to 

0.7).  

 

Table 4.1: Mean (SE) of AUCROC of different features for different regions 

Brain Region EDP AOC Variance L2 norm MTD 

GM 0.81 (0.03) 0.75 (0.03) 0.80 (0.03) 0.76 (0.03) 0.65 (0.03) 

WM  0.59 (0.03) 0.58 (0.03) 0.59 (0.03) 0.92 (0.02) 0.66 (0.03) 

AIF 0.92 (0.02) 0.95 (0.01) 0.92 (0.02) 0.97 (0.02) 0.50 (0.03) 

Lesion 0.95 (0.05) 0.94 (0.05) 0.94 (0.05) 0.76 (0.05) 0.45 (0.04) 

Abbreviations: EDP, effective drop percentage; AOC, area over curve; Var, Variance; L2, L2 norm; 

MTD, mean time duration.  

 

This effectiveness study suggested that a feature space containing five features will be 

suitable for feature-based segmentation. Therefore, both feature-based approaches, kmed-

feature, and POA-feature, used this 256 × 5–feature space for segmenting the R space.  
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4.5.2. R space segmentation     

 

4.5.2.1. GM segmentation 
 

Figure 4.4 gives the accuracy, precision, sensitivity, specificity, and DC of the five 

segmentation approaches in distinguishing the GM region from others. The figure shows 

that for segmenting GM, the proposed kmed-feature approach provided a significantly 

higher DC than kmed-raw (p = 0.0014) and kmed-PCA (p < 0.0001). No statistically-

significant difference was found between the DC obtained from POA-feature to those 

from other segmentation approaches. Moreover, POA-feature showed a higher variance 

in DC than any other approaches, indicating its lack of robustness and unsuitability for 

GM segmentation.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Bar chart showing the individual performance parameters for GM segmentation. The 

error bars show the SDs above and below the mean values. Bar Colours: red, k-medoids clustering 

on the F space (kmed-feature); blue, k-medoids clustering on the R space (kmed-raw); black, k-

medoids on P space (kmed-PCA); cyan, k-means clustering with POA measure on F space (POA-

feature); magenta, k-means clustering with POA measure on R space (POA-raw). Statistical 

significance (p < 0.005, due to Bonferroni correction) between two segmentation approaches is 

shown with a line joining the pairs of bar charts. Significance is only shown in the Dice coefficient 

(DC) to summarise the agreement between the ground truth and segmentation results.  
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4.5.2.2. WM segmentation  
 

Figure 4.5 gives the accuracy, precision, sensitivity, specificity, and DC of the five 

segmentation approaches in distinguishing the WM region. The figure shows that for 

segmenting WM, kmed-feature and kmed-raw performed significantly better than kmed-

PCA (p ≤ 0.001), while no other approaches were significantly different. Clustering the 

F space produced DCs similar to those produced by clustering the R space, but better than 

those obtained by clustering the P space.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Bar chart showing the individual performance parameters for WM segmentation. The 

error bars show the SDs above and below the mean values. Bar Colours: red, k-medoids clustering 

on the F space (kmed-feature); blue, k-medoids clustering on the R space (kmed-raw); black, k-

medoids on P space (kmed-PCA); cyan, k-means clustering with POA measure on F space (POA-

feature); magenta, k-means clustering with POA measure on R space (POA-raw). Statistical 

significance (p < 0.005, due to Bonferroni correction) between two segmentation approaches is 

shown with a line joining the pairs of bar charts. Significance is only shown in the Dice coefficient 

(DC) to summarise the agreement between the ground truth and segmentation results.  
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4.5.2.3. AIF segmentation  

 

Figure 4.6 presents the accuracy, precision, sensitivity, specificity, and DC of the five 

segmentation approaches in distinguishing the arterial region from others. The kmed-

feature approach gives significantly higher DC than the POA-raw and kmed-PCA 

approaches (p < 0.005). Out of the proposed approaches, POA-feature showed a high 

variance of DC, indicating its unsuitability for AIF segmentation.   

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Bar chart showing the individual performance parameters for AIF segmentation. The 

error bars show the SDs above and below the mean values. Bar Colours: red, k-medoids clustering 

on the F space (kmed-feature); blue, k-medoids clustering on the R space (kmed-raw); black, k-

medoids on P space (kmed-PCA); cyan, k-means clustering with POA measure on F space (POA-

feature); magenta, k-means clustering with POA measure on R space (POA-raw). Statistical 

significance (p < 0.005, due to Bonferroni correction) between two segmentation approaches is 

shown with a line joining the pairs of bar charts. Significance is only shown in the Dice coefficient 

(DC) to summarise the agreement between the ground truth and segmentation results.  

 

 

4.5.2.4. Lesion segmentation  
 

Figure 4.7 gives the accuracy, precision, sensitivity, specificity, and DC of the five 

segmentation approaches in distinguishing the lesion region. It can be seen that the POA-

raw approach yielded significantly higher DCs than the proposed kmed-feature, kmed-

PCA, and kmed-raw (p < 0.0001). However, the other raw data-based segmentation 
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approach, kmed-raw, did not give any significant improvement in DC. This suggests that 

the raw–data-based approaches only segment lesions better when the cluster assignment 

measure of typical k-means clustering is improved. Like GM and AIF regions, the POA-

feature approach showed high variability of DC, indicating its unsuitability.  

 

 

 

Figure 4.7: Bar chart showing the individual performance parameters for lesion segmentation. 

The error bars show the SDs above and below the mean values. Bar Colours: red, k-medoids 

clustering on the F space (kmed-feature); blue, k-medoids clustering on the R space (kmed-raw); 

black, k-medoids on P space (kmed-PCA); cyan, k-means clustering with POA measure on F 

space (POA-feature); magenta, k-means clustering with POA measure on R space (POA-raw). 

Statistical significance (p < 0.005, due to Bonferroni correction) between two segmentation 

approaches is shown with a line joining the pairs of bar charts. Significance is only shown in the 

Dice coefficient (DC) to summarise the agreement between the ground truth and segmentation 

results.  

 

When all the nine features were included in the F space (see Figure 4.8), kmed-feature 

showed significantly better performance than kmed-PCA; its performance with a 256 × 

9-dimesnional F space was also comparable to raw-data-based approaches. This indicates 

that a different F space to the one used for GM and WM segmentation can provide better 

lesion segmentation.  
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Figure 4.8: Bar chart showing the individual performance parameters for lesion segmentation with 

a feature-space of dimension 256 × 9. The error bars show the SDs above and below the mean 

values. Bar Colours: red, k-medoids clustering on the F space (kmed-feature); blue, k-medoids 

clustering on the R space (kmed-raw); black, k-medoids on P space (kmed-PCA); cyan, k-means 

clustering with POA measure on F space (POA-feature); magenta, k-means clustering with POA 

measure on R space (POA-raw). Statistical significance (p < 0.005, due to Bonferroni correction) 

between two segmentation approaches is shown with a line joining the pairs of bar charts. 

Significance is only shown in the Dice coefficient (DC) to summarise the agreement between the 

ground truth and segmentation results.  

 

4.5.3. Computation time  

 

Figure 4.9 compares the computation time of clustering stage of the five segmentation 

approaches for (a) signals with noise typical to clinical setting and (b) signals with SNR 

= 20.  

For the R space signals with noise typical to clinical cases (Figure 4.9a), the feature-based 

clustering of kmed-feature approach gave significantly shorter computational time (p ≤ 

0.001) than those of any other segmentation approaches. However, feature-based 

clustering of POA-feature approach showed significantly-higher computation time than 

that of kmed-raw and kmed-PCA (p < 0.001), which can be attributed to the more- 

convoluted centroid assignment measure of the clustering. For lower SNRs (Figure 4.9b), 

the kmed-feature clustering was still significantly quicker than others (p < 0.01); whereas 

POA-feature had the slowest clustering method.   
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      (a) 

 

      (b) 

Figure 4.9: Bar chart showing the mean time elapsed during the clustering stage when five 

segmentation approaches are applied on (a) R space with no additional noise (b) R space with 
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additional noise (SNR=20). The error bars show the SDs above and below the mean values. Bar 

Colours: red, k-medoids clustering on the F space (kmed-feature); blue, k-medoids clustering on 

the R space (kmed-raw); black, k-medoids on P space (kmed-PCA); cyan, k-means clustering 

with POA measure on F space (POA-feature); magenta, k-means clustering with POA measure 

on R space (POA-raw). Statistical significance (p < 0.005) between two segmentation approaches 

is shown with a line joining the pairs of bar charts.  

 

It should be noted that Figure 4.9 gives the computation time of the clustering stage only, 

not the overall segmentation time. The overall segmentation times can vary as the 

approaches involved manual classification of cluster centroids. However, if the duration 

of the classification stage can be kept similar, the kmed-feature approach would segment 

faster than all other approaches.   

 

4.6. Discussion  

  

The primary aim of the study was to investigate the feasibility of feature-based time-series 

clustering in tissue segmentation. To create a dimensionality-reduced feature space, the 

raw time-series of each pixel was replaced by a vector containing several features. A 

preliminary effectiveness study compared the individual discriminatory powers of these 

features and identified the most effective features to include in the final feature space. 

Two proposed segmentation approaches clustered this feature space with different 

clustering mechanisms before classifying the brain regions. The performances of these 

proposed approaches were compared to those of two segmentation approaches that 

clustered raw dynamic data and to another approach that used PCA for dimension 

reduction of DSC-MRI data prior to clustering.   

The results showed that feature-based clustering provides simple, fast, but effective 

segmentation approaches. The dimensionality-reduced feature space facilitates better 

segmentation as compared to PCA-based dimension-reduction methods. Detailed 

discussion on the findings, potential clinical applications, limitations, as well as the future 

scope of the present work will be presented in the following sections. 
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4.6.1. Effectiveness study of the features 

 

The effectiveness study identified the five features with higher discriminatory power than 

others. It also suggested that, although features like PSR and S1/S6 can be suitable for 

discriminating specific regions such as lesions or CSF respectively, they cannot be 

regarded as effective features for segmenting all the regions. The other two features—

PC3 and PC4—were not well-clustered and were already used in the kmed-PCA 

approach; therefore, including them in the F space would not add any further 

discriminatory power. MTD individually showed a DC close to 0.7 for GM and WM 

segmentation, but failed to distinguish AIF and lesion regions. This may have contributed 

to the low DCs for AIF and lesion segmentation (Figure 4.6 and 4.7), as compared to 

those obtained for GM and WM segmentation for the proposed kmed-feature. However, 

considering its GM- and WM-discriminatory power, MTD was included in the F space.   

The inter-subject variation affected the distribution of some features. For example, signals 

from CSF and WM showed lower variance and MTD in Figure 4.3, but this should be the 

case for AIF pixels. The reason for this discrepancy is that the signals were normalised to 

account for any inter-subject variation in their intensity (y-axis), but no normalisation was 

done to account for differences in transit time (i.e. x-axis). This suggests that only visual 

inspection of the distribution of features (from Figure 4.3) may not confirm the 

effectiveness of each feature; therefore, it was followed by another more-quantitative 

individual DP analysis (Section 4.4.5).  

 

4.6.2. Comparison of segmentation approaches 

 

The analysis of the DCs of the five segmentation approaches (Section 4.5.2) showed that 

the proposed kmed-feature segments GM significantly better than the two raw–data-based 

approaches. For WM segmentation, it performs similar to the raw–data-based methods. 

It also performs better GM, WM, and AIF segmentation than the PCA-based 

segmentation approach. The kmed-feature, with a 256 × 9-dimensional F space, 

distinguishes the lesion regions equally well to other raw−data-based approaches, with 

DCs comparable to those obtained by the 256 × 5-dimensional F space for GM and WM 
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segmentation. The DCs obtained with another proposed approach, POA-feature, show 

high variance, probably due to the sensitivity of its k-means clustering to outliers and also 

to random initialisation step that converges the clustering into one of the local minima of 

the objective function (Raykov et al., 2016). The computation times of POA-feature were  

longer as well, due to the complex cluster assignment step. Therefore, out of the two 

proposed feature-based approaches, the present study advocates the kmed-feature for 

segmentation.  

In the R space, different regions were scattered randomly; whereas for real patients, 

similar voxels are more in proximity, which will assist the clustering. Moreover, for 

clinical perfusion analysis, all brain voxels of a subject are often assumed to have an 

idealised AIF. So, the current assumption of similarly-perfused regions having similar-

shape time-series can be sustained with more confidence. However, the clinical DSC-

MRI data are of large dimension, due to a vast number of brain voxels and many time-

points in their dynamic signals. This problem is addressed here by the proposed 

dimensionality-reduction, which has the following advantages. First, by decreasing the 

number of time-points, the dimension of each element is now decreased from 60 to 5. 

Consequently, the time-complexity of the clustering stage is decreased (Wang et al., 

2006a), as described in Section 3.6.1 in Chapter 3. This is demonstrated in Section 4.5.3, 

where kmed-feature is shown to cluster faster than other clustering approaches. So, it can 

also segment faster than other raw−data-based or dimensionality-reduction-based 

approaches; especially when clustering can be followed by a similar-duration, if not 

entirely-automatic, classification stage instead of the present manual classification of 

cluster centroids (described in Section 4.4.7.1). Second, using a few signal features 

instead of the entire dynamic intensity variation allows more information to be stored in 

a smaller number of dimensions (Wang et al., 2006a). This offers a more effective 

segmentation approach by preventing it from being overburdened by less informative 

parts of the dynamic signal, such as a long baseline and recirculation. Nevertheless, in 

future research, the segmentation performance of the proposed approaches on a noisy R 

space needs to be investigated.  

The kmed-feature approach produced low DCs for AIF and lesion segmentation (Figure 

4.6 and 4.7). This can be due to the lower power of MTD in discriminating the AIF and 

lesions. When segmenting these two regions with this approach, a higher DC can be 

achieved if the present F space contains different or additional features. For example, for 



134 
 

AIF identification, a feature space created with the effective AIF detection features (as 

suggested by Chapter 3) may improve the DC. On the other hand, for lesion segmentation, 

when a 256 × 9-dimensional feature space was used instead of the 256 × 5-dimensional 

F space, the resultant DC was comparable to kmed-raw and POA-raw and  significantly 

different to kmed-PCA (see Figure 4.8). Hence, for lesion identification, the proposed 

kmed-feature approach sustains the segmentation performance, while providing the 

additional advantage of rapid computation.  

 

4.6.3. Clinical applications 

 

The proposed feature-based segmentation approach can be useful for many clinical 

applications. For example, the kmed-feature approach can facilitate rapid diagnosis of 

lesions in acute stoke patients, without the necessity to transfer the data into another 

processing platform or to execute intensive voxel-by-voxel analysis. Clinicians can make 

quick decisions regarding a suitable treatment plan and thus prevent rapid, progressive  

damage to myelinated fibres (Calamante, 2013).  

Combining different semi-quantitative features (e.g. EDP, AOC, L2-norm, MTD) can 

create novel parameters with high region-discriminating power; such parameters can offer 

both the researchers and operators in the clinical settings an initial insight for the 

identification of normal appearing WM, lesion, penumbra, or arterial supply for a certain 

tissue  neighbourhood.  

Brain maps created from different semi-quantitative features can allow future studies to 

investigate their association with glioma grade, progression-free and overall survival, as 

well as their utility as biomarkers of glioma or other pathologies. Then, feature-based 

analysis would allow hospitals to circumvent the time-consuming and computationally-

intensive voxel-by-voxel perfusion analysis and pave the way to a fast and objective 

characterisation of lesions, monitoring of angiogenesis, or detection of arterial and venous 

voxels for PVE-correction.  
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4.6.4. Limitations  

 

The limitations of the present study are as follows. The applied k-medoids clustering is 

not suitable for data that require non-spherical clusters. However, an initial visual 

inspection of the distribution of the features in the F space indicated that the data can be 

partitioned with spherical clusters. The satisfactory results of the kmed-feature approach 

also suggest the suitability of k-medoids clustering for the present datasets. Another 

limitation with regard to all five clustering methods is that their centroids are randomly 

initialised. Different iterations, therefore, may produce different cluster outcomes. To 

ensure reproducibility, the clustering step of every segmentation approach was iterated 

1,000 times (Yin et al., 2014). Nevertheless, for future research, different clustering 

algorithms should be explored to achieve either more robust and reproducible outcomes 

or better trade-offs between the segmentation performance and computational complexity 

than k-medoids.  

The limitation of the applied PAM algorithm (Sections 4.4.7.1, 4.4.7.2, and 4.4.7.3) is 

that it is only suitable for data with fewer than 3,000 elements. For typical DSC-MRI with 

a large number of elements (i.e. voxels), an alternative to the PAM algorithm will have 

to be found. For more than 3,000 but fewer than 10,000 brain voxels, clustering should 

use a variant of Lloyd’s iterations, based on the work of Park and Jun (2009). For a much 

larger number of brain voxels, another variation of the k-medoids algorithm should be 

used, where a random sample of cluster members is examined during each iteration.  

The kmed-PCA approach (Section 4.4.7.3) used a conventional PCA-based dimension-

reduction, whereas there exist more powerful methods like EM-PCA or PPCA (Kaya et 

al., 2017) (see Section 4.2.6). However, their application would have further increased 

the complexity and the computation time. Therefore, even though they might have 

marginally increased the DC, their application would contradict the primary purpose of 

this study: establishing a simplified and rapid automatic segmentation approach.  

Lastly, the feature space is application dependent. Although the extracted features are 

suitable for segmenting GM, WM, and with some modification for AIF or lesion, they 

may not be useful for other tasks or processing steps, such as venous voxel detection, or 

further characterisation or grading of lesions. To find the most suitable task-specific 

features for any such processing step, some prior knowledge about the task and the 
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corresponding dataset will be required. Otherwise, researchers are advised to design 

preliminary investigations similar to the presented work, to finalise the task-specific 

feature-sets.  

 

4.6.5. Future scopes 

 

For future research, instead of using a common F space for all regions, the kmed-feature 

approach can be improved by applying target-region-specific F spaces. For example, for 

arterial voxel detection, the F space can be populated by features that were found to be 

effective for AIF detection in Chapter 3. For lesion detection, a 256 × 9-dimensional F 

space can be useful as suggested in Section 4.5.2.4. After masking the arterial and lesion 

voxels, the GM and WM voxels can be segmented with the 256 × 5-dimensional F space 

of the present study.  

Future studies can also develop novel features for segmentation by combining different 

task-specific features of STCs. From different parametric forms of this composite feature, 

the most effective one can be identified by measuring the area under the ROC curve. 

Additionally, the threshold for segmenting different regions with this novel 

combinational feature can be investigated.  

Relevant task-specific features extracted from different co-registered perfusion images 

(such as dynamic contrast enhanced-MRI, arterial spin labelling) can be merged into a 

single feature space. This will accommodate more information about a voxel into a lower-

dimensional F space and increase the orthogonality between voxels, enabling better 

region discrimination. This can enable clinicians to characterise or grade the pathological 

regions more conclusively by analysing the F space containing multiple cross-modality 

features.  

 

4.7.  Conclusion 
 

The conclusion of the study is that one of the proposed feature-based segmentations, 

namely kmed-feature, outperforms two raw–data-based and one conventional 

dimensionality-reduction-based approaches. When followed by an automatic or 
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controlled-duration classification stage, the kmed-feature can potentially offer the fastest 

segmentation, even for noisy data. The research suggests using five features for GM and 

WM segmentation: effective drop percentage, area over the normalised signal time curve, 

variance, L2 norm, and mean time duration. Identification of arterial voxels may be further 

improved by including the features prescribed in Chapter 3. Lastly, the kmed-feature 

provides a simple, fast, but effective approach for distinguishing lesions, without 

transferring the data to other processing platforms, which can be beneficial for clinical 

cases that demand rapid processing and urgent clinical decision making (e.g. ischaemic 

stroke). 
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Chapter 5: Comparing Different Forms of Physiologically Plausible 

Transit Time Distributions 

 

5.1. Introduction  
 

As mentioned in Chapter 2, the present research solves the central convolution equation 

of dynamic susceptibility-contrast magnetic resonance imaging (DSC-MRI) (equation 

2.17) through model-dependent deconvolution, which involves assuming an analytical 

form for the tissue impulse response function, I(t). Since I(t) is the product of cerebral 

blood flow (CBF) and residue function R(t), this deconvolution can be achieved by 

assuming a physically realistic model for R(t) with several free parameters. This 

parameterisation of R(t) requires knowledge about the physiological model of tissue 

microvasculature.  

The brain capillary system can be modelled as a combination of many parallel tubes, as 

shown in Figure 5.1 (a) (Mouridsen et al., 2006b, Ostergaard et al., 1999). Each tube 

receives a unique fraction of the arterial blood, hi, that passes through the tube with a 

unique transit time, τi. Each voxel contains several capillary-tissue units with a large 

number of parallel tubes. Consequently, the discrete hi’s convert to a continuous density 

function of transit time, referred to as the transit time distribution (TTD), shown in Figure 

5.1 (b). As discussed in Section 2.6.1, the TTD can be used to derive R through the 

following equation:  

0

( ) 1 ( )

t

R t h d = −  ,    (5.1)

  

As the number of free parameters of R is proportional to the number of tubes, a large 

number of parallel tubes leads to a large number of free parameters in the model of R.This 

increases the computational complexity. A feasible model of R requires a compromise 

between mathematical complexity and the practical limits set by temporal resolution, 

signal-to-noise ratio (SNR), and tissue coverage (St Lawrence and Lee, 1998). To 

maintain this trade-off, the parametric model should be as biologically specific as possible 

with the lowest number of free parameters (O'Connor et al., 2011). The effective number 
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of model parameters can be reduced by characterising the vasculature with a parametric 

form of h(t) that contains two or three free parameters to describe its shape. Variation in 

the free parameters of h(t) can then vary its shape to resemble the different transit times 

taken by Gadolinium-based contrast agents (GBCAs) while passing through vasculatures 

of unique structure.  

Several published studies have investigated different physiologically plausible models of 

h(t) for the brain capillary system, which are reviewed in the following section before 

introducing the research questions.  

 

 

(a)                                                                          (b) 

Figure 5.1: (a) Schematic representation of vascular model; arterial input to each tissue is 

distributed across N  tubes. Each fraction of input, hi, passes with a distinct transit time τi, where 

i = 1, 2, ….., N. (b) Histogram showing discretised approximation to the transit times by different 

hi
’s (Mouridsen et al., 2006b); when N is a very large number, this histogram converges into a 

continuous density function, named the transit time distribution (shown by solid curve).  Figures 

reproduced from the work of Mouridsen et al. (2006b), with permission from Elsevier3. 

 

 

 

 
3 Reprinted from NeuroImage; 33(2); Kim Mouridsen, Karl Friston, Niels Hjort, Louise Gyldensted, Leif 

Østergaard, Stefan Kiebel; Bayesian estimation of cerebral perfusion using a physiological model of 

microvasculature; 570-579, Copyright (2006), with permission from Elsevier. Copyright license no: 

4962571281148.  
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5.2. Literature review on different forms of TTD 
 

5.2.1. Gaussian TTD 

 

Koh et al. modelled h as a Gaussian distribution with the following form:  

2 21
( ) exp[ ( ) / (2 )]

2
Gaussianh t t u 

 
= − −  ,  (5.2) 

where μ is the mean and σ is the standard deviation of the TTD (Koh et al., 2001). No 

constraints were imposed on the transit times and, hence, the TTD was assumed to be 

completely symmetric. This Gaussian h allows the transit time to be negative, violating 

the h(0) = 0 constraint discussed in Section 2.6.1; therefore, this TTD cannot be a realistic 

representation of a physical microvasculature.  

 

5.2.2. Corrected Normal TTD 

 

To correct the above-mentioned limitation of the Gaussian h, Koh et al. proposed a 

corrected normal distribution for h, which has the following form: 

1
( )corr

Gaussianh h t
N

=  ; t > 0,     (5.3) 

where N is the normalisation factor given by: 

      2 2

0

1
exp[ ( ) / (2 )]

2
N t u dt

 



= − − .      (5.4) 

For the values of σ and μ of hcorr to be associated with the mean and standard deviation of 

the TTD, the μ needs to be greater than 3σ. Despite being computationally simpler, this 

corrected normal TTD starts with a positive value and thus violates the basic TTD 

constraint of h (0) = 0.  

To better represent the underlying asymmetry in the physical system and the  transit times, 

a positively skewed TTD is desirable (Koh et al., 2001). This can be achieved if the 

exponent −(t−µ)2/ (2σ2) of equation 5.4 is replaced by a quadratic function –(At2 + Bt + 
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C). In such case, there would be three free parameters—A, B, and C—instead of two, μ 

and σ; the extra parameter would increase the computational complexity.  

 

5.2.3. Skewed-Gaussian TTD 

 

To skew a TTD without adding extra parameters, Koh et al. proposed a naturally- 

asymmetric skewed-Gaussian TTD with the following form:  

                                      

/2
1 22

( ) exp[ ]

( )
2

sgh t t t






−= −


; t, α > 0, ρ > 1, (5.5) 

where α is the scale parameter and ρ is the shape parameter (Koh et al., 2001). The gamma 

function of equation 5.5 is defined as follows: 

1

0

( ) exp[ ]zz x x dx



− = −  ; z > 0.            (5.6) 

This skewed-Gaussian TTD follows the constraints: h(0) = 0 and h(∞) = 0. Moreover, the 

resultant R is a smooth and monotonic decreasing function of time. Therefore, this 

asymmetric curve is a better representation of a realistic capillary system than hcorr. As 

discussed in Section 2.6.1, an exponential R(t) should be avoided in DSC-MRI analysis 

since it implies instantaneous extravasation of a fraction of the GBCA (Sourbron and 

Buckley, 2013). For the skewed-Gaussian distribution, an exponential R was avoided by 

setting the shape parameter ρ > 1.  A limitation of this distribution is that it cannot be 

solved analytically, and therefore, needs to be solved numerically (Schabel, 2012).  

 

5.2.4. Gamma TTD  

 

A continuous, closed-form solution for the response function can be obtained by choosing 

a family of gamma distributions as TTD. Provided certain constraints (as discussed in 

Section 2.6.1) are imposed, this family of distributions can plausibly describe the tissue 

vasculature (Mouridsen et al., 2006)(Schabel, 2012).  The gamma TTD is given by: 
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11
( ) exp[ / ]

( )
gamma

t
h t t






 

−

= −


 ; α > 1, β > 0. (5.7)  

Here, β is the scale parameter and α is the shape parameter. The gamma function Γ(α) is 

defined by equation 5.6. Due to the reasons explained in Section 2.6.1, an exponential 

R(t) was avoided by setting α greater than unity, and an infinite value of gamma h was 

avoided by setting β greater than 0.  

The gamma distribution can cover a wide range of shapes of R, such as an exponential 

for normal tissue and a boxcar for ischaemic tissue. Schabel et al. modelled dynamic 

contrast-enhanced MRI (DCE-MRI) data using a gamma TTD and showed that the 

determination of α is dependent on the quality of the datasets, such as high signal-to-noise 

ratio (SNR), pronounced first pass, and limited contrast extravasation. The present DSC-

MRI data meet all these criteria, and therefore the gamma function can potentially 

represent tissue microvasculature for the current patient cohort.  

 

5.2.5. Gamma-variate TTD 

 

The gamma-variate function has been used in perfusion MRI studies to model the bolus 

shape function (Patil and Johnson, 2011), to remove tracer recirculation from the GBCA 

bolus to analyse the first pass (Peruzzo et al., 2011), and to simulate AIF (Bjornerud and 

Emblem, 2010, Yin et al., 2015, Yin et al., 2014).  In a recent work, the gamma-variate 

distribution was used as a TTD to model DCE-MRI data (Larsson et al., 2017).  

The usual form for the gamma variate function is given by:  

                               ( ) exp[ / ]gvh t At t = − , (5.8) 

where A, α, and β are free parameters (Madsen, 1992).  

The free parameters are coupled in equation 5.8; any change in one parameter affects both 

the magnitude and shape of the distribution. Madsen proposed a normalised gamma 

variate function by decoupling the parameters, thereby making it more robust for least-

squares fitting (Madsen, 1992). The form suggested by Madsen is as follows: 

                                max( ) ( ) exp[ (1 )]gvh t y t t  = − , (5.9) 
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where ymax is the maximum value of the distribution, α is the decay parameter, and 

'

max/t t t= , with tmax being the time at which hgv is maximum. As discussed in Section 

2.6.1, the integral of h should equal unity. This unit integral constraint yields: 

                                 

1

max

max

1
( )

( 1)
y

t





+=
 +

                                               (5.10) 

where Γ is the gamma function defined by equation 5.6 (Patil et al., 2013, Patil and 

Johnson, 2013). Substituting ymax from equation 5.10 into equation 5.9 and expanding t' 

gives:  

                         
1

max max max

1
( ) ( ) ( ) exp[ (1 )]

( 1)
gv

t t
h t

t t t

 




+= −
 +

. (5.11) 

Like the skewed-Gaussian and gamma functions above, hgv conforms to all the constraints 

of section 2.6.1 to be a physically viable representation of tissue microvasculature. 

Additionally, visual inspections of the time differences between AIF peak and STC 

minimum can provide a rough estimate for the upper limit of initial guess of tmax, making 

the initialisation stage of the least-squares fitting more intuitive for the gamma-variate. In 

the above-mentioned study of Larsson et al. (2017), the use of the gamma-variate TTD 

offered a simple approach for characterising the capillary transit time heterogeneity 

between healthy controls and patients with carotid stenosis and with brain tumours. This 

recent success motivated the inclusion of the gamma-variate function in this work’s 

potential models of TTD.  

 

5.3. Aims 
 

It is evident from the discussion above that a variety of functions can be used to model 

the tissue microvasculature, as long as they conform to the constraints described in 

Section 2.6.1. However, to date, no study, to the knowledge of the author, has compared 

the available functions in terms of their computational benefits.  

The aim of this chapter is to evaluate the clinical utility of the skewed-Gaussian (equation 

5.5), gamma (equation 5.7), and gamma-variate (equation 5.11) functions as TTDs; and 
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to compare their utility to a novel form of TTD, the Weibull function (discussed in Section 

5.4.1.3). The following research questions are addressed in this chapter:  

1. Can modelling TTD with a Weibull function provide additional benefits over the 

available models? 

2. Which model gives better goodness and stability of fit for model-dependent 

deconvolution? 

3. How do the perfusion parameters vary with different models of h? 

4. How does the total computation time vary with different h?  

 

5.4. Materials and Methods 
 

For each TTD, the perfusion parameters, namely cerebral blood flow (CBF), cerebral 

blood volume (CBV), and mean transit time (MTT), were quantified through the steps 

described in this section.  

 

5.4.1. Data acquisition and analysis 

 

5.4.1.1. Data acquisition  
 

The data were derived from DSC-MRI scans of nine glioma patients as described in 

Section 1.4. STCs were obtained from 3×3-pixel regions of interest (ROIs) placed 

manually in four areas of normal-appearing white matter (WM) in the frontal and parietal 

lobes and in two areas of grey matter (GM) in the caudate nucleus, as marked in Figure 

5.2(a). Typical average signals from the marked GM and WM ROIs are shown in Figure 

5.2(b). All processing and analysis of the acquired signals was performed offline with 

code written in MATLAB (R2018a, Natick, MA). 
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                         (a)                             (b) 

 Figure 5.2: (a) Gradient-recalled-echo (GRE)-DSC-MRI (at the first time point), acquired at 

1.5T. 3 × 3-ROIs were placed in the caudate nucleus for GM and the frontal lobe for normal 

appearing WM (shown with yellow squares) (b) Corresponding average signal intensity curves 

(in arbitrary units, a.u.) for white matter, WM (in blue), and grey matter, GM (in brown), for the 

selected ROIs.  

 

5.4.1.2. Automatic AIF detection  
 

The arterial voxels were automatically identified following the processes used in several 

published studies (Yin et al., 2015, Mouridsen et al., 2006a, Emblem et al., 2009, Yin et 

al., 2014, Peruzzo et al., 2011). However, instead of searching AIFs from a manually-

drawn ROI at the MCA or ICA like in those studies, every brain voxel from all slices was 

included in the search. 

After background voxel removal and skull stripping, each brain STC was converted into 

a CTC using equations 3.1 and 3.2. Each CTC then went through noise filtering and 

thresholding stages to eliminate motion- or partial volume-affected voxels and tissue 

voxels, respectively. The stages are described as follows:  

1. A roughness index, given as RI '' 2

0

( ( ))

T

C t dt=  , where C''(t) is the second 

derivative of CTC with respect to time, was calculated and 25% of the CTCs with 

the highest RI were discarded, as these are expected to be the results of motion or 

partial volume effects (Yin et al., 2014, Yin et al., 2015).  
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2. Out of the remaining CTCs, 50% with the highest full width at half maximum 

(FWHM) and 20% with the highest first moment (FM) were removed, since these 

are thought to represent soft tissue CTCs (Mouridsen et al., 2006a, Yin et al., 2015, 

Rempp et al., 1994) .  

3. Out of the remaining CTCs, 30% with the lowest peak concentration were 

discarded, because their concentration peaks were not high enough to resemble 

those of AIF.  

4. The areas under the remaining CTCs were calculated and 40% of the CTCs with 

the lowest area under the curve (AUC) were rejected, as these correspond to tissue 

CTCs where concentration changes are much smaller than those in arterial voxels.  

The above-mentioned less-stringent thresholds allowed identification of all the true AVs, 

but at the cost of also identifying many false AVs. To identify and group the true AVs, 

the above-mentioned thresholding step was followed by a standard k-means clustering 

(Lloyd, 1982, Raykov et al., 2016) (described in Section 3.4.4.3 of Chapter 3). The 

remaining CTCs were divided into five clusters, putatively corresponding to GM, WM, 

arterial blood, venous blood, and ‘other’, such as ventricles containing cerebrospinal fluid 

(CSF) (Bjornerud and Emblem, 2010, Bleeker et al., 2011, Mouridsen et al., 2006a, Yin 

et al., 2014). Each cluster was represented by a centroid. The cluster whose centroid had 

the highest peak and lowest FM was chosen as the representative of AVs (Peruzzo et al., 

2011) (Mouridsen et al., 2006a) (Yin et al., 2015). The final AIF was obtained by aligning 

and averaging the CTCs within that cluster.  

 

5.4.1.3. Weibull TTD 
 

The present study investigates the applicability of the Weibull distribution as a possible 

candidate for TTD to answer the first research question for this chapter (i.e. can modelling 

TTD with a Weibull function provide additional benefits over the available models?). The 

Weibull distribution is popular for modelling reliability data, hazard function, failure 

times, and analysing the lifetime of electrical as well as mechanical components (Lai et 

al., 2006). The normalised form of the Weibull distribution is given by:  

                     
1( ) exp[ ( ) ]weibullh t t t   −= − ; t > 0, α > 1, (5.12) 
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where α is the shape parameter and β is the reciprocal of the scale parameter, η (i.e. β = 

1/η). The Weibull distribution was included as a trial TTD function for the following 

reasons. First, it conforms to all the constraints (described in Section 2.6.1) for a TTD to 

be physiologically realistic. Moreover, this distribution can transform into several 

different distributions by varying α. When 0 < α < 1, the TTD decreases exponentially 

from an infinite initial value. These values of α were avoided as the constraint h(0) = 0 is 

violated. With α = 1, the distribution is a simple exponential, which is avoided here, as 

per the discussion in Section 2.6.1. With 1 < α < 2, the TTD rises sharply with slow rate 

of fall (positively skewed). With α = 2, it turns into a Rayleigh distribution, and 3 < α < 

4 turns it into a symmetrical, bell-shaped curve, resembling a Gaussian distribution, 

starting at t = 0. With higher α (> 10), it takes the shape of an extreme value distribution, 

which is negatively skewed (Abernethy et al., 1983). Therefore, by varying its shape and 

scale parameters, the Weibull distribution can potentially characterise a variety of 

microvascular environments, observed in both normal and pathological tissue.   

 

 

5.4.1.4. Conversion of trial CTC to STC  

 

The automatically-determined AIF was convolved with trial Rs derived from each of the 

four functions (as per equation 5.1) and scaled by CBF to produce trial concentration 

functions (in accordance with equation 2.17). All trial concentration functions were then 

converted to trial signal time curves (STCs), which were later fitted to the measured 

signal. Signal was assumed to be related to concentration through the following equation 

(Patil et al., 2013):  

                                                  exp[ ( )]t preS S c= − , (5.13) 

where Spre is the baseline signal. Following the suggestion of Kao et al. and visual 

inspection of the signals, the first six images were discarded as they failed to display an 

equilibrium signal for the baseline calculation (Kao et al., 2010). Spre was therefore 

quantified as the mean of the signal intensity values from the seventh image till the image 

preceding the bolus arrival.  
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ᴧ(C) is a function of concentration that depends on whether contrast is present in large or 

small vessels. The form of this function also depends on the assumption of a linear or 

non-linear relationship between the GBCA concentration and the relaxation rate. Several 

researchers recommend using a non-linear relationship to reduce relaxivity-dependent 

systematic errors and increase the accuracy of absolute and relative perfusion 

measurements for a variety of imaging protocols (Patil et al., 2013, Patil and Johnson, 

2013, Calamante et al., 2009, van Osch et al., 2003, Bjornerud et al., 2002). A non-linear 

relationship is therefore adopted in this work. In Chapter 3, a non-linear relationship was 

used for arterial ᴧ(C); likewise, a non-linear ᴧ(C) is used in this chapter for tissue regions.   

For tissue microvasculature (i.e. small vessels), Patil et al. (2013) used the interpolation 

formula of Yablonskiy and Haacke for ᴧ(C), given by the following expression:  

1 0

2

0

3
1 ( )

1 2( ) (2 ) 1
3

J TE u
C u u du

u




−  
 = + − ,   (5.14) 

where J0 is the zeroth order Bessel function, angular frequency ω is assumed to have the 

form ω = (a + bC)× B0, where a ≈ 0 and b = 114.4 s-1T-1mM-1 as per Patil et al., and ς is 

the dimensionless tissue vascular fraction, with a value of 3.8 for GM and 2.5 for WM 

(Yablonskiy and Haacke, 1994, Patil et al., 2013).  

 

5.4.1.5. Initial parameter guesses  
 

The trial signal function obtained from the above-mentioned step was then fitted to the 

normalised measured signal, St / Spre. The STCs were fitted instead of CTCs because noise 

in signal (but not concentration) is independent of amplitude. For finding the optimal 

value of free parameters, this multi-dimensional non-linear optimisation problem requires 

a suitable initial guess, without which it can repeatedly get stuck in the local minima of 

the error surface. In the present work, fits were repeated for one hundred random 

combinations of initial guesses uniformly distributed over their likely physiological 

limits.  

For each TTD to be physically realistic, the lower limits of its free parameters were 

controlled by the constraints imposed on them in Sections 5.2.3, 5.2.4, 5.2.5 and 5.4.1.3. 
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The upper limits were decided through either visual inspection of the input (i.e. AIF) and 

output (i.e. STC), or a trial-and-error-based preliminary study on two subjects. 

 

5.4.1.6. Curve fitting and parameter estimation  
 

For curve fitting, the ‘lsqcurvefit’ least-squares algorithm was used to find the values of 

the free parameters (i.e. F and TTD model parameters) that minimised the difference 

between estimated and normalised measured signals. Optimisation settings were as 

follows:  algorithm:  trust-region-reflective (Coleman and Li, 1996); step tolerance: 

1×10−20; function tolerance: 1×10−20; maximum number of function evaluations: 5,000; 

maximum number of iterations: 2,000.  All other settings were left to their default values, 

as described in MATLAB’s documentation4.       

The F (i.e. CBF) and the TTD model parameters obtained from the best fit with the lowest 

RMSE. MTT and CBV were calculated with equations 2.24 and 2.1, respectively. 

 

5.4.2. Evaluation of Analysis  

 

Plausibility of all four TTDs were first visually assessed by simulating their functional 

forms with different literature values corresponding to normal and pathological 

conditions. Afterwards, the goodness and stability of fit, consistency of perfusion 

estimates (CBF, MTT, CBV), and the computation time with all four h’s were compared 

through processes described below.  

 

5.4.2.1. Simulation of TTDs for different tissues  

 

To visualise each of the four TTDs in healthy and pathological conditions, a literature 

search was performed to obtain representative free parameter values. For healthy GM, 

ischaemic, and tumour tissues, the shape and scale parameters for gamma TTDs were 

obtained from Schabel (2012). With these parameters, three gamma TTDs and their 

 
4 https://uk.mathworks.com/help/optim/ug/lsqcurvefit.html 

https://uk.mathworks.com/help/optim/ug/lsqcurvefit.html
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corresponding Rs were simulated using equation 5.7 and 2.4, respectively. Three different 

CTCs were then created by convolving these Rs with AIF and scaling them by three 

different  literature CBF values to represent healthy GM, ischaemic, and tumour tissue 

(Larsson et al., 2008, Larsson et al., 2017, Schabel, 2012, Vonken et al., 2000). The AIF 

was taken from one of the three subjects that had visually similar AIFs. Table 5.1 gives 

the shape and scale parameter along with the assumed CBF values used for simulating 

the healthy GM, ischaemic, and tumour CTCs.  

 

Table 5.1: Shape and scale parameters for gamma TTD with cerebral blood flow (CBF) values 

for simulating healthy and pathological signals.  

Tissue 
Shape parameter, 

α 
Scale parameter, β 

CBF, 

ml/100g/min 

Healthy GM 10a 0.6a 36b 

Ischaemic 90a 0.1020a 62c 

Tumour 1.5a 7.86a 87d 

a. (Schabel, 2012); b.(Larsson et al., 2017); c. (Larsson et al., 2008);  

d.   (Vonken et al., 2000). 

 

Simulated CTCs were converted to STCs via the process described in Section 5.4.1.4, and 

were later fitted to the four parametric forms of signal created from four different TTDs 

(as per the process described in Sections 5.4.1.5 and 5.4.1.6). After convergence, the free 

parameters were used to generate and plot each TTD to illustrate their functional forms 

in normal and pathological conditions. 

 

5.4.2.2. Goodness of fit  
 

To answer the second research question for this chapter (i.e. which model gives better 

goodness of fit for model-dependent deconvolution?), goodness of fit was assessed by 

calculating RMSE with the following equation:   

               RMSE
~

2

1

1
[ ( ) ( )]

n

t i t i

i

S t S t
n =

= −  ,                                     (5.15) 
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where n is the total number of images; St(ti) is the measured normalised DSC-MRI signal 

and 
~

tS (ti) is the estimated normalised signal at ith time point. Mean RMSE gives an 

estimate of the accuracy of the fits. The standard deviation (SD) of the RMSEs over 

multiple fits provides an indication of the precision of fits. Range, median, and upper and 

lower quartiles of RMSEs were calculated for both the GM and WM samples over all 

subjects for all four h’s.  

 

5.4.2.3. Parameter Estimates  
 

The CBV, CBF, and MTT estimates obtained with each TTD were calculated over all 

subjects in both GM and WM. They were compared with published literature values to 

assess the consistency of the perfusion estimates. The GM to WM ratio for each perfusion 

parameter was measured and compared with published values to further validate the 

consistency. Then, the estimates were compared with each other to answer the third 

research question for this chapter (i.e. how do the perfusion parameters vary with different 

models of h?).  

 

5.4.2.4. Success rate 

 

For both GM and WM signal fitting, the success rate was quantified as the percentage of 

total fits converging to the global minimum. It evaluated the stability of fit: a model with 

a higher success rate evidently gave more fits that converged into the global minimum 

and gave the lowest RMSE, regardless of the initial guess. Success rates from four TTDs 

were compared to answer the second research question for this chapter regarding the 

comparison between the stability of fits of the four TTDs.   

 

5.4.2.5. Computation time  

 

Computation time (Tcomp) represents the total time elapsed during the entire process: from 

fitting the trial signal to measured data for all hundred initial guesses, to finding the fit 

with the lowest RMSE, and finally calculating the perfusion parameters from the value 
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of the free parameters. Means and SDs of Tcomp were measured and compared for all four 

h’s over all subjects for both GM and WM to answer the fourth research question for this 

chapter (i.e. how does the total computation time vary with different h?) 

 

5.4.3. Statistical Analysis  

 

All statistical analyses were performed with the Statistical package for the Social Sciences 

(SPSS) software (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 

25.0. Armonk, NY: IBM Corp.).In the present study, a set of dependent variables (RMSE, 

CBF, MTT, CBV, success rate, and Tcomp) from a group of subjects were compared with 

different TTDs (repeated samples). For GM and WM regions, averages of these 

dependent variables were taken for each subject so they could be considered independent. 

Repeated measures within-subjects analysis of variance (ANOVA) was therefore used to 

assess statistically-significant differences between dependent variables obtained from 

different TTDs.  

Repeated measure ANOVA assumes the dependent variables are normally distributed for 

every TTD (i.e. assumption of normality) and the variances of the differences between all 

combinations of TTDs are equal (i.e. the assumption of sphericity) (Field, 2013). The 

assumption of normality was tested with the Shapiro-Wilk test, which is suitable for small 

sample sizes, like the present study (Ghasemi and Zahediasl, 2012, Field, 2013). If the 

Shapiro-Wilk test gives a p > 0.05, the data are normally distributed.  

The assumption of sphericity was tested using Mauchly’s test. In cases of non-sphericity, 

degrees of freedom were corrected with either Greenhouse-Geisser, Huynh-Feldt or lower 

bound correction to decrease the Type-I error rate (Singh et al., 2013, Field, 2013). A 

correction factor, epsilon (ε), dictated the correction choice. The convention is to take the 

significance value of the Huynh-Feldt correction when ε > 0.75 and Greenhouse-Geisser 

correction when ε < 0.75 (Field, 2013).   

Post-hoc tests were performed to indicate pairwise significance between TTDs. Repeated 

measures ANOVA has the null hypothesis that there are no differences between the 

population means of the dependent variables achieved with different conditions (i.e. 

different TTDs). Six separate hypotheses had to be checked to verify this null hypothesis. 
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To reduce the Type-I error of this multiple testing, the p-value for each comparison was 

calculated using Bonferroni correction, where the overall significance level of 0.05 was 

divided by the number of pairwise tests. Hence, for each pairwise comparison, the present 

work used p = 0.008 (Bland, 1995).  

When the assumption of normality failed, the non-parametric Friedman’s test was 

performed. In these cases, to identify pairwise significance, the Wilcoxon signed rank test 

was used with Bonferroni-corrected significance values.  

 

5.5. Results  
 

5.5.1. Functional forms of investigated TTDs  

 

Figure 5.3 shows the functional forms of TTD investigated in the present study for 

healthy, ischaemic, and tumour conditions. For each condition, all TTDs, except gamma-

variate, show similar functional forms with marginal variation in MTT.  
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                              (a)                                                                                         (b) 

 

                    (c)                                                                                           (d) 

Figure 5.3: Functional forms of (a) skewed-Gaussian, (b) gamma, (c) gamma-variate, and (d) 

Weibull TTDs in healthy (blue), ischaemic (black), and tumour (red) conditions. For each TTD, 

free parameter values and mean transit time (MTT) in each condition are also given. Fitting the 

simulated signals gave unique gamma-variate TTDs, as they were modelled using decay and 

temporal parameters, unlike the shape and scale parameters of the other TTDs.  

 

For gamma-variate TTD, one of the free parameters, tmax, is neither a shape or scale 

parameter; it is a temporal parameter that depends on the time difference between the AIF 

peak and the STC minimum. A time difference of 2−2.5s was observed between the AIF 
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and the simulated signals, which produced the shown tmax values and ultimately the unique 

functional forms of the gamma-variate TTDs. However, the obtained MTT values do not 

differ substantially between models. Furthermore, the gamma-variate functional forms 

follow all the constraints discussed in Section 2.6.1 for a TTD to be physiologically 

plausible. Therefore, the gamma-variate function can be considered as a possible form of 

TTD for obtaining perfusion estimates from different subjects.   

 

5.5.2. Goodness of fit  

 

Figure 5.4 (a-d) gives typical fits of estimated signal to a measured GM STC with each 

TTD. All fits capture the rapid initial drop in signal and accurately follow the recirculation 

bump. Figure 5.4 (e-h) also shows the corresponding TTDs for each fit. Although the 

shape of the gamma-variate TTD differs from other TTDs, the deviation is marginal and 

the resulting perfusion parameters are similar to those achieved with other TTDs.   
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Figure 5.4: (a-d, left) Dot plots showing typical fits to a baseline-normalised GM signal time 

curve using skewed Gaussian, gamma, gamma-variate, and Weibull distributions, respectively. 

(e-h, right) Corresponding transit time distributions (TTDs) for each fit along with their free 

parameters and mean transit time (MTT) values. It can be seen that parametric signals obtained 

with all four TTDs fit well to the measured data, capturing the rapid signal drop and the 

recirculation stages accurately. All TTDs, except gamma-variate, have similar shapes and MTTs.  

 

Table 5.2 gives the means and SDs of RMSE of the fits with four different TTDs averaged 

over all subjects for GM and WM.  
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Table 5.2: Mean (SD) of root mean square error (RMSE) obtained with each transit time 

distribution (TTD) for grey matter (GM) and white matter (WM) 

 

Function 
Skewed 

Gaussian 
Gamma 

Gamma-

variate 
Weibull 

RMSE 

GM 
0.024 

(0.0058) 

0.024 

(0.0058) 

0.024 

(0.0061) 

0.023 

(0.0055) 

WM 
0.018 

(0.0073) 

0.016 

(0.0050) 

0.016 

(0.0050) 

0.016 

(0.0060) 

 

For the RMSE of GM fitting, the Shapiro-Wilk test indicated normality (p = 0.257, 0.158, 

0.374, 0.335, for the skewed Gaussian, gamma, gamma-variate, and Weibull 

distributions, respectively; see Appendix 2: Table 1) and Mauchly’s test indicated non-

sphericity (p < 0.001, χ2(5) = 186.606, Appendix 2: Table 2a) for every TTD. After 

Greenhouse-Geisser correction of the degrees of freedom, ANOVA revealed no 

statistically-significant differences in the RMSEs of the fits obtained using different 

TTDs (F (1.082, 37.856) = 2.595; p = 0.113, Appendix 2: Table 2b).  

For WM fitting, the Shapiro-Wilk test indicated that the RMSE values significantly 

deviated from a normal distribution (p < 0.001 for all four TTD; see Appendix 2: Table 

1) and thus the non-parametric Friedman’s test was performed. Friedman’s test indicated 

that there were no statistically-significant differences between the RMSEs of the fits for 

WM signals with different TTDs (p = 0.021, χ2(3) = 9.733, Appendix 2: Table 3a).  

Figure 5.5 gives boxplots of the RMSE for GM and WM obtained with the different 

TTDs, respectively. The range, quartiles, and median value of the RMSE of fits were 

similar for GM and also for WM signal fitting as shown in Figure 5.5(a) and 5.5(b), 

respectively. 
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(a)        (b) 
Figure 5.5: Boxplots of root-mean-square error (RMSE) values averaged over all samples and all 

subjects for (a) grey matter (GM) and (b) white matter (WM). The raw data are shown by black 

dots, median values by red lines, interquartile range by blue boxes, and upper and lower adjacent 

values by the black whiskers. No significant difference was obtained between RMSEs quantified 

from four TTDs for both GM and WM.  

 

 

5.5.3. Parameter Estimates  

 

Table 5.3 gives estimated mean values and SDs of CBF, MTT, and CBV with each TTD 

averaged over all subjects. The perfusion estimates obtained with all four TTDs are 

comparable with published literature values, as shown in Table 5.3. CBF values are in 

good agreement with the reported ranges for WM (20−40 ml/min/100g) and GM (60−80 

ml/min/100g) (Bjornerud and Emblem, 2010, Ostergaard et al., 1998, Larsson et al., 

2008). The MTT estimates are in line with the range suggested in a previous study 

(Ibaraki et al., 2007). The relevant range for CBV estimates was calculated by applying 

the central volume principle (i.e. CBV = CBF × MTT) to the published CBF and MTT 

values and was found to be concordant with CBVs obtained in published work (Sourbron 

et al., 2009, Rausch et al., 2000). 

The GM to WM ratios for CBF and MTT were in line with published values (Liberman 

et al. 2015,Ostergaard et al. 1998)(Bjornerud and Emblem, 2010, Larsson et al., 2008, 
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Hakyemez et al., 2005, Ibaraki et al., 2007, Zhu et al., 2005). For CBV, the GM to WM 

ratios were also in the range reported by several previously published studies (Patil et al., 

2013, Law et al., 2003, Zhu et al., 2005, Hakyemez et al., 2005). 

Table 5.3: Mean (SD) of parameter estimates obtained with each transit time distribution (TTD), 

h 

Function 
Skewed 

Gaussian 
Gamma 

Gamma-

variate 
Weibull 

Reported 

literature 

values 

CBF, 

ml/min/100g 

GM 
68.99 

(15.24) 

69.36 

(14.59) 

71.33 

(13.84) 

66.21 

(17.58) 
50–80a 

WM 26.51 (9.74) 
24.46 

(8.01) 

25.11 

(9.41) 

23.61 

(9.57) 
20–40a 

CBF ratio GM:WM  2.93 (1.06) 3.09 (1.00) 3.17 (1.17) 3.10 (1.08) 

1.83–2.72a 

0.82–3.42c 

2.9–3.5d 

2.38 (0.18)f 

CBV, 

ml/100g 

GM 2.07 (0.53) 2.06 (0.55) 2.08 (0.46) 2.07 (0.52) 1.1–4.4b,g 

WM 1.14 (0.30) 1.15 (0.30) 1.12 (0.30) 1.13 (0.28) 0.5–2.33b,g 

CBV ratio GM:WM 1.84 (0.31) 1.82 (0.29) 1.90 (0.46) 1.85 (0.30) 

0.72–2.01c 

0.91–3.05e 

2.04 (0.17)f 

 

MTT, s 

GM 1.93 (0.78) 1.91 (0.75) 1.92 (0.76) 2.10 (0.96) 1.2–3.3d,g 

WM 2.99 (1.12) 3.21 (1.15) 3.11 (1.16) 3.36 (1.18) 1.5–3.5d 

MTT ratio GM:WM 0.72 (0.31) 0.65 (0.22) 0.73 (0.51) 0.68 (0.28) 
0.71–0.90d 

0.88 (0.04)f 

Abbreviations: CBF, cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit 

time; GM, grey matter; WM, white matter; TTD, transit time distribution; SD, standard 

deviation. 
a(Bjornerud and Emblem, 2010, Larsson et al., 2008) (Ostergaard et al., 1998)  
b CBV range calculated from concordant CBF and MTT ranges from published literature with 

formula CBV = CBF×MTT and found consistent to (Sourbron et al., 2009, Rausch et al., 2000) 
c(Hakyemez et al., 2005) d(Ibaraki et al., 2007) e(Zhu et al., 2005) f(Chou et al., 2007)g(Helenius 

et al., 2003) 

 

5.5.3.1. CBF 
 

In GM estimates of CBF, Shapiro-Wilk test indicated normality (p = 0.674, 0.483, 0.631, 

0.713 for skewed-Gaussian, gamma, gamma-variate, and Weibull distributions, 

respectively; see Appendix 2: Table 1). Mauchly’s test indicated that the assumption of 
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sphericity was violated as p = 0.004, χ2(5) = 17.759 (See Appendix 2: Table 4a). After 

Greenhouse-Geisser correction, ANOVA revealed no significant differences in estimates 

using different TTDs on the CBF value in GM (F (1.314, 10.510) = 2.409; p = 0.147) 

(Appendix 2: Table 4b).  

In WM estimates of CBF, the Shapiro-Wilk test gave p-values of 0.300, 0.314, 0.078, 

0.046, for skewed-Gaussian, gamma, gamma-variate, and Weibull distributions, 

respectively (see Appendix 2: Table 1)—confirming the normality of the first three. The 

marginal deviation from normality for the CBFs of Weibull TTD was considered trivial 

after visually inspecting the CBF distribution and comparing it to those of other TTDs. 

Non-sphericity was confirmed by Mauchly’s test (p < 0.001, χ2(5) = 23.045, Appendix 2: 

Table 5a). ANOVA followed by Greenhouse-Geisser correction revealed no significant 

differences between estimates using different TTDs (F (1.196, 9.569) = 1.617; p = 0.239, 

Appendix 2: Table 5b).  

Figure 5.6(a) and 5.6(d) give boxplots of the CBF estimates for GM and WM obtained 

with the different TTDs, respectively.  

 

5.5.3.2. MTT 

 

In GM estimates of MTT, the Shapiro-Wilk test indicated normality (p = 0.374, 0.327, 

0.239, 0.429, for skewed-Gaussian, gamma, gamma-variate, and Weibull distributions, 

respectively; see Appendix 2: Table 1) and Mauchly’s test indicated non-sphericity (p = 

0.001, χ2(5) = 21.109, Appendix 2: Table 6a). After Greenhouse-Geisser correction of 

degrees of freedom, ANOVA revealed no significant differences between estimates using 

different TTDs (F (1.324, 10.595) = 1.601; p = 0.241, Appendix 2: Table 6b).  

In WM estimates of MTT, normality and non-sphericity were confirmed respectively by 

the Shapiro-Wilk test (p = 0.960, 0.957, 0.984, 0.687, for skewed-Gaussian, gamma, 

gamma-variate, and Weibull distributions, respectively; see Appendix 2: Table 1) and 

Mauchly’s test (p = 0.013, χ2(5) = 14.723, Appendix 2: Table 7a). ANOVA followed by 

Greenhouse-Geisser correction revealed no significant differences between estimates 

using different TTDs (F (1.714, 13.711) = 3.864; p = 0.052, Appendix 2: Table 7b). 
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Figure 5.6(b) and 5.6(e) give boxplots of the MTT estimates for GM and WM obtained 

with the different TTDs, respectively.  

 

 

5.5.3.3. CBV 
 

In estimates of GM CBV, the Shapiro-Wilk test indicated normality (p = 0.720, 0.747, 

0.161, 0.844, for skewed-Gaussian, gamma, gamma-variate, and Weibull distributions, 

respectively; see Appendix 2: Table 1) and Mauchly’s test indicated non-sphericity (p < 

0.001, χ2(5) = 37.724, Appendix 2: Table 8a). After Greenhouse-Geisser correction of 

degrees of freedom, ANOVA revealed no significant differences between estimates using 

different TTDs (F (1.135, 9.081) = 0.054; p = 0.851, Appendix 2: Table 8b). 

In WM estimates of CBV, normality and non-sphericity were verified respectively by the 

Shapiro-Wilk test (p = 0.358, 0.105, 0.321, 0.074, for skewed-gaussian, gamma, gamma-

variate, and Weibull distributions, respectively; see Appendix 2: Table 1) and Mauchly’s 

test (p = 0.002, χ2(5) = 19.181, Appendix 2: Table 9a). ANOVA followed by Greenhouse-

Geisser correction revealed no significant differences between estimates using different 

TTDs (F (1.292, 10.337) = 0.259; p = 0.681, Appendix 2: Table 9b).  

Figure 5.6(c) and 5.6(f) give boxplots of the CBV estimates for GM and WM obtained 

with the different TTDs, respectively.  
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Figure 5.6: Boxplot of CBF, MTT and CBV estimates for GM (a-c) and WM (d-f) for four models. 

The raw data are indicated by black dots, median values by red lines, interquartile range by blue 

boxes, and 99% confidence bounds by the black whiskers. No significant difference was obtained 

between the estimates quantified from four TTDs for both GM and WM. Abbreviations: CBF, 

cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit time.  

 

5.5.4. Success rate 

 

Table 5.4 presents the mean and SDs of the percentage success rate of fitting GM and 

WM signals with different TTDs. For GM signal fitting, the Shapiro-Wilk test indicated 

that the success rates significantly deviated from a normal distribution (p < 0.001; see 

Appendix 2: Table 1) and thus the non-parametric Friedman’s test was performed, which  

indicated that there were statistically-significant differences between the success rates 

obtained with different TTDs (p < 0.001, χ2(3) = 54.277, Appendix 2: Table 10a). The 

post-hoc tests with Bonferroni-corrected p-values revealed that fits with the skewed 

Gaussian and gamma TTDs had significantly higher success rates than those with the 

gamma-variate and Weibull distributions (p < 0.008, see Appendix 2: Table 10b).   

For WM signal fitting, the success rates were not normally distributed (p < 0.001; see 

Appendix 2: Table 1). Friedman’s test indicated significant differences between the 

success rates obtained with different TTDs (p < 0.001, χ2(3) = 34.919, Appendix 2: Table 

11a). The post-hoc tests using Bonferroni-correction revealed that fits with the gamma 
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distribution had a significantly higher success rate than all other distributions and the 

skewed-Gaussian TTD had significantly higher success rates than the Weibull 

distribution (p < 0.008, see Appendix 2: Table 11b).   

Table 5.4: Mean (SD) success rate (percentage of successful fits) obtained with each TTD.  

Function 
Skewed 

Gaussian 
Gamma 

Gamma-

variate 
Weibull 

Percentage 

Success 

GM 63.2 (16.0)3,4 64.3 (28.8)3,4 21.1 (33.0) 22.0 (16.5) 

WM 61.0 (14.0)4 74.4 (26.4)1,3,4 38.5 (36.3) 22.8 (13.5) 

Note: 1Statistically significant (p < 0.008) versus skewed Gaussian TTD; 2Statistically significant 

(p < 0.008) versus gamma TTD; 3Statistically significant  (p < 0.008) versus gamma-variate TTD; 
4Statistically significant  (p < 0.008) versus Weibull TTD. 

 

 

 

5.5.5. Computation Time  

 

Table 5.5 gives Tcomp’s for the four TTDs averaged over all subjects in both GM and WM. 

Fitting the GM signals took longer with a larger variation of Tcomp than that of WM.  

For GM signal fitting, the Shapiro-Wilk test indicated that the Tcomp’s significantly 

deviated from a normal distribution (p < 0.001, for all four TTDs; see Appendix 2: Table 

1). Friedman’s test indicated that there was a significant difference between the Tcomp’s 

for different TTDs (p < 0.001, χ2(3) = 39.300, Appendix 2: Table 12a). The post-hoc tests 

using Bonferroni correction revealed that fits were converging significantly faster for 

gamma TTDs than all other distributions (p < 0.008, see Appendix 2: Table 12b).  

For WM signal fitting, the Tcomp’s were not normally distributed (p < 0.001; see Appendix 

2: Table 1). Friedman’s non-parametric test indicated a significant difference between the 

Tcomp’s with different TTDs (p < 0.001, χ2(3) = 50.367, Appendix 2: Table 13a). The post-

hoc tests revealed that fits with the gamma and skewed Gaussian distributions took shorter 

time to converge than other distributions (p < 0.008, see Appendix: Table 13b).  
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Table 5.5: Mean (SD) of computation time (Tcomp) obtained with each TTD. 

Function Skewed Gaussian Gamma 
Gamma-

variate 
Weibull 

Tcomp, s 

GM 533.3 (956.3)2,3,4 433 (557.4)1,3,4 766.3 (917.7) 613.6 (942.9) 

WM 249.9 (190.1)3,4 278.1(356.6)3,4 674.4 (227.8) 386.8 (216.1)3 

Note: 1Statistically significant (p < 0.008) versus skewed Gaussian TTD; 2Statistically significant 

(p < 0.008) versus gamma TTD; 3Statistically significant  (p < 0.008) versus gamma-variate TTD; 
4Statistically significant  (p < 0.008) versus Weibull TTD.  

 

5.6. Discussion  
 

The primary aim of this study was to compare the computational utility of four different 

forms of TTD for model-dependent deconvolution. The models were compared in terms 

of their goodness and stability of fits, consistency of perfusion parameters, and 

computation times. The study demonstrated that all functions gave similar fits and 

perfusion estimates. However, out of them, the gamma distribution offers at least two 

computational benefits: high stability of fit and shorter computation time.  

 

5.6.1. Comparison between TTD models  

 

Curve fits—with all functions—were excellent, with low RMSEs. All perfusion estimates 

from the four TTDs are congruent with previously reported values. Since all functions 

gave similar RMSEs and perfusion estimates, the most suitable TTD would be the one 

that provides at least one computational benefit, such as, shorter computation time or 

higher fit stability (Sourbron and Buckley, 2012).  

It should be noted that while evaluating the suitability of models, both the goodness of fit 

and the model complexity should be considered. Models with a higher number of free 

parameters may give better goodness of fit, but they increase the computational 

complexity and can ultimately overfit the signals. The present study does not consider 

model complexity as there is implicit control for the number of degrees of freedom—each 

parametric signal model has three free parameters: CBF and two TTD parameters. 

Therefore, goodness of fit (measured by RMSE) alone was deemed sufficient to 
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determine which model was most suitable. When comparing models with different 

degrees of freedom, the Akaike information criterion (AIC) (Akaike, 1974) or Bayesian 

information criterion (BIC) (Schwarz, 1978) can be used. AIC considers the sum of 

squared errors with the number of free parameters in the models. Similar to the AIC, the 

BIC provides a trade-off between goodness of fit and model complexity. 

 

Empirically, while BIC is biased towards simple models, AIC tends to be biased towards 

more complex ones (Penny et al., 2004). It is therefore often considered sensible to 

perform both BIC and AIC; if BIC indicates a three-parameter model as suitable while 

AIC chooses a five-parameter model, suitability of the models with three, four, and five 

parameters should be further examined for the application in hand. In future studies, a 

Bayesian framework—a more flexible model building approach (Mouridsen et al., 

2006b)—can be used to model the DSC-MRI signals, as it facilitates the quantification 

of BIC using model evidence.  

 

The present research indicates that the gamma TTD produces more stable fits; that is, a 

higher percentage of fits converged to the global minimum. This is likely because the 

gamma function results in a smoother (i.e. ‘less bumpy’) error surface with fewer local 

minima than other TTDs. Another reason could be the ability of the gamma TTD to 

adapt—by changing its α-1—to other models of tissue microvasculature, such as Tofts-

Kety (Tofts et al., 1999), extended Tofts-Kety (Buckley, 2002, Tofts, 1997), two 

compartment exchange (Hoffmann et al., 1995), and adiabatic tissue homogeneity models 

(St Lawrence and Lee, 1998, Schabel, 2012). Hence, it can effectively model a range of 

microvasculature that would have otherwise required multiple unique TTDs. 

Additionally, the use of a gamma TTD accelerates curve-fitting, as there is a higher 

chance of convergence irrespective of the initial guesses. So, compared to other TTDs, 

for a gamma TTD, the curve fitting step needs to be iterated fewer times with different 

initial guesses. Due to these computational benefits, the present research concludes 

gamma TTD model as more suitable for any perfusion quantification applications; 

specifically, it can be useful in clinical cases that require rapid analysis and decision-

making, such as acute stroke.  
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5.6.2. Clinical applications 

 

In addition to the usual perfusion parameters, the model-based approach taken in this 

work lends itself to the calculation of parameters related to the width and shape of the 

TTDs. Vessels created by tumour angiogenesis are chaotically structured, dilated, and 

irregularly shaped, so the GBCA particles require a wide range of transit times to traverse 

them. Consequently, the TTDs for the tumour regions will be wider than those of normal 

regions. The width and shape of TTD can be used to distinguish between normal and 

tumour vessels, as well as to grade the tumours.  

The model-dependent deconvolution used in the present work can characterise the residue 

function using only two free parameters, without estimating it at every time point. 

Consequently, the present analysis is more robust against experimental noise than the 

voxel-by-voxel model-independent deconvolution (Ostergaard et al., 1999), and offers an 

improved approach for perfusion quantification at high spatial resolution. The presented 

ROI-based perfusion measurement can be extended to estimate pixel-wise perfusion 

parameters and create brain maps of CBF, CBV, and MTT in clinical settings. All four 

models can be used for this purpose; however, for rapid measurement, gamma TTD will 

be more suitable than the others.  

Brain maps created with the TTD parameters can inform clinicians about the capillary 

flow profiles and allow them to characterise tissue viability in ischaemia (Mouridsen et 

al., 2006b). Flow heterogeneity and oxygen extraction fraction can be determined using 

MTT and capillary transit time heterogeneity, the SD of the TTD (Ostergaard et al., 1999, 

Mouridsen et al., 2014). Due to its high fit-stability and low time-complexity, the gamma 

TTD can offer a fast and effective method for quantifying these parameters. Changes in 

flow heterogeneity can identify the effect of different pathologies on the delivery of 

nutrients and oxygen through the capillary. For example, elevated capillary transit time 

heterogeneity reduces tissue oxygen availability in acute ischaemic stroke, tumours and 

Alzheimer’s disease (Mouridsen et al., 2014).  
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5.6.3. Limitations  

 

The major limitation of this study is that perfusion estimates were not compared directly 

with estimates obtained by the reference-standard of positron emission tomography (PET) 

perfusion imaging. However, the primary purpose of the study was to compare different 

forms of h, rather than assessing the absolute accuracy of the approach. Nonetheless it is 

highly probable that some of the variation seen in estimates is due to natural variation 

between subjects and this might mask systematic differences in results obtained with 

different forms of h. A larger sample size can better capture the physiological variation 

and further validate the inferences made.  

 

A second limitation is that the AIF detection stage used k-means clustering, mainly for 

simplicity. As discussed in Chapter 3 (Section 3.6.5), k-means clustering has several 

limitations, such as high sensitivity to outliers, limited adaptability to data that need 

clusters of different density, and low accuracy when non-spherical (e.g. elliptical) clusters 

are needed (Raykov et al., 2016). As noise filtering and thresholding were already 

performed prior to this stage, clustering only simplifies and refines the otherwise-

intensive manual AIF search. Nevertheless, future works can explore different clustering 

methods to investigate whether any better AIFs can be obtained.   

 

The present study searched for a ‘global AIF’ under the premise that it gives a reasonable 

representation of the arterial input to every ROI. Global AIFs can get delayed in reaching 

the ROI when they are spatially distant from the selected arterial voxel site. Additionally, 

there can be a significant effect of dispersion for the feeding vessel, which spreads the 

arterial input bolus. This dispersion effect is more pronounced when blood needs to pass 

through stenoses with marked turbulence or irregular collateral paths located upstream of 

the global AIF site (Ostergaard et al., 1999). However, the present patient cohort had no 

reported vessel disease, so the effect of dispersion can be regarded as trivial. Additionally, 

it is shown that the flow estimates are independent of vascular delay for model-dependent 

approaches (Ostergaard et al., 1999). Therefore, the present work avoided including delay 

and dispersion in the AIF. Saying that, future extensions of this work can look into finding 

local AIF in the tissue neighbourhood or including a function that considers the effect of 

delay and dispersion of AIF during its passage from arterial site to the tissue of interest. 
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The implications of global AIFs and some potential improvements in their detection 

technique are discussed in Chapter 6. 

The present study quantified perfusion parameters in selected GM or WM ROIs only. 

When applied on real subjects to create brain perfusion maps, several thousands of voxels 

need to be analysed. Curve-fitting for all these signals will ultimately increase the 

computation time. Different configuration choices, such as initial guesses, constraints 

imposed on the free parameters, cost functions, algorithms, and tolerances, may 

negatively affect the reproducibility of parameters across centres. One way to overcome 

this drawback is to use an alternative dictionary-matching approach proposed in a recent 

DCE-MRI study (Ghodasara et al., 2020), which decreased the computation time by 140-

fold, while keeping the perfusion estimates similar. Rapid generation of brain maps are 

further discussed in Chapter 6.  

 

Lastly, the study did not consider pathological tissues. For normal GM and WM signals, 

all TTDs are expected to give similar estimates. Only when signals from pathological 

tissues are considered, would the TTDs be more likely to deviate significantly and thereby 

produce statistically-different perfusion estimates. However, the aim of the present study 

was not to estimate perfusion in pathology, but rather to investigate the relative utility of 

TTDs for automatic analysis. Moreover, the small sample size of this study may have led 

to it being underpowered. The fact that no statistically-significant differences were 

observed does not necessarily mean that no differences exist between the perfusion 

estimates. A much larger sample may have revealed statistical differences. Therefore, the 

conclusions of this exploratory study regarding perfusion estimates should be generalised 

cautiously. In future extensions of this study, more subjects will be included in the 

analysis and pathological signals will be fitted to address these limitations. 

 

5.6.4. Future scopes  

 

As mentioned above, one of the possible sources of error in the perfusion measurement 

arises from the application of a global AIF, which does not consider the effects of delay 

and dispersion. Future extensions of this research can convolve the detected AIF with a 

function that includes two additional free parameters to represent the delay (i.e. shift) and 

dispersion (i.e. broadening) of the global AIF (Sourbron and Buckley, 2013). This would 
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establish a five-parameter model-dependent deconvolution approach, which could be 

used as a general framework for the perfusion analysis of ischemic stroke patients 

(Ostergaard et al., 1999) (further discussed in Chapter 6).   

The effect of noise on perfusion parameters can be investigated for each TTD. Using 

Monte-Carlo simulations, noise can be added to raw GM and WM data to produce signals 

with a range of SNRs. The perfusion estimates from the raw GM and WM signals (true 

parameter value) and those from the simulated noisy signals can be calculated with the 

process described in Section 5.4.1. The difference between the true parameter value and 

the estimated parameter value averaged across different noise realisations will give a 

measure of accuracy (i.e. bias); whereas the standard deviation of the estimates will 

indicate the precision (i.e. dispersion) of the perfusion parameters (Cameron et al., 2017).  

When modelling the TTDs, the leakage of GBCA was not considered. This study can be 

extended to assess and monitor perfusion or permeability in subjects with mild ischaemic 

stroke (Heye et al., 2016), multiple sclerosis, optic neuritis (Larsson et al., 2017), or early 

signs of Alzheimer’s disease (Wardlaw et al., 2017, Haar et al., 2016), where subtle 

leakage from BBB is present. If a small fraction of GBCA is bound irreversibly in the 

tissue (Larsson et al., 2017), i.e. there is no back diffusion from tissue to blood, the area 

under the TTD can be normalised to 1−E, instead of unity; where E is the extraction 

fraction. However, this process is valid only when the leakage is small. In case of high 

permeability, this procedure will be inadequate (Larsson et al., 2017) and the volume of 

extravascular extra-cellular space should be added as another free parameter in the least-

squares algorithm (Schabel, 2012).  

 

5.7. Conclusion  
 

This study concludes that the gamma distribution is superior to other plausible TTD 

functions, including the proposed Weibull distribution. Although all four functions gave 

perfusion estimates similar to published studies, the gamma TTD offers significantly 

faster convergence with higher stability of fit than other TTDs. Therefore, it can 

significantly decrease the computation time as a lower number of initial guesses would 

need to be explored to find the best fit. All the models can be applied in future research 

including, but not limited to, identification of tumour grade, assessment of tissue viability 
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in ischaemia, and estimation of flow heterogeneity and oxygen extraction capacity. 

Saying that, the gamma distribution can specifically facilitate rapid measurement, which 

can be useful for perfusion analysis of acute stoke patient.
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Chapter 6: Conclusions and Future Directions 

 

The investigations presented in this thesis assist three important intermediate steps of the 

dynamic susceptibility-contrast magnetic resonance imaging (DSC-MRI) analysis: 

arterial input function (AIF) detection, tissue segmentation, and model-dependent 

deconvolution. With specific emphasis on automation and data-mining, methods are 

proposed to avoid intensive manual labour and establish a simplified and accelerated 

perfusion analysis platform. A more-systematic approach towards tissue-voxel-

elimination and subsequent AIF detection is now possible with the application of criteria 

thresholds (Chapter 3); other sites can use this approach as a general framework to set 

their own data-specific thresholds. With the knowledge of the individual arterial voxel 

(AV)- and tissue voxel-discriminatory powers of different features (Chapters 3 and 4, 

respectively), Radiologists or automatic algorithms can efficiently examine the arterial 

candidacy or tissue class of a voxel. The application of these features in the proposed 

feature-based segmentation (Chapter 4) can facilitate rapid, but effective, region 

discrimination and lesion identification. Once the tissue class for a voxel is identified and 

the arterial input to it is determined, its dynamic signal is analysed to estimate perfusion 

parameters. The identified computational benefits of the gamma function (Chapter 5) as 

transit time distribution (TTD) model will promote its use in clinical perfusion 

measurements, especially for pathologies requiring rapid processing and decision-making 

(e.g., acute stroke). More detailed discussion of these outcomes, as well as the limitations 

and future directions of this work are presented in the following sections.  

 

6.1. Research outcomes 

 

In Chapters 3 and 4, several semi-quantitative parameters were extracted from the DSC-

MRI data and their effectiveness in discriminating arterial and tissue voxels was 

evaluated. The studies demonstrated that some of these semi-quantitative parameters can 

effectively classify the voxels into artery, grey matter (GM), white matter (WM), and 

lesion, without transferring the data to a separate segmentation platform. It has also been 
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shown that with an optimal threshold unique to each effective criterion, tissue voxels can 

be discarded with high sensitivity and specificity. Although these thresholds were not 

generic for all datasets and imaging protocols, the approach can serve as a general 

framework for the determination of tissue-elimination threshold for other sites.  Further, 

using the relative criteria-effectiveness knowledge, future studies can make more 

informed choices about which features to prioritise while searching global and local AIF, 

or distinguishing specific tissue regions. 

Data-mining has been implemented here to accelerate the automatic AIF detection and 

segmentation. Clustering reduced the manual labour otherwise necessary for labelling 

voxels as arterial or of a specific tissue class. It was demonstrated (in Chapter 4) that 

conventional raw-data-based clustering can be outperformed by the proposed feature-

based approaches that cluster a dimensionality-reduced data space. Although for some 

regions its performance was similar to other approaches, the feature-based segmentation 

should be implemented for future perfusion analysis due to its lower computation time.  

Besides increasing the automation and decreasing the computation time, the present study 

proposes a simplified analysis pipeline. Here, segmentation was performed  using the raw 

DSC-MRI data or its dimensionality-reduced version. No prior knowledge of feature 

distributions was required and the dynamics were not transferred to other processing 

platforms, for example, Statistical Parametric Mapping (SPM) (Ashburner and Friston, 

2000), Functional Magnetic Resonance Imaging of the Brain (FMRIB) software library 

(FSL) (Jenkinson et al., 2012), or some semi-automated integration of these, like the 

Diffusion/Perfusion Project (DPP) Suite (Revenaz et al., 2016). Additionally, for AV 

detection, no Radiologists were required to delineate any ‘preferred’ region-of-interest 

manually, rather the algorithm searched for AVs from all brain voxels of all slices. 

Consequently, the proposed approaches comprise a simple, objective, rapid, and effective 

perfusion quantification platform that can be used in the clinical setting to mitigate the 

time-delay during data processing and treatment planning. 

Despite their reported high AV- and tissue voxel-discriminatory power, physiological 

interpretation using the semi-quantitative parameters is complex. These parameters have 

a convoluted relationship to perfusion parameters and are sensitive to non-tissue-related 

characteristics, such as injection rate, cardiac output, vascular structure, and arterial input 

to the tissue (Calamante, 2013, Perthen et al., 2002, Calamante, 2012). So, perfusion 

estimates were made using quantitative model-dependent deconvolution approaches. 
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Model-independent approaches were avoided as they are not only unable to ensure the 

monotonicity and non-negativity constraints imposed on the residue functions, but they 

are also sensitive to the delay and dispersion of the bolus.  

For perfusion quantification, in Chapter 5, different models of transit time distribution 

(TTD) were compared. All models gave estimates congruent with those reported in 

published studies (Bjornerud and Emblem, 2010, Larsson et al., 2008, Hakyemez et al., 

2005, Larsson et al., 2017, Ibaraki et al., 2007, Ostergaard et al., 1998). However, the 

gamma distribution was found to be the most suitable TTD for perfusion estimation, as 

using it provides at least two additional computational benefits over the other TTD 

models: lower computation time and higher stability of fit.  

Throughout the thesis, simplicity, objectivity, and rapidity of the analysis is prioritised 

over absolute accuracy and computational intricacy. For example, k-means and k-medoids 

clustering were used instead of more complex and time-consuming unsupervised or 

supervised algorithms, such as hierarchical clustering, support vector machines, 

expectation-maximisation, or self-organising maps. This trade-off between accuracy and 

complexity permits rapid lesion-diagnosis, decision-making, and progression-assessment 

for future perfusion analyses. The methods can specifically assist in ‘time is brain’ 

situations, such as acute stroke where rapid diagnosis and decision-making is of crucial 

importance.   

 

6.2. Limitations 

 

The methods chapters of this thesis (Chapters 3, 4, and 5) contain their specific 

limitations. In this section, some general limitations of the overall work will be discussed.  

 

6.2.1. Global AIF  

 

The present study used an idealised arterial input (typically referred to as ‘global’ AIF) 

for all tissue voxels. This global AIF can be delayed (i.e., shifted) and dispersed (i.e., 

broadened) as it reaches the voxel of interest; thus, it may not accurately represent the 
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arterial input to a given voxel.  Consequently, using this idealised AIF may have 

introduced systematic error to the perfusion estimation study. Bolus delay can cause both 

over-estimation and under-estimation of cerebral blood flow (Wu et al., 2003a). This can 

negatively affect the detection of lesions and even misinform about their actual 

hemispheric location (Calamante, 2013). Additionally, if the ‘actual’ arterial supply 

reaching the tissue is broader than the global AIF (due to dispersion), the perfusion 

analysis wrongly interprets this dispersion as occurring in the tissue and overestimates 

the contribution of the tissue towards the bolus spread. Consequently, the mean transit 

time is over-estimated, underestimating the cerebral blood flow.   

In this work, the effects of bolus delay and dispersion are minimal, if not trivial, for the 

reasons given as follows. First, a model-dependent deconvolution approach is used here, 

which gives flow estimates that are vascular-delay independent (Ostergaard et al., 1999). 

Moreover, dispersion is minimal as the patient cohort did not have any reported arterial 

stenosis. Due to unavailability of local AIF detection tools on scanner workstations, the 

vast majority of DSC-MRI analysis tools rely on the global AIF, as in this work 

(Calamante, 2012, Calamante, 2013, Bjornerud and Emblem, 2010, Mouridsen et al., 

2006a). Therefore, with a controlled global AIF, the overall inferences drawn from the 

comparison of TTDs are still valid.  

Saying that, there is scope for establishing a rigorous global AIF detection method by 

including more systematic quality control. For example, multiple Radiologists could be 

asked to verify the suitability of the finally-selected AVs by assessing their spatial 

locations. The difference between manually- and automatically-obtained AIFs can be 

evaluated via root-mean-square error (Yin et al., 2015, Yin et al., 2014), and their 

agreement can be evaluated by Bland-Altman analysis (Wong et al., 1998). Additionally, 

the relative agreement can be evaluated using a non-metric version of multidimensional 

scaling: as discussed by Mouridsen et al. (2006) and Yin et al. (2014).    

 

6.2.2. Partial volume effect  

 

The arterial signal can be distorted due to the partial volume effect (PVE). This arises due 

to the lower spatial resolution of DSC-MRI, which can lead to voxels containing both 

artery and tissues. Their complex DSC-MRI signals are superimposed, which leads to 
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distortion or shape-errors in the AIF. This PVE can create narrow and sharp concentration 

time curves (CTCs) that survive the thresholding stage and are erroneously considered 

‘correct’ AIFs. The AIF-detection algorithm here did not explicitly consider PVE. Hence, 

there exists a good chance that many peak-shaped CTCs passed through the thresholding 

stage.  

Many published studies removed PV-affected CTCs by using a venous-outflow function 

(Bjornerud and Emblem, 2010, Larsson et al., 2017) or by fitting gamma-variate to the 

CTC first pass (Bleeker et al., 2011, Yin et al., 2014, Yin et al., 2015). However, these 

methods require further manual involvement and add more complexity, while reducing 

objectivity and reproducibility. The present work circumvented these issues by using 

clustering, which grouped CTCs with similar set of features. The PV-affected CTCs with 

no first-passage peaks and those with two first-passage peaks in close succession were 

never selected, as the features extracted from them were completely different to those of 

candidate AIFs. The remaining peak-shaped PV-affected CTCs were discarded by visual 

inspection of a relatively small number of arterial candidates. Although this process is 

somewhat subjective, it is no more so than the available PV-correction approaches 

mentioned above. Moreover, the present process is independent of ‘T1-shine-through’ and 

does not require measurement of the venous output function, the steady state of the CTC, 

or the complex gamma-variate fitting to obtain the area under the CTC first pass. Yet, 

future studies could assist PV-correction by finding novel, composite parameters that 

have high PV-discriminatory power, as discussed in Section 3.6.6.  

 

6.2.3. Size of Patient Cohort  

 

The small patient cohort may affect the statistical power of the analysis. However, for an 

exploratory study like the present work, this does not undermine the inferences made 

from the comparative analyses here. Furthermore, several findings of this work are 

already congruent with published studies, such as: the optimal threshold of the area under 

the curve for tissue-voxel elimination (Mouridsen et al., 2006a); the suitability of area 

under the curve and peak concentration as AV-detection criteria (Yin et al., 2014, Peruzzo 

et al., 2011, Bjornerud and Emblem, 2010); the spatial locations of the finally identified 

AVs (Zaro-Weber et al., 2012, Wismuller et al., 2006); the lower time-complexity of the 
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proposed feature-based clustering (Wang et al., 2006b); the suitability of the gamma 

distribution (Schabel, 2012); and the resultant perfusion parameters (see Table 5.3). 

Nevertheless, in future studies, a larger, more diverse patient cohort should be used to 

validate the conclusions of this study.  

The comparative analysis of this study should be applied to different pathologies, to 

investigate whether models of TTD need to be varied with pathology. For example, for 

subjects with arterial abnormalities, inclusion of delay and dispersion is necessary; a brain 

map of delay and dispersion can supplement the perfusion information. The perfusion 

estimates for different healthy age-groups, races, or genders can be recorded to better 

identify the abnormalities observed in the patients. For example, perfusion in age-or 

gender-, if possible, race-, or activity-matched healthy subjects can be analysed to isolate 

the effect of pathology from those of age, gender, race, or physical activity.   

 

6.3. Future directions 

 

The work succeeded at simplifying and accelerating the perfusion analysis and making it 

more automatic and objective. Future extensions of this work can aim at establishing an 

end-to-end automatic perfusion platform, investigating the diagnostic utility of the 

extracted semi-quantitative parameters, validating the inferences using available in silico 

datasets, and assisting the local AIF detection. These opportunities are discussed in the 

following sections.  

 

6.3.1. Relating semi-quantitative parameters to perfusion estimates 

 

As mentioned before, the diagnostic utility of semi-quantitative parameters is not clear 

due to their complex relationship with perfusion estimates. The present study can be 

extended to address this knowledge gap by investigating the relationship between the 

extracted semi-quantitative parameters and the quantified perfusion or TTD parameters. 

This can indicate the utility of semi-quantitative parameters as biomarkers of different 

pathologies. Additionally, investigations can ascertain the clinical utility of TTD 
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parameters in distinguishing normal and tumour vessels, informing the tumour grades, 

assessing tissue viability in ischaemia, and estimating flow heterogeneity.  

 

 

6.3.2. Developing composite parameters  

 

Multiple semi-quantitative parameters can be combined using different parametric forms 

to develop novel, composite parameters. With the help of receiver operating characteristic 

curves, experiments can find the most suitable parametric form for efficient identification 

of tissue, arteries, lesions, and PV- or noise-affected voxels. The association between 

these computationally-simple parameters and perfusion estimates of a voxel may provide 

supplementary information about its oxygen extraction fraction, capillary tissue 

inhomogeneity, or tumour grade (Mouridsen et al., 2006a, Mouridsen et al., 2014) 

Composite feature spaces or parameters can also be created by combining features 

extracted from different registered perfusion MRI modalities into a single platform. 

Instead of dynamic intensity values, a voxel can be characterised by a feature vector 

containing these cross-modality features; thus, more information can be gathered into a 

dimensionality-reduced, composite feature space. This will increase the orthogonality 

between the voxels, allowing the clustering algorithm to better discriminate the regions 

into different types of lesions (i.e., penumbra, infarct, haemorrhage, tumour), normal-

appearing GM and WM, arteries, veins, ventricles etc. Clinicians can simultaneously 

analyse different signal attributes for a voxel of interest to obtain better insights about its 

pathological status; researchers can investigate the utility of these composite parameters 

in initial diagnosis, characterisation, and treatment monitoring.  

 

6.3.3. Local AIF detection  

 

As discussed in Section 6.2.2 and also in Chapter 5, the present work does not consider 

the effects of delay and dispersion on AIF. Future studies can consider this by convolving 

AIF with a function that describes the transport of contrast agent from any global AV site 

to the voxel of interest (Sourbron and Buckley, 2013). However, this requires knowledge 
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of the vascular architecture and can often be impossible to predict for a pathological 

region (Calamante, 2013). Instead, detection of local AIF (a unique arterial input for each 

voxel or its neighbourhood) may improve the analysis.  

In many published local AIF detection works, certain criteria, such as effective bolus 

arrival time, identify the tissue neighbourhoods that are supplied by the same arterial 

input; within this small neighbourhood, an established global AIF detection methodology 

(like the work of Mouridsen et al. (2006), discussed in 3.2.1) is applied (Tabbara et al., 

2020, Willats et al., 2011). Many aspects of the present work can assist these local AIF 

detection studies. For example, the individual criteria-effectiveness knowledge would 

inform which criteria to prioritise while generating a tissue neighbourhood; the proposed 

feature-based clustering would accelerate grouping similar CTCs; data-specific optimal 

thresholds would discard tissue voxels with high sensitivity and specificity. Additionally, 

AVs and different tissue regions in the neighbourhoods—of sizes similar to the 16 × 16-

dimensional digital brain phantom (Section 4.4.2)—can be classified rapidly by applying 

the kmed-feature approach (Section 4.4.7.1).  

 

6.3.4. Validation using digital reference object  

 

In this thesis, real-subject DSC-MRI data were analysed to create a ground truth for both 

AIF detection and the segmentation work. Application of simulated dataset could have 

been used to validate the workflow. Many published studies have simulated DSC-MRI 

data (Mouridsen et al., 2006a, Yin et al., 2014, Yin et al., 2015); however, their choice of 

exponential residue functions violates one of the basic tenets of DSC-MRI: the intactness 

of the blood-brain barrier. Moreover, they only modelled the CTC first pass, neglecting 

any recirculation. By using real-subject data, this work overcome these limitations and 

gave an indication of the applicability of the assistive approaches in the clinical setting, 

on noisy data. Although this work decreases the human component in the analysis, it still 

depends on manual interventions, especially for these ground truth generation stages 

(Sections 3.4.4.5, 4.4.1, and 4.4.2).  

In future extensions of this work, the total workflow (i.e., AIF identification, brain 

segmentation, and perfusion quantification) could be validated using population-based 

DSC-MRI digital reference objects (DROs) that can capture the heterogenous signal 
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characteristics found in in vivo glioblastoma datasets (Semmineh et al., 2017, Semmineh 

et al., 2014). There are collection of DROs available for download from The Cancer 

Imaging Archive (www.cancerimagingarchive.net) under the collection name “Borrow-

DRO”. These DROs contain cohorts of virtual patients with AIFs, normal tissue and 

tumour voxels similar to clinical DSC-MRI datasets; however, they differ in pulse 

sequence parameters and preload dosing schemes. Using these diverse DROs, the tissue-

voxel-elimination thresholds can be optimised; the feature-based segmentation 

approaches can be validated; and the most effective TTD across different imaging 

protocols and concentration dosages can be ascertained. Once validated across diverse 

DROs, the optimised workflow can then be applied to clinical glioblastoma patients.  

 

6.3.5. Brain map creation  

 

The present work of ROI-based perfusion estimation (Chapter 5) can be extended to 

obtain pixel-wise perfusion estimates by analysing all brain signals. Then, brain maps of 

relevant perfusion parameters can be created. Although curve-fitting converges within the 

order of several minutes for ROI-based estimation, when applied pixel-by-pixel, time-

complexity will evidently increase. Application of the proposed feature-based 

segmentation and gamma TTD will accelerate pixel-by-pixel perfusion estimation. 

Further acceleration can be achieved through parallelisation of the analysis over multiple 

professional workstations. As an alternative to time-consuming curve-fitting approaches, 

future investigations could also explore dictionary-matching (Ghodasara et al., 2020), 

where trial CTCs are produced using a subject-specific dictionary that consists of 

permutations of perfusion parameters. Trial CTCs are then matched with the measured 

data to obtain the best perfusion estimate.  

This dictionary-matching process may significantly accelerate the production of brain 

maps, as demonstrated in a recent dynamic contrast-enhanced MRI study that 

characterised uterine fibroid (Ghodasara et al., 2020). Once generated, these brain 

perfusion maps can be examined by Radiologists and clinicians to identify and 

characterise the lesion region, decide an appropriate treatment plan, or assess the response 

to an antiangiogenic drug.  

 

http://www.cancerimagingarchive.net/
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6.3.6. End-to-end automated approach 

 

As mentioned before, the present work has significantly decreased the human 

involvement in the DSC-MRI analysis. However, there is further scope for decreasing the 

manual involvements in the steps like: nominal AIF listing (Chapter 3), digital brain 

phantom generation, and the classification of cluster centroid (Chapter 4), as well as 

region of interest selection (Chapter 5). End-to-end automation is an important future 

target.  

The end-to-end automated perfusion analysis platform can use the proposed criteria 

thresholds to discard the tissue voxels. AV detection can be accelerated by clustering a 

dimensionality-reduced feature space that contains only the effective criteria (i.e. AUC, 

PeakConc, Mpeak, and MWO). Then, the proposed kmed-feature segmentation approach 

could automatically segment the GM, WM, and lesion regions, for which perfusion 

parameters can be quantified afterwards using the gamma TTD. The only manual 

component left in this pipeline would be the listing of nominal AIF (Section 3.4.4.5); 

future investigations should target its automation first. However, this development can 

only be materialised once the presented methods have gone through rigorous quality 

control, and satisfactory agreement between manual and automatic methods has been 

ensured, both in DROs and patients.   

 

In conclusion, this work promotes more automation of DSC-MRI analysis steps, giving 

priority to simple and rapid approaches. The application of the assistive techniques 

presented here is not limited to glioblastoma patients only; with minor modifications, 

diverse patient cohorts can be analysed. Some additional steps such as motion- and PV-

correction, and local AIF detection can potentially increase the sophistication and 

accuracy. Saying that, the presented workflow can be applied readily to any comparative 

analysis on clinical datasets, with several computational benefits over current methods, 

such as simpler but more systematically-optimised automation approaches, lower 

operator bias, faster perfusion quantification, and a shorter delay in diagnosis. Future 

extensions of this exploratory work can materialise a fully-automated perfusion analysis 

for clinics; where rapid, accurate, and efficient analysis will permit clinicians to initiate 
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treatment earlier—and rapidly monitor it thereafter—with minimal delay in processing, 

diagnosis, and treatment planning.
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Appendices 

Appendix 1 

 

Table 1: p-value for pairwise comparison between criteria. Note: statistical significance 

(p < 0.001) is highlighted in bold. 

Pairwise compared criteria  p value 

AUC FWHM 1.269e-07 

AUC PeakConc 0.99 

AUC FM 1.269e-07 

AUC TTP 1.269e-07 

AUC BAT 1.269e-07 

AUC MTD 1.269e-07 

AUC MWI 0.002 

AUC Mpeak 0.999 

AUC MWO 0.999 

FWHM PeakConc 1.269e-07 

FWHM FM 0.999 

FWHM TTP 0.999 

FWHM BAT 0.933 

FWHM MTD 0.660 

FWHM MWI 1.269e-07 

FWHM Mpeak 1.269e-07 

FWHM MWO 1.269e-07 

PeakConc FM 1.269e-07 

PeakConc TTP 1.269e-07 

PeakConc BAT 1.269e-07 

PeakConc MTD 1.269e-07 

PeakConc MWI 0.001 

PeakConc Mpeak 1.000 

PeakConc MWO 0.999 

FM TTP 0.999 

FM BAT 0.867 

FM MTD 0.773 

FM MWI 1.269e-07 

FM Mpeak 1.269e-07 

FM MWO 1.269e-07 

TTP BAT 0.982 

TTP MTD 0.487 

TTP MWI 1.269e-07 

TTP Mpeak 1.269e-07 

TTP MWO 1.269e-07 

BAT MTD 0.053 

BAT MWI 1.269e-07 
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BAT Mpeak 1.269e-07 

BAT MWO 1.269e-07 

MTD MWI 1.269e-07 

MTD Mpeak 1.269e-07 

MTD MWO 1.269e-07 

MWI Mpeak 0.001 

MWI MWO 0.002 

Mpeak MWO 0.999 

Abbreviations: AUC, area under the curve; FWHM, full width at half maximum; 

PeakConc, peak concentration; FM, first moment; TTP, time to peak; BAT, bolus arrival 

time; MTD, mean time duration; MWI, average wash-in rate; Mpeak, a combination of 

multiple criteria (equation 3.8), MWO, average wash-out rate. 

 

Appendix 2 

 

Table 1: Tests of Normality for each Perfusion Parameter, Success Rate, Computation 

time and root-mean-square error (RMSE).  
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Abbreviations: CBF_GM_sg, CBF value for GM with skewed-Gaussian TTD; 

CBF_GM_gamma, CBF value for GM with gamma TTD; CBF_GM_Weibull, CBF value for GM 

with Weibull TTD; CBF_GM_GV,CBF value for GM with gamma-variate TTD; MTT_GM_sg, 

MTT value for GM with skewed-Gaussian TTD; MTT_GM_gamma, MTT value for GM with 

gamma TTD; MTT_GM_Weibull, MTT value for GM with Weibull TTD; MTT_GM_GV, MTT 

value for GM with gamma-variate TTD; CBV_GM_sg, CBV value for GM with skewed-

Gaussian TTD; CBV_GM_gamma, CBV value for GM with gamma TTD; CBV_GM_Weibull, 

CBV value for GM with Weibull TTD; CBV_GM_GV, CBV value for GM with gamma-variate 

TTD; GM_SG_SUC, Success rate for GM fitting with skewed-Gaussian TTD; 

GM_GAMMA_SUC, Success rate for GM fitting with gamma TTD; GM_WEIBULL_SUC, 

Success rate for GM fitting with Weibull TTD; GM_GV_SUC, Success rate for GM fitting with 

gamma-variate TTD; GM_SG_TIME, Computation time for GM fitting with skewed Gaussian 

TTD; GM_GAMMA_TIME, Computation time for GM fitting with gamma TTD; 

GM_WEIBULL_TIME, Computation time for GM fitting with Weibull TTD; GM_GV_TIME, 

Computation time for GM fitting with gamma-variate TTD; RMSE_GM_SG, RMSE for GM 

fitting with skewed Gaussian TTD; RMSE_GM_GAMMA, RMSE for GM fitting with gamma 

TTD; RMSE_GM_WEIBULL, RMSE for GM fitting with Weibull TTD; RMSE_GM_GV, 

RMSE for GM fitting with gamma-variate TTD.  

Note: Corresponding parameters for white matter (WM) are expressed using ‘WM’ instead of 

‘GM’.  
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Table 2a: Mauchly's test of Sphericity for root-mean-square error (RMSE) of grey matter 

(GM) fitting  

 

 

Table 2b: Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on the root-mean-square error (RMSE) of grey matter (GM) signal 

fitting  

 

 

Table 3a: Non-parametric Friedman’s test to assess significant effect of any transit time 

distribution (TTD) on the root-mean-square error (RMSE) of white matter (WM) signal 

fitting  
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Table 4a: Mauchly's test of Sphericity for grey matter (GM) cerebral blood flow (CBF) 

 

Table 4b: Tests of Within-Subjects effects to assess significant effect of any distribution 

on grey matter (GM) cerebral blood flow (CBF) value  

 

 

 

 

Table 5a: Mauchly's test of Sphericity for white matter (WM) cerebral blood flow (CBF) 
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Table 5b: Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on white matter (WM) cerebral blood flow (CBF) value  

 

Table 6a: Mauchly's test of Sphericity for grey matter (GM) mean transit time (MTT) 

 

 

Table 6b: Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on grey matter (GM) mean transit time (MTT) value  
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Table 7a: Mauchly's test of Sphericity for white matter (WM) mean transit time (MTT) 

 

Table 7b: Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on white matter (WM) mean transit time (MTT) value  

 

 

Table 8a: Mauchly's test of Sphericity for grey matter (GM) cerebral blood volume (CBV) 
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Table 8b:  Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on grey matter (GM) cerebral blood volume (CBV) value  

 

 

Table 9a: Mauchly's test of Sphericity for white matter (WM) cerebral blood volume 

(CBV) 

 

Table 9b: Tests of Within-Subjects effects to assess significant effect of any transit time 

distribution (TTD) on white matter (WM) cerebral blood volume (CBV) value  
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Table 10a: Non-parametric Friedman’s test to assess significant effect of any transit time 

distribution (TTD) on the success rate of grey matter (GM) signal fitting  

 

Table 10b: Pairwise significance Comparisons between transit time distributions (TTDs) 

for Success Rate in grey matter (GM) signal fitting.  

 

Table 11a: Non-parametric Friedman’s test to assess significant effect of any transit time 

distribution (TTD) on the success rate of white matter (WM) signal fitting  

 

Table 11b: Pairwise significance Comparisons between transit time distributions (TTDs) 

for Success Rate in white matter (WM) signal fitting.  
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Table 12a: Non-parametric Friedman’s test to assess significant effect of any transit time 

distribution (TTD) on the computation time of grey matter (GM) signal fitting  

 

 

Table 12b: Pairwise significance Comparisons between transit time distribution (TTDs) 

for Computation Time in grey matter (GM) signal fitting.  

 

Table 13a: Non-parametric Friedman’s test to assess significant effect of any transit time 

distribution (TTD) on the computation time of white matter (WM) signal fitting  

 

Table 13b: Pairwise significance Comparisons between transit time distribution (TTDs) 

for Computation Time in white matter (WM) signal fitting.  
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