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Abstract A novel method is presented to calculate the deformation of a simple
elastic aerofoil with a view to determining its aerodynamic viability. The aerofoil
is modelled as a thin two-dimensional elastic sheet whose ends are joined together
to form a corner of prescribed angle, with a simple support included to constrain
the shape to resemble that of a classical aerofoil. The weight of the aerofoil is
counterbalanced exactly by the lift force due to a circulation set according to the
Kutta condition. An iterative process based on a boundary integral method is
used to compute the deformation of the aerofoil in response to an inviscid fluid
flow, and a range of flow speeds is determined for which the aerofoil maintains an
aerodynamic shape. As the flow speed is increased the aerofoil deforms significantly
around its trailing edge, resulting in a negative camber and a loss of lift. The loss
of lift is ameliorated by increasing the inflation pressure but at the expense of an
increase in drag as the aerofoil bulges into a less aerodynamic shape. Boundary
layer calculations and nonlinear unsteady viscous simulations are used to analyse
the aerodynamic characteristics of the deformed aerofoil in a viscous flow. By
tailoring the internal support the viscous boundary layer separation can be delayed
and the lift-to-drag ratio of the aerofoil can be substantially increased.

1 Introduction

Inflatable aerofoils are of increasing interest in the aerospace industry. They have
several advantages over traditional rigid aerofoils. They can be packed into a small
volume for ease of transportation, and for this reason they have been suggested
for use in extraterrestrial exploration [15,8]. Their design typically involves some
internal support structure which can be tailored in-flight to attain optimal perfor-
mance in multiple roles with different flight requirements [9,14].

Brown et al. [4] provide an overview of various inflatable aerofoil designs, in-
cluding notably the Goodyear Inflatoplane [5]. Of particular relevance to this study
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`L
β

α
u∞

Fig. 1: A sketch of the aerofoil with corner angle β in a uniform stream of speed
u∞. The straight internal support of length `L, where L is the perimeter of the
aerofoil and ` is a dimensionless parameter, is shown with a thick line. The chord
of the aerofoil is depicted as a dashed line from the trailing edge to the leading
edge, where the leading edge is defined as the point on the aerofoil furthest from
the trailing edge. The angle of attack α is defined as the angle in degrees between
the chord and the horizontal.

is the design in the patent of Bain et al. [2], which is constructed using flexible
pressurised panels with an internal support. More recently the experimental study
of Simpson [14] considered other relevant designs which are formed by inflating a
flexible chamber with internal support cables.

Here we present a novel method to calculate the deformation of a simple elastic
aerofoil, and perform a preliminary study of its aerodynamic viability. We model
the aerofoil as a smooth two-dimensional elastic aerofoil with a corner of fixed
angle at the trailing edge, with a straight inextensible support joining two cho-
sen points on the aerofoil boundary to constrain the deformation. The aerofoil
is assumed to maintain a constant altitude, with its weight balanced by the lift
force due to a circulation which is fixed according to the Kutta condition. We first
evaluate the aerofoil deformation in response to an inviscid fluid flow using an
iterative method based on a boundary integral approach. This allows an efficient
exploration of parameter space to determine conditions under which a good aero-
dynamic shape can be maintained. We then compute the viscous flow past these
aerofoil shapes using a combination of boundary layer calculations and full DNS
using the software package Gerris [10,11]. This allows us to assess the relevance of
the inviscid calculations to a real flow and to determine the aerodynamic viability
of the aerofoil by computing the lift-to-drag ratio. For simplicity, the deformed
aerofoil is treated as a rigid body in the viscous flow calculations.

The layout of the paper is as follows. In section 2 we formulate the inviscid
problem, discuss the numerical method and present the inviscid results. In section
3 we present the viscous results. Finally, in section 4 we summarise our findings.

2 Inviscid flow calculations

We consider an inflatable aerofoil in a uniform fluid flow, as depicted in Figure 1.
The aerofoil is treated as a thin two-dimensional elastic sheet which is everywhere
smooth except at the trailing edge, at which point it forms a rigid corner of fixed
angle β. The aerofoil shape is assumed to be invariant in the spanwise direction.
We allow for an inextensible internal support which restricts the deformation of
the aerofoil. By adjusting the length and position of the support the extent of
the elastic deformation can be controlled, allowing the aerofoil to attain a more
aerodynamic shape. The elastic material is assumed to pass smoothly over the
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support points, as in the design of Bain et al. [2], which helps maintain a smooth
aerofoil shape. In contrast, Simpson [14] considers an aerofoil consisting of multiple
elastic components which can pivot freely at the support point, resulting in a
bumpy aerofoil shape; this case is not considered here.

The fluid flow is taken to be a uniform stream of speed u∞ in the far-field,
with circulation γ chosen to satisfy the Kutta condition at the trailing edge. The
flow is assumed to be incompressible, irrotational and inviscid, and invariant in
the spanwise direction. These assumptions allow us to formulate the fluid flow in
terms of a boundary integral equation, which facilitates an iterative method to
determine the deformation of the aerofoil in response to the flow. The effects of
viscosity, which are important in determining the aerodynamic characteristics of
the deformed aerofoils, will be considered in section 3.

2.1 Formulation

We parametrise the boundary of the aerofoil in vector form as η(s) = x(s)i +
y(s)j, where 0 ≤ s ≤ L is the arc-length distance from the trailing edge in the
anticlockwise direction and L is the perimeter of the aerofoil. We define the leading
edge of the aerofoil as the point on the curve η(s) which maximises the distance
|η(s) − η(0)| from the trailing edge. The chord of the aerofoil is then defined
as the straight line between the leading and trailing edges, with the angle of
attack α defined as the angle in degrees the chord makes to the horizontal, as
depicted in Figure 1. Since the aerofoil is closed at the trailing edge we require
η(0) = η(L) = 0, where the trailing edge is assumed to be located at the origin.
The internal support is attached to the aerofoil at two points 0 < S1 < S2 < L,
and exerts a point force of magnitude f in the direction r̂ at s = S1 and −r̂ at
s = S2, where r̂ is the unit vector defined as

r̂ =
η(S2)− η(S1)

|η(S2)− η(S1)|
. (1)

The value of f will be determined implicitly by fixing the length of the internal
support relative to the perimeter L as

|η(S2)− η(S1)| = `L (2)

for a chosen value of the dimensionless parameter `.
We denote by T (s) and N(s) the tangential and normal components respec-

tively of the internal tension per unit span R(s) = T τ̂ +Nn̂, where τ̂ is the unit
tangent vector in the anticlockwise direction and n̂ is the unit outwards normal
vector. A balance of moments about an infinitesimal section of the aerofoil gives
N = Ms, where Ms is the arc-length derivative of the elastic bending moment per
unit span M(S). Since the internal support can pivot freely at the points S1 and S2,
it exerts no moment on the aerofoil, and we thus require M(s) to be continuous at
s = S1 and s = S2. We assume the bending moment at any point is proportional
to the difference between the curvature at that point and its resting curvature.
Such an assumption is justified by Pozrikidis [12] for a locally inextensible elastic
material. This gives the constitutive equation for the bending moment

M = −EI(κ− κR), (3)
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where κ = xssys−xsyss is the signed curvature of the aerofoil boundary. κR is the
resting curvature which is assumed to be constant, and EI is the bending rigidity.

According to thin-shell theory, the bending rigidity is given by EI = Eh3

12(1−ν2)
,

where E is the Young’s modulus, ν is the Poisson’s ratio, and h is the thickness of
the elastic material.

For equilibria to occur we require a balance between the internal and external
forces acting upon the aerofoil. We thus require

Rs −∆p(s)n̂− %ghj + f r̂[δ(s− S1)− δ(s− S2)] = 0, (4)

where ∆p(s) is the pressure difference between the exterior and interior of the
aerofoil, % and h are the density and thickness of the cell material, g is the acceler-
ation due to gravity, and δ(s) is the Dirac delta function. For s 6= S1, S2, we split
(4) into tangential and normal components to obtain

Ts − κN = %hgys, Ns + κT = ∆p(s)− %hgxs. (5)

Recalling that the normal component of the tension is given by N = Ms = −EIκs,
(5) is reduced to

Ts + EIκκs = %hgys, −EIκss + κT = ∆p(s)− %hgxs. (6)

Integrating, we obtain

T = EI
( σ
L2
− 1

2κ
2
)

+ %hgy, (7)

and
∆p(s) = −EI

(
κss + 1

2κ
3 − σκ

L2

)
+ %hg(xs + κy), (8)

where σ is a dimensionless piecewise-constant of integration whose value jumps
across the points s = S1 and s = S2. The internal stress is thus given by

R(s) =
(
EI
( σ
L2
− 1

2κ
2
)

+ %hgy
)
τ̂ − EIκsn̂. (9)

To remove the singularities in (4) we integrate over the points S1 and S2, giving

R(Si+)−R(Si−) = (−1)if r̂, i = 1, 2. (10)

Since the bending moment M and thus the curvature κ are both continuous at
s = S1 and s = S2, (9) gives

R(Si+)−R(Si−) =
EI

L2

[
σ(Si+)− σ(Si−)

]
τ̂ − EI

[
κs(Si+)− κs(Si−)

]
n̂. (11)

We thus obtain the two jump conditions

σ(Si+)− σ(Si−) = (−1)i
fL2

EI
r̂ · τ̂ (Si), i = 1, 2, (12)

κs(Si+)− κs(Si−) = (−1)i+1 f

EI
r̂ · n̂(Si), i = 1, 2. (13)

Comparing Bernoulli’s equation for the fluid in the exterior of the aerofoil
between the surface of the aerofoil and the far-field gives

1
2ρq(s)

2 + ρgy(s) + p(s) = 1
2ρu

2
∞ + pa − ρgH, (14)
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where ρ is the density of the fluid, q(s) is the flow speed evaluated at the aerofoil
boundary, y(s) is the height of a point on the aerofoil relative to the trailing edge,
p(s) is the exterior fluid pressure evaluated at the aerofoil boundary, u∞ is the far-
field flow speed, and pa is the atmospheric pressure evaluated at some reference
height −H which is assumed to be ground level. The interior of the aerofoil, which
is taken to be a static fluid with density ρ equal to that of the exterior fluid, has
pressure

pi(y) = p0 − ρgy, (15)

for some constant p0. While this formulation can allow different values of p0 ei-
ther side of the internal support, we will henceforth assume that p0 is uniform
throughout the interior. The transmural pressure difference is thus given by

∆p(s) = p(s)− pi(y(s)) = pa − ρgH − p0 + 1
2ρ(u

2
∞ − q2). (16)

Substituting this expression for ∆p(s) into (8) we obtain the dynamic condition
on the surface of the aerofoil

1
2ρ
(
q2 − u2∞

)
+ p0 − pa + ρgH − EI

(
κss + 1

2κ
3 − σκ

L2

)
+ %hg(xs + κy) = 0. (17)

For equilibria to occur, the parameters must be chosen to ensure that the lift
generated by the fluid flow is equal and opposite to the weight of the aerofoil.
Making use of the Kutta-Joukowski theorem, we thus require

ργu∞ = −%ghL, (18)

where the circulation γ is taken to be negative to generate a positive lift. Note
that an evenly distributed load force can be modelled by an appropriate choice of
the value of %.

We then non-dimensionalise the problem, taking the length scale to be the
aerofoil perimeter L and the velocity scale to be

√
EI/(L3ρ). Enforcing (18) the

dynamic condition (17) then becomes

1
2

(
q2 − U2

∞
)
−
(
κss + 1

2κ
3 − σκ

)
+ ΓU∞(xs + κy) + P = 0, (19)

where all variables are now dimensionless and

U∞ = u∞

√
L3ρ

EI
, Γ = −γ

√
Lρ

EI
, P =

(p0 − pa + ρgH)L3

EI
(20)

are dimensionless quantities relating to the far-field flow speed, the negative cir-
culation around the aerofoil, and interior pressure of the aerofoil relative to at-
mospheric pressure respectively. Note that U2

∞ can also be considered the ratio
between the dynamic pressure due to the uniform stream and the internal stress
due the elasticity of the aerofoil.

The dimensionless flow field u(x), where x is a point in the exterior of the
aerofoil η(s), must satisfy the following five conditions

∇ · u = 0, (incompressibility) (21)

∇× u = 0, (irrotationality) (22)

u(η(s)) · n̂(s) = 0, (kinematic condition) (23)

u(η(0)) = 0, (Kutta condition) (24)

u(x) = U∞i+
Γ

2π

x× k
|x|2 +O

(
|x|−2) as |x| → ∞. (far-field condition) (25)
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The kinematic condition ensures the fluid velocity has no component normal to
the aerofoil, the Kutta condition ensures the flow leaves the aerofoil smoothly at
the trailing edge, and the far-field condition ensures the flow tends to a uniform
stream with circulation −Γ in the far-field.

We define the lift and drag coefficients and the lift-to-drag ratio as

CL =
2F · j
ρu2∞L/2

, CD =
2F · i
ρu2∞L/2

, CL/CD =
F · j
F · i (26)

respectively, where F is the net fluid force acting upon the aerofoil, i and j

are unit vectors in the positive horizontal and vertical directions respectively,
and the reference length is taken to be half the dimensional aerofoil perimeter to
ensure the values are comparable between deformed aerofoil shapes. The lift-to-
drag coefficient however is independent of the choice of reference length. For an
inviscid flow we have F = −ρu∞γj, and so CL = 4Γ/U∞ and CD = 0, while the
viscous flow, which will be considered in §3, will generally have a non-zero value
of CD.

2.2 Numerical method

The aim of the numerical method is to obtain an aerofoil shape η(s) along with
a flow field u(x) which satisfy the dynamic condition (19) along with the flow
conditions (21)–(25). We obtain solutions numerically using an iterative method,
first computing the cell shape η(s) which satisfies (19) for a chosen flow speed q(s),
and then finding the flow u(x) which satisfies (21)–(25) for the computed value
of η(s). We then use Newton’s method to obtain the value of q(s) which satisfies
q(s) = |u(η(s))|.

To obtain the aerofoil shape η(s) = x(s)i+ y(s)j, we note that

xs = − cos θ, ys = sin θ, κ = θs, (27)

where θ is the angle between the tangent vector τ̂ and −i. We can then write the
dynamic condition (19) as

κss = 1
2

(
q2 − U2

∞
)
− 1

2κ
3 + σκ+ ΓU∞(κy − cos θ) + P. (28)

Equations (27) and (28) form a system of explicit ODEs which must be solved on
each of the three sections of the aerofoil, with jump and continuity conditions at
s = S1 and s = S2 and boundary conditions at s = 0 and s = 1. At S1 and S2
we require x, y, θ and κ to be continuous, while κs and σ must satisfy the jump
conditions (12) and (13). At the trailing edge we require

x(0) = x(1) = y(0) = y(1) = 0, θ(1)− θ(0) = π − β, (29)

and we are free to choose the value of θ(0) which implicitly determines the angle
of attack α. We also have the constraint

|η(S2)− η(S1)| = `. (30)

The system given by (27) and (28) can be integrated numerically for a known flow
speed q(s) using a Runge–Kutta method to obtain the equilibrium aerofoil shape
η(s) = x(s)i+ y(s)j.
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We approximate the flow speed q(s) as a piecewise Chebyshev series

q(s) ≈ qc(s) ≡



N∑
n=0

anTn
(
2 s
S1
− 1
)

for 0 ≤ s < S1

N∑
n=0

bnTn
(
2 s−S1
S2−S1

− 1
)

for S1 ≤ s ≤ S2
N∑
n=0

cnTn
(
2 s−S2
1−S2

− 1
)

for S2 < s ≤ 1

(31)

where Tn(s) = cos
(
n cos−1(s)

)
is the degree n Chebyshev polynomial, N is some

truncation value, and the 3N + 3 coefficients an, bn and cn are to be found. To
ensure qc(s) is continuous at S1 and S2, we take

a0 = b0 +
N∑
n=1

(
bn cos

(nπ
2

)
− an

)
, c0 = b0 +

N∑
n=1

(
bn − cn cos

(nπ
2

))
. (32)

The 3N + 1 remaining coefficients will be found by enforcing the interpolation
condition qc(si) = q(si) at the 3N + 1 sample points

si =
1 + Ci

2
S1, si+N =

1− Ci
2

S1+
1 + Ci

2
S2, si+2N =

1− Ci
2

S2+
1 + Ci

2
(33)

for i = 1, . . . , N + 1, where Ci are the Chebyshev nodes

Ci = − cos

(
(i− 1)π

N

)
, i = 1, . . . , N + 1 (34)

which correspond to the extrema of the Nth Chebyshev polynomial TN (s). By
choosing coefficients an, bn and cn such that qc(si) = q(si) at the rescaled Cheby-
shev nodes si, the Chebyshev series qc(s) provides a near-best interpolation of the
function q(s) [3].

Given an aerofoil shape η(s), we can obtain the unique flow speed qb(s) which
satisfies the flow equations (21)–(25) using a boundary integral method. Following
Pozrikidis [13], we split the fluid velocity u(x) into a far-field component

u∞ = U∞i+
Γ

2π

x× k
|x|2 (35)

and a disturbance flow uD which vanishes in the far-field. Since the flow is in-
compressible and irrotational, we can write the disturbance flow in terms of a
velocity potential φD(x) which must be harmonic and bounded in the far-field.
The disturbance potential satisfies the boundary integral equation

1
2φ

D(x0) = −
∫
η(s)

G(x,x0)∇φD(x)·n̂(s)ds(x)+

∫ PV

η(s)
φD(x)∇G(x,x0)·n̂(s)ds(x),

(36)
where both integrals are evaluated along the curve x = η(s), x0 is a point on the
aerofoil boundary, G(x,x0) is the free-space Green’s function

G(x,x0) = − 1

2π
log |x− x0|, (37)

and the principal value (PV ) is taken for the second integral across the singularity
at x = x0.
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To solve the boundary integral equation numerically, we discretise the aerofoil
boundary as the 3N straight lines

Ei = ηi + (ηi+1 − ηi)t for 0 ≤ t ≤ 1, i = 1, . . . , 3N (38)

between the 3N + 1 sample points ηi = η(si). The tangent and normal vectors to
the boundary element Ei, written as τ̂i and n̂i respectively, are constant on each
boundary element and are given by

τ̂i =
ηi+1 − ηi
|ηi+1 − ηi|

, n̂i =
(yi+1 − yi)i− (xi+1 − xi)j

|ηi+1 − ηi|
. (39)

We approximate φD and ∇φD as constants φDi and (∇φD)i on each boundary
element, which are assumed to be equal to the values of φD and ∇φD at the
midpoints ηMi = 1

2 (ηi+1 +ηi). Evaluating the kinematic condition (23) on the ith
boundary element, we obtain

n̂i ·
(
∇φD

)
i

= −n̂i · u∞
(
ηMi

)
= −U∞n̂i · i−

Γ

2π

ηMi · τ̂i∣∣ηMi ∣∣2 . (40)

The boundary integral equation (36) can then be discretised as

1
2φ

D(x0) = U∞

3N∑
i=1

n̂i · i
∫
Ei

G(x,x0)ds(x)+
Γ

2π

3N∑
i=1

ηMi · τ̂i∣∣ηMi ∣∣2
∫
Ei

G(x,x0)ds(x)

+
3N∑
i=1

φDi

∫ PV

Ei

n̂i · ∇G(x,x0)ds(x),

(41)

where the integrals are taken along the boundary elements. Taking x0 to be the
midpoint of the jth boundary element for j = 1, . . . , 3N , we obtain

1
2φ

D
j −

3N∑
i=1

φDi

∫ PV

Ei

[
n̂i · ∇G

(
x,ηMj

)]
ds(x)− Γ

2π

3N∑
i=1

ηMi · τ̂i∣∣ηMi ∣∣2
∫
Ei

G
(
x,ηMj

)
ds(x)

= U∞

3N∑
i=1

n̂i · i
∫
Ei

G
(
x,ηMj

)
ds(x).

(42)

Using the complex notation z(s) = x(s) + y(s)i for brevity, the integrals in (42)
can be evaluated explicitly as∫
Ei

G
(
x,ηMj

)
ds(x)

= −|zi+1 − zi|
2π

<


(
zi+1 − zMj

)
log
(
zi+1 − zMj

)
−
(
zi − zMj

)
log
(
zi − zMj

)
zi+1 − zi

− 1


(43)



A model of an inflatable elastic aerofoil 9

and

∫ PV

Ei

n̂i · ∇G(x,ηMj )ds(x) =


− 1

2π=

(
log

(
zi+1 − zMj
zi − zMj

))
for i 6= j

0 for i = j.

(44)

Equation (42) is linear in the unknowns φDi and Γ , giving 3N linear equations
for j = 1, . . . , 3N to be satisfied by the 3N + 1 unknowns φDi and Γ . To complete
the system, we satisfy the Kutta condition (24) at the trailing edge, which can be
written in terms of the velocity potential φ = φD + φ∞ as

d

ds
φ
(
η(s)

)∣∣∣∣
s=0

= 0. (45)

This condition is satisfied approximately using the finite difference equation

φD1 + φ∞1 − φD3N − φ
∞
3N = 0. (46)

The flow speed along the aerofoil is then given as the central difference

qb(si) =
|φi − φi−1|
|ηi − ηi−1|

, i = 2, . . . , 3N, (47)

with qb(0) = qb(1) = 0.
We then use Newton’s method to obtain values of the Chebyshev coefficients

an, bn and cn such that qb(si) = qc(si) for i = 1, . . . , 3N + 1, which corresponds
to an aerofoil shape η(s) and flow speed q(s) which satisfy the dynamic condition
(19) and the flow conditions (21)–(25). All results presented here were obtained
using both N = 50 and N = 100 and it was confirmed that the variation of the
aerofoil shape

∣∣η(N=100)(s)− η(N=50)(s)
∣∣ remained below 10−6 for all 0 ≤ s ≤ 1.

The numerical method we have presented allows us to determine solutions for
chosen values of the parameters U∞, P , β, θ(0), S1, S2 and `. In fixing these the
circulation parameter Γ is determined implicitly by the Kutta condition. The angle
of attack α comes as part of the solution. In practice we choose the value θ(0) in
an iterative manner to obtain a value for α that is in line with what is common
for rigid aerofoils (and typically we choose α = 12◦).

2.3 Inviscid results

Figure 2 shows a comparison between the shape of an elastic aerofoil without an
internal support to that of an aerofoil with an internal support of length ` = 0.12 in
a static fluid. First considering the unsupported case, we note that the case of β = π

corresponds to a smooth cell, which was studied extensively by Yorkston et al. [16].
As the corner angle β is decreased, a more aerofoil-like shape is obtained, although
the aerofoil retains a relatively large maximum thickness. We then consider the
case where the aerofoil has an internal support. For β = 3π/4 and β = π/2 we see
that while the internal support reduces the maximum thickness, the aerofoil bulges
outwards either side of the support, retaining a fairly blunt shape. For β = π/4
and β = 0 however a thin aerofoil is attained.
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Fig. 2: Supported and unsupported equilibrium shapes in the absence of a flow
with P = 0 for varying trailing-edge corner angles β. The supported aerofoil has
a support of length ` = 0.12 attached at S1 = 1/3 and S2 = 2/3, depicted as a
broken line.

Figure 3 shows the aerofoil shapes as the flow speed parameter U∞ is increased,
along with the streamlines of the flow. The corner angle and the length and position
of the internal support were chosen to obtain a slender aerofoil profile. The angle
of attack α = 12◦ is towards the upper limit of a typical aerofoil and was chosen
to exhibit the most severe deformation; for lower angles of attack we found the
aerofoil exhibits a similar but less severe deformation. Note that U∞ = 0 can
correspond to either the flow past a rigid aerofoil or the limit as the flow speed
tends to zero. As the flow speed U∞ is increased, the cell starts to deform in
response to the fluid flow. The upper section of the aerofoil boundary becomes
concave and the aerofoil attains a negative camber, meaning that the camber line
lies below the chord (the camber line is defined to be the locus of points halfway
between the upper and lower surfaces of the aerofoil as measured perpendicular
to the camber line itself [1]). This reduces the flow speed along the upper section
of the aerofoil, resulting in a decrease in the lift coefficient CL.

Figure 4 shows the inviscid lift coefficient against the angle of attack α of
the supported aerofoil for various flow speeds. For low flow speed U∞, the elastic
forces dominate over the fluid forces. The aerofoil thus acts rigidly as the angle
of attack is increased, with the lift coefficient depending linearly on the angle of
the trailing edge. As the flow speed U∞ is increased the aerofoil starts to deform
in response to the fluid flow, as shown in Figure 3, which results in a loss of
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(d) U∞ = 15, CL = 0.06

Fig. 3: Aerofoil shapes and streamlines for angle of attack α = 12◦, a corner angle
of β = π/6 and a pressure difference of P = 0. The internal support, depicted as
a broken line, has length ` = 0.12 and is attached at the points S1 = 1/3 and
S2 = 2/3. The streamlines are evenly spaced in the far-field, corresponding to
evenly spaced values of the stream function in each panel, although the spacing of
the stream function varies between panels as the far-field flow speed U∞ is varied.
(a) shows the limit as U∞ → 0, which corresponds to the flow past a rigid aerofoil.

lift. This loss in lift remains relatively small for low flow speeds U∞, while for
U∞ > 10 a more severe loss of lift occurs, with the aerofoil achieving less than
half of the lift of the corresponding rigid aerofoil. The inflatable aerofoils used for
small unmanned aircraft typically have a chord length of approximately 40 cm [8,
14]. For the supported aerofoils considered here, this corresponds to a perimeter
of approximately L = 0.87 m. Taking the cruise speed of the aerofoil to be u∞ =
16 m s−1 [14], we find that a value of U∞ = 10 corresponds to a bending rigidity of
EI = 2 kg m2 s−2. While this value is relatively high for a simple elastic material,
the stiffness is increased for aerofoils constructed with composite materials [9] or
inflatable panels [2].

Figure 5 shows the aerofoil shapes and streamlines as the interior pressure P is
increased, with the other parameters equal to those in Figure 3d. As the interior
pressure is increased, the aerofoil thickness increases towards the trailing edge,
and the upper section of the aerofoil becomes less concave, resulting in a higher
average flow speed along the upper section. This higher flow speed results in a
lower pressure above the aerofoil, and thus a higher lift coefficient CL. However,
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Fig. 4: Lift coefficient against the angle of attack α in degrees for various dimen-
sionless flow speeds U∞, with parameters β = π/6, P = 0, ` = 0.12, S1 = 1/3,
S2 = 2/3. The case U∞ = 0 corresponds to the limit EI → ∞ (see equation 20)
and a rigid aerofoil. The aerofoil shapes corresponding to α = 12◦ are shown in
Figure 3.
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(c) P = 200, CL = 0.32
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Fig. 5: Aerofoil shapes and streamlines for angle of attack α = 12◦ , a corner angle
of β = π/6 and a far-field flow speed U∞ = 15. The internal support, depicted
as a broken line, has length ` = 0.12 and is attached at the points S1 = 1/3 and
S2 = 2/3. The streamlines are evenly spaced in the far-field, corresponding to
evenly spaced values of the stream function.
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by P ≈ 300 the aerofoil thickness is significantly increased, particularly towards
the trailing edge, which we expect to result in a larger viscous drag force. This
thickness could be reduced by introducing more internal supports, which would
allow for a higher internal pressure and thus a higher lift coefficient while limiting
the corresponding viscous drag. For an aerofoil with perimeter L = 0.87 m and
bending rigidity of EI = 2 kg m2 s−2, as considered above, a value of P = 300
corresponds to an inflation pressure p0 − pa + ρgH of approximately 0.9 kPa. This
suggests that our aerofoil attains an aerodynamic shape at relatively low internal
pressures, which is desirable due to the reduced risk of leaks [6].

3 Viscous flow calculations

To obtain the equilibria in §2 we have assumed that the fluid flow past the aero-
foil is both inviscid and steady. While this assumption significantly simplifies the
formulation of the problem, in a physical flow we would expect both a viscous
boundary layer, and a turbulent wake downstream of the aerofoil. To compute the
viscous flow we treat the aerofoil shapes obtained in §2 as rigid bodies, neglecting
any deformation due to viscous effects. Such an approach is assumed to be valid
as a first approximation for streamlined aerofoils in high Reynolds number flows,
where the boundary layer separation occurs close to the trailing edge of the aero-
foil and the inviscid flow provides a good approximation to the viscous flow. We
will confirm the validity of this assumption further on.

We compute the viscous flow past the aerofoil using the software package Ger-
ris [10,11], which solves the unsteady incompressible Navier-Stokes equations nu-
merically using an adaptive mesh refinement method with a minimum cell size
of 2−10L. The flow is computed in a channel bounded by solid walls with a slip
boundary condition, with the channel width taken to be large enough that the flow
near the aerofoil is unaffected by the walls. The flow is initialised at time t = 0
with a uniform horizontal flow of dimensionless speed U∞. While this simulation
provides an accurate simulation of the unsteady viscous flow away from the aero-
foil, the locally spatially isotropic mesh refinement used by Gerris is unsuitable for
precisely resolving the boundary layer at the aerofoil boundary [10]; the viscous
drag acting on the aerofoil must therefore be computed separately using boundary
layer calculations as will be done below assuming that the boundary layer remains
attached to the aerofoil and does not separate. The latter assumption is adopted
as our focus is on obtaining aerofoil shapes, and flow conditions, where separation
is minimal. Since the fluid pressure does not change across the boundary layer,
an accurate value of the pressure drag acting on the aerofoil can still be obtained
using the Gerris simulation.

The flow in the viscous boundary layer can be obtained using the method of
Keller [7] by solving the rescaled boundary layer equation

fζζζ +
1

2

(
(s− s∗)qs

q
+ 1

)
ffζζ +(s−s∗)qs

q

(
1− f2ζ

)
= (s−s∗)

(
fζfζs−fζζfs

)
(48)

with boundary conditions

f(s, 0) = 0, fζ(s, 0) = 0, fζ(s,∞) = 1, (49)
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(a) Vorticity field for Re = 1.25 × 105

(b) Vorticity field for Re = 2.5 × 105

(c) Lift-to-drag ratio

Fig. 6: Simulations of the viscous flow past an unsupported aerofoil with param-
eters U∞ = 5, β = π/6, P = 0, and α = 6◦. (a) and (b) show a snapshot of the
vorticity field at t = 10, with black indicating negative vorticity, white indicating
positive vorticity, and grey indicating zero vorticity. (c) shows the lift-to-drag ratio
of the aerofoil.

were s is the arc-length in the anticlockwise direction from the trailing edge, q(s)
is the inviscid flow speed along the aerofoil boundary, s∗ is the location of the
leading edge stagnation point where q(s∗) = 0, ζ is a rescaled normal distance
from the aerofoil, and f(s, ζ) is a rescaled stream function in the boundary layer.

The net dimensional force per unit span acting on the aerofoil can then be
approximated as∫ 1

0
−p(s)n̂(s)Lds+ ρLu2∞

√
1

2Re

∫ s+

s−

sgn(s− s∗)√
|s− s∗|

(
q(s)

U∞

)3/2

fζζ(s, 0) τ̂ (s)ds. (50)

Here p(s) is the dimensional pressure at the aerofoil boundary computed by the
Gerris simulation, Re = u∞L/2ν is the Reynolds number with the length scale
taken to be half the perimeter of the aerofoil, ν is the kinematic viscosity of the
fluid, τ̂ (s) is the unit tangent vector along the aerofoil in the direction of increasing
s, n̂(s) is the unit outwards normal vector, and s− and s+ are the points at which
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(a) Vorticity field for Re = 1.25 × 105

(b) Vorticity field for Re = 2.5 × 105

(c) Lift-to-drag ratio

Fig. 7: Simulations of the viscous flow past a supported aerofoil with parameters
U∞ = 5, α = 6◦, β = π/6, P = 0, ` = 0.12, S1 = 1/3 and S2 = 2/3. (a) and (b)
show a snapshot of the vorticity field at t = 10, with black indicating negative
vorticity, white indicating positive vorticity, and grey indicating zero vorticity. (c)
shows the lift-to-drag ratio of the aerofoil.

the boundary layer separates on the top and bottom of the aerofoil respectively.
The first term in (50) is the net force due to the pressure acting on the aerofoil, and
the second term is the viscous drag in the boundary layer. Note that this expression
does not account for any viscous drag occurring beyond the point of boundary layer
separation. However, for an aerodynamic aerofoil the separation will occur close
to the trailing edge, so we expect any viscous drag past the separation point to be
much smaller than the boundary layer drag and pressure forces.

Figure 6 shows the viscous flow past an unsupported aerofoil with angle of
attack 6◦, which is comparable to that of a typical rigid aerofoil. The viscous flow
is computed for both Re = 1.25× 105 and Re = 2.5× 105; for the airflow past an
aerofoil with perimeter L = 0.87 m as considered in §2c, these values correspond
to far-field flow velocities of u∞ = 4 m s−1 and u∞ = 8 m s−1 respectively. For
Re = 1.25 × 105, which corresponds to u∞ = 4 m s−1, the viscous boundary layer
on the upper edge of the aerofoil separates relatively early due to the thickness of
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Fig. 8: The numerically computed dimensionless transmural pressure ∆P ≡ (p −
pi)L

3/EI given by (16) for the supported aerofoil with parameters U∞ = 5, α = 6◦,
β = π/6, P = 0, ` = 0.12, S1 = 1/3 and S2 = 2/3, as depicted in Figure 7. The
solid line depicts the pressure for an inviscid flow computed using the boundary
integral method and the dashed line depicts the pressure for the viscous flow with
Re = 2.5× 105 computed using Gerris.

the aerofoil, causing a large viscous wake. Figure 6c shows the lift-to-drag ratio
for this simulation, with the lift and drag forces computed using (50). Note for a
separated flow, as here, the lift-to-drag ratio is dominated by the pressure drag
so that even though the presently used boundary-layer calculation assumes no
separation, the results should nevertheless be indicative. The lift-to-drag ratio is
volatile just after the flow is initiated, but by t = 10 the lift-to-drag ratio tends to a
value of 0.65, although small regular oscillations remain due to the vortex shedding
seen in panel (a). For Re = 2.5 × 105, which corresponds to u∞ = 8 m s−1, the
viscous boundary layer remains attached up to the trailing edge of the aerofoil,
where it forms a thin, stable wake. The lift-to-drag ratio in this case settles to a
value of 3.3.

Figure 7 shows the viscous flow past a supported aerofoil, with a support
of length ` = 0.12 connected to the aerofoil at S1 = 1/3 and S2 = 2/3. The
flow parameters are the same as those in Figure 6. For Re = 1.25 × 105, which
corresponds to u∞ = 4 m s−1, we find that, unlike the unsupported case, the
boundary layer remains attached up to the trailing edge, reducing the oscillations
in the lift-to-drag ratio. The lift-to-drag ratio approaches the value 3.7, which is
significantly higher than that of the unsupported aerofoil. For Re = 2.5×105, which
corresponds to u∞ = 8 m s−1, the lift-to-drag ratio increases further, reaching a
value of 7.1, which is more than twice the value for the unsupported aerofoil. This
is comparable to the value of CL/CD ≈ 10 obtained by Simpson [14] for more
complex inflatable aerofoil designs.

To assess the validity of the inviscid approximation used to obtain the equi-
libria in §2, we compare in Figure 8 the inviscid fluid pressure obtained using the
boundary integral method to that computed for Re = 2.5 × 105 for the aerofoil
previously shown in Figure 7. The fluid pressure of the inviscid fluid is found to
provide a good approximation of the viscous flow for this aerodynamic aerofoil
shape, which suggests that the aerofoil remains in near-equilibrium in the viscous
flow.
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We have thus shown that with a simple internal support the aerofoil can main-
tain a good aerodynamic shape in realistic flow conditions, with significantly im-
proved aerodynamic characteristics over an unsupported aerofoil.

4 Summary

We have presented a novel method to compute the deformation of a simple elastic
aerofoil. We have investigated the aerodynamic viability of a simple inflatable
aerofoil design. We have presented an iterative boundary integral method which
we used to obtain equilibrium aerofoil shapes both in a static fluid and in an
inviscid fluid flow. Using a combination of boundary layer calculations and full
DNS using the software package Gerris [10,11], we have analysed the aerodynamic
properties of the aerofoil.

We have focused on an aerofoil with a trailing edge angle of β = π/6 and a
single support of dimensionless length ` = 0.12, which were found to provide a good
aerodynamic shape. For inviscid flow the aerofoil does not significantly deform at
low flow speeds and the lift depends almost linearly on the angle of attack α as
it would for a rigid aerofoil. At higher flow speeds more substantial deformation
occurs, particularly toward the trailing edge, and this results in a significant loss
in lift. The loss in lift can be reduced by increasing the inflation pressure, but at
the expense of an increase in drag as the aerofoil bulges into a less aerodynamic
shape. By computing the viscous flow past the deformed aerofoils we found that
the presence of an internal support delays the boundary layer separation at the
trailing edge, reducing the viscous wake and significantly improving the lift-to-drag
ratio of the aerofoil.

We have restricted our study to two-dimensional aerofoils, with an assumed
invariance of the aerofoil deformation and fluid flow in the spanwise direction. It
would be informative to expand our method to allow for deformation of the aero-
foil in the spanwise direction to model wing bending and three-dimensional effects
such as wrinkling. Moreover, while our model allows us to model a uniformly dis-
tributed load by a suitable tuning of the wing material density, incorporating a
more realistic model of the load distribution including the main body of the air-
craft would require an extension of the current model to include three-dimensional
effects. All of these issues are left for future work.

We have presented results for a particular configuration of the internal support,
chosen to demonstrate the improvement on the aerodynamic behaviour of the
inflatable aerofoil under steady cruise conditions. Some inflatable aerofoils have
a single support as considered here [2], but more complex aerofoils with multiple
supports also exist [4] and our method can be easily adapted to cater for this. In
either case the framework we have provided could be used as a basis to investigate
how to optimise performance under different flight conditions depending on the
intended application.
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