Economic impacts of climate-induced crop yield changes: Evidence
from agri-food industries in six countries
Daoping Wang ^{1,+} , Katie Jenkins ^{2,+} , Nicole Forstenhäusler ² , Tianyang Lei ³ , Jeff Price ² , Rachel Warren ² , Rhosanna Jenkins ² , Dabo Guan ^{3,*}
 School of Urban and Regional Science, Shanghai University of Finance and Economics, Shanghai 200433, China Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK Department of Earth System Science, Tsinghua University, Beijing 100084, China
+ both authors contributed equally to the work
* Corresponding Author: Dabo Guan. guandabo@tsinghua.edu.cn . Department of Earth System Science, Tsinghua University, Beijing 100084, China
Supplementary Material

Paper	Country	Crop	Crop Model (Type)	Climate Scenario	Time Period	CO2 effects	Projected Impact
Costa et al. (2009)	Brazil	Bean, Maize	Statistical	HadCM3 with A2	2050, 2080	with and without	For bean crops, without CO2 effects, a reduction of up to 30% is projected. When CO2 effects are included, increases of up to 30% (for the 2020s and 2050s) and 45% (for the 2080s) are projected. Reductions in maize yields of up to 30% without CO2 effects and around 15% with CO2 effects included.
Margulis and Dubeux (2010)	Brazil	Maize, Bean, Rice	Unknown	Unknown GCM, A2 and B2	2040-2070, 2070-2100	Unknown	Reductions of 20 to 30%
Marin et al. (2009)	Brazil	Sugarcane	DSSAT (Process- based)	Unknown	2040	Unknown	Increases of up to 6% in São Paulo state toward 2040
Silva et al. (2010)	Brazil	Cowpea	SARRA	Unknown	SWLs: 1.5, 3.0 and 5.0C	Unknown	Reduction in the agricultural area planted with cowpea bean in northeastern Brazil
Chen et al. (2013)	China	Multiple crops	Ricardian	3 GCMs (Hadley, CCSR, MRI)	2050s, 2080s	Unknown	General increase in yields and associated net revenue
Erda et al. (2005)	China	Rice, maize and wheat	CERES models (Process- based)	PRECIS RCM with A2 and B2	2020s, 2050s, 2080s	without	Reduction in rice, maize and wheat yields by up to 37% in the next 20–80 years
Geng et al. (2019)	China	Wheat	Cobb-Douglas production function (multifactor analysis model) (statistical)	5 GCMs from ISI- MIP with 4 RCPs	2021–2050	with	Increase by 1.47% under RCP4.5 and 2.16% under RCP8.5 for the Jing-Jin-Ji region, Shanxi, Shaanxi, Shandong, and Henan provinces.

Tao and Zhang (2013)	China	Rice, Wheat	MCWLA-Rice, MCWLA- Wheat (Process- based)	5 GCMs, with A1FI and B1	2020s, 2050s, 2080s	with and without	Rice yield increased for 2020s, 2050s, 2080s on average by 10.6%, 7.1%, and 0.7% (with CO2). Rice yield decreased for 2020s, 2050s, 2080s on average by 4.9%, 18.6%, and 29.4% (without CO2).
							Wheat yields could increase by up to 26.7%, 53.0% and 75.6% during 2020s, 2050s, and 2080s (with CO2). Wheat yields could increase by up to 8.8%, 17.7%, and 24.7% during 2020s, 2050s, and 2080s (without CO2).
Thomson et al. (2006)	China	Wheat	EPIC (Process- based)	HadCM3, A2 and B2	2015–2045 and 2070– 2099	with	Increases in dryland winter wheat yields in the Huang-Hai Plain (China's most productive wheat growing region)
Xiao et al. (2018)	China	Wheat	APSIM model	28 GCMs	2031-2060 and 2071- 2100	with and without	Increase in wheat yields with CO ₂ effects Decrease in wheat yields without CO ₂ effects
Xiong et al. (2007)	China	Maize	CERES-Maize (Process- based)	RCMs with A2 and B2	2080s	with	Increase in rainfed maize yield in the North China Plain by up to 50% during 2080s without adaptation
Abera et al. (2018)	Ethiopia	Maize	DSSAT - CERES-Maize (Process- based)	19 CMIP5 GCMs	2010–2039, 2040–2069 and 2070– 2099	Unknown	Decrease by up to 43 and 24% by the end of the century at Bako and Melkassa stations, respectively, while simulated maize yields in Hawassa show an increase of 51%
Araya et al. (2015)	Ethiopia	Maize	DSSAT & APSIM (Process- based)	20 GCMs	2010–2039, 2040–2069, 2070–2099	with	Slight increases in the median yield for the near future (1.7%–2.9% across models and RCPs).
			23004)				Mixed pattern later in the century, with some areas projected to see increases in yield (around 4%) and some decreases (around 6%).

Kassie et al. (2015)	Ethiopia	Maize	CERES-maize model (Process- based)	3 GCMs (CanESM2, CSIRO- MK3-6-0 and HadGEM2- ES)	2050	with and without	Decrease in maize yield on average by 20% in 2050s
Sagoe (2006)	Ghana	Cassava, Cocoyam	DSSATv4 (Process- based)	Unknown	2020, 2050, 2080s	Unknown	Decrease in yields of cassava and cocoyam
Byjesh et al. (2010)	India	Maize	InfoCrop (Process- based)	HadCM3 with A2a	2020, 2050, 2080s	with	Generally, projections show reductions in yields of monsoon and winter maize
Challinor et al. (2006)	India	Groundnut	GLAM (Process- based)	PRECIS RCM with A2	2071–2100	without	General reduction in yield
Gangadhar Rao et al. (1995)	India	Sorghum	CERES- sorghum (Process- based)	3 GCMs	Unknown	with and without	Decrease in yield under all scenarios
Koehler et al. (2013)	India	Wheat	GLAM (Process- based)	17 GCMs with A1B	2030–2049, 2050–2069, and 2070– 2089	without	General reduction in yield projected across northern India

Table S1: Summary of published crop yield studies focused on the study countries

References

- Abera K, Crespo O, Seid J, Mequanent F (2018) Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environ Syst Res. https://doi.org/10.1186/s40068-018-0107-z
- Araya A, Hoogenboom G, Luedeling E et al (2015) Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric For Meteorol 214–215:252–265. https://doi.org/10.1016/j.agrformet.2015.08.259
- Byjesh K, Kumar SN, Aggarwal PK (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strateg Glob Change 15:413–431. https://doi.org/10.1007/s11027-010-9224-3
- Challinor AJ, Wheeler TR, Osborne TM, Slingo JM (2006) Assessing the vulnerability of crop productivity to climate change thresholds using an integrated crop-climate model. In:

 Avoiding Dangerous Climate Change. Cambridge University Press, Cambridge, pp 187–194
- Chen Y, Wu Z, Okamoto K et al (2013) The impacts of climate change on crops in China: A Ricardian analysis. Glob Planet Change 104:61–74.
- Costa LC, Justino F, Oliveira LJC et al (2009) Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil. Environ Res Lett 4:014013. https://doi.org/10.1088/1748-9326/4/1/014013
- Erda L, Wei X, Hui J et al (2005) Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc B Biol Sci 360:2149–2154. https://doi.org/10.1098/rstb.2005.1743
- Gangadhar Rao D, Katyal JC, Sinha SK, Srinivas K (1995) Impacts of Climate Change on Sorghum Productivity in India: Simulation Study. In: Climate Change and Agriculture: Analysis of Potential International Impacts. American Society of Agronomy, Madison, WI, pp 325–337
- Geng X, Wang F, Ren W, Hao Z (2019) Climate Change Impacts on Winter Wheat Yield in Northern China. Adv Meteorol 2019:2767018. https://doi.org/10.1155/2019/2767018
- Issahaku ZA, Maharjan KL (2014) Climate Change Impact on Revenue of Major Food Crops in Ghana: Structural Ricardian Cross-Sectional Analysis. In: Maharjan KL (ed)
 Communities and Livelihood Strategies in Developing Countries. Springer Japan, Tokyo, pp 13–32
- Kassie BT, Asseng S, Rotter RP et al (2015) Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Clim Change 129:145–158. https://doi.org/10.1007/s10584-014-1322-x
- Koehler A-K, Challinor AJ, Hawkins E, Asseng S (2013) Influences of increasing temperature on Indian wheat: quantifying limits to predictability. Environ Res Lett 8:034016.
- Margulis S, Dubeux C, Marcovitch J (2011) Economia da mudança do clima no Brasil. Synergia Editora, Brazil
- Marin F, Pellegrino G, Assad E, et al (2009) Cenários futuros para cana-de-açúcar no Estado de São Paulo baseados em projeções regionalizadas de mudanças climáticas. Embrapa Agricultural Informatics. https://www.embrapa.br/en/international. Accessed Accessed 17 January 2020
- Sagoe R (2006) Climate change and root crop production in Ghana. Crops Research Institute, Kumasi
- Silva V de PR, Campos JHBC, Silva MT, Azevedo PV (2010) Impact of global warming on cowpea bean cultivation in northeastern Brazil. Agric Water Manag 97:1760–1768. https://doi.org/10.1016/j.agwat.2010.06.006
- Tao F, Zhang Z (2013) Climate change, wheat productivity and water use in the North China

67	Plain: A new super-ensemble-based probabilistic projection. Agric Predict Using Clim
68	Model Ensembles 170:146–165
69	Thomson AM, Izaurralde RC, Rosenberg NJ, He X (2006) Climate change impacts on
70	agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agric
71	Ecosyst Environ 114:195–209. https://doi.org/10.1016/j.agee.2005.11.001
72	Thornton PK, Jones PG, Alagarswamy G, Andresen J (2009) Spatial variation of crop yield
73	response to climate change in East Africa. Glob Environ Change 19:54–65.
74	https://doi.org/10.1016/j.gloenvcha.2008.08.005
75	Xiao D, Bai H, Liu LD (2018) Impact of Future Climate Change on Wheat Production: A
76	Simulated Case for China's Wheat System. Sustainability 10:1277.
77	https://doi.org/10.3390/su10041277
78	Xiong W, Matthews R, Holman I, et al (2007) Modelling China's potential maize production at
79	regional scale under climate change. Clim Change 85:433–451.
80	https://doi.org/10.1007/s10584-007-9284-x

Authors	Country	Model	Variables	GCMs	Time Period	Projected Impact
Mideksa (2010)	Ethiopia	General equilibrium model	GDP	CLINE, CGCM2, PCM	Unknown	Changes to agricultural production and output in the sectors linked to the agricultural sector are likely to reduce Ethiopia's GDP by about 10%
Deressa and Hassan (2009)	Ethiopia	Ricardian method	Crop net revenue	CGM2, HaDCM3 and PCM	2050, 2100	Reduction in crop net revenue per hectare is projected by the years 2050 and 2100
Yates and Strzepek (1998)	Egypt	Statically coupled economic models	GDP agriculture, crop price index, food price index, harvested area	GFDL, UKMO, GISS	2060	GDP agriculture: % change from baseline 96% (optimistic scenario), 135% (pessimistic scenario). Crop price index: % change from baseline: -22% (optimistic scenario), -22%
						(pessimistic scenario). Food price index: % change from baseline: 6.9% (optimistic), -3.4% (pessimistic).
						Harvested area: % change from baseline 30% (optimistic and pessimistic)
Arndt et al. (2015)	Ghana	CGE	GDP	NCAR-PCM1	2050	Decline in agricultural GDP by 1.9% by 2050. Some of the largest economic losses occur within the important export crop sector, especially cocoa.
Issahaku and Maharjan (2014)	Ghana	Ricardian method	Revenue	Unknown	Unknown	Positive impact on revenues of sorghum and yam, reduction of expected revenue from cassava and maize.

Table S2: Summary of published economic studies of crop yield impacts focused on the study countries

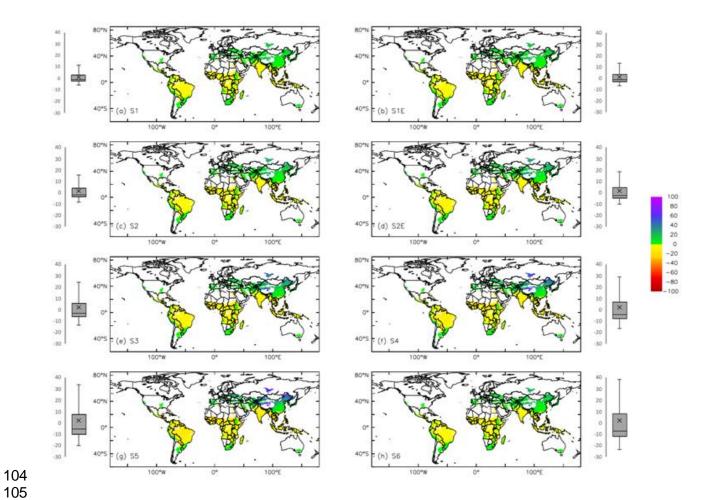
References

 Arndt C, Asante F, Thurlow J (2015) Implications of Climate Change for Ghana's Economy. Sustainability 7:7214–7231. https://doi.org/10.3390/su7067214

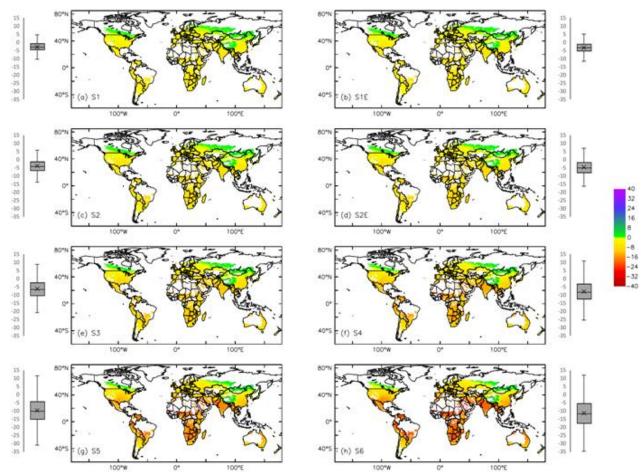
Deressa TT, Hassan RM (2009) Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-section Measures. J Afr Econ 18:529–554. https://doi.org/10.1093/jae/ejp002

Issahaku ZA, Maharjan KL (2014) Climate Change Impact on Revenue of Major Food Crops in Ghana: Structural Ricardian Cross-Sectional Analysis. In: Maharjan KL (ed) Communities and Livelihood Strategies in Developing Countries. Springer Japan, Tokyo, pp 13–32

Mideksa TK (2010) Economic and distributional impacts of climate change: The case of Ethiopia. Glob Environ Change 20:278–286.


Yates DN, Strzepek KM (1998) An Assessment of Integrated Climate Change Impacts on the Agricultural Economy of Egypt. Clim Change 38:261–287.

	Rice	Wheat
Avg. Temperature	1.810 (2.039)	-15.653*** (2.585)
Avg. Temperature ²	-5.080 *** (1.293)	-4.580 ^{**} (1.450)
Avg. Precipitation	-0.227 (0.976)	2.292* (0.890)
Avg. Precipitation ²	-0.154 (0.531)	-2.377*** (2.920)


^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Table reports regression coefficients for each crop yield response function as well as standard errors in brackets. All regressions include quadratic time trends (year and year²).

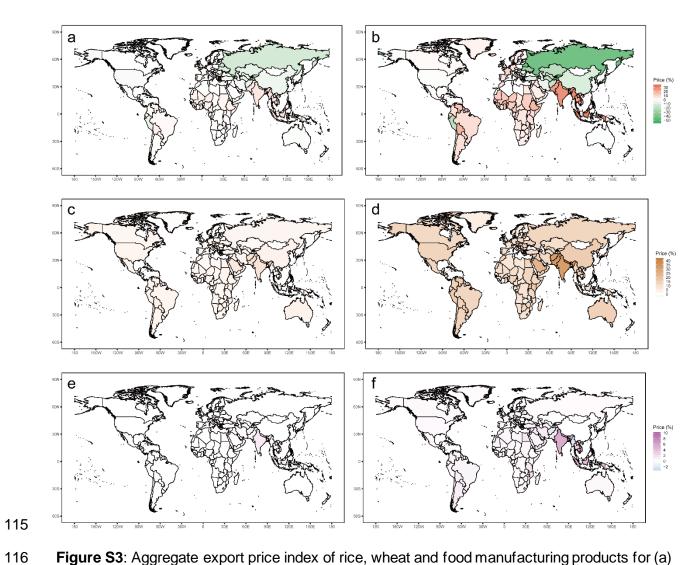

Table S3 Regression results

Figure S1: Gridded ensemble mean percentage change in rice yield for (a) scenario 1; (b) scenario 1E; (c) scenario 2 (d) scenario 2E; (e) scenario 3; (f) scenario 4; (g) scenario 5; (h) scenario 6. Box-and-whisker plots reflect the underlying climate model uncertainty.

Figure S2: Gridded ensemble mean percentage change in wheat yield for (a) scenario 1; (b) scenario 1E; (c) scenario 2 (d) scenario 2E; (e) scenario 3; (f) scenario 4; (g) scenario 5; (h) scenario 6. Box-and-whisker plots reflect the underlying climate model uncertainty.

Figure S3: Aggregate export price index of rice, wheat and food manufacturing products for (a) change of price of rice in S1; (b) change of price of rice in S6; (c) change of price of wheat in S1; (d) change of price of wheat in S6; (e) change of price of food manufacturing products in S1; (f) change of price of food manufacturing products in S6.

	China		Inc	dia	Bra	Brazil		Egypt		Ghana		opia
	S1	S6	S1	S6	S 1	S6	S 1	S6	S1	S6	S 1	S6
pdr	-4.83	-10.43	5.74	27.72	1.39	8.08	0.26	4.22	2.04	9.05	3.15	17.03
wht	3.55	15.64	8.18	32.13	3.08	12.63	3.12	12.85	1.98	8.52	2.97	12.34
ocr	-0.04	0.63	0.40	1.93	0.18	1.16	0.30	1.75	0.21	1.21	0.22	1.24
Isf	0.01	0.57	0.09	0.46	0.15	0.90	-0.06	-0.12	0.01	0.15	0.04	0.38
mng	-0.01	-0.12	-0.03	-0.15	-0.02	-0.12	-0.02	-0.14	-0.01	-0.07	-0.07	-0.27
fdm	-0.15	-0.01	1.23	5.34	0.12	0.66	0.28	1.47	0.08	0.48	0.01	0.15
omf	0.01	-0.07	-0.11	-0.50	-0.01	-0.02	-0.10	-0.48	-0.01	-0.03	-0.08	-0.26
cns	0.02	-0.07	-0.19	-0.81	-0.01	-0.04	-0.17	-0.76	-0.01	-0.01	-0.06	-0.16
trd	0.01	-0.04	-0.07	-0.31	-0.01	0.00	-0.21	-0.95	-0.01	-0.02	-0.09	-0.31
tps	0.01	-0.10	-0.14	-0.64	-0.01	-0.04	-0.12	-0.52	-0.01	-0.02	-0.06	-0.21
sev	0.03	-0.08	-0.18	-0.77	-0.01	-0.03	-0.16	-0.71	0.00	0.03	-0.04	-0.09

Table S4: Change in price (%) to households of domestic commodities in the six selected countries. Results are shown for Scenario 1 and scenario 6.

	China		China India Brazil		azil	Eg	ypt	Ghana		Ethiopia		
_	S1	S6	S 1	S6	S1	S6	S1	S6	S1	S6	S 1	S6
pdr	2.42	14.17	-0.16	3.05	0.84	6.66	1.09	8.61	0.46	5.22	4.19	21.79
wht	3.02	12.60	3.01	12.20	2.97	12.26	2.71	11.66	2.43	10.44	2.82	12.21
ocr	0.18	1.12	0.21	1.24	0.19	1.21	0.22	1.28	0.14	0.90	0.23	1.32
Isf	0.11	0.65	-0.34	-1.44	0.11	0.74	0.18	0.93	0.18	0.98	0.15	0.74
mng	-0.02	-0.12	-0.02	-0.12	-0.02	-0.13	-0.02	-0.12	-0.02	-0.13	-0.02	-0.13
fdm	0.20	1.00	0.52	2.48	0.15	0.79	0.24	1.16	0.23	1.15	0.21	1.01
omf	-0.01	-0.08	-0.01	-0.09	-0.01	-0.07	-0.02	-0.11	-0.01	-0.10	-0.02	-0.14
cns	0.00	-0.05	0.00	-0.07	-0.01	-0.10	0.00	-0.07	-0.02	-0.11	0.00	-0.07
trd	-0.01	-0.06	0.00	-0.05	-0.01	-0.05	-0.01	-0.05	-0.01	-0.06	-0.01	-0.05
tps	-0.02	-0.13	-0.02	-0.10	-0.02	-0.11	-0.02	-0.11	-0.02	-0.11	-0.01	-0.09
sev	-0.02	-0.13	-0.01	-0.07	-0.02	-0.10	-0.02	-0.10	-0.02	-0.10	-0.02	-0.10

Table S5: Change in price (%) to households of imported commodities in the six selected countries. Results are shown for Scenario 1 and scenario 6.

	China		In	India Bra		azil Egypt		Ghana		Ethiopia		
	S1	S6	S1	S6	S1	S6	S1	S6	S1	S6	S1	S6
Land	-1.89	0.90	4.30	18.97	2.20	12.75	8.85	46.13	3.08	15.41	4.94	21.69
Agriculture and unskilled labour	0.06	-0.05	-0.45	-1.95	-0.02	-0.07	-0.41	-1.82	-0.03	0.09	-0.26	-0.79
Unskilled labour	0.05	-0.08	-0.21	-0.91	-0.01	-0.03	-0.25	-1.11	0.00	-0.01	-0.10	-0.34
Skilled labour	0.04	-0.08	-0.16	-0.72	-0.01	-0.04	-0.25	-1.13	0.00	0.01	-0.09	-0.31
Capital	0.04	-0.08	-0.21	-0.90	-0.01	-0.04	-0.23	-1.05	-0.01	-0.02	-0.10	-0.36
Natural Resources	0.45	0.29	-2.07	-9.12	-0.08	-0.76	0.14	0.38	-0.34	-1.67	-0.98	-3.77

Table S6: Percentage change in the market price of primary factors in the 6 selected countries for scenarios 1 and 6