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Abstract—Deep learning has recently been intensively studied
in the context of image compressive sensing (CS) to discover and
represent complicated image structures. These approaches, how-
ever, either suffer from nonflexibility for an arbitrary sampling
ratio or lack an explicit deep-learned regularization term. This
paper aims to solve the CS reconstruction problem by combining
the deep-learned regularization term and proximal operator. We
first introduce a regularization term using a carefully designed
residual-regressive net, which can measure the distance between
a corrupted image and a clean image set and accurately identify
to which subspace the corrupted image belongs. We then address
a proximal operator with a tailored dilated residual channel
attention net, which enables the learned proximal operator to
map the distorted image into the clean image set. We adopt an
adaptive proximal selection strategy to embed the network into
the loop of the CS image reconstruction algorithm. Moreover,
a self-ensemble strategy is presented to improve CS recovery
performance. We further utilize state evolution to analyze the
effectiveness of the designed networks. Extensive experiments
also demonstrate that our method can yield superior accurate
reconstruction (PSNR gain over 1 dB) compared to other com-
peting approaches while achieving the current state-of-the-art
image CS reconstruction performance. The test code is available
at https://github.com/zjut-gwl/CSDRCANet.

I. INTRODUCTION

The theory of compressive sensing (CS) has drawn consid-
erable research interest as a joint sampling and compression
approach [1]. CS indicates that a sparse or compressible high-
dimensional signal can be reconstructed from a limited number
of measurements by utilizing prior knowledge [2]. As CS
can reduce the amount of information to be observed and
processed while maintaining a reasonable reconstruction of
the sparse or compressible signal, it has been widely used
in applications such as medical imaging [3], image compres-
sion [4], single-pixel cameras [5], and snapshot compressive
imaging [6].

Since CS reconstruction is an ill-posed problem, reliable
prior information must be used to constrain the solution
space [7]. Traditional CS focuses on hand-crafted regular-
ization, in which prior information comes from years of
experience. For instance, nonlocal prior models dominated
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the field of CS reconstruction before deep-based models
became popular. [8] proposes a hybrid structural nonlocal
model that exploits nonlocal self-similarity priors from both
the internal and external image corpora. [9] further applies
a Gaussian mixture model to learn mutually complementary
information from external and internal nonlocal similar priors.
[10] integrates the nonlocal self-similarity priors along with
self-supervised learning, which can reduce the group sparsity
residual. These hand-crafted CS reconstruction methods are
usually solved by forming an optimization problem that often
has theoretical convergence guarantees. However, these hand-
crafted prior approaches often lead to unsatisfactory results,
especially in cases with low sampling ratios, as they suffer
due to ignoring collected data information.

To address the above shortcomings in traditional hand-
crafted approaches, a recent trend in CS reconstruction is
to take advantage of deep neural networks to discover and
represent complicated image structures. Generally, these deep-
based methods fall into two categories: end-to-end approaches
and plug-and-play approaches. Specifically, the basic idea of
end-to-end approaches is to directly learn a network that maps
CS measurements into the original signals. Some advanced
end-to-end approaches are designed based on the unfolding
of some optimization iterative algorithms onto deep neural
networks. For instance, ISTA-Net+ [11] replaces the soft-
thresholding step in the traditional iterative soft-thresholding
algorithm with a learning-based threshold operator. ADMM-
CSNet [12] casts the iterative ADMM algorithm for sparse
regularization into a deep architecture. AMP-Net [13] solves
the image CS problem by unfolding the iterative denoising
process of the approximate message passing algorithm. Such
end-to-end approaches have interpretability while still being
able to reconstruct images quickly.

However, end-to-end deep-based CS reconstruction methods
suffer from non-flexibility, as they need to train different mod-
els for different sampling ratios. A trained end-to-end model
will not work well if some elements of measurements are lost
directly, meaning it is inapplicable for adaptive sensing [14].
As shown in Fig. 1, a model-fixed end-to-end approach cannot
reconstruct the image accurately once the measurement loss
rate increases to some level. SCSNet [15] achieves a scalable
CS end-to-end net by using a greedy strategy to search the
most important measurement bases. However, SCSNet still
needs to update the network parameters for different sampling
ratios, and the complexity of greedy searching is no less than
that of retraining the model at a high sampling ratio. Except
for non-flexibility, to deal with different image resolutions and
ease the computational burden, end-to-end methods sample
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Fig. 1. Illustration of Lena reconstructed by AMP-Net, OPINE-Net+ and the
proposed method if randomly losing some measurements at a 0.10 sampling
ratio.

and reconstruct images block-by-block, requiring deblocking
modules to eliminate the blocking artifacts, which may lead
to poor visual quality.

In addition to deep end-to-end approaches, deep plug-and-
play approaches have also been extensively studied, which
replace some components in traditional hand-crafted prior
methods with deep neural networks [16]. These deep-based
plug-and-play approaches have the advantages of both the
interpretability of hand-crafted prior methods and the powerful
feature expression ability of deep neural networks, maintaining
the measurement fidelity term while reducing the regulariza-
tion term efficiently [17]. For example, LDAMP [18] utilizes
the denoising convolutional neural network (DnCNN) [19]
in place of the traditional image denoising step in D-AMP
algorithms, and has achieved state-of-the-art CS reconstruction
performance [20], while [21] presents a hybrid plug-and-play
framework for CS reconstruction that combines a deep image
Gaussian denoiser with nonlocal low-rank priors. The per-
formance of deep plug-and-play approaches depends mainly
on the regularization term and the corresponding proximal
operators. As shown in Fig. 2, simply replacing the DnCNN
in LDAMP with other denoisers can lead to different CS
reconstructed PSNRs. Thus, pairing a well-designed deep-
learned regularization and the corresponding proximal operator
can improve the CS reconstruction performance.

This paper aims to design an effective CS reconstruction
method using deep-learned regularization and a proximal op-
erator. We exploit the elaborately designed residual-regressive
net (RRN) and the dilated residual channel attention net
(DRCAN) to simulate the regularization term and proximal
operator, respectively. We then embed two designed neural net-
works into the loop of the proximal gradient descent algorithm:
RRN as the regularization term for noise-level estimation
and DRCAN as a proximal operator for image denoising,
in which the self-ensemble strategy can further enhance the
reconstruction performance. From the state evolution analysis,
we see that our efficient noise-level estimator and denoiser can

Fig. 2. Illustration of different denoising performances and the corresponding
CS reconstructed performances. The X-coordinate refers to the average
denoising PSNRs of images with white noise of variance 25, and the Y-
coordinate refers to the average CS reconstructed PSNRs at a 0.10 sampling
ratio. The results are evaluated based on the union of Set8 and Waterloo140.

improve the final CS reconstruction performance. Extensive
experiments also show that the proposed method can yield
much better CS reconstruction results than the current state-
of-the-art methods in terms of both quantitative metrics and
subjective visual quality. In summary, the contributions of this
work are as follows:
• We introduce a tailored residual-regressive network for

regularization, which can measure the noise level of the
reconstructed image accurately.

• We design a dilated residual channel attention network
as the proximal operator, which can efficiently denoise a
corrupted image.

• We adopt an adaptive proximal operator selection strat-
egy to embed the designed regularization and proximal
operator into the proximal momentum-gradient descent
algorithm.

• We utilize state evolution to analyze the effectiveness
of the designed networks, and our experimental results
demonstrate that the proposed method achieves promising
performance.

The remainder of this paper is organized as follows. Section
II introduces the background of the image CS optimization
problem. Section III presents the architectures of our designed
networks for the deep-learned regularization term and proxi-
mal operator. Property analysis of the denoiser and noise-level
estimator is presented in Section IV, followed by performance
evaluation in Section V. Section VI presents our conclusions.

II. BACKGROUND

A. Image CS Problem

Image CS is used to reconstruct a clean image x ∈ Rn only
from its m (m� n) randomized linear observations y ∈ Rm,
i.e.,

y = Φx, (1)

where Φ is a short-fat sensing matrix satisfying the mutual
coherence property. Since the sensing matrix Φ is rank-
deficient, there exist an infinite number of feasible solutions
satisfying Eq. 1, which makes such underdetermined systems
hard to solve [22]. Such a challenging ill-posed inverse
problem requires some prior information about the image to
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constrain the solution space, which can be represented as an
optimization problem with the following form:

x = arg min
x

F (x) + λG(x), (2)

where F (x) and G(x) are respectively the fidelity term and
regularization term, and where λ is a regularization parameter
balancing the contributions of the two terms. The fidelity
term ensures that the possible solution is consistent with
the CS measurement process, and Euclidean distance in the
measurement domain is the usual choice, i.e.,

F (x) =
1

2
‖y − Φx‖22. (3)

The regularization term G(x) is used to guarantee that the
possible solution satisfies the prior information. Designing
and exploiting the regularization term are the main challenges
when using the image CS reconstruction algorithm [23].

B. Regularization Term for Image CS

The basic idea of existing image CS algorithms is to
design robust image regularization terms, which can integrate
information loss in undersampling measurements. In general,
existing studies fall into two categories: hand-crafted regular-
ization and deep-learned regularization.

Popular hand-crafted regularizations for image CS include
sparsity-based l1-norm (‖ · ‖1), gradient-based TV-norm (‖ ·
‖TV), and nonlocal self-similarity-based rank-norm (‖ · ‖∗).
Various optimization algorithms can be applied to solve the CS
optimization problem with hand-crafted regularization, such as
the iterative shrinkage algorithm [24], approximate message
passing (AMP) method [25], and Douglas-Rachford splitting
method [26]. BM3D-CS [27] and NLR-CS [28] are usually
taken as benchmark methods due to their high performance
for CS image reconstruction. However, these hand-crafted
methods require heavy computation and usually involve some
manually chosen parameters when they are hard to determine.

In addition to traditional hand-crafted regularization, recent
work has shown that better empirical performance is achieved
when deep neural networks are applied. Deep-learned regu-
larization achieves better performance due to its ability to
learn realistic image priors from a large amount of training
data [29]. In general, the deep deep -learned priors are
contained in the designed network architecture and trained
weights [30]. One popular strategy is to maintain the fidelity
term while replacing hand-crafted regularization components
with neural networks that map from corrupted image space
to clean image space [31]. In this way, image CS methods
such as LDAMP [18] can efficiently exploit deep-learned prior
information. A well-designed deep-learned regularization can
help to train the relative proximal operator and enhance the
explainability of the deep-learned image CS algorithms.

C. Proximal Momentum-Gradient Descent for CS problem

1) Proximal Gradient Descent: Proximal gradient descent
(PDG) offers a general framework for solving the optimization
problem represented in Eq. 2, which decouples the fidelity

Fig. 3. Convergence with iteration k of PGD and PMGD. The results are
averaged over 8 test images from Set8 at a 0.10 sampling ratio.

term and regularization term by alternating between the pro-
jecting step and gradient descent step. Starting from x0 and
adopting a step size α, the overall iterative procedure of PGD
can be expressed as

vk =∇F (xk), (4)

xk+1 =Prox(xk − αvk), (5)

where Prox(x̃) finds x̄ ∈ C such that ‖x̃− x̄‖ is minimized,
and the gradient of F (·) at point xk can be expressed as

∇F (xk) = ΦT(Φxk − y). (6)

This two-step splitting method decouples the proximal opera-
tor from the specifics of CS reconstruction iteration, which is
a suitable plug-and-play framework combining deep networks,
as it does not need to train different networks for different CS
sampling ratios. Such a CS framework allows people to use
different proximal operators in the iteration resolving process.

2) Proximal Momentum-Gradient Descent: Approximate
message passing (AMP) [32] introduces an extra momentum
item into Eq. 4 to accelerate PGD, i.e.

vk = γk−1vk−1 +∇F (xk), (7)

xk+1 = Prox(xk − αvk). (8)

The momentum term γk−1vk−1 gives gradient descent a short-
term memory by adding a fraction of the update vector of the
past time step to the current update vector [33].

The parameter γk−1 defines the amount of momentum,
which balances the effect of local gradient ∇F (xk) on the
iteration process and prevents the iteration from becoming
trapped in a shallow local minimum. One can update γk using
the divergence of Prox(·) at point xk − αvk [25], i.e.,

γk =
1

m
∇ · Prox(xk − αvk). (9)

Based on [34], the divergence term can be estimated with a
fast Monte Carlo approximation method. The divergence of
Prox at any point x̃ can be calculated by

∇ · Prox(x̃) = εT(Prox(x̃+ ε)− Prox(x̃)), (10)

where ε ∼ N(0, 1) is a standard normal random vector.
As shown in Fig. 3, the proximal momentum-gradient de-
scent (PMGD) framework achieves faster and more accurate
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(a) Residual-regressive net for G(·) (b) Dilated residual channel attention net for Proxσ̂(·)

Fig. 4. The architecture of residual-regressive net as regularization and dilated residual channel attention net as proximal operator.

convergence results than the PGD framework. In this paper,
we included two types of deep networks within the loop of
the PMGD to simulate the regularization term and proximal
operator.

III. DEEP-LEARNED REGULARIZATION AND PROXIMAL
OPERATOR FOR IMAGE CS RECONSTRUCTION

In this section, we first present an adaptive proximal opera-
tor selection strategy. Next, we describe the architectures of the
residual-regressive net (RRN) and the dilated residual channel
attention network (DRCAN), which are associated with the
learned regularization and the corresponding proximal oper-
ator, respectively. Furthermore, we describe a self-ensemble
strategy to enhance CS reconstruction performance. Finally,
we detail the training strategy for the RRN and the DRCAN.

A. Adaptive Proximal Operator selection

We apply an adaptive proximal operator selection strategy to
enhance flexibility in the applicable sampling ratios. Specif-
ically, we divide the 2-dimensional image space into multi-
ple subspaces according to the distortion distance estimated
by G(·). In PMGD, we select the corresponding proximal
operation Prox(·) according to the subspace to which the
intermediate image (xk−αvk) belongs (see Fig. 5). That is, the
distortion distance σ̂ obtained by G(·) determines the weights
of the proximal operator, i.e., Prox(·) = Pσ̂(·).

Accurate distortion distance estimation is important for de-
termining the weights of the deep network [35]. For the learned
regularization term, we use a well-trained residual-regressive
network that can accurately determine the distortion distance
σ. Additionally, the proximal operator plays an important

k
xk k

x v
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k

k

P

P

P
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k

Fig. 5. Adaptive selection of proximal operator Prox(·) based on deep-
learned regularization G(·) term.

role in the PMGD algorithm. The learned proximal operator
resembles the projection on the clean image manifold; this can
be interpreted as a denoiser that removes aliasing artifacts [36].
In this work, we train both the regularization term G(·) and the
corresponding multiple off-the-shelf proximal operators Pσ̂(·).

B. RRN for Learned Regularization

We set the noise level as the regularization term and design
a residual-regressive net to measure the noise level σk of
the corrupted image. Specifically, we assume that the original
image xo lies in a set C, which can be intuitively thought of as
the manifold of the pristine images. Considering any corrupted
image x̃ outside the set C, we use a deep net G(·) measuring
a certain kind of distortion distance between x̃ and pristine
image set C.

Our noise-level estimation network is composed of two ma-
jor parts: the residual operation and the regressive operation.
Supposing w, h and c to be the width, height, and channel
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(a) 3rd iteration

(b) 10th iteration

Fig. 6. Histograms of residual coefficients xo − (xk − αvk) for the “Boat“
image at a 0.10 sampling ratio at the 3rd and 10th iterations (k = 3 and 10)
of PMGD.

Channel-1 Channel-2 Channel-3 Channel-4

Fig. 7. Intermediate features before (top) and after (below) channel attention
operation. Features are selected from the 2nd CAL of the 1st RCAB in
DRCAN.

of the input image, respectively, our noise-level estimation
network can be formulated as

σ̂k = R1(R2((xk − αvk))− (xk − αvk)). (11)

where R2(·) refers to two stacked residual blocks that extract
a w×h×64×64 size feature and R1(·) refers to the mapping
of the extracted feature to the regularization value through 6
convolutions with a stride of 2, one average pooling, and a
final fully connected layer (see Fig. 4 (a)).

Fig. 6 illustrates the accuracy of our noise-level estimator,
where the ground truth residual coefficients are calculated by
xo − (xk − αvk), the ground-truth density is calculated by√
‖xo − (xk − αvk)‖/n, and the estimated density is calcu-

lated by G(xk−αvk). As seen by comparing histograms, our
estimated density is a good fit for the ground-truth residual
density.

Fig. 8. Regularization term value G before and after the proximal operation
with iteration k of PMGD. The results are averaged over 8 test images from
Set8 at a 0.10 sampling ratio.

Iteration-1 Iteration-2 Iteration-3 Iteration-4

Fig. 9. Intermediate results before (top) and after (below) the Pσ̂(·) operation,
i.e., top: xk − vk; bottom: xk+1 = Pσ̂(x

k − vk).

C. DRCAN for Learned Proximal Operator

The core function of PMGD is to map the distorted image
to the pristine image set C. Based on the learned noise-level
estimator G, we can learn a projection function P that maps
a corrupted image to the pristine image set C.

In our deep network, we take advantage of some recent
progress in the field. Specifically, we adopt into the de-
sign a channel attention mechanism, dilated convolution, and
multiple skip connections. The architecture of the proposed
network for the proximal operator is illustrated in Fig. 4(b),
and is primarily composed of sixteen stacked dilated channel
attention layers (dilated CAL) and multiple skip connections.

In convolution layers, each channel-wise feature represents a
different component of the signal extracted by the correspond-
ing filter. Some channels focus on the complanate regions,
while some focus more on the texture or edge regions. An
intuitive strategy is to adjust the weights of channel-wise fea-
tures adaptively instead of treating them equally. The channel
attention mechanism allows the net to effectively exploit the
interdependencies among feature channels. Denoting fi as the
input feature of the i-th CAL, the CAL operation can be
formulated as

fi+1 = fi + (Ri ◦ Ci)(fi) · Ci(fi), (12)
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Original Rotated 90° Rotated 180° Rotated 270°

Flipped Flipped & 90° Flipped & 180° Flipped & 270° 

Fig. 10. Self-ensemble by rotation and flip.

where Ci represents stacked dilated convolution layers to
extract intermediate features, and Ri represents a series of
downsampling operations to extract the channel-wise rescaling
factor. Fig. 7 shows the intermediate features before and
after the channel attention operation, from which we can
see that CAL can suppress some noise-like structures. Thus,
we employ the channel attention mechanism to enhance the
feature extraction ability of the network.

Furthermore, eight dilated CALs group into a dilated resid-
ual channel attention block (DRCAB), in which the relative
dilation factors of dilated CALs are set to 1, 2, 3, 4, 4, 3,
2, and 1. Dilated convolution can expand the capacity of
the receptive field while not increasing the number of filter
weights. There exists a short skip connection in each dilated
CAL, a medium skip connection in each dilated RCAB, and
a long skip connection from the initial to the end of the
whole net. Such a recursive residual connection design allows
multiple pathways through which information can flow.

Fig. 8 shows the effectiveness of the designed DRCAN. It
can be seen that the value of the regularization term G falls to a
small value after using Pσ̂k(·), which conforms to the function
of the proximal operation. Fig. 9 also shows the reconstructed
images before and after DRCAN for the first four intermediate
iterations, from which we can observe that the top ones have
significant noise, while those below are increasingly closer to
the real image as iteration increases.

D. Self-Ensemble Strategy

To enhance the potential CS reconstruction performance of
our model, we further adopt the self-ensemble strategy, which
is widely used in single image superresolution [37]. We apply
rotations and flips on the image to generate an additional
seven augmented inputs Ti(xt), where Ti represents geometric
transformations, as shown in Fig. 10. We then apply the deep
networks Pσ̂k(·) on each Ti(xt) to obtain eight corresponding
outputs. After that, we apply an inversing transformation
T−1(·) on the eight denoised outputs and average the inversing
transformed outputs together for the final self-ensemble result.
Thus, if adopting the self-ensemble strategy in PGMD, the
relevant Eq. 4 should be revised to become

xk+1 =
1

8

8∑
i=1

(T−1i ◦ Pσ̂k ◦ Ti)(xk − αvk). (13)

TABLE I
RANGE OF DISTORTION DISTANCE FOR DIFFERENT SUBSPACE NUMBER

No. Range of σ
2 (0,100] (100,+∞)

10 (0,10] (10,20] (20,40] (40,60] (60,80]
(80,100] (100,150] (150,300] (300,500] (500,+∞)

17

(0,5] (5,10] (10,15] (15,20] (20,30]
(30,40] (40,50] (50,60] (60,70] (70,80]
(80,90] (90,100] (100,125] (125,150] (150,300]

(300,500] (500,+∞)

E. Training Strategy

In our model, image space is partitioned into multi-
subspaces, where each subspace has its own learned proximal
operator. We first train the deep-learned regularization G(·)
estimating noise level, after which we train the learned proxi-
mal operator for each subspace. We corrupt the original clean
images xo in the training set C by adding different noise level
ranges σ and adopt the mean square error (MSE) losses

G = arg min
G

E(xo,ε,σ̃)‖σ̃ −G(xo + σ̃ε)‖2, (14)

and
Pσ = arg min

Pσ
E(xo,ε)‖xo − Pσ(xo + σε)‖2, (15)

to train G(·) and Pσ(·), respectively, where xo ∈ C, ε ∼
N(0, 1), and σ̃ ∼ U(0, 600). Table I shows the noise range σ
designed for a different number of subspaces, where the noise
range is gradually refined as the subspace number increases.
In the process of training the proximal operator, we initialize
the network weights for the refined noise range using the well-
trained network weights for the relatively coarse noise range.

IV. PROPERTY ANALYSIS

Taking the designed DRCAN as the proximal operator and
utilizing the designed RRN to adaptively select the proximal
operator, the PGMD recursion process represented in Eq. 7
and Eq. 8 can be formulated as

vk = γk−1vk−1 +∇F (xk) (16)

σ̂k = G(xk − αvk) (17)

xk+1 = Pσ̂k(xk − αvk). (18)

From Eq. 16 to Eq. 18, one can see that the final reconstruction
performance is affected mainly by two operations, the noise-
level estimator G(·) and proximal operator Pσ(·), which are
also the components we simulate with deep networks.

A. State Evolution

We utilize state evolution (SE) to describe the dynamical
behavior of the recursion process described in Eq. 16 to Eq.
18.

Taking xo as the original image and defining the errors of
the k-th iterative results as

qk =xk − xo (19)

hk =xk + vk − xo, (20)
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we can obtain the error recursion formulated as

hk =(I − ΦΦT)qk + γk−1(hk−1 − qk−1), (21)

σ̂k =G(xo + hk), (22)

qk+1 =Pσ̂k(xo + hk)− xo, (23)

which provides a convenient means for analysis of the interme-
diate MSE. Let θk and σk be the standard deviations of qk and
hk, respectively. Then if Φ has i.i.d. entries and m,n → ∞,
SE refers to the following recursion process [25], [38],

(σk)
2

=
n

m
(θk−1)

2
, (24)

σ̂k =G(xo + σkε) (25)

(θk)
2

=
1

n
Eε{‖Pσ̂k(xo + σkε)− xo‖2}, (26)

where ε ∼ N(0, 1) is independent of xo. In other words, the
empirical intermediate MSE can be estimated by SE [39], i.e.,

1

n
‖Pσ̂k(xo+h

k)−xo‖ ≈
1

n
Eε{‖Pσ̂k(xo+σ

kε)−xo‖2}. (27)

B. SE with ideal noise level

We first define the denoising level, µ(Pσ̂, σ), of denoiser
Pσ̂(·) for a certain noise level σ,

sup
xo∈C

Eε‖Pσ̂(xo + σε)− xo‖2

nσ2
= µ(Pσ̂, σ), (28)

where C is a set of natural images.
Assume that we can obtain the ground-truth value σk of

each intermediate result (xo + hk) through an ideal noise-
level estimator, and that we can tune or choose the parameters
of the denoiser based on σk. Then, according to Eq. 26 and
Eq 28, we have

(θk)
2

=
1

n
Eε{‖Pσk(xo + σkε)− xo‖2} ≤ µk · (σk)

2
, (29)

where µk = µ(Pσk , σ
k) is the denoising level of denoiser

Pσk(·) for noise level σk. Further, substituting Eq. 24 into
Eq. 29, we have

(θk)
2 ≤ n

m
µk · (θk−1)

2 ≤ (
n

m
)2(µk · µk−1) · (θk−2)

2
. (30)

Then, it is clear that

(θk)
2 ≤ (

n

m
)k(

k∏
i=0

µi)(σ0)
2

= (
n

m
)k(

k∏
i=0

µi)‖ΦTy‖2, (31)

if initializing x0 with zero vector. From Eq. 31, we can see
that a smaller denoising level µi can lead to a smaller upper
bound on the reconstructed MSE, guaranteeing the accuracy
of the final reconstructed results.

C. SE with estimated noise level

For the real implementation of the iterative process, we can-
not obtain the ground-truth value of the noise level. However,
the following two properties still hold for the iterative process
using an estimated noise level:

1) Better noise-level estimation leads to better CS recovery;
2) Better denoiser leads to better CS recovery.

DRCAN+ideal noise level

DRCAN+PRN

DRCAN+RRN

DRCAN+ideal noise level

BM3D+ideal noise level

DnCNN+ideal noise level

(a) (b)

Fig. 11. Denoising level curve comparisons. The X-coordinate represents
noise level σ, and the Y-coordinate represents the denoising level calculated
by maxxo∈C

Eε‖Pσ̂(xo+σε)−xo‖2
nσ2 , where C is the union of Set8 and

Waterloo140. (a) Denoising level curve of DRCAN with different noise-level
estimators; (b) Denoising level curve of different denoisers with the ideal
noise-level estimator.

For the first property, since Eq. 15 optimizes the parameters of
Pσ for the noise level σ, Pσ̂ exhibits a degraded performance
compared with Pσ if dealing with xo + σε and σ 6= σ̂, i.e.,

Eε(‖Pσ(xo+σε)−xo‖2) ≤ Eε(‖Pσ̂(xo+σε)−xo‖2), (32)

Considering Eq. 28 and Eq. 32, we have µ(Pσ, σ) ≤ µ(Pσ̂, σ).
Further, considering Eq. 31, we have

(
n

m
)k(

k∏
i=0

µ(Pσi , σ
i))‖ΦTy‖2 ≤ (

n

m
)k(

k∏
i=0

µ(Pσ̂i , σ
i))‖ΦTy‖2,

(33)
which means that an accurate noise-level estimator can lead to
a smaller upper bound of reconstructed MSE. For the second
property, let P 1

σ̂ be a denoiser which is better than P 2
σ̂ in the

following sense:

Eε(‖P 1
σ̂ (xo+σε)−xo‖2) ≤ Eε(‖P 2

σ̂ (xo+σε)−xo‖2), (34)

from which we have µ(P 1
σ̂ , σ) ≤ µ(P 2

σ̂ , σ). Similar to the
first property, the second property also holds. Thus, one can
improve CS reconstruction performance based on these two
properties.

Our method achieves an accurate noise-level estimator and
efficient image denoiser by exploiting the elaborately designed
residual-regressive net and the dilated residual channel atten-
tion net. Fig. 11 (a) illustrates the denoising level curves of the
proposed DRCAN with different noise-level estimators, and
Fig. 11 (b) illustrates the denoising level curves of different
denoisers with the ideal noise-level estimator (i.e. the ground-
truth noise-level value). PRN involves using a plain regressive
net to estimate noise level and has a structure similar to RRN
but without the residual operation, which revises Eq. 11 into
σ̂k = R1(R2((xk − αvk))). Fig. 11 shows that the designed
RRN and DRCAN can achieve a promising denoising level
curve. The denoising level curve when using RRN is almost
coincident with that when using the ideal noise level, while
the curve when using PRN is only coincident with the ideal
curve at high noise levels and is above the ideal curve at low
noise levels, meaning that the plain structure has a relatively
poor ability to estimate faint noise levels.
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Animal Cityscape Human Landscape

Plant Still-life Transportation

Fig. 12. Samples of test images from the Waterloo140 dataset [40].

Fig. 13. Eight standard test images (Set8).

TABLE II
COMPARISON OF AVERAGE PSNR RESULTS WITH HAND-CRAFTED

METHODS ON SET8 AND WATERLOO140 DATASETS.

Datasets Methods Sampling Ratio
0.05 0.1 0.15 0.2 0.25 0.3

Set8

BCS-SPL 23.01 25.07 26.51 27.67 28.57 29.46
TV-CS 24.04 27.69 29.60 31.01 32.23 33.51

NLR-CS 26.86 31.04 33.46 35.69 37.30 38.06
BM3D-CS 26.52 31.38 33.54 35.22 36.68 37.99

DRCAN+RRN 29.56 33.03 35.20 36.74 37.90 39.21
DRCAN+RRN+ 29.69 33.12 35.32 36.84 38.03 39.36

Waterloo-140

BCS-SPL 22.11 23.74 24.82 25.70 26.49 27.25
TV-CS 22.47 25.37 27.03 28.35 29.53 30.67

NLR-CS 24.57 27.38 29.41 31.19 32.68 33.52
BM3D-CS 24.22 27.72 30.00 31.78 33.32 34.72

DRCAN+RRN 26.21 29.67 31.77 33.55 35.03 36.47
DRCAN+RRN+ 26.45 29.76 31.84 33.82 35.11 36.71

V. EXPERIMENTAL RESULTS

In this section, we provide a performance evaluation of the
proposed image CS reconstruction method. We first describe
the datasets for experiments and the parameter settings for
the network training. We then compare the proposed method
with state-of-the-art CS reconstruction methods. After that, we
analyze the contribution of each component in the proposed
method through the use of ablation experiments. Next, we
provide the computational time of the proposed method.
Finally, we test our method on noisy data.

A. Experimental Setting

1) Dataset: To train the proposed models, we collect a
large dataset including 500 images from Berkeley’s BSD-

500 datasets [41], 900 images from the DIV2K dataset [42],
and 20,000 randomly selected images from the ImageNet
database [43]. For all models, we crop training patches as
192 × 192, adding image rotation and flipping operations.
To evaluate all competing methods, we use 2 datasets. One
test dataset contains 140 images of size 256 × 256 from the
Waterloo Exploration Database [40], as shown in Fig. 12,
which are broadly grouped into 7 categories (20 images in
each class): human, animal, plant, landscape, cityscape, still-
life, and transportation. Another test dataset contains 8 widely
used standard images of size 256× 256, as shown in Fig. 13.
Note that none of those test images are included in the training
dataset, and all images are converted to grayscale.

2) Training and Testing: All the training and testing pro-
cesses were carried out on a PC with an Intel i5 CPU and
Nvidia RTX 2070 GPU. We use PyTorch to train the designed
networks, including 60 epochs. The ADAM optimizer was
used to train the network with settings β1 = 0.9, β2 = 0.999,
and ε = 10−8. The learning rate was initialized as 10−4 and
halved every 10 epochs. It takes approximately one day to train
the noise-level estimation net G(·) and one learned proximal
operator Pσ(·) for a certain range of noise levels σ. For the
testing process, we restrict the model to 20 iterations, take α
as 1, and set the number of image subspaces to 17.

B. Comparison with State-of-the-Art Methods

In this subsection, we first compare the performance of
the proposed method with some hand-crafted CS image re-
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TABLE III
COMPARISON OF PSNRS WITH DEEP-BASED METHODS ON SET8

DATASET.

Images Methods Sampling Ratio
0.01 0.05 0.10 0.20 0.30 0.40 0.50

Barbara

ISTA-Net 18.38 21.20 23.51 24.97 29.87 32.85 35.49
ISTA-Net+ 18.53 21.61 23.52 26.72 30.13 33.98 36.65

CSNet+ 21.77 23.76 24.41 26.69 31.22 34.72 38.26
SCSNet 21.80 23.73 24.43 26.84 31.43 35.16 38.58

OPINE-Net+ 20.98 23.53 24.73 27.52 32.17 35.45 39.47
AMP-Net 21.05 23.79 24.76 28.79 33.53 37.12 39.87
LDAMP 19.72 22.89 25.99 32.79 36.03 37.97 39.15

DRCAN+RRN 20.34 25.75 29.91 34.65 36.76 38.81 40.61
DRCAN+RRN+ 16.46 26.05 30.10 34.92 36.86 38.95 40.91

Boat

ISTA-Net 18.47 23.32 27.27 29.09 34.60 37.05 39.39
ISTA-Net+ 18.51 23.73 27.41 31.28 35.22 37.84 39.91

CSNet+ 21.98 27.26 29.98 33.40 35.84 38.03 40.38
SCSNet 22.02 27.23 30.11 33.57 36.30 38.62 40.97

OPINE-Net+ 21.14 27.24 30.94 33.90 36.82 39.23 42.23
AMP-Net 21.23 27.64 30.69 34.66 37.60 40.17 42.15
LDAMP 19.33 25.60 30.17 34.81 37.92 39.89 41.28

DRCAN+RRN 21.14 27.96 32.00 36.09 38.70 40.66 41.83
DRCAN+RRN+ 18.15 28.03 32.09 36.15 38.89 40.87 42.40

Camera
-man

ISTA-Net 17.26 20.52 23.46 25.15 30.04 32.09 34.01
ISTA-Net+ 17.32 20.99 23.76 27.25 30.35 32.36 34.32

CSNet+ 20.32 23.46 25.57 28.63 30.71 32.47 34.03
SCSNet 20.38 23.62 25.71 28.53 30.65 32.38 34.34

OPINE-Net+ 19.99 23.96 26.88 29.56 31.58 33.60 36.18
AMP-Net 19.99 24.15 26.84 29.45 32.47 34.40 36.32
LDAMP 17.96 24.92 29.10 32.12 33.36 37.57 38.85

DRCAN+RRN 20.73 27.23 30.09 34.03 36.72 39.61 41.66
DRCAN+RRN+ 18.81 27.47 30.37 34.12 37.02 39.64 41.80

Foreman

ISTA-Net 20.21 26.52 32.78 32.98 39.17 41.38 43.12
ISTA-Net+ 20.34 27.46 33.49 36.95 40.22 42.30 44.18

CSNet+ 26.77 32.37 35.04 38.66 40.59 42.18 43.74
SCSNet 26.74 32.31 35.17 38.46 40.82 42.66 44.33

OPINE-Net+ 23.89 31.19 36.64 38.92 41.11 43.14 45.98
AMP-Net 23.72 32.53 35.32 39.25 41.45 43.47 45.32
LDAMP 23.74 34.18 36.80 40.00 42.26 43.67 44.66

DRCAN+RRN 28.46 34.91 37.93 40.53 42.87 44.64 46.02
DRCAN+RRN+ 12.34 35.05 37.93 40.67 42.98 44.85 46.20

House

ISTA-Net 19.80 24.90 30.13 31.54 36.41 38.04 39.66
ISTA-Net+ 20.00 25.84 30.49 34.27 37.07 38.64 40.33

CSNet+ 24.14 30.07 32.60 35.39 37.90 39.54 41.89
SCSNet 24.18 30.15 32.69 35.55 37.92 39.81 42.20

OPINE-Net+ 22.10 29.90 34.03 36.35 38.20 39.70 42.07
AMP-Net 23.07 30.51 34.09 37.13 38.77 40.41 43.03
LDAMP 22.37 32.71 34.73 37.23 39.19 40.51 42.04

DRCAN+RRN 26.65 33.79 36.00 38.12 40.11 41.90 43.47
DRCAN+RRN+ 14.51 33.89 36.03 38.16 40.16 42.00 43.66

Lena

ISTA-Net 18.29 23.28 27.44 28.72 33.19 35.61 37.88
ISTA-Net+ 18.54 23.99 27.50 30.58 33.74 36.13 38.46

CSNet+ 22.43 26.87 29.19 32.26 34.86 37.17 39.19
SCSNet 22.41 26.86 29.29 32.36 35.22 37.66 39.90

OPINE-Net+ 21.34 26.95 30.09 33.06 35.81 38.05 40.82
AMP-Net 21.36 27.18 29.86 33.38 36.35 38.77 41.02
LDAMP 19.60 27.61 31.44 36.39 39.18 41.10 42.27

DRCAN+RRN 22.25 28.67 32.87 36.95 39.72 41.95 43.84
DRCAN+RRN+ 21.14 28.89 32.90 37.02 39.86 42.10 43.94

Monarch

ISTA-Net 14.99 20.26 25.58 27.17 34.04 36.96 39.56
ISTA-Net+ 15.01 20.52 25.72 30.29 34.80 37.69 40.22

CSNet+ 18.07 25.55 28.58 32.76 35.06 37.06 38.84
SCSNet 18.05 25.52 28.88 32.86 35.58 37.91 40.01

OPINE-Net+ 17.63 25.43 29.94 33.25 36.23 38.46 41.62
AMP-Net 17.62 25.94 29.71 34.08 37.10 39.53 41.74
LDAMP 15.50 24.67 29.88 34.75 38.38 40.66 42.25

DRCAN+RRN 18.14 26.95 31.04 35.86 38.74 41.06 42.65
DRCAN+RRN+ 16.75 27.04 31.05 35.77 38.89 41.31 43.17

Parrot

ISTA-Net 17.90 22.25 26.21 28.12 32.60 35.02 36.84
ISTA-Net+ 18.06 22.97 26.37 30.09 32.91 35.31 37.26

CSNet+ 22.23 25.61 28.11 31.34 33.84 36.09 38.20
SCSNet 22.30 25.46 28.10 31.29 34.13 36.41 38.26

OPINE-Net+ 21.02 25.92 29.34 32.50 35.21 37.45 39.83
AMP-Net 21.23 22.87 29.20 30.06 35.85 38.22 40.30
LDAMP 20.40 30.29 33.27 37.23 39.62 41.39 42.73

DRCAN+RRN 23.02 30.98 34.40 37.73 40.10 41.52 43.21
DRCAN+RRN+ 21.48 31.12 34.46 37.88 40.19 42.05 43.65

Average

ISTA-Net 18.16 22.78 27.05 28.47 33.74 36.12 38.24
ISTA-Net+ 18.29 23.39 27.28 30.93 34.31 36.78 38.92

CSNet+ 22.21 26.87 29.19 32.39 35.00 37.16 39.32
SCSNet 22.23 26.86 29.30 32.43 35.26 37.58 39.82

OPINE-Net+ 21.01 26.76 30.32 33.13 35.89 38.13 41.02
AMP-Net 21.16 26.83 30.06 33.35 36.64 39.01 41.22
LDAMP 19.83 27.86 31.42 35.67 38.24 40.35 41.65

DRCAN+RRN 22.58 29.56 33.03 36.74 39.21 41.19 42.91
DRCAN+RRN+ 17.46 29.69 33.12 36.84 39.36 41.47 43.22

construction methods (including BCS-SPL [24], TV-CS [44],
NLR-CS [28], and BM3D-CS [27]) at different sampling ratios

TABLE IV
COMPARISON OF AVERAGE PSNRS WITH DEEP-BASED METHODS ON

WATERLOO140 DATASET.

Images Methods Sampling Ratio
0.01 0.05 0.10 0.20 0.30 0.40 0.50

Animal

ISTA-Net 18.56 23.09 26.41 28.08 32.19 34.44 36.59
ISTA-Net+ 18.66 23.50 26.51 29.70 32.62 34.84 37.04

CSNet+ 22.65 26.55 28.61 31.85 34.23 36.38 38.30
SCSNet 22.68 26.55 28.90 31.97 34.34 36.49 38.55

OPINE-Net+ 21.64 26.46 29.57 32.31 34.85 36.97 39.76
AMP-Net 21.75 25.90 29.49 31.27 35.48 37.80 39.99
LDAMP 20.81 25.82 28.63 32.86 35.65 38.19 40.20

DRCAN+RRN 21.95 26.75 29.85 33.57 36.60 38.83 40.91
DRCAN+RRN+ 20.39 26.87 29.92 33.80 36.72 39.24 41.61

City
-scape

ISTA-Net 16.78 20.43 23.69 25.22 30.15 32.69 35.01
ISTA-Net+ 16.91 20.82 23.89 27.25 30.78 33.16 35.59

CSNet+ 20.18 23.62 25.74 28.66 31.00 33.04 34.97
SCSNet 20.19 23.68 25.94 28.82 31.19 33.34 35.45

OPINE-Net+ 19.42 23.74 26.92 29.50 32.14 34.55 37.72
AMP-Net 19.69 23.80 26.76 29.25 33.02 35.43 37.63
LDAMP 17.75 23.44 27.05 31.64 34.62 37.03 39.03

DRCAN+RRN 19.87 25.52 29.16 32.94 36.09 38.45 40.63
DRCAN+RRN+ 18.94 25.76 29.25 33.18 36.27 39.02 41.47

Human

ISTA-Net 17.14 22.06 26.05 27.80 33.38 36.09 38.54
ISTA-Net+ 17.20 22.42 26.21 30.16 34.11 36.72 39.18

CSNet+ 20.96 25.35 27.69 31.35 33.95 36.32 38.20
SCSNet 20.99 25.39 28.12 31.66 34.33 36.59 38.62

OPINE-Net+ 20.53 25.86 29.69 32.92 35.86 38.16 41.30
AMP-Net 20.68 25.28 29.38 31.54 36.43 38.81 40.89
LDAMP 18.41 25.30 29.69 34.19 37.39 39.91 41.54

DRCAN+RRN 20.02 26.49 31.03 35.09 38.51 40.91 42.98
DRCAN+RRN+ 18.18 27.05 31.14 35.71 38.74 41.42 43.83

Land
-scape

ISTA-Net 19.48 22.95 25.63 26.74 30.04 31.91 33.74
ISTA-Net+ 19.81 23.50 25.75 28.21 30.42 32.16 34.01

CSNet+ 23.51 26.35 27.96 30.20 31.98 33.60 35.21
SCSNet 23.51 26.42 28.05 30.22 32.04 33.71 35.36

OPINE-Net+ 22.20 25.94 28.31 30.33 32.23 33.94 36.18
AMP-Net 22.23 26.18 28.37 30.13 32.63 34.39 36.13
LDAMP 21.64 25.77 27.85 30.75 32.70 34.50 36.20

DRCAN+RRN 23.09 26.46 28.62 31.46 33.71 35.68 37.58
DRCAN+RRN+ 22.81 26.53 28.66 31.55 33.91 36.08 38.30

Plant

ISTA-Net 17.91 21.87 25.38 26.87 31.43 33.80 36.04
ISTA-Net+ 18.02 22.33 25.51 28.76 31.98 34.34 36.64

CSNet+ 21.61 25.38 27.46 30.79 33.11 35.26 37.02
SCSNet 21.62 25.38 27.70 30.93 33.36 35.46 37.29

OPINE-Net+ 20.64 25.30 28.62 31.49 34.10 36.19 39.04
AMP-Net 20.62 25.20 28.39 30.39 34.64 36.88 38.87
LDAMP 18.62 24.60 27.65 31.79 34.54 36.69 38.31

DRCAN+RRN 20.95 25.61 28.91 32.84 35.70 37.82 39.95
DRCAN+RRN+ 19.60 25.79 28.99 33.10 35.87 38.43 40.78

Still
-life

ISTA-Net 17.01 21.11 24.59 26.28 31.35 34.02 36.34
ISTA-Net+ 17.07 21.51 24.77 28.38 31.93 34.37 36.83

CSNet+ 20.64 24.50 26.69 30.08 32.90 35.34 37.27
SCSNet 20.67 24.53 26.89 30.24 33.19 35.63 37.76

OPINE-Net+ 19.78 24.48 27.95 30.92 34.12 36.42 39.62
AMP-Net 19.98 24.06 27.71 30.05 34.73 37.27 39.43
LDAMP 18.42 24.31 27.88 32.84 35.92 38.24 40.20

DRCAN+RRN 20.19 25.90 29.63 34.09 37.19 39.53 41.52
DRCAN+RRN+ 18.29 26.17 29.75 34.42 37.53 40.16 42.49

Transpor
-tation

ISTA-Net 17.10 21.27 24.97 26.37 31.53 34.04 36.44
ISTA-Net+ 17.19 21.64 25.19 28.62 32.20 34.57 37.01

CSNet+ 20.59 24.32 26.56 29.65 31.83 33.84 35.61
SCSNet 20.59 24.38 26.79 29.76 32.05 34.03 36.00

OPINE-Net+ 20.06 24.74 28.22 30.93 33.59 35.82 39.06
AMP-Net 20.28 24.33 27.99 29.41 34.19 36.57 38.75
LDAMP 18.57 24.90 28.76 33.27 36.16 38.68 40.52

DRCAN+RRN 20.55 26.82 30.47 34.69 37.49 39.95 42.01
DRCAN+RRN+ 19.03 27.01 30.59 34.95 37.90 40.62 43.02

Average

ISTA-Net 17.71 21.83 25.25 26.77 31.44 33.86 36.10
ISTA-Net+ 17.84 22.25 25.41 28.73 32.01 34.31 36.61

CSNet+ 21.45 25.15 27.24 30.37 32.71 34.83 36.65
SCSNet 21.46 25.19 27.48 30.52 32.93 35.04 37.00

OPINE-Net+ 20.61 25.22 28.47 31.20 33.84 36.01 38.95
AMP-Net 20.75 24.97 28.30 30.29 34.45 36.74 38.81
LDAMP 19.18 24.88 28.22 32.48 35.28 37.60 39.43

DRCAN+RRN 20.95 26.21 29.67 33.55 36.47 38.74 40.80
DRCAN+RRN+ 19.61 26.45 29.76 33.82 36.71 39.28 41.64

using a randomly scrambled block Bernoulli matrix (SBBM).
SBBM belongs to structurally random matrices and maintains
the mutual coherence property [45].

We denote the proposed method as ’DRCAN+RRN’ and
the proposed method with a self-ensemble strategy as ’DR-
CAN+RRN+’. Table II provides the average PSNR results
of the competing methods on the Set8 and Waterloo140
datasets, in which we highlight the best results in bold. From
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TABLE V
COMPARISON OF AVERAGE PSNR RESULTS ON THE TEST DATASET USING

RANDOMLY PERMUTED CODED DIFFRACTION MEASUREMENTS.

Images Methods Sampling Ratio
0.05 0.10 0.20

Se8

BM3D-CS [27] 26.48 32.82 37.28
LDAMP [18] 29.31 33.84 38.79

ADMM-Net [12] 28.27 32.64 37.85
DRCAN+RRN 31.49 35.84 40.55

Waterloo
-140

BM3D-CS [27] 24.13 28.81 33.54
LDAMP [18] 25.99 30.69 36.88

ADMM-Net [12] 25.87 29.67 35.04
DRCAN+RRN 28.16 32.53 37.93

Table II, one can see that our method significantly outperforms
the compared hand-crafted methods with all sampling ratios.
Specifically, our method outperforms NLR-CS and BM3D-
CS by 2.29 dB and 1.95 dB on the Waterloo140 dataset at a
sampling ratio of 0.10.

We further compare our method with some advanced deep-
based CS image reconstruction methods (including ISTA-
Net+ [11], CSNet+ [46], SCSNet [15], OPINE-Net+ [47],
AMP-Net [13], and LDAMP [18]) on the Set8 and Water-
loo140 datasets. Table III provides the PSNR values of the
competing methods for every image in Set8, and Table IV lists
the average PSNR results of seven classes of Waterloo140.
From Table III and Table IV, one can see that the proposed
method achieves the best performance in most sampling ratio
cases, even without self-ensembles. For instance, the proposed
method outperforms LDAMP by 1.61 dB and 1.45 dB at a
sampling ratio of 0.10 for the Set8 and Waterloo140 datasets,
respectively.

In addition to randomly scrambled block Bernoulli measure-
ments, we also evaluated our method on the testing dataset
with 0.05, 0.10, and 0.20 sampling ratios using randomly per-
muted coded diffraction measurements. Table V provides the
average PSNR results for testing images, which indicate that
our method outperforms the compared methods. Specifically,
our method outperforms LDAMP and ADMM-Net by 1.76 dB
and 2.70 dB on the Set8 dataset at a sampling ratio of 0.20.

To facilitate the evaluation of subjective qualities, Fig. 14
presents the parts of reconstructed images. The zoomed por-
tions show that the reconstruction quality of the proposed
method can restore sharper details with fewer artifacts. In
particular, using the self-ensemble strategy can further enhance
some edge details that are hard to restore. All of these testing
results indicate that our method surpasses the existing state-of-
the-art image CS reconstruction methods both in quantitative
results and perceptual quality.

C. Ablation Studies

1) Ablation Studies with Different Convolution Kernels:
To verify the effects of the designed DRCAN, we modify the
baseline designed network and compare their reconstruction
performance. We mainly test the effects of dilatation convolu-
tion, convolution kernel size, and the number of subspaces on
the reconstructed performance. Comparing the 4th column and
the 7th column of Table VI, one can see that using dilation
convolution can achieve relatively high PSNR improvement at

TABLE VI
COMPARISON OF AVERAGE PSNR RESULTS ON THE TEST DATASET USING

DIFFERENT CONVOLUTION KERNELS AND SUBSPACE NUMBERS.

Images
w/o Dilation use not use use use use
kernal size 3x3 5x5 5x5 5x5 5x5

subspace no. 17 17 2 10 17

Set8

0.05 29.05 29.36 21.39 29.46 29.56
0.10 32.36 32.85 22.22 32.96 33.03
0.15 34.60 35.16 25.06 35.11 35.20
0.20 36.33 36.71 27.54 36.66 36.74
0.25 37.70 37.89 28.83 37.89 37.90
0.30 38.87 39.16 29.59 39.15 39.21

Waterloo
-140

0.05 25.90 26.14 20.40 26.15 26.21
0.10 29.15 29.50 21.49 29.46 29.67
0.15 31.37 31.76 24.02 31.71 31.77
0.20 33.13 33.54 26.26 33.50 33.55
0.25 34.62 35.01 27.48 35.01 35.03
0.30 35.94 36.35 28.29 36.36 36.47

a low sampling ratio and insignificant improvement at a high
sampling ratio, with an approximately 0.20 dB gain at a 0.05
sampling ratio and only a 0.05 dB gain at a 0.30 sampling
ratio for Set8. Further comparing the 3rd column and the 7th
column, one can see that the convolution kernel with 5 × 5
size achieves a more stable improvement than the kernel with
3×3 size both at low and high sampling ratios. Considering the
trade-off between the computational burden and reconstruction
performance, we choose the convolution kernel size as 5× 5.

2) Ablation Studies with different Subspace Numbers:
In our iterative CS reconstruction method, the intermediate
corrupted images are attributed to some subspace based on the
measured distortion distances. Considering that each subspace
has its own individual-learned proximal operator mapping the
noisy image to clean image sets, more subspaces can achieve
better learned proximal operators and vice versa. To verify
the effectiveness of the number of subspaces, the 5th, 6th,
and 7th columns of Table VI provide the PSNR results of
the proposed method with the same settings except for the
subspace number. We can see that increasing the subspace
number from 2 to 10 brings a notable gain of approximately
5.75 dB, while increasing the subspace number from 10 to
17 spaces brings a gain of approximately 0.06 dB at a 0.05
sampling ratio for Waterloo140. Considering that a subspace
number larger than 17 would only bring a gain of less than
0.06 dB, we choose the number of subspaces as 17.

3) Ablation Studies on Network Components: We further
remove some core components from the DRCAN and RRN
baseline designs to verify their impact on CS reconstruction
performance. The original DRCAN contains two residual
channel attention blocks (RCABs), and each RCAB further
contains 8 channel attention layers. For the ablation study of
DRCAN, we can reduce the number of RCABs in DRCAN
to one and obtain the DRCAN(1B) architecture. Additionally,
we remove the channel attention operation in CAL and obtain
the DRCAN with no channel attention, dubbed DRCAN(NC).
For the ablation study of RRN, we construct a plain regressive
net, which has the same structure as RRN except without
residual operation. Table VII provides the average PSNRs
of the different combinations of noise-level estimators and
denoisers, from which we can see that the 2-RCAB structure
using channel attention (i.e. DRCAN) achieves approximately
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(a) (b) 29.85dB (c) 30.24 dB (d) 27.27 dB (e) 27.41 dB (f) 29.98

(g) 30.11 dB (h) 30.94 dB (i) 30.69 dB (j) 30.17 dB (k) 32.00 dB (l) 32.09 dB

Fig. 14. Reconstructed boat at sampling ratio 0.1 using Bernoulli measurements. (a) Original image; (b) NLR-CS [28]; (c) BM3D-CS [27]; (d) ISTA-Net [11];
(e) ISTA-Net+ [11]; (f) CSNet+ [46]; (g) SCSNet [15]; (h) OPINE-Net+ [47]; (i) AMP-Net [13]; (j) LDAMP [18]; (k) DRCAN+RRN; (l) DRCAN+RRN+.

TABLE VII
AVERAGE PSNR COMPARISONS USING DIFFERENT COMBINATIONS OF NOISE-LEVEL ESTIMATORS AND DENOISERS ON SET8 AND WATERLOO140.

Images Methods Sampling Ratio
0.01 0.05 0.10 0.20 0.30 0.40 0.50

Set8

DRCAN(1B)+RRN 22.15 28.73 31.68 35.52 38.00 39.08 40.44
DRCAN(NC)+RRN 22.54 29.41 32.22 36.25 38.39 38.93 39.52

DRCAN+PRN 22.57 28.93 31.43 34.81 38.40 40.96 42.17
DRCAN+RRN 22.58 29.56 33.03 36.74 39.21 41.19 42.91

Waterloo
-140

DRCAN(1B)+RRN 20.78 25.83 28.74 32.45 34.92 36.75 38.31
DRCAN(NC)+RRN 20.94 26.17 29.25 32.94 35.19 36.69 37.98

DRCAN+PRN 20.92 26.14 28.73 32.25 35.43 37.82 38.90
DRCAN+RRN 20.95 26.21 29.67 33.55 36.47 38.74 40.80

TABLE VIII
AVERAGE PSNR RESULTS ON THE TEST DATASETS USING DNCNN AND DRCAN COMBINED WITH DIFFERENT NOISE-LEVEL ESTIMATORS.

Datasets Methods
Sampling Ratio

0.1 0.2 0.3
Bernoulli Diffraction Bernoulli Diffraction Bernoulli Diffraction

Set8

DnCNN+ ‖v
k‖2√
n

31.42 33.84 35.67 38.79 38.24 42.36
DnCNN+RRN 31.67 34.10 35.71 38.85 38.70 42.70

DRCAN+ ‖v
k‖2√
n

32.76 35.62 36.57 40.15 39.03 43.33
DRCAN+RRN 33.03 35.84 36.74 40.55 39.21 43.59

Waterloo-140

DnCNN+ ‖v
k‖2√
n

28.22 30.69 32.48 36.88 35.28 40.39
DnCNN+RRN 28.63 31.10 32.73 36.49 35.44 40.56

DRCAN+ ‖v
k‖2√
n

29.57 32.42 33.06 37.17 35.87 41.71
DRCAN+RRN 29.67 32.53 33.55 37.93 36.47 42.05

TABLE IX
AVERAGE PSNR AND RUNNING TIME(SECONDS) COMPARISON OF DIFFERENT IMAGE SIZES.

Methods PSNR(dB) / Times(s)
128x128 256x256 512x512 1024x1024

Hand
-crafted

BCS-SPL 20.94/3.403 21.87/6.101 22.65/26.613 23.46/86.311
TV-CS 20.35/33.383 21.26/108.149 21.92/418.571 22.56/1644.189

NLR-CS 20.00/37.701 20.66/145.909 21.15/597.557 21.64/2466.751
BM3D-CS 26.78/2.184 30.38/8.895 32.31/37.754 34.63/154.466

Deep
-based

ISTA-Net+ 25.62/0.004 28.01/0.005 30.10/0.005 32.34/0.006
CSNet+ 27.59/0.021 29.29/0.29 31.08/0.073 33.36/0.235
SCSNet 27.94/0.02 29.55/0.03 31.22/0.102 33.50/0.377

OPINE-Net+ 28.85/0.006 31.11/0.008 32.99/0.008 35.64/0.009
AMP-Net 28.02/0.027 29.93/0.031 31.95/0.076 34.80/0.253
LDAMP 26.81/0.388 30.94/0.512 32.70/1.035 35.12/3.352

DRCAN+RRN 28.95/0.652 31.70/0.921 33.44/2.232 35.67/6.185
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Fig. 15. Iteration PSNRs (dB) of the reconstructed images at a sampling ratio of 0.1. The Y-coordinate represents the average PSNRs of the reconstructed
images, and the X-coordinate represents the iteration number.

0.93 dB and 0.42 dB boosts versus the 1-RCAB structure
(i.e. DRCAN(1B)) and no-channel attention structure (i.e. DR-
CAN(NC)) at 0.10 sampling ratio. Replacing PRN with RRN
achieves approximately 0.94 dB boosts at a 0.10 sampling
ratio for the Waterloo140 dataset. All of these results show
the effectiveness of the designed networks.

4) Ablation Studies using different Noise-Level estimators:
In our iterative CS reconstruction method, noise level esti-
mation is a crucial step that determines the parameters of the
adopted denoiser. Under the assumption of xk and vk in Eq. 18
being the pure clean image and noise [18], [39], traditional
methods utilize the intermediate feature ‖v

k‖2√
n

to estimate the
noise level, ignoring the noise component in the intermediate
result xk. Table VIII presents the average CS reconstructed
PSNR of methods that combine DnCNN and DRCAN with
different noise-level estimators. Note that DnCNN+‖v

k‖2√
n

is
similar to the LDAMP method described in [18]. Comparing
DnCNN+RRN and DnCNN+‖v

k‖2√
n

, one can see that simply

replacing the noise estimator of LDAMP from ‖vk‖2√
n

with
RRN brings about 0.25 dB and 0.41 dB improvement for
the Set8 and Waterloo140 datasets at a 0.10 sampling ratio.
Fig. 15 shows the iterative reconstructed PSNR results of
different combinations, from which one can also see that
DRCAN+RRN includes a better and more stable reconstructed
iterative process.

D. Computational Time with Different Image Resolutions

Here, we compare the computational time of CS recon-
struction algorithms using different image resolutions. We
randomly selected five 1024×1024-sized images from the Im-
ageNet dataset which are not contained in the training set. We
then obtained their corresponding images of sizes 512× 512,
256×256, and 128×128 by bicubic downsampling. Table IX
presents the average computational time and reconstructed
PSNR of test images. The proposed method can achieve the
best PSNR results for all image resolutions. Additionally,

(a) (b) 27.28 dB (c) 25.24 dB

(d) 28.55 dB (e) 28.61 dB (f) 28.09 dB

(g) 28.19 dB (h) 30.79 dB (i) 31.31 dB

Fig. 16. Reconstructed Lena from noisy measurements at a 0.3 sampling
ratio. (a) Original image; (b) Noisy image; (c) ISTA-Net+; (d) CSNet+; (e)
SCSNet; (f) OPINE-Net+; (g) AMP-Net; (h) LDAMP; (i) DRCAN+RRN.

one can see that end-to-end deep-based CS reconstruction
algorithms (e.g., ISTA-Net+, CSNet+, SCSNet, and OPINE-
Net+) run faster than plug-and-play algorithms (e.g., LDAMP
and Proposed), and the running time of all methods rises as
the image size increases.

E. Performance on Noisy Data

Here, we conduct image CS reconstruction from noisy CS
measurements to demonstrate the robustness of the proposed
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Fig. 17. PSNRs (dB) of the reconstructed images from noisy measurements at sampling ratio 0.3. The Y-coordinate represents the PSNRs of the reconstructed
images, and the X-coordinate represents the PSNRs of the measured noisy images.

method with respect to noise. In this case, we distort the CS
measurements by corrupting the original images with different
levels of Gaussian noise. The measurement ratio is fixed at
0.30, and measured images with PSNRs between 23.50 dB
and 42.08 dB are generated by varying the standard deviation
of the Gaussian noise added to the original image. Fig. 17
presents the average PSNR results for various noise levels for
different algorithms. This demonstrates that the reconstruction
performance degrades for all competing methods as the noise
level increases, while our method is less affected by noise.
Fig. 16 shows the reconstructed Lena from noisy measure-
ments. Both PSNR and subjective quality comparison results
show the efficiency and robustness of the proposed method in
the presence of noise.

VI. CONCLUSION

In this paper, we have developed a novel framework for
image CS reconstruction based on learned regularization and
proximal operators. The proposed framework leverages the
PMGD algorithm to solve the CS optimization problem and
utilizes the elaborately designed residual-regressive net and
the dilated residual channel attention net to simulate the
regularization term and proximal operator, respectively. Mean-
while, we partition the image into multi-subspaces, where
each subspace has its own proximal operator mapping images
contained in the subspace into the clean subspace. Further-
more, we introduce the self-ensemble strategy to improve CS
reconstruction performance. State evolution analysis indicates
the effectiveness of the designed networks. Experimental re-
sults also demonstrated that the proposed method outperforms
existing state-of-the-art NLR-CS and LDAMP algorithms in
terms of PSNR and visual perception with both noiseless and
noisy settings.

Regarding our future work, one interesting topic is to design
a more powerful deep architecture by using U-net structure,

dense connection, self-attention strategy, and other deep net-
work techniques. This will address the research gap pertaining
to the performance of the developed strategy proportions with
respect to the representation ability of the deep net for the
proximal operator. Another promising direction is to apply the
proposed framework in CS-based applications, such as image
encryption, fast MRI, snapshot imaging, etc.
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