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Abstract  

Spatial disorientation is one of the earliest and most distressing symptoms seen in 

Alzheimer’s disease (AD) patients, and is associated with impairments to the spatial 

navigation domain. Although investigated from a virtual reality (VR) and real-world (RW) 

perspective, very little is known about the extent to which spatial navigation impairments in 

VR environments and whether any navigation-related factors associated with the outdoor 

environment relate to patients’ risk for experiencing spatial disorientation in the community.  

The aim of this thesis is to study the role of spatial navigation impairments and the outdoor 

environment in contributing to spatial disorientation in AD. In the experimental Chapters 2 

and 3, using police case records of dementia-related missing incidents, we show that 

increased outdoor landmark density and complex road network structure are potential 

environmental risk factors for spatial disorientation. In the experimental Chapter 4, using 

GPS tracking, we show that spatial disorientation has a negative impact on the outdoor 

mobility patterns of AD patients in the community. Lastly, in the experimental Chapter 5, we 

show that although AD patients exhibit spatial navigation impairments in both VR and RW 

settings, VR navigation tests did not predict patients that are at a high risk for experiencing 

spatial disorientation in the community. Our work offers insight into RW factors associated 

with spatial disorientation in AD and highlights the importance of relating VR navigation 

impairments of patients to their spatial disorientation in the community. Furthermore, our 

results also provide a platform for future studies to study and build a cognitive and 

demographic profile for patients at a high risk for experiencing spatial disorientation in the 

community.  
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Chapter 1  

General Introduction 

Published Paper 

Puthusseryppady V, Emrich-Mills L, Lowry E, Patel M, Hornberger M. Spatial 

Disorientation in Alzheimer’s Disease: The Missing Path From Virtual Reality to Real 

World. Frontiers in Aging Neuroscience. 2020;12. 

1.1 Introduction  

Spatial navigation, along with episodic memory, is one of the earliest cognitive domains to be 

impaired in Alzheimer’s disease (AD), resulting in affected individuals experiencing spatial 

disorientation [1]. Spatial disorientation is defined as moments where AD patients are unsure 

about their whereabouts and unable to navigate to an intended location [2]. It manifests 

behaviourally as patients making navigation errors when out in the community, which in turn 

can lead to a risk of them going missing in both unfamiliar and familiar environments [3].  

It has been reported that up to 70% of dementia patients experience at least one missing 

incident over the course of the disease, with some even at risk for experiencing multiple 

missing incidents [4,5]. At present, it is estimated that there are approximately 40,000 

dementia patients that go missing for the first time every year in the United Kingdom (UK) - 

a figure that is likely to grow in the coming years with the projected increase in the dementia 

population worldwide [6,7]. The occurrence of missing incidents have consequences not only 

for the patients themselves, but also their carers and the wider community in which they live 

in. For patients, consequences of missing incidents can include suffering from a reduced 

sense of autonomy, an increase in their likelihood of being admitted to a care home by up to 

seven times, sustaining various injuries and even death in the worst cases [4,8]. Moreover, 

missing incidents can also increase carer stress/burden as well as trigger the increasing 

involvement of law enforcement groups (i.e., Police) and community search resources [9–

11]. Indeed, patients going missing in the community is so common and potentially 
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catastrophic in outcome that the Norfolk Police have developed the Herbert Protocol, which 

is a scheme used throughout the UK to help support the police in retrieving individuals once 

they have gone missing [12]. Due to these wide range of consequences, spatial disorientation 

is considered to be one of the most distressing symptoms seen in AD, in addition to being one 

of the earliest.   

In recent years, the concept of spatial disorientation in AD has increasingly been studied 

using novel virtual reality (VR) paradigms in laboratory and clinical settings. However, 

despite exciting new findings from the VR studies of spatial disorientation that highlight 

underlying impairments in the spatial navigation brain processes, very little is known about 

which real-world (RW) factors in the community may contribute to this symptom. 

Furthermore, the extent to which VR tests of spatial navigation correlate with AD patients 

experiencing spatial disorientation in the community is also unclear. The work in this thesis 

aims to address these knowledge gaps by investigating the role of spatial navigation 

impairments and factors associated with the outdoor environment in causing spatial 

disorientation in AD.  

The remainder of this chapter is organised as follows: We first introduce the current 

understanding of the underlying neuropathological causes of AD as well as the neural 

substrates of spatial navigation. We then examine VR studies of spatial disorientation which 

highlight how spatial navigation is affected in AD, and present evidence from RW studies of 

spatial disorientation, which relate more to demographic and situational risk factors for AD 

patients going missing in the community. We conclude this chapter by highlighting the 

missing link between the VR and RW studies, and how the work in this thesis will address 

this gap.   
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1.2 Alzheimer’s Disease  

Dementia is an umbrella term that refers to a set of symptoms including problems with 

memory, thinking, problem solving and language amongst others. Currently, it is estimated 

that there are over 850,000 people living with dementia in the UK, and with the increase in 

life expectancy, these rates are projected to increase to 1.5 million by 2040 [13].  

AD is a neurodegenerative disease that is the most common cause of dementia in individuals 

above 60 years of age [5]. It is characterised by the formation and deposition of toxic 

amyloid-beta (Aβ) protein plaques as well as neurofibrillary tangles throughout the brain 

[14,15]. In terms of aetiology, genetic factors such as the E4 allele variant of the 

Apolipoprotein E gene as well as mutations to the Amyloid Precursor Protein and Presenilin-

1/2 genes have been suggested to contribute to AD onset. Additionally, various modifiable 

lifestyle factors including poor diet, hypertension, smoking as well as environmental factors 

including air pollution and vitamin D deficiency have also been identified to contribute to the 

incidence of AD [16–20]. Although the exact factors are still unclear, it has been suggested 

that it may be the interaction between genetic, lifestyle, as well as environmental factors that 

could be contributing to the onset and progression of AD [5].  

The pathological hallmarks of AD (i.e., Aβ plaques and neurofibrillary tangles) appear and 

spread throughout the brain in a specific spatiotemporal pattern. Neurofibrillary tangles 

precede the Aβ plaques, and their pattern of accumulation and spreading occurs in six stages. 

The tangles first appear in the medial temporal lobe, with the entorhinal cortex (Stage I) 

being the earliest region to be affected, followed by the hippocampus (Stages II & III). The 

tangles then appear in the limbic structures of the brain (i.e., amygdala, thalamus, claustram) 

(Stage IV), following which they continue to spread to all other regions of the brain, 

including the parietal and frontal lobe structures (Stages V-VI). Meanwhile, the Aβ plaques 

appear after the tangles and have a less predictable spreading pattern, appearing first in the 
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temporal lobe structures before spreading throughout the other cortical regions [21]. Overall, 

the changes induced by the plaques and tangles in the brain include increased atrophy and 

hypometabolism of affected regions over time [22], which results in patients suffering from a 

progressive loss to their cognitive abilities [23].  

As a result of the disease, AD patients have impairments to various cognitive domains 

including working memory, attention, executive functioning, episodic memory, and spatial 

navigation [24]. However, due to the earliest brain regions affected by the AD pathology (i.e., 

anterior medial temporal lobe) forming part of the spatial navigation network of the brain, 

impairments to this cognitive domain are seen early in AD [1]. Indeed, it has been suggested 

that it is these impairments which fundamentally underlie spatial disorientation in AD, 

although impairments seen in other cognitive domains like episodic memory, executive 

function, and attention may also play a role [25].  

Before examining how spatial navigation is affected in AD, we first explain how spatial 

navigation normally functions in the brain, and the brain structures that are critical for this.   

1.3 Mechanisms of Spatial Navigation   

 

Spatial navigation is defined as the ability to determine and maintain a trajectory from one 

location to another [26]. It is based on and guided by multimodal self-motion and 

environmental cues. Self-motion cues (i.e., motor, vestibular, and proprioceptive information) 

are combined to allow path integration, the process by which continuously updated estimates 

of one’s position and orientation in space are made [27]. Meanwhile, environmental cues 

(i.e., visual, auditory, and tactile modalities) provide information on salient landmarks and 

extended boundaries, which are used to determine one’s location and orientation in relation to 

the surrounding environment [28]. Both cues inform the two main types of navigation 

strategies – egocentric and allocentric.  
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The egocentric navigation strategy is self-centred and involves encoding spatial 

representations in relation to the position of the navigator [29]. This strategy encompasses 

either the use of landmarks or recalling a sequence of direction changes to inform navigation 

turns [30]. This strategy is often used when navigating through familiar routes or in 

environments with a lack of distinct landmarks, and is associated with a brain network 

centred around the parietal lobe as well as subcortical structures [31,32]. On the other hand, 

the allocentric navigation strategy involves the use of non-self-centred cognitive maps which 

contain encoded representations of spatial layouts from a survey-like perspective, including 

the positions of landmarks and objects relative to one another [33]. This strategy is often used 

when we are required to be more flexible in our navigation (i.e., using alternative 

paths/shortcuts to a destination) and is associated with a brain network centred around the 

medial temporal lobe and particularly, the hippocampus [33,34]. It must be noted that it is not 

possible to completely dissociate both navigation strategies, as we rarely use purely one or 

the other. Rather, everyday navigation requires a seamless integration of both egocentric and 

allocentric strategies, as required by environmental demands. Indeed, the retrosplenial cortex 

has been identified as a key brain region allowing the integration of both strategies as it 

receives reciprocal information from the parietal and medial temporal lobe networks [35].  

Overall, the brain regions sub-serving the egocentric and allocentric navigation strategies 

interact with different groups of spatial cells to perform navigation (Fig. 1.1). These include 

head direction (HD), grid, boundary, and place cells. HD cells are found in the circuit of 

Papez, and fire maximally when the head of an individual is facing a specific direction 

relative to the surrounding environment [36]. These cells have been suggested to function in 

angular path integration by acting as a neural compass for navigation [37]. Grid cells are 

found in the medial entorhinal cortex and fire in multiple locations, forming repeating 

triangular grids which tile the environment [38]. These cells encode distances for linear path 
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integration in navigation [38–41]. Boundary cells are also found in the medial entorhinal 

cortex, and fire in response to fixed boundaries in the environment. In navigation, these cells 

function in defining the spatial limits of the environment [42]. Place cells are found in the 

hippocampus and fire maximally when an individual enters restricted and specific locations 

of the environment, irrespective of what direction they are facing [43–45]. Place cells receive 

input from the HD, grid, and boundary cells, and use this to form cognitive maps [45,46].  

Figure 1.1: Overview of the brain regions (and spatial cell groups) involved in spatial navigation. The 

parietal lobe structures function in the use of an egocentric navigation strategy, while the medial 

temporal lobe structures (i.e., where the spatial cell groups are located) function in the use of an 
allocentric navigation strategy. The retrosplenial cortex functions in the interplay between both 

navigation strategies. Figure adapted from [35]. 
 

Overall, spatial navigation is underlined by the complex cellular and network interactions 

between the different spatial cell groups/brain regions, of which the exact dynamics for 

everyday navigation are still been explored. However, knowledge generated from animal and 

human navigation studies increasingly point in the direction of spatial representations 

converging on the hippocampus. As such, the following simplified model of spatial 

navigation can be considered (Fig. 1.2). When navigating in a novel environment, spatial 

representations are initially encoded in the egocentric reference frame, which is associated 

B 
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with activity in the parietal cortex network. As one continues to move, the path integration 

system (i.e., HD and grid cells) provides information to maintain and update one’s position 

and orientation [47]. Simultaneously, the transformation of spatial representations from an 

egocentric to an allocentric reference frame occurs via activity in the retrosplenial cortex. 

Here, the information regarding environmental boundaries (i.e., via boundary cells) are taken 

into account to help generate and store allocentric representations within the hippocampus 

(i.e., via place cells), in the form of a cognitive map [33].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Interactions of cell groups and brain regions underlying spatial navigation.  Novel 

environments are first encoded as egocentric representations by the parietal cortex network. As we 

continue to move, the HD & grid cells provide information for path integration. The egocentric 

representations are then transformed into allocentric representations by the retrosplenial cortex, and this 

is combined with information from the boundary cells to generate and store cognitive maps in the 

hippocampus (via the place cells). Figure adapted from [48]. 

 

1.3.1 Spatial Navigation Network and AD 

The spread of the AD pathology throughout the brain unsurprisingly leads to changes in the 

brain regions and spatial cell groups of spatial navigation. Pathology related changes include 



25 
 

structural (i.e., reduction in volume) as well as metabolic (i.e., hypometabolism) deficits in 

the parietal and medial temporal lobe regions [22]. Furthermore, for the spatial cell groups, 

studies using transgenic mice models of AD have shown that the deposition of neurofibrillary 

tangles and Aβ plaques in the entorhinal cortex, hippocampus, and cortico-limbic regions 

alter the firing patterns of the grid, place, and HD cells, causing them to be less precise 

spatially [49–52]. These changes in the spatial navigation network of the brain affect AD 

patients’ representation of space and more generally, their ability to use the egocentric and 

allocentric strategies for navigation. In the next section, we present studies which show in 

detail how the spatial navigation strategies are affected in AD.  

1.4 Virtual Reality Studies of Spatial Disorientation    

In recent years the advent of VR testing, either on a screen or via an immersive headset, has 

increasingly been used to study how spatial navigation is affected in AD. Indeed, VR 

environments offer many advantages for investigating spatial navigation. It allows testing of 

spatial navigation performance systematically and under controlled conditions, offering a 

viable and more ecologically valid alternative to standard table-top tests [33]. Moreover, 

navigation in VR environments has been shown to correlate highly with RW navigation, with 

navigation errors made in the former predicting errors made in the latter [53,54]. This, in 

addition to its ability to be easily administered and even be combined with various 

neuroimaging techniques, has led to VR being considered as an attractive tool to study the 

neural mechanisms underlying spatial navigation [33].  

These advantages have led to a plethora of studies investigating spatial disorientation in AD 

using a variety of VR environments including a supermarket, hospital lobby, museum, and 

town amongst others [54–57], with some studies even combining VR environments with a 

RW analogue [54,58,59]. Overall, the VR studies of spatial disorientation have provided 
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insight into how the two spatial navigation strategies, egocentric and allocentric, are affected 

in AD.  

1.4.1 Egocentric and Allocentric Navigation Strategies in AD 

AD patients have been widely reported to be impaired in the use of both egocentric and 

allocentric navigation strategies, which is associated with pathology related changes in the 

parietal and medial temporal lobe structures respectively [22]. A common paradigm used in 

many VR studies to highlight these impairments is the Virtual Hidden Goal task [60]. This 

task is a human version of the Morris Water Maze used in animal model studies, and is 

designed to assess the use of the different navigation strategies. In this task, participants are 

placed inside a VR experimental arena and are asked to navigate to a hidden goal location 

under the following conditions:  a) using only the relationship of the goal location to the 

starting position (egocentric strategy), b) using only the external landmarks to locate the goal, 

as the starting position varies (allocentric strategy), and c) using the relationship of the goal 

location to either the starting position or to external landmarks  (egocentric and/or allocentric 

strategy).  

Studies using this task in VR (and its RW analogue) environments have reported that mild 

AD patients are impaired in navigation performance under all conditions, suggesting 

difficulties in using both egocentric and allocentric navigation strategies, with the latter in 

particular being associated with reduced right hippocampus volume [58,59,61,62]. However, 

findings from another study suggested a more differential impairment for patients in the use 

of an allocentric strategy, with their performance on using an egocentric strategy being 

similar to healthy controls [60]. One study in particular expanded upon these allocentric 

deficits by employing a more ecological design of this task, using pictures of familiar 

landmarks in the participants’ neighbourhood as external cues in the arena, and the location 

of their homes as the hidden goal location [63]. Findings from this study suggested that mild 
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AD patients have preserved cognitive maps for familiar surroundings, as measured by a test 

where the relative positions and spatial relationships of the landmarks to their home must be 

indicated on their neighbourhood map. However despite this, the patients were not able to 

apply these maps as effectively as healthy controls for navigation in the allocentric condition 

of the Hidden Goal Task.  

Further to the Hidden Goal Task, VR studies using other paradigms have also highlighted 

impairments to the egocentric and allocentric navigation strategies in mild AD patients. 

Specifically, studies using virtual towns [64,65] and a Starmaze [66] (i.e., 5 alleys emanating 

from corners of pentagon) have reported impairments for patients in accurately recalling a 

sequence of turns required to reproduce a previously learned route (egocentric navigation 

strategy use), indicating the positions of landmarks in the navigation environment relative to 

one another on a map (cognitive map formation), and in applying their cognitive map of the 

environment to use the shortest path to navigate to a goal location (allocentric navigation 

strategy use). Two other studies have utilised a virtual supermarket to further highlight 

impairments to different aspects of navigation in AD patients. These studies show that after 

navigating through a route in the supermarket, patients are impaired on tests assessing their 

ability to use an egocentric strategy to correctly identify the direction of their starting location 

in relation to their own position, and this was associated with structural deficits in the 

retrosplenial cortex. Further, their ability to use an allocentric strategy to indicate their 

destination’s position in relation to the starting location on a blank map on the supermarket 

was also impaired [57,67]. These findings however are in disagreement with another study 

that used the same task, which reported no significant differences in either test for AD 

patients when compared to controls [68].  

Another group of VR studies have examined the interaction between the egocentric and 

allocentric navigation strategy use in AD. Specifically, it has been reported that mild AD 
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patients exhibit deficits in switching from an allocentric to an egocentric viewpoint when 

making spatial judgments using multiple objects [69,70]. These deficits were also seen in a 

navigation context, where patients were presented a visible map with a highlighted route (that 

they could not move or rotate) and asked to use this map to navigate this route (in a first 

person perspective) through a virtual maze [71]. In particular, impairments in the translation 

between the navigation strategies has been shown to be age related, being more apparent in 

early onset as opposed to late onset AD patients [72]. Indeed, it has been suggested that an 

inability to effectively switch from an allocentric to egocentric strategy during navigation, 

which is associated with alterations to the retrosplenial cortex, could be a key factor 

underlining why AD patients go missing in the community [57,73]. A more recent study 

reported that mild AD patients increasingly prefer to use an egocentric strategy to navigate in 

a virtual maze compared to controls, despite an allocentric strategy being required to 

correctly navigate to the goal location [74]. Further, this increasing preference of an 

egocentric strategy was associated with worse performance on a RW allocentric navigation 

task. The authors of the study speculated that AD patients may increasingly be adopting an 

egocentric strategy to compensate for deficits in their ability to use an allocentric strategy for 

navigation.  

1.4.2 Landmark Recognition in AD  

Landmarks are integral entities in spatial navigation, functioning as the building blocks for 

cognitive maps used in an allocentric navigation strategy as well as acting as reference points 

for us to orient ourselves in relation to the environment when using an egocentric navigation 

strategy [75]. As such, some studies have explored how the ability to recognise landmarks 

encountered during navigation in VR environments are altered in AD patients. These studies 

have reported AD patients as having deficits in landmark recognition, as they showed a 

tendency to indicate having seen new, previously un-seen landmarks before in a virtual town 
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[55]. In addition, mild AD patients were also shown to be impaired on tests of landmark 

identity, recall, location, temporal order, directional knowledge, as well as scene recognition 

[65]. However, results from another study showed that although AD patients had impaired 

recognition for landmarks encountered at decision points on a route, they still exhibited intact 

implicit recognition for landmarks encountered along non-decision points on this route [56] .   

In summary, the VR studies of spatial disorientation have highlighted impairments to the use 

of the spatial navigation strategies as well as landmark recognition in AD patients. In the next 

section, we examine the findings shown from the RW studies of spatial disorientation.  

1.5 Real World Studies of Spatial Disorientation in AD  

Compared to VR studies, RW studies of spatial disorientation in AD are limited in number. A 

major reason for this stems from the fact that RW navigation occurs in complex large scale 

spaces that are usually explored from different viewpoints and over multiple viewings 

[76,77]. Hence compared to VR environments, there is a lack of experimental control over 

various contextual factors associated with RW environments (i.e., changing weather patterns, 

number of people in the area, level of noise etc.), which can make it challenging to keep these 

environments consistent over time for repeated navigation testing [78]. Another reason is that 

RW navigation tests are considered impractical to administer in clinical settings, as no two 

clinics will have the same RW environment, thereby making comparison of patient 

performance across clinics a challenge [64]. Nevertheless, with one of the main RW 

consequences of spatial disorientation being AD patients going missing in the community, 

the RW studies have mainly studied this symptom in the context of factors associated with 

these missing incidents. Moreover, studies have also investigated the ability of AD patients to 

use the different navigation strategies in RW environments.  
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1.5.1 Missing Incidents in AD   

From a neurocognitive perspective, studies have attributed missing incidents to impairments 

in various cognitive domains seen in AD patients. Indeed, impairments to episodic memory, 

executive function, attention, and anosognosia (i.e., lack of insight) have all been associated 

with missing incidents [25]. Of more relevance to the spatial navigation domain, some studies 

have reported that impairments on neuropsychological tests of topographical memory and 

object recognition, as well as the modulation of visuospatial processing by working memory 

and executive functioning were all associated with missing incident history in patients 

[79,80]. To the best of our knowledge, only one study has directly related measures of spatial 

navigation, using questionnaire based information, to the occurrence of missing incidents 

measured longitudinally. This study reported that higher scores on the inattention subscale of 

a questionnaire measuring spatial navigation impairments (indicating higher impairment), 

predicts future incidence of missing incidents for the patients [81]. 

Studies have also identified some of the most common situational factors associated with 

missing incidents seen in patients. The main situational factor has been suggested to be when 

patients are alone and/or are temporarily not supervised by their carer. These situations most 

commonly occur when the patient performs a routine activity (i.e., going for neighbourhood 

walks), when they are temporarily left alone on purpose [3,10,82,83], or even during the 

night when the carer is sleeping [9,10,84].  

Various studies have utilised case reports of missing patients in the community to further 

understand the circumstances in which they go missing, and these studies report demographic 

risk factors for these incidents. A common finding across multiple studies conducted in the 

US, UK, and Australia is that greater numbers of patients go missing from domestic residence 

settings when compared to care settings [3,85–87]. Additionally, higher age, longer duration 

of time missing, and cooler months have been reported as potential risk factors for sustaining 
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harm during the missing incidents [86,88]. Other studies have reported younger age as being 

a risk factor and the presence of a safety range (i.e., restricting navigation to only very 

familiar places) [81] as well as having lower mobility levels to be protective factors for the 

recurrence of missing incidents [9].  

1.5.2 Real-World Navigation in AD   

Few studies have investigated the ability of AD patients to navigate in an RW environment, 

both in controlled and more naturalistic conditions. Studies using a controlled environment 

have mainly employed navigation tasks akin to those used in the VR studies, and reported 

similar impairments in the use of navigation strategies in mild AD patients. Specifically, 

findings from studies using a two-dimensional floor maze suggested impairments to the use 

of an egocentric navigation strategy, with patients being reported to be impaired in learning 

and navigating a pre-determined route in the maze [89,90]. Other studies using university and 

hospital environments have also reported deficits in such route learning tasks, which was 

associated with decreased volumes of the right posterior hippocampus and parietal cortex, as 

well in tasks requiring the use of an allocentric navigation strategy (recalling the spatial 

layout and identifying the location of landmarks on a map of the test environment) [91–93]. 

Although two of these studies showed impairments for patients in the recognition of 

landmarks encountered on the route [91,92], this was in disagreement with findings from the 

study that suggested intact landmark recognition abilities for the patients [93].  

Studies looking at the navigation of AD patients in naturalistic environments have mainly 

used a RW setting that is familiar to them, which was their neighbourhoods. Specifically, a 

pair of studies explored the strategies that patients used to help them navigate on a chosen 

route in their neighbourhood by observing their behaviour and through informal 

conversations with them on an accompanied walk [94,95]. These studies reported that 

patients were more likely than controls to exhibit spatial disorientation and get lost on the 
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chosen route, despite it being a highly familiar environment. Moreover, it was found that the 

most common strategy used by patients to help them navigate was to look for visible 

landmarks, and that the use of this strategy was particularly vulnerable to changes in the 

environment.  

1.6 Conclusion – The Missing Path from Virtual Reality to the Real World    

Overall, it can be seen that spatial disorientation in AD has been studied mainly through a VR 

as opposed to a RW perspective. The VR studies have provided useful insight into the 

neurocognitive factors that underlie spatial disorientation in AD. In particular, they highlight 

impairments to the use of the spatial navigation strategies in patients, and are increasingly 

being used to test these abilities in patients at different stages of the disease. However, there 

are some noteworthy limitations associated with this approach.  

From a practical standpoint, AD patients can find it challenging to perform VR tasks on the 

computer and can often suffer from VR-induced motion sickness [96,97]. In addition, it must 

be noted that VR environments may not fully capture the vividness of complex RW settings 

in its entirety as they lack auditory and olfactory cues as well as often do not account for 

locomotion, a crucial feature of RW navigation [75,98], although recent studies are 

increasingly adopting VR paradigms incorporating RW walking [99,100]. Most importantly 

however, despite navigation tasks in VR environments being sensitive and specific to 

engaging the navigation systems of the brain, in design they are often not representative of 

the daily navigation challenges faced by AD patients in the RW. Hence, the extent to which 

findings from the VR studies relate to patients experiencing spatial disorientation in the 

community is at present unclear.  

On the other hand, the RW studies of spatial disorientation focus much more on factors 

(neurocognitive, contextual, and demographic) associated with missing incidents as well as 
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how AD patients navigate in controlled RW environments. Here, studies have not related the 

missing incidents to the spatial navigation impairments seen in patients. Although some of 

these studies investigated neurocognitive factors, these findings were mostly based on 

neuropsychological tests which do not measure spatial navigation per se but more generally, 

visuospatial and other cognitive impairments. Moreover, although RW factors for missing 

incidents have been identified (i.e., demographic & contextual), factors that are specifically 

related to or associated with spatial navigation have in large not been explored. Meanwhile 

for studies looking at how AD patients navigate in RW environments, although they have 

related their findings to the spatial navigation brain processes, these studies largely used 

unfamiliar, controlled environments to measure navigation. Therefore, they suffer from the 

same limitations of VR studies in not accurately capturing RW situations where spatial 

disorientation may occur for patients.  

Overall, it is clear that there is a missing link in the literature, with VR studies not relating the 

spatial navigation impairments of AD patients to their spatial disorientation in the RW and 

vice-versa for the RW studies (Fig. 1.3).  
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Figure 1.3: Summary of VR and RW studies of spatial disorientation in AD, including the current 

research gaps. VR studies have used VR environments to highlight the underlying neural correlates of 

navigation, impairments in the egocentric/allocentric navigation strategies, and other cognitive factors 

used in navigation (visuospatial memory, episodic memory, attention for landmarks etc.) in AD 

patients. RW studies have mainly studied missing AD patients in the community using case reports, 

questionnaires, interviews, and have identified neuropsychological and demographic risk factors for 

these incidences. Some studies have also studied how patients navigate in controlled RW environments, 

similar to the VR studies. At present, no studies have explored whether navigation-related factors in the 

outdoor environment may contribute to spatial disorientation. In addition, no studies have related the 

VR navigation impairments of patients to them experiencing spatial disorientation in the community1. 

                                                             
1 Icons used in the figure – “Missing” by Fahmi, “Brain” by Clockwise, “Navigation” by Jejen Juliansyah Nur Agung, 

“Person” by Support Designs, “House” by David, “Tower” by ibrandify, “Gears” by Daniel Shoreman, “Statistics” by 
Adrien Coquet, “Arena” by Kerry Webster, “Path” by Adrien Coquet, “Cityscape” by ProSymbols “Movement” by 

Adrien Coquet, “Pedestrian Crossing” by Andrew Doane – all from thenounproject.com  



35 
 

To help close this gap, it is important to identify if there are any RW factors for spatial 

disorientation that are associated with the outdoor environment, due to the impact that the 

environment has in influencing and guiding navigation [101]. Specifically, this includes 

studying more closely the locations where patients experience spatial disorientation to 

identify if specific features of the built environment might be contributing to this symptom. It 

also involves studying the more general patterns of how AD patients navigate and move 

outdoors in the community, to identify if any aspects of their outdoor mobility offer insight 

into spatial disorientation. In addition, it is also important for RW studies to study in more 

detail how AD patients use their egocentric/allocentric navigation strategies in the 

community by administering tests in a naturalistic setting, to more accurately simulate 

situations where spatial disorientation might occur. Here, spatial disorientation behaviour of 

the patients on the RW tests can then be related to more systematic measurements of spatial 

navigation made using VR environments to investigate the extent to which the two relate to 

one another.   

In conclusion, addressing the current limitations of the literature could enhance our 

understanding of spatial disorientation in AD, specifically with regards to the role that spatial 

navigation impairments and the outdoor environment plays in this. Furthermore, with spatial 

disorientation being unpredictable in nature, understanding the relation between these factors 

could in turn enable us to predict patients at a high risk for experiencing spatial disorientation 

in the community.  
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1.7 Thesis Aims and Objectives 

The aim of this thesis is to investigate the role that spatial navigation impairments and the 

outdoor environment plays in spatial disorientation in AD. Specifically, we aim to:   

 Identify environmental risk factors associated with spatial disorientation in AD 

patients using retrospective police case records of dementia-related missing incidents 

(Chapters 2 and 3). 

 Explore whether spatial disorientation in AD can be explained by examining patients’ 

outdoor mobility patterns in the community over a 2 weeks period using global 

positioning system (GPS) tracking (Chapter 4).  

 Investigate whether we can predict AD patients at a high risk for spatial disorientation 

in the community based on their performance on VR navigation tests (Chapter 5). 

Each experimental chapter will include a set of hypotheses and detail the studies that were 

conducted to address these objectives. A brief discussion of the results is given at the end of 

each experimental chapter, followed by a more detailed discussion in the General Discussion 

(Chapter 6).  
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Chapter 2  

Spatial Patterns and Impact of Outdoor Landmark Density for 

Dementia-Related Missing Incidents in the Community   
 

Published Paper  

Puthusseryppady V, Coughlan G, Patel M, Hornberger M. Geospatial Analysis of 

Environmental Risk Factors for Missing Dementia Patients. Journal of Alzheimer’s Disease. 

2019;71(3):1005–13. 

2.1 Introduction 

Spatial disorientation often leads to AD patients going missing in the community. Indeed, a 

dementia-related missing incident is defined as an instance when a patient is not at an 

expected location and their whereabouts are unknown to their carer [3]. Missing incidents 

have been suggested to arise fundamentally due to the impairments to spatial navigation seen 

in AD patients [1], which causes them to make navigation errors that they are ultimately 

unable to recover from when out in the community. Previous research has suggested that 

there may in fact be some external factors that interact with these impairments, specifically 

by acting as triggers for AD patients to make these navigation errors in the first place, which 

lead to them going missing [3]. Considering the key role that environmental factors play in 

influencing and guiding navigation in the RW [101], whether specific features of the 

environment act as such triggering factors for navigation errors made by patients warrants 

investigation.  

Surprisingly however, there have been almost no studies which report RW environmental risk 

factors or geographic patterns for AD patients going missing in the community. Due to the 

unpredictable nature of missing incidents [3,10], identifying these factors are of importance 

as they can potentially help to identify or predict areas where patients may be more likely to 

go missing from. Clearly, this knowledge can further our understanding of why AD patients 
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go missing in the community as well as inform safeguarding guidelines to prevent them from 

going missing in the future.   

In the current study, we investigate potential environmental risk factors that might contribute 

to AD patients going missing in the community, and more generally for spatial disorientation. 

We conducted a retrospective analysis of police records of missing incidents of dementia 

patients over a 3-year period. Here, we employ geospatial analytical techniques which are 

increasingly used in health and disease studies [102], to investigate the spatial patterns of 

patients going missing. Using the police records, we aim to: i) identify if there are any 

locations that patients are more likely to go missing from (i.e., hotspots) in our study area, 

and ii) explore the spatial configurations of the locations patients went missing from, to try 

and identify if particular built features of the environment may have contributed to patients 

going missing. For this work, the feature that we have chosen to examine is the density of 

outdoor landmarks, as landmarks represent important entities that are used for RW 

navigation, especially by AD patients [94,95,103]. We hypothesise that: i) there would be no 

‘hotspots’ for missing incidents, once controlling for population density, as spatial 

disorientation (and hence missing incidents) are now seen as an integral part of AD [1], and 

ii) lower outdoor landmark density would be associated with/lead to higher incidence of 

missing incidents, as the relatively lower presence of landmarks will make it more difficult 

for patients to navigate safely to their intended destination.  

2.2 Methods 

2.2.1 Study Design  

Records of missing patients with dementia (MPWD) were provided by the Norfolk Police 

force with a total of 210 anonymised cases covering dates from January 2014 to December 

2017, for the Norfolk County (total population 898,390) in the UK. 
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For each missing case, the following data was provided - date missing, gender, age, location 

missing from (town and postcode), type of setting missing from (care home/hospital, 

domestic residence, public), location found (building name/road and town), case details 

(circumstances in which patient went missing/was found), time missing (minutes), and 

whether it was the first time missing (yes/no). Here, it is important to note that no clinical 

information was provided regarding the type or stage of dementia for the missing cases. 

However, considering that missing incidents are more likely to be seen in AD patients due to 

their specific navigation impairments, and more generally that AD makes up the largest 

proportion of dementia patients, we assume for this study that the majority of the cases had 

AD. From the location missing from/found information, the distance travelled by each 

MPWD was calculated in OpenStreetMap (https://www.openstreetmap.org/#map=5/54.910/-

3.432) by using the shortest routes linking the two locations, which was determined by the 

mapping platform. Meanwhile, the locations patients went missing from were classified as 

urban or rural using the UK Office for National Statistic’s 2011 rural urban classification 

guide [104]. Lastly, from the case details, we inferred whether the MPWD sustained harm 

(i.e., injuries/death) during the missing incident.  

Ethical approval for this study was granted by the Faculty of Medicine and Health Sciences 

Research Ethics Committee at the University of East Anglia (Ref. 2017/18 – 94), and all 

research was conducted in accordance with the relevant guidelines and regulations. 

2.2.2 Demographics Analysis   

The MPWD data contained a mixture of continuous and categorical variables.  Shapiro-Wilk 

normality tests were conducted on the continuous variables (age, time missing, and distance 

travelled) to determine whether to use parametric or non-parametric statistics tests on the 

data. Meanwhile, Chi-Square and where appropriate, Fisher’s Exact Test were used to 

https://www.openstreetmap.org/#map=5/54.910/-3.432
https://www.openstreetmap.org/#map=5/54.910/-3.432
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explore associations between the remaining, categorical variables. All demographics analysis 

were conducted via R software package version 3.4.2 [105].    

2.2.3 Spatial Hotspot Analysis for Missing Incidents   

Identification of spatial hotspots for the MPWD were conducted on ArcGIS software version 

10.3.1 [106] with a map of the Norfolk County in the World Geodesic System 1984 

geographic co-ordinate system. The Norfolk county was sub-divided into its lower layer 

super output areas (LSOAs) to provide specific spatial units for the analysis. LSOAs were 

chosen as they represent geographic units commonly used by the UK Office for National 

Statistics for reporting small area statistics (eg. neighbourhood population, income estimates, 

housing etc.) [107], and hence have good ecological validity by allowing to split the data into 

three main localities (urban, rural town and rural villages). For this analysis, we downloaded 

a shape file containing the UK sub-divided into its different LSOAs from the UK Office for 

National Statistics Open Geography Portal [108], and extracted only the LSOAs for the 

Norfolk region. In this shapefile, each LSOA was classified as being either urban or rural 

based on population density, and the latter were further sub-classified into rural towns and 

rural villages based on household density [104].   

The locations patients went missing from were then plotted onto a map of Norfolk. As the 

locations were reported as postcodes in the dataset, for the purpose of this analysis the 

centroid of the reported postcodes were taken for these locations. In total, the 210 MPWD 

went missing from 168 different locations across the region (Fig. 2.1(i)), with there being 17 

locations where multiple patients went missing. For patients that went missing multiple times, 

only one location (i.e., that of the most recent missing incident) was reported. In addition, 

there were 3 cases where the location the patient went missing from was not reported. All 168 

MPWD locations were aggregated into the respective LSOAs in which they fell in. Of these 

168 locations, 96 fell within urban LSOAs, 33 in rural town LSOAs, and 39 in rural village 
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LSOAs. To control for different population densities across Norfolk, the number of MPWD 

falling within each LSOA was normalised for the total population of that LSOA.   

To identify the spatial hotspots for MPWD, a widely used geospatial analytical method 

known as global spatial autocorrelation (Moran’s I) was used, which identifies potential 

spatial patterns evident across a region. This analysis explores the distribution of the 

normalised MPWD numbers across all LSOAs and tries to identify if the dataset exhibits 

spatial clustering (i.e., similar values occurring near each other) [109]. In this analytical 

approach, each LSOA is grouped together with its neighbouring LSOAs, forming what is 

termed as a ‘neighbourhood’. Following standard practice in geospatial analysis, the K-

nearest (i.e., solution = 8) neighbours approach was used to determine the neighbourhood for 

each LSOA unit, owing to the non-normal distribution of MPWD values across all LSOAs. 

This means that each LSOA along with its nearest 8 neighbours comprised a neighbourhood.  

The MPWD values in each respective neighbourhood across the region were then analysed to 

identify whether spatial clustering of similar values occurred in the dataset. The formula for 

calculating Moran’s I [109] is given below: 

𝐼 =  
𝑛

𝑆0
 
∑ ∑ 𝑤𝑖,𝑗𝑧𝑖 𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1

. 

Here, n is the total number of spatial units (i.e., LSOAs); this formula uses a spatial weights 

matrix which defines the neighbourhood for each spatial unit; non-neighbouring units are 

assigned value of 0 whilst neighbouring units assigned a value of 1; wi,j are the spatial 

weights between spatial units i and j, z is the deviation of the MPWD value in spatial unit i/j 

from its mean, and S0 is the aggregate of all spatial weights.  

Any spatial dataset can exhibit one of three types of global spatial autocorrelation – positive 

(maximum value +1; clustering of values), zero (value of 0; completely random spatial 

(2.1) 
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pattern of values), or negative (maximum value of −1; spatial pattern where dissimilar values 

appear near each other) (Fig. 2.1(iii)). In theory, if the dataset exhibits either positive or 

negative global spatial autocorrelation, a follow up local spatial autocorrelation (Anselin 

Moran’s I) would have to be run [110]. In the case of the former, the follow up analyses 

would reveal the spatial locations and extents of the clusters as well as whether these clusters 

are significant hotspots (i.e., exhibit relatively higher values compared to rest of region) or 

coldspots (i.e., exhibit relatively lower values compared to rest of region). Typically, global 

spatial autocorrelation cannot be performed if there are spatial units exhibiting null values of 

a variable and consequently, all LSOAs not exhibiting MPWD locations were removed from 

the analysis region. A global spatial autocorrelation (Moran’s I) analysis was then run on the 

remaining LSOAs (Fig. 2.1(ii)).   
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Figure 2.1 (i): Locations MPWD went missing from plotted on a map of Norfolk County, sub-divided 

into its LSOAs. (ii) Map of Norfolk county LSOAs after removing units with no MPWD. This map was 

used in the global spatial autocorrelation analysis. (iii) A: Positive Autocorrelation (maximum value 
+1). This suggests that the region of analysis is composed of LSOAs with similar MPWD values 

appearing near each other (i.e., spatial clusters). B: Zero Autocorrelation (0). This suggests that the 

region of analysis is composed of LSOAs exhibiting a completely random spatial pattern of MPWD 

values (i.e., no spatial clusters). C: Negative Autocorrelation (maximum value -1). This suggests that 

the region of analysis is composed of LSOAs with dissimilar MPWD values appearing near each other2. 

 

2.2.4 Outdoor Landmark Density and Missing Incidents     

A spatial buffer analysis was conducted to explore the relationship of outdoor landmark 

density to the MPWD. This approach involves generating a buffer zone of a specific radius 

around each MPWD location and identifying the number of outdoor landmarks that fall 

within these zones. Since we do not have any trajectory data for the MPWD, employing a 

buffer zone enables us to take into account any direction that these individuals could have 

travelled and as such, allows us to estimate all potential landmarks that they could have 

encountered at the time and place they went missing. A radius of 1 kilometre was chosen for 

                                                             
2 Reprinted from Journal of Alzheimer’s Disease, Vol 71, no.3, Puthusseryppady V, Coughlan G, Patel M, Hornberger M, 

Geospatial Analysis of Environmental Risk Factors for Missing Dementia Patients, pp. 1005-1013, Copyright (2019), with 
permission from IOS Press. The publication is available at IOS Press through http://dx.doi.org/https://doi.org/10.3233/JAD-
190244.  

http://dx.doi.org/https:/doi.org/10.3233/JAD-190244
http://dx.doi.org/https:/doi.org/10.3233/JAD-190244
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the buffer zones as according to previous health geography studies [111–113], this has been 

suggested to be an appropriate distance to capture all environments accessible within a 

reasonable walking distance from a particular location.  

To run this analysis, a dataset containing all the landmarks in the Norfolk region, in shape-

file format, was downloaded from OpenStreetMap and imported into ArcGIS. This dataset 

contained any object or location that fell into the following five categories – Amenity & 

Leisure, Tourism, Traffic & Transport, Urban & Rural Furniture, and Historic (see 

supplementary table 2.1 for full breakdown of landmark categories, subcategories, and tags). 

For each landmark, details of its name (e.g., Riverside Leisure Centre), type (Swimming 

Pool), and map co-ordinates (X,Y; in the World Geodetic System 1984 geographic co-

ordinate system) were provided in the dataset. The landmarks in the shape-file were overlaid 

onto a map of the Norfolk LSOAs. Both maps utilised the World Geodetic System 1984 

geographic co-ordinate system. 

First, we searched and removed landmark duplicates in the dataset. Next, we wanted to 

ensure that our dataset captured only landmarks that were visible from open street view as an 

individual navigates in the community. To this end, landmarks that fell inside other 

landmarks were identified and their visibility from open street view was examined using 

Google Maps. If such landmarks were not visible from street view (e.g. individual shops 

falling inside a shopping mall), they were removed from the dataset, as it is unlikely that the 

MPWD would have used or been exposed to this landmark whilst navigating outdoors. 

Meanwhile, landmarks falling inside other landmarks that were visible from street view were 

examined to see if they were at least as salient as the landmark they fell within, using Google 

Maps. Although there are many features which render the perception of a landmark as being 

salient by dementia patients [114], for practical reasons we have chosen to focus here on the 

feature of size/scale with regards to assessing saliency. If the saliency condition was satisfied, 
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(e.g., bell tower as part of a church), then these landmarks were kept in the dataset, as it may 

have been just as likely for either of these landmarks to have caught the attention of the 

MPWD whilst navigating outdoors. If the saliency condition was not satisfied (e.g., recycling 

bin inside a large carpark), then the lesser salient landmarks were removed based on the 

assumption that they would not have caught the attention of the MPWD. After controlling for 

all factors listed above, we ended up with a total of 24,900 outdoor landmarks for analysis.  

Next, for each of the 168 MPWD locations, a geodesic buffer zone with a radius of 1 

kilometre was generated and the number of outdoor landmarks falling within each buffer 

zone was computed (Fig. 2.2(i), (iii)). Following this, a set of 168 random, control locations 

were generated across the entire Norfolk region using an in-built algorithm in ArcGIS (Fig. 

2.2 (ii)). These random locations were generated in regions falling outside the MPWD 

location buffer zones, and controlled to have the same urban/rural distribution as the MPWD 

locations (96 urban locations, 33 in rural town, 39 in rural villages). The random locations 

were also controlled for the type of land they fell in. Of the 96 urban MPWD locations, 2 fell 

in industrial & retail lands, 69 in residential lands, and 23 in unclassified lands. Of the 33 

rural town MPWD locations, 1 fell in forest lands, 25 in residential lands, 2 in retail lands, 

and the remaining 5 in unclassified lands. Lastly, of the 39 rural village MPWD locations, 29 

fell in residential lands, 1 in commercial lands, and 9 in unclassified lands. The same number 

of random location points for each land use type were generated across Norfolk, for each 

respective locality (urban, rural town, rural village).  
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Once all 168 random locations were generated, geodesic buffer zones with a 1 kilometre 

radius were generated for each location and the number of outdoor landmarks falling within 

each location’s buffer zone was computed (Fig. 2.2(iv)). As the number of outdoor landmarks 

in both the MPWD and random location buffer zones had a non-normal distribution, a 

Wilcoxon Rank Sum test was run to compare the number of outdoor landmarks falling within 

the buffer zones of both groups.   

 

Figure 2.2 (i): Locations MPWD went missing from in Norfolk. (ii): Set of random control locations 
in Norfolk generated using an in-built algorithm in ArcGIS. (iii): Landmarks falling within a 1 

kilometre radius buffer zone of a single MPWD location (residential land). (iv): Landmarks falling 

within a 1 kilometre radius buffer zone of a single random location (residential land)3.   

 

                                                             
3 Reprinted from Journal of Alzheimer’s Disease, Vol 71, no.3, Puthusseryppady V, Coughlan G, Patel M, Hornberger M, 

Geospatial Analysis of Environmental Risk Factors for Missing Dementia Patients, pp. 1005-1013, Copyright (2019), with 
permission from IOS Press. The publication is available at IOS Press through http://dx.doi.org/https://doi.org/10.3233/JAD-
190244. 

http://dx.doi.org/https:/doi.org/10.3233/JAD-190244
http://dx.doi.org/https:/doi.org/10.3233/JAD-190244
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To explore the relationship between outdoor landmark density and MPWD on a more global 

scale, ordinarily least squares linear regression models were run where the number of MPWD 

in each LSOA were respectively regressed against the landmark density for each LSOA. In 

total, three independent regression models were run – one for urban, rural town, and rural 

village regions, respectively. All regression models were run in R software.   

2.3 Results  

2.3.1 Demographics Analysis 

The MPWD demographics (Table 2.1) showed similar numbers of patients going missing 

across all 4 seasons, as well as similar numbers of males and females going missing. The 

majority of MPWD went missing from domestic residence settings (n = 134) when compared 

to care facilities (n = 52) or general public locations (n = 23). A total of 86 MPWD went 

missing on foot, 33 cases used some form of transport (taxi/bus/train/car), 2 cases used a 

combination of transport and foot, and the remaining 87 cases did not have sufficient 

information provided to infer their mode of transportation. Subgroups of MPWD that went 

missing multiple times (n = 52), as well as those that sustained harm whilst missing (n = 10), 

were also identified. All MPWD were found alive except for one case.  
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Table 2.1: Demographics of the Missing Dementia Patients 

ns = not significant; *p < 0.05, **p < 0.01 

There is often a general assumption that spatial navigation might be different between males 

and females [115,116]. We therefore explored associations between the missing incident 

variables and gender as a factor. For the type of location MPWD went missing from, the 

results showed that patients missing from domestic residences were more likely to be female 

than male (X2=8.644, p = 0.013). By contrast, patients who went missing multiple times were 

more likely to be male than female (X2=7.701, p = 0.005). Results also showed that male 

MPWD went missing for significantly longer periods of time than females (W = 4293, p = 

0.007).        

Finally, we explored potential demographic risk factors for patients who went missing 

multiple times as well as for those who sustained harm. When comparing the patients missing 

 Total Males Females Significance  

Cases 210 114 96 -  

Age (Mean) 78.43 77.85 79.12 ns 

Season Lost 

 

Summer 

Autumn 

Winter 

Spring 

 

 

51 

52 

52 

55 

 

 

22 

29 

31 

32 

 

 

29 

23 

21 

23 

 

 

ns 

Setting Missing From 

 

Domestic Residence 

Care Facility 

Public Place 

 

 

134 

52 

23 

 

 

63 

36 

15 

 

 

71 

16 

8 

 

 

* 

Locality Missing From 

 

Urban 

Rural 

Unspecified 

 

 

134 

73 

3 

 

 

75 

37 

2 

 

 

59 

36 

1 

 

 

ns 

Distance Travelled  

(Mean; Kilometres) 

20.45 21.60 19.15 ns 

Time Missing  

(Mean; Minutes) 

186.73 238.89 124.80 **  

Missing Multiple Times 52 37 15 **  

Sustained Harm 10 5 5 ns 
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multiple times to those that went missing only once, no significant differences were seen in 

any variable. However, a statistical trend was observed for age, with patients missing 

multiple times being younger than patients that only went missing once (W= 4804, p = 

0.056). A statistical trend was also observed for distance travelled, with patients missing 

multiple times travelling a lower distance than those that only went missing once (W= 

3766.5, p = 0.058). Meanwhile, no significant differences were observed in any variable 

when comparing patients which sustained harm to the unharmed patients.  

2.3.2 Spatial Hotspots Analysis for Missing Incidents  

The global spatial autocorrelation (Moran’s I) analysis revealed no significant spatial 

autocorrelation in our dataset (Global Moran’s I = − 0.011, p = 0.911). Considering that the 

global trend can potentially mask subtle underlying cluster like patterns present in specific 

regions, a follow up local spatial autocorrelation (Anselin Local Moran’s I) analysis was run 

to identify possible underlying clusters. Here, a False Discovery Rate (FDR) was used to 

correct for multiple comparisons. The results of the follow-up analysis confirmed the global 

spatial autocorrelation results, signifying that the MPWD exhibits a random spatial pattern 

across Norfolk and as such, there are no significant hotspots (or cold spots) for MPWD in the 

examined region.  

The spatial autocorrelation analyses listed above were run on values of MPWD normalised 

for the total population values of the respective LSOAs in which they fell in. To account for 

the fact that there may be differences in the densities of the elderly population across Norfolk, 

as a second measure we ran these analyses again, this time normalising the MPWD values for 

the LSOA population values of individuals equal to/above 65 years of age only. Using these 

new normalised MPWD values, our global spatial autocorrelation analysis this time revealed 

a significant positive spatial autocorrelation in our dataset (Global Moran’s I = 0.128, p < 

0.001). However, our follow up local spatial autocorrelation analysis (using FDR to correct 
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for multiple comparisons) did not identify any significant hotspots (or coldspots) for MPWD 

in the examined region.    

2.3.3 Spatial Buffer & Regression Analysis    

The Wilcoxon Rank Sum Test revealed that there is a significantly higher number of outdoor 

landmarks falling within a 1 kilometre buffer zone of the MPWD locations when compared to 

the random locations (W = 21312, p < 0.001).  

Our first set of regression models showed that increased outdoor landmark density 

significantly predicted higher MPWD in urban (p < 0.001, R2=0.15) and rural village regions 

(p < 0.001, R2= 0.69) (Fig. 2.3), but no significant relationship was found in rural town 

regions (p = 0.770). Similar to the spatial autocorrelation analyses, we ran a second set of 

regression models, this time by using the MPWD values which were normalised for the total 

elderly population of their respective LSOAs. Here, we found the same results – increased 

outdoor landmark density significantly predicted increased MPWD in urban (p < 0.001, 

R2=0.19) as well as rural village regions (p < 0.001, R2=0.65) (Fig. 2.4), but not in rural town 

regions.  
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Figure 2.3: Plots showing first set of significant regression models for relationship between landmark 

density and number of MPWD in (i) Urban and (ii) Rural Town regions.  

Figure 2.4: Plots showing second set of significant regression models for relationship between 

landmark density and number of MPWD in (i) Urban and (ii) Rural Town regions. 
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2.4 Discussion 

In this chapter, we aimed to identify whether there were any hotspot locations for dementia-

related missing incidents in our study area as well as explore whether outdoor landmark 

density was an environmental risk factor for these missing incidents.   

On a demographic level, we found that rates of missing incidents were not dependant on 

season, as similar numbers of patients went missing across all four seasons. We also found 

that the majority of patients went missing from domestic residence settings as opposed to care 

facilities, which replicates findings from multiple similar studies [3,85,86]. Although similar 

numbers of male and female patients went missing, replicating previous findings [85,86], 

gender differences were seen in 3 of the missing incident variables. Specifically, patients 

going missing from domestic residences were more likely to be female than male. 

Furthermore, male patients went missing for significantly longer and were associated with 

being more likely to go missing multiple times when compared to females. In addition to 

gender, a statistical trend for younger age as being a risk factor for multiple missing incidents  

was also observed, which was consistent with a previous study [81]. Finally, we also found a 

very small group of MPWD who sustained harm whilst lost, however we did not identify any 

risk factors for this.    

In line with our hypothesis, we did not find any hotspot locations for the MPWD, indicating 

that the distribution of missing incidents is widespread and similar in the study region. The 

global spatial autocorrelation analysis we used for this have so far only been used to establish 

the frequency and mortality of dementia across regions [117,118], but to our knowledge, this 

is the first study to use this geospatial technique for dementia-related missing incidents. 

Contrary to our hypothesis however, we found that at the spatial buffer level, increased 

outdoor landmark density was associated with the missing incidents. Further, at a LSOA 

level, our findings showed that increased outdoor landmark density predicted higher 
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incidence of MPWD in urban and rural village locations. However, for our findings at the 

LSOA level, it must be noted that the regression models in both urban/rural village regions 

seem to be influenced by LSOAs with relatively high landmark density values. Nevertheless, 

our results overall suggest that regardless of location, the increased presence of outdoor 

landmarks is an environmental risk factor that could be contributing to patients going missing 

in the community. Previous studies have thus far only assessed landmark knowledge and 

recognition in AD patients during navigation in VR settings [55,65] and using qualitative 

accounts from patients, how these entities are used to aid their navigation in the community 

[94,95,114,119]. To the best of our knowledge, this is the first time that the impact of outdoor 

landmark density on patients going missing in the community has been explored.  

In conclusion, our results replicate and extend previous demographic findings for dementia- 

related missing incidents. Moreover, our results also suggest increased outdoor landmark 

density as being one potential environmental risk factor for AD patients going missing in the 

community. Our work in this chapter has shown that geospatial analytical techniques provide 

an exciting opportunity to determine systematic RW factors that are associated with spatial 

disorientation in AD. In the next chapter, we continue to explore environmental risk factors 

for dementia-related missing incidents using the same police records dataset, this time by 

investigating the road network structure in the locations where patients went missing.  
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Chapter 3  

Impact of Road Network Structure for Dementia-Related Missing 

Incidents in the Community 
 

Published Paper 

Puthusseryppady V, Manley E, Lowry E, Patel M, Hornberger M. Impact of road network 

structure on dementia-related missing incidents: a spatial buffer approach. Scientific Reports. 

2020;10(1). 

3.1 Introduction 

In the previous chapter, we investigated and found that outdoor landmark density may be a 

potential environmental risk factor for AD patients going missing in the community, using 

police records of dementia-related missing incidents. In this chapter, we focus on the role that 

another environmental variable may play in causing AD patients to go missing, which is the 

structure of road networks.   

Forming the backbones of built environments, road networks play an important role in 

guiding and influencing human navigation behaviour in the RW. Specifically, previous 

studies have shown that road intersections prompt the spatial decision making process during 

navigation and that individuals tend to choose well-connected roads when navigating to a 

particular location [120,121]. In the context of spatial disorientation in AD, two previous 

studies have reported that patients get disoriented at road intersections, especially at those 

with many route options, and when navigating through road networks with complex layouts 

[103,122]. However, these findings were based on observations from a relatively small 

sample of dementia patients, during accompanied walks with the researcher. In the current 

study, we aim to explore further the role that road network structure may play in causing AD 

patients to go missing in the community when they are alone, and using a relatively larger 

participant sample. Informed by findings from the studies described above, we focus here on 
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three key features of the network: i) road intersection density, ii) road intersection 

complexity, and iii) road orientation entropy (i.e., measure of road network layout in a given 

area by looking at the orientation of the roads).  

To this end, we conducted a retrospective analysis using the same set of police case records 

of dementia-related missing incidents as in the previous chapter. We hypothesise that:           

i) higher road intersection density would lead to increased missing incidents, as the more 

frequently patients have to make critical navigation decisions, the more likely they are to 

make an error and wrong turn, ii) higher road intersection complexity would lead to increased 

missing incidents, as the more route options an intersection has, the harder it will be for the 

patients to identify and select the correct route, and iii) higher road orientation entropy would 

also be associated with increased missing incidents, as road networks with a high entropy 

would be less ordered in structure and hence more complex to navigate through.  

3.2 Methods 

3.2.1 Study Design  

This study was conducted using the same case records of dementia-related missing incidents 

provided by the Norfolk Police as in the last chapter (total records = 210, covering dates from 

January 2014 to December 2017). It is important to mention again that apart from having a 

diagnosis of dementia, no further clinical information was provided regarding the type/stage 

of dementia for the missing cases. However, we are assuming that the majority of the 

reported cases had AD, for the purpose of this study. 

As mentioned in detail in Chapter 2, each MPWD case contained a mixture of continuous and 

categorical missing incident variables (eg. date missing, gender, age, location missing from, 

etc.). For each case, the location the patients went missing from was classified as urban or 

rural using the UK Office for National Statistic’s 2011 rural urban classification guide [104]. 
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Using the above variables, we investigated retrospectively if there were any demographic risk 

factors for the MPWD and the impact of outdoor landmark density on these individuals going 

missing in Chapter 2. Here, using the same dataset, we are investigating the impact of road 

network structure on these individuals going missing.   

Ethical approval for this study was granted by the Faculty of Medicine and Health Sciences 

Research Ethics Committee at the University of East Anglia (Ref. FMH2017/18 – 94), and all 

research was conducted in accordance with the relevant guidelines and regulations. 

3.2.2 Missing Incidents & Road Intersection Density  

For our first measure, we explored the impact of road intersection density on the patients 

going missing. For this we first plotted out all 168 different locations that the patients went 

missing from onto a map of Norfolk, in shape-file format, on ArcGIS software version 10.6.1 

[106] (Fig. 3.1a). As the locations were reported as postcodes in the dataset, for the purpose 

of this analysis the centroid of the reported postcodes were taken for these locations. The road 

network data used in this study was the Ordnance Survey Open Roads layer 

(https://www.ordnancesurvey.co.uk/business-government/products/open-map-roads), which 

is a publicly available dataset containing all the roads (major & minor) and intersections in 

the UK. In this dataset, road intersections are represented as vertices and the roads themselves 

are represented as edges connecting the vertices (Fig. 3.1c). Here, all roads and intersections 

for the Norfolk region were extracted and overlaid onto the map of Norfolk (Fig. 3.1b). In 

this dataset, road ends are labelled as intersections; since these do not represent true road 

intersections, we removed all intersections that were labelled road ends. The data analysis 

was then conducted using all remaining road intersections.  

https://www.ordnancesurvey.co.uk/business-government/products/open-map-roads
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Figure 3.1 (a): MPWD locations in Norfolk. (b): Road network dataset overlaid onto map of Norfolk. 

(c): Roads and intersections in the road network dataset. 

 

The measure of road intersection density was employed using the same methodology as in the 

previous chapter - spatial buffers. In short, this approach involves generating a buffer zone of 

a specific radius around each MPWD location and identifying the number of road 

intersections that fall within these zones. Owing to the lack of trajectory data for the MPWD, 

employing a buffer zone enables us to take into account any direction that these individuals 

could have travelled and as such, allows us to estimate all potential road intersections that 

they could have encountered at the time and place they went missing. To keep in line with 

our work in the previous chapter, we continued to use a radius of 1 kilometre for the buffer 

zones.  

Here, geodesic buffer zones with a radius of 1 kilometre were generated for each of the 168 

MPWD locations (Fig. 3.2a), and the road intersection density within each buffer zone was 

computed. Following this, we used the same set of 168 random, control locations generated 

across the entire Norfolk region as in the previous chapter, which had a similar urban/rural 
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distribution as well as fell in the same types of land as the MPWD locations (Fig. 3.2b). 

Similar to the MPWD locations, we generated geodesic buffer zones with a radius of 1 

kilometre for each of the 168 random locations, and computed the road intersection density 

within these buffer zones.  

 

Figure 3.2 (a): Road intersections falling within a 1 kilometre radius buffer zone of a single MPWD 

location (urban region, residential land). (b): Road intersections falling within a 1 kilometre radius 

buffer zone of a single random location (urban region, residential land). 

 

As the road intersection density within the buffer zones of both the MPWD and random 

locations groups had a non-normal distribution, a Wilcoxon Rank Sum Test was run to 

compare this variable in both groups.  

3.2.3 Missing Incidents & Road Intersection Complexity   

Our second measure was exploring the complexity of the road intersections at the MPWD 

and random locations. Here, road intersection complexity refers to the number of route 

options that branch out from a single intersection. For example, road intersections with 5 
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route options would be considered to be more complex than road intersections with only 2 

route options. For this, we computed the average road intersection complexity exhibited in 

each of the MPWD and random location buffer zones. Owing to the non-normal distribution 

of this variable in both groups, Wilcoxon Rank Sum Tests were run to compare the group 

differences in this variable.  

3.2.4 Missing Incidents & Road Orientation Entropy 

For our last measure, we explored the impact of road orientation entropy on the MPWD. 

Here, road orientation entropy refers to a measure of how ordered or disordered the overall 

layout of a road network within a given area is.   

We first calculated the angular orientation of each road in the MPWD and random location 

buffer zones. Since each road is bidirectional in nature, this was done by measuring the angle 

between compass North and the start/end points of the road respectively. Hence for each road 

this yielded two angles that were reciprocals of one another (i.e., If start point of road had 

orientation angle of 60⁰, the end point would have angle of 300⁰). After calculating the 

orientation of all roads in the MPWD and random location buffer zones, we group these 

values into 36 bins, with each bin representing incremental ranges of 10⁰ (i.e., 0-10, 11-20, 

21-30…351-360) (Fig. 3.3).  
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Figure 3.3: Rose diagrams showing the orientations of roads in a single (a) MPWD location buffer 

zone (urban, residential area) and (b) random location buffer zone (urban, residential area). The 

direction of the bars represent the orientation of the roads, whilst the height of the bars represent the 

frequencies of roads exhibiting that orientation. 

 

We next calculated Shannon’s entropy (H) [123] for the distribution of road orientations 

across all bins for the MPWD  and random location buffer zones, using the formula: 

 H =  − ∑ P(0𝑖) log𝑒 P(0𝑖)
𝑛
𝑖=1 , 

where n is the total number of bins, i is the bin number, and P(0i) is the probability of a 

randomly selected road from the sample falling in bin number i. In essence, the entropy 

measure tells you how ordered the layout of the roads in each buffer zone are, with higher 

entropy indicating low order and lower entropy indicating high order.   

3.2.5 Missing Incidents & Road Intersection Density, Intersection Complexity, and 

Orientation Entropy – Multiple Regression Modelling    

To explore whether road intersection density, intersection complexity, and orientation 

entropy predicted MPWD across Norfolk, we ran ordinarily least square multiple regression 

models.    

To provide specific spatial units for the analysis, the Norfolk County was sub-divided into its 

LSOAs (Fig. 3.4). We continued to use LSOAs as our spatial units of analysis to keep in line 

(3.1) 
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with our work in the previous chapter. For this, we downloaded a shape-file containing the 

UK sub-divided into its different LSOAs from the UK Office for National Statistics Open 

Geography Portal [108], and extracted only the LSOAs covering the Norfolk region. In this 

shape-file, each LSOA was classified as being either urban or rural based on population 

density and the latter were further sub-classified into rural towns and rural villages based on 

household density [104].  All the 168 MPWD locations were then aggregated into the 

respective LSOAs in which they fell in (96 locations in urban LSOAs, 33 in rural town 

LSOAs, and 39 in rural village LSOAs). Here, LSOAs that did not exhibit a MPWD were 

removed from the analysis (Fig. 3.4).  

Figure 3.4: Map of Norfolk containing all the MPWD locations, sub-divided into its different LSOAs. 

 

To control for the distribution of population densities across Norfolk, the number of MPWD 

falling within each LSOA were firstly normalised for the total population of that LSOA. 

Ordinary least squares multiple regression models were then run where the number of 

MPWD in each LSOA were regressed against the road intersection density, average 

intersection complexity, and road orientation entropy of each LSOA. In total, three multiple 

regression models were run – one for urban, rural town, and rural village regions, 

respectively. Following this, we ran a second set of multiple regression models for each 
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locality, this time by normalising the number of MPWD in each LSOA for the elderly 

population ( > 65 years of age) values for that LSOA, instead of the total population.  All 

regression models were run in R software package version 3.4.2 [105].   

3.3 Results   

3.3.1 Demographics Risk Factors 

All results of the demographics analysis were conducted and reported in the previous chapter. 

However, in summary and of relevance to this study, it is important to note that a similar 

number of males and females went missing. Moreover, most of the patients went missing 

from domestic residence settings (n = 134), followed by care facilities (n = 52) and general 

public locations (n = 23). Subgroups of patients that went missing multiple times (n = 52), as 

well as those that sustained harm during the missing incident (n = 10) were also identified. 

All MPWD were found alive except for one case.  

3.3.2 Missing Incidents & Road Intersection Density, Complexity  

Our results showed that there was a significantly higher road intersection density within the 

MPWD location buffer zones when compared to the random location buffer zones (W = 

21425, p < 0.001). In addition, the average intersection complexity in the MPWD location 

buffer zones were also significantly higher when compared to that of the random location 

buffer zones (W = 16522, p = 0.006).  

3.3.3 Missing Incidents & Road Orientation Entropy  

Our results showed that there were no significant differences in the road orientation entropy  

in the MPWD location buffer zones when compared to that of the random location buffer 

zones (W= 15482, p = 0.081). However, considering that this p-value of 0.081 indicates a 

statistical trend towards significance, we speculate that the threshold of 1 kilometre may have 

the limitation of being too small a radius (for the buffer zone) to fully capture differences in 
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the orientation of roads between locations. Hence as an exploratory measure, we expanded 

the buffer zone radius to 2 kilometres for all MPWD and random locations, and ran the 

analysis again. Here, we found that the roads in the MPWD location buffer zones had a 

significantly higher orientation entropy than the roads in the random location buffer zones 

(W= 16352, p = 0.012).  

3.3.4 Missing Incidents & Road Intersection Density, Intersection Complexity, and 

Orientation Entropy – Multiple Regression Modelling  

Our first set of multiple regression models showed that in urban regions, increased road 

intersection density was a significant predictor for increased MPWD (β= 0.03, p = 0.01) 

whilst neither road intersection complexity nor orientation entropy were significant predictors 

(p = 0.184; p = 0.949) (r2 = 0.05, p = 0.07). Meanwhile, neither road intersection density, 

intersection complexity, nor orientation entropy were significant predictors for MPWD in 

either rural towns or villages. To ensure that our models did not violate the fundamental 

assumption of multiple regression modelling regarding whether the predictor variables 

exhibited multi-collinearity (i.e., correlate with one another), we calculated the variance 

inflation factor (VIF) for each predictor variable in the three models (i.e., urban, rural town, 

and rural villages). All predictor variables in all three models had VIFs that fell close to 1 

(i.e., well below the recommended thresholds of 5 or 10), which indicates the absence of any 

problematic multi-collinearity [124].  

From our first set of regression models, we found that higher road intersection density was a 

significant predictor for higher incidence of MPWD in urban regions. In the previous chapter, 

we found that higher outdoor landmark density also significantly predicted higher incidence 

of MPWD in urban regions. Hence, we ran an additional multiple regression model for urban 

regions where we regressed the number of MPWD against road intersection density and 

outdoor landmark density. Our results for this model show that only higher outdoor landmark 
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density significantly predicts higher incidence of MPWD in urban regions (β= 0.009, p = 

0.008), with road intersection density no longer being a significant predictor (p = 0.375) (r2 = 

0.13, p = 0.002).  

Our second set of regression models (i.e., using values of MPWD normalised for the elderly 

population densities across Norfolk) showed the same results as the first set – in urban 

regions, increased road intersection density was a significant predictor for increased 

incidence of MPWD (β = 0.25, p < 0.001) whilst neither of the other two variables (i.e., road 

intersection complexity and orientation entropy) were significant predictors (p = 0.424; p = 

0.545) (r2 = 0.19, p < 0.001). Meanwhile, neither of these three variables were significant 

predictors for MPWD in rural town or village regions. Again, none of the three variables in 

all three models exhibited any problematic multi-collinearity.  

Since in the previous chapter the second set of linear regression models showed that 

increased outdoor landmark density was also a significantly predictor for higher incidence of 

MPWD in urban regions, here for urban regions we regressed the number of MPWD against 

road intersection density and outdoor landmark density. Our results here show that both 

increased road intersection and outdoor landmark density (β = 0.19, p = 0.003; β = 0.05, p = 

0.020) significantly predict higher incidence for MPWD in urban regions (r2= 0.26, p < 

0.001).     

3.4 Discussion 

In this chapter, we aimed to explore the role that road network structure may play in causing 

AD patients to go missing in the community by specifically focusing on the variables of road 

intersection density, intersection complexity, and orientation entropy. In line with the 

hypothesis, our results showed that increased road intersection density and complexity were 

associated with the missing incidents. However, our hypothesis that increased road 
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orientation entropy would also be associated with the missing incidents was true only when 

using a 2 kilometre radius buffer zone, and not 1 kilometre.  

Our results overall suggest that increased road intersection density, intersection complexity, 

and orientation entropy may all be environmental risk factors contributing to AD patients  

going missing in the community. To date, only two previous studies have looked into the 

relationship between road network structure and spatial disorientation in AD. Importantly, 

our results support the findings of these studies that dementia patients experience 

disorientation at road intersections, have difficulties using intersections with many route 

options, and get lost in areas with complex road layouts [103,122]. We here replicate and 

extend these findings using a relatively larger sample of AD patients, and by associating 

dementia-related missing incidents seen in the community to these properties of the road 

network structure.    

Despite our results showing a significant association for road intersection density, 

intersection complexity, and road orientation entropy at a buffer level, at a LSOA level we 

found that increased road intersection density was the sole significant predictor for increased 

missing incidents, and that too only in urban regions and not in rural towns or villages. 

Indeed, there may be other, more significant variables that may be predictive of missing 

incidents in rural regions, which requires further investigation. In urban regions however, 

after removing the non-significant predictors (road intersection complexity, orientation 

entropy) and adding outdoor landmark density as a predictor, our results first showed that 

road intersection density ceased to be a significant predictor for MPWD. However, when 

regressing against values of MPWD normalised for the elderly population densities, our 

results showed that both increased road intersection and outdoor landmark density were 

significant predictors for increased MPWD in urban regions.  
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In conclusion, our findings suggest that pockets of regions with a high road intersection 

density, intersection complexity, and orientation entropy could represent likely locations 

where a missing incident could occur for AD patients. Hence in addition to increased outdoor 

landmark density, our results suggest that complex road network structure may also be an 

important environmental risk factor for AD patients going missing in the community. On top 

of shedding light on the role that built features of the outdoor environment may play in spatial 

disorientation in AD, the results of our studies in Chapters 2 and 3 provide a platform for 

future studies to investigate these variables more systematically, using more sophisticated 

geospatial analytical techniques.  
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Chapter 4  

Outdoor Mobility Patterns of AD Patients in the Community – A GPS 

Tracking Study 
 

Paper under Preparation 

 

Puthusseryppady V, Patel M, Hornberger M. Outdoor mobility patterns of Alzheimer’s 

disease patients in the community using GPS tracking – a spatial disorientation perspective.  

To be submitted to JMIR mHealth and uHealth.  

  

4.1 Introduction 

 

In Chapters 2 and 3, we investigated and presented evidence for increased outdoor landmark 

density and complex road network structure as being potential environmental risk factors for 

dementia-related missing incidents, and more generally for spatial disorientation in AD. 

However, due to the retrospective nature of the data and the unavailability of trajectory data 

for the missing dementia patients, the true extent to which these factors contribute to spatial 

disorientation is unclear. Validation of our results using collected trajectory data from AD 

patients is warranted to examine if these built features of the environment do play a role in 

contributing to spatial disorientation.   

In addition to examining built features of the environment that influence navigation, 

investigating more general patterns of how AD patients move in the community could offer 

further insight into their spatial disorientation. To date, only very few studies have  

investigated the outdoor mobility patterns of AD patients in the community [125–128], 

however none of these studies have related the measured mobility patterns of these 

individuals to their spatial disorientation. Exploring this relationship can potentially offer 

insight into variables that are associated with spatial disorientation, specifically mobility risk 
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factors, which can then be used to identify individuals that may be at a high risk for going 

missing in the community.  

In this work, we conducted a 2 weeks GPS tracking study on a sample of community-

dwelling AD patients and healthy controls. Using their collected trajectories, our first aim 

was to understand the outdoor mobility patterns of AD patients in the community over an 

extended time period and under naturalistic conditions. Specifically, we wanted to investigate 

differences seen between controls and a) patients overall, b) patients when they are alone vs. 

accompanied, and c) patients who did/did not experience spatial disorientation during the 

tracking period. Our second aim was to test whether we could validate our findings from 

Chapters 2 and 3, by retrospectively investigating whether AD patients experienced spatial 

disorientation when navigating through environments with a high outdoor landmark density 

and/or complex road network structure.  

For our first aim, we hypothesise that AD patients will exhibit reduced outdoor mobility in 

the community when compared to controls, based on findings from previous studies 

[125,127] and more specifically, due to their impairments in spatial navigation. Here, we 

expect this to especially be true when patients are alone compared to when they are 

accompanied. We also hypothesise that we will identify mobility patterns which reflect risk 

factors for spatial disorientation in patients. Specifically, higher distance travelled from home 

(i.e., venturing into unfamiliar environments) and increased night-time outings into the 

community will show as being such risk factors, as these variables reflect common situations 

where spatial disorientation occurs for AD patients. For our second aim, we hypothesise that 

patients who experienced spatial disorientation during the tracking period will have navigated 

through environments with a high outdoor landmark density and/or complex road network 

structure, based on our findings from Chapters 2 and 3.   



69 
 

4.2 Methods 

4.2.1 Participants 

A total of 16 community-dwelling AD patients and 18 age matched healthy controls were 

recruited to participate in our research study at the University of East Anglia (see 

supplementary material 4.1 for details). Prior to study participation, all participants 

underwent an initial telephone screening procedure to assess eligibility for the study. 

Inclusion criteria was being between 50-80 years of age, living at home and if a patient, a 

clinical diagnosis of AD as well as having a carer (relative/spouse) that knows them well and 

who is willing to assist in the study. The exclusion criteria was having a previous history of 

alcohol or substance abuse, presence of a psychiatric condition, any other significant medical 

condition that may be likely to affect participation in the study (head injury, loss of vision, 

mobility issues), and if a patient, the presence of a comorbid neurological condition not 

related to AD.  

Signed informed consent was obtained from all participants prior to undergoing the 

experimental protocol. Ethical approval for the study was provided by the Faculty of 

Medicine and Health Sciences Research Ethics Committee at the University of East Anglia 

(FMH2017/18 – 123) as well as the National Health Service Health Research Authority 

(project ID 205788; 16/LO/1366). 

4.2.2 Experimental Protocol 

All participants underwent an experimental protocol consisting of a cognitive testing session 

and 2 weeks GPS tracking (detailed below).   

4.2.2.1 Cognitive Testing Session     

The cognitive testing session for healthy controls took place in a quiet testing room on the 

university campus and for patients, in a quiet room in their own home. In this testing session, 
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the background demographics of the participants including their age, gender, level of 

education, and whether they had any previous history of missing incidents were collected 

from their carers. In addition, the participants completed a range of cognitive tests and spatial 

navigation questionnaires. Of relevance to this study, the participants completed the Mini-

Addenbrooke’s Cognitive Examination (Mini-ACE) and the Santa Barbara Sense of 

Direction (SBSOD) Scale. The Mini-ACE is a sensitive, validated cognitive screening test for 

dementia, with lower scores indicating higher cognitive impairment whilst the SBSOD is a 

self-report scale that measures RW environmental spatial abilities, with higher scores 

indicating higher spatial ability [129,130]. Since patients may lack insight into their own 

navigational abilities as a result of AD [131], we also got the carers of the patients to 

complete the Spatial Orientation Screening (SOS) questionnaire. This is a newly developed 

screening tool that assesses the carer’s reports of their loved one’s navigational impairments 

in the community, with higher scores indicating higher impairments [132] (see supplementary 

material 4.2 for copy of SOS questionnaire).  

Of the 16 recruited AD patients, 3 had a clinical diagnosis of amnestic Mild Cognitive 

Impairment (aMCI). However, as aMCI patients are highly likely to go on to develop AD 

[133] and with their scores on the Mini-ACE test falling below the upper cut-off score of      

≤ 25 which indicates the likely presence of dementia [129],  we considered these 3 patients as 

having AD for the research purposes of this study.  

4.2.2.2 GPS Tracking  

Following the cognitive testing session, all participants underwent GPS tracking of their 

outdoor mobility patterns in the community for a 2 weeks period, under naturalistic 

conditions. Here, outdoor mobility in the community is defined as any movement that occurs 

outside of the participant’s home and includes movement inside indoor locations in the 

community (eg. shopping malls, supermarkets, etc.). An exploratory period of 2 weeks was 
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chosen for the tracking period in order to capture participants’ mobility patterns over repeated 

weekdays/weekends and to account for potential day-to-day fluctuations in these patterns. 

With a set of only 3 GPS trackers, participants were at a time tracked in parallel, in groups of 

3, with the entire data collection period spanning from November 2018-2019.   

All participants were visited at home and provided with a GPS tracker (Trackershop Pro Pod 

5). They were instructed to wear the tracker (i.e., by placing it in their coat/trouser pockets) 

whenever they left the house during the tracking period. All participants were asked to wear 

the tracker regardless of whether they were alone or accompanied and regardless of the mode 

of transport used when outside. The GPS devices for the first batch of 22 participants (13 

controls, 9 AD patients) recorded data at a sampling frequency of every 3 seconds, whilst for 

the remaining 12 participants (5 controls, 7 AD patients), data was recorded data at a 

sampling frequency of every 5 seconds. The differences in sampling frequencies are as a 

result of the GPS Company changing the lowest sampling frequency (from 3 to 5 seconds) of 

the devices online, midway through data collection.   

In addition to wearing the tracker, participants were also instructed to log all outings made in 

the tracking period in a navigation diary. For each outing, participants were asked to record 

the date/time of the outing, mode of transport used, and whether they were alone or 

accompanied during the outing.  

4.2.2.3 Disorientation Behaviour in Tracking Period   

Following the GPS data collection, we retrospectively obtained information about the 

disorientation behaviour of the AD patients during the tracking period from their carers. The 

carers were asked if there were any instances (that they knew of) in this period where the 

patients experienced: a) a missing incident and, b) a more subtle instance of spatial 

disorientation behaviour, where the carers had to intervene and correct the navigation of the 
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patients. Based on their carer’s responses, a simple yes or no for each disorientation 

behaviour during the tracking period was recorded for all patients.  

4.2.3 Data Analysis 

4.2.3.1 GPS Trajectory Data Pre-Processing   

Pre-processing of the collected GPS trajectory data was carried out in MATLAB® R2017b, 

and consisted of data cleaning, smoothing, and transportation mode classification.  

For each participant, the data cleaning procedure involved identifying and removing days 

with no outdoor mobility from their data. Here, we identified one patient with almost no 

recorded data, due to a faulty GPS tracker; this patient was removed for the analysis, leaving 

a total of 15 AD patients. Following data cleaning, the data smoothing procedure was run on 

the remaining data of all participants, which involved identifying and removing spikes (i.e., 

big signal jumps) in the data. Following recommendations in the literature, data points 

representing spikes were identified and removed using distance thresholds set between every 

consecutive pair of recorded data points (i.e., the hypothetical distance that an individual 

could cover, assuming a set maximum speed, in the time difference between the data points) 

[134,135].  

We next classified each participant’s trajectory data points into three transportation modes – 

stationary, by foot, and in vehicle. As a first step, we grouped all trajectory data points into 

time windows. For participants with data recorded every 3 seconds, each time window had a 

duration of 9 seconds and for participants with data recorded every 5 seconds, each time 

window had a duration of 10 seconds. For both sets of participants, we set a duration for the 

time windows which was similar but also as small as possible, to ensure consistency and to 

increase the accuracy of our transportation mode classification. Each time window was then 
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classified into transportation modes (i.e., stationary, by foot, in vehicle) based on set mean 

and maximum speed values of the data points in that time window.  

For further details of pre-processing, see supplementary material 4.2. 

4.2.3.2 Outdoor Mobility Variables Analysis of GPS Trajectories  

To explore the outdoor mobility patterns of the participants, we chose to investigate 8 

different variables. The following 5 variables were chosen as they have been suggested to 

represent important aspects of outdoor mobility in previous GPS tracking studies of dementia 

patients [125–127] – total outings made, distance travelled (total and by foot), time spent 

moving outside, and distance travelled from home. In addition, with findings from one of 

these studies showing that the outings of dementia patients are dependent on time of day 

[125], we also chose to look at total day-time and night-time outings made to explore this 

pattern further. Additionally, since qualitative findings from a previous study suggested that 

dementia patients stick to familiar routes when navigating in their neighbourhood [103], we 

chose similarity of trajectories as our final variable of interest to investigate this pattern 

quantitatively.  

4.2.3.2.1 Outings Made (Total, Day-time, Night-time) 

From each participant’s trajectories, we identified the total number of outings they made. 

Here, an outing is defined as a journey which starts when the participant leaves their home 

and ends when they return home. Outings were identified by firstly calculating the distance of 

all recorded data points to the centroid of the participant’s home address. In line with 

previous research, all data points within 30 metres (i.e., 3 times the standard deviation of the 

GPS device’s measurement error, allowing 97% confidence for determining true position) of 

the home address centroid were considered to reflect the participant being at home [136]. An 

outing was then identified whenever the participant’s trajectory left home and covered a 
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minimum distance of 100 metres, which has been shown to be a reasonable threshold to 

identify outings by a previous study [137]. The total number of outings made by each 

participant over the tracking period were computed, and normalised for the total number of 

days of recorded data.  

Due to the influence that time of day has on outdoor mobility in dementia patients [125], we 

were particularly interested in the total number of day-time (6:00am-6:00pm) and night-time 

(6:01pm-5:59am) outings made. Here, we recognise that these time bands will vary according 

to season, however to keep things simple we decided to use the same time bands for all 

participants, despite different individuals being tracked at different times of the year. The 

values of these variables were normalised for the total number of days that the GPS data was 

recorded.  

4.2.3.2.2 Time Spent Moving Outside  

We next computed our second variable of interest, time spent moving outside home, for each 

participant. The GPS devices used in this study automatically stop recording data when no 

movement is detected for a maximum of 2 minutes. Hence for this variable, we calculated the 

sum of the total duration of each of the participant’s outings, excluding the periods of time 

where the participant was not moving. This variable was then normalised for the total number 

of outings made by the participant. 

4.2.3.2.3 Distance Travelled (Total, By Foot & From Home)   

To compute total distance travelled, we summed the distance between each pair of 

consecutive data points across all the participant’s outings, and normalised this value for the 

total outings made. The same method was used to calculate the distance travelled by foot, this 

time by using only the portions of each participant’s trajectories where they were walking 

(i.e., walking trajectories). Again, this value was normalised for total outings made. 



75 
 

Meanwhile, to compute the distance travelled from home, we calculated the mean distance of 

the data points in each outing to the participant’s home, and averaged this value across all 

outings.  

4.2.3.2.4 Similarity of Trajectories    

To compute our final variable of interest, similarity of trajectories, we used a metric known 

as Fréchet distance. Fréchet distance is a metric that measures how similar two curves are in 

their shape, taking into account the location and ordering of the data points that make up the 

curve [138]. This metric is used for various purposes including handwriting recognition 

[139], investigating the alignment of protein structures [140], and for assessing the similarity 

of trajectories. A common example used to explain the concept of Fréchet distances is that of 

a man walking his dog on a leash, where the man will be on one trajectory (A) and the dog on 

another trajectory (B). The Fréchet distance refers to the minimum length of a leash that is 

required to connect the man on trajectory A to the dog that is on trajectory B, with both 

walking forwards simultaneously. Here, the more similar the two trajectories are to each 

other, the lower the Fréchet distance. The Fréchet distance between two separate trajectories, 

T1 and T2, is calculated using the formula below [141]:  

𝑑Fréchet(𝑇1, 𝑇2) = inf  max
𝑡 ∈[𝑡.𝑠𝑡𝑎𝑟𝑡,𝑡.𝑒𝑛𝑑]

{𝑑(𝑓1(𝑡), 𝑓2(𝑡))}, 

where T1 and T2 are represented by two continuous functions f1 and f2 over time period t, and 

t.start/t.end represent the starting and end times of t. For each participant, we calculated the 

Fréchet distances for all combinations of their outing trajectories, and computed the mean of 

these values.    

An overview of the GPS trajectory data pre-processing procedure and summary of all the 

outdoor mobility variables are illustrated in Fig. 4.1.  

 

(4.1) 
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Figure 4.1: Overview of GPS trajectory data pre-processing procedure and summary of outdoor 

mobility variables used in this study. The collected GPS trajectory data from all participants undergo a 

data cleaning and smoothing procedure, followed by transport mode classification. Eight outdoor 

mobility variables are then generated from the pre-processed data4.  

 

4.2.3.2.5 Analysis Steps  

After generating all the outdoor mobility variables, we conducted our analysis in three 

different steps using R software package version 3.4.2 [105]. In the first step, we compared 

differences of all variables between the controls and patients using t-tests and if the variables 

had a non-normal distribution, Wilcoxon Rank Sum tests.  

Then in the second step, using information from the navigation diaries, we split the outings of 

each patient into outings made alone and outings made accompanied. The rationale for this is 

because due to their impairments in navigation, we expect patients’ outdoor mobility patterns 

to be influenced by whether they are alone or accompanied. When accompanied they can rely 

on other individuals (i.e., the carer) to navigate whereas this is not possible when they are 

alone, hence the latter situation is more likely to highlight mobility patterns which are more 

                                                             
4 Icon used in this figure – “GPS tracking” by Visual World, from thenounproject.com   
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reflective of their navigation impairments. Meanwhile, for controls we do not expect their 

outdoor mobility patterns to be influenced by whether they are alone or accompanied, owing 

to their lack of navigation impairments, and hence did not split the data of this group further. 

Hence in the second analysis step, we compare differences in all of the outdoor mobility 

variables across three groups – controls (all outings), patients (outings alone), and patients 

(outings accompanied). Linear mixed models were used to assess these differences using the 

nlme package in R (https://cran.r-project.org/web/packages/nlme/nlme.pdf), with group 

chosen as the fixed effect/between-subjects factor and participant as the random 

effect/within-subjects factor in the model. This statistical model was chosen as it accounts for 

participants in two of the groups (i.e., patients when alone/patients when accompanied) being 

the same, and the resulting interdependence that arises in the collected data of these 

individuals under both conditions. After running a separate mixed model for each variable, 

ANOVAs that were in-built in the R package were run to assess overall group significance, 

followed by post-hoc pairwise tests (also in-built in the R package) that were corrected for 

multiple comparisons using the FDR method.     

For the third and final step, using the information on disorientation during the tracking period 

that we obtained retrospectively from the carers of the patients, we divided the patients into 2 

groups (disoriented vs. not disoriented during tracking period). We then investigated group 

differences in all the outdoor mobility variables across controls, patients with disorientation, 

and patients without disorientation using one-way ANOVAs and if the variables had a non-

normal distribution, Kruskal-Wallis tests.  

4.2.3.3 Geospatial Analysis of GPS Trajectories 

We conducted a geospatial analysis of our participants’ trajectories to test our findings that 

increased outdoor landmark density and complex road network structure may contribute to 

spatial disorientation in patients. For this, we imported and plotted each participant’s walking 

https://cran.r-project.org/web/packages/nlme/nlme.pdf
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trajectories (i.e., data points classified as by foot) into ArcGIS software, using the WGS 1984 

geographic co-ordinate system. We chose to focus on only the participants’ walking 

trajectories as we assume that spatial disorientation is unlikely to occur for the AD patients 

when they are not walking (i.e., passively sitting in vehicle); disorientation can still occur if 

the patients were actively driving a vehicle, however we assume that none of the patients in 

our sample are active drivers given that they have cognitive impairments.  

We first tested whether patients that had disorientation during the tracking period had 

walking trajectories that passed through areas with an increased outdoor landmark density. 

Here, we used the same outdoor landmark dataset and spatial buffer methodology as in 

Chapter 2 to measure the outdoor landmark density in the areas that all participants visited. 

Here, we selected a relatively stringent radius of 50 metres (as opposed to the more liberal 1 

kilometre used in Chapters 2 and 3) for the buffer zones generated around the participants’ 

walking trajectories. A more stringent threshold was chosen here as due to the availability of 

the trajectory data, we know exactly which routes were taken by the participants whereas in 

Chapter 2, we had to account for all potential areas that were within a reasonable walking 

distance from the last known location of the missing patients. Furthermore, 50 metres was 

chosen as the threshold as previous studies have suggested this distance as being appropriate 

to capture all environmental features, such as outdoor landmarks, which are directly 

accessible along a travelled route [142,143]. It must be mentioned here that to account for the 

measurement error in the GPS device (10 metres), we add another 30 metres to the buffer 

zones (i.e., 3 times the standard deviation of the measurement error to ensure 97% confidence 

for determining position) in addition to the initial 50 metres, following guidelines in the 

literature [136]. Hence for each participant, geodesic buffer zones of 80 metres were 

generated around their walking trajectories, and the number of outdoor landmarks falling 

within these buffer zones (normalised for total walking distance) were then computed. Group 
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comparisons on this variable were then made across the controls, patients with disorientation, 

and patients without disorientation using a Kruskal Wallis test.  

We next tested whether patients that had disorientation during the tracking period had 

walking trajectories that passed through areas with a high road intersection density and 

complexity. For this, we used the same road network dataset and spatial buffer methodology 

as in Chapter 3. Here, a buffer zone radius of 30 metres, to account for measurement error in 

the GPS device, was chosen and generated around the participants’ walking trajectories. The 

number and average complexity of the road intersections (normalising the former for total 

walking distance) falling within the buffer zones of all participants were computed, and group 

comparisons were made using a Kruskal Wallis and one-way ANOVA tests respectively.  

We then tested the impact of road orientation entropy in contributing to patients experiencing 

spatial disorientation during the tracking period. As we found a buffer radius of 2 kilometres 

to be sensitive to identify changes in road orientation entropy between different locations in 

Chapter 3, we continue to use this distance (plus a 30 metres error buffer) for our buffer 

zones here. Subsequently, buffer zones of 2.03 kilometres were generated around the 

participants’ trajectories, and the orientation entropy of the roads falling within these buffer 

zones were computed using Shannon’s entropy (introduced in Chapter 3). Group comparisons 

were then made using a one-way ANOVA.   

4.3 Results 

4.3.1 Participant Demographics   

The controls and AD patients in this study did not differ statistically in their age or gender, 

however a statistical difference was seen for number of years of education, with controls 

having higher number of years of education than the patients. The AD patients performed 

significantly worse than controls on the Mini-ACE; the scores of all patients met the upper 
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cut-off of ≤ 25/30, indicating the likely presence of dementia. Majority of the patients were 

reported to have had a past history of at least one missing incident (Table 4.1).  

Table 4.1: Participant Demographics 

 

 

ns = not significant,  *p < 0.05, ***p<0.001 

 

4.3.2 Outdoor Mobility Variables Analysis  

The results of our first analysis of the outdoor mobility variables (controls vs. patients) 

showed that overall, there were no significant group differences for any variable. However, 

statistical trends were seen for patients making fewer night-time outings and having a lower 

distance travelled by foot when compared to the controls (Table 4.2). 

Table 4.2: Comparison of Outdoor Mobility Variables (Controls vs. Patients) 

 ns = not significant  

 Controls  

(Mean; SD) 

AD Patients  

(Mean; SD) 

Significance  

 

 

Total Sample 18 15 - 

Age  68.33 (7.53) 70.33 (6.86) ns 

Education (Years) 15.44 (3.11) 12.80 (1.78) * 

Males  9 8 ns 

Females 9 7 

Mini-ACE Score  28.52 (1.50) 18.13 (5.64) *** 

Had Missing Incident 

History 

- 12 - 

Variable Controls 

(Mean; SD) 

Patients 

(Mean; SD) 

Significance 

(p-value) 

Outings Per Day 2.28 

(0.79) 

1.95 

(0.85) 

ns 

 

Day Outings Per Day 1.90 

(0.63) 

1.73 

(0.74) 

ns 

Night Outings Per Day 0.39 

(0.32) 

0.22 

(0.24) 

p = 0.098 

 

Time Spent Moving Per Outing  

(Hours) 

1.17 

(0.59) 

0.95 

(0.59) 

ns 

 

Total Distance Per Outing (Miles) 14.54 

(14.08) 

11.15 

(9.13) 

ns 

 

Total Walking Distance Per Outing (Miles) 1.22 

(0.64) 

0.90 

(0.69) 

p = 0.079 

 

Mean Distance From Home Per Outing (Miles) 2.92 

(2.56) 

2.08 

(1.85) 

ns 

 

Similarity of Trajectories Across Outings (Mean 

Fréchet Distances)  

0.14 

(0.13) 

0.10 

(0.09) 

ns 
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The results of our second analysis (i.e., after splitting the data of the patients into outings 

made alone and accompanied) showed significant group effects for 7 of the 8 variables (Table 

4.3).  
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Table 4.3: Comparison of Outdoor Mobility Variables 

 (Controls vs. Patients Accompanied vs. Patients Alone) 

 

ns = not significant,  *p < 0.05, **p< 0.01, *** p<0.001 

  

 

Variable Controls 

(Mean; SD) 

Patients 

Accompanied 

(Mean; SD) 

Patients 

Alone 

(Mean; SD) 

Group 

Significance 

(p-value) 

P-Hoc 

(Controls – Patients 

Accompanied)  

P-Hoc  

(Controls – 

Patients Alone) 

P-Hoc  

(Patients Accompanied 

– Patients Alone)  

Outings Per Day 2.28 

(0.79) 

1.57 

(0.85) 

1.04 

(0.78) 

*** * *** p = 0.090 

Day Outings Per Day 1.89 

(0.62) 

1.36 

(0.77) 

1.02 

(0.76) 

** p = 0.058 ** ns 

Night Outings Per Day 0.38 

(0.31) 

0.21 

(0.24) 

0.01 

(0.04) 

*** * *** * 

Time Spent Moving Per Outing 

(Hours) 

1.17 

(0.58) 

0.92 

(0.57) 

0.41 

(0.55) 

** ns ** * 

Total Distance Per Outing 

(Miles) 

14.53 

(14.08) 

10.96 

(9.27) 

2.86 

(6.47) 

* ns ** p = 0.080 

Walking Distance Per Outing 

(Miles) 

1.21 

(0.64) 

0.83 

(0.57) 

0.59 

(0.71) 

* ns * ns 

Mean Distance From Home Per 

Outing (Miles) 

2.92 

(2.55) 

2.04 

(1.96) 

0.50 

(1.16) 

** ns ** p = 0.079 

Similarity of Trajectories 

Across Outings (Mean Fréchet 
Distances) 

0.14 

(0.13) 

0.09 

(0.08) 

0.04 

(0.09) 

ns ns ns ns 
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Post-hoc pairwise comparisons between the groups showed that compared to controls, 

patients when alone had significantly fewer outings per day (total outings, p < 0.001; day 

outings, p = 0.003; night outings, p < 0.001), lower time spent moving per outing (p = 0.001), 

lower total distance covered per outing (p = 0.009), lower walking distance per outing (p = 

0.027) and lower mean distance from home per outing (p = 0.004) (Fig. 4.2). For the last 

variable (i.e., similarity of trajectories across all outings), no significant differences were seen 

between these two groups. Meanwhile, when comparing the controls to patients when 

accompanied, no significant differences were seen in any of the variables except for total and 

night outings made per day, whereby patients when accompanied made significantly fewer 

total and night outings per day than the controls (p = 0.024 and p = 0.044) (Fig. 4.2). A 

statistical trend was also seen for patients when accompanied making fewer day outings per 

day than the controls (p = 0.058).  

When comparing patients when they were alone to when they were accompanied, significant 

differences were seen with patients when alone making fewer night outings per day and 

having less time spent moving per outing compared to when they were accompanied (p = 

0.044 and p = 0.040 respectively) (Fig. 4.2). No significant differences were seen in any of 

the remaining variables, although statistical trends were seen for patients when alone having 

fewer total outings per day (p = 0.090), lower total distance per outing (p = 0.080), and lower 

mean distance from home per outing (p = 0.079) compared to when they were accompanied.  
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Figure 4.2: Violin plots of post-hoc pairwise comparisons of the outdoor mobility variables (waves indicate probability distribution of variables; black dots indicate group means) –  

a) outings per day, b) day outings per day, c) night outings per day, d) time spent moving per outing, e) total distance per outing, f) walking distance per outing, g) mean distance from 

home per outing. Note that ranges of violin plots extend slightly above/below actual range of data as plots show smoothed out distribution  

 

a) b) c) d) 

e) f) g) 
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To explore whether inter-individual differences in the outdoor mobility variables for patients 

when alone was related to their subjective perception of spatial ability, we correlated their 

output on all variables (on outings alone) with their respective scores on the SBSOD scale. 

We were also interested to explore whether the patients’ output on the outdoor mobility 

variables on outings alone were related to their navigation impairments as reported by their 

carers, and hence correlated these variables with their scores on the SOS. Pearson’s 

correlations and if the variables had a non-normal distribution, Spearman’s correlations, were 

run. The results showed no significant correlations between patient scores on either the 

SBSOD or SOS and their output on any of the outdoor mobility variables.  

For the purpose of our third analysis, we found that none of the patients were reported to have 

had missing incidents during the tracking period by their carers. However, six patients were 

reported as having experienced more subtle moments of spatial disorientation. The results of 

our third analysis did not show any significant group differences for any of the outdoor 

mobility variables (Table 4.4).  

Table 4.4: Comparison of Outdoor Mobility Variables 

(Controls vs. Patients with Disorientation vs. Patients without Disorientation) 

Variable Controls 

(Mean; SD) 

Patients with 

Disorientation 
(Mean; SD) 

Patients without 

Disorientation 

(Mean; SD) 

Group 

Significance 

(p-value) 

Outings Per Day 2.28 

(0.79) 

1.70 

(0.71) 

2.11 

(0.92) 

ns 

 

Day Outings Per Day 1.89 
(0.62) 

1.49 
(0.62) 

1.87 
(0.80) 

ns 

Night Outings Per Day 0.38 

(0.31) 

0.20 

(0.19) 

0.23 

(0.27) 

ns 

Time Spent Moving Per 
Outing (Hours) 

1.17 
(0.58) 

1.13 
(0.75) 

0.82 
(0.44) 

ns 

Total Distance Per Outing 

(Miles) 

14.53 

(14.08) 

13.44 

(10.20) 

9.62 

(8.61) 

ns 

 

Walking Distance Per Outing 
(Miles) 

1.21 
(0.64) 

1.21 
(0.93) 

0.68 
(0.38) 

p = 0.067  

Mean Distance From Home 

Per Outing (Miles) 

2.92 

(2.55) 

2.57 

(1.95) 

1.75 

(1.80) 

ns 

 

Similarity of Trajectories 
Across Outings (Mean Fréchet 

Distances) 

0.14 
(0.13) 

0.11 
(0.09) 

0.09 
(0.08) 

ns 
 

 ns = not significant 
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4.3.3 Geospatial Analysis of GPS Trajectories  

Our first set of results for the geospatial analysis showed that there was a significant group 

difference in the outdoor landmark density surrounding the walking trajectories (p < 0.001). 

Post-hoc pairwise Wilcoxon Rank Sum tests showed that the walking trajectory buffer zones 

of the controls had a significantly higher outdoor landmark density than that of the patients 

with and without disorientation respectively (p = 0.002 and p < 0.001). However, there were 

no significant differences when comparing the outdoor landmark density falling within the 

walking trajectory buffer zones of the patients with disorientation to those without (p = 

0.606).  

Our second set of results showed that there were no significant group differences in the 

density or complexity of the road intersections that were encountered by the participants’ 

walking trajectories (p = 0.436 and p = 0.457). Our final set of results showed that there was 

a significant group difference in the road orientation entropy surrounding the participants’ 

walking trajectories (p = 0.010). Post-hoc pairwise t-tests showed that the road orientation 

entropy surrounding the walking trajectories of controls was significantly higher than that of 

patients with and without disorientation respectively (p = 0.037 for both). However, there 

were no significant differences seen in the road orientation entropy surrounding the walking 

trajectories of the patients with disorientation to those without (p = 0.894).   

4.4 Discussion 

In this chapter, using 2 weeks GPS tracking data, we aimed to understand the outdoor 

mobility patterns of AD patients in the community and how this relates to spatial 

disorientation. Moreover, we also aimed to explore if we could validate our findings from 

Chapters 2 and 3 that increased outdoor landmark density and complex road network 

structure may contribute to spatial disorientation in AD patients.  
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Although previous studies have investigated the outdoor mobility patterns of AD patients, 

they did not investigate these patterns as a factor of whether they were alone or accompanied. 

Addressing this for the first time here, our first set of findings extend the findings from these 

studies. In line with our hypothesis, we found that AD patients when alone exhibited lesser 

and more restricted outdoor mobility in the community compared to the controls, whereas 

when they were accompanied, most of their mobility patterns were similar to the controls. 

Specifically, on outings alone, AD patients cover lower distances (total and walking), spend 

less time moving outside and stay closer to home, the latter two of which are in line with 

findings from previous studies [125,127]. Expanding on the finding from one of these studies 

that the timing of outings made by AD patients are less varied than controls [125], we show 

here that AD patients make less day-time and night-time outings when alone. Furthermore, it 

has previously been reported qualitatively (i.e., on the basis of interview accounts) that AD 

patients stick to using familiar routes in their neighbourhood [103]. Our findings disagree 

with this, as we found no significant differences in the similarity of routes taken by controls 

and patients, regardless of whether the latter were on outings alone or accompanied.  

Overall, it is apparent that these patterns of restricted outdoor mobility seen in patients on 

outings made alone is associated with spatial disorientation, with carers of most patients (n = 

11) indicating on the SOS questionnaire that their loved one refrains from 

travelling/participating in activities alone due to being worried about finding their way. 

Hence, it can be seen that patients try to reduce their risk of experiencing spatial 

disorientation by restricting their outdoor mobility in the community. To the best of our 

knowledge, this is the first study to relate the outdoor mobility patterns of AD patients in the 

community to spatial disorientation, with previous studies having only related these patterns 

to caregiving burden and patients’ own wellbeing [126,128].  
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Our findings from this study showed that we were not able to identify significant outdoor 

mobility risk factors for spatial disorientation in patients. Moreover, we also found that the 

areas visited by patients with disorientation had a similar outdoor landmark density and 

complexity of road network structure when compared to the patients without disorientation, 

and this null result suggests that we are not able to validate our findings from Chapters 2 and 

3 at this stage.  

In conclusion, our results showed that AD patients when alone restrict their outdoor mobility 

to reduce their risk for experiencing spatial disorientation in the community. As such 

restrictions can have a negative impact on their autonomy and overall quality of life [144], 

this may not be the most appropriate response to the problem as not all these patients may 

actually be at a high risk for experiencing spatial disorientation in the community. In order to 

strike a balance between their right to autonomy and right to safety, an important step is to 

identify which patients are indeed at a high risk for spatial disorientation. In the next chapter, 

we aim to investigate whether we can identify AD patients in our sample that are at a high 

risk for spatial disorientation using RW navigation tests, and examine whether this can be 

predicted from their performance on VR tests of spatial navigation.  
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Chapter 5  

Prediction of AD Patients at a High Risk for Spatial Disorientation in 

the Community Using Virtual Reality Spatial Navigation Tests  
 

Paper under Preparation  

 

Puthusseryppady V, Patel M, Hornberger M. (2021). Predicting Alzheimer’s disease patients’ 

risk for spatial disorientation in the community using virtual reality navigation tests. In 

preparation, to be submitted to JMIR Serious Games (tentative). 

 

5.1 Introduction  

In the previous chapter, we found that the AD patients exhibit reduced and restricted outdoor 

mobility patterns when they make outings alone, as a strategy to reduce their perceived risk 

of experiencing spatial disorientation in the community. Since not all these patients may 

actually be at a high risk for spatial disorientation, and as restricting outdoor mobility can 

have a negative impact on their quality of life, there is a clear need to identify which patients 

are at a high risk for spatial disorientation. This is of clear importance due to not only its 

implications in safeguarding this subgroup of individuals from going missing in the future but 

also due to ethical implications, with regards to encouraging those not at a high risk to 

maintain their autonomy in the community for as long as possible.   

Our results in Chapters 2 and 3 suggest that we can identify patients at a high risk for spatial 

disorientation in terms of the environment that they navigate through (i.e., increased outdoor 

landmark density and complex road network structure). However, at a behavioural level, very 

little is known about the extent to which fundamental impairments to patients’ spatial 

navigation abilities predict their risk for experiencing spatial disorientation in the community. 

In this study, we aim to address this question by first systematically investigating how our 

sample of AD patients navigate in VR settings followed by how they navigate in a familiar 
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RW community setting, in a situation where spatial disorientation is likely to occur. We then 

relate findings from both tests to explore whether we can predict which patients are at a high 

risk for spatial disorientation in the community based on their performance in the VR 

navigation tests.  

We hypothesise that patients will exhibit impaired performance on both the VR and RW 

navigation tests, as AD patients are widely reported to be impaired in navigating through both 

VR and RW environments (reviewed in Chapter 1). We also hypothesise that patients who 

perform relatively worse on the egocentric orientation components of the VR tests will in turn 

be the ones that exhibit more spatial disorientation in the RW test. This is because findings 

from previous studies have suggested that AD patients rely and use more of an egocentric 

strategy to navigate in the RW, potentially as a means to compensate for early impairments to 

their allocentric navigation abilities [74,94,95]. Hence, we hypothesise that those with 

relatively weaker egocentric orientation abilities will be less able to use this strategy to aid 

their navigation, and hence be at higher risk for experiencing spatial disorientation. It is 

envisioned that such a finding would enhance the RW applications of the VR navigation tests 

that we use, towards risk stratification of a patients’ propensity for spatial disorientation in 

the community.  

5.2 Methods 

5.2.1 Participants  

The same cohort of controls and AD patients from the previous study were used here. An 

additional 5 controls were added, who were individuals that opted out of the GPS tracking 

component of the previous study, resulting in a total sample size of 23 controls and 16 AD 

patients. Signed informed consent was obtained from all participants prior to undergoing the 

experimental protocol. Ethical approval for this study was provided by the Faculty of 

Medicine and Health Sciences Research Ethics Committee at the University of East Anglia 
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(FMH2017/18 – 123) as well as the National Health Service Health Research Authority 

(project ID 205788; 16/LO/1366). 

5.2.2 Protocol  

All participants underwent an experimental protocol which consisted of a VR spatial 

navigation testing session, 2 weeks GPS tracking, and a RW spatial navigation testing 

session. Of relevance to this chapter, we will be focusing only on the VR and RW navigation 

testing sessions.  

The VR navigation testing session was held in a quiet testing room in the university campus 

for the controls, whilst for patients this was held at a quiet room in their own home. In this 

session, participants were tested on their spatial navigation abilities using two non-immersive 

VR navigation tests on an iPad – the Virtual Supermarket Test and Sea Hero Quest [57,145]. 

Following the VR testing, the RW navigation testing session was held on a separate day for 

all participants, where they completed an outdoor Detour Navigation Test in their own 

neighbourhood. Both VR and RW navigation tests are detailed below.    

5.2.2.1 VR Navigation - Virtual Supermarket Test  

The Virtual Supermarket Test (VST) is a spatial navigation test that looks at egocentric 

orientation, allocentric orientation, and heading direction. We chose this test as since it has 

been used by previous studies to highlight navigation impairments in AD patients, we wanted 

to explore if patient performance on this test relates to their spatial disorientation in the RW 

[57,67,68]. In this test, an iPad is used to show participants 14 different videos (trials) lasting 

20-40 seconds in duration, of a shopping trolley moving around a virtual supermarket, from a 

first person perspective (Fig. 5.1a). The virtual environment did not contain any salient 

landmarks or features, and is designed to test spatial navigation abilities without tapping into 

episodic memory, as any spatial representation acquired during testing is as a result of 



92 
 

incidental encoding. In each video, participants begin at a fixed starting location and follow a 

different route, whilst making a series of 90⁰ turns, to reach a specific destination in the 

supermarket (first 7 trials = 20 seconds, 3 turns; remaining 7 trials= 40 seconds; 5 turns). At 

the end of each trial, participants are asked three sets of questions to assess their egocentric 

orientation, allocentric orientation, and heading direction, respectively.  

To assess egocentric orientation, participants are asked to indicate the direction of the starting 

location in relation to their current location (i.e., destination). Here, participants are instructed 

to give two directional components for their response (i.e., front left, back right, front right, 

etc.) (Fig. 5.1b). For each trial, a response was scored as being correct only if both directional 

components were given correctly, and the outcome measure was total percentage of correct 

answers across all trials. Participants are next assessed on their allocentric orientation, where 

they are shown a blank map of the supermarket with only the starting location labelled, and 

are instructed to mark on the map where they think the destination is (Fig. 5.1c). Here, the 

outcome measure is the distance error (i.e., displacement) between the participant’s response 

and correct location, and this was measured and expressed as percentage of map size. Lastly, 

on the map of the supermarket the participants are asked to indicate their heading direction 

(i.e., the direction that they were facing when the trial finished). They could give their 

response in terms of the four cardinal directions (north, east, south, and west) (Fig. 5.1d). 

Similar to egocentric orientation, the outcome measure here was the total percentage of 

correct answers across all trials.    
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Figure 5.1: Illustration of the VST – a) Participants are shown videos of a shopping trolley, from a first 

person perspective, moving along fixed routes in a supermarket, b) Egocentric orientation component 
of task, where the direction of the starting location in relation to destination location must be indicated, 

c) Allocentric orientation component of task, where the destination location must be indicated (blue 

circle represents example response) on a blank map of the supermarket with only the starting location 
labelled (green circle), d) Heading direction component of task, where the direction faced when the trial 

finished must be indicated. 

 

5.2.2.2 VR Navigation – Sea Hero Quest 

Sea Hero Quest (SHQ) is a mobile game that measures the spatial navigation abilities of 

individuals in laboratory and non-laboratory settings. We chose this test as previous studies 

have shown its utility to assess navigation abilities in healthy individuals [53,145], and we 

wanted to investigate whether the test can also identify navigation impairments in AD 

patients. Furthermore, navigation performance on this test has also been shown to relate to 

navigation performance in naturalistic RW environments [145]. The game involves players 

navigating a boat to various locations in a VR ocean environment on an iPad, and is 

composed of two types of levels – wayfinding and flare levels.  
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In the wayfinding levels, players are first shown a map containing the start location and 

location of 3 numbered checkpoints. They are instructed to study the map for as long as they 

need, and once they are ready, they tap on the screen and the map disappears. Their task is to 

then navigate the boat (from a first person perspective) to the checkpoints in order using their 

memory of the map (Fig. 5.2a). These levels necessitate participants to form and utilise a 

cognitive map for their wayfinding, and requires them to use more of an allocentric as 

opposed to an egocentric navigation strategy.  Participants are timed as they complete the 

level; if they exceed a set time threshold, an arrow appears that points in the Euclidean 

direction of the goal location in order to aid their wayfinding. The two outcome variables for 

the wayfinding levels are total distance travelled to visit all the checkpoints and total duration 

to complete the level. Here, higher distance travelled and duration to complete the level are 

considered to reflect less efficient navigation and hence, worse wayfinding performance. 

Here, a caveat for increased wayfinding duration is that it can also reflect participant’s use (or 

lack of) of the boat’s acceleration (i.e., swiping up on the iPad screen temporarily increases 

the boat’s speed) and hence can be indicative of more non-navigational factors like 

navigation confidence or personal preference of boat’s speed. Hence, we consider wayfinding 

distance as representing more the participants’ navigation ability compared to duration, and 

use this as our primary measure for these levels.   

Importantly, to account for inter-individual differences in gaming proficiency, two practice 

levels are administered at the start of the game, where participants memorise and navigate to 

the location of a single checkpoint. In these levels the checkpoint is simply located at the end 

of a straight path, and hence these levels do not require much spatial navigation ability and 

instead measure gaming proficiency. Each participant’s score on the wayfinding levels were 

then normalised for the sum of their scores on the practice levels, to account for their gaming 

proficiency. In this study, the wayfinding levels 6, 8, and 11 (which increases in complexity) 
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were used, as these levels have been shown to challenge the navigation abilities of 

participants by a previous study [145]. However, with many of the AD patients finding level 

6 (i.e., the relatively easiest level) quite challenging, the remaining levels were not 

administered for them; hence for the entire participant cohort, we used only wayfinding 

performance on level 6 for our analysis.   

In the flare levels, participants are not provided with a map and are simply asked to navigate 

the boat from their starting location along various bend/turns on a river, until they find a flare 

gun. Once the flare gun is found, the boat rotates by 180⁰ clockwise and the participants are 

asked to shoot the gun in the direction of where they think the starting location is, and are 

given 3 directions to choose from (right, front, left) (Fig. 5.2b). Based on their response, 

participants are awarded 1, 2, or 3 stars for their flare accuracy, with higher stars indicating 

higher accuracy. Similar to the VST, this level requires participants to encode the starting 

location in relation to their current position, and hence measures their egocentric orientation. 

In line with a previous study [145], the flare levels 9 and 14 were used and in addition, level 

19 was also used. These three levels had only one 90⁰ turn along the route. In order to 

challenge the participants further, and to really identify those with better egocentric 

orientation, a final challenging level (i.e., level 49) was administered which had four 90⁰ 

turns along the route. Flare accuracy for each level was weighted for the total number of turns 

in that level, and mean flare accuracy across all levels was the outcome measure.  
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Figure 5.2: Illustration of SHQ – a) Wayfinding level 6, where locations of 3 numbered checkpoints 

are first shown on a map. After the map disappears, participants have to navigate the boat to the 

numbered checkpoints in order, b) Flare level 9, where participants navigate the boat from a starting 
location along the river, until they find a flare gun. Once found, the boat rotates by 180⁰ clockwise and 

the participants are asked to shoot the gun in the direction of the starting location. 

 

5.2.2.3 RW Navigation – Detour Navigation Test   

The Detour Navigation Test (DNT) is a novel RW test that we are using for the first time, 

which tests the spatial navigation abilities of participants on an accompanied walk in a 

naturalistic community setting, that is also a highly familiar environment (i.e., their own 

neighbourhoods). We chose to use participants’ own neighbourhoods as the test setting to 

accurately simulate the most common RW situation where AD patients go missing in the 

community (i.e., during routine neighbourhood walks). An additional advantage of using a 

neighbourhood setting is that it enables us to overcome confounds of differences in spatial 

learning between controls and patients that would impact test performance if navigation was 

assessed in an unfamiliar environment [146].      

At the end of the VR navigation testing session, the participants are asked to choose and 

describe a familiar route (Route A) from their house to a landmark/location in their 

neighbourhood that they often visit by foot, and this route is then marked by the experimenter 
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on Google Maps. On a separate day, the participants are visited at home and accompanied by 

the experimenter on Route A. As taking familiar routes often lends itself more towards the 

use of egocentric navigation [147], this route enables us to assess the use of this strategy in a 

RW situation. Once at the end of Route A, the participants are instructed to navigate back to 

their house using the same route. Unknown to the participant, at the first intersection on the 

way back, they are asked to stop and find an alternative, detour route (Route B) back home 

that does not overlap at all (or if this is not possible, a route that overlaps as minimal as 

possible) with Route A. This task requires participants to use the cognitive maps of their 

neighbourhoods, and lends itself more towards the use of an allocentric navigation strategy. 

An overview of the DNT is illustrated in Fig. 5.3.  

Figure 5.3: Illustration of the DNT. Participants navigate to a chosen landmark/location in their 

neighbourhood that they commonly visit using their usual route (i.e., original route). At the first 

intersection on the way back, they are asked to find an alternative route back home which does not 

overlap with the original route (i.e., detour route)5. 

 

In this task, we measured spatial disorientation exhibited by the participants along these 

routes. Specifically, spatial disorientation is measured as the number of – a) wrong turns 

made and b) moments of hesitation. A wrong turn is defined as movement at an intersection 

(either straight or right/left turns) onto a path that is not marked as a viable alternative route 

                                                             
5 Icons used in the figure – “Person” by Irene Hoffman, “Home” by Tauficon, “Supermarket” by Adrien Coquet, 

all from thenounproject.com 
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on the map or onto part of the original route. For the latter, exceptions are made where the 

participant has no other alternative but to use part of the original route to get back home, in 

which case this is considered as an acceptable overlap and hence not marked as a wrong turn 

(eg. home located at end of a cul-de-sac). Participants could make a total of two consecutive 

wrong turns, at which point they would be brought back to the location before the first wrong 

turn was made and encouraged to try again.  

For the second variable, a moment of hesitation was defined as the participant either slowing 

down/stopping and looking around to aid orientation or verbally admitting that they are 

unsure about their whereabouts, in line with a previous study [94]. Initially, in addition to the 

experimenter visually identifying and recording the frequency of these behaviours, we also 

planned to measure this variable more objectively using accelerometer data. For this, we used 

a motion sensor app on an iPad, which measures an individual’s linear acceleration in the 

three axes (x, y, z) every 10 milliseconds. As they performed the DNT, the participants 

carried the iPad by grasping it like a steering wheel in their hands, and their linear 

acceleration values were recorded. Using the values in the x axis of the iPad (i.e., denoting 

forward/backward movement), our objective was to examine the step intervals (i.e., time 

interval between two consecutive steps) of the participants to identify moments of hesitation. 

The idea here was that when participants exhibit hesitant walking, more variation would be 

seen in their step intervals as compared to when they are more confident, where more 

uniform intervals would be seen. However, after data collection we noticed that due to a bug 

in the app, only the first and last 2 minutes of the DNT trials were recorded for each 

participant. Since this data was insufficient for our purpose, we discarded this data and only 

used measures of moments of hesitation as identified visually by the experimenter.    

Overall, for each participant the total number of wrong turns made and moments of hesitation 

were calculated for both original/detour routes, and normalised for the respective total route 
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distance and total route intersection number. Furthermore, for patients, a total disorientation 

score was calculated using the formula below:  

Total Disorientation Score =  
Detour Route Disorientation Score + 1

Original Route Disorientation Score + 1
 . 

Here, a coefficient of 1 was added to both original/detour route disorientation scores to 

overcome the division by zero problem, in cases where a patient exhibited no original route 

disorientation (i.e., score = 0). Hence, a total disorientation score of 1 indicates that the 

patient had no disorientation in either the original or detour routes, a score greater than 1 

indicates more disorientation on the detour than the original route, and a score less than 1 

indicates more disorientation on the original than detour route.  

5.2.3 Data Analysis  

The data analysis was conducted in 4 different steps using R software package version 3.4.2 

[105]. In the first step, we investigated group differences in VR navigation by comparing 

patient performance on the VST (egocentric orientation, allocentric orientation, and heading 

direction) and SHQ (wayfinding and flare levels) to that of controls. In the second step, we 

assessed group differences in RW navigation by comparing patient performance on the DNT 

(original & detour route disorientation scores) to that of controls. To assess group differences 

in the VR and RW navigation variables, t-tests and/or Wilcoxon Rank Sum tests were used 

depending upon whether the variables had a normal/non-normal distribution.  

In the third analysis step, we related patient performance on the VR navigation tasks to that 

of their RW navigation. Here, we investigated whether any of the VR navigation variables 

(i.e., VST and SHQ variables) predict patients’ total disorientation score on the DNT using 

linear regression models. In the fourth and final analysis step, we explored whether patient 

performance on any of the VR navigation variables predict whether they are at a high risk for 

RW spatial disorientation. For this, we first divide the patients into high/low risk groups 

(5.1) 
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based on their total disorientation score on the DNT. We then select the VR navigation 

variables that significantly predicted DNT total disorientation score from step three, and 

assess how well these variables predict risk classification using binomial logistic regression 

models.  

5.3 Results 

5.3.1 Participant Demographics   

After adding 5 controls to our participant cohort from the previous study, an updated 

demographics analysis was run (Table 5.1). There were no significant group differences in 

age (p = 0.440), gender (p = 0.939), or duration that the participants lived at their address     

(p = 0.699). Controls were significantly more educated (p = 0.002) and had a higher Mini-

ACE score than the patients (p < 0.001).  

Table 5.1: Participant Demographics 

Variable Controls  

(Mean; SD) 

AD Patients 

(Mean; SD) 

Significance 

(p- value) 

Sample Size  23 16 - 

Mini-ACE Score 28.59 (1.43) 18.25 (5.47) *** 

Age 68.36 (7.57) 70.25 (6.63) ns 

Gender (Males, Females) 10M, 13F 8M, 8F ns 

Education (Years) 15.65 (2.96) 12.81 (1.72) ** 

Duration Lived at Address (Years) 15.04 (11.27) 15.85 (16.33) ns 
ns = not significant,  **p < 0.01, *** p<0.001 

 

5.3.2 Differences in VR Navigation  

Our results for the VST showed that patients had significantly worse performance on the 

egocentric orientation (p < 0.001), allocentric orientation (p = 0.004), and allocentric heading 

direction (p < 0.001) components when compared to the controls.  

Our results for the egocentric flare levels on SHQ showed that patients had no significant 

differences in their weighted flare accuracy scores when compared to controls (p = 0.297). 

However, patients had worse performance than controls on the allocentric wayfinding level 6 
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as they had a significantly higher distance travelled (p = 0.0015) and duration taken to 

complete the level (p = 0.011). As map view duration can influence performance on the 

wayfinding levels, we ran one way ANCOVAs to see whether these effects remained even 

after controlling for this covariate. As the distance travelled and duration variables had a non-

normal distribution, we inverse transformed these variables to alleviate the positive skewness, 

which enabled us to run this parametric test. Our results for the ANCOVAs show that these 

effects remained even after controlling for map view duration (p = 0.021 for distance 

travelled and p= 0.014 for duration to complete level).   

Results of group differences for all VR navigation variables are summarised in Table 5.2.  

5.3.3 Differences in RW Navigation  

Our results for the DNT showed that there were no significant differences between patients 

and controls for their original route disorientation scores (p = 0.259), however patients had a 

significantly higher disorientation score when compared to controls for the detour route        

(p = 0.007) (Table 5.2). 
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Table 5.2: Overview of Group Differences in VR/RW Navigation Variables  

ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001

Navigation  

Environment  

Navigation 

Test 

Variable Controls 

(Mean; SD) 

Patients 

(Mean; SD) 

Significance 

(p-value) 

Effect Size 

(Cohen’s d) 

 

 

 
 

 

VR 

 

 

VST 

Egocentric Orientation (% Correct) 81.49 

(21.67) 

30.35 

(19.25) 

*** 2.47 

Allocentric Map Orientation (Displacement; % of Map Size) 
 

18.57 
(7.16) 

26.44 
(8.07) 

** 1.04 

Heading Direction (% Correct) 83.76 

(16.37) 

34.37 

(22.46) 

*** 2.57 

 
SHQ 

Wayfinding Distance Score   0.71 
(0.27) 

1.21 
(0.55) 

** 1.24 

Wayfinding Duration Score  0.73 

(0.27) 

1.25 

(0.63) 

* 1.13 

Flare Accuracy Score  2.30 
(0.54) 

2.12 
(0.54) 

ns - 

 

 

RW 

 

DNT 

Original Route Disorientation Score  0.00 

(0.00) 

0.01 

(0.07) 

ns - 

Detour Route Disorientation Score  0.001 
(0.008) 

0.25 
(0.50) 

** 0.76 
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5.3.4 Prediction of RW Navigation from VR Navigation – Linear Regression 

The results of our linear regression models showed that for the VST, neither patient 

performance on egocentric orientation, allocentric orientation, nor heading direction 

predicted their total disorientation score on the DNT.  

For SHQ, we found that 2 patients struggled quite extensively on the practice wayfinding 

levels, and hence level 6 was not administered for them. Based on this, we assume that if this 

level had been administered, both patients would have had performed more poorly on the 

wayfinding variables when compared to the other patients. Hence to include these patients in 

our regression models and increase its statistical power, we assign them both predicted scores 

for wayfinding distance and duration, which were the scores of the patients who performed 

most poorly on these variables on this level. Subsequently, our results showed that both 

wayfinding distance and duration on level 6 significantly predicted increased total 

disorientation score on the DNT (p = 0.034, r2 = 0.29 and p = 0.046, r2 = 0.27 respectively). 

Importantly, both models had normally distributed residuals. With distance travelled being 

our primary measure of the navigation ability on the wayfinding levels, we consider the 

model with this variable as the predictor as our main model (Fig. 5.4).  
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Figure 5.4: Linear regression model. Patient performance on SHQ level 6 wayfinding distance 

significantly predicted their DNT total disorientation score. 

 

5.3.5 Prediction of RW Navigation from VR Navigation – Logistic Regression  

To identify whether SHQ wayfinding distance performance of the patients can predict risk for 

RW spatial disorientation, we divided the patients into 2 risk groups. Patients who exhibited 

disorientation on the DNT (i.e., total disorientation score not = 1) were classified as high risk 

for RW spatial disorientation, whilst the rest (i.e., total disorientation score =1) were 

classified as low risk. A binomial logistic regression was then run to see how well SHQ 

wayfinding distance performance predicts patients’ group membership. The results of this 

regression showed that SHQ wayfinding distance performance could not significantly predict 

patients at a high risk for RW spatial disorientation (p = 0.155).    

In our previous study reported in Chapter 4, we found that there were 4 AD patients in our 

sample who only made outings accompanied (i.e., had no outings alone) during the 2 weeks 

tracking period. From conversations with the carers, we gathered that these patients made no 

outings alone due to their carers lacking confidence in their ability to independently navigate 

outdoors without getting lost, and as such we can consider these individuals as being at high 
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risk for RW spatial disorientation. Based on this factor, the remaining AD patients who did 

make outings alone during the tracking period were classified to be at low risk for RW spatial 

disorientation. As an exploratory analysis, we ran logistic regression models, this time to see 

if any of the VR navigation variables predicted the patient risk classification. The results here 

showed that none of the VST variables were significant predictors, however a statistical trend 

was seen for increased SHQ wayfinding distance as being a predictor for being at high risk 

for RW spatial disorientation (p = 0.056).  

5.4 Discussion 

In this chapter, we aimed to investigate whether we can predict AD patients at a high risk for 

spatial disorientation in the community based on their spatial navigation abilities measured 

using VR tests.  

From a VR perspective, in line with our hypothesis, the results showed that AD patients 

exhibit impairments in all aspects of the VST when compared to controls, which is in 

agreement with previous studies [57,67]. Meanwhile on SHQ, which was used for the first 

time to test navigation in AD patients, our results showed that patients only exhibited 

impairments on the wayfinding levels and not the flare levels. Overall, these results add to the 

existing literature on AD patients experiencing spatial disorientation in VR environments.  

From a RW perspective, our novel DNT showed that contradictory to the hypothesis, 

patients’ performance on their original route (i.e., where they predominantly use an 

egocentric strategy) was comparable to controls. In line with the hypothesis however, our 

results showed that the patients performed significantly worse than controls on their detour 

route (i.e., where they predominantly use an allocentric strategy). Findings from previous RW 

navigation studies in AD suggest that patients are impaired in using both egocentric and 

allocentric navigation strategies in controlled, unfamiliar environments [89–93]. We extend 
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these findings by showing that in a naturalistic, familiar environment, patients exhibit 

impairments only in the latter as opposed to the former. To the best of our knowledge, this is 

the first study to systematically assess the ability of AD patients to use egocentric and 

allocentric strategies for navigation in a familiar community setting.  

When relating the VR and RW navigation variables for the patients, we found that only   

performance on SHQ level 6 wayfinding distance related to performance on the DNT. 

Specifically, worse wayfinding performance on SHQ predicted increased DNT total 

disorientation score. Results from a previous study showed that SHQ wayfinding 

performance correlated with wayfinding performance in naturalistic, RW city environments 

for healthy participants [53]. Our finding extends this result by also suggesting associations 

between SHQ wayfinding performance and navigation impairments in a neighbourhood 

setting for AD patients. Despite this, SHQ level 6 wayfinding distance performance did not 

predict patients at a high risk for RW spatial disorientation, when risk was classified based on 

DNT performance. However, when risk was classified based on whether patients made any 

outings alone during the 2 weeks tracking period, a trend was seen with increased wayfinding 

distance predicting increased risk for RW spatial disorientation. Although we found 

associations between performance on the SHQ wayfinding level and the DNT, it was quite 

surprising that patient performance on any of the VST variables, despite indicating 

impairments in navigation, did not relate at all to the DNT. As far as we are aware, this is the 

first study to relate patient navigation performance in VR environments to their risk for 

spatial disorientation in the community.  

In conclusion, our results showed that spatial navigation impairments can be detected in AD 

patients using VR navigation tests as well as when performing goal-oriented navigation tasks 

in a familiar, RW environment. However, the VR navigation tests in general were not able to 

predict which patients are at a high risk for RW spatial disorientation in the community.  
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Chapter 6 

General Discussion 
 

6.1 Summary  

 

The aim of this thesis was to study the role of spatial navigation impairments and the outdoor 

environment in contributing to spatial disorientation in AD. Our specific objectives were to 

identify environmental risk factors for spatial disorientation as well as explore whether the 

outdoor mobility patterns of AD patients in the community offer further insight into this 

symptom. Our final objective was to investigate whether we can predict AD patients at a high 

risk for spatial disorientation in the community based on their performance on VR spatial 

navigation tests. Our work in Chapters 2 and 3, which investigated spatial disorientation in 

the context of dementia-related missing incidents, showed that these incidents are a 

widespread problem geographically and identified increased outdoor landmark density as 

well as complex road network structure as being potential environmental risk factors for their 

occurrence. Our work in Chapter 4 showed that AD patients have restricted outdoor mobility 

patterns in the community when alone, which instead of revealing risk factors for spatial 

disorientation reflects more a risk reduction response to previous episodes of going missing 

in the community.  Lastly, our work in Chapter 5 showed that although AD patients exhibit 

spatial navigation impairments in both VR and RW community settings, the VR navigation 

tests could not predict which patients were at a high risk for spatial disorientation in the 

community. The remainder of this chapter will discuss the results of each experimental study 

in detail.  
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6.2 Chapters 2 and 3 - Discussion    

6.2.1 Demographic and Geographic Patterns of Missing Incidents  

In Chapter 2, we identified certain demographic patterns for patients going missing in the 

community. Our first finding was that missing incidents were prevalent year-round, with 

similar numbers of patients having went missing across all four seasons. We also found that 

the majority of patients went missing from domestic residences as opposed to care facilities, 

which could potentially be explained by the relatively lower levels of safeguarding available 

in home settings and the fact that patients living at home have greater opportunities to get 

outdoors compared to those in care facilities. Hence, our findings suggest that missing 

incidents are a significantly greater problem for patients still living at home as opposed to 

those in care facilities, even after accounting for the ratio of dementia patients living in these 

residences in the UK (home - 61%; care facilities - 39%) [148]. However, it is also important 

to normalise the number of missing incidents reported in each residence setting for the 

number of times the patients leave the premises, in order to truly determine whether missing 

incidents are more prevalent in one setting over the other. Lastly, our results also suggested 

gender as being a potential demographic risk factor for missing incidents, with gender 

differences seen in 3 of the missing incident variables (i.e., locality missing from, whether 

they went missing multiple times, time spent missing).   

In terms of geographic patterns, we did not find any hotspots (or coldspots) for the missing 

incidents in our study region, suggesting that missing incidents are not bound to particular 

locations but are rather, a widespread and prevalent problem. Furthermore, it strengthens the 

notion that spatial disorientation is endemic and therefore an integral part of the disease 

process, as opposed to being a direct factor of the environment [1].  
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6.2.2 Environmental Risk Factors – Outdoor Landmarks and Road Networks   

We found that regardless of geographic location, increased outdoor landmark density and 

complex road network structure may represent environmental risk factors for missing 

incidents and more generally, for spatial disorientation in AD patients.  

The exact mechanisms underlying how these factors contribute to spatial disorientation in AD 

patients is at present unclear. We know that landmarks play a key role in spatial navigation, 

functioning as building blocks for cognitive maps used in an allocentric navigation strategy 

and as external entities to orient ourselves to the surrounding environment when using an 

egocentric navigation strategy [75]. Studies have shown that when navigating in the 

community, patients are increasingly reliant on visible landmarks, especially when trying to 

reorient themselves once disoriented [94,95,103]. Moreover, it has also been previously 

reported that when landmarks are increased in a VR environment, healthy participants spend 

a longer amount of time looking at these landmarks [149]. Taken together, we speculate that 

when navigating through environments with a high outdoor landmark density, AD patients 

may have spent an increased amount of time fixating on the landmarks to aid their navigation. 

Moreover, with AD patients being widely reported to be impaired in landmark recognition 

[55,65], the increased number of landmarks might have made it more challenging for them to 

recognise and use relevant landmarks to aid their navigation, thus contributing to their 

disorientation. Indeed, it is possible that environments with higher outdoor landmark density 

have less distinct landmarks, often containing objects/locations that repeat regularly (eg. 

franchise supermarkets, street lamps, bus stops, etc.). The similarity of the repeating 

objects/locations to one another could have prevented them from being understandable 

landmarks for the patients, thereby challenging their navigation abilities in these areas and 

leading them to go missing. 
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The exact mechanisms underlying how complex road network structure contributes to spatial 

disorientation for patients is also at present unclear. As road intersections represent spatial 

decision points along a route, navigating through environments that have a high intersection 

density would more often place the patients in situations where important navigation 

decisions must be made (“which way do I turn here?”). This in conjunction with the presence 

of various route options at the intersections (i.e., high intersection complexity) has the 

potential to challenge the already impaired spatial navigation abilities of these individuals [1], 

increasing their chances of making navigation errors along a journey, and ultimately going 

missing. In support of this speculation is findings from a previous study, which reports that 

dementia patients find complex road intersections difficult to use and understand [103]. 

Indeed, the chances for AD patients to go missing may especially be high when navigation 

errors accumulate over multiple, sequential intersections – making it more difficult for them 

to reorient themselves and navigate to their intended location.  

Our results also showed an effect for road layout, with patients going missing in 

environments with increased road orientation entropy (i.e., roads with less-defined patterns). 

It has previously been reported that people tend to remember roads with well-defined patterns 

(i.e., more grid-like) better than roads that have less-defined patterns (i.e., less grid-like) in 

their cognitive maps of local environments [150]. Considering this together with the 

impairments in using an allocentric navigation strategy seen in AD [1], we speculate that 

patients may lose earlier the parts of their cognitive maps containing roads with less-defined 

patterns, causing them to experience spatial disorientation when navigating through these 

environments.  

One of the main limitations of our environmental risk factor findings from Chapters 2 and 3 

is that we are unable to conclude exactly which outdoor landmarks or road intersections the 

patients were exposed to/used during the missing incident, due to the lack of available 
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trajectory data. Addressing this was our methodology in Chapter 4, where we found using 

trajectory data that outdoor landmark density and road network structure had no effect on AD 

patients experiencing spatial disorientation in the community. A potential reason for the 

discrepancy of this result with findings from Chapters 2 and 3 could be due to the differences 

in sample size, with our study in Chapter 4 having only 6 patients with spatial disorientation 

compared to the relatively larger sample of 210 patients in the previous studies. Another 

reason may be due to the lack of clarity on the specific locations where the patients felt 

disorientated in the study reported in Chapter 4. In Chapters 2 and 3, we conducted the spatial 

buffer analysis on locations from where patients were reported to have experienced spatial 

disorientation/went missing from whereas in Chapter 4, we did not have access to this 

information and hence conducted the buffer analysis on the entire trajectories of the patients 

who experienced disorientation in the tracking period. Considering these reasons, we give 

more weightage to our findings from Chapters 2 and 3 for the role that outdoor landmark 

density and road network structure may play in contributing to spatial disorientation in AD.  

Lastly, despite our results suggesting contributory roles for landmark density and road 

network structure in spatial disorientation for AD patients, it is worth noting that these factors 

could represent proxies of other factors that may also be at play. In particular, locations in the 

community that have increased landmarks and complicated road networks also tend to be 

busier in terms of pedestrian/traffic flow. With a previous study reporting the effect that loud 

sounds can have in causing patients to lose their way [103], the enhanced auditory as well as 

visual stimuli in these locations could have been an additional factor that contributed to 

spatial disorientation in the AD patients. Future studies should examine the effect that 

increased outdoor landmark density and complex road network structure have with/without 

crowds on AD patients experiencing spatial disorientation, to determine which of these 

factors play a bigger role in doing so.      
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6.3 Chapter 4 – Discussion  

6.3.1 Outdoor Mobility Patterns of AD Patients in the Community   

In Chapter 4, we found that AD patients have distinct outdoor mobility patterns when alone, 

where the spatial and temporal extent of their outings in the community are restricted.   

From the carers’ responses on the SOS questionnaire, we can see that the reason underlying 

the restricted outdoor mobility patterns of AD patients when alone is due to the latter 

possessing a fear of having trouble when navigating in the community. With most patients in 

our sample having had a previous history of going missing in the community, our findings 

reflect a method adopted by patients (likely in response to these experiences) to reduce the 

risk of them experiencing spatial disorientation. Specifically, patients when alone seem to be 

limiting their night-time outings and restricting the spatial/temporal extent of any outings 

they do make in the community, which highlights an attempt to alleviate the occurrence of 

two common RW situations where a missing incident is likely to happen (i.e., during 

independent walks in the neighbourhood and at night-time). Indeed, this risk reduction 

strategy that we see in patients is in agreement with a previous study which reported that 

restricting outdoor mobility to very familiar locations acts as a protector against missing 

incidents for AD patients [81]. In addition to the patients themselves, we also consider the 

potential influence that their carers may have on the adoption of this risk reduction strategy, 

particularly with regards to them being hesitant to their loved ones making outings alone. 

Therefore, it is likely that it is the combination of external intervening behaviour from the 

carers and the internal curtailing of mobility behaviour by the patients themselves that causes 

their restricted mobility patterns when alone. Further to a fear of spatial disorientation, it must 

also be noted that other factors may also explain the restricted mobility patterns of AD 

patients when alone including physical mobility and visual acuity impairments, fear of 

accidents/falling, etc. which were not considered here.   
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The risk reduction strategy of restricting outdoor mobility suggests that patients are to an 

extent, aware of their impairments in navigating when in the community. Considering this, 

we would expect patients with a relatively lower perception of their spatial ability (i.e., lower 

scores on the SBSOD scale) to also exhibit lower output on the outdoor mobility variables 

compared to those with a higher perception of their spatial ability. However, interestingly we 

did not find any correlation between patients’ scores on the SBSOD scale and their outdoor 

mobility behaviour when alone. Although the exact reason for this is unclear at present, with 

scores on the SBSOD scale having shown to correlate with scores on specific navigation 

tasks (learning new spatial layouts, making directional judgments in familiar environments, 

etc.) [130] , the lack of explicit measures of navigation ability in our outdoor mobility 

variables could explain this null result. Hence although patient responses on the SBSOD scale 

may relate to their performance on navigation tasks in RW environments, it may not be 

related more generally to measures of the spatial and temporal extent of their outdoor 

mobility in the community.  

It is also worth noting that we did not find any relationship between patients’ scores on the 

SOS questionnaires and their outdoor mobility behaviour when alone. With higher scores on 

this questionnaire indicating higher navigational impairments in the community (as reported 

by the carer), based on the risk reduction strategy for spatial disorientation seen in patients, 

we would expect those with higher scores to have less outdoor mobility when alone. One 

potential reason for our null result could be due to the SOS questionnaire being a new and yet 

to be validated instrument, hence the extent to which it relates to ecological measures of 

outdoor mobility in the community is unclear. More importantly however, it can be argued 

that the carers’ responses on the second half of the SOS questionnaire (i.e., rating their loved 

one’s current navigation abilities compared to how it was in the past – supplementary 

material 4.2) can potentially be influenced by their own anxiety levels about the condition of 
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their loved ones. As these responses can potentially factor into the overall questionnaire 

score, it may very well be that these scores may not be reflecting the true extent of patients’ 

navigation impairments.  

6.3.2 Outdoor Mobility Risk Factors for Spatial Disorientation    

From our findings, we were unable to identify any outdoor mobility risk factors for spatial 

disorientation in the AD patients. Although this suggests that spatial disorientation cannot be 

explained by looking solely at how AD patients move in the community, we still think that 

the mobility patterns seen in AD patients on outings made alone can offer some insight into 

potential risk factors for spatial disorientation.  

We saw that patients confine their outings made alone to a safety range near their home, 

which is done to reduce their risk of spatial disorientation. Here, the mobility variables that 

the patients are restricting could actually reflect risk factors for spatial disorientation. Along 

these lines, it may very well be that increased day-time and night-time outings, time spent 

moving outdoors, distance travelled (total and walking), and travelling further away from 

home increase the likelihood of patients experiencing spatial disorientation. However, further 

research is required to determine whether these variables truly represent outdoor mobility risk 

factors for spatial disorientation in the community.     

6.4 Chapter 5 – Discussion  

6.4.1 Spatial Navigation of AD Patients in VR and RW Settings   

Our results in Chapter 5 showed that AD patients were impaired in all components of the 

VST and on the wayfinding, but not flare levels, of SHQ. It was quite surprising that the 

patients performed similar to controls on the flare levels of SHQ, considering that these levels 

measure egocentric orientation in a similar way to the VST. This null result could potentially 

be explained by the flare levels being relatively easier, having on average relatively fewer 

turns along the route and fewer multiple choice answer options when compared to the 
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egocentric component of the VST. This considered, our results suggest that the flare levels of 

SHQ, at least the ones used in this study, lack sensitivity to detect egocentric orientation 

impairments in AD patients.  

Our results also highlight the utility of the DNT for studying spatial disorientation in AD 

patients in the community. We showed that AD patients exhibited impairments on the DNT, 

with deficits being seen on the detour route as opposed to the original route. It is interest ing 

to note that despite these impairments, all patients (except one) were able to successfully 

complete the task (i.e., use an alternative route to find their way back home) without getting 

lost or external assistance. This may owe to the fact that they were navigating in a familiar 

environment and shortly after noon-time, where navigation conditions are more favourable. 

Nevertheless, our findings from the DNT suggest that although AD patients still have an 

intact cognitive map for their neighbourhood, they may be unable to apply these cognitive 

maps as effectively as controls when an allocentric strategy is required for navigation in these 

settings. This supports findings from a previous study which assessed AD patients’ ability to 

use personal cognitive maps for familiar environments in a VR environment [63]. The 

differential impairment for patients on the detour route can also potentially be explained at a 

more cellular level by the concept of remapping in the hippocampal place cells that form 

cognitive maps. Specifically, previous animal model studies have shown that the firing 

patterns of place cells alter (i.e., remap) in response to changing task demands or goal 

locations, and that this ability is impaired in transgenic AD mice [151,152]. Applying these 

findings to our results, it is possible that the place cells in the AD patients failed to remap as 

effectively as in the controls when task demands where changed in the DNT, which could 

explain why AD patients had difficulties in using their cognitive maps for navigation on the 

detour route. However, future studies are required to further elucidate the relationship 
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between impairments in remapping and the use of cognitive maps for navigation in the 

community in AD patients.  

6.4.2 Predicting RW Spatial Disorientation from VR Navigation 

When relating patient performance on the VR navigation tasks to that of the DNT, we found 

that only SHQ level 6 wayfinding performance significantly predicted total disorientation 

score on the DNT. This is not surprising as both tasks are quite similar in nature, with the 

wayfinding level on SHQ requiring participants to form/use a new cognitive map and the 

DNT requiring participants to use a pre-existing cognitive map, both to perform goal-oriented 

navigation. This finding highlights the real world application of the wayfinding levels on 

SHQ in predicting spatial disorientation for patients in situations where they have to 

explicitly use their cognitive maps for navigation in the community. However, with this 

finding being based on a limited sample of AD patients, validation using a relatively larger 

sample size is warranted.  

In contrast to results from SHQ, we found that patients’ impairments on the VST (i.e., 

egocentric, allocentric, and heading direction components) did not relate to their performance 

on the DNT. The reason for this null result is at present unclear, however it could potentially 

be due to differences in how the different aspects of navigation were measured in both tasks. 

Specifically, the DNT does not explicitly measure patients’ heading direction or patients’ 

allocentric knowledge of their destination’s location on a blank map as the VST does, and 

hence it is no surprise that these variables did not relate to the DNT total disorientation score. 

Furthermore, although the use of an egocentric navigation strategy is measured in both tasks, 

differences exist in the way it is measured. In the VST, this is measured by looking at the 

ability of patients to correctly point to the starting location after passively navigating through 

a route. However in the DNT, egocentric navigation strategy use is measured mainly by 

looking at the ability of patients to correctly use a well familiar route to actively navigate to a 
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destination (i.e., original route); although not explicitly measured, patients are likely using 

this strategy on this task either by using visible landmarks or their sequential knowledge of 

left-right turns that need to be made to inform their navigation decisions [30]. Indeed, such 

differences in how egocentric navigation strategy use were measured in both tasks could 

explain why patient scores on the two tests did not relate to one another.  

Considering that the VST does not assess egocentric navigation ability in relation to 

landmarks or sequential turns, it is at present unclear which patients in our sample are 

actually poor egocentric navigators (with respect to these two aspects) in the first place. 

Additionally, it is also unclear to what extent patients were using an egocentric strategy to 

compensate for their allocentric impairments on the detour route. As such, our current 

findings do not provide sufficient insight to validate our hypothesis that AD patients who are 

poor egocentric navigators are the ones that exhibit a high risk for spatial disorientation in the 

community. Future studies could test this hypothesis further by employing a route learning 

VR task, akin to those used by previous studies [64,65], that more closely simulate and 

measure how an egocentric strategy is used for navigation in the RW. Further, the extent to 

which patients are using an egocentric strategy to aid their navigation on the detour route 

should also be clarified by asking them to elaborate on the navigation strategies that they 

used for this route. It should then be explored whether those that experienced more 

disorientation on the DNT also happened to be the poor egocentric navigators as identified by 

the VR task.     

6.5 Implications  

6.5.1 Research Perspective  

From a research perspective, our work in this thesis addresses current limitations and gaps in 

the literature. It was highlighted in Chapter 1 (Introduction) that very little is still known 

about what navigation-related factors associated with the outdoor environment may 
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contribute to spatial disorientation in AD. Our work in thesis contributes significant 

knowledge in this domain, by not only identifying two potential environmental risk factors 

for this symptom, but also in highlighting the utility for using geospatial analytical techniques 

to do so. Further, our work also shows how the outdoor mobility patterns of AD patients in 

the community are impacted by spatial disorientation. In addition to highlighting the potential 

for exploring these patterns before missing incidents occur for patients to identify mobility 

risk factors that may contribute to spatial disorientation, our results also underscore the utility 

of using GPS tracking to further elucidate the impact that environmental variables may have 

in causing spatial disorientation. 

We also highlighted in Chapter 1 that the extent to which spatial navigation impairments of 

AD patients in VR environments relates to them experiencing spatial disorientation in the 

community is unclear. Our work here begins to address this gap, by suggesting that spatial 

navigation impairments of patients measured using current VR navigation tests, specifically 

the VST and SHQ, cannot yet fully explain who is at high risk for experiencing spatial 

disorientation in the community. Nevertheless, our methodology of administering a novel 

outdoor navigation task that captures the daily navigation challenges faced by AD patients 

whilst in the community, and relating their disorientation behaviour on this task to their 

navigation performance in VR environments, is indeed an approach that future studies can 

follow to help address this research gap.   

6.5.2 Clinical Perspective  

From a clinical perspective, the results of our work have implications in informing 

safeguarding guidelines to prevent AD patients from going missing in the community.  

Our results suggest that patients living or navigating in regions with a high outdoor landmark 

density and complex road network structure are more likely to experience spatial 
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disorientation. For safeguarding, it may especially be beneficial for carers and healthcare 

professionals to encourage patients to plan and use routes with fewer intersections (where 

possible) on independent journeys or recommend the use of GPS tracking devices in areas 

dense with landmarks or exhibiting complex road network configurations. 

Although we were unable to predict AD patients at a high risk for spatial disorientation based 

on their spatial navigation abilities, identifying this subgroup is of high importance due to the 

potential ethical implications it has for safeguarding. Ethically, it is essential for the level of 

any implemented safeguarding measure to be directly proportional to level of risk for spatial 

disorientation, in order to strike a balance between patients’ right to safety and autonomy. For 

instance, for patients seen as being at high risk for spatial disorientation, more restrictions can 

be implemented in their safeguarding plan, thereby favouring their right to safety over 

autonomy. On the flipside, less restrictions can be implemented in the safeguarding plan for 

patients seen as being at low risk, hence favouring their right to autonomy over safety. 

Indeed, future research is required to develop tools, such as more sophisticated VR 

navigation tasks, that can accurately predict a patient’s risk for experiencing spatial 

disorientation in the community before it occurs.       

6.5.3 Beyond The Clinic Perspective  

Beyond the clinic, our results have implications for the police, in terms of informing their 

awareness of and response to dementia-related missing incidents. Specifically, the findings 

that patients are more likely to go missing from locations with a high outdoor landmark 

density and complex road network structure can be used by the police and search & rescue 

services, with regards to ensuring more regular patrols in such areas. Moreover, the 

implications of not finding hotspots for missing incidents means that instead of focusing 

resources for these incidents more in certain regions, widespread information, training and 

support is required to reflect to the prevalent nature of the problem.  
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Our results also have implications in the planning/development of dementia friendly 

communities, of which a major part concerns with enhancing the navigability of physical 

environments to support patients to engage more with the community. In particular, our 

results support as well as add to current guidelines on landmark density and road network 

structure when planning or developing these communities. For landmark density, current 

guidelines for dementia friendly communities recommend having more distinct landmarks in 

areas with a high older population density [103,153], and our results add to this by suggesting 

that the number of landmarks should also be reduced. Indeed, having fewer landmarks may in 

turn enhance the distinctiveness of these landmarks, which may make it easier for AD 

patients to recognise and use these entities for their navigation. For road network structure, it 

should be noted that many residential areas currently have irregular road layout patterns that 

may not necessarily be designed accounting for the navigation difficulties seen in AD 

patients [154]. Our results reinforce current guidelines for dementia friendly communities 

recommending the road design of neighbourhoods in areas with a high older population 

density to be more straight/ordered (i.e., grid-like) and with more simple intersections [153]. 

In addition, our results add to these guidelines by suggesting that the number of road 

intersections should also be reduced. Overall, such a road design would make these 

environments easier to navigate for AD patients by offering more direct and continuous 

routes to local amenities [154,155]. This could in turn have potential advantages by not only 

helping to reduce the risk of AD patients experiencing spatial disorientation, but also helping 

carers to find them in the event that they go missing. Ultimately, these design factors could 

lead to AD patients making more independent outings into the community that are less 

restricted in nature, which would subsequently have a beneficial effect on their quality of life.   
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6.6 Limitations and Future Directions  

Despite our novel and exciting findings, there are some methodological limitations to our 

work that need to be mentioned, in addition to those that have been already been discussed. 

As discussing these limitations highlight the potential for possible future directions of our 

work, both concepts are presented together.     

6.6.1 Chapters 2 and 3 – Missing Patient Cases and Spatial Buffer Methodology    

In these two chapters, the sample size only represents missing patients that were reported to 

the police, which mostly occurs only in the more severe cases (i.e., when the family or 

neighbours cannot locate the missing patient themselves). The true prevalence rates of 

missing incidents in the community are likely to be much higher and occur in far more 

locations across the county than reported. A second limitation pertain to the spatial buffer 

methodology used. Owing to its shape, the circular spatial buffers we used can potentially 

capture and measure environmental features in areas that are not directly accessible for 

patients by walking (i.e., areas with steep hills, poor road connectivity, etc.). An alternative 

approach that has been suggested is road-network buffers [142], which uses the road network 

as a base to more accurately capture areas that are directly accessible by individuals. Taken 

together, future studies should investigate whether our current findings can be replicated 

using more representative samples of missing incidents and the more ecological road-network 

buffers.  

6.6.2 Chapter 4 – Additional Factors Influencing Outdoor Mobility Patterns  

In Chapter 4, we did not consider the extent to which premorbid lifestyle patterns explain the 

restricted outdoor mobility patterns seen in the AD patients on outings alone. We also did not 

investigate further the effect of gender and different age groups, both of which have been 

suggested as factors influencing outdoor mobility patterns [125,156]. Future studies should 

focus on AD patients who have not yet gone missing before, and investigate longitudinally 
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the effect that the incidence of going missing has on changes in their outdoor mobility 

patterns, including how this varies by gender and age. This approach would not only help to 

gain a more holistic view of how outdoor mobility patterns are affected in AD patients due to 

spatial disorientation, but also potentially help identify mobility risk factors for spatial 

disorientation/missing incidents in these individuals. 

6.6.3 Chapter 5 – Objective Measurements of Spatial Disorientation  

In Chapter 5, one of the ways in which spatial disorientation of AD patients in the community 

was measured was by identifying whether they exhibited hesitation behaviour on the DNT. 

As hesitation behaviour was identified visually by a single experimenter, it is possible that 

more subtle moments of hesitation may have gone unnoticed. Moreover, although we used a 

set of behaviours that define hesitation from a previous study [94], there is a subjective bias 

that could have influenced the measurement of these behaviours in patients. Indeed, our 

planned (but ultimately unsuccessful) approach of objectively identifying hesitation 

behaviour in the patients using their recorded linear acceleration values during the DNT 

would have helped overcome these limitations. Indeed, a recent study has shown that 

hesitation behaviour of AD patients can be measured by looking at the spatio-temporal gait 

patterns (i.e., step patterns) of their walking paths in controlled RW environments using 

inertial measurement units [157]. This suggests that such an approach is indeed feasible, and 

future studies should explore the possibility of using sensor devices to identify spatial 

disorientation behaviour from patients’ outdoor movement in the community. This also opens 

up the potential for applying machine learning approaches to this data for detecting and 

predicting how disorientation behaviour patterns may vary according to navigation strategy 

use as well as surrounding environmental features.  
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6.7 Conclusion  

Taking together our findings from all the experimental chapters and previous research, we 

conclude this thesis by proposing a framework for studying spatial disorientation in AD that 

takes into account both RW factors (demographic, environmental, and outdoor mobility 

patterns) and brain-level cognitive factors (spatial navigation) (Fig. 6.1). 

 

Figure 6.1: Framework for studying spatial disorientation in AD. Based on our results and the wider 

literature, we suggest that gender, navigation-related environmental factors, outdoor mobility patterns, 

and differences in the use of the navigation strategies should all be considered in future spatial 

disorientation studies in AD patients.6  

 

As previous studies highlight gender differences in spatial navigation and with our results 

from Chapter 2 showing gender as a demographic risk factor associated with missing 

incidents, we suggest that gender should be considered when studying spatial disorientation 

in AD. Furthermore, our findings from Chapters 2, 3, and 4 highlight the importance of 

investigating the outdoor mobility patterns of AD patients in the community to identify the 

                                                             
6 Icons used in this figure – “Missing” by Fahmi, “Gender” by Gregor Cresnar, “Building” by Iconcheese, 

“Road” by Ben Davis, “Path” by Adrien Coquet, “Person” by Yamini Ahluwalia, all from thenounproject.com 
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locations where spatial disorientation occurs as well as to explore potential environmental 

risk factors (i.e., outdoor landmark density and road network structure) in these locations that 

may be contributing to this. Lastly, we know from previous studies that AD patients 

increasingly prefer to use an egocentric strategy for navigation, potentially as a compensatory 

response to impairments in using an allocentric strategy [74]. Our hypothesis, as stated in 

Chapter 5, was that patients who are naturally (i.e., premorbid) relatively weaker at using an 

egocentric strategy for navigation would be less able to compensate and hence would be at 

higher risk for experiencing spatial disorientation in the community. Although we were not 

able to elucidate this from our findings in Chapter 5, premorbid differences in the ability to 

use different navigation strategies and the relationship of this to risk for spatial disorientation 

is indeed a factor that requires further investigation.    

In conclusion, our findings from this thesis provide a platform for future studies to study how 

the different RW factors (demographic, environmental, and outdoor mobility patterns) 

interact with and affect impairments in spatial navigation to result in patients experiencing 

spatial disorientation in the community. The framework we suggest will provide further 

theoretical insight into this prevalent problem, and from a practical standpoint, will 

potentially help to build a cognitive and demographic profile of who is truly at high risk for 

experiencing spatial disorientation in the community.  
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Appendix  
 

Supplementary Information for Chapter 2  

Supplementary Table 2.1: List of Landmark Categories and Tags 

Category Sub-Category Tag  

 

 

 

 

 

 

 

 

 

 

Amenity and Leisure 

Food and Drink  Bakery, Bar, Biergarten, Café, Fast Food, Green 

Grocer, Pub, Restaurant, Supermarket  

Leisure  Arts Centre, Bank , Cinema, Clothes Store,  

Community Centre, Computer Store Convenience 

Stores, Department Stores, Do-It-Yourself Stores, 

Dog Park, Florist, Furniture Store, Gift Store, Garden 

Centre, Jeweler, Kiosk, Leisure Centers, Library, 

Mobile Phone Store, Newsagent, Nightclub,  Outdoor 

Shop, Playground, Post Office, Other clubs and 

centers, Service Centre, Shoe Store, Shopping Mall, 

Stationery Store, Social Facility, Sports Centre, 

Stadium, Studio, Swimming Centers, Theatre Toy 

Store, Town Hall, Travel Agency, Video Store 

Village Hall 

Religious Church, Hindu Temple, Synagogue, Mosque, Sikh 

Temple 

Health and Beauty  Beauty Shop, Chemist, Dentist, Doctors, Hairdresser, 

Hospital, Laundry, Nursing Home, Optician, 

Pharmacy, Veterinary 

Education  Kindergarten, Nursery, School, University 

Other Graveyard, Prison  

Tourism  Attractions  Local Attractions, Castle, Monument, Museum, 

Parks, Theme Parks, Viewpoints, Zoo  

Accommodation  Guesthouse, Hostel, Hotel, Other Overnight 

Accommodation, Motel 

Information Points  Tourist Information Points, Visitors Centers 

Traffic and Transport  Transport Services  Bus station, Bus Stop, Car Dealership, Car Rental, 

Car Sharing, Car Wash, Crossing, Fire Station, Ferry 

Terminal, Fuel Station, Marina, Parking Lots 

(outdoor, multi-story, underground), Bicycle Parking, 

Police Station, Railway Platform, Railway Halt, 

Railway Station, Other Transport Services, Taxi 

Stand 

Road Signs   Mini Roundabout, Stop, Traffic Signals 

Historic  - Archaeological Sites, Memorials, Ruins  

Urban and Rural 

Furniture  

- Artwork, Arch, Art Space, ATM Machines, Aviary, 

Bandstand, Barn, Belfry, Bench, Bunker, Canopy, 

Control Tower, Communications Tower,  Cowshed, 

Dove Cote, Drainage Pump, Gatehouse, Glasshouse, 

Greenhouse, Fountain, Lighthouse, Hut, Hangar, 

Kennels, Lych Gate, Marquee, Mill, Pagoda, 

Pavilion, Power Station, Pump House, Pumping 
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Station, Observation Tower, Post Box, Recycling 

Containers, Silo, Stable, Storage (containers, tank), 

Street Lamp, Telephone Box, Toilet, Tower, Vending 

(machine, parking) Waste Basket, Water Tower, 

Water Well, Warehouse, Wayside Cross, Windmill, 

Wind Pump 
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Supplementary Information for Chapter 4 

4.1 Participant Recruitment  

The patients were recruited from three main sources. The majority of patients were recruited 

from a research clinic run by our team; patients are in the first instance referred to this clinic 

from clinicians to participate in dementia research. Some patients were also recruited from 

the Join Dementia Research website, which is an online service allowing individuals with 

memory problems/dementia, carers of such individuals, and healthy individuals to self-

register to participate in dementia research studies. Lastly, some patients were also recruited 

from memory and dementia cafes/fayres held by our study team.  

Recruitment of the healthy controls included individuals who had attended the research clinic 

as well as individuals who had participated in other studies conducted by our team and who 

had also given consent to be contacted for future research. In addition, individuals who 

expressed their interest in the study as a result of word of mouth were also recruited as 

controls for the study.  
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4.2 Spatial Orientation Screening Questionnaire 

Spatial Orientation Screening 

The following questions are about the PARTICIPANT, to be completed by the STUDY PARTNER 

1. Does your relative/friend have difficulties finding his/her way in familiar surroundings 

(such as when visiting the home of close friends, or when walking or driving in the 

neighbourhood)?  

□    No, no difficulties 

□    Yes, sometimes 

□    Yes, often  

2. Does your relative/friend have difficulties learning to find his/her way in new surroundings 

(such as when travelling or in new shopping centres)? 

□    No, no difficulties 

□    Yes, to some degree 

□    Yes, pronounced difficulties 

3. Does your relative/friend ever fail to recognise places where he/she has been before? 

□    No, never 

□    Yes, sometimes 

□    Yes, often 

4. Does your relative/friend ever refrain from travelling or from participating in activities 

alone because he/she is worried about finding his/her way? 

□    No, never 

□    No, but he/she spends a lot of time planning in advance 

□    Yes 

 

Changes 

Please think now about what your relative or friend was like 10 years ago, and compare this with 

what she or he is like today. Put a circle around the option which is best suited for the following 

situations.  

Compared with 10 years ago, how is your relative or friend at: 

 

 

 

 

 

 

 

 

Finding his/her way in 

familiar surroundings? 

Much 

better 

A bit 

better 
Unchanged 

Slightly 

worse 

Much 

worse 

      

Finding his/her way in 

unfamiliar surroundings? 

Much 

better 

A bit 

better 
Unchanged 

Slightly 

worse 

Much 

worse 
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4.3 GPS Trajectory Data Pre-Processing  

4.3.1 Data Smoothing  

The data smoothing procedure involved identifying and removing big signal jumps between 

the data points. Big signal jumps represent random errors in the data collection process, and 

occur due to various reasons including issues with the satellite or receiver, troublesome 

weather or atmospheric disturbances, and the urban canyon effect (i.e., GPS signal being 

reflected by tall buildings and surfaces). One of the most straightforward methods that has 

been suggested in the literature to identify such big signal jumps is setting and using distance 

thresholds between data points. A distance threshold refers to the maximum distance that an 

individual could hypothetically cover in the time difference between two successively 

recorded data points, assuming that they are travelling at a certain speed. Since the GPS 

trajectories of all participants contains a mixture of transportation modes (i.e., they have not 

yet been classified according to transport modes), the maximum speed that our participants 

can travel, regardless of their transport mode, is 70mph; considering this maximum speed 

value and the GPS device’s sampling frequencies of 3 seconds/5 seconds, we can assume that 

the distance between any two data points should not realistically exceed a threshold of 

93.87/156.45 metres respectively. After setting these thresholds, for each participant we 

identified and removed data points which had distances to the point immediately before and 

immediately after that exceeded these thresholds (i.e., big signal jumps).  

4.3.2 Transport Mode Classification  

The GPS trajectory data points of each participant were classified into three main transport 

modes – stationary, by foot, and in vehicle. As a first step, we grouped all trajectory data 

points into time windows. For participants with data recorded every 3 seconds, every 3 data 

points were grouped into a single time window; hence a single time window had a duration of 

9 seconds. Meanwhile, for participants with data recorded every 5 seconds, every 2 data 

points were grouped into a single time window; hence for these participants a single time 
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window had a duration of 10 seconds. Then, each time window was classified into one of the 

three transport modes based on the mean and maximum speed values of the data points in that 

time window. A time window is classified as: 

 ‘Stationary’ if the mean speed was 0mph  

 ‘By foot’ if the mean speed was greater than 0mph but less than or equal to 4mph and 

had a maximum speed value of less than or equal to 4mph. The rationale for choosing 

4mph as the upper threshold is because in an outdoor navigation walking task that we 

got all participants to complete in another study (detailed in chapter 5), the maximum 

speed exhibited by any participant was 4mph.  

 ‘In vehicle’ if the mean speed was greater than 4mph or if the mean speed was less 

than or equal to 4mph and had a maximum speed of greater than 4mph.  

After the initial classification of all time windows into the different transport modes, a false 

positive check was conducted to refine this process. Regarding time windows classified as 

‘By foot’, if such time windows were immediately preceded and proceeded by time windows 

classified as ‘In vehicle’ (eg. In vehicle, By foot, In vehicle), we can assume that these ‘By 

foot’ time windows are false positives. This is because such cases would realistically suggest 

instances when the vehicle (that the participants were in) was travelling really slowly, as 

opposed to suggesting instances where the participant got out of the vehicle, walked for 9-10 

seconds, and got back in the vehicle. Here, these false positives were relabelled to ‘In 

vehicle’. On the flipside, if time windows classified as ‘In vehicle’ were immediately 

preceded and proceeded by time windows classified as ‘By foot’ (eg. By foot, In vehicle, By 

foot), then these were also identified as false positives. This is because it is not realistic for a 

participant to have a 9-10 second period of being in a vehicle in the middle of a period of 

walking. Here, these false positives were relabelled to ‘By foot’. After relabelling all false 

positives, all time windows labelled ‘In vehicle’ and ‘Stationary’ were filtered out, leaving 
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only portions of each participant’s trajectory data where they were on foot (i.e., walking 

trajectories).  

4.3.3 Walking Trajectories – Data Smoothing   

Before calculating the distance travelled by foot, we first identified and removed big signal 

jumps in each participant’s walking trajectory dataset by once again using the distance 

threshold method as used for the overall dataset. Here, considering a maximum speed of 

4mph, the distance thresholds between any two data points were set to 5.36 metres and 8.94 

metres for participants with data recorded every 3 and 5 seconds respectively. All data points 

in the walking trajectories which exceeded these thresholds (i.e., big signal jumps) were then 

identified and removed.  

 


