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Abstract. Atmospheric blocking events are mid-latitude
weather patterns, which obstruct the usual path of the po-
lar jet streams. They are often associated with heat waves
in summer and cold snaps in winter. Despite being central
features of mid-latitude synoptic-scale weather, there is no
well-defined historical dataset of blocking events. Various
blocking indices (BIs) have thus been suggested for auto-
matically identifying blocking events in observational and in
climate model data. However, BIs show significant regional
and seasonal differences so that several indices are typically
applied in combination to ensure scientific robustness. Here,
we introduce a new BI using self-organizing maps (SOMs),
an unsupervised machine learning approach, and compare its
detection skill to some of the most widely applied BIs. To
enable this intercomparison, we first create a new ground
truth time series classification of European blocking based
on expert judgement. We then demonstrate that our method
(SOM-BI) has several key advantages over previous BIs be-
cause it exploits all of the spatial information provided in the
input data and reduces the dependence on arbitrary thresh-
olds. Using ERA5 reanalysis data (1979–2019), we find that
the SOM-BI identifies blocking events with a higher preci-
sion and recall than other BIs. In particular, SOM-BI already
performs well using only around 20 years of training data so
that observational records are long enough to train our new
method. We present case studies of the 2003 and 2019 Eu-
ropean heat waves and highlight that well-defined groups of
SOM nodes can be an effective tool to diagnose such weather

events, although the domain-based approach can still lead to
errors in the identification of certain events in a fashion simi-
lar to the other BIs. We further test the red blocking detection
skill of SOM-BI depending on the meteorological variable
used to study blocking, including geopotential height, sea
level pressure and four variables related to potential vorticity,
and the 500 hPa geopotential height anomaly field provides
the best results with our new approach. We also demonstrate
how SOM-BI can be used to identify different types of block-
ing events and their associated trends. Finally, we evaluate
the SOM-BI performance on around 100 years of climate
model data from a pre-industrial simulation with the new
UK Earth System Model (UKESM1-0-LL). For the model
data, all blocking detection methods have lower skill than for
the ERA5 reanalysis, but SOM-BI performs noticeably bet-
ter than the conventional indices. Overall, our results demon-
strate the significant potential for unsupervised learning to
complement the study of blocking events in both reanalysis
and climate modelling contexts.

1 Introduction

Atmospheric blocking events are large-scale mid-latitude an-
ticyclones that can persist for several days, which obstruct the
typical westerly flow pattern (Rex, 1950). Blocking systems
are often associated with regional extreme weather events,
particularly heat waves in summer and cold snaps in winter.
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For example, the 2003 summer heat wave and 2009/10 win-
ter cold events in Europe were both associated with atmo-
spheric blocking (Black et al., 2004; Cattiaux et al., 2010).
The evolution of atmospheric blocking itself is nonlinear
(Palmer, 1999), and the underlying complex physical mech-
anisms are not yet fully understood (Nakamura and Huang,
2018; Woollings et al., 2018). There is a large seasonal, inter-
annual and decadal variability in the occurrence of blocking
(Kennedy et al., 2016; Brunner et al., 2017), which com-
pounds the problem of separating externally forced changes
from internal variability (Barnes et al., 2014; Shepherd,
2014). As a result, the influence of climate change on block-
ing remains an open question (Francis and Vavrus, 2012;
Barnes, 2013; Hassanzadeh et al., 2014; Barnes and Polvani,
2015; Barnes and Screen, 2015; Francis and Vavrus, 2015;
Coumou et al., 2018; Mann et al., 2018).

In order to better understand blocking and to investigate
the influence of climate change, there have been signifi-
cant efforts to develop methods that can automatically detect
blocking in long meteorological records. Since “any attempt
to identify blocked cases with certainty from an inspection
of the longer available record of surface analyses would re-
quire a prohibitive expenditure of time” (Rex, 1950), block-
ing indices (BIs) have been developed to objectively identify
blocked events (Lejenäs and Økland, 1983; Dole and Gor-
don, 1983; Tibaldi and Molteni, 1990; Pelly and Hoskins,
2003). However, the multiplicity of these BIs, with a variety
of thresholds for defining the area, persistence and magni-
tude of blocked features on different atmospheric dynami-
cal variables, means that these methods necessarily carry the
burden of somewhat subjective definitions. Notably, while
previous intercomparisons of BIs show similar global clima-
tologies, and while all indices capture many of the basic fea-
tures of atmospheric blocking within their definitions, there
are known regional and seasonal differences (Croci-Maspoli
et al., 2007; Barriopedro et al., 2010; Pinheiro et al., 2019). In
addition, whilst spatial climatologies obtained from these BIs
have been compared extensively, to the best of our knowl-
edge there has been no direct time series comparison of the
BIs beyond case study analyses such as those in Scherrer
et al. (2006) and Pinheiro et al. (2019).

Other frequently used methods to study the climatology
and characteristics of blocking include K-means clustering
analyses to study weather regimes (Vautard, 1990; Michelan-
geli et al., 1995; Cassou, 2008; Ullmann et al., 2014; Strom-
men et al., 2019; Fabiano et al., 2021) and an unsuper-
vised machine learning approach called self-organizing maps
(SOMs) (Skific and Francis, 2012; Horton et al., 2015; Mio-
duszewski et al., 2016; Gibson et al., 2017a). It has been
highlighted that consistency across various methods in de-
tecting long-term changes is a fundamental requirement to
confidently identify trends (Barnes et al., 2014; Woollings
et al., 2018). To the best of our knowledge, there has been
no previous study that directly compared a SOM approach to
other BIs.

With the advent of modern computational methods, ex-
tensive study of the available record of surface analyses to
identify blocking events no longer requires a prohibitive ex-
penditure of time. Here, we therefore define a new binary
ground truth dataset (GTD) of European blocking events
across June–July–August (JJA) 1979–2019, based on a 5 d
threshold, reanalysis data and expert judgement. Our under-
standing of blocking events has been informed by the BIs and
the various definitions that have been proposed, but we do not
rely on any BIs for our study. This enables an independent
time series comparison with the BIs. We also compare our
results to a K-means clustering approach to describing the
weather regimes of the mid-latitude atmosphere. We present
case studies of the prominent 2003 and 2019 European heat
waves, where we show how wellK-means clustering, the BIs
and SOMs describe the blocking events.

We then use SOMs to develop a new blocking index
(SOM-BI, pronounced “zombie”). This SOM-BI method has
advantages over previous BIs because it exploits all the spa-
tial information provided in the input data and reduces the
dependence on arbitrary thresholds. It also provides a new
way of studying blocking events that can more intuitively
distinguish between different regimes and locations of block-
ing events, which the other indices are lacking. We identify
the skill of different BIs by developing a binary time series
identification of European blocking patterns and comparing
this to our GTD using standard skill metrics discussed in
Sect. 2.6. This study is the first to define a GTD, and we use
it as a benchmark to compare the skill of different BIs over a
region.

As a key result, we find that through comparison with
three BIs used in a recent inter-comparison study (Pinheiro
et al., 2019), the SOM-BI method has an improved skill at de-
tecting regional blocking events. Since the SOM-BI method
is not bound to a specific meteorological variable, we also
quantify how its detection skill varies with the variable used,
from geopotential height anomaly fields to potential vortic-
ity maps. While there have been theoretical discussions on
the importance of the meteorological variable used to define
and identify blocking (Pelly and Hoskins, 2003; Chen et al.,
2015), the variable dependence of skill of blocking detection
methods has not been quantified before. Finally, we evalu-
ate the performance of SOM-BI on 41 years from the ERA5
reanalysis and 101 years of a pre-industrial control run car-
ried out with the UK Earth System Model (UKESM1-0-LL,
hereafter UKESM). We identify a moderate improvement in
blocking identification over the BIs for the reanalysis period
and a significant improvement for the UKESM data. A key
advantage is that the longer climate model simulation allow
us to test the robustness of our method compared to other BIs
over longer timescales, as well as to study the dependence of
the SOM-BI detection skill on the number of years included
in the algorithm’s training dataset.

Our paper is structured as follows. In Sect. 2 and its sub-
sections, we introduce the meteorological reanalysis and cli-
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mate model data, the new GTD, the BIs,K-means clustering,
SOMs, and our new SOM-BI. In Sect. 3, we present the main
results of our analysis. We first compare the various blocking
identification methods by means of the 2003 and 2019 Euro-
pean heat wave case studies (Sect. 3.1), followed by an eval-
uation and intercomparison of the methods on ERA5 reanal-
ysis and UKESM climate model data (Sects. 3.2 and 3.3). In
Sect. 3.4, we discuss how the performance of our new SOM-
BI depends on the length of the data record used to train the
algorithm. In Sect. 3.5, we test the feasibility to train SOM-
BI on ERA5 data to then reliably identify blocking in climate
model data, and vice versa. In Sect. 3.6 we briefly discuss
the effect of other hyperparameters on the SOM-BI skill. In
Sect. 3.7, we demonstrate how SOM-BI can be used to study
trends in regional blocking patterns by applying it to ERA5
data. In Sect. 4, we summarize and discuss our key results
and propose avenues for future work, especially concerning
the detection of blocking in climate change simulations.

2 Methods

2.1 Meteorological data

As a proxy for observed dynamical states over Europe,
we used ERA5 reanalysis data from the European Centre
for Medium Range Weather Forecasts (ECMWF, Hersbach
et al., 2020). The pre-industrial climate model data was
obtained from simulations carried out with the UK Earth
System Model UKESM1-0-LL (UKESM), as part of Cou-
pled Model Intercomparison Project Phase 6 (CMIP6, Eyring
et al., 2016; Sellar et al., 2019). For ERA5, we used grid-
ded data at a spatial resolution of 1◦× 1◦ across 1979–2019
and created daily averages derived from 3-hourly intervals.
In UKESM, we used 101 years of daily data from the pre-
industrial run of the r1i1p1f2 ensemble member, across the
arbitrarily defined 1960–2060 period. We used the UKESM
data at the native resolution of 1.25◦× 1.875◦ to develop
the GTD plots and regridded to a 2◦× 2◦ grid for the SOM
analysis. When training and testing between the ERA5 and
UKESM data (Sect. 3.5), we also regridded the ERA5 data
to a 2◦× 2◦ grid.

For both types of datasets, we used the following common
meteorological variables to characterize the dynamical state
of the atmosphere at any given time: geopotential height at
500 hPa (Z500), mean sea level pressure (MSLP) and relative
vorticity at 500 hPa (ζ500). For ERA5, we also used vertically
integrated potential vorticity across 150–500 hPa (VPV),
isentropic potential vorticity on 350 and 330 K (IPV350 and
IPV330), and potential temperature on the PV= 2 PVU sur-
face (θ -PV). These PV-based variables have all been used in
the context of understanding atmospheric blocking (Hoskins
et al., 1985; Crum and Stevens, 1988; Pelly and Hoskins,
2003) but are not available from the CMIP6 archive. The 350
and 330 K isentropes were chosen because these intersect

with the tropopause in the mid-latitude summer, as shown
in Fig. 1 of Liniger and Davies (2004), and therefore repre-
sent upper-level dynamics. For the case study analyses we
have also used the surface horizontal wind fields and surface
temperature (Tsurf).

Following Grotjahn and Zhang (2017) and Pinheiro et al.
(2019), we define the anomaly fields that we study by sub-
tracting a long-term daily mean (LTDM) from the data in-
stead of subtracting the daily average. This is a smoothed
function of the 365 d seasonal cycle across Z500, VPV and
Tsurf using the first six harmonics of their Fourier series,
where the first harmonic corresponds to the mean and the
fifth to a 73 d span. The purpose of this is to smooth out the
daily mean fields, which can otherwise show excessive vari-
ation between neighbouring days across the seasonal cycle.

The Tsurf and Z500 anomaly fields in ERA5 have been de-
trended linearly across time to remove the effect of thermo-
dynamic warming. Following Jézéquel et al. (2017) we sub-
tract a spatially uniform trend, so that the horizontal gradients
of the field are not altered. We depart from the Jézéquel et al.
(2017) method by subtracting a linear Z500 anomaly trend
instead of a cubic spline interpolation, since we assume that
in the 1979–2019 time period the thermodynamic dilation of
the troposphere can be approximated as linear, so removing
nonlinear trends could risk removing the dynamical changes
in the atmosphere that we are interested in. We also apply the
same detrending approach to the pre-industrial UKESM data
to remove any minor remaining trends in the data, e.g. due
to the finite spin-up time of the control simulations (Gregory
et al., 2004; Nowack et al., 2017; Mansfield et al., 2020).

2.2 Creating the ground truth dataset (GTD)

In order to objectively compare the blocking indices, we de-
velop a ground truth dataset (GTD) of blocking events in
JJA Europe, here defined as 30–75◦ N, 10◦W–40◦ E, fol-
lowing IPCC AR5 definitions (Stocker et al., 2013). The
northern latitude is extended to 76◦ N when using data on
a 2◦× 2◦ grid. JJA Europe was chosen because of our inter-
est in the role of atmospheric dynamics in the development
of mid-latitude land heat waves. Europe is a region which has
seen many recent significant heat extremes (Christidis et al.,
2014), and the role of changes in atmospheric dynamics has
been a significant area of interest (Cattiaux et al., 2013; Hor-
ton et al., 2015; Saffioti et al., 2017; Huguenin et al., 2020).

The GTD has been derived by studying every successive
5 d period from 28 May 1979 to 4 September 2019 and man-
ually identifying whether or not a blocking high persisted
across any such 5 d period. By including the last 4 d at the
end of May and the first 4 d of September, we ensure that we
capture all blocking events within the JJA period. A period
of 5 d was chosen since this a typical persistence threshold
for blocking indices (Verdecchia et al., 1996; Schwierz et al.,
2004; Scherrer et al., 2006; Pinheiro et al., 2019), although
a persistence of 7–10 d with weaker BI thresholds for am-
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Figure 1. The information used to classify blocks in the ERA5 ground truth dataset (GTD). Panel (a) shows theZ500 contour for the averaged
value across 30–70◦ N, indicated in the bottom left of the panel. The red and blue colours highlight the contours at midnight and midday
respectively. Panels (b) and (c) show the Z500 time detrended anomaly and IPV350 anomaly for each day.

plitude and area has also been used (Rex, 1950; Lejenäs and
Økland, 1983).

A diagram of the type of information analysed to label
each individual day is shown in Fig. 1, for the example period
1–5 June 1979. This period was labelled as blocked, since
Fig. 1a clearly shows a continuous north shift in the Z500
contours over Europe and Fig. 1b shows a substantial pos-
itive Z500 anomaly which persists across northern Europe.
The IPV350 maps in Fig. 1c highlight filaments and regions
where there is fast moving air. Once the total set of all 4001
consecutive 5 d periods across JJA 1979–2019 has been clas-
sified, persistent blocking events are reconstructed to form
a time series where each day is labelled as blocked or not.
If a day belongs to any one of the consecutive blocked 5 d
periods, it is individually labelled as blocked (1), and if a
given day does not belong to any of the blocked 5 d periods
it is labelled as not blocked (0). This creates a classification
of blocking patterns for each day where each blocking event
has a minimum length of 5 d. Blocking events longer than
5 d are also identified through this approach, since days that
are part of any consecutive 5 d blocked period are labelled as
blocked. Blocking events longer than 5 d are then identified
through a series of adjacent 5 d blocked periods.

A similar approach was adopted to classify 9494 5 d
periods from 101 years of JJA data in the UKESM pre-
industrial control run, with an example blocked period shown

in Fig. A1. As in Fig. 1, there is a clear quasi-stationary high
centred on a region slightly north of the UK. This is indi-
cated by the Z500 contours which show a significant north-
ward protrusion over this region and by the substantial Z500
anomaly across all panels in Fig. 1b. Since PV is not avail-
able in CMIP6 data and the physical variables used to derive
PV are not available at sufficiently high vertical resolution,
we instead show the MSLP anomaly field in Fig. A1c, which
also indicates a high-pressure region consistent with Fig. A1a
and b.

2.3 Blocking indices (BIs)

One way of describing atmospheric flow and investigating
trends in atmospheric dynamics is by using proxy indices
such as those used to classify if a blocking event is occurring.
There are many blocking indices (BIs) that have been used
to create a blocking climatology, and these have been rig-
orously compared (Barriopedro et al., 2010; Pinheiro et al.,
2019). Some BIs are based on measuring persistent anoma-
lies of a relevant pressure field in a particular location. This
builds on the pioneering work of Elliot and Smith (1949),
who identified events of persistent sea level pressure (SLP)
anomalies above a particular threshold. This approach was
extended by Dole and Gordon (1983), who investigated per-
sistent anomalies in the Z500 field. A similar approach was
taken by Schwierz et al. (2004), who identified anomalies in
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the vertically averaged potential vorticity field (VPV), aver-
aged over 150–500 hPa. This approach was inspired by the
work of Pelly and Hoskins (2003), who defined blocking as
the negative latitudinal potential temperature gradient on the
dynamical tropopause. By taking a vertical average of the po-
tential vorticity field from the mid-troposphere to the lower
stratosphere, Schwierz et al. (2004) formulate a 3-D dynam-
ically based index.

Another common approach to studying blocking trends is
to use the absolute gradient of Z500 across fixed latitudes.
This was first developed in Lejenäs and Økland (1983) and
refined in a commonly applied form by Tibaldi and Molteni
(1990). This definition focuses on blocking events as persis-
tent anticyclones that reverse the Z500 gradient. The method
has been adopted widely, refined (Diao et al., 2006; Barriope-
dro et al., 2010) and extended to a range of latitudes (Scherrer
et al., 2006).

All of these methods have been further developed by Pin-
heiro et al. (2019), who applied four thresholds for each
blocking index: the magnitude of the anomaly, the persis-
tence of the blocking event (minimum 5 d), a minimum area
over which the anomaly takes place and an overlap criterion
which measures if there is continuity across the blocked re-
gion between different days (an overlap of the blocked con-
tours). We adopt their thresholds and as such study the three
indices compared in Pinheiro et al. (2019) including their
modifications:

– AGP – the geopotential height gradient method, which
is the Tibaldi and Molteni (1990) index as adapted by
Scherrer et al. (2006) to construct a two-dimensional
field of geopotential height gradients;

– DG83 – the Dole and Gordon (1983) method of investi-
gating positive geopotential height anomalies;

– S04 – the Schwierz et al. (2004) method of identify-
ing persistent anomalies in the potential vorticity field
(VPV) averaged over 150–500 hPa (VPV).

We refer the reader to Sect. 2.2 in Pinheiro et al. (2019) for
a detailed discussion of these methods and their associated
thresholds. However, our analysis differs from the method-
ology outlined by Pinheiro et al. (2019) in three ways, re-
flecting the fact that our study is regional and seasonal in-
stead of global. Firstly, we apply all thresholds defined by
Pinheiro et al. (2019) only to those grid cells within the re-
gion of study so that we exclude events that are on the edges
of the domain. Such events would be considered blocking
events if the domain studied was extended. Secondly, Pin-
heiro et al. (2019) applied a spatial smoothing to their global
threshold field, which defines the minimum threshold for
each grid cell to be blocked. Although we have applied the
LTDM smoothing of the seasonal cycle (which we subtract
from variables to calculate field anomalies, Sect. 2.1) and we
also use a spatially varying threshold field, we have not ap-
plied this spatial smoothing to our threshold field. We found

that the resulting blocking climatologies shown in Fig. A4
are broadly consistent with those presented in Fig. 6 of Pin-
heiro et al. (2019), underlining that this regional use of the
BIs is still valid. Finally, to remove the well-known problem
of the AGP index identifying anomalous blocking events as-
sociated with the subtropical high in summer (Davini et al.,
2012), we adopt the extra threshold of the AGP index from
Woollings et al. (2018). The subtropical high feature was not
observed in UKESM over Europe, since the zonal gradients
have a smaller magnitude, so the standard AGP index is used
for UKESM.

We note that more indices have been proposed, includ-
ing hybrid approaches combining the AGP and DG83 in-
dices (Barriopedro et al., 2010; Dunn-Sigouin et al., 2013;
Woollings et al., 2018), the PV-θ approach developed by
Pelly and Hoskins (2003) and the finite-amplitude wave ac-
tivity (FAWA) method (Huang and Nakamura, 2015). K-
means clustering analysis (Diday and Simon, 1980) has also
been extensively used to study the Euro-Atlantic mid-latitude
variability and to identify weather regimes (Vautard, 1990;
Michelangeli et al., 1995; Cassou, 2008; Ullmann et al.,
2014; Strommen et al., 2019; Fabiano et al., 2021). How-
ever, with the three BI methods included here in addition to
the SOM-BI and K-means clustering comparison in the case
studies, we expect to see results that are sufficiently represen-
tative of the range of blocking detection methods available
and to be able to highlight their most important similarities
and discrepancies.

2.4 Self-organizing map (SOM)

The fourth method we used to investigate trends in atmo-
spheric circulation regimes in European summer is self-
organizing map cluster analysis (SOM; Kohonen, 1982).
This is an increasingly popular unsupervised machine learn-
ing technique in synoptic meteorology to learn representative
patterns of weather regimes and to investigate their trends
(Hewitson and Crane, 2002; Liu and Weisberg, 2005; Huth
et al., 2008; Sheridan and Lee, 2011; Johnson, 2013; Hor-
ton et al., 2015; Xu et al., 2016; Singh et al., 2016; Diff-
enbaugh et al., 2017; Sánchez-Benítez et al., 2019). In our
context here, the SOM algorithm is trained with daily spatial
maps of dynamical states of the atmosphere above Europe,
as for example characterized by maps of geopotential height
anomalies (Fig. 1b), potential vorticity (Fig. 1c) or sea level
pressure (Fig. A1b). By iteratively cycling through all sam-
ples of such meteorological maps, the algorithm learns rep-
resentative patterns of atmospheric dynamical states, which
are referred to as “SOM nodes”.

First, the number of nodes is specified and the SOM is
initialized either with random values or with principal com-
ponent analysis patterns. Then for each day from the input
field, the Euclidean distance between that daily meteorolog-
ical pattern and each node pattern is calculated. The node
with the smallest Euclidean distance to the sample day is
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Figure 2. The self-organizing map algorithm. Shown using a 3× 3 node SOM with ERA5 Z500 JJA 1979–2019. The principal component
analysis (PCA)-initialized SOM pattern (step 1) has a much larger amplitude so it has been multiplied by 10−3 for visualization purposes.
The BMU refers to the best-matching unit, the SOM node which most closely matches the sample day.

known as the best-matching unit (BMU) for that day. Then
the BMU pattern is updated to shift towards the pattern of
the sample day. The neighbouring SOM nodes (on the grid of
SOM nodes) are also updated to shift towards the sample day
according to a Gaussian neighbourhood function. For each
cycle of iterations through all training samples, the updates
tend to become smaller as the SOM nodes converge towards
a representative pattern of atmospheric dynamical states. A
decay function on the updates is additionally applied, which
ensures convergence. Finally, a stable SOM is obtained with
a set of nodes that each provide a representative composite
of circulation patterns, arranged according to their similar-
ity on a row–column grid (i.e. the map). A diagram of the
training procedure is shown in Fig. 2. The number of nodes
to be learned by the algorithm, or in other words the num-
ber of representative weather patterns one aims to learn for a

particular meteorological problem, is chosen by the user. In
Sect. 3.3, we show how the SOM-BI performance depends
on the number of nodes and how this provides an objective
criterion to select this number.

SOMs are of particular relevance in atmospheric science
because they maintain the topological properties of the input
space. Once optimized, each node pattern represents a pos-
sible state of the atmosphere, and the nodes are arranged in
order of similarity, thus representing a continuum of atmo-
spheric states. This contrasts with other methods of dimen-
sion reduction such as principal component analysis, where
the identified patterns are orthogonal. Such purely mathe-
matical representations are typically less meaningful from
a physical point of view, whilst each SOM node maintains
physical significance as it can closely resemble actual atmo-
spheric states found in meteorological data, with the nodes on
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Figure 3. The SOM blocking index (SOM-BI). (a) The trained 3×3 SOM for the Z500 time-detrended anomaly. (b) Normalized histograms
showing the distributions of occurrence of BMUs for the days identified as blocked or non-blocked within the GTD. (c) The SOM-BI
optimization of the set of node groups against three different skill scores (precision (P ), recall (R) and F1 score) that are associated with the
GTD blocking events.

the row–column grid representing smooth transitions across
those possible atmospheric states (see the similarity of neigh-
bouring nodes in the final SOM grid in Fig. 2). We have
implemented the SOM algorithm using the somoclu Python
package (Wittek et al., 2017).

This property of SOMs is also the distinguishing feature
between SOMs and K-means clustering. In the case of K-
means clustering, each node is updated at each iteration in-
dependently and no neighbourhood function is applied. K-
means clustering tries to maximize differences between the
centroids such that it does not learn a topology. This differ-
ence between K-means clustering and SOMs is minor for
low node numbers, since the sharp differences in spatial pat-
terns are imposed on the SOMs and the neighbourhood func-
tion has a limited effect. For larger node numbers, the SOM
topology becomes smoother and the K-means centroids re-
main distinct rather than representing a continuum of states,
whereas a continuum is a more realistic reflection of the ac-
tual atmosphere (Skific and Francis, 2012). A comparison be-
tween SOMs andK-means analysis for 4 and 20 node/cluster
numbers is shown in Fig. A5.

2.5 The self-organizing map blocking index (SOM-BI)

Once we have created the GTD, this can be used to develop
a new BI using SOM analysis. For a given variable from
the ERA5 dataset, we can specify a node number and ar-
rangement of nodes (number of rows and columns, Fig. 2)
and then learn the corresponding SOM nodes from that data.

Figure 3a shows the trained pattern for Z500 anomalies in
ERA5 28 May–4 September 1979–2019 for nine nodes ar-
ranged in a 3×3 grid. Since each day in the dataset has been
matched to a BMU, we can identify which nodes are asso-
ciated with blocked days according to our GTD. Figure 3b
compares the histograms of those nodes which are and are
not associated with the GTD blocking events. As expected,
the three nodes with large positive Z500 anomalies (nodes 1,
2 and 3) are most closely associated with blocking events,
and the nodes with large negative Z500 anomalies (nodes 7
and 8) are rarely associated with blocking events. However,
nodes 1, 2 and 3 still occur on 15 % of non-blocked days, and
28 % of the blocked days are also matched with one of the
other six nodes, including 3 % of blocked days matched with
nodes 7 and 8. This tells us that while the SOM nodes can
indicate the occurrence of blocked events, there is no node or
single combination of nodes that can be consistently identi-
fied with blocking events with high skill.

However, from every 5 d period within the GTD, we can
identify an associated “group” of nodes. For example, a 5 d
period can be associated with nodes 1 and 4 (any arrange-
ment of nodes 1 and 4 across 5 d), and this would mean that
[1,4] is the associated group of nodes for that 5 d period.
Since each 5 d period has been classified either as blocked or
not blocked, it raises the possibility that a set of such groups
can be more specifically associated with blocking. We iden-
tify the optimal set of node groups associated with blocking
by ordering the list of all possible node groups (e.g. [1,2,3],
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[1,4], [1], [1,2,3,4,6] etc.) from the node groups that have
the highest to lowest precision (P ) at identifying blocking
events.

2.6 Classification skill measures

Figure 3c shows the binary classification skill according to
the measures of precision, recall and F1 score when applying
the nine-node SOM-BI to ERA5 data. The three skill mea-
sures are shown for consecutive cases where we successively
add node groups as described above in order from highest to
lowest precision to the set of groups that we associate with
blocking. In other words, once a new group has been added
to the set of groups, this new group will define a series of
blocked periods within our SOM-BI approach. Precision (P )
is defined as the ratio of true positives to total detected pos-
itives. For example, a precision of 0.8 indicates that 80 %
of the events identified by a method are true positives, and
the remaining 20 % of the events are false positives. Recall
(R) is the number of true positives divided by the total num-
ber of actual events. A recall of 0.8 indicates that 80 % of
all total blocking events are captured by the classification
method, but 20 % of all total blocking events are false neg-
atives. A higher recall is typically associated with a loss in
precision, as identifying more events also means that one typ-
ically identifies more false positive events. Therefore, a care-
ful balance between precision and recall is usually sought
after. One widely used skill metric to achieve this balance is
the F1 score, which is the harmonic mean of precision and
recall:

F1=
2 ·P ·R
P +R

, (1)

which can vary between 0 (worst case, low detection skill)
and 1 (best score). If either P or R are low, the F1 score
tends towards 0, thus indicating low detection skill in at least
one of the two measures. For example, if there is a small
number of node groups selected in the SOM-BI, the preci-
sion is very high but the recall is very low – a small num-
ber of blocking events is well described but many blocking
events are missed by the classification. When a larger num-
ber of node groups with a decreasing precision is included,
then precision decreases and recall increases; more events are
described but there is also a higher proportion of false posi-
tives. For the 3× 3 SOM learned from ERA5 data, the node
group with the highest precision is [1], with P = 0.91 and
R = 0.15, followed by [2] with P = 0.89 and R = 0.19 and
[1,2,6] with P = 0.87 and R = 0.03. If only one node group
is included in the set (e.g. [1] or [1,2,6]), there is a high P
and low R, but as more node groups are added to the set of
node groups (e.g. [1], [2]; then [1], [2], [1,2,6]), P decreases
but R increases. We identify the optimal set of node groups
by the value which maximizes the F1 score (Fig. 3c). We
perform this classification for a range of node numbers and
meteorological variables to identify an optimal performance
in Sect. 3.3.

2.7 SOM-BI application

Once an optimal set of node groups has been identified, these
can be used to classify days as blocked or not blocked. This
creates a time series of blocking events, but it does not pro-
duce a spatial climatology. To develop a spatial climatology
for the SOM-BI, we use the BIs described in Sect. 2.3 across
the days that are identified as blocked by the SOM-BI.

A key advantage of the SOM-BI is that it identifies dis-
tinct types of regional blocking events, since each blocked
node group within the set of node groups is associated with
a set of blocking events. In the example shown in Fig. 3, 14
node groups are associated with blocking at the intersection
of precision and recall, which therefore identifies 14 possible
distinct types of blocking. For example, the node group [1]
describes broad NW European events, [2] describes Scandi-
navian blocking, and [1,2,6] describes a more variable set
of blocking patterns that are broadly associated with NE Eu-
rope.

To aid in our interpretation of these node groups, we cal-
culate the mean of their node codebooks, i.e. the mean of
the spatial patterns of the nodes in each node group, which
in turn also characterize the corresponding blocking patterns.
This forms “mean codebooks” for each node group. Figure 4
shows four examples of such node groups associated with
blocking from ERA5 Z500 for the case of 20 nodes – the
optimum number of nodes for this case (cf. Fig. 7a). These
four node groups are chosen since they illustrate the vari-
ety of nodes and numbers of nodes present across the set of
blocked node groups and also represent a variety of spatial
patterns in blocking (N, NW, W and E). In Sect. 3.7, these
mean codebooks are applied to identify distinct categories of
blocking and to study their historical trends in ERA5.

3 Results

3.1 Case study analyses

We compare the blocking identification methods (i.e.
SOMs/SOM-BI, the three conventional BIs and K-means
clustering) for two examples of well-known 2003 and 2019
European heat waves that were linked to blocking states of
the atmosphere (Figs. 5 and 6). In addition, we study two
blocking events from UKESM to investigate how blocking
events are described in the climate model. From the 101 years
investigated in the pre-industrial control run we have found
the largest extent of heat extremes to occur in an extended
heat wave shown in Appendix Fig. A2. This is contrasted
with Fig. A3, which shows the end of a blocking event and a
weaker transitory anticyclone. Both UKESM events are dis-
cussed further in Appendix A.

The 2003 European heat wave was a record-breaking heat
wave that had significant societal impacts (Robine et al.,
2008) and was shown to have been made at least twice
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Figure 4. Examples of four blocked node groups identified by the SOM-BI described in Sect. 2.5 averaged to form mean codebooks. Shown
here for Z500 in the optimized case of 20 nodes. There are 114 blocked node groups in total.

as likely due to anthropogenic climate change (Stott et al.,
2004). According to climate change projections, such heat
waves will become commonplace by the 2040s irrespec-
tive of future emissions scenarios (Christidis et al., 2014).
The most extreme temperatures during this heat wave were
recorded from the 6–12 August, where the peak tempera-
ture recorded was in Southern France at 41 ◦C. Black et al.
(2004) report that atmospheric flow anomalies were recorded
in early August, although there was a relatively weak signa-
ture of blocking. The 2003 heat wave remained the Euro-
pean temperature record until 2019, when surface temper-
atures of 46 ◦C were observed in central France. The 2019
heat wave was concurrent with persistent hot air that origi-
nated in North Africa (the so-called “Saharan heat bubble”),
which was sustained by an omega block centred on western
Europe (Mitchell et al., 2019).

Figures 5a and 6a show daily maps of detrended Z500
anomalies for the two events, the field used by the DG83
index to identify blocking events. The hatching indicates de-
trended surface temperature extremes at the 90th and 99th
percentile. It can be seen that across all cases there are signif-
icant positive Z500 anomalies which are associated with tem-

perature extremes. Figures 5b and 6b show the vertically av-
eraged potential vorticity (VPV) field, used by the S04 index
to identify blocking, and also the 10 m winds. The VPV field
is consistently anti-correlated with the Z500 field and signif-
icant negative anomalies in the VPV field tend to be asso-
ciated with stationary surface winds, particularly across 26–
29 June 2019. Figures 5c and 6c show the BMU SOM pattern
for the case of nine nodes for detrended Z500 anomaly fields.
Whilst the SOM nodes clearly track the features shown in the
Z500 maps, a range of BMUs are identified in both case stud-
ies even though there is a consistent extreme weather event
across these time periods. In the 2003 case study in ERA5,
three SOM BMUs and four transitions between BMUs are
shown in Fig. 5c. These all show positive Z500 anomalies in
the northern part of the domain, even though the meteoro-
logical situation varies meridionally more than zonally, par-
ticularly across 4–9 August 2003. An even greater variety of
BMUs is observed in the 2019 case, where four nodes and
four transitions between SOM nodes are shown in Fig. 6c.

This creates a difficulty of interpretation – whilst the SOM
can identify the best-matching spatial pattern of Z500 anoma-
lies, these particular SOM patterns do not correspond to cir-
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Figure 5. The 2003 European heat wave. Column (a) shows the detrended 500 hPa geopotential height anomaly for each day. Left (right)
hatching indicates where the local surface temperature exceeds the 90th (99th) percentile for the detrended 2 m temperature. Column (b)
shows the potential vorticity anomaly vertically averaged across 150–500 hPa, with arrows showing the 10 m wind field. Column (c) shows
the corresponding SOM pattern for Z500 anomalies from nine nodes. Column (d) similarly shows the corresponding K-means centroid for
four clusters. Column (e) shows the contours identified as blocked in this region in the AGP (red), DG83 (black) and S04 (blue) indices. A
green (magenta) tick or cross indicates if the GTD (SOM-BI) identifies the day as blocked or not.

culation regimes as conventionally understood, since even
minor shifts in the domain (such as the change from the
2–3 August 2003) can cause the corresponding pattern to
shift. The frequency of these shifts and sensitivity of the
SOM is dependent on both the number of nodes chosen and
the domain size. Smaller domains with fewer SOMs show
more consistency in the synoptic weather patterns, but when
these are sufficiently reduced (such as for four SOMs over

the Mediterranean), the SOMs become less distinguishable
and lose even more of their explanatory power to represent
meaningful pattern variations across the domain (not shown).
Overall, the fact that several SOM nodes occur during the
case study blocking events shows that individual SOM pat-
terns will not be able to consistently identify blocking events
with high precision or recall, contrary to how SOMs are typ-
ically used in many applications in the literature. However,
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Figure 6. As in Fig. 5 but for the 2019 European heat wave.

well-defined groups of nodes, as we will show below, can in-
deed achieve this task and can thus be used for the purpose
of our new SOM-BI.

Figures 5d and 6d show aK-means clustering analysis us-
ing Z500 anomaly fields for the case of four centroids. As
described in Sect. 2.4, the case of K-means clustering with
four centroids produces a similar set of weather regimes to
SOMs with four nodes. Consequently, the K-means analysis
exhibits a similar behaviour to the SOMs discussed above but
distinguishing between fewer weather regimes. One weather
regime indicating Scandinavian blocking consistently repre-
sents the 2003 European heat wave across Fig. 5d, but the
westward shift of the high-pressure centre from Scandinavia

on 31 July to the UK on 8 August 2003 is not described
by four centroids. For the 2019 heat wave in Fig. 6d, all
four weather regimes are represented, and the blocked pe-
riod is primarily associated with a mixed weather regime.
This shows that the 2019 case is also not described well by
K-means clustering.

Figures 5e and 6e show the contours denoting blocked re-
gions as identified by the three different BIs. A tick or cross
in the bottom left and right corners indicates whether the day
was identified as blocked or not in the GTD or the SOM-BI.
For the SOM-BI labelling, Z500 20 SOM nodes are chosen
on the basis of the optimization of the SOM-BI in Fig. 7a.
Across all case studies the DG83 index clearly tracks regions
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Figure 7. A comparison of the performance of the SOM blocking index for seven variables in the ERA5 1979–2019 historical period with a
varying number of nodes in the SOM. Precision (P ), recall (R) and F1 scores are calculated, and the absolute difference between precision
and recall is also shown. Error bands show the standard deviation (±1σ ) for 10-fold cross-validation. The red number inset into each panel
shows the optimal F1 score, and the position of the box indicates the corresponding optimal node number. The optimal value is defined by
the node number where the F1 score is close to its maximum value and the difference between precision and recall is close to the minimum
value.

of positive Z500 anomalies. The S04 and AGP indices also
track the same feature in the 2003 heat wave until 3 August
2003 but do not identify any blocking associated with the
2019 heat wave. The SOM-BI describes the initial period of
the 2003 heat wave well, although it does not capture the
western European blocking event during the peak period of
extreme temperature across 6–12 August. The SOM-BI also
does not capture the 2019 blocking pattern coincident with
the 2019 heat wave. This is because the SOM nodes are too
variable over the 2019 event such that the set of nodes which
best match the Z500 anomaly fields are not generally asso-
ciated with blocking. For example, the SOM nodes across

27–30 June 2019 indicate mixed patterns which do not ob-
viously correspond to blocking over a consistent area (the
positive maxima shift from the British Isles to eastern Eu-
rope within a day). This lack of pattern consistency is mostly
the result of an unfortunate balance between the positive and
negative Z500 anomalies on these days, where the latter play
a major role in the allocation of the BMU during this pe-
riod. We discuss the possibility of ignoring negative anoma-
lies in our assignments of the BMUs in Sect. 3.6 but found
that this modification does not improve the SOM-BI perfor-
mance overall. In summary, there are blocking events such as
these that will also not be described well by the new SOM-
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Table 1. A comparison of skill scores of the original BIs and the new SOM-BI against the GTD for ERA5 1979–2018 and UKESM for JJA
over the European domain. Where not indicated the skill scores are measured with respect to the relevant GTD. “BLO” indicates the skill
score for the trivial case of every day labelled as blocked and “RND” where a random allocation of blocked days has occurred with the same
proportion of blocked days as the GTD.

Dataset Method Days blocked Precision Recall F1 F1 wrt AGP F1 wrt DG83 F1 wrt S04 F1 wrt SOM-BI

ERA5 GTD 33.4 % 1 1 1 0.56 0.73 0.19 0.74
ERA5 AGP 19.5 % 0.76 0.44 0.56 1 0.55 0.22 0.51
ERA5 DG83 34.3 % 0.72 0.75 0.73 0.55 1 0.19 0.69
ERA5 S04 5.3 % 0.69 0.11 0.19 0.22 0.19 1 0.15
ERA5 SOM-BI 34.6 % 0.73 0.75 0.74 0.51 0.69 0.15 1
ERA5 BLO 100 % 0.33 1 0.50 0.33 0.51 0.10 0.51
ERA5 RND 33.4 % 0.33 0.33 0.33 0.25 0.34 0.09 0.34

UKESM GTD 29.0 % 1 1 1 0.34 0.60 – 0.71
UKESM AGP 20.8 % 0.41 0.29 0.34 1 0.29 – 0.28
UKESM DG83 14.5 % 0.90 0.45 0.60 0.29 1 – 0.55
UKESM SOM-BI 29.6 % 0.70 0.72 0.71 0.28 0.55 – 1
UKESM BLO 100 % 0.29 1 0.45 0.34 0.25 – 0.46
UKESM RND 29.0 % 0.29 0.29 0.29 0.24 0.19 – 0.29

BI, but as we show below the SOM-BI performs as good as
or even better than many conventional BIs in most cases.

3.2 Blocking index comparison in ERA5 and UKESM
with GTD

A climatological comparison of the BIs over JJA Europe
confirms what has been discussed in the case study analy-
ses above and is consistent with the results of Pinheiro et al.
(2019), which are broadly consistent with other BI clima-
tologies. We show the spatial distribution of blocking clima-
tologies according to three conventional blocking indices in
Fig. A4. Where our analysis substantially differs from the lit-
erature is in our regional approach and consideration of direct
time series comparisons among the BIs as well as to our new
SOM-BI. We do not explicitly consider the time-averaged
climatological distributions of blocking events over Europe
(as shown in Fig. A4). For our comparison, we first apply all
BIs to the historical ERA5 data over the European domain.
Each day for each BI is labelled as blocked if a blocking
event has been identified within the European sector and per-
sists for at least 5 d. A blocking event is not identified if the
thresholds for amplitude, persistence, area and overlap dis-
cussed in Sect. 2.3 are not met within the European domain.
This results in a binary dataset for each BI that identifies pe-
riods of at least 5 consecutive days where blocking patterns
exist within the European sector. We then compare these bi-
nary BI datasets to our manually labelled GTD.

Table 1 compares the precision, recall and F1 scores of
these BIs and our new SOM-BI against the GTD for this
domain-based comparison in both ERA5 and UKESM. We
further compare the time series of blocking classifications
among the BIs themselves to quantify how consistent the BIs
are with each other. The key results are underlined. In both

ERA5 and UKESM, the best blocking index is the SOM-BI,
with a F1 score of 0.74 in ERA5 and 0.71 in UKESM. All
of the indices consistently perform worse in UKESM than
in ERA5. This is because blocking is less frequent in the
model, and several of those blocking patterns identified in
UKESM are less distinct (Fig. A3). This is probably asso-
ciated with mean biases in the representation of Z500 that
have been observed across several climate models (Scaife
et al., 2010; Schaller et al., 2018). The DG83 index performs
almost as well as the SOM-BI in ERA5 with an F1 score
of 0.73, but there is a significant reduction in performance
to 0.60 when applied to UKESM data. The AGP index in
turn shows an even weaker skill than DG83 in both reanaly-
sis and model, with a larger drop in skill from 0.56 to 0.34
in ERA5 and UKESM, respectively. The fact that SOM-BI
still shows a relatively good score for UKESM of 0.71 sug-
gests that the SOM-BI can be particularly useful in studying
regional blocking in climate models. In particular, since a
model ensemble may exhibit a variety of intensities of block-
ing, the SOM-BI would be able to overcome the limitations
of BIs, where (particularly in the case of AGP) thresholds
are defined with respect to the observational record. Since
the anomalous flow patterns associated with blocking will
be more consistent across datasets, the SOM-BI can identify
blocking events across a model ensemble with greater accu-
racy. The consistent skill of the SOM-BI across both ERA5
and UKESM has been further verified by swapping the train-
ing and test datasets between each dataset, as described in
Sect. 3.5.

A case where every day in Europe is labelled as blocked
(“BLO”) is also compared, which represents the case of per-
fect recall (= 1) but a low precision. This case gives an
F1 score of 0.53 for the GTD for ERA5 and 0.45 for the
GTD of UKESM and provides a useful benchmark of ba-
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sic performance. Surprisingly, the AGP index only performs
marginally better than BLO for ERA5 and performs worse in
the UKESM case. Whilst S04 has a higher precision than
BLO, because the recall is so low the total F1 score is
much lower (0.19). Finally, we compare a random labelling
of blocked and non-blocked days, where the proportion of
blocked days is equal to that of the GTD (“RND”). This gives
an equal precision and recall because the number of true pos-
itives is equal to the number of false negatives. The F1 score
of RND still exceeds that of S04, with 0.33 for ERA5 and
0.29 for UKESM, and is comparable to the F1 score of AGP
in UKESM.

3.3 SOM-BI skill dependence on the choice of SOM
node number and the meteorological variable

The key hyperparameter in the SOM-BI is the number of
nodes (k), which here is similar to identifying the optimal
number of circulation patterns required to effectively clas-
sify European summer weather regimes. In addition, there
are a number of meteorological variables from which we
could learn the SOM patterns, which in turn will also in-
fluence the skill of our SOM-BI method. The dependency
of the skill of our BI on these two factors is quantified in
the following. Figures 7 and 8 show how precision (P ), re-
call (R) and F1 score depend on k and the meteorological
variable in ERA5 and UKESM, respectively. Specifically, we
compare the skill metrics for cases where we learn the SOM
nodes from Z500, MSLP and ζ500 anomalies. For ERA5, we
additionally consider four PV-related variables (VPV, θ -PV,
IPV350 and IPV330) shown in Fig. 7d–g.

Another hyperparameter related to the number of nodes is
the row x column (n×m) arrangement of nodes. For exam-
ple, 16 nodes can be arranged as 16×1, 4×4, 8×2, 2×8 or
1× 16. These different arrangements affect the topology of
the SOM, the initialization of the nodes and which nodes are
counted in the neighbourhood of other nodes during the up-
date process of the SOM (Fig. 2). For each k in Figs. 7–9 we
have used the arrangement of nodes that maximizes the av-
erage number of nearest neighbours between each node (e.g.
using 4× 4 nodes for k = 16). This approach maximally ex-
ploits the SOM topology. We have also used n>m (for exam-
ple using a 9×2 arrangement instead of a 2×9 arrangement
of nodes for k = 18) to preferentially arrange the SOM topol-
ogy zonally across the domain rather than meridionally. This
is done because there is greater variability in the occurrence
of blocking patterns zonally than meridionally across Europe
(Fig. A4).

The results are shown for 1≤ k ≤ 41. To measure out-
of-sample skill, we used 10-fold cross-validation, where the
GTD was split into 10 separate sections for testing the SOM-
BI. The SOM-BI is trained on 9 of the 10 data sections, and
its skill is evaluated on the remaining section. The skill scores
shown only indicate how well the SOM-BI is able to predict
the test period in question, which was not used for training.

Figure 8. A comparison of the SOM blocking index performance
for three variables in 101 years from the UKESM pre-industrial
control period with a varying number of nodes in the SOM. Pre-
cision (P ), recall (R) and F1 scores are calculated, and the absolute
difference between precision and recall is also shown. Error bands
show the standard deviation (±1σ ). The red number inset into each
panel shows the optimal F1 score, and the position of the box in-
dicates the corresponding node number. As above, the largest F1
score is for Z500, indicating that Z500 is the best variable tested for
analysing blocking patterns using the SOM-BI in UKESM.

Figure 9. The number of node groups that are identified as blocked
in the SOM-BI for ERA5 and UKESM for a range of node numbers
and variables. The panels separate the variables available in both
models from those only available in ERA5. Error bands show the
standard deviation (±1σ ).

This ensures that the SOM-BI has not been tuned to the data
we measure our skill against, which could give it an unfair
advantage compared to the other BIs. For ERA5 we used
4-year periods (1980–1984,. . . , 2015–2019 inclusive) to test
on and trained on the remaining 37 years, with each 4-year
period once serving as the independent test set. In UKESM
10-year periods (1960–1959,. . . , 2050–2059 inclusive) were
used for testing the SOM-BI, and it was trained on the re-
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maining 91-year period. This 10-fold cross-validation proce-
dure produces a range of precision, recall and F1 scores for
each node number. Figures 7 and 8 show the mean values for
precision, recall, F1 and the absolute difference between pre-
cision and recall. Figure 9 compares the number of groups
of nodes identified as blocked for each variable. Error bands
indicate the standard deviation of each skill metric (±1σ ).

Common features are observed for each variable for a very
small or large number of SOM nodes. For small k the SOM-
BI identifies more days as blocked, such that R� P . This
indicates that the SOM is under-fitting the data for European
circulation patterns across the domain, and so the algorithm
lacks a precise delineation of blocking events. In other words,
it could be beneficial to increase k to be able to represent
a larger number of dynamical states and thus to detect and
describe blocking events more precisely. For large k,R� P ,
showing that the SOM-BI is trending towards overfitting the
training data. We deduce that the optimal k occurs when the
difference between P andR is small and the F1 score is close
to its maximum value.

From Figs. 7 and 8 we find that for both ERA5 and
UKESM the Z500 anomaly is the best variable to use with the
SOM-BI, with a mean F1 score of 0.74 and 0.71 for k = 20
and 21 in ERA5 and UKESM respectively. From Fig. 9a,
Z500 also shows the lowest number of blocked node groups
for a given k, which shows that the blocked node groups are
physically more explanatory in Z500 than the blocked node
groups associated with other variables, making the SOM-
BI results easier to interpret physically. MSLP is the second
most effective variable, with an optimum F1 score of 0.66
and 0.64 for ERA5 and UKESM respectively. This lower
peak performance is because the MSLP field has a lower
signal-to-noise ratio as it is influenced by effects within the
boundary layer such as heat lows. The PV-related variables
exhibit a variety of lower skills, where the VPV field per-
forms at a similar level to MSLP, since the vertical integra-
tion of the VPV variable enables it to capture the pattern
of blocking better than other PV-based variables (Schwierz
et al., 2004).

3.4 SOM-BI skill dependence on number of training
years

One important verification for the SOM-BI is to ensure its
robustness over long timescales. Contrary to the other BIs,
the SOMs learn from training data. Therefore, the SOM-BI
skill on test data will also be a function of how representative
the training samples are of general states of the atmosphere.
Here we investigate if the observational record, for exam-
ple, is long enough to indeed ensure the same performance
of the SOM-BI described above over longer timescales. For
this purpose, we train the SOM-BI algorithm on a range of
different numbers of training years, while keeping the num-
ber of years to test the algorithm performance consistent.
Importantly, there is no overlap between the training and

test data to ensure that the skill evaluation is truly indepen-
dent, following the idea of statistical cross-validation (see
e.g. Nowack et al., 2018; Mansfield et al., 2020). Figure 10
shows the results of this analysis for Z500 and 20 nodes
across both (a) ERA5 and (b) UKESM datasets, which is the
best-performing case according to our analysis above. Since
the datasets have different lengths (41 years vs. 101 years),
we tested the model on 4 and 10 years for each dataset re-
spectively. For a small number of years, the algorithm only
sees a few blocking events and so only identifies the par-
ticular node groups that are associated with these blocking
events rather than identifying node groups that are in general
associated with blocking events. This leads to a high preci-
sion for a small number of training years, particularly in the
ERA5 data, since the SOM-BI is effectively overfitting on a
few events, but the recall and overall F1 score are low. This
behaviour is confirmed by Fig. 10c, which shows that there
is a small set of node groups associated with blocking for a
small number of training years.

Figure 10a and b both show that the recall and F1 scores
increase asymptotically for a larger number of training years,
and the precision decreases asymptotically. These varia-
tions become very small after 20 years for both ERA5 and
UKESM, which indicates that for around 20 years the SOM-
BI seems to have achieved an optimal performance. Figure 9c
shows that the number of node groups associated with block-
ing continues to increase in both ERA5 and UKESM even
after this point, with 120 node groups identified with block-
ing for UKESM over 91 years compared to 95 node groups
over 37 years. However, these extra node groups occur rarely
in the blocking datasets since they do not significantly affect
either the precision or recall of the algorithm and are there-
fore not physically meaningful.

3.5 Cross-comparison of SOM-BI skill

For the SOM-BI to be effectively applied to understand fu-
ture trends in atmospheric blocking, we need to verify that
the training of the SOM-BI on the observational record is
consistent with CMIP6 models. This step is necessary to en-
sure that the SOM-BI can identify blocking patterns in the
models. If it is possible for the SOM-BI to identify block-
ing patterns in a CMIP6 model from training on the obser-
vations, then this shows potential for the SOM-BI to be ap-
plied consistently across a model ensemble. Furthermore, if
the SOM-BI can be trained on a CMIP6 model and tested
on the observations, differences in the skill of the SOM-BI
would highlight limitations in that model’s ability to repre-
sent blocking patterns. This could be applied across a model
ensemble to compare the skill of different models at repre-
senting blocking patterns.

To investigate the feasibility of such studies, we test the
skill of the SOM-BI algorithm by training Z500 data on the
41 years from the ERA5 dataset and testing on the UKESM
and vice versa. Table 2 shows the differences in the opti-
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Figure 10. SOM-BI skill depending on the number of training years. Panels (a) and (b) show the skill scores for ERA5 and UKESM, and
panel (c) shows how the number of node groups associated with blocking varies with the length of the training record. A 10-fold cross-
validation is used, with 4 and 10 years used to test the SOM-BI for ERA5 and UKESM respectively. In both models Z500 is the variable
tested with 20 (5×4) nodes in the SOM. Error bands indicate standard deviation (±1σ ) in the skill scores depending on the training–test set
combination.

Table 2. A comparison of the optimal F1 score for when Z500
ERA5 and UKESM datasets are trained and tested on themselves
and each other respectively. The corresponding node number and
number of blocked node groups is shown. When the dataset is tested
on itself, 10-fold cross-validation is used and the mean value is
shown. The optimal F1 score is identified by finding the node num-
ber with the smallest difference between precision and recall whilst
maintaining a relatively high F1 score.

Training Test F1 Number Number of
dataset dataset score of nodes blocked

node
groups

ERA5 ERA5 0.74 20 95
UKESM ERA5 0.74 21 134
UKESM UKESM 0.71 20 131
ERA5 UKESM 0.71 19 99

mal performance for Z500 across the different datasets. In all
cases several node numbers were tested, and we identified an
optimal node number of 20 or 21 across all the configurations
of training and testing data. There was also a good perfor-
mance of the SOM-BI for other node numbers that is consis-
tent with Fig. 7a (not shown). The stable performance of the
SOM-BI shows that there is a consistent range of synoptic
weather patterns between the ERA5 and UKESM for Euro-
pean summer. It also indicates a consistency between the la-
belling that occurred in the GTD across ERA5 and UKESM,
despite the reduced performance in the blocking indices to
label the GTD. This further shows that UKESM describes

blocking patterns in a similar enough way to the historical
observations for useful study of blocking events, which in
turn reinforces the validity of studies in blocking trends from
the CMIP6 archive (Davini and D’Andrea, 2020). Finally,
this underscores the potential for the SOM-BI to be used
in understanding future trends and diagnosing model skill
across the CMIP model ensemble.

3.6 Dependence of SOM-BI skill on other parameters

Apart from the SOM node number, number of years trained
over and training dataset, there are several other parame-
ters that could be modulated within the SOM-BI framework.
First, we investigated 5-fold cross-validation on the ERA5
dataset, which involves testing the SOM-BI on 8 years of
data five times. This was found to have a marginally lower
performance than 10-fold cross-validation. Furthermore, we
tested an alternative approach to identifying the correspond-
ing best-matching unit for the SOM pattern, where we only
used positive anomalies to define the BMU. Since we are
only interested in positive anomalies it is possible that such
an approach would increase the skill score, particularly for
events such as the 2019 European heat wave (Fig. 6). How-
ever, this modification was found to have a negligible effect
on the overall SOM-BI skill.

3.7 Application of the SOM-BI to ERA5

A central question of current research is how the charac-
teristics of regional blocking events are affected by climate
change (Woollings et al., 2018; Drouard and Woollings,
2018; Kornhuber et al., 2019, 2020). Here, we briefly demon-
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strate how the SOM-BI can be used to study such ef-
fects. For this purpose, we apply SOM-BI to ERA5 data
(Fig. 9a), where our optimization yields the best perfor-
mance for 20 SOM nodes (using Z500) and a total set of
114 blocked nodes (Sect. 7). Clearly, this large number of
different blocking patterns with subtly different character-
istics creates a challenge for easy interpretation of the re-
sults. In addition, because several of these node groups occur
very infrequently, perhaps only once in the 1979–2019 pe-
riod, a meaningful study of their trends is not always possi-
ble. We therefore need to develop a methodology to sensibly
match node groups to more general types of regional block-
ing patterns, which we can then study instead. We here sug-
gest a post-processing approach using the aforementioned
K-means clustering analysis (Diday and Simon, 1980) but
now applied to the 114 mean codebooks (Sect. 2.7) identified
for each node group. The goal of this post-processing step is
to identify distinct K-means clusters of SOM node groups,
where eachK-means cluster summarizes a pattern-wise sim-
ilar set of blocked SOM node groups. In Fig. 9a, k = 4 is
chosen since it is a common choice for identifying weather
regimes (Michelangeli et al., 1995; Cassou, 2008; Ullmann
et al., 2014; Strommen et al., 2019; Fabiano et al., 2021), but
we note that a larger value of k yields a more detailed classifi-
cation of blocking patterns. Hierarchical clustering was also
tested as an alternative to K-means clustering, and similar
patterns were produced (not shown).

To illustrate the method, Fig. 11a shows the cluster cen-
troids for each set of mean codebooks for this case of k = 4.
The bottom panel shows the mean pattern across all cen-
troids. Regions of hatching show where all of the mean code-
books in each centroid agree on the sign. The number of node
groups included in each cluster has been labelled in the bot-
tom right of Fig. 11a. The different clusters show distinct re-
gions of positive anomalies, with generally strong agreement
across all mean codebooks included in each cluster. This un-
derlines that the clustering approach is effective at identify-
ing distinct types of blocking events. The clusters have been
labelled in the top right of Fig. 11a, reflecting in each case the
main region of positive anomaly. Figure 11b shows the mean
Z500 field across all blocked days identified for each clus-
ter, which are highly consistent with Fig. 11a. Consequently,
the subsets of node groups are as expected physically consis-
tent with the circulation patterns across these blocked days
so that the K-means clusters can indeed be used to study
specific types of regional blocking. In Fig. 11c, we show the
blocking climatology associated with each cluster derived us-
ing the DG83 index across the days identified as blocked in
each cluster. The climatology again matches well the patterns
identified in Fig. 11a and b. The bottom panel of Fig. 11c
shows the total blocking climatology from the SOM-BI. It is
similar to the corresponding DG83 blocking climatology in
Fig. A4b, with a slightly reduced number of blocking events
around the Scandinavian high. This suggests that the SOM-

BI is reducing the identification of events on the edge of the
domain.

Having established that SOM-BI, following by K-means
post-processing, identifies clusters representing distinct re-
gional blocking events, we turn our attention to studying po-
tential trends in such blocking patterns. Such trends are given
in Fig. 11d, using four different metrics to characterize the
events. These are the rate of occurrence of events (“Occ”,
the number of days in JJA that are associated with the pat-
tern each year) and their persistence (“Persis”, the average
persistence of a blocking pattern in days), maximum dura-
tion (“Max Dur”, the longest event for each year), and the
number of events (“# Events”, the total number of continu-
ous blocked events per year). These quantities are calculated
for each cluster, and we average all metrics using a 5-year
centred moving window, which is necessary to ensure that at
least one event for each of the four blocking patterns occurs
within a given period.

The numbers (numbers in brackets) show the gradients
(p values) for each trend. The p values have been corrected
for autocorrelation using the Zwiers and von Storch (1995)
two-tail Student t test, and the multiple hypothesis testing
has been corrected for using the false discovery rate (Ben-
jamini and Hochberg, 1995; Horton et al., 2015). Since all
of the p values are large, none of the trends are significant.
However, we note that the number of E and NE European
blocking events doubles whilst the number of W European
events halves across the 1979–2019 period. Whilst none of
these trends are statistically significant, it highlights how the
SOM-BI method could be used to study changes in the char-
acteristics of European blocking over time, e.g. in longer cli-
mate change simulations. The SOM-BI can provide informa-
tion that is not directly available in the other BIs discussed
here, since it can be used to study long-term trends across
several types of automatically identified European blocking
patterns.

4 Discussion and conclusions

Using self-organizing maps (SOMs), we have developed a
new blocking index (SOM-BI). This has involved the cre-
ation of a new time series dataset (GTD) to describe when
blocking events have historically occurred over a region. We
have described our approach as unsupervised through its use
of the SOM algorithm, but we note that the SOM-BI also em-
ploys supervised learning through its blocking classification
using the GTD. By studying the case of European summer,
we have identified a similar or better skill score for SOM-BI
compared to several other blocking indices (BIs) using ERA5
reanalysis data from 1979–2019. We further applied our new
approach to a pre-industrial control run from UKESM and
found that our method shows consistent skill for this model
dataset, whereas the other BIs substantially lose performance
in this case. Whilst no individual SOM node directly corre-
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Figure 11. Application of the SOM-BI to ERA5 Z500 1979–2019 JJA, using the method outlined in Sect. 2.7. (a) The K-means centroids
of the mean codebooks. Hatching indicates regions where the mean codebooks for contributing node groups agree on the sign. The number
of node groups associated with each cluster is indicated in the bottom right of each panel. The labels in the top right of each panel reflect
the main region with a positive anomaly. “tot” is the total combination across all blocked node groups. To show that the four clusters are
consistent with the fields they represent, we show in column (b) the average Z500 field across all days belonging to each cluster of blocked
node groups. At the bottom right of each panel in column (b) the precision, recall and F1 scores are shown for each cluster. (c) The blocking
climatology for each set of node groups, derived using the DG83 index for each blocked day identified by SOM-BI for the given K-means
cluster. Since the frequency of blocked events varies strongly between each cluster, the climatologies have been scaled by the numbers in
the top left of each panel. (d) Historical trends as characterized by four different metrics for each cluster, using 5-year moving average data:
black – occurrence of pattern; blue – persistence (average duration) of pattern; red – maximum duration of block; gold – average number of
blocked events (uses the right hand y-axis scale). The numbers (numbers in brackets) show the gradients (p values) for each trend, which are
all insignificant after correcting for multiple testing and autocorrelation.

sponds to a weather regime such as blocking, with an optimal
node number we can develop a set of node groups which are
associated with blocking. We have also found that 20 years
are needed to train the SOM-BI, which underlines that the
SOM-BI has a robust level of performance if trained on stan-
dard reanalyses or on typical lengths of climate model sim-
ulations. The performance of the SOM-BI is also robust to
the dataset used to train it, since it shows good performance

when it is trained on the ERA5 data and tested on UKESM
and vice versa. These results show that unsupervised learn-
ing can be usefully applied to understand regional blocking
events, both historically and in the future.

We have further compared the performance of SOM-BI
for a range of variables in both ERA5 and UKESM that have
been classically used to study blocking (Figs. 7 and 8). We
find that the best skill is obtained when applying SOM-BI
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to the Z500 field because it exhibits the best signal-to-noise
ratio in blocking identification. This is reflected in Fig. 9,
which shows that for a given node number the Z500 SOM-BI
identifies blocking patterns with a smaller number of node
groups than for other variables.

We have confirmed that individual SOM nodes do not
represent weather patterns perfectly so that care needs to
be taken in using SOM patterns as a means of diagnosing
weather patterns (Gibson et al., 2017b). If individual SOM
nodes were used to create a blocking index, or if a small
node number was used (three to six nodes), there would be
a high recall and low precision in detecting blocking using
this approach, which would be the equivalent to some of the
approaches applied elsewhere (e.g. Horton et al., 2015). If a
higher node number (12+) was used and only one node was
associated with blocking, then there would be a high preci-
sion and low recall and overall a lower F1 score than for a low
node number. However, by using a large number of nodes
and studying groups of nodes across periods of 5 d, we have
developed an algorithm that can regionally identify blocking
patterns with optimal precision and recall, and which outper-
forms several conventional blocking indices for this task.

Using this algorithm has involved the creation of a GTD, a
binary dataset that identifies regional blocking events. There
are several limitations to this approach. Firstly, the choice of
domain is somewhat arbitrary and here primarily motivated
by a specific scientific question (summer heat waves in Eu-
rope), and events which are on the edges of the domain are
excluded, even though a large region within the domain could
be considered blocked. In addition, the task of assigning a bi-
nary label to each day can be further complicated, since there
is subjectivity in assigning a binary label to the onset and
decay of blocking events. However, by focusing on events
which are centred within the domain, a broad agreement with
the identification of blocked events was achieved, despite the
subjective nature of this approach. The fact that the SOM-BI
exhibits consistently good skill across ERA5 and UKESM
even when the SOM is trained on the other dataset under-
scores the validity of our labelling applied to both model and
reanalysis data.

The use of SOMs as a blocking index provides opportu-
nities for regional study that are not directly available in the
other BIs. Through an additional post-processing step involv-
ing K-means clustering on blocked node groups (Sects. 2.7
and 3.7), we have shown that the SOM-BI can identify spe-
cific types of blocking events and provide detailed informa-
tion about the changing nature of blocked events over a Euro-
pean subdomain (Fig. 11). The case of k = 4 has been shown
in Fig. 11, but larger values of k can also be chosen to identify
more distinct types of blocking pattern. Whilst the SOM-BI
does not directly produce a gridded climatology of blocking
patterns, we have shown that the SOM-BI can be integrated
with the other BIs to develop a climatology that only con-
siders only those days detected as blocking by the SOM-BI.
This results in a SOM-BI climatology with a higher precision
than the BI climatology.

We intend to apply this method to future trends across
CMIP5 and CMIP6 models to better understand the pat-
terns of blocking in models, diagnose model skill at repro-
ducing the historic patterns of European circulation regimes
and compare projections of future changes in blocking pat-
terns. The identification of distinct blocking patterns from
node groups enables a detailed study of blocking character-
istics over European subdomains as shown in Fig. 11. Further
quantities such as the Rossby wave breaking properties or the
nature of blocking onset and decay can also be studied. This
could be done by studying particular dynamical quantities
on the blocked days identified by the SOM-BI and extended
by contrasting the dynamical quantities across different cat-
egories of blocking pattern identified by the SOM-BI node
groups. We also make our GTDs available for both ERA5
and UKESM, which have wider application in understanding
historic blocking events, how they interact with other meteo-
rological phenomena (such as heat waves and droughts), and
comparing blocking patterns between reanalyses and CMIP6
models (cf. process-based climate model evaluation, Nowack
et al., 2020). We consequently encourage similar ground
truth datasets to be created for other world regions and sea-
sons, and we highlight that our method could then be trained
for and applied to those regions.
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Appendix A: UKESM case studies

In the UKESM pre-industrial run, we show in Fig. A2 part
of a heat wave in the (arbitrary) year 2014. This year shows
the largest spatial extent of heat extremes, where the number
of grid cells exceeding the 90th (99th) temperature percentile
peaks at 66 % (24 %) on 19 (20) July 2014. To complement
this extreme case, we also show in Fig. A3 a period from the
2030 summer, which shows the edge of a blocking pattern
in eastern Europe on the 19 July and an anticyclone shifting
across Europe over 20–27 July.

Since VPV is not available as a variable, the S04 block-
ing index cannot be calculated, and we have instead shown
MSLP in Figs. A2b and A3b.

Many of the same features are observed. Extreme heat is
associated with persistent high pressure and stationary sur-
face winds. The MSLP field is broadly correlated with the
Z500 anomalies, but frequently the Z500 anomaly does not
represent the MSLP anomalies well, such as on the 25 July
2014 shown in Fig. A2, where low MSLP is contrasted with
high Z500. The AGP index in general performs worse than in
ERA5, since the zonal Z500 gradients are not as prominent.
The DG83 index is still able to describe blocking patterns
from the Z500 anomalies. The SOM-BI labelling is generally
consistent with the ground truth dataset in both cases.

The MSLP field is broadly correlated with the Z500
anomalies, but frequently the Z500 anomaly does not repre-
sent the MSLP anomalies well, such as on the 25 July 2014
shown in Fig. A2, where low MSLP is contrasted with high
Z500. The surface wind fields in UKESM similarly show the
easterly wind direction associated with high pressure and
vice versa, particularly when the MSLP anomalies are also
strong such as on the 20–21 July 2030 in Fig. A3.
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Figure A1. The information used to classify blocks in the UKESM GTD. Panel (a) shows the daily Z500 contour for the averaged value
across 30–70◦ N, indicated in the bottom left of the panel. Panels (b) and (c) show the Z500 time detrended anomaly and MSLP anomaly for
each day.
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Figure A2. As with the case studies shown in Figs. 5 and 6 but for a heat wave in UKESM.
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Figure A3. As above, but for a transient period in UKESM.
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Figure A4. Occurrence of blocking events per grid cell across JJA Europe for three BIs in ERA5 1979–2019 and two BIs in UKESM JJA
1960–2060.

Figure A5. Comparison of the SOM analysis and K-means clustering for (a) 4 and (b) 20 nodes/clusters. Whilst the K-means clustering
and SOM analyses produce a similar set of patterns for smaller node numbers, their behaviour diverges for larger node numbers. Since the
neighbourhood function ensures that several nodes are updated at once, the SOM produces a continuum of weather patterns. However, since
theK-means clustering updates each centroid independently, it will seek to maximize the differences between each cluster. This causes some
centroids for high cluster numbers to represent mixed weather regimes that are less realistic than the SOM continuum of weather regimes.
The data used for above are ERA5 Z500 across JJA 1979–2019.
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