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Abstract 
 

The critical role of a disrupted gut-liver axis in the pathogenesis of many diseases has 

only recently been accepted. The role of diets in the related bidirectional relationship 

between the gut, along with its microbiota, and the liver are however poorly defined. 

Designing an experimental animal model to study the gut-liver axis requires the use 

of commercial control diets such as chow or purified low-fat (LF) diets. While chow 

is a whole foods grain-based diet, LF contains high amount of easily accessible 

refined carbohydrates together with reduced dietary fibre and resembles a low-fat 

Western style diet. In this thesis, we compared chow and LF diets to characterise 

their differential effects on the gut-liver axis with focus on the ileum in C57BL/6J 

mice. For the first time, we showed that the LF diet significantly increased hepatic 

triglycerides, ileal bile acid levels and altered the ileal microbiota compared to chow. 

Long-term consumption of the LF diet led to further increased hepatic triglycerides, 

reduced ileal expression of antimicrobial peptides and cell cycle related genes. Next, 

we investigated strategies to prevent the LF induced phenotype by; 1) reducing the 

consumption of the LF diet with calorie restriction (CR) and, 2) addition of dietary 

fibres to the LF diet. We found that CR was successfully able to prevent the 

pathophysiological effects of the LF diet on the gut-liver axis and led to a distinct 

ileal microbiota profile. The second prevention strategy of enriching the LF diet with 

dietary fibres reduced the LF induced accumulation of hepatic triglycerides in mice. 

Moreover, our results showed differential effects of the structurally distinct dietary 

fibres on the ileal immune related gene expression. Lastly, we characterised the diet 

induced changes in genetically identical mice obtained from different vendors, to 

show differential ileal microbiota and bile acid profiles. Our studies highlight that 

dietary composition and animal source can affect the ileal microbiota composition 

and function, and lead to significant phenotype variability. The novel results from 

this thesis indicate that dietary fibres are essential food components with mode of 

actions not just in the colon but also in the ileum. Our studies further confirm that 

even low-fat Western style diets may have a pathophysiological impact on human 

health if the diet is depleted in essential food components such as dietary fibres.   
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Our ancestor’s diet comprised of whole foods and most of the consumed sugar 

derived from fruits. At present times, changes in lifestyle, dietary trends like 

veganism and increased production of ultra-processed foods has meant 

overconsumption of refined carbohydrates, deficiency of dietary fibres (DF) and 

essential micronutrients in individuals. These types of foods predispose people to a 

wide range of chronic illnesses including cardiovascular disease (CVD), non-

alcoholic fatty liver disease (NAFLD), diabetes, and cancers of the gastrointestinal 

tract (O'Keefe et al., 2018). The pathophysiology of these diseases is highly complex 

and involves several pathways in the gut-liver axis. In this thesis, we compare 

different dietary interventions to counteract the effects of a highly refined diet on the 

gut and liver of mice. The aim of our research is to 1) characterise molecular and 

microbial signatures associated with highly refined diet, 2) explore dietary 

interventions that may counteract these pathophysiological phenotypes.  

1.1 The gut- liver axis 

The gut and liver communicate bidirectionally through the biliary tract and portal 

vein (Fig.1.1). The liver communicates with the intestine by releasing bile acids into 

the biliary tract. In the gut, host and microbes metabolise endogenous (e.g. bile acids, 

amino acids) as well as exogenous substrates (from diet and environmental 

exposure), to produce microbial metabolites, microbe-associated molecular patterns 

(MAMPs; e.g., lipopolysaccharides (LPS) and secondary bile acids which translocate 

to the liver through the portal vein and influence liver functions.  

 

 

Figure 1.1 Communication between the liver and the gut.  
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1.1.1 Communication via bile acids 

Bile acids are synthesised from cholesterol in the liver and act as detergents to 

facilitate the digestion and absorption of dietary fats, and fat-soluble vitamins. Bile 

acids are conjugated to glycine or taurine in the liver, stored in the gallbladder and 

from there secreted postprandially into the duodenum part of the small intestine via 

the biliary tract. After dietary fat is absorbed, about 95% of the bile acids are actively 

reabsorbed in the ileum and transported back to the liver via the portal vein. The 

remaining 5% of the total secreted bile acids may be lost in the faeces. The liver 

recycles the reabsorbed bile acids and releases them back to the small intestine and 

therefore, a continuous circulation of bile acids exists between the liver and the 

intestine, also known as the enterohepatic circulation (Ticho et al., 2019). 

The bile acids that are synthesised in the hepatocytes are known as primary bile 

acids. These include cholic acid (CA; 3α-,7α-, and 12α-hydroxylated) and 

chenodeoxycholic acid (CDCA; 3α- and 7α-hydroxylated) in most mammals. In 

mice, next to CA and CDCA, a group of bile acids termed muricholic acids (MCAs) 

are the most abundant in the bile acid pool. The two major MCAs in mice are α-

muricholic acid (αMCA;3α-, 6β-, and 7α- hydroxylated) and β-muricholic acid 

(βMCA; 3α-, 6β-, and 7β- hydroxylated). The first reaction in the bile acids synthesis 

pathway is catalysed by cytochrome P450 7A1 (cholesterol 7α-hydroxylase; 

CYP7A1) (Fig. 1.2). CYP7A1 is a rate limiting enzyme, and critical for efficient 

synthesis of bile acids. Indeed, deletion of CYP7A1 function by homozygous 

knockout of the Cyp7a1 gene in mice reduced bile acid synthesis by approximately 

60% and bile acid pool size by approximately 75%, and resulted in increased faecal 

fat content, hypercholesterolemia, and poor survival. The classical pathway can 

generate CDCA and CA, whilst the alternative pathway that involved CYP27A1 

primarily produces CDCA. The ratio between CA and CDCA is determined by 

another enzyme in the classical bile acids synthesis pathway; cytochrome P450 8B1 

(sterol 12α-hydroxylase; CYP8B1). CYP8B1 is responsible for hydroxylating the 

12α carbon of the steroid ring. Therefore, CYP8B1 is involved in the synthetic routes 

of CA, which is 12α-hydroxylated, and not CDCA (Ticho et al., 2019). Transgenic 

Cyp8b1 knockout mice were shown to have a profoundly different bile acid profile 

compared to wild-type animals (Li-Hawkins et al., 2002). Secondary bile acids found 

in mammals are deoxycholic acid (DCA; 3α- and 12α- hydroxylated) and lithocholic 

acid (LCA; 3α- hydroxylated), that are generated in the intestine by microbiota via 

7α-dehydroxylation of CA and CDCA, respectively (Fig. 1.2). In mice specifically, 

ursodeoxycholic acid (UDCA; 3α- and 7β- hydroxylated) is produced from CDCA by 

intestinal bacteria via 7- hydroxyl epimerization.  

Under physiological conditions, most of bile acids are produced via the classical 

pathway. However, in the event of liver injury the alternate acidic pathway may 

become predominant. The alternative bile acids pathway is initiated by sterol 27-

hydroxylase (CYP27A1) located in the inner mitochondrial membrane (Ticho et al., 

2019).  
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Figure 1.2 Bile acids synthesis. CYP7A1: cholesterol 7α-hydroxylase, CYP27A1: sterol-27-
hydroxylase, CYP8B1: 12α-hydroxylase, CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, 
deoxycholic acid; LCA, lithocholic acid. T and G are taurine and glycine conjugates. *CYP27A1: 
alternative bile acids synthesis pathway. Sourced from Molinaro et al., (2018): Trends in 
Endocrinology & Metabolism. 

 

The de novo bile acids are released from the liver across the canalicular membrane 

by the bile salt export pump (BSEP/ABCB11). Biliary bile acids are stored in the 

gallbladder and secreted into the duodenum postprandially, where they act as 

detergents for lipids as well as signalling biomolecules. In the lumen bile acids travel 

along the length of the small intestine and are actively reabsorbed in the terminal 

ileum by the apical sodium-dependent bile acid transporter (ASBT/SLC10A2). 

Reabsorbed bile acids are shuttled from the apical to the basolateral membrane of the 

enterocyte and are transported into the portal circulation by the organic solute 

transporter alpha/beta heterodimer (OSTα/β, SLC51A/B). These bile acids are 

returned to the liver via the portal vein and enter hepatocytes at the sinusoidal 
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membrane via sodium-taurocholate co-transporting polypeptide (NTCP/SLC10A1) 

(Fig.1.3).  In addition to their active uptake by ASBT in the ileal enterocytes, bile 

acids with a high enough pKa can passively diffuse through membranes in the 

intestine. Higher pKa means weaker bile acid, reduced water solubility and increased 

lipophilicity (Suga et al., 2017). 

Unconjugated bile acids have a high pKa (∼6) and are able to passively diffuse 

through membranes. Conjugation of primary bile acids with taurine and glycine in 

the liver decreases the pKa of bile acids, and therefore require transporter mediated 

uptake. In addition to producing secondary bile acids, gut microbiota can deconjugate 

bile acids and thus increase their pKa. However, ASBT and OSTα/β remain the 

critical transporters for the intestinal absorption and enterohepatic circulation of bile 

acids (Krag and Phillips, 1974; Ticho et al., 2019). 

In the recent years, bile acids have received great attention due to their role as 

hormone-like signalling molecules. Bile acids interact with extra- and intracellular 

cellular receptors, including the nuclear receptor farnesoid X receptor 

(FXR/NR1H4). Several studies have reported FXR as a major regulator of bile acid 

homeostasis that functions to protect against bile acids induced cytotoxicity. 

Depending on the structure, bile acids have the ability to act as FXR agonists or 

antagonists. In the liver, FXR controls the expression of bile acid transporters to 

reduce cellular bile acids. Hepatic FXR inhibits the expression of NTCP through a 

Small heterodimer partner (SHP)-dependent process resulting in reduced uptake of 

bile acids from the portal circulation (Denson et al., 2001). Intestinal FXR plays an 

important role in supressing bile acid synthesis. Activation of FXR in the intestine 

increases the transcription of fibroblast growth factor 15 (Fgf15 in rodents, FGF19 in 

humans). FGF15/19 is transported to the hepatocytes in the portal blood, where it 

binds to the FGF receptor 4 (FGFR4)/β-klotho (KLB) complex. This complex blocks 

CYP7A1 transcription in a SHP dependent manner, thereby reducing bile acids 

synthesis (Kir et al., 2012). Studies using transgenic mouse models have helped 

unravel the complex mechanisms underlying FGF15/19 biological activity. Mice 

lacking FGF15, FGFR4 and KLB show impaired bile acids metabolism (with 

increased bile acids synthesis and serum bile acids levels), and exogenous FGF15 

administration is unable to repress CYP7A1 in both FGFR4 and KLB knockout mice 

(Yu et al., 2000; Ito et al., 2005). In addition to the involvement of FGF15/19 in bile 

acid homeostasis, FGF15/19 is an important regulator of glucose and energy 

homeostasis. Kir et al. (2011) demonstrated FGF15 involvement in glucose 

regulation by using Fgf15- knockout mice. These mice were unable to maintain 

physiological concentrations of glucose, additionally, they displayed impaired 

hepatic glycogen storage and glucose intolerance. The authors suggest FGF15/19-

FGFR4-KLB complex triggers an increase in hepatic glycogen synthase activity and 

glycogen synthesis, via activation of small guanosine triphosphatase RAS, and 

extracellular signal regulated protein kinase (ERK) signalling pathway (Kir et al., 

2011). FGF15 is known to inhibit hepatic gluconeogenesis in an insulin independent 

manner via downregulation of genes involved in gluconeogenesis. The inhibition of 

gluconeogenesis occurs by inactivation of cAMP regulatory element–binding protein 

(CREB) and blunting the expression of peroxisome proliferator-activated receptor γ 
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coactivator-1α (PGC-1α) (Fig. 1.3). This FGF15/19-dependent pathway regulates 

hepatic glucose metabolism following the fall in insulin levels, thereby regulating 

hepatic metabolism from the fed to fasted state (Potthoff et al., 2011). Dysregulation 

of FGF15 has also been associated with the development of hepatocellular carcinoma 

(HCC) in mice, in which the Fgf15 gene expression is increased in the ileum as well 

as hepatocytes (Cui et al., 2018; Gadaleta1 and Moschetta, 2019).  

 

 

Figure 1.3 FGF15/19 effects on glucose regulation in the liver. FGF15/19: fibroblast growth factor, 
BA: bile acids, FXR: farnesoid X receptor, FGFR4: FGF receptor, KLB:  β-klotho, CREB: cAMP regulatory 
element–binding protein, PGC1α: transcriptional co-regulator peroxisome proliferator-activated 
receptor 1α. Adapted from Kir et al., (2011).  

 

Multiple lines of evidence indicate that bile acids and the gut microbiota closely 

interact and modulate each other. Bile acids exert direct control on the intestinal 

microbiota by activation of FXR dependent gene regulation. Inagaki et al. (2006) 

demonstrated that bile duct ligation (BDL) and obstructing bile flow to the intestine 

in mice caused bacterial overgrowth, mucosal damage, and consequent systemic 

inflammation. The authors also showed that the adverse effects of BDL were 

reversed by administration of the synthetic FXR agonist (GW4064) that induced 

genes related to enteroprotection, inhibited bacterial overgrowth and systemic 

translocation. It is becoming increasingly evident that bile acids profoundly impact 

the composition of the gut microbiota, and that bacterial disturbance may alter the 

fine balance between primary and secondary bile acids and their subsequent 

enterohepatic cycling. Dysregulation of enterohepatic circulation can lead to the 

accumulation of bile acids in the hepatocytes and enterocytes, thereby inducing bile 

acid toxicity and oxidative stress due to their detergent properties (Ticho et al., 

2019).  
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Figure 1.4 Enterohepatic circulation of bile acids. BA: bile acids, CYP7A1: cholesterol 7α-hydroxylase, 
BSEP: bile salt export pump, ASBT: apical sodium-dependent bile acid transporter, OSTα/β: organic 
solute transporter α/β heterodimer, NTCP: Na+-taurocholate cotransporting polypeptide, FXR: 
farnesoid X receptor, FGF15/19: fibroblast growth factor. Sourced from Ticho et al., (2019): 
Comprehensive Physiology.  

 

1.1.2 Intestinal barrier function 

The gut barrier consists of a physical barrier, a biochemical barrier and an immune 

system barrier (Chu et al., 2019). The physical barrier is supported mainly by the gut 

microbiota, mucus layer and a single layer of intestinal epithelial cells that are linked 

by tight junction proteins. Molecules with antimicrobial and anti-inflammatory 

properties, such as bile acids and antimicrobial proteins (including α-defensins and β-

defensins, C-type lectins, cathelicidin, lysozyme and intestinal alkaline phosphatase) 

support and mediate the highly structured biochemical barrier (Dupont et al., 2014). 

Secretory immunoglobulin A (IgA) and lymph node resident immune cells form the 

components of immune system barrier (Melo-Gonzalez et al., 2019).  

The gut microbiota is comprised of thousands of microbial species including, 

archaea, bacteria, fungi and viruses. The gut microbiota plays a crucial role in host’s 

physiology and is involved in various processes such as immune response, nutrition 

absorption and intestinal permeability. Mammalian gut bacteria mainly comprises of 

Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria phylum, however, 

their abundance may be modulated by genetic (Tran et al., 2019) and physiological 

factors such as age and environmental factors such as diet, medication (antibiotics) 

and living conditions (Phillips, 2009). The host and gut microbiota act together to 
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maintain tissue homeostasis and mutualism to prevent colonization by pathogenic 

bacteria. The gradient of microbial density in the gastrointestinal tract increases from 

duodenum (104/ml) to the distal ileum (108/ml), and the colon (1011/ml) (Donaldson 

et al., 2016). 

Mucus and tight junction proteins form the structure of the physical barrier between 

luminal bacteria and the underlying epithelial layer. Mucus is comprised of mucin 

proteins, mainly mucin 2 (MUC2) which is secreted by goblet cells (Van der Sluis et 

al., 2006). The thickness of the mucus layer is dependent on the location in the gut. 

The large intestine has a dense mucus layer, compared to the less dense and porous 

mucus layer found in the small intestine. MUC2 not only provides physical 

protection but has also been reported to restrict the immune response towards 

intestinal antigens by imprinting enteric dendritic cells (DCs) towards an anti-

inflammatory state (Shan et al., 2013). The mucus is also associated with 

antimicrobial properties through the action of antimicrobial peptides (AMPs) such as 

α-defensins, β-defensins, C-type lectins, and lysozyme which are released into the 

mucus gel to reinforce the barrier. Hence, the mucus layer is the very first line of 

defence against gut bacteria and exogenous molecules in the gut lumen 

(Vancamelbeke and Vermeire, 2017).  

Underneath the mucus layer, the intestinal epithelial cells (IECs) comprise of several 

distinct cell types; absorptive enterocytes, goblet cells, enteroendocrine cells, Paneth 

cells, microfold (M) and Tuft cells. These cells together form a continuous and 

polarised monolayer that separates the lumen from the lamina propria. Tight junction 

proteins are apical adhesives that seal the intercellular space. These junctional 

proteins include large families of claudins, occludins, junctional adhesion molecules 

(JAMs) as well as scaffolding molecules (Vancamelbeke and Vermeire, 2017). 

Altogether, this physical barrier functions to maintain gut epithelial integrity, 

epithelium polarity to allow transport of nutrients, and create a barrier against 

pathogens and dietary antigens by separating the lamina propria from the lumen 

(Odenwald and Turner, 2017). Moreover, crosstalk between the gut bacteria and 

immunity is represented by AMPs which are mostly produced by Paneth cells. 

Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and NOD-

Like receptors (NLRs) also recognise bacterial components and release interleukins 

(such as IL-22) to shape the gut microbiota and maintain gut homeostasis. Innate 

lymphoid cells (ILCs) have recently been discovered to play a role in innate immune 

cell population. The population and function of the intestinal ILCs are reported to be 

influenced by the signals from the microbiota (Gury-Benari et al., 2016). The small 

intestine is the largest producer of immunoglobulins in the body. Secretory IgA plays 

an important role in protecting the host against pathogens and shaping the gut 

microbiota (Lycke et al., 2017). Palm et al. (2014) identified colitogenic (colitis 

promoting) intestinal bacteria to be coated with secretory IgA in a mouse model of 

microbiota-driven colitis. The study suggests IgA coating of these inflammatory 

commensal bacteria prevents bacterial dysbiosis during colitis and helps to maintain 

homeostatic gut microbiota. Altogether, the intestinal barrier is highly dynamic and 

adaptable to both internal and exogenous signals (such as cytokines, bacteria, dietary 

antigens). When the gut barrier function is compromised, gut bacteria and bacterial 
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derived products (for instance, bacteria cell wall components and microbial 

metabolites) can circulate to the liver via the portal vein and induced hepatic and 

systemic inflammation (Aron-Wisnewsky et al., 2020). Western style diets have been 

known to profoundly affect gut microbiota composition and adversely impact the gut 

barrier function (Aron-Wisnewsky et al., 2020) (More on Western diets in Paragraph 

1.2.1). 

1.1.3 Carbohydrate metabolism  

Human population has thrived on diets with varying carbohydrate amounts. The basic 

carbohydrates that are consumed by most humans include simple sugars (glucose and 

fructose; fruits, honey, beverages), disaccharides (lactose; milk and dairy products 

and sucrose; table sugar), and complex carbohydrates (starch; potato, rice and wheat 

and dietary fibres (DF); grains, non-starchy vegetables, pulses). The current 

carbohydrate intake in humans typically comprises of 45-60% of total energy 

(Ludwig et al., 2018). It is becoming increasingly clear that the quality as well as the 

amount of carbohydrate plays an important role in population health. Increased 

consumption of high glycaemic load grains such as white rice, potato products, and 

added sugars (e.g. in beverages) are causally related to obesity, diabetes, and 

cardiovascular disease, whereas non-starchy vegetables, whole fruits, legumes, and 

whole kernel grains are associated with lower risk of metabolic diseases (Feinman et 

al., 2015, Ludwig et al., 2018). 

In theory, dietary carbohydrates are compounds that can be metabolised directly into 

glucose, or that undergo oxidation into pyruvate. Glucose homeostasis involves three 

physiological stages: 1) intestinal glucose absorption in the fed state, 2) hepatic 

glucose production, and 3) extrahepatic glucose usage by the brain, skeletal muscle, 

and adipose tissue (Merino et al., 2019). Inside the small intestine, carbohydrates 

(e.g. starch, sucrose) are broken down into monosaccharides by the brush border 

ectoenzymes known as α-glucosidases expressed on the enterocytes. One of the brush 

border enzymes is maltase glucoamylase (MGAM) which hydrolyses α-1,4 

glycosidic linkages between glucose molecules in maltose (from starch). Another 

brush border enzyme is sucrase-isomaltase (SIS), which hydrolyses α-1,2 glycosidic 

linkages between glucose and fructose molecules, thereby breaking down sucrose. 

Other brush border enzymes include lactase involved in breaking down lactose from 

milk into glucose and galactose (Goodman, 2010).  

Although glucose and fructose share the same molecular formula (C6H12O6) and 

caloric value (4 kcal/g), they have distinct metabolism in the intestine (Merino et al., 

2019) (Fig. 1.5 and Fig. 1.6).  

Glucose is absorbed into the intestinal epithelial cells by the sodium-glucose linked 

transporter (SGLT1/SLC5A1) that is expressed at the apical membrane, and glucose 

transporter 2 (GLUT2/ SLC2A2) at the basolateral membrane. SGLT1 and GLUT2 

expression is regulated by luminal concentration of glucose, insulin, and caloric 

demand (Merino et al., 2020). Further, in response to high luminal glucose 

concentration, GLUT2 may be translocated to the apical membrane of the enterocyte, 

leading to enhanced glucose absorption (Zheng, et al., 2012).  
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Blood glucose enters hepatocytes via GLUT2 and is phosphorylated by glucokinase 

to form glucose-6-phosphate (G-6-P), which leads to decreased glucose 

concentration in the cell and stimulates further glucose uptake. G-6-P acts a substrate 

for glycogenesis in the fed state. It can also be metabolised into pyruvate, which can 

be used to generate ATP through the tricarboxylic acid (TCA) cycle or enter 

lipogenesis pathway. G-6-P can be dephosphorylated by glucose 6 phosphatase (G-6-

Pase) to generate glucose for metabolic adaptation during fasting (Rui, 2014).  

 

Figure 1.5 Glucose uptake in the intestine. G: glucose, SGLT1: sodium-glucose co-transporter 1, 
GLUT2: glucose transporter 2. Figure sourced from Merino et al., (2020): Nutrients. 

 

The transport of fructose relies on GLUT5 (SLC2A5) as the primary transporter 

responsible for fructose uptake into the enterocyte at the apical side of the membrane, 

whereas GLUT2 transports most of fructose from the cytosol into blood circulation at 

the basolateral side of the enterocyte (Ferraris et al., 2018). Once fructose is 

transported to the cytosol, it is rapidly phosphorylated by the ketohexokinase (KHK) 

to fructose-1-phosphate (F1P) using ATP as a phosphate donor. The resultant F1P is 

further broken down into glyceraldehyde (GA) and dihydroxyacetone phosphate 

(DHAP) by the aldolase B (ALDOB). Finally, the triokinase (TKFC) catalyses the 

phosphorylation of GA by ATP to form the glycolytic intermediate glyceraldehyde-

3-phosphate (GA-3-P) (Hannou et al., 2018). Traditionally, the liver has been 

considered as the main site of metabolism of dietary fructose, however, this concept 

has been challenged by Jang et al. (2018), the authors used isotopic tracing 

techniques and portal blood sampling to demonstrate that 90% of dietary fructose is 

metabolized by the small intestine in mice. While, high doses of fructose may 
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saturate the absorption capacity of the small intestine, leading to fructose spill over 

into the liver and stimulate de novo lipogenesis. 

 

 

Figure 1.6 Fructose uptake in the intestine. G: glucose, F: fructose, GLUT2/5: Glucose transporter 2 
or 5. Figure sourced from Merino et al., (2020): Nutrients 

 

1.2 Influence of diet on the gut-liver axis 

Several researchers have shown that dietary factors may influence the gut microbiota, 

enterohepatic circulation and intestinal barrier function (Zmora et al., 2018). The 

changes in the gut microbiota may influence the host metabolism by affecting energy 

balance and by producing microbial metabolites that may induce various phenotypes 

depending on the health of the host (Zhao et al., 2020; Koh et al., 2016). 

1.2.1 Western style diet 

The UK government guidelines for macronutrient composition for adults comprises 

of 50% of total energy as carbohydrate (no more than 5% of total energy should be 

derived from free sugars), 15% as protein, and 35% as fat. However, the adherence 

of the UK population to these guidelines is suboptimal. A UK study based on 

National Diet and Nutrition Survey (NDNS) 2014–2016 reported that free sugars 

accounted for almost 13% total energy intake (Amoutzopoulos et al., 2020). The 

recommended fibre intake for UK adults is generally 30g per day, whereas the 

average intake does not reach recommendations and stays between 16-20g per day 

(Stephen et al., 2017). Western style diet is generally described by increased 

consumption of ultra-processed and pre-packaged solid foods and beverages that are 
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high in saturated fat and refined carbohydrate (starch, sucrose and fructose) content. 

Western style diets have been associated with various metabolic diseases such as 

obesity, diabetes, NAFLD and gut microbial dysbiosis (Santos-Marcos, 2019). The 

adverse health effects of increased fat consumption have led the public to embrace a 

low-fat diet for heart disease prevention and weight loss. This phenomenon has 

encouraged the food industry to manufacture highly palatable and convenient ultra-

processed food products that are low in fat and dietary fibres (DF), and enriched with 

highly refined carbohydrates such as high fructose corn syrup, starch and sucrose 

(Hall et al., 2019). During the past two decades, the consumption of calories from 

ultra-processed foods has almost tripled (from 11% to 32%). The ultra-processed 

foods are formulations of ingredients that are obtained from fractioning of whole 

foods by various industrial processes including, grinding, pureeing, hydrolysis, or 

hydrogenation. These modified foods are then assembled by using industrial 

techniques such as extrusion, moulding and pre-frying. Colour and additives are 

frequently added to make the end-product hyper-palatable and to enhance duration 

(Monteiro et al., 2019). The nature of the processes and ingredients used in the 

preparation of these foods and their displacement of whole foods containing meals 

make ultra-processed foods intrinsically unhealthy. In a recent French study using 

data from NutriNet-Santé study, Schnabel et al (2018) showed statistically significant 

associations between consumption of ultra-processed foods and increased risk of 

cancer and gastrointestinal diseases. Long-term consumption of the ultra-processed 

diet could lead to permanent loss of several species of the gut bacteria and possibly 

induce inheritable metabolic changes via the epigenome (Sonnenburg et al., 2016). 

Zinöcker and Lindseth (2018) reviewed the effects of high consumption of ultra-

processed foods in animals to show dysbiosis in the gut, systemic inflammation and 

onset of metabolic disease, due to high starch, sucrose and low fibre in the ultra-

processed foods.  

In line with these findings, research in the recent years has focused on the promising 

potential of gut microbiota targeted therapies, for example, probiotics and prebiotics 

to tackle the health effects caused by overconsumption of processed foods (Martinez 

et al., 2017; Aron-Wisnewsky et al., 2020). 

1.2.2 Western style diet and NAFLD 

NAFLD is an epidemic liver disease, that affects approximately one third of the 

entire population in the world. This disease represents as a wide range of clinical 

phenotypes from early hepatic steatosis to non-alcoholic steatohepatitis (NASH), 

fibrotic NASH, advanced fibrosis, liver cirrhosis and eventually hepatocellular 

carcinoma (HCC) (Tilg et al., 2020).  

The underlying pathophysiology of NAFLD involves various pathways including the 

role of dietary factors and gut microbiota as a crucial player in disease progression. 

In the past decade, it has been increasingly recognized that various common food 

components (trans-fats, fructose, choline in red meat) have proinflammatory potential 

and may contribute to the pathogenesis of NAFLD (Neuschwander-Tetri et al., 2012; 

Jang et al., 2018; Chen et al., 2016). The role of gut microbiota was confirmed by 

Lommba et al. (2017) that identified microbial signatures associated with different 
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severities of NAFLD in humans. The authors showed increased abundance of species 

from Proteobacteria (Escherichia coli) in fibrotic NASH patients. Endotoxins from 

Proteobacteria include proinflammatory LPS, that are found in high concentrations 

in the blood and hepatocytes of NASH patients (Carpino et al., 2020). LPS can 

induce inflammation in hepatocytes via Toll like receptor 4 (TLR4) and NF-κB 

signalling pathway leading to proinflammatory cytokines and chemokines; Tumour 

necrosis factor α, (TNFα), interleukin 1β (Il-1β) (Alexander and Rietschel, 2001). As 

well as the proinflammatory role of LPS, it has also been associated with promoting 

lipogenesis in the liver. Recently, Todoric et al. (2020) reported that microbial 

endotoxin (LPS) engages TLR4 to trigger TNF production by liver macrophages, 

which induced lipogenic enzymes, thereby driving de novo lipogenesis in 

hepatocytes.  

In contrast, various prebiotics, probiotics and dietary restriction interventions have 

been proposed to counteract the above effects (Hu et al., 2020; Chen and Vitetta, 

2020). 

1.2.3 Addition of dietary fibres to Western style diet 

DF are described by wide array of polysaccharides that are indigestible by the host 

enzyme systems. DF not only provide direct benefits to the host by increasing the 

faecal bulking and providing laxative effects, but they also act as a substrate for the 

gut microbiota. The gut microbiota contains thousands of carbohydrate active 

enzyme (CAZyme) families that enable them to degrade these non-digestible 

carbohydrates into short chain fatty acids (SCFAs). DF can be generally categorised 

as insoluble (e.g. cellulose) or soluble fibres (e.g. inulin, pectin and psyllium).  

Most DF comprise of sugars monomers (e.g. glucose, fructose, xylose, arabinose) 

with α- or β- linkages, and different ring structure (pyranose or furanose) to form 

polysaccharides and oligosaccharides. Therefore, the structural heterogeneity 

between the DF may have an impact on their fermentability, microbial diversity, and 

differential host response (Rao et al., 2013; Singh et al., 2019). Soluble and insoluble 

DF originate from different food sources, such as legumes, vegetables, nuts, seeds, 

fruits, and cereals (Table 1.1). For example, pectins are found in fruits, such as apples 

and citrus fruits, whereas β-glucans and arabinoxylans are present in cereals. Due to 

the decreased consumption of whole foods in Western countries, fortification of 

processed foods or prebiotic supplements with enzymatically extracted non-

digestible carbohydrates such as psyllium and inulin are popular means to increase 

fibre intake (Makki et al., 2018).  

Pectin is a soluble fibre and its structure is a linear chain of D-

galactopyranosyluronic acids linked via α-(1→4) bonds, with carboxyl groups of 

some residues esterified with methyl ether. One of the main properties of pectin is its 

ability to form gels that are stable in acidic conditions (Khotimchenko., 2020). Due 

to the gelling ability of pectin, it is often used in milkshake, ice cream and sauces 

(Cameron et al., 2018). Pectin is known to lower circulating cholesterol and glucose 

levels (Shtriker et al., 2018).   
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DF in cereals such as wheat and barley, largely comprises of cell wall polymers and 

include cellulose, hemicellulose, lignin and soluble fibres such as β-glucans and 

arabinoxylans. The β-glucans in cereals mainly exist as glucose monomers linked via  

β-(1→4) and β-(1→3) glycosidic bonds and its fermentation in the gut is associated 

with high level of propionate and butyrate. Arabinoxylans are comprised of a mixed 

linkage between arabinose and xylose. Diets supplemented with wheat arabinoxylans 

have been shown to be associated with increased viscosity of small intestine content, 

changes in gut microbiota composition that led to high levels of short chain fatty 

acids, and reduced serum triglyceride levels (Gong et al., 2018). 

Psyllium is another gel forming fibre sourced from a valuable Chinese herbal plant, 

Plantago ovata. This DF is a popular ingredient for over the counter laxatives and 

has been reported to have a variety of biological effects, including gut 

immunomodulatory and blood glucose regulation (Jane et al., 2019). The structural 

backbone of psyllium consists of xylose units and β-(1→4)-linked D-xylopyranosyl 

residues (Zhang et al., 2019). Studies on the addition of psyllium to food products 

presents attractive strategies to allow consumers to increase their fibre intake. 

Psyllium has been added to biscuits, cakes and gluten-free products (Franco et al., 

2020). 

Inulin is a polysaccharide that mainly originates from chicory root. It belongs to a 

class of DF knows as fructans and their structure is a linear chain of fructose with 

β(2→1) linkage (Davani-Davari et al.m 2019). Salazar et al. (2015) reported 

consumption of inulin in obese women led to increased abundance of 

Bifidobacterium species, reduced serum LPS and improved metabolic parameters. 

The wide range of uses of inulin by the food industry include, sugar and fat 

replacement, and as a prebiotic ingredient in juice and dairy beverages (Castellino et 

al., 2020). 

The major SCFAs produced by the gut microbiota include acetate, propionate and 

butyrate. SCFAs act as important energy and signalling molecules that bridge the gap 

between the gut microbiota and the host (Koh et al., 2016). Butyrate is the preferred 

energy source for colonocytes and is locally consumed, whereas other SCFAs can be 

absorbed by the enterocytes and enter liver via the portal vein. One of the 

mechanisms as to how butyrate may protect against colorectal cancer and gut 

inflammation is by acting as a histone deacetylation (HDAC) inhibitor (Donohoe et 

al., 2012). SCFAs also act as ligands for free fatty acid receptors (FFARs) which can 

be found in various cell types and organs including immune cells, adipose tissue, and 

the liver, to induce various anti-inflammatory and metabolic effects (improved 

glucose and lipid metabolism) (Kimura et al., 2013). However, the role of FFARs in 

SCFAs signalling and how SCFAs contribute to improved metabolic health needs 

further clarification. 

Overall, DF provide as an attractive strategy to improve Western style diet induced 

gut microbiome. However, a better understanding of diet-microbiota interactions is 

required to further understand the underlying mechanisms for their beneficial effect 

on the gut-liver axis.  
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Table 1.1 Properties and source of dietary fibres (DF). 

Dietary Fibre (DF) Properties Source 

Arabinoxylans Soluble Most cereals 

β-glucans Viscous and soluble Barley and Oats 

Cellulose Poor solubility Plant foods 

Inulin Non viscous, soluble Several plants 

Pectin Viscous and soluble Fruits such as apples 

Psyllium Viscous and soluble Plantago ovata 

 

1.2.4 Calorie restriction (CR) to counteract the adverse effects of Western style diets 

The increased consumption of Western style diets is one of the drivers for age related 

increased incidence of metabolic diseases such as type II diabetes and NAFLD 

(Fontana, 2009; Afshin et al., 2019). These diseases present a major burden not only 

on the individual, but also at a societal level, owing to the increased medical cost on 

the health sector (Bloom et al., 2016). Consequently, there is an urgent need for the 

development of innovative lifestyle interventions and therapeutics that can improve 

age-associated chronic diseases.  

Calorie restriction (CR) is a dietary intervention that reduces calorie intake while 

preventing malnutrition or reduction in essential nutrients. Initially, CR induces 

weight loss and over time energy expenditure (EE) declines until it eventually 

matches energy intake and leads to a new stable body weight (Most and Redman, 

2020). CR has been shown to induce beneficial metabolic changes and oppose age-

related physiological and pathological changes, thereby extending longevity (Fontana 

and Klein, 2007; Colman et al., 2009). The underlying mechanisms for beneficial 

effects of CR have been explored in several studies to show enhanced cellular 

protection, reduction of inflammation and oxidative DNA damage (Qu et al., 2000; 

Kim et al., 2016). In the recent years, research on the effects of CR on the gut 

microbiome has also markedly increased. The impact of CR on gut microbiota has 

been studied in various models including yeast, rodents, primates and humans (Mair 

and Dillin, 2008; Meydani et al., 2016). CR studies in model organisms found 

improved multiple aspects of health and increased survival with CR dose of 30–40%. 

However, translation of animal CR studies to humans is not as straightforward. This 

was confirmed in the controlled clinical study of healthy non-obese adults with a 

target of 25% CR for two years (CALERIE study, Kraus et al., 2019). While, the 

achieved level of energy reduction over the two years was only 12% (from normal 

average calorie intake of 2467kcal/day to 2170kcal/day), confirming that most 

humans are not capable of sustained major reduction in calorie intake.  

Research on ageing gut microbiota has found disturbed balance between beneficial 

and harmful bacteria that may drive inflammaging (Claesson et al., 2012). Some of 

the benefits of CR have been associated with an overall increased relative abundance 

of probiotic species from the Bifidobacterium and Lactobacillus genus (Zhang et al., 

2013; Russo et al., 2016). The increased abundance of Lactobacillus and 

Bifidobacterium has been negatively correlated with total cholesterol, low-density 

lipoprotein (LDL), body mass index (BMI), and inflammatory markers (Sun et al., 
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2015; Fraumene et al., 2018). Moreover, studies have also reported increased 

abundance of health associated mucin degrading bacteria, Akkermansia in response 

to CR (Fabbiano et al., 2018).  Dao et al. (2016) showed individuals with a high 

baseline abundance of Akkermansia before CR had improved insulin sensitivity and 

overall healthier metabolic status than individual with a low Akkermansia baseline 

abundance. Increased levels of Akkermansia have been inversely associated with 

body fat mass and glucose intolerance in mice (Everard, et al., 2013).  

In addition to the microbiota’s response, CR has been reported to increase bile acids 

pool size in mice (Green et al., 2019; Fu and Klaassen, 2013). Increase in CR-

induced bile acids is associated with increased expression of bile acids synthesis 

enzyme CYP7A1 (Fu and Klaassen et al., 2013), which indicated that under CR 

conditions the liver becomes increasingly efficient at metabolising lipids. Moreover, 

CR switches metabolism towards energy conservation by enhanced breakdown of 

lipids via β-oxidation, and by increased glycogenolysis and gluconeogenesis (Zheng 

et al., 2018), thereby, improving metabolic parameters.  

CR has been shown to reduce the onset of age-related cancers by reducing oxidative 

stress and enhancing DNA repair (Heydari et al., 2007). Another mechanism by 

which CR provides protection against age related pathologies is by boosting the 

regenerative capacity of stem cells in the host (Mihaylova et al., 2014). Many 

mammalian tissues (skin, liver, neurogenic) are maintained by stem cells. For 

example, the intestinal crypt contains Lgr5+ cells that are markers for the intestinal 

stem cells (ISCs), and regulate cell turnover (Barker et al., 2012). CR has been 

reported to increase the number of stem cells in the intestinal crypts (Yilmaz et al., 

2012; Igarashi and Guarente, 2016), which has been suggested to contribute towards 

the cancer protecting effects of CR (Bruens et al., 2020).  

The effects of CR on gut microbiota, bile acid metabolism and intestinal regeneration 

indicates an important role of the gut-liver axis in CR induced health and lifespan. 

Although, preclinical research on health-promoting potential of CR has proved to be 

promising, the increased availability of energy-dense foods and social behaviour 

towards food makes this intervention difficult and demanding to maintain in humans. 

Considering this, CR related changes in the gut-liver signalling may provide a unique 

doorway to discover novel molecules and innovative methods to optimize healthy 

ageing without the need for drastic food restriction.  

1.3 Mouse models for studying the gut-liver axis 

Studying the direct interactions between human gut microbiota and the host tissue is 

often challenging due to the difficulties involved with obtaining samples. Even 

though faecal samples can be easily obtained from humans, scientists may not be 

able to control several experimental variables, such as diet, and environmental factors 

(Seksik and Landman, 2015).  

Mice models offer advantages due to their similar gastrointestinal anatomy, 

straightforward sample collection, and better control over diet and genetics. 

Therefore, mice have been extensively used to translate the knowledge on 

microbiota-gut-liver axis in humans.  
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Most research on the gut microbiota has been performed in C57BL/6J mice, 

however, there is no specific mouse strain that has been recommended for studying 

the effect of diet on microbiota. The mice that scientists often use are sourced from 

inhouse facilities, or those that are easily commercially available. This may not be an 

ideal method, as recent research has shown environmental factors and genetic 

background of mice to have a significant impact on their gut microbiota (Rasmussen 

et al., 2019).  

In order to design animal experiment to study the effect of diets on the gut-liver axis, 

selecting the proper control diet is a crucial factor. However, the choice of control 

diet for mice studies is often not optimal, mostly due to lack of a robust and healthy 

control diet (Pellizzon and Ricci, 2018). The most commonly used control diets 

within the research community are the chow, and purified diets based on the 

American Institute of Nutrition 93 maintenance diet (AIN-93M) also known as low-

fat (LF) diet. The exact formula of the chow diet is often not defined, and the amount 

of each ingredient used can vary widely depending on the batch, source, and season. 

In contrast, purified diets are composed of refined ingredients therefore, the formula 

of the diet is well defined, and the amount of each ingredient is openly available to 

researchers. The purified diet is a processed diet with highly refined ingredients, 

increased simple carbohydrates and reduced fibre content which may be detrimental 

to the health of the mice (González-Blázquez et al., 2020).  

The protein in chow diet is mainly plant based (potato protein, hydrolysed wheat 

gluten, soya, maize gluten), whereas the purified diet contains only casein extracted 

from cow’s milk. Several studies have comprehensively investigated the impact of 

dietary protein on gut microbiota composition (Kar et al., 2017; Zhao et al., 2020). 

Moreover, chow diet contains increased level of isoflavones from soy (daidzein and 

genistein) that are absent in the LF diet. Isoflavones are polyphenolic compounds that 

are among the most common categories of phytoestrogens. These compounds are 

structurally similar to 17-β-oestradiol and their metabolism involves the help of the 

gut microbiota (Křížová et al., 2019). Guevara-Cruz et al. (2020) showed 

consumption of genistein altered the gut microbiota of obese patients, followed by 

reduced insulin resistance and metabolic endotoxemia.  

Therefore, the differences in the composition of control diets may lead to differential 

outcomes in studies investigating the effect of diets on mouse physiology. The choice 

of proper control diet in metabolic studies is extremely important for successful 

reproduction of the research data and calls for the development of a healthy universal 

control diet. 

In view of these differences, the use of mouse models for translational research may 

be criticised, however, there is no suitable alternative present to reproduce the 

communication pathways involved in microbiota-gut-liver crosstalk. Although, in 

vitro models represent a strategy to overcome the mentioned limitations and 

recapitulate basic disease mechanisms in a controlled environment, their reduced 

complexity compared to in vivo models restricts their effectiveness to study the gut-

liver axis (Pearce et al., 2018). The advent of bioengineering advances has made 

possible the use of 3D engineered models such as organ on a chip to research 
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microbiome interactions. Jalili-Firoozinezhad et al. (2019) described an in vitro 

system that mimics the host and microbiota interactions in the human intestine. The 

authors successfully cultured primary human intestinal cells with a diverse species of 

aerobic and anaerobic microbiota on the microfluid chip, by establishing an elegant 

oxygen gradient across the mammalian cells and the lumen. Although, this 

technology is in its early stages, the gut microbiome on a chip can provide ample 

opportunities to successfully study the microbiota-host interactions in detail in the 

future.  

1.4 Aims and outline of the thesis 

The aim of the research presented in this thesis is to study the effects of different 

dietary interventions on the health of the gut-liver axis in mice, by focusing on the 

ileum. Most of the studies that investigate the response of gastrointestinal (GI) tract 

to dietary interventions have mainly focused on the colon. The ileum contains the 

second largest microbiota population in the GI tract and has closer proximity to the 

gut bacteria due to the less dense mucus layer found here. Furthermore, transport of 

bile acids is mediated by the ileal enterocytes thus connecting the gut to the liver via 

the portal vein. We hypothesised that due to the aforementioned reasons, the ileum 

plays an important role in the dietary impact on the gut-liver axis. The limited 

information on the ileal response to diet prompted us to study the molecular 

microbiota changes in the ileum, in response to dietary interventions.  

In our first experimental chapter (Chapter 3), we compare the response of the gut-

liver axis to two diets, the plant-based high fibre chow (RM3-P, SDS Diets, UK) and 

low fibre purified diet (LF) (D17060802, a version of AIN93M from Research Diets, 

USA) that also resembles the low-fat ultra-processed foods in Western style diet. The 

study provides an opportunity to compare diets that are similar in calories but differ 

in their composition on the health of the gut-liver axis.  

Chapter 3 aims and hypotheses: We hypothesised that the increased refined 

carbohydrates and low fibre in the LF diet may lead to an ‘unhealthy’ gut-liver 

phenotype in mice. We aimed to describe the changes in the liver phenotype, ileal gut 

microbiota and bile acid composition in response to the 4 weeks feeding of the LF 

compared to chow diet. The duration of these experiments was based on previous 

unpublished results from feeding mice the LF diet for 2-8 weeks. In our hands, the 

period of 4 weeks was shown to be the earliest timepoint where LF induced a 

significant gut-liver phenotype. 

Furthermore, due to the lack of fibre and high content of easily metabolisable 

carbohydrates, we propose that the gut-liver axis of LF fed mice is more susceptible 

to an inflammatory challenge. To test this hypothesis, we created a model of systemic 

low-grade inflammation by injecting mice with low dose of lipopolysaccharide (LPS; 

0.5mg/Kg body weight) once a week for 4 weeks (Raduolovic et al., 2018; López-

Collazo and del Fresno, 2013).  

In collaboration with Dr Steegenga at Wageningen University, ileal samples from 

adult and old mice fed with lifelong LF and CR (calorie restriction on LF diet 
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background: IDEAL study) were used to study the long-term effects of the LF diet in 

Chapter 4.  

Chapter 4 aims and hypotheses: We used this opportunity to investigate whether 

lifelong CR protected the mice against the LF induced phenotype. We hypothesised 

that decreased consumption of the LF diet may prevent LF induced 

pathophysiological effects on the gut-liver axis. We also used the study to 

characterise the ileal response to lifelong CR in mice. To the best of our knowledge, 

this is the first study to present gene expression profiling of the ileal mucosa and 

microbiota composition in response to lifelong CR in adult (6 months) and aged (24 

months) old mice. The age of 6 months in mice represents mature adults, whereas 24 

months old mice represent old age, and this is when age-related changes (e.g., 

diminished lung function, kidney degeneration and impaired wound healing) can be 

detected (Flurkey et al., 2007). 

Research on the impact of CR on mouse physiology is often performed on different 

background diets. In continuation of this concept and due to the differences observed 

between chow and LF fed mice in the previous chapters, we aimed to characterise the 

changes in the ileum and the liver of mice after 8 weeks of CR intervention with 

chow or LF diet background. We hypothesised that not only the dose of CR but also 

the composition of the background diet may lead to differential response of gut-liver 

axis. The IDEAL study showed that mice needed approximately 8-10 weeks to adapt 

to CR feeding schedule and reach a relatively stable weight. Therefore, we chose 

dietary intervention period of 8 weeks as the earliest timepoint to test the effects of 

‘short term’ CR on the gut-liver axis. 

In Chapter 5, we designed new rodent diets in collaboration with Research Diets 

Inc. (USA). Aims and hypothesis: The aim of this study was to describe the effects 

of different fibres on the ileal, liver gene expression and ileal microbiota. The mice 

were fed with LF and LF+fibre diets for 10 weeks. We hypothesised that the 

detrimental effects of the LF diet on the gut-liver axis of mice may be due to the 

reduced fibre content in this diet. Indeed, the addition of fibres improved the liver 

phenotype of mice and led to a differential ileal microbiota composition. The 

duration of 10 weeks was chosen to ensure experimental manipulation of gut-liver 

phenotype with the feeding of fibre enriched diet. We performed preliminary fibre 

feeding experiment of 2 weeks which did not result in a prominent improvement of 

the gut-liver phenotype. 

Interestingly, we observed that despite the same amount of fibres used in our new 

diets, the composition of the fibres led to differential ileal gene expression between 

the fibre groups. Increased consumption of DF has been shown to have various 

benefits for human health (Makki et al., 2018), however, the role of structural 

heterogeneity of the different fibres in the gut-liver axis is largely unexplored. 

The reproducibility of preclinical biomedical research using mice models is currently 

being scrutinised by National Institutes of Health (NIH). Chapter 6 aims and 

hypotheses: In addition to the differences observed between control diets, we also 

aimed to describe differences in the gut-liver axis of mice sourced from different 
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vendors. We investigate the variation in the gut microbiota and consequently the gut-

liver axis of mice from an external vendor and inhouse animal facility. We 

hypothesised that mice would present different microbiota profiles based on their 

distinct environmental exposures. Such differences may explain in part the poor 

experimental reproducibility in animal research, despite using similar mouse models 

and strains. Finally, the general discussion, future perspective and human relevance 

of our work is presented in Chapter 7.  
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Chapter 2: Materials and methods 
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2.1 List of chemicals and reagents used for the experimental studies mentioned 

in this thesis.  

 

Table 2.1 List of chemicals and reagents. 

Reagents Product number Supplier 

Ac-DEVD-AFC  
Caspase 3 substrate  

ALX-260-032-
M001 

Enzo LifeSciences, 
Inc 

CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-
propanesulfonate) hydrate BioXtra 98%) 

C5070 Sigma-Aldrich 

Chloroform (99%) 372978 Sigma-Aldrich 

DNase I, Amplification Grade 18068015 Invitrogen 

DPX new mounting medium 100579 Merck 

Eosin Y solution, alcoholic HT110116 Sigma-Aldrich 

Ethanol (BioUltra, for molecular biology, ≥99.8%) 51976 Sigma-Aldrich 

FITC-dextran 4 kDa (FD4) FD4 TdB Labs 

Formalin solution, neutral buffered, 10% HT501128 Sigma-Aldrich 

Hematoxylin Solution, Harris Modified HHS128 Sigma-Aldrich 

HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic 
acid 99.5%) 

H3375 Sigma-Aldrich 

Histo-Clear II Histology Clearing Agent NAT1334 Scientific Labs UK 

IsoFlo (isoflurane, USP, 100%) 50019100 Zoetis Inc 

Isopropanol (2-Propanol) 99.5% I9516 Sigma-Aldrich 

Lipopolysaccharides from Escherichia coli O111:B4 L2630 Sigma-Aldrich 

Lysozyme from chicken egg white 90% SAE0152 Sigma-Aldrich 

Methanol for HPLC, ≥99.9% 34860 Sigma-Aldrich 

Paraplast Plus for tissue embedding P3683 Sigma-Aldrich 

Phosphate Buffered Saline, 10X, Sterile 6506-OP Sigma-Aldrich 

PIPES (Piperazine-1,4-bis(2-ethanesulfonic acid) ≥99%  P6757 Sigma-Aldrich 

QIAamp DNA Mini Kit 51306 Qiagen 

QIAzol Lysis Reagent 79306 Qiagen 

SuperScript III Reverse Transcriptase 18080093 Invitrogen 

SYBR Green PCR Master Mix 4309155 Applied 
Biosystems 

Triglycerides liquicolormono colorimetric test 10724 HUMAN 
Diagnostics 

Triton™ X-100 X100 Sigma-Aldrich 

Water for molecular biology, sterile filtered 95284 Sigma-Aldrich 
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2.2 Ethics 

All experimental procedures and protocols performed were reviewed and approved 

by the Animal Welfare and Ethical Review Body and were conducted in accordance 

to the specification of the United Kingdom Animal Scientific Procedures Act, 1986 

(Amendment Regulations 2012).  

2.3 Animal model 

For all experiments male C57BL/6J mice were used. We chose this strain as our 

animal model because of its popularity in studying consequences of diet on metabolic 

health (Wong et al., 2016).  

Mice were either obtained from the Disease Modelling Unit (DMU) of the University 

of East Anglia (UEA) and/or Charles River UK (CRUK, Margate, UK). At the DMU, 

mice were maintained in Individually Ventilated Cages (IVC), controlled 

environment (21±2°C; 12-h light/dark cycle; light from 7:00 AM) and fed ad libitum 

on a standard chow diet (RM3-P; Special Diet Services (SDS), United Kingdom, 

Table 2.2). According to the experimental requirements, mice were either switched to 

other diets or kept under the same chow diet for the duration of the experiments. 

Power calculations have been undertaken to determine group sizes for all mouse 

experimental procedures, aiming to detect differences of 15% or more with a power 

of 0.85 and alpha set at 5%; calculations being informed by our previous experiments 

(Blokker et al, unpublished results), resulting in a minimum group size of n=6. In all 

cases, mice were randomized between groups and mice were divided into two cages 

per experimental group.  All mice were aged 10-13 weeks old at the start of the 

experiment, to ensure stabilization of the microbiota (Laukens et al., 2016). The mice 

were weighed twice a week and food consumption was recorded at the same time by 

weighing the remaining diet. Mice were transferred to a clean cage on Monday each 

week. At the end of each experiment, mice were sedated with isoflurane and blood 

was collected by cardiac puncture under terminal anaesthesia. Sera was then isolated 

via centrifugation at 2000 xg for 10 minutes. Organs were collected and processed as 

described below. 

2.4 Organ collection and processing 

The small intestine of each mouse was collected, cleaned of any mesenteric fat, 

pancreatic tissue and Peyer’s patches and then transferred to a petri dish containing 

ice cold phosphate buffer saline (PBS). The tissue was then divided into 3 equal 

parts, referring approximately to the duodenum (Part 1), jejunum (Part 2) and ileum 

(Part 3). The luminal content of each section was gently pushed out using a spatula 

and collected into separate Eppendorf tubes and snap frozen in liquid nitrogen for 

microbiota analysis. After pushing out the content, the ileum was further divided into 

6 sections as depicted in Figure (2.1). The section 2 was collected for histology and 

stored immediately in 10% neutral buffer formalin (NBF) solution for 24 hours, 

before being transferred into 50% ethanol until embedding (See Histology, paragraph 

2.7). The sections 1, 3 and 5 were collected together in an Eppendorf tube and snap 

frozen in liquid nitrogen. These sections were then used for gene expression analysis. 

The remaining two large sections (4 and 6) were collected in a cryotube and snap 

frozen to be used for bile acid analysis.  



36 
 

 

The liver was collected, and weight was recorded before dividing the liver into 

further sections as illustrated in Figure 2.2. The sections labelled H were collected for 

histology, the sections labelled R were collected for RNA isolation and the remaining 

liver pieces including pieces labelled Pr (protein), BA (bile acids) were collected into 

a cryotube and snap-frozen in liquid nitrogen for bile acids and caspase 3 activity 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 Method of sample collection from ileum at the time of sacrifice. 

Figure 2.2 Method of sample collection from livers at the time of sacrifice. 
H: Sample for histology, R: RNA, Pr: protein analysis, BA: bile acids analysis. 
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2.5 Experimental designs  

2.5.1 Study 1: Investigating the impact of chow versus LF diet on gut-liver axis 

Twelve male C57BL/6J mice were obtained from the DMU at UEA. The mice were 

randomly divided into two groups, 1) Chow, n=6 and 2) LF diet group, n=6. The 

mice were fed a standard chow diet (RM3, SDS, UK, Table 2.2) and/or a purified 

low-fat (LF) diet (D17060802, Research Diets, USA, Table 2.2) for a period of 4 

weeks. The LF D17060802 is a variant of commonly used control diet D1245OH, 

which slightly differs on the fat source. The fat source in D1245OH comes from 

soybean oil and lard, while the fat source of D17060802 (our LF diet) is a mixture of 

soybean oil and palm oil in order to balance saturated and unsaturated fat 

composition. Brief description of the diets is shown in Table 2.2. A more detailed 

description of the diet is included in Supplement data 1. The impact of the two diets 

on the gut-liver axis is investigated in Chapter 3. 

 

Table 2.2 Summary of dietary composition of chow and semi purified low-fat (LF) diet used. 

 chow diet 
SDS diets RM3 

LF diet 
D17060802 

KJ/g 15.21 16.21 

Protein (%) 26.9 20  

Carbohydrate (%) 61.2 70  

Fat (%) 11.5 10  

 

Starch (g/Kg) 338.8 452.2 Corn Starch 

Maltodextrin 10 (g/Kg) 0 75 

Sucrose (g/Kg) 43.7 173 

Fibre (g/Kg) 161.5 
Soluble and insoluble 

50 
Cellulose 

 

2.5.2 Study 2: The impact of chow versus LF diet feeding on mice exposed to a low 

dose lipopolysaccharide (LPS) challenge 

Twenty-four mice were randomly divided into four groups, 1) Chow, 2) LF, 3) Chow 

LPS, and 4) LF LPS, n=6 per group. In the LPS group, mice were injected with low 

dose 0.5mg per kg of body weight of LPS intraperitoneally (i.p.) once a week for the 

duration of four weeks in addition to the diet treatment. The dose was chosen to 

induce a model of low-grade inflammation as described by Ramírez et al., (2018). 

The control groups received a sham i.p. injection (sterile PBS) in addition to the diets 

per week for four weeks. The effect of LPS on the gut-liver axis of chow and LF fed 

mice is investigated in Chapter 3. 

The method of i.p. injections for administering substances is widely used in rodent 

experiments. This technique allows for LPS to be administered and rapidly absorbed 

systemically (Baek et al., 2015). 

Mice were restrained and head of the mouse was tilted downwards, and the needle 

inserted at an angle of approximately 30° to the lower quadrant of the abdominal 
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wall. A new 26-27 gauge, 3/4-inch needle was used for each mouse and the injected 

volume was standardized to 150µl for the sham group. 

After the four weeks intervention, 44mg per 100 g body weight fluorescein 

isothiocyanate-conjugated dextran (FITC-dextran 4) was administered via oral 

gavage to measure gut permeability. Oral gavage was performed by restraining the 

mouse by firmly grasping the skin over the dorsal neck and with the tail held between 

the palm and ring finger. By using a plastic, flexible catheter (FTP-20-30 20ga x 

30mm Instech Solomon) 100 -150µl of FITC-dextran dissolved in sterile PBS was 

dispensed into the stomach. After two hours, mice were sacrificed via exsanguination 

by cardiac puncture under terminal anaesthesia and whole blood was collected in an 

Eppendorf tube and kept on ice in the dark for 30 minutes. Sera was then isolated via 

centrifugation at 2000 xg for 10 minutes. The time required for FITC-dextran 4 to 

reach its optimum level in systemic circulation has been reported to be approximately 

2 hours (Woting and Blaut, 2018).   

An aliquot of 50µl of serum was diluted with 50µl of sterile PBS and added onto a 96 

well microplate. Additionally, a standard serial dilution of FITC-dextran ranging 

from 0 to 8000 ng/ml was added to the plate. FITC fluorescence was determined by 

spectrophotometry on a SpectraMax M2/M2e microplate reader with an excitation of 

485 nm and an emission wavelength of 528 nm. Background emission signals in 

serum samples of the mice receiving PBS were subtracted from those of mice treated 

with FITC-dextran. 

2.5.3 Study 3: IDEAL ageing study performed in Wageningen University, 

Netherlands 

The long-term calorie restriction (CR) study has been performed in Wageningen 

University (WUR) in accordance with the Dutch national guidelines. Male C57BL/6J 

mice were housed individually at the age of 9 weeks and were randomly divided into 

a LF and LFCR group. The control LF group were given ad libitum access to the 

purified American Institute of Nutrition 93 W (AIN-93W) diet (version of AIN-93M 

and similar composition to the LF (D17060802) diet) used in our previous studies. 

The CR mice received the same diet, however, in portions containing 70% calories of 

the average intake of the LF group and provided daily at 15:30. The CR diet was 

supplemented with added vitamins and minerals to avoid malnutrition. Body weight 

was recorded every week. Mice were sacrificed at 6 and 24 months of age to 

differentiate between the effects of CR at young and old age. The age of 6 months in 

mice represents mature adults, whereas in 24 months old mice the biomarkers of old 

age are prominently detected. Liver and colon transcriptomics data from this study 

has been published by Rusli et al., (2017) and Kok et al., (2018) respectively. As part 

of a collaboration with Dr. Wilma Steegenga at WUR, we received the ileal and ileal 

content samples from 6 and 24 months old mice fed with LF and LFCR diet. 

Analysis of the ileum samples was performed at UEA. 
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We performed the following measurements in the ileum samples (n=5-6 per group); 

• Gene expression analysis in the ileum tissue via microarray  

• Bile acids were measured in the ileum tissue samples   

• 16S rRNA sequencing of the microbiota in the ileal luminal content  

•           Histology analysis by H&E staining on the paraffin embedded ileal tissue  

Furthermore, microarray data from the liver samples was reanalysed to extract 

energy metabolism related genes. The effect of lifelong LF and calorie restricted LF 

diet on the gut-liver axis is investigated in Chapter 4.  

2.5.4 Study 4: Effect of a caloric restriction intervention on chow and LF diet on the 

gut-liver axis 

Twenty-four mice were randomly distributed into two control groups, chow (n=6) 

and LF (n=6) (original LF: D17060802) diet and two caloric restriction (CR) groups, 

chowCR (n=6) and LF CR (n=6) for 8 weeks. This duration was chosen as it’s the 

earliest timepoint to allow the mice to adjust to the CR diet and reach stable weight. 

The control groups always had free access to food, whereas the CR mice received 

both the chow and LF diet in portions containing 70 energy percent (En%) of the 

mean intake of the respective control group. The CR diets were based on the same 

background diets, however supplemented with vitamins and minerals to avoid 

malnutrition at 70E% energy intake and was provided daily at 15:30 for eight weeks. 

The grade of 30E% CR was chosen to match previous study performed in 

Wageningen University (Kok et al., 2018) and studies performed by Green et al., 

(2019) and Fu and Klaassen (2013) that showed significant changes in global 

metabolomics and bile acid metabolism under 30%CR. CR mice finished their daily 

portions within two hours after feeding. In order to avoid drastic weight loss, a 

gradual decrease in food intake was provided to the mice one week before the start of 

CR feeding. All mice were provided with ad libitum access to water. The comparison 

of the effects of CR on the gut-liver axis of chow and LF diet fed mice is 

characterised in Chapter 4. 

2.5.5 Study 5: Investigating the impact of dietary fibres (DF) addition to the LF diet 

on the gut-liver axis 

In collaboration with Research Diet Inc (New Brunswick, USA), new purified diets 

were designed. Firstly, the LS (Low sucrose variation of the LF diet) (D12450J) was 

added to the experimental design, the LS diet is based on the previously used LF 

(D17060802), but with reduced sucrose (68.8g instead of 172.8g), in order to 

improve the detrimental health effects of high sucrose content. Of note, the reduced 

sucrose content in the LS diet was replaced with increased starch content to regulate 

for calorie intake (LS: 506g corn starch, LF: 452g). Additionally, 2 more diets were 

designed containing soluble fibres; (1) LS enriched with 75g of inulin (LS+In), (2) a 

combination diet comprised of; 25g inulin, 25g pectin and 25g psyllium (LS+Comb). 

For brief description of the diet refer to Table 2.3. Full composition of diet is 

described in Supplementary data 1.  
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Fifty mice were randomly divided into 4 groups with n=10 per group and fed with 1) 

chow, 2) LF, 3) LS, 4) LS+In and 5) LS+Comb diet for a duration of 10 weeks. At 

the end of 10 weeks, mice were sacrificed, and organs collected as described in 

Paragraph 2.4. The role of dietary fibres on the gut-liver axis of mice is investigated 

in Chapter 5.  

 

Table 2.3 Summary of composition of fibre enriched diets. LF: Low-fat diet, LS: Low-fat diet with 
reduced sucrose content, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with inulin, 

pectin and psyllium. 

 LF diet 
D17060802 

LS diet 
D12450J 

LS+In 
D18012101 

LS+Comb 
D19051003 

KJ/g 16.1 16.1 15.4 15.4 

Protein (%) 20 20 20 20 

Carbohydrate (%) 70 70 70 68 

Fat (%) 10 10 10 10 

Corn Starch (g) 452.2 506 478 481.3 

Maltodextrin 10 (g) 75 125 125 125 

Sucrose (g) 173 68.8 68.8 68.8 

Fibre (g) Cellulose 50 50 
 

50 50 

Soluble 
Fibre 

0 0 75 
Inulin 

25 + 25 + 25 
In+Pec+ Psy 

Total (g)  1055 1055 1101 1105 

 

Table 2.4 Summary of amount of fibre in the fibre enriched diets. 

 Chow LF LS+In LS+Comb 

Total Fibre gm% 16.2 4.7 11.3 11.3 

Soluble Fibre 
gm% 

Not defined 0.0 6.8 5.2 

Insoluble fibre 
gm% 

Not defined 4.7 4.5 6.1 

 

2.5.6 Study 6: A comparative study on the effect of the source of C57BL/6J mice on 

their ileal microbiota  

Twenty-four male C57BL/6J mice were obtained from the inhouse facility DMU and 

commercial vendor, Charles River Laboratories, UK (CRUK). The CRUK mice were 

purchased at the age of ten weeks and held for two weeks under a chow diet at the 

DMU in order to acclimatise to their new environment. At the age of twelve weeks, 

mice from CRUK and DMU were further divided into four groups; 1) CRUK chow 

(n=6), 2) CRUK LF (n=6), 3) DMU chow (n=6) and 4) DMU LF (n=6). The mice 

were fed the chow diet (RM3-P) and/or a purified LF diet (original high sucrose LF 

diet: D17060802, Research Diets, USA) for a period of four weeks. The effect of the 

source (vendor) of mice on the gut-liver axis is characterised in Chapter 6.  
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2.6 Gene expression analysis 

Liver and ileum samples were homogenised in 1 ml Qiazol (Qiagen, UK) per 100mg 

of tissue for 30 seconds at 6000 rpm in a Precellys®24 (Bertin Technologies, 

France). After homogenization, the samples were transferred into new Eppendorf 

tubes and 200µl chloroform was added. Samples were then centrifuged for 15 

minutes at 12,000 RPM at 4˚C and the aqueous layer was transferred to a new 2ml 

collection tube. Isopropanol (500µl per ml) was added and mixed by inverting the 

tubes, rested for 5-10 minutes on ice and then centrifuged for 10 minutes at 12,000 

RPM at 4˚C. The RNA pellet that was left, was washed twice with 80% ethanol and 

dissolved in 100µl RNase free water. RNA concentration was measured with a 

Nanodrop (Thermo Scientific, Wilmington, USA). A 260/280nm ratio of ~1.8 was 

considered an acceptable indicator of good RNA quality. The ratio of absorbance at 

260/230nm is used as a secondary measure of RNA purity. A ratio within the range 

2.0 - 2.2 was considered pure. A ratio of lower than 2, may indicate contaminants in 

the sample.  

Complementary DNA (cDNA) was synthesized from 2µg of RNA which was first 

treated with DNase and subsequently reverse transcription was performed using 

SuperScript III Reverse Transcriptase. A quantitative polymerase chain reaction 

(qPCR) was performed using SYBR green master mix according to the 

manufacturer’s instructions. Reactions were performed on Applied Biosystems ViiA 

7 and 384 wells plate (Applied Biosystems, Thermo Fisher Scientific, UK) using 5µL 

of SYBR green and primer mix (full list of the primers used, please see table 2.5) and 

1.5µL of cDNA (diluted 1:20). The reaction was initialized at 50°C for 5 minutes and 

95°C for 2 minutes, after which 40 cycles of denaturation (95°C; 15 seconds) and 

annealing/extension (59°C; 1 min) were performed. Afterwards, a melting curve was 

created and checked for a single product per gene. Delta CT values were calculated 

by subtracting the CT value of the housekeeping gene TATA-box binding protein 

(Tbp) from the target gene CT value. The delta delta CT was calculated as the 

difference in delta CT as described above between the target and reference samples 

(Equation 1). The final result of this method is then presented as the fold change of 

target gene expression in a target sample relative to a reference sample, normalized 

to a reference gene. The housekeeping gene Tbp was used for all gene expression 

analysis using qPCR because of its optimal expression stability. Housekeeping gene 

Tbp has been reported to be a constantly expressed reference gene in mouse intestine 

and liver tissue (Wang et al., 2010; Tatsumi et al., 2008). 

                 

Equation 2. 1 Formula used to calculate delta delta CT value 

ΔCT = CT (target gene) – CT (housekeeping gene) 

ΔΔCT = ΔCT (target sample) – ΔCT (housekeeping gene sample) 
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Table 2.5 Primer sequence used for gene expression analysis. 

Gene Refseq Forward Reverse 

Acaca  NM_133360 GAGGAAGTTGGCTATCCAG GCAGGAAGATTGACATCAGC 

Asbt NM_011388 TGGAATGCAGAACACTCAGC GCAAAGACGAGCTGGAAAAC 

Chrebp  NM_021455.5 ACAAAAAGCGGCTCCGTAAGTCC GGGGGCGGTAATTGGTGAAGAA 

Cldn3 NM_009902.4 ACCAACTGCGTACAAGACGAG CAGAGCCGCCAACAGGAAA 

Cyp7a1 NM_007824.3 GAGCGCTGTCTGGGTCACGG GCCAGCCTTTCCCGGGCTTT 

Cyp8b1 NM_010012.3 TTGCAAATGCTGCCTCAACC TAACAGTCGCACACATGGCT 

Fabp NM_008375 CACCATTGGCAAAGAATGTG AACTTGTCACCCACGACCTC 

Fasn  NM_007988.3 AGTGCGTGGGGCGCAATCTC CGCTCGGCTCGATGGCTCAG 

Fbp1 NM_019395.3 TAGACATCGTTCCCACCGAGAT CTTCACTTGGCTTTGTGCTTCC 

Fgf15 NM_008003 CAGTCTTCCTCCGAGTAGCG TGAAGACGATTGCCATCAAG 

Fgf21  NM_020013.4 ACACAATTCCAGCTGCCTTG TAGAGGCTTTGACACCCAGG 

Fgfr4 NM_008011 CTGCCAGAGGAAGACCTCAC GTAGTGGCCACGGATGACTT 

Fxr NM_009108 GGCCTCTGGGTACCACTACA AAGAAACATGGCCTCCACTG 

Glut2  NM_031197.2 GTCGCCTCATTCTTTGGTG CTGATACACTTCGTCCAGC 

Glut5 NM_019741.3 TCATGACCATCCTCACGATCTTT GCGGCCGTCAGCACTAAG 

Il1b NM_008361.4 GCCTCGTGCTGTCGGACC TGTCGTTGCTTGGTTCTCCTTG 

Khk NM_001310524.1 CCCACCGCCCCGAGTAGTAGACA CACACCTGCCGGGGAATGG 

Ocln NM_008756.2 AGCTCATAGTTCAACACAGCCTC TTCTTCCACAGCTGAAGGACTCA 

Ostα NM_145932 TTGTGATCAACCGCATTTGT CTCCTCAAGCCTCCAGTGTC 

Ostβ NM_178933 ATCCTGGCAAACAGAAATCG GGCCAAGTCTGGTTTCTCTG 

Sglt1  NM_019810.4 TGGTGTACGGATCAGGTCATTG TTCAGATAGCCACACAGGGTACA 

Shp NM_011850 TCTGCAGGTCGTCCGACTATT AGGCAGTGGCTGTGAGATGC 

Tbp  NM_013684.3 GAAGCTGCGGTACAATTCCAG CCCCTTGTACCCTTCACCAAT 

Tlr4 NM_021297.3 GCTTTCACCTCTGCCTTCAC GAAACTGCCATGTTTGAGCA 

Tnfα  NM_001278601.1 CAGGGGCCACCACGCTCTTC CTTGGGGCAGGGGCTCTTGAC 

Zo-1  NM_009386.2 GGACCCTGACCACTATGAAACAG ATAGGTGGATATTCCCTGACCCA 

 

RNA Sequencing 

After RNA isolation as described before, selected samples from Study 3 were sent to 

Novogene genome sequencing company (Cambridge, UK) for Illuminia based 

RNASeq analysis.  

Microarray analysis 

Selected samples from the IDEAL Study 5 were sent for microarray analysis at 

WUR. RNA quality was assessed with a Bioanalyzer (Aligent 2100 Bioanalyzer, 

Santa Clara, USA), and microarrays were performed using the Mouse geneChip 1.1 

ST arrays from Affymetrix (Thermo Fisher Scientific, Santa Clara, USA). Arrays 

were normalised using Robust Multiarray Average and ~22 k genes were included in 

the data set.  

Network Analyst 3.0 (Zhou et al., 2019) a web-based software application was used 

to analyse and interpret the data. Log2FC of 1.5 and a P value of 0.05 were used as 

cut-off points and only genes with an intensity of > 20, an interquartile range (IQR) > 
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0.1 were selected for further analysis. Ingenuity Pathways Analysis (IPA) web-based 

software application was used to explore canonical pathways affected by the filtered 

genes in the IDEAL study 5.  

2.7 Histology  

After fixation in 10% NBF, tissues were stored in 50% ethanol until embedding. The 

samples were processed on the Leica ASP 300, program overnight no formalin and 

the samples were embedded in Paraplast the next morning. Tissue sections were cut 

at 5μm thickness using a HistoCore BIOCUT - Manual Rotary Microtome and 

secured on SuperFrost Plus™ Adhesion slides (Thermo Scientific, UK) and mounted 

with DPX mounting medium. The next morning the slides were stained with 

haematoxylin and eosin (H&E) following the protocol from Feldman and Wolfe, 

(2014) and photographs were taken with an Olympus BX60 microscope at 4X and 

10X magnification. Procedure for staining with H&E is detailed below. 

Deparaffinize the slides as follows. 

2 x 5 minutes Histoclear 

2 minutes 100% ethanol 

2 minutes 80% ethanol 

2 minutes 70% ethanol 

5 minutes Wash slides in distilled water  

4 minutes Harris Haematoxylin 

5 minutes wash under running distilled water 

15 seconds 1% HCl/70% ethanol  

15 seconds brief rinse with distilled water 

1 minute 0.1% sodium bicarbonate 

5 minutes distilled water 

2 minutes Eosin 

Rehydrate the slides as follows: 

2 minutes 70% ethanol    

2 minutes 80% ethanol    

2 minutes 100% ethanol             

5 minutes Histoclear I      

5 minutes Histoclear II    

Mount slides using DPX mounting medium. 
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2.8 Caspase 3 activity  

This assay works with a Caspase-3 specific tetrapeptide substrate DEVD and a 

fluorochrome 7-Amino-4-trifluoromethylcoumarin (AFC). Active caspase 

specifically hydrolyses the substrate DEVD-AFC resulting in the release of 

fluorogenic AFC which can be quantified by a spectrophotometer at 400 nm 

excitation, 505 nm emission wavelength.  

Proteins from 30mg of liver samples were extracted using the AFC lysis buffer 

(Table 2.6) and prepared for the Caspase 3 assay following the manufacturer’s 

instructions.   

 

Table 2.6 AFC lysis buffer composition for caspase 3 activity assay. 

 

 

 

 

 

 

 

2.9 Hepatic triglycerides measurement 

The triglycerides were extracted following an adjusted version of the Bligh and Dyer 

method (Bligh and Dyer, 1959). Approximately 50mg of liver tissue was 

homogenized in 200µl of chloroform and 400µl of 100% methanol. To this solution, 

160µl distilled water was added, and the sample was homogenized again after which 

the sample was centrifuged for 10 minutes at 12,000 RPM at 4°C. The organic lower 

layer was subsequently transferred to clean Eppendorf tubes and the chloroform was 

evaporated overnight in the fume hood. The dried pellet was dissolved in 250µl of 

2% Triton X-100 (Laboratory grade, Sigma-Aldrich) and this solution was used to 

perform the colorimetric assay by using the triglycerides liquicolor kit following the 

manufacturer’s protocol.  

2.10 Bile acids analysis 

Bile acids were measured in the liver and ileal tissue samples. Ileal tissue was used 

instead of ileal content because of limited content sample. Approximately 25mg of 

tissue was homogenised in 1ml of ice cold 70% methanol for 30 seconds and 6000 

RPM in a Precellys®24 (Bertin Technologies, France). After centrifugation (5 min, 

12,000 RPM, 4˚C) the supernatant was transferred to a new collection tube and 

methanol content was removed by using Speed-Vac vacuum concentrator (70 min, 

50˚C). Volume was restored to 1ml by adding 5% methanol. The samples were 

loaded onto OASIS PRIME HLB-1 30mg SPE cartridges (Waters, UK), washed 

twice with 5% methanol and eluted in 500µl 100% methanol. 

AFC-Lysis buffer Volume Final concentration 

Hepes 1M pH 7.4 100µL 10mM 

Chaps 10% 100µL 0.1% 

EDTA 0.5mM pH 8 40µL 2mM 

DTT 1M 50µL 5mM 

dH2O 9.71ml  
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Internal standards (d4) were added at the following time points: before 

homogenisation, before rotary evaporation, before loading onto cartridges, after 

elusion (for information on standards please refer to Supplementary data 2). Cleaned-

up extracts were analysed using High-performance liquid chromatography (HPLC) – 

mass spectrometry operated in multiple reaction monitoring (MRM) mode.  

The mass spectrometer was operated in electrospray negative mode with capillary 

voltage of -4500V at 550˚C. Instrument specific gas flow rates were 25ml/min 

curtain gas, GS1: 40ml/min and GS2: 50ml/min. Please see supplementary data 2 for 

Liquid chromatography–mass spectrometry (LC-MS) conditions and mass 

fragmentation monitoring values. Quantification was applied using Analyst 1.6.2 

online tool (SCIEX, 2020 DH Tech. Dev. Pte. Ltd) to integrate detected peak areas 

relative to the deuterated internal standards. 

2.11 Microbiota analysis  

Microbial DNA was isolated from approximately 50mg ileal luminal content with the 

Qiagen DNA mini kit. Additional steps were added to the DNA mini kit protocol to 

ensure breakage of all bacterial samples. Briefly, the samples were homogenised 

using silica glass beads for 4x 30 seconds at 6000 rpm in a Precellys®24 (Bertin 

Technologies, France) and heated to 95°C for 5 minutes. Additionally, samples were 

incubated with a lysis buffer containing 20mg/ml lysozyme (Lysozyme from chicken 

egg white, Sigma-Aldrich) after which the homogenising was repeated. The 

lysozyme was used to help effectively capture usually difficult to lyse taxa, such as 

gram-positive bacteria. Consequently, DNA was isolated using the Qiagen DNA 

mini kit following instructions from the manufacturer. DNA quantity was assessed 

using a Nanodrop 2000 Spectrophotometer (Fisher Scientific, UK). 

A minimum of 50ng of DNA was sent to Novogene (Cambridge, UK). Quality 

assessment was performed by agarose gel electrophoresis to detect DNA integrity, 

purity, fragment size and concentration. The 16S rRNA amplicon sequencing of the 

V4 region was performed with an Illumina MiSeq (paired-end 250 bp; San Diego, 

CA). Alpha and beta diversity were calculated by QIIME and displayed with R 

software (Novogene, Cambridge). Comprehensive statistical and meta-analysis 

including differential analysis of taxa abundance was completed with the online tool 

Microbiome Analyst 5.0 (Chong et al., 2020). More information on sequencing data 

processing in supplementary data 2.  

2.12 Statistics 

Statistician analysis has been performed using Graphpad Prism (Version 8). The 

statistical tests used are indicated in each figure legend. When diet groups were 

compared over time or LPS as a variable, a 2-way ANOVA with Bonferroni post-hoc 

test was used, when three or more groups were compared at a single time point a 1-

way ANOVA was used with Tukey’s multiple comparison. Lastly, when two groups 

were compared at one time point, an unpaired t-test was used to test for significance. 

p<0.05 was considered overall as statistically significant and indicated as ***= 

p<0.001 **= p<0.01 *= p<0.05. Data not following a normal distribution detected by 

the Kolmogorov-Smirnov test were assessed by nonparametric tests.  
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Chapter 3: Choice of control diet profoundly influences the gut-liver 

axis 
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3.1 Introduction 

Animal models are invaluable for biomedical research. Factors such as genetic 

background and environmental conditions are given importance when designing 

experiments to ensure reproducibility. However, the choice of diet is often 

overlooked, especially if the diet is not the focus of the study. Several research 

studies have drawn conclusions about dietary effects on metabolism, 

pathophysiology or immunology from comparing the standard chow diet with 

purified diets (Warden and Fisler, 2008).   

The choice of experimental diet is typically selected based on the quantity of 

carbohydrates or fats to best induce the condition being investigated. However, the 

qualitative composition of the diet is also of great importance. For example, standard 

chow diet is based on a variety of grains and cereals such as wheat, wheatfeed, soya, 

barley (SDS diet, UK). The exact formula of the chow diet is often not defined, 

furthermore, the amount of each ingredient used can vary widely depending on the 

batch, source and season. In contrast, purified diets are composed of refined 

ingredients and the formula of the diet is well defined and shared with researchers. 

The main source of carbohydrates in purified diet comes from corn starch, casein for 

protein, soybean oil for fat and cellulose for fibre (e.g. low-fat diet (LF), American 

Institute of Nutrition 93 maintenance, AIN-93M, Research Diets, USA). The use of 

refined ingredients allows the researchers to report the exact formula of the diet used 

in their study, replicate the composition of the diet or modify the individual 

components to meet the experimental needs of the study.  

It is widely accepted that choice of diet can impact the overall health of the host 

(Santos-Marcos et al., 2019). The relationship between diet and the gut microbiota 

can have an influence on the absorption of nutrients, metabolism, immune system 

and behavioural outcomes (Gentile and Weir, 2018; Almeida-Suhett et al., 2019). 

The dietary fibres (DF) from wheat and barley in the chow diet can be degraded by 

the host’s gut microbiota thereby, influencing the bacterial population. Whereas, the 

purified diet contains refined carbohydrates (sucrose and starch) that are readily 

digested by the host. The LF diet contains reduced DF content compared to chow, 

and DF in the LF diet solely comes from cellulose, which is an insoluble fibre, and 

does not interact with the gut microbiota (Soliman, 2019).  

In this chapter we aimed to characterise the effects of the two diets, the grain based 

chow (RM3-P, SDS Diets, UK) and a highly refined low-fat diet (LF) (D17060802, 

based on the AIN-93M, Research Diets, USA) on the gut-liver axis of mice. The 

study provides an opportunity to compare diets that are similar in calories but differ 

in macronutrient composition. It is widely reported that long-term consumption of 

high refined carbohydrate diet can lead to sustained hyperglycaemia that can 

contribute to non-alcoholic fatty liver disease (NAFLD) (Jegatheesan and De Bandt., 

2017). We hypothesised that the difference in the carbohydrate composition of the 

chow and LF diet may lead to an ‘unhealthy’ gut-liver phenotype in mice. Further, 

due to the lack of fibre and high content of easily metabolizable carbohydrates, we 

hypothesised that the gut-liver axis of LF fed mice is more susceptible to an 

inflammatory challenge. To test this hypothesis, we aimed to create a model of 
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episodic systemic inflammation by injecting the mice with low dose of 

lipopolysaccharide (LPS) once a week for 4 weeks (Raduolovic et al., 2018; López-

Collazo and del Fresno, 2013). This model was chosen to mimic recurrent systemic 

inflammation that is observed during ageing and may give us an insight into the long-

term effect of the LF diet on the functioning of the gut and liver of mice.  
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3.2 Results 

3.2.1 Body composition of mice fed with chow and LF diet 

Standard chow diet and a purified LF diet were compared over a period of four 

weeks. Figure 3.1 shows compositional profile of chow and LF diet. Full 

composition of the diet is available in supplementary data 1. 

 

Starch
Sucrose
Maltodextrin
Fibre
Protein
Fat

Chow diet LF diet

 

Figure 3.1 Summary of the composition of chow and LF diet per kilogram. The LF diet contains 
decreased fibre and increased sucrose and starch compared to the chow diet. 

 

As shown in Figure 3.2, body weight and average calorie intake was similar between 

chow and LF fed mice after 4 weeks intervention (Fig. 3.2A and B). We analysed the 

length of small intestine and weight of liver to show no difference between the diet 

groups (Fig. 3.2C and D). To get a further insight into the metabolic phenotype 

induced by the LF diet, we quantified the triglycerides content in the liver to show 

increased levels in the LF fed group (60±0.1%, P=0.004) (Fig. 3.2E). Furthermore, 

histological analysis showed hepatocyte ballooning and lipid droplet accumulation in 

the livers of mice fed with the LF diet compared to chow (Fig.3.2 F and G). 
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Figure 3.2 Mice were fed a standard chow diet or a purified low-fat (LF) diet for 4 weeks. During this 
time, no differences in either body weight (A) or calorie intake (B) were observed. Small intestinal 
length (C), and liver weight (g) to body weight (g) ratio (D) were recorded after sacrifice and did not 
show difference between the two diet groups. Triglyceride content in the liver (E) and histological 
analysis with haematoxylin and eosin (H&E) staining of the liver sections from the chow (F) and LF 
group (G) showed accumulation of lipid droplets in the LF fed mice. Significance was tested using 2-
way ANOVA with Bonferroni post-hoc test (A) and unpaired t-test for B, C, D, and E (***=p<0.001, 
**= p<0.01, *= p<0.05). Values are the means ± SEM of n=6 mice in each group. Mice per group were 
divided into two cages (as 3 mice per cage), calorie intake was measured per cage and divided by 3 
to calculate the intake of one mouse.  
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3.2.2 Increased expression of lipogenic genes in the livers of the LF group  

The increase in fat accumulation observed through histological and triglyceride 

analyses was also reflected on gene expression level in the liver. We examined the 

gene expression of sterol regulatory-element binding protein 1 (Srebp1) transcription 

factor involved in de novo lipogenesis to show increasing trend in response to the LF 

diet (55±0.2% P=0.05). While SREBP1 target genes; acetyl-CoA carboxylase alpha 

(Acaca) and fatty acid synthase (Fasn) were shown to be significantly increased in 

response to the LF diet (110±0.3%, 160±0.6%, P<0.05 respectively). Gene 

expression analysis of fibroblast growth factor 21 (Fgf21) suggested an increasing 

trend in the LF group (P=0.08). FGF21 is a peroxisome proliferator-activated 

receptor α (PPARα) target and PPARα is a regulator in de novo lipogenesis pathway 

(Rusli et al., 2016) (Fig. 3.3 A, B, C, and D).  

The gene expression levels of hepatic fructokinase Khk was found to have an 

increasing trend in the LF compared to chow diet group (55±0.2%, P=0.08), whereas 

the glucose transporter 5 (Glut5 also known as Slc2a5) mainly involved in the 

transport of fructose was not changed between the two groups (Fig. 3.3 E and F). 

The gene expression of toll like receptor 4 (Tlr4) a pattern recognition receptor that 

recognizes pathogens to induce innate immune system, and pro-inflammatory 

cytokines interleukin 1 beta (Il1β) were found to have increasing trends in the liver of 

mice fed with the LF diet (Tlr4 56±0.2% P=0.06 and Il1β 70±0.3%, P=0.07) (Fig. 3.3 

G and H). Altogether, assessment of liver lipid content, histological and gene 

expression analysis showed that LF diet fed mice presented increased fat deposition 

in parallel with increased triglycerides levels without liver weight differences when 

compared to chow fed mice.  
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Figure 3.3 Liver expression profiles of lipid, carbohydrate metabolism genes. Srebp1 (A), Acaca (B), 
Fasn (C), Fgf21 (D), Khk (E) were found to be increased in response to the low-fat (LF) diet. Fructose 
transporter Glut5 (F) was not changed between the two diet groups. The expression levels of 
inflammation related genes Tlr4 (G) and Il1β (H) showed an increasing trend in the LF diet group. 
Significance was tested using unpaired t-test method (***=p<0.001, **= p<0.01, *= p<0.05). Values 
are the means ± SEM of n=5-6 mice in each group. 

 

3.2.3 Sequencing of 16S rRNA from the ileum microbiota in response to the chow 

and LF diet 

Shannon diversity relates both operational taxonomic unit (OUT) richness and 

evenness while, observed species is the total number of species in the community 

(only richness) (Kim et al., 2017). Figure (3.4 A and B) shows a trend towards 

decreasing Shannon index (26±0.3%, P =0.05) and significantly increased observed 

species (17±10%, P=0.04) in the LF diet group. Beta diversity compares microbial 

communities between samples based on their composition. To compare the microbial 

communities between samples, the distance or dissimilarity between each sample is 

calculated and then an ordination-based method such as principal coordinates of 

analysis (PCoA) is used for visual representation at low-dimensional space 

(Microbiome Analyst; Chong et al., 2020). To measure the dissimilarity between 

microbial communities in chow and LF fed mice, PCoA was performed with Bray-

Curtis dissimilarity (Fig. 3.4 C). The percentage on each axis indicates the 

contribution value to discrepancy among samples. PCoA plot showed that after four 

weeks feeding of the diets, there was a clear clustering of ileal microbiota from chow 

samples compared to LF diet. Samples from chow fed mice (blue dots) are clustered 

to the left, which indicates compositional differences, and is confirmed by a 

significant result in the ANOSIM (analysis of group similarities, P value ANOSIM = 

0.003). Analysis of the relative abundance at the phylum level revealed decreased 
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abundance of Bacteroidetes by 82±0.1% (P<0.0001) in ileum of LF fed mice, 

whereas relative abundance of Firmicutes was significantly increased by 52±0.1% 

(P<0.0001) in the LF group (Fig. 3.4 D). Figure 3.4 E shows altered microbial 

profiles at the genus level in the individual mice in each group. Relative abundance 

of Bacteroidetes S247 group is consistently increased in the chow fed mice, while, 

Romboutsia and Lactococcus from Firmicutes phylum is prevalent in the LF fed 

mice. Moreover, Table 3.1 shows genera that were significantly different between 

chow and LF diet group. Our results show differential ileal microbiota composition 

in response to chow and LF feeding in mice.  
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Figure 3.4 Ileal microbial composition in chow and low-fat (LF) fed mice. Alpha diversity for chow 
and LF diet groups (A). Beta diversity profiling of chow and LF ileal microbiota. Principal coordinates 
of analysis (PCoA) was carried out at the genus level. Chow samples are plotted as blue dots, and LF 
are represented as red dots. The groups show significant differences in similarity tested by ANOSIM 
(P value = 0.003) (B).  At the phylum level the Firmicutes: Bacteroidetes ratio was increased in LF fed 
mice (C). Genera profiles of individual mice in the chow and LF group (E). Significance was tested by 
performing Kruskal-Wallis test for alpha diversity measures (*= p<0.05). Values are the means ± SEM 
of n=6 mice in each group. 
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Table 3.1 Genera that were different in the ileum of chow and low-fat (LF) fed mice. Values are 
based on absolute abundance. Significance was calculated using unpaired t-test, (**= p<0.01, *= 

p<0.05). Values are the means of n=6 mice in each group. 

Genera Phyla Mean 
Chow 

Mean 
LF 

SE of 
difference 

P value 

Faecalibaculum Firmicutes 1336 15476 6728 0.062 

Lactococcus Firmicutes 1236 5138 1014 0.003** 

Romboutsia Firmicutes 1925 15410 4243 0.010* 

Unknown genus S24-7 group Bacteroidetes 21365 4776 3496 0.001** 

Cronobacter Proteobacteria 30.2 154.6 57.2 0.04* 

Stenotrophomonas Proteobacteria 9.7 232.3 76.4 0.015* 

 

3.2.4 The effect of diets on ileal bile acids profile and gene expression 

The interaction between the microbiota and the liver is linked through the portal vein, 

which carries gut-derived products to the liver, and the feedback of bile acids from 

the liver to the small intestine. Alterations in the gut microbiota are also associated 

with changes in the bile acid homeostasis (Molinaro et al., 2018). Therefore, to 

further investigate the effects of the altered microbiota between the two diets, bile 

acids present in the ileal tissue at the time of sacrifice were analysed via liquid 

chromatography–mass spectrometry (LC-MS) as described in Chapter 2 of this 

thesis. Cholesterol in the serum was quantified to show no difference between the 

two diet groups (Fig. 3.5A). The total bile acids were shown to be significantly 

increased by 72±0.2% (P=0.03) in response to the LF diet (Fig. 3.5B). Further 

analysis of the individual bile acids revealed primary bile acids to be significantly 

enhanced by 67±0.2%, P=0.03 in the LF group (Fig. 3.5B). Taurine conjugated 

primary bile acid TβMCA and taurine conjugated secondary bile acids TUDCA were 

significantly increased by 196±338% and 975±48% (P=0.003, 0.03 respectively) in 

the ileum of LF compared to chow fed mice (Table 3.2). The gene expression levels 

of bile acid uptake transporter Asbt and the gut enterokine, fibroblast growth factor 

15 (Fgf15) showed a trend towards increased expression in the LF fed mice (P>0.05). 

However, the expression levels of farnesoid X receptor, Fxr and bile acid organic 

solute transporter alpha, (Ostα) were not altered in the ileum (Fig. 3.5C). Moreover, 

in the liver, the gene expression levels of bile acid synthesis enzyme, cholesterol 7α-

hydroxylase (Cyp7a1), Fxr, and its targets; fibroblast growth factor receptor 4 

(Fgfr4) and small heterodimer partner (Shp) also remained unchanged in chow and 

LF fed mice (Fig. 3.5D).  
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Figure 3.5 Bile acids profile and gene expression in the ileum and liver in response to the low-fat (LF) 
diet. Serum cholesterol levels were not significantly different between the diet groups (A). In the 
ileum total and primary bile acid levels were significantly increased in response to LF diet (B). Bile 
acid related genes were tested to show a trend towards an increase in the expression levels of Asbt 
and Fgf15, in the ileum of LF mice (C). Bile acid related genes in the liver were not altered between 
the diet groups (D). Significance was calculated using unpaired t-test (*= p<0.05). Values are the 
means ± SEM of n=5-6 mice in each group. 
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Table 3.2 Ileal bile acids profile show increased levels in mice fed the low-fat (LF) diet compared to 
chow. Bile acid were quantified in ileal tissue by liquid chromatography–mass spectrometry (LC-

MS) and are given in µmol/g tissue. Significance was calculated using unpaired t-test (**= p<0.01, 
*= p<0.05). Values are the means of n=5-6 mice in each group. 

 
Mean chow Mean LF SE of difference P value 

αMCA 103.2 169.5 49.8 0.2 

βMCA 554.1 692.2 152.7 0.4 

CA 405.5 494.4 74.3 0.3 

CDCA 10.1 12.2 3.8 0.6 

MCA 6.6 11.7 3.0 0.1 

TαMCA 366.1 680.6 212.8 0.2 

TβMCA 666.8 1979 338.2 0.003** 

TCA 665.2 603.9 202.4 0.8 

TCDCA 13.8 35.7 11.3 0.1 

DCA 29.2 22.0 12.0 0.6 

HDCA 6.1 7.2 3.8 0.8 

LCA 3.0 2.4 0.5 0.2 

TDCA 26.7 72.1 32.3 0.2 

TUDCA 12.2 131.2 48.7 0.034* 

UDCA 11.2 13.9 5.1 0.6 

 

3.2.5 Impact of diets on the ileum villus and crypt morphometry and barrier function 

genes 

Due to the nutrient compositional changes in the chow and LF diet, we hypothesized 

alterations of the small intestinal physiology. H&E analysis of the ileal samples of 

mice fed the experimental diets showed no changes in villus height or crypt depth 

(Fig. 3.6A, B and C). Next, we tested the gene expression related to ileal barrier 

function in response to the two diets. Figure 3.6D shows LF diet led to decreasing 

trend in levels of mucin 2 (Muc2) (by 32±0.1% P= 0.08), and significantly decreased 

expression levels of claudin 3 (Cldn3) (by 35±0.1%, P= 0.04) and zonula occluden 

protein (Zo-1) (also known as tight junction protein 1, Tjp1) (40±0.1% ,P=0.01). 

Altogether, the barrier function genes were found to be downregulated in the ileum 

of LF fed mice.  
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Figure 3.6 Changes in ileal physiology in response to the low-fat (LF) diet. Ileal physiology was 
analysed by haematoxylin and eosin (H&E) staining and barrier function genes were measured in 
response to the LF diet. Villus height (A) and crypt depth (B), Photomicrograph showing villi and 
crypts in section of ileum (Images were taken at 4x magnification) (C) Gene expression of Muc2, 
Cldn3 and tight junction protein Zo-1 in the ileum were tested with qPCR (D). Significance was tested 
by using unpaired t-test (*= p<0.05). Values are the means of n=5-6 mice in each group. qPCR: 
Quantitative polymerase chain reaction.  

 

3.2.6 Increased expression of carbohydrate metabolism related genes in the ileum of 

LF diet fed mice 

We analysed the gene expression of two α-glucosidases, maltase-glucoamylase 

(Mgam) for starch and sucrase-isomaltase (Sis) for sucrose hydrolysis. The gene 

expression levels of Mgam and Sis were shown to be significantly increased in the 

LF diet compared to the chow group (Mgam: 99±0.2%; Sis:68±0.1%, P<0.001) (Fig. 

3.7A and B). After hydrolysis, the released monosaccharides (glucose and fructose) 

are transported by the epithelial cells into the bloodstream via sodium-dependent 

glucose cotransporter (SGLT1) and glucose transporters found in the membrane of 

enterocytes, GLUT2 for glucose and GLUT5 for fructose (Goodman, 2010). Gene 

expression levels for Sglt1 and Glut2 were found to show a significant increase in the 

ileum of mice fed the LF diet (Sglt1: 58±0.1%; Glut2: 350±0.7%, P<0.001) (Fig. 

3.7C and D). The expression levels of fructose metabolism genes, Glut5 and Khk 

showed a trend towards an increase in the LF fed mice, however it did not reach 

significance (P= 0.1) (Fig. 3.7E and F). Glucose 6-phosphatase (G6pc), a key 
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gluconeogenic gene was tested to show significant increase in the LF group 

(182±0.4%, P=0.003) (Fig. 3.7G). Whereas, triokinase (Tkfc) that converts 

glyceraldehyde to glycolytic/gluconeogenic intermediate glyceraldehyde 3-phosphate 

(GA3P) did not change between the two diet groups (Fig. 3.7H). 
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Figure 3.7 Genes related to carbohydrate metabolism are increased in the ileum of mice fed the low-
fat (LF) diet compared to chow. Significance was tested using unpaired t-test (***= p<0.001, **= 
p<0.01). Significance was calculated using unpaired t-test (*= p<0.05). Values are the means ± SEM 
of n=6 mice in each group. 

 

3.2.7 LPS administration in mice enhances the LF diet induced detrimental effects on 

the liver 

The low dose LPS challenge provided an experimental model of periodic systemic 

low-grade inflammation that is a typical feature of ageing (Howcroft et al., 2013; 

d’Avila et al., 2018). This experiment aimed to investigate the response of the gut-

liver axis to the high fibre chow and low-fibre, high refined carbohydrate purified 

(LF) diet in a state of mild systemic inflammation induced by an intraperitoneal dose 

of 0.5mg LPS per kg body weight per week for 4 weeks (Raduolovic et al., 2018). 

The control group received equal amount of sterile phosphate buffered saline (PBS) 

(Fig. 3.8).  
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Figure 3.8 Summary of the LPS challenge experiment. Mice were divided into four groups: chow + 
PBS, LF + PBS, chow + LPS and LF + LPS. During the feeding experiment, mice were administered with 
LPS or sterile PBS per week for four weeks. At the time of sacrifice, blood, liver and ileum samples 
were collected. Low-fat diet: LF, PBS: Phosphate buffered saline, LPS: Lipopolysaccharide 

 

We did not observe a significant difference between the weight gain of chow and 

chow LPS group, whereas LF LPS mice showed decreasing weight gain compared to 

the LF control group (36±0.4%, P=0.04) (Fig. 3.9A and B). There was no difference 

observed in calorie intake between the groups (Fig. 3.9C). The liver weight of mice 

did not change in response to diets or the LPS challenge (Fig. 3.9D). Increased liver 

stress was quantified by measuring caspase 3 activity as an indication of apoptotic 

cells and showed a significant increase in the LF LPS group compared to LF control 

(90±0.1%, P<0.0001). Moreover, the caspase 3 activity was also increased in LF LPS 

compared to chow LPS group (50±0.1%, P=0.001) (Fig. 3.9E). Similar to the first 

study, liver histology showed hepatocyte ballooning and accumulation of lipid 

droplets in the livers of mice fed with LF diet (Fig.3.10B). Livers from the LF LPS 

group showed hepatocyte ballooning as well as increased inflammation illustrated by 

the large number of monocytes around the vein (Fig.3.10D). 
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Figure 3.9 Body weight, calorie intake and liver phenotype were analysed in response to the LPS 
challenge. Body weight changes during the experiment (A), Body weight gain at the end of 4 weeks 
(B), and average calorie intake of mice in the different groups (C). Liver weight (g) relative to body 
weight (g) ratio showed no difference between the groups (D). Apoptosis was measured in the liver 
by caspase 3 activity (C3) assay and the LF LPS group C3 activity was significantly increased compared 
to LF control and chow LPS group. Significance was tested using 2-way ANOVA with Tukey’s multiple 
comparison test between the groups (***= p<0.001, *= p<0.05). Values are the means ± SEM of n=5-
6 mice in each group. Mice per group were divided into two cages (as 3 mice per cage), calorie intake 
was measured per cage and divided by 3 to calculate the intake of one mouse. Low-fat diet: LF, LPS: 
Lipopolysaccharide. 
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(A) Chow (B) LF

(C) Chow LPS (D) LF LPS

 

Figure 3.10 Histological analysis of livers. Liver sections were stained with haematoxylin and eosin 
(H&E) and micrographs taken at 20x magnification, chow (A), Low-fat (LF) (B), chow LPS (C), and LF 
LPS (D). Arrow on the LF LPS micrograph denotes accumulation of monocytes. LPS: 
Lipopolysaccharide. 

 

Expression of lipogenic gene Fasn was observed to be increased in the liver in 

response to the LF compared to chow fed mice (169±0.4%, P=0.01). The gene 

expression of Fgf21 showed an increasing trend by 548±3%, P=0.1 in the livers of 

LF mice. This LF induced effect was observed regardless of LPS treatment (chow 

LPS vs LF LPS 124±0.4%, P=0.03; 753±3%, P=0.1, Fasn and Fgf21 respectively) 

(Fig. 3.11A and B).  

Treatment with LPS led to increased expression of inflammation related genes, 

serum amyloid 1 (Saa1) (Fig. 3.11C), tumour necrosis factor alpha (Tnfα) (Fig. 

3.11D), macrophage marker; mouse epidermal growth factor-like module-containing 

mucin-like hormone receptor-like 1 (F4/80) (Fig. 3.11E), and nucleotide-binding 

domain-like receptor (Nlrp3) (Fig. 3.11F), in chow LPS compared to chow control 

(Saa1: 412±0.9%, P=0.001; Tnfα: 350±1%,P=0.0007; F4/80: 140±0.5%, P= 0.001; 

Nlrp3: 112±0.3%, P=0.0008), and in LF LPS compared to LF control (Saa1: 

315±0.9%, P=0.001; Tnfα 178±1% P=0.01; F4/80: 132±0.5%, P=0.002; Nlrp3: 

48.5±0.3%, P=0.04).  The increased expression of the inflammation related genes 

confirms that the LPS injections successfully induced an inflammation response in 

the liver. We observed a trend towards increased expression of Saa1, Tnfα, F4/80 and 
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Nlrp3 in LF LPS compared to chow LPS group, however the difference did not reach 

significance due to the variability in responses in the group (P>0.1).  
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Figure 3.11 Gene expression analysis of liver. Increased expression of lipid metabolism related 
genes; Fasn (A) in the liver of low-fat (LF) (control and LPS) group compared to chow counterparts. 
The gene expression levels of Fgf21 showed an increasing trend with LF diet independent of LPS 
treatment (B). Expression of inflammation related genes, Saa1, Tnfα, F4/80 and Nlrp3 was increased 
in mice injected with LPS regardless of diet (C, D, E, and F). Significance was tested using 2-way 
ANOVA with Tukey’s multiple comparison test (***= p<0.001, **= p<0.01, *= p<0.05). Values are the 
means ± SEM of n=5-6 mice in each group. LPS: Lipopolysaccharide.  
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3.2.8 The response of ileum to the LPS challenge in mice fed with chow and LF diet 

Due to the previously observed differences in the expression of barrier function 

genes, intestinal permeability was tested using fluorescein isothiocyanate, FITC-

dextran. FITC-dextran was administered via oral gavage two hours before sacrifice 

and the appearance of fluorescence was measured in the serum. A higher 

fluorescence indicates an increase in gut permeability, as FITC-dextran crosses the 

intestinal epithelium. Increased concentrations of FITC-dextran were observed in 

mice fed the LF diet and increasing trend was observed for the LF LPS treatment 

group (chow vs LF: 265±1%, P=0.04; chow LPS vs LF LPS: 352±1%, P=0.08) (Fig. 

3.12A). In line with FITC-dextran concentrations, barrier function genes were tested 

to suggest decreased Cldn3 and occludin, (Ocln) expression in groups fed the LF diet 

(Fig. 3.12B). The barrier function gene expression showed decreasing trend in the LF 

fed mice independent of the LPS challenge (chow vs LF: Cldn3: 30±0.04%, P<0.01; 

Ocln: 18±0.1%, P=0.08 and, chow LPS vs LF LPS: Cldn3: 33±0.1%, P=0.02; Ocln: 

42±0.2%, P=0.05). Inflammation related genes were tested to show a significant 

increase in expression of interleukin 1 β (Il1β) and Tnfα in the LF LPS compared to 

LF control group (Fig. 3.12C). The expression of myeloid differentiation primary 

response gene 88, (Myd88) showed an increasing trend in LF LPS mice (P>0.1). The 

gene expressions of Il1β and Tnfα were also shown to be increased in LF LPS 

compared to chow LPS mice. While no difference in inflammation related gene 

expression was observed between chow and chow LPS group. Our previous findings 

showed the expression of carbohydrate related genes, Mgam, Sis and Glut2 to be 

increased in the ileum of LF mice. The current study reproduced this effect in the 

control as well as LPS treated LF fed mice. However, the carbohydrate metabolism 

genes were not affected by LPS treatment (Fig. 3.12D). Summary of statistics in 

Table 3.3.  
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Figure 3.12 Intestinal permeability and gene expression changes in response to diet and LPS 
challenge. Low-fat (LF) fed mice had increased intestinal permeability measured by FITC-dextran 
independent of LPS treatment (A), Barrier function gene expression levels were decreased in the 
ileum of LF fed mice (B), Inflammation related genes had increased expression in response to LF LPS 
compared to  chow LPS (C), Carbohydrate metabolism related gene expression increased in LF fed 
mice independent of LPS treatment (D). Significance was tested using 2-way ANOVA with Tukey’s 
multiple comparison test (***= p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=5-
6 mice in each group. LPS: Lipopolysaccharide.  
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Table 3.3 Summary of statistics for ileal gene expression analysis. Significance was tested using 2-
way ANOVA with Tukey’s multiple comparison test (***= p<0.001, **= p<0.01, *= p<0.05). Values 

are the means of n=5-6 mice in each group. LPS: Lipopolysaccharide. LF: Low-fat diet. 

 
Percentage 
increase % 

SE of diff. P value 

Myd88 

chow vs. LF 7.0 0.7 1.0 

chow vs. chow LPS 7.0 0.7 1.0 

LF vs. LF LPS 51 0.7 0.9 

chow LPS vs. LF LPS 52 0.7 0.9 

Il1β 

chow vs. LF 83 0.7 0.6 

chow vs. chow LPS 71 0.7 0.7 

LF vs. LF LPS 130 0.7 0.007** 

chow LPS vs. LF LPS 146 0.7 0.004** 

Tnfα 

chow vs. LF 59 0.7 0.9 

chow vs. chow LPS 62 0.7 0.8 

LF vs. LF LPS 179 0.7 0.001** 

chow LPS vs. LF LPS 173 0.7 0.001** 

Mgam  

chow vs. LF 154 0.6 0.00001**** 

chow LPS vs. LF LPS 209 0.6 0.0001*** 

Sis 

chow vs. LF 182 0.6 0.0005*** 

chow LPS vs. LF LPS 189 0.6 0.00003**** 

Glut2 

chow vs. LF 455 0.7 0.002** 

chow LPS vs. LF LPS 513 0.7 0.002** 
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3.3 Discussion 

The studies performed in this chapter demonstrated that the purified LF diet 

compared to the chow has differential effects on the gut-liver axis independent of 

weight gain. The LF diet leads to significant changes in 1) liver phenotype of mice, 

2) ileal gene expression related to carbohydrate metabolism and barrier function, 3) 

ileal microbiota and 4) ileal bile acid composition. Moreover, our data showed LF 

fed mice had increased sensitivity to the LPS challenge compared to chow.  

No changes in body weight or calorie intake of mice were observed during the four 

weeks feeding of the two diets, which indicates that the significant changes observed 

in the gut and liver of mice in response to the diet are independent of weight gain. 

We show that the LF diet feeding of 4 weeks, led to increased hepatic triglycerides in 

mice compared to the chow fed group, which was confirmed by upregulation of 

genes related to de novo lipogenesis, Acaca and Fasn. We observed increased 

expression of PPARα target gene Fgf21 in the livers of LF fed mice. Maekawa et al. 

(2017) has reported increased hepatic Fgf21 mRNA expression in mice fed a high 

refined carbohydrate diet that led to increased energy expenditure, thus attenuating 

weight gain. Moreover, Rusli et al. (2016) found upregulation of PPARα targets 

including Fgf21 gene expression in the livers of mice with NAFLD and suggest a 

protective role of FGF21 against fatty acid induced lipotoxicity and oxidative stress 

in NAFLD.  

Diet is an important external factor that affects the gut microbiota (Gentile and Weir, 

2018), therefore, we next examined the influence of chow and LF diet on the ileal 

microbiota of mice. We observed changes in α diversity between the diet groups and 

the shifting of the ileal microbiota induced by the different diets as indicated by the β 

diversity. Although, the count of observed species was higher in the LF compared to 

chow diet, the evenness (Shannon index) was decreased in the LF group, which 

suggests uniformity of the population size of each of the species (Wagner et al., 

2018). Microbial analysis at the phylum level indicated that the LF diet group 

exhibited an increased proportion of Firmicutes and reduced proportion of 

Bacteroidetes. Dalby et al (2017) reported increased Firmicutes: Bacteroidetes ratio 

to in mice fed the purified LF and high fat diets relative to standard chow, which may 

suggest that differences in fat content between the diets was not the main driver of 

the change in Bacteroidetes and Firmicute quantity, but the lack of fibre in the 

purified diets compared to chow diet. Further examination at the genus level showed 

an increased population of the genus from Bacteroidales S24-7 family in the chow 

compared to the LF diet fed mice. Ormerod et al. (2016) proposed the name Ca. 

Homeothermaceae for this genus which contains increased abundance of enzymes 

involved in the degradation of complex plant cell wall glycans (hemicellulose and 

pectin) as are present in the chow diet. Although, Bacteroidales S24-7 family of 

bacteria has been well described in the murine gut, its importance on long-term 

health is still unclear. LF group showed a significantly increased proportion of 

Romboutsia, Faecalibaculum, and Lactococcus belonging to the Firmicutes phylum. 

Romboutsia is an obesity-related genus that is positively associated with lipogenesis 

in the liver (Zhao et al., 2018). Faecalibaculum and Lactococcus are lactic acid 

producing bacteria and their role in metabolic disease has been studied to some 
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extent (Lim et al., 2016 and Yu et al., 2017). Furthermore Yu et al. assessed the 

genomic characteristics of ten Lactococcus species to reveal the ability of most of the 

strains to hydrolyse sucrose to d-glucose-6P and d-fructose. The authors also found 

that all the strains of Lactococcus have genes encoding fructokinase, a key enzyme in 

fructose metabolism. Therefore, increased presence of refined carbohydrates in the 

LF diet may explain the higher abundance of Lactococcus observed in the LF fed 

mice. Although, the relative abundance of Proteobacteria phylum was not different 

between the two diets, the relative abundance of pathogenic genera Cronobacter and 

Stenotrophomonas within the Gamma Proteobacteria group was increased in the LF 

fed mice (Trifonova and Strateva, 2019).  

LPS is a product of gram-negative bacteria that are mostly found in the Bacteroidetes 

and Proteobacteria phylum. However, the endotoxin activity of LPS in Bacteroidetes 

is less effective compared with that of Proteobacteria. Studies have reported that 

bacteria in the Enterobacteriaceae family (Gamma Proteobacteria) possess 

markedly increased LPS endotoxin activity than LPS extracted from the envelope of 

bacteria of the Bacteroidetes phylum which can inhibit the host immune response 

(Salguero et al., 2019). We observed increased proportions of Enterobacteriaceae 

family in the LF compared to chow group in the first study (Supplementary Fig. 3.1). 

Altogether, our study shows that ileal microbiota composition is significantly 

influenced by the chow and LF diet. However, it remains unclear if the microbiota 

also contributes to the ‘unhealthy state’ of the LF fed mice, or if it itself was shaped 

by metabolic dysregulation as a result of the LF diet.  

The gut microbiota and bile acids interaction play an important role in regulating 

enterohepatic bile acid metabolism. Primary bile acids are synthesised from 

cholesterol in the liver, conjugated with glycine or taurine and further metabolised by 

the gut microbiota into secondary bile acids (Ticho et al., 2019). We determined ileal 

bile acid profiles of the chow and LF fed mice by liquid chromatography-mass 

spectrometry. The total bile acids were shown to be significantly enhanced in the 

ileum of LF fed mice. We observed an increase in ileal primary bile acids in response 

to the LF diet, while, the secondary bile acids were not changed between the diet 

groups. Analysis of the bile acids at the individual level showed primary conjugated 

bile acid; TβMCA and conjugated secondary bile acid; TUDCA to be significantly 

increased in the LF group. Removal of glycine/taurine conjugates by the microbiota 

relies on their bile salt hydrolase (BSH) activity. BSH is expressed in some strains of 

Lactobacillus, Bacteroides, Clostridium, and Bifidobacterium (Song et al., 2018). 

Although, the abundance of Lactobacillus varied among the groups, we observed a 

consistent increased abundance of Bacteroidales S24-7 from Bacteroides group in 

the chow fed mice. The increased levels of taurine conjugated bile acids might be due 

to the decreased abundance of BSH containing bacteria in the LF mice. Further 

experiments to measure BSH enzyme activity in the ileal content of chow and LF fed 

mice can help confirm this hypothesis. Sayin et al. (2013) proposed TβMCA to be an 

antagonist of FXR, however, we did not observe difference in the ileal Fxr 

expression between the diet groups. In contrast, the gene expression of FXR target, 

the enterokine Fgf15 showed an increasing trend in LF diet fed mice. These 

contrasting results could be due to the fact that concentration of TβMCA in LF group 
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was not enough to function as FXR antagonist. Sayin et al. used ileal explants and 

germ-free mice to show the FXR inhibition by TβMCA, which eliminates the 

competition that exists between bile acid agonist and antagonist for the activation or 

suppression of FXR expression in ileum. Moreover, our previous studies have 

demonstrated increased ileal glucose concentration to be associated with upregulation 

of Fgf15, possibly by GlcNAcylation of ileal FXR independent of bile acids. FGF15 

binds to its hepatic membrane receptor FGFR4 to suppress the expression of 

CYP7A1, the rate limiting enzyme in the bile acid synthesis pathway in the liver. The 

LF diet did not alter the gene expression of Fgfr4 and Cyp7a1. Moreover, we did not 

observe changes in the gene expression levels of bile acid transporters in the ileum.  

Quantity and the quality of macronutrients has been shown to influence the ileum 

morphology in several animal models (Kieffer et al., 2016; Alonso and Yilmaz, 

2018). In the current study we observed the expression levels of barrier function 

genes Muc2, Cldn3 and Zo-1 to be decreased in response to the LF diet. Mucin gel-

forming glycoprotein (MUC2) is secreted by goblet cells and serves to physically 

segregate the microbiota from gut epithelium. Further, Claudins and Zonula 

occludens control the diffusion of water, ions, and nutrients, and restrict the entry of 

pathogens and pathogen derived endotoxins such as LPS, that can lead to chronic 

inflammation observed in metabolic syndromes (Chu et al., 2019). The 

downregulation of barrier function genes may be linked to reduced fibre content 

and/or the higher starch and sucrose present in the LF diet. The association of 

improved barrier function with a high fibre diet has been attributed to the microbial 

production of SCFAs in the gut (Hung et al., 2016). We have previously observed 

decreased concentrations of SCFAs in the ileal luminal content in response to 2 

weeks LF feeding compared to chow (Supplementary Fig. 3.2).  Moreover, Thaiss et 

al. (2018) showed hyperglycaemia could drive alterations in tight junction and 

leading to immune-stimulatory microbial products and systemic inflammation. 

Although, the study focused on the impact of systemic hyperglycaemia on the 

intestinal barrier, similar effects may be observed by a high refined carbohydrate diet 

resulting in high glucose concentrations in the ileum and thus induce changes in the 

intestinal permeability. Recent study by Jang et al. (2018) has shown that the small 

intestine plays a crucial role in controlling fructose that enters the liver by converting 

fructose into glucose and other metabolites and thus shielding the liver from fructose 

exposure. Due to the increased amount of simple carbohydrates present in the LF 

diet, we measured the expression of ileal genes related to carbohydrate metabolism to 

show increased expression of carbohydrate digesting enzymes Mgam, Sis and 

glucose transporters Sglt1 and Glut2 and gluconeogenesis enzyme G6pc. Our data 

suggests, the increase in the expression of carbohydrate metabolism related genes in 

the ileum of LF fed mice could be a result of the increased amount of starch and 

sucrose present in the LF compared to the chow diet.  

The increased accumulation of triglycerides, abundance of pathogenic bacteria and 

decreased expression of barrier function genes in LF group led us to hypothesise that 

these mice may be more susceptible to a proinflammatory challenge compared to 

chow fed mice. To test this hypothesis, we administered low dose LPS via i.p. 

injections in addition to the chow and LF diet, to induce low-grade inflammation 
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state in mice. We observed decreased weight gain in LF LPS compared to other 

groups, although no difference in calorie intake was observed. Histological analysis 

of the liver sections reproduced our previous findings to show increased lipid 

deposition in LF group, which was confirmed by increased Fasn gene expression. 

Apoptosis plays an important role in inflammation. Therefore, we quantified the 

amount of apoptosis by caspase 3 assay in the liver, to reveal increased caspase 3 

activity in the livers of LF LPS group compared to the other groups. Apoptosis by 

caspase 3 activation in hepatocytes plays a key role in non-alcoholic steatohepatitis 

(NASH) pathogenesis (Thapaliya et al., 2014). The increased levels of caspase 3 

activity in the LF LPS mice compared to chow LPS group suggests increased 

sensitivity of the LF compared to chow fed mice. The exogenous administration of 

LPS is associated with the activation of TLR4 complex. Although, we did not 

observe difference in the gene expression of Tlr4 in the liver (Supplementary Fig. 

3.3), its downstream genes, Saa1, Tnfα, F4/80 and Nlrp3 were found to be 

upregulated in the liver of both diet + LPS groups. Upon analysing the expression of 

inflammation related genes, no significant difference was observed between chow 

LPS and LF LPS group, however, the response of LF liver was more pronounced to 

the LPS challenge compared to chow LPS. The increased trend in the expression of 

proinflammatory genes coincides with infiltration of monocytes observed in the 

histological analysis of the LF LPS group. The increased inflammation response in 

the LF LPS mice as indicated by hepatic caspase 3 activity may be a factor in the 

decreased weight gain observed in these mice, as increased inflammation response 

has been associated with weight loss (Seemann et al., 2017).  

To confirm the LF diet effect on the barrier function genes, we measured intestinal 

permeability by quantifying FITC-dextran in the serum of mice. LF fed mice (control 

and LPS treated) showed increased FITC-dextran serum concentration compared to 

chow counterparts. The FITC-dextran assay results agreed with Cldn3 and Ocln gene 

expression of the ileum, which suggested a stronger diet effect than low dose LPS 

treatment. Next, we questioned if the LPS treatment influenced nutrient uptake in the 

ileum. In agreement with our first study we observed increased gene expression 

levels of Mgam, Sis and Glut2 in the ileum of LF fed mice and LPS treatment did not 

affect the expression levels of these genes. The ileal expression levels of LPS-TLR4 

driven genes Myd88, Il1b and Tnfα were found to be significantly increased in LF 

LPS compared to chow LPS. Our results suggest that the LPS treatment in LF fed 

mice caused significant intestinal inflammation, which was not observed in chow 

LPS mice. Increased consumption of DF has been reported to reduce the 

concentrations of proinflammatory cytokines associated with age or model of 

endotoxemia, possibly by the anti-inflammatory properties of SCFAs (Matt et al., 

2018; Zhang et al., 2019). However, more work is needed to understand the mode of 

action of SCFAs in the ileal enterocytes. Altogether, our data suggests LPS elicited a 

stronger response in LF fed compared to chow fed mice. The decreased weight gain 

together with greater inflammation response in the liver and ileum of LF group to 

LPS challenge could be attributed to the scarce amount of fibre and increased starch 

and sucrose present in the LF diet.  
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Chapter 4: The response of the ileum to lifelong calorie restriction of 

purified low-fat diet feeding 
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4.1 Introduction 

Calorie restriction (CR) is a dietary regimen that reduces food intake without 

incurring malnutrition. CR has been shown to increase lifespan in a number of 

species ranging from single-celled organisms to mammals (Mair and Dillinas, 2008), 

as well as improve general health and decrease the onset of age-related diseases 

including cardiovascular and neurodegenerative diseases, diabetes and cancer (Most 

et al., 2017). Potential mechanisms associated with metabolic reprogramming may 

contribute to the beneficial health outcomes of CR. Several studies have suggested a 

complex network of signalling pathways, including SIRT1, mTOR, AMPK, IGF-1, 

to contribute towards health benefits of CR (Pan and Finkel, 2017; Komatsu et al., 

2019). Previous studies have provided knowledge into the effects of CR on 

individual organs such as white adipose tissue (Fujii et al., 2019), liver (Rusli et al., 

2017) and colon (Kok et al.,2018).  

Although, the small intestine is a major responsive organ to food, it has not been well 

studied in the context of CR. The ileum is an important part of the small intestine 

because of its crucial homeostatic interactions with a diverse population of 

microbiota and its role in utilising the macro- and micronutrients. CR has been 

shown to alter the level of bile acids in the plasma, liver and small intestine of mice 

(Fu and Klaassen, 2013), which may also be associated with changes in the ileal 

microbiota. Therefore, the limited information on the impact of CR in the ileum 

prompted us to characterise the changes in the ileal microbiota, gene expression and 

bile acid levels in response to short- and long-term CR. In collaboration with the 

group of Dr Wilma Steegenga (Wageningen University, NL), we aimed to investigate 

ileal morphology, ileal gene expression via microarrays, bile acid metabolism and the 

ileal microbiota composition in response to lifelong CR in 6 and 24 months old mice. 

This project is known as the IDEAL study (Integrated Research on Developmental 

Determinants of Ageing and Longevity). The mice in the IDEAL study were fed the 

purified American Institute of Nutrition 93W (AIN-93W) diet which is variant of 

AIN-93M and is similar to the low-fat (LF) diet used in the previous chapter 

(composition of the diet is shown in Methods Table 2.2). The ileal samples from 6 

and 24 months of age gave us the opportunity to differentiate the effects of CR at 

young and old age. The study also provided us with an opportunity to describe the 

long-term effects of LF diet on the ileal microbiota and gene expression during 

ageing.  

In Chapter 3 of this thesis, we have shown differential effects of the two control diets 

on the gut-liver. In line with this, we hypothesised that the compositional differences 

in the chow and LF diet may result in altered gut and liver response to CR. We 

designed a short-term (8 weeks) CR study to compare the effects of CR on two 

different background diets (chow and LF). The study aimed to characterise 

differences in the gut-liver gene expression and bile acids levels in response to CR of 

the chow and LF diet. IDEAL study showed that mice needed approximately 8-10 

weeks to adapt to CR feeding schedule and reach a relatively stable weight. 

Therefore, we chose dietary intervention period of 8 weeks to test the effects of 

‘short term’ CR on the gut-liver axis.  
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4.2 Results 

4.2.1 Physiological effects of long-term CR on the gut and liver of mice 

Adaptations to the CR diet were observed in the weekly body weight measurements. 

At the time of sacrifice lifelong LFCR fed mice showed lower body weight (by 

40±1%, P< 0.0001) compared to the LF control group (Fig. 4.1A). Fat deposition in 

the liver was examined by quantification of the hepatic triglycerides content and 

showed decreased triglycerides levels in the livers of mice exposed to CR compared 

to control diet at 6 and 24 months of age (37.9±0.1%, P=0.01 and 65±0.4%, 

P<0.0001 respectively). Furthermore, we observed 73±0.3% (P=0.001) increase in 

the triglycerides content with age in the control group, whereas, triglycerides content 

was not significantly different between CR6m and CR24m mice (P= 0.2) (Fig. 4.1B).  

Histological analysis with haematoxylin and eosin (H&E) staining of ileum from LF 

and LFCR, 6- and 24 months old mice was performed, and the villi height and crypt 

depth were measured using the Image J software. Our data showed shrinkage of villi 

height by 19±0.04% and 8±0.03% (P= 0.01, 0.04) in CR exposed 6 and 24 months 

old mice compared to respective control group (Fig. 4.1C). Analysis of the crypt 

depth showed expansion by 23±0.04% (P<0.001) in 6m and 36±0.05% (P< 0.0001) 

in 24m old CR fed mice compared to control (Fig. 4.1D). The crypt depth was also 

increased with age in the CR group (15±0.04%, P=0.001), whereas no difference in 

crypt depth was observed with age in the control LF group.  
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Figure 4.1 Body composition of mice in response to lifelong CR. Weekly measurements of body 
weight showed reduction in body weight in the lifelong CR mice (A). CR exposure led to decrease in 
the liver triglycerides content in 6- and 24-months old mice (B). Analysis of villi and crypt lengths in 
the ileum of mice revealed modifications in response to the diet and age (C, D). Micrograph shows 
haematoxylin and eosin (H&E) stained ileum section at magnification 4x and the distance used to 
measure v=villus height and c=crypt depth (E). Significance was tested using 2-way ANOVA with 
Bonferroni post-hoc test for both diet and time (*** = p<0.001, **= p<0.01, *= p<0.05). Values are 
the means ± SEM of n=13-16 mice (Body weight and IHTG) and n=5-6 mice (ileal histological analysis) 
in each group.  LF: low-fat diet ad libitum, LFCR: Calorie restriction of LF diet.  
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4.2.2 Ileal gene expression of lifelong CR exposed mice resembles that of young 

mice 

Gene expression profiles were measured in ileal samples (n=4 per group) to identify 

biological pathways regulated between the diets. A sample from LF24m group was 

excluded due to adipose tissue contamination. At 6 and 24 months, microarray 

analysis revealed 153 and 135 significantly differentially expressed genes (P<0.05) 

between the LFCR and LF control diet exposed mice (Fig. 4.2A). Ingenuity pathway 

analysis (IPA) revealed that affected canonical pathways for the comparison between 

LFCR against LF control were predominantly related to immune responses at 6 

months and cell cycle regulation at 24 months of age. In the top canonical pathways 

B cell development was the major difference between the two diets at 6 months, 

while ‘mitotic roles of Polo-Like kinase’, ‘cell cycle’ and ‘ATM signalling’ were 

mostly affected in 24 months old mice (Fig. 4.2B).  
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Figure 4.2 Gene expression in the ileum of 6- and 24-months old mice fed with LF control and LFCR 
diet. The number of differentially expressed genes at 6 and 24 months based on an intensity based 
moderated (IBMT) P value=0.05 (A). The top 5 canonical pathways revealed by Ingenuity pathway 
analysis (IPA), that were differentially regulated in mice fed the LFCR versus LF control diet at 6 
(black) and 24 months (grey) of age (B). For microarrays analysis n=3-4 in each group. LF: Low-fat 
diet ad libitum, LFCR: Calorie restriction of LF diet.  

 

IPA revealed inhibited activation state (negative Z score) for pathways involved in T 

lymphocytes signalling for comparison of LFCR Vs LF control at 6 months. 

Consistent with the IPA results we observed attenuation of gene expression related to 

inflammation in the ileum of mice exposed to CR diet (various T cell antigen and 

receptor genes, and lymphotoxin beta, Ltb) (Table 4.1). Top 10 genes upregulated 

with 6 months CR diet included; genes involved with inhibition of immune response 

(Nt5e) (Kordaß et al., 2018), B cell development related genes (immunoglobulins 

Iglv1 and 2) (Spencer and Sollid, 2016), cell proliferation related gene (Tppp), 

Lingo4, Col6a3 , Ly96 and lipid metabolism related genes (Acsl3, Lpcat4 and Scd2) 

(GeneCards, 2020). At 24 months, genes related to antimicrobial peptides and cell 

cycle regulation (e.g. Mptx2, Cdca3) were among the most upregulated genes (Table 

4.2). Top downregulated gene included bile acid related gene Fgf15, inflammation 
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related gene Dusp1 (also known as MAPK phosphatase 1, Mkp1), Slfn8, member of 

the epidermal growth factor (EGF) ligand family, Areg (Chen et al., 2018), cancer 

associated gene Sprr1a (Deng et al., 2020), Phlda1 (Kastrati et al., 2015), 

extracellular matrix related gene Fras1 (Beck et al., 2013), microRNA mir1247, 

Sodium/phosphate co-transporter, Slc34a2 and olfactory related gene Vmn2r29. The 

importance of miR-1247, Slc34a2 and Vmn2r29a in the intestine has not yet been 

explored. Full names of the genes in Table 4.1 and 4.2.  

 

Table 4.1 Differentially regulated genes in the ileum for the comparison of LFCR and LF control diet 
at 6 months. The genes were selected based on the most pronounced differential expression (fold 
change of >1.5 from CR6m to LF6m). Significance of change was calculated from the mean signal 
intensities and difference between diet groups was analysed using IBMT statistics implementing 
Bayes correction. N=3-4 per group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 

Gene Description Fold Change Adjusted 
P value 

Top up-regulated genes 

Iglv2 immunoglobulin lambda variable 2 2.5 0.0159 

Nt5e 5' nucleotidase, ecto 2.2 0.0092 

Iglv1 immunoglobulin lambda variable 1 2.1 0.0087 

Tppp tubulin polymerization promoting protein 2.0 0.0066 

Lingo4 leucine rich repeat and Ig domain containing 4 1.9 0.0006 

Col6a3 collagen, type VI, alpha 3 1.9 0.0347 

Ly96 lymphocyte antigen 96 1.9 0.0067 

Acsl3 acyl-CoA synthetase long-chain family member 3 1.9 0.0051 

Lpcat4 lysophosphatidylcholine acyltransferase 4 1.7 0.0069 

Scd2 stearoyl-Coenzyme A desaturase 2 1.7 0.0018 

Top down-regulated genes 

Trgj2 T Cell Receptor Gamma Joining 2 -2.6 0.00125 

Dio1 Deiodinase, Iodothyronine Type I -2.1 0.00318 

Cd79b B-Cell Antigen Receptor Complex-Associated Protein Beta Chain -2.1 0.00227 

Trgj4 T Cell Receptor Gamma Joining 4 -2.0 0.00009 

Tcrg-C4 T cell receptor gamma, constant 4 -1.9 0.00011 

Cd7 CD7 antigen -1.9 0.00060 

Tcrg-C2 T cell receptor beta, constant region 1 -1.9 0.00207 

Trbc1 T cell receptor beta, constant region 1 -1.9 0.00186 

Cd3g CD3 antigen, gamma polypeptide -1.9 0.00024 

Ltb lymphotoxin B -1.8 0.00228 
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Table 4.2 Differentially regulated genes in the ileum for the comparison of LFCR and LF control diet 
at 24 months. The genes were selected based on the most pronounced differential expression (fold 
change of >1.5 from CR24m to LF24m). Significance of change was calculated from the mean signal 

intensities and difference between diet groups was analysed using IBMT statistics implementing 
Bayes correction. N=3-4 per group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 

Gene Description Fold change Adjusted 
 P value 

Top up-regulated genes 

Mptx2 Mucosal pentraxin 2 3.9 5.96E-05 

Defa-rs1 Defensin, alpha, related sequence 1 2.0 0.000366 

Cdca3 Cell division cycle associated 3 1.9 0.000591 

Cdca5 Cell division cycle associated 5 1.8 0.000797 

Utp14b UTP14, U3 small nucleolar ribonucleoprotein, homolog B 1.8 0.004697 

Mmp7 Matrix metallopeptidase 7 1.7 0.003251 

Ang4 Angiogenin, ribonuclease A family, member 4 1.7 0.001653 

Prr11 Proline rich 11 1.7 0.002233 

Aurkb Aurora kinase B 1.7 0.001837 

Ccna2 Cyclin A2 1.7 0.000712 

Top down-regulated genes 

Fgf15 fibroblast growth factor 15 -3.9 0.0097 

Dusp1 dual specificity phosphatase 1 -2.3 0.0028 

Sprr1a small proline-rich protein 1A -2.1 0.0073 

Areg amphiregulin -1.9 0.0088 

Phlda1 pleckstrin homology-like domain, family A, member 1 -1.8 0.0173 

Fras1 Fraser syndrome 1 homolog (human) -1.8 0.0007 

Mir1247 microRNA 1247 -1.8 0.0016 

Slfn8 schlafen 8 -1.7 0.0153 

Slc34a2 solute carrier family 34 (sodium phosphate), member 2 -1.6 0.0117 

Vmn2r29 vomeronasal 2, receptor 29 -1.5 0.0128 
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Figure 4.3 shows various ileal genes implicated in the immune response, cell cycle 

regulation and energy metabolism that were modulated between the diet groups of 6- 

and 24-months old mice. Genes related to Paneth cells (Mptx2, Defa-rs1, defa3, 

Dmbt1) (Fig. 4.3A), cell cycle regulation (Cdca3, Cdca8, Cenpe, Prr1) (Fig. 4.3B) 

were observed to be decreased with age in the LF control group, whereas, no 

significant difference was observed in their gene expression levels between CR6m 

and CR24m old mice.  

Lipid metabolism genes (Acsl3, Scd2, Lpcat4, Elovl6) are suggested to be increased 

in response to CR compared to LF control at both 6m and 24m of age (Fig. 4.3C). 

Genes involved in carbohydrate metabolism (Chrebp, Sis, Khk, Fbp1, Sglt1, Glut2 

and Glut5) were upregulated in the ileum of CR24m compared to CR6m group (Fig. 

4.3D) (Full names of the genes in Table 4.3). Whereas, no such effect on 

carbohydrate metabolism genes was observed between the ages in LF control group. 

Genes related to bile acid metabolism, Fgf15, Asbt and Ostα show a decreasing trend 

with age in CR exposed mice (Fig. 4.3E). Although no difference was observed in 

the gene expression of ileal Fxr, its downstream regulator Fgf15 was significantly 

downregulated in CR24m compared to LF24m old mice. Taken together, 6 and 24m 

CR intervention modulated gene expression of various pathways, however, most 

differences in gene expression were observed in CR24m old mice. Summary of 

statistics in supplementary table 4.1.  
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Figure 4.3 Microarray profiles of differentially regulated genes between diet and age. Genes related 
to Paneth cells (A), cell cycle regulation (B) lipid metabolism (C) carbohydrate metabolism (D) and 
bile acids metabolism (E) in the ileum. Significance was tested using 2-way ANOVA with Bonferroni 
post-hoc test for both diet and time (**= p<0.01, *= p<0.05). Values are the means ± SEM of n=3-4 
mice in each group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 

 

Table 4.3 Full names of the carbohydrate and bile acid metabolism genes regulated during CR. 

Gene abbreviation Full name 

Chrebp Carbohydrate response element binding protein 

Mgam Maltase-Glucoamylase 

Sis Sucrase isomaltase 

Khk Ketohexokinase 

Fbp1 Fructose-1,6-bisphosphatase 1 

Sglt1 Sodium/glucose cotransporter protein 1 

Glut2/5 Glucose transporter 2/5 

Fxr Farnesoid X receptor 

Asbt Apical sodium–bile acid transporter 

Ostα Organic solute transporter alpha 

 

  



79 
 

 

4.2.3 Bile acids in the ileum are decreased as a result of lifelong CR diet 

Since we observed modulation in the expression of genes involved in bile acid 

metabolism, we next measured levels of bile acids in the ileum samples from the diet 

groups at 6 and 24 months of age. We did not observe a significant difference in total 

bile acid levels between LF and CR mice at both timepoints (P= 0.5 and P=0.1 at 6 

and 24 months respectively). The total bile acid levels were significantly decreased 

with age (by 74±591%, P= 0.005) in CR24m compared to CR6m mice (Fig. 4.4A). 

Deeper analysis of individual bile acids revealed significant decrease in most major 

bile acids, primary bile acids: βMCA (P= 0.04), CA (P= 0.03), TβMCA (P= 0.01), 

TCA (P= 0.01), and secondary bile acids: TDCA (P= 0.02), and TUDCA  (P= 0.04) 

in response to 24m CR (Fig. 4.4B).  
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Figure 4.4 Bile acids were measured in ileal tissue samples from LF and LFCR diet fed mice at 6 and 
24 months. Total bile acids (A), Individual bile acid profiles, Primary bile acids: αMCA, βMCA and CA, 
taurine conjugated primary bile acids: TαMCA, TβMCA and TCA, secondary conjugated bile acids: 
TDCA and TUDCA, secondary unconjugated bile acid: DCA (B). Significance was tested using 2-way 
ANOVA with Bonferroni post-hoc test (*= p<0.05). Values are the means ± SEM of n=4-6 mice in each 
group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 
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4.2.4 Calorie restriction of the LF diet alters the microbiota profile in the ileum 

The microbial 16S rRNA sequencing analysis was performed on samples from the 

ileal content of mice. The groups contained sample size of n=4-6. A sample from 

CR24m (m6) was excluded from the analysis by performing the Grubbs' outliers test 

at the genera level. Differences in overall microbiota communities (β diversity) were 

determined by Bray-Curtis Index. Permutational multivariate analysis of variance 

(PERMANOVA) test found that microbiota communities differed significantly 

between LF and CR condition (R: 0.83; P < 0.003) in 6 months old mice. However, 

the microbiota differences by diet are not as pronounced in 24 months old mice 

(PERMANOVA, R:0.16; P<0.2) (Fig. 4.5A and B). Examination of α diversity by 

observed species and Shannon index showed similar diversity between the groups 

(Fig. 4.5C). 

We identified specific taxa (at the phylum to genus level) that changed with CR at 

the different time points (Fig. 4.5D). Mice were individually housed throughout the 

course of the study to eliminate cage effects and coprophagy. The abundance of 

Firmicutes and Bacteroidetes was observed to be similar among the diet and age 

groups (P >0.1). We observed an increase in the abundance of Actinobacteria 

(80±1.3%, P= 0.01) in CR6m compared to LF6m mice. The levels of Actinobacteria 

were decreased with age in CR exposed mice (91±1%, P=0.007), whereas no 

difference was observed in Actinobacteria levels between LF6m and LF24m mice.   

A decrease in the abundance of Proteobacteria (70±0.2%, P= 0.02) was observed in 

CR6m compared to LF6m mice, while the levels of Proteobacteria were not changed 

with age in control LF or CR exposed mice.  

The different genera present in the ileum of each mouse was examined to provide a 

more in-depth observation into the ileum microbiota. The profiles of genera present 

are shown for each individual mouse and show clear differences between LF and CR 

fed mice (Fig. 4.5E). At 6 months, genera within Firmicutes including Allobaculum 

(99% similar to Faecalibaculum) and unknown Clostridiaceae (similar to 

Romboutsia) were shown to be highly abundant in the LF compared to CR fed mice 

(P= 0.004 and P=0.02 respectively). Within the CR6m group, there was an increasing 

trend in the abundance of Lactobacillus (phylum Firmicutes) and Bifidobacterium 

(phylum Actinobacteria) in the ileum (P= 0.001 and P=0.05 respectively) (Table 

4.4). At the age of 24 months, we observed an increasing trend in the abundance of 

Lactobacillus in the CR mice, although it did not reach significance (P= 0.1) (Table 

4.5).  
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Figure 4.5 Microbiota composition in the ileum is different between LF and CR fed mice. PCoA plots 
show the separation of the two diet groups (β diversity) which is most prominent at 6 months of age 
(A and B). Alpha diversity was calculated by observed species and Shannon diversity score (C). 
Phylum levels show differentially distinct profiles with more Actinobacteria in the CR fed mice (D). 
Genera abundance in the ileum are presented for each individual mouse, showing a clear difference 
between the diets (E). Significance in β diversity was calculated by PERMANOVA tests. Significance 
for α diversity measures was tested using Kruskal-Wallis statistical test. N= 4-6 for each group. LF: 
Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 
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Table 4.4 Summary of changes in the abundance at the genus level between LF and LFCR at 6 months. 
Significant difference between the groups was calculated by unpaired t-test. Values are the means 
of n=5-6 mice in each group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 

Genera Mean LF Mean LFCR SE of 
difference 

P value 

Akkermansia 1.67 1.60 1.08 0.95 

Allobaculum 59.3 14.40 11.79 **0.004 

Bifidobacterium 2.33 15.40 5.83 0.05 

Lactobacillus 6.50 64.20 11.73 **0.001 

Unknown Clostridiaceae 22.8 2.00 7.01 *0.02 

  

Table 4.5 Summary of changes in the abundance at the genus level between LF and LFCR at 24 
months. Significant difference between the groups was calculated by unpaired t-test. Values are the 
means of n=4-5 mice in each group. LF: Low-fat diet ad libitum, LFCR: Calorie restriction of LF diet. 

Genera Mean LF Mean LFCR SE of 
difference 

P value 

Akkermansia 0.25 0.50 0.47 0.61 

Allobaculum 30.00 29.33 21.26 0.98 

Bifidobacterium 0.50 0.83 0.55 0.56 

Lactobacillus 8.75 26.6 10.7 0.13 

Unknown Clostridiaceae 23.8 20.5 12.8 0.8 

 

4.2.5 Impact of short-term CR on the gut-liver axis of mice under chow and LF diet 

Next, we performed a short term (8 weeks) study to observe the initial effects of CR 

on the gut-liver axis. In addition to CR on the purified LF diet (LFCR), we included a 

group of chow calorie restriction (chowCR) to investigate the response to CR on 

different diet background on the gut-liver axis. To determine the physiological 

features of mice after exposure to the CR diet, body weight was recorded twice a 

week. As expected, the average body weight of CR mice was lower than control mice 

in both diet groups. At the end of 8 weeks, the body weights of chowCR mice was 

20±0.8% lower (P< 0.0001) compared to chow ad libitum fed mice, and the average 

body weight of LFCR mice at the time of sacrifice was 16±0.4% (P< 0.0001) lower 

than the control LF fed mice (Fig. 4.6A). Figure (4.6B) shows the calculated average 

daily caloric intake of one mouse per day, which was reduced by 30±0.4% in the CR 

mice compared to their control counterparts. Triglyceride content levels in the liver 

showed a decreasing trend in chowCR mice (reduced by 27±0.1%, P=0.1) compared 

to chow control, whereas this effect was more pronounced in the LFCR group when 

compared to LF control (decreased by 67±0.1%, P= 0.005) (Fig. 4.6C). We did not 

observe changes in the ileal villi height and crypt depth in response to CR in chow or 

LF diet groups (Fig. 4.6D and E).  
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Figure 4.6 Effects of CR intervention on physiological parameters under chow and LF conditions. 
Weekly measurement of body weight (A). Calorie intake measurements of chow and LF and their 
calorie restricted groups (B). Liver triglycerides content is reduced in CR groups (C). Villi height and 
crypt depth was measured in the ileum of mice (D and E). Significance was tested using 2-way 
ANOVA with Bonferroni post-hoc test (**= p<0.01, *= p<0.05). Values are the means ± SEM of n=5 
(control group) and 6-7 (CR group) mice in each group. Mice in the CR group were divided into two 
cages (as 3-4 mice per cage), calorie intake was measured per cage and divided by 3-4 to calculate 
the intake of one mouse. LF: Low-fat diet ad libitum, CR: Calorie restriction. 
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4.2.6 Effect of CR on total bile acid levels in different compartments of the 

enterohepatic circulation 

Due to the difference in ileal bile acids observed in the long-term CR study, we next 

examined the changes in bile acid levels in the organs involved in enterohepatic 

circulation (ileum and liver) in the present study. Total bile acids were measured in 

the ileum and liver samples from the mice in all the diet groups (Fig. 4.7A). In the 

ileum, we observed increased total bile acid levels in LF compared to chow mice 

(49±0.2%, P= 0.04), and increased levels of total bile acids in LFCR compared to 

chowCR mice (44±0.3%, P= 0.03). We did not observe changes in the total ileal bile 

acid levels between control and their CR counterpart for both chow and LF group 

(P>0.5). In the liver, total bile acid levels were similar among chow and chowCR 

groups (P >0.5), whereas, the LFCR showed a trend towards increased total liver bile 

acids compared to LF control diet fed mice (27±0.4%, P= 0.1).  

The expression of genes related to bile acid metabolism in the ileum and liver 

samples from mice was quantified by quantitative polymerase chain reaction (q-

PCR). In the chow fed mice, CR intervention did not change the gene expression 

levels of Fgf15, Fxr and bile acid transporter, fatty acid binding protein 6, (Fabp6) in 

the ileum (Fig. 4.7B). Whereas CR on the LF diet significantly reduced the 

expression of Fgf15 in the ileum (by 74±0.6%, P= 0.004). The gene expression of 

Fxr and Fabp6 was not altered in response to the LFCR intervention (Fig. 4.7B).  

In the liver, the gene expression of rate limiting bile acid synthesis enzyme 

cholesterol 7 alpha-hydroxylase, (Cyp7a1) was significantly increased in mice fed 

with chowCR (by 53±0.4%, P= 0.04). Whereas, the gene expression of bile acid 

receptor Fxr, its target, small heterodimer partner (Shp), and fibroblast growth factor 

receptor 4 (Fgfr4) the receptor for FGF15 were not changed in the liver of chow fed 

mice exposed to CR (Fig. 4.7C). The bile acid transporters, Na+-taurocholate 

cotransporting polypeptide and bile salt export pump (Ntcp and Bsep) were not 

altered in the livers of chowCR compared to chow control diet fed mice. In the LF 

group, the gene expression levels of Cyp7a1, Fxr, Shp, Fgfr4, Ntcp and Bsep were 

not observed to be different between the CR and control LF diet group (Fig. 4.7C).  
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Figure 4.7 Bile acid metabolism in response to CR on chow and LF background diet. Total bile acids 
were measured in the ileum and liver of mice from all diet groups (A). Expression levels of bile acid 
metabolism related genes in the ileum (B) and liver of mice (C). Significance was tested using 2-way 
ANOVA with Bonferroni post-hoc test (**= p<0.01, *= p<0.05). Values are the means ± SEM of n=5-
7 mice in each group. LF: Low-fat diet ad libitum, CR: Calorie restriction. 
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4.2.7 Response of metabolic homeostasis related genes to CR differed in chow and 

LF conditions 

CR resulted in increased gene expression of ileal glucose transporters Glut2 

(83±1.2%, P= 0.003), Glut5 (33±0.1%, P= 0.01), and carbohydrate enzyme Sis 

(54±0.6%, P= 0.04) in the ileum of chowCR mice compared to chow control. CR 

under the LF diet condition, also resulted in an increasing trend for the expression of 

ileal carbohydrate metabolism genes, however this increase did not reach 

significance (P values for Glut2: 0.1, Glut5:0.1, Mgam:0.5 and Sis 0.5) (Fig. 4.8A). 

Under the chow diet condition, genes in the liver related to lipogenesis were not 

altered by CR (P > 0.5) (Fig 4.8B). While, the gene expression of peroxisome 

proliferator activated receptor alpha (Pparα) which is the main controlling factor for 

fatty acid oxidation and its target, cluster of differentiation 36 (Cd36) were found to 

be increased in the livers of chowCR compared to chow control diet fed mice 

(42±0.2%, P=0.03 and 50±0.3%, P=0.03 respectively). LFCR diet led to an increase 

in the lipogenic gene expression in the liver, fatty acid synthase (Fasn) and acetyl-

coA carboxylase (Acaca) were increased in the LFCR compared to LF control fed 

mice (by 75±0.5%, P= 0.01 and 67±0.2%, P=0.0002). In agreement with our 4 weeks 

chow Vs LF study, the gene expression of liver Fgf21 was increased in response to 

the LF compared to chow diet (79±0.7%, P= 0.001). Whereas, Fgf21 levels were 

significantly decreased in response to CR under the LF diet condition (65±0.7%, 

P=0.001). Furthermore, the gene expression of sirtuin 1 (Sirt1) (35±0.8%, P= 

0.0007), Pparα (45±0.3%, P=0.01) was significantly increased in LFCR fed mice. 

The gene expression of Cd36 was not altered in response to LFCR compared to LF 

control diet fed mice (P >0.5).  
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Figure 4.8 Differential effect of CR on the energy metabolism gene expression in chow and LF fed 
mice. Carbohydrate metabolism genes in the ileum (A), and lipid metabolism genes in the liver (B) 
were tested by qPCR. Significance was tested using 2-way ANOVA with Bonferroni post-hoc test (**= 
p<0.01, *= p<0.05). Values are the means ± SEM of n=5-7 mice in each group. Qpcr: Quantitative 
polymerase chain reaction. LF: Low-fat diet ad libitum, CR: Calorie restriction. 
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4.3 Discussion 

In this chapter we have presented changes in the gene expression profile and 

microbiota composition of the ileum in response to long-term feeding of the LF diet. 

We also show that CR intervention on the LF diet background prevented these age-

related changes induced by purified diet.   

Fasting and feeding may induce structural alterations in the intestine, such as changes 

in villi height and crypt depth. Our results showed increased crypt depth in the ileum 

in response to 6 and 24 months intervention of CR. These results are consistent with 

research carried out by Yilmaz et al. (2012) that report crypt expansion in the small 

intestine of mice that were subjected to CR for 7 months, the authors propose 

increased crypt size resulted from increased number of stem cells per crypt in 

response to CR.   

Gene expression profiling of ileum samples showed decreased expression of Paneth 

cells and cell cycle regulation related genes in LF24m compared to LF6m mice, 

whereas expression of these genes remained unaffected with age, between CR6m and 

CR24m mice. Paneth cells release stimulatory factors for intestinal stem cells growth 

and secrete antimicrobial peptides to provide host defence against pathogens (Yilmaz 

et al., 2012). Our results suggest reduced function of Paneth cells in aged mice may 

be due to age associated decline in intestinal regenerative capacity and organ 

maintenance (Nalapareddy, et al., 2018). Moreover, research has shown changes in 

gut microbiota with age (Langille et al., 2014; Kok et al., 2018), therefore the 

decrease in the expression of antimicrobial peptides (Mptx2, Defars1, Defa3, and 

Dmbt1) may be an adaptive response to the age-associated changes in microbiota 

described in this chapter. Further analysis to quantify the number of Paneth cells per 

crypt by lysozyme or MMP7 staining in the aged ileum on control and CR diet will 

provide more information on the effect of age and CR intervention. We were unable 

to perform lysozyme immunohistochemistry analysis due to the limited ileum tissue 

available for this study.  

We observed decreased expression of cell cycle regulatory genes (Cdca3, Cdca8, 

Cenpe and Prr1) upon ageing under control LF diet, whereas long-term CR resisted 

this decline in cell cycle genes and resembled the gene expression levels of young 6 

months old mice. Nalapareddy et al. (2018) reported downregulation of cell 

proliferation genes as a consequence of reduced canonical Wnt signalling in 

intestinal stem cells during ageing. CR has been shown to increase the number of 

proliferating stem cells in the intestinal crypt base, in response to signals sent from 

neighbouring Paneth cells that sense nutrient availability (Igarashi and Guarente, 

2016; Yilmaz et al., 2012). Therefore, the increase in cell cycle regulation gene 

expression levels indicates enhanced regenerative capacity of the aged CR 

epithelium. CR has been shown to reduce the accumulation of DNA damage that 

occurs during ageing and thus prevent diseases such as age-related cancer. Bruens et 

al. (2020) has recently shown that damaged and less fit cells in the intestinal 

epithelium have reduced chance of survival under CR conditions due to competition 

by CR-induced stem cells which promote the elimination of mutated and weak cells. 

In line with the studies mentioned, we also observed increased gene expression of 
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cell regulators, which might be one of the mechanisms that drives intestinal tissue 

health and increased lifespan of CR mice as observed in the IDEAL study (Rusli et 

al., 2015; Kok et al., 2018).  

Interestingly, we observed increased expression of genes involved in lipid and 

carbohydrate metabolism under long-term CR. A possible explanation for this effect 

is that the limited access to food during CR conditions can enhance the capacity of 

the ileum to uptake nutrients leading to increased gene expression of glucose sensing 

transcription factor Chrebp, disaccharidase Sis, fructose metabolism Khk and Fbp1, 

and glucose transporters Sglt1, Glut2 and Glut5 (Peña-Villalobos et al., 2019). The 

gene expression of PPARγ and PPARα targets involved in lipid metabolism Acsl3, 

Scd2, Lpcat4 and Elovl6 was increased in response to CR. Similar to our findings, 

Duszka, et al. (2016) showed increased expression of PPARγ target genes in the 

intestine of mice exposed to two weeks, 25% CR. These data suggest mechanisms 

through which PPARs may contribute to energy mobilization during metabolically 

stressful conditions as CR.  

Bile acid metabolism has been previously shown to be influenced by CR (Fu and 

Klaassen, 2013; Green et al., 2018) which may directly impact lipid, glucose, and 

energy metabolism, however the effect of CR on bile acid levels and metabolism in 

the ageing ileum is still scarcely known. Our results show a significant decrease in 

the gene expression of Fgf15, Asbt and Ostα with age in the CR mice. In line with 

this, we also observed decreased total and major individual bile acids including 

secondary bile acid DCA in CR24m mice compared to LF24m mice. Secondary bile 

acid, DCA is generated by the gut microbiota, increased DCA in intestine may 

induce inflammatory signalling that is associated with the development of cancer, 

therefore reduction in DCA levels may be one of the mechanisms that promotes 

healthy gut ageing under CR conditions (Wang et al., 2020). In agreement with 

previous research on the impact of CR on enterohepatic circulation (Fu and Klaassen, 

2013; Green et al., 2018), our results showed that CR6m mice tended to have 

increased levels of primary bile acids, βMCA, CA and TCA in the ileum compared to 

6 months old mice on the control diet. Bile acids in the ileum are known to promote 

lipid breakdown and therefore increased levels of bile acids may promote enhanced 

lipid absorption and metabolism from the limited nutrients present under CR 

conditions. Ageing is associated with decreased activity of enzymes related to bile 

acid synthesis pathway (De Guzman et al., 2013). Although, we observed decreased 

levels of ileal bile acids in response to 24 months of CR feeding, microarrays data 

from the liver samples of this study showed significantly increased gene expression 

of Cyp7a1 and Cyp8b1 enzymes (Supplementary Fig. 3.4) involved in bile acid 

synthesis pathway in CR24m compared to LF24m mice, indicating that CR prevents 

the decline of the bile acid synthesis pathway with age.  

We observed distinct microbial profiles in the ileum of young mice exposed to CR 

compared to the control group. Intervention with 6 months of CR resulted in 

increased abundance of beneficial bacteria, Bifidobacterium and Lactobacillus. The 

difference in ileal microbiota composition of old mice in response to CR was not as 

profound as that noticed in young mice, and we observed substantial variation among 
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the mice. Despite variation, we observed increased presence of Lactobacillus in the 

CR24m group compared to LF24m, wherein the Lactobacillus seemed to be absent. 

The effects of increased abundance of Lactobacilli and Bifidobacteria have been 

extensively researched to show associated improvement of intestine mucosal 

physiology and regulation of the host innate and adaptive immunity (Pyclik et al., 

2020).  

Research on the impact of CR on mouse physiology is often performed on different 

background diets, for instance, Green et al. (2018) used high carbohydrate purified 

control diet (based on the LF diet) to assess the role of CR on the body composition 

and global metabolomic changes, whereas, Gibbs et al. (2018) used a background 

chow diet to investigate the metabolomic profiles of C57BL/6J mice exposed to CR. 

The compositional differences in the diet may result in differential effects of CR on 

the metabolomics profiles, other factors such as length of time and grade of CR 

should also be considered. 

To test our hypothesis, we performed a preliminary 8 weeks CR study based on chow 

and LF diet background in order to characterise differences in the gene expression 

and bile acids levels in the gut and the liver. Under CR conditions, the mice from 

both diet groups lost weight in the first 2 weeks, and the body weight seemed to 

plateau in the remaining weeks, which may indicate a state of energy balance in the 

CR mice (Guijas et al., 2020). We have previously observed increased liver 

triglyceride levels in response to 4 weeks feeding with the LF compared to chow diet. 

This effect was reproduced in the current study with 8 weeks LF feeding, while, 

intervention with LFCR successfully decreased liver triglyceride levels. One of the 

reasons for this may be the reduced amount of refined carbohydrates presented 

during CR feeding.  

We observed an increase in the total ileal bile acids in LF and LFCR fed mice 

compared to chow and chowCR respectively, which indicates a stronger LF effect 

rather than CR. We did not observe differences in the total bile acids in the liver 

among the diet groups. However, we observed a decrease in Fgf15 gene expression 

in the ileum of LFCR compared to LF mice, whereas no difference in its gene 

expression was observed between chow and chowCR. Blokker et al. (2019, PhD 

thesis) has indicated that the induction of Fgf15 expression may be associated with 

increased glucose concentration in the ileum, in the context of high carbohydrate 

diet. Therefore, the reduced expression of Fgf15 in LFCR mice may be a result of 

low glucose concentration present in the ileum during CR conditions. 

Although, we did not observe changes in the total bile acid levels in the liver of chow 

and chowCR mice, the expression of Cyp7a1 was increased in response to chowCR 

diet. While, this effect was not observed in LFCR compared to LF fed mice. The 

increased expression of liver Cyp7a1 in the LF mice despite increased Fgf15 

expression in the ileum might be due to the possible fasted state of LF mice as fasting 

of mice has been known to induce Cyp7a1 expression in the liver (Ikeda et al., 2014). 

On the morning of the sacrifice day, we found the food hopper of the LF group to be 

empty. We are uncertain on the duration of fasting for the LF mice, as the hopper 

contained some food on the eve of the sacrifice day. We also observed large variation 
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in the expression of ileal Fgf15 and liver Cyp7a1 in the LF group, although, the mice 

with low expression of ileal Fgf15 negatively correlated with liver Cyp7a1 

expression. The variation maybe explained by dominance hierarchies within the 

cage, when mice compete for access to limited food (Varholick et al., 2019).  

Similar to our previous 6 and 24 months CR study, we observed increased expression 

of ileal carbohydrate metabolism genes in response to chowCR and LFCR, which 

may be an adapting mechanism to low nutritional state of these mice. In agreement 

with research that shows increased fatty acid β oxidation under CR condition (Green 

et al., 2018), we observed an increase in the hepatic expression of Sirt1, Ppara and 

Cd36 in response to the CR intervention. Increased β oxidation of fatty acids in CR 

mice indicate increased breakdown of lipids for energy to maintain stable weight.  

Surprisingly, we observed increased expression of lipogenic genes Fasn, and Acaca 

in the liver of LFCR mice compared to LF. This effect was not observed between 

chow and chowCR mice. We believe that the increased expression of liver lipogenic 

genes may be LF diet exclusive effect, since we also observed increased expression 

of Srebp1, Fasn and Acaca in the liver of CR6m, and CR24m mice (Microarrays data 

from IDEAL, Supplementary Fig. 3.4). The increase in the hepatic lipogenic gene 

expression did not correlate with the triglyceride levels in the liver. Therefore, we are 

unsure if the increased hepatic lipogenic gene expression is an adaptive effect of 

LFCR. 

We did not take into account the role of circadian rhythm during the CR studies. The 

CR mice were fed at 15:30 every day, which may be a different feeding time 

compared to control mice, as ad libitum fed mice have been known to become active 

in the dark cycle after 19:30 (Ellacott et al., 2010). Changes in the diet intake pattern 

due to the fact that the CR mice received their daily food at one timepoint, that was 

rapidly consumed may also have an effect on the metabolic genes in the gut and the 

liver (Yamamuro et al., 2020). Therefore, a repetition of this experiment with 

controlled environmental factors, such as feeding of CR mice at night time (20:00 or 

21:00) and well stocked food hoppers for control groups, is required to further 

understand the changes in nutrient metabolism gene expression as well as bile acid 

metabolism.  
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Chapter 5: Addition of dietary fibres (DF) improves the low-fat diet 

induced liver phenotype 
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5.1 Introduction 

Increased de novo lipogenesis in hepatocytes is a typical feature of non-alcoholic 

fatty liver disease (NAFLD). The pathology of NAFLD can be negatively influenced 

by dietary components such as higher intake of refined carbohydrates (starch, 

sucrose), and decreased consumption of dietary fibres (DF) (Romero-Gómez et al., 

2017; Worm, 2020). Preclinical studies report microbiota disturbances and increased 

intestinal permeability to be associated with NAFLD (Luther et al., 2015). Indeed, in 

our previous chapters we have reported that 4 and 8 weeks feeding of mice with the 

purified high refined carbohydrate LF diet resulted in hepatic lipid deposition and 

changes in the ileal microbiota composition compared to a fibre rich chow diet. The 

liver and the ileum are connected via the enterohepatic circulation of bile acids, 

therefore, any disturbance in the ileal microbiota are likely to influence the 

functioning of the liver. The pathophysiology of NAFLD is highly complex and 

involves numerous pathways including the inflammation of the adipose tissue and 

gastrointestinal dysbiosis (Tilg et al., 2020). In the recent years, the technological 

advancement for microbiome analysis has driven researchers to study the interactions 

between the gut microbiota and dietary factors that influence NAFLD (Aron-

Wisnewsky et al., 2020).  

DF are known to improve metabolic diseases such as NAFLD through regulation of 

glucose and cholesterol metabolism and decreased gut and systemic inflammation 

(Hamaker and Cantu-Jungles, 2020, Shtriker et al., 2018). The underlying 

mechanisms for these health effects have been suggested to be associated with 

decreased gastric emptying, altered composition of the gut microbiota and SCFAs 

(Makki et al., 2018; Canfora et al., 2019). Consumption of DF alters the niche 

environment in the gut lumen by providing substrates for microbial growth, thereby, 

enhancing the abundance of bacterial species that are able to utilize these DF 

(Deehan et al., 2017). For example, inulin has been known to induce the abundance 

of Bifidobacteria levels that possess enzymes to efficiently utilise this substrate. 

Increased abundance of Bifidobacteria is strongly correlated with reduced 

endotoxemia and improved glucose tolerance (Cani et al., 2007). Further, DF have 

been reported to play a part in regulating and maintaining host immune system via 

SCFAs as well as microbiota independent effects (Makki et al., 2018). Despite the 

abundant research on the beneficial effects of DF, the mode of action of structurally 

different DF on the gut-liver axis (specifically the ileum) remains unclear. 

In the current study we fed mice five different diets with varying types of DF for the 

duration of 10 weeks. The mice were fed with chow (16% fibre), LF (5% non-soluble 

fibre), LS (LF diet with reduced sucrose content, 5% fibre), LS enriched with inulin 

(LS+In, 11.3% fibre) and LS enriched with a combination of inulin, pectin and 

psyllium (LS+Comb, 11.3% fibre). We hypothesised that a higher sucrose content 

was one of the major drivers for LF induced liver phenotype (Jang et al., 2018). 

Hence, we aimed to prevent the detrimental effects of the LF diet by reducing the 

content of sucrose from 17% in LF to 7% in the new LS diet (sucrose was 

compensated with starch). Further, we enriched the LS diet with DF to investigate 

their effect on the gut-liver axis. The fibres were chosen due to their popularity as 

prebiotic supplements and applications in modern food products such as dessert pots, 
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milkshakes, and readymade meals (Capuano, 2017). The first aim of this study was 

to investigate the effects of reduced sucrose and addition of DF in the LS diet on the 

pathophysiology of gut-liver axis. Secondly, we hypothesised that the varying 

structure of DF used in our new diets may result in different gut microbiome 

outcomes due to bacteria having distinct specificities to different chemical and 

physical structures (Singh and Vijay-Kumar, 2020). Therefore, we also aimed to 

describe the effects of different DF on the ileal gene expression and microbiota 

profile. To fulfil this aim, we performed RNA sequencing and 16S rRNA sequencing 

on ileal tissue and luminal content samples from chow, LS, LS+In and LS+Comb 

groups.   
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5.2 Results 

5.2.1 Addition of DF mitigates LF induced triglyceride accumulation in the liver  

At the end of the experiment the LF fed mice showed increased trend in weight gain 

compared to chow (26± 0.9%, P=0.1), LS, LS+In and LS+Comb fed mice (30± 

0.9%, P=0.05; 41 ±0.8, P=0.002; 55 ±0.8%, P=0.001 respectively) (Fig. 5.1A and B). 

The food intake did not differ between the diet groups (Fig 5.1C). To investigate the 

morphological differences between the diet groups, we measured the small intestine 

length of mice immediately after sacrifice to show increased length in the LS+In and 

LS+Comb group compared to LS (9 ±1%, P=0.01; 16.6 ±1%, P=0.01 respectively) 

(Fig. 5.1D). We did not observe a significant difference between the liver to body 

weight ratio of mice in the different diet groups (Fig. 5.1E).  

Due to the previously observed effects of the LF diet on the liver phenotype, we 

investigated if reduced sucrose content and addition of fibres prevented the 

development of this pathophysiological phenotype. We observed an increase in the 

liver triglycerides content of mice fed with the LF and an increasing trend for the LS 

diet (68 ±0.7%, P=0.001 for LF and 55 ±0.3%, P=0.1 for LS) compared to the chow 

group (Fig. 5.2A). The reduced sucrose content in the LS diet resulted in decreasing 

trend of liver triglycerides levels compared to LF diet (28±0.5%), however, the 

difference was not significant P>0.5. The reduced sucrose content and addition of 

fibres resulted in a significant decrease in liver triglycerides content in LS+In and 

LS+Comb compared to LF diet group (59 ±0.5%, P=0.01, similar percentage 

decrease in both fibre groups).  Moreover, the analysis of livers in LS+In and 

LS+Comb groups suggested lower triglycerides levels compared to the LS diet 

(43±0.5%, P=0.2) (Fig. 5.2A). The expression analysis of lipogenic genes sterol 

regulatory element-binding protein 1 (Srebp1) and acetyl-coA carboxylase (Acaca) in 

the liver coincided with triglyceride levels to show significantly increased expression 

in the LF and LS group compared to chow (Srebp1: 78±0.6%, 41 ±0.3%, P<0.001; 

Acaca: 124±0.6% ,70±1%, P<0.001, LF and LS respectively). The gene expression 

of Srebp1 was significantly decreased with the LS enrichment of fibres by 44 ±0.2% 

P<0.001 for LS+In and 52 ±0.2%, P<0.001 in LS+Comb compared to LS group (Fig. 

5.2B). While, the gene expression of Acaca was decreased by 49 ±0.3%, P=0.01 for 

both LS+In and LS+Comb groups compared to LS. The gene expression of 

ketohexokinase (Khk) was measured to show a trend towards increase in the LF 

compared to other groups, although, it did not reach significance (P=0.3). The 

expression of Khk was found to be decreased in the LS+Comb group compared to LF 

(71±0.2%, P=0.02). Figure 5.2 C ,D, E and F shows haematoxylin and eosin (H&E) 

stained liver samples of mice fed the different diets, although LF and LS diet both 

revealed accumulation of lipid droplets, the histology of LF liver sections shows 

presence of monocytes which indicates inflammation in the liver. In agreement with 

the triglycerides content and lipogenic gene expression, the reduced sucrose content 

with addition of fibres in the LS diet showed improved liver morphology. 
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Figure 5.1 The effect of diets on body composition. Mice were fed with chow, LF, LS, LS+In and 
LS+Comb diet, body weight was measured every week for 10 weeks (A). After 10 weeks feeding, we 
analysed, body weight gain (B) the amount of calories consumed per day per mouse (C), small 
intestine length (D), and liver weight (g) relative to body weight (g) ratio of mice (E). Significance 
was tested using 1-way ANOVA with Tukey’s multiple comparison test (*** = p<0.001, **= p<0.01, 
*= p<0.05). Values are the means ± SEM of n=10 mice in each group. Mice per group were divided 
into two cages (as 5 mice per cage), calorie intake was measured per cage and divided by 5 to 
calculate the intake of one mouse. LF: Low-fat diet, LS: Low sucrose version of LF diet, LS+In: LS diet 
enriched with inulin, LS+Comb: LS diet enriched with a combination of fibres. 
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Figure 5.2 The effect of diets on the liver phenotype of mice. Liver phenotype was examined by 
quantification of liver triglyceride levels (A), expression analysis of lipogenic gene in the liver (B). 
Significance was tested using 1-way ANOVA with Tukey’s multiple comparison test (*** = p<0.001, 
**= p<0.01, *= p<0.05). Values are the means ± SEM of n=9-10 mice in each group. LF: Low-fat diet, 
LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with 
a combination of fibres. 
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Figure 5.2 (Cont.) The effects of diets on the liver phenotype of mice. Liver phenotype was examined 
by histological analysis via haematoxylin and eosin (H&E) staining of livers from mice fed the LF (C), 
LS (D), LS+In (E) and LS+Comb (F) diets (Magnification 10x). LF: Low-fat diet, LS: Low sucrose version 
of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with a combination of fibres. 
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5.2.2 Addition of DF upregulates the expression of ileal carbohydrate metabolism 

genes 

Ileal gene expression was quantified by quantitative polymerase chain reaction 

(qPCR) (Fig. 5.3A). Both LF and LS diet led to an increase in the expression of 

maltase-glucoamylase (Mgam), sucrase-isomaltase (Sis) and glucose transporter 2 

(Glut2) compared to chow (P<0.05). The reduced sucrose content in the LS diet, did 

not affect the expression levels of carbohydrate related genes compared to the LF 

diet. Interestingly, we observed an increase in the carbohydrate metabolism genes in 

the fibre groups compared to chow fed groups (P<0.001) and an increasing trend 

compared to the LS group (P=0.1 for Mgam and Sis, P=0.01 for Glut2) (Summary of 

statistics in Table 5.1). The barrier function was analysed by testing the gene 

expression of claudin 3 and occludin (Cldn3 and Ocln) (Fig. 5.3B). LF and LS diet 

led to decreased Cldn3 and Ocln expression compared to chow (33 and 27±0.1, LF 

and LS respectively, P<0.03). Addition of fibres in LS+In and LS+Comb diet did not 

significantly improve Cldn3 gene expression. We noticed an increasing trend in Ocln 

gene expression in the fibre groups, however, the difference did not reach 

significance compared to LF and LS diet groups (P>0.05). We observed increased 

gene expression of Fgf15 in both LF and LS diet groups (P<0.02). Whereas, the 

Fgf15 gene expression was significantly decreased with the addition of fibres to the 

LS group in both LS+In and LS+Comb (Summary of statistics in Table 5.1).  
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Figure 5.3 Qpcr gene expression analysis of ileum. Significance was tested using 1-way ANOVA with 
Tukey’s multiple comparison test (*** = p<0.001, **= p<0.01, *= p<0.05). Values are the means ± 
SEM of n=9-10 mice in each group. Qpcr: Quantitative polymerase chain reaction. LF: Low-fat diet, 
LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with 
a combination of fibres. 
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Table 5.1 Summary of statistics for ileal gene expression analysis. Significance was tested using 1-
way ANOVA with Tukey’s multiple comparison test. Values are the means of n=9-10 mice in each 

group. LF: Low-fat diet, LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, 
LS+Comb: LS diet enriched with a combination of fibres. 

Test details Mean 1 Mean 2 SE of diff. 
 

P Value 

Mgam      

chow vs. LF 1.0 2.4 0.5 * 0.05 

chow vs. LS 1.0 2.3 0.5 * 0.05 

chow vs. LS+In 1.0 3.3 0.5 *** 0.0005 

chow vs. LS+Comb 1.0 3.2 0.5 *** 0.0009 

LS vs. LS+In 2.3 3.3 0.5 ns 0.1 

LS vs. LS+Comb 2.3 3.2 0.5 ns 0.1 

Sis 
     

chow vs. LF 1.0 2.5 0.5 * 0.04 

chow vs. LS 1.0 2.6 0.6 * 0.04 

chow vs. LS+In 1.0 3.8 0.5 **** 0.0001 

chow vs. LS+Comb 1.0 3.3 0.5 ** 0.001 

LS vs. LS+In 2.6 3.8 0.5 ns 0.07 

LS vs. LS+Comb 2.6 3.3 0.6 ns 0.1 

Glut2 
     

chow vs. LF 1.0 7.4 1.5 *** 0.0008 

chow vs. LS 1.0 5.6 1.5 * 0.02 

chow vs. LS+In 1.0 10.6 1.4 **** 0.0001 

chow vs. LS+Comb 1.0 10.2 1.4 **** 0.0001 

LS vs. LS+In 5.6 10.6 1.5 * 0.02 

LS vs. LS+Comb 5.6 10.2 1.4 * 0.02 

Cldn3 
     

chow vs. LF 1.0 0.7 0.1 ** 0.004 

chow vs. LS 1.0 0.7 0.1 * 0.01 

Ocln 
     

chow vs. LF 1.0 0.7 0.1 * 0.03 

chow vs. LS 1.0 0.6 0.1 * 0.01 

Fgf15 
     

chow vs. LF 1.0 2.6 0.5 * 0.02 

chow vs. LS 1.0 3.2 0.5 *** 0.0008 

LF vs. LS+In 2.6 0.3 0.5 *** 0.0004 

LF vs. LS+Comb 2.6 0.1 0.5 **** 0.0001 

LS vs. LS+In 3.2 0.3 0.5 **** 0.0001 

LS vs. LS+Comb 3.2 0.1 0.5 **** 0.0001 
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5.2.3 RNA sequencing analysis revealed differential gene regulation between fibres  

RNA sequencing analysis was performed on ileum samples from chow, LS, LS+In 

and LS+Comb fed mice. Sequences were mapped using the HISAT2 software to the 

reference genome. HTSeq software was used to analyse gene expression levels using 

the union mode. Expression values were calculated as FPKM (Fragments Per 

Kilobase of transcript sequence per Millions base pairs sequenced). Further analysis 

on the RNA sequencing data was performed on Network Analyst 3.0 (Zhou et al., 

2019). The data was filtered for low variance (variance genes based on IQR <15) and 

low relative abundance (average expression signal < 15) and unannotated genes, and 

normalization was selected for Log2-counts per million, which resulted in 45, 9 and 

58 differentially expressed genes (DEGs) (EdgeR based method, FDR adjusted P 

value cut-off: 0.05; logFC ≥1.0) between chow Vs LS, LS+In Vs LS and LS+Comb 

Vs LS diet groups (Fig. 5.4A). Next, we compared the chow and LS fibre enriched 

groups together against LS to reveal 61 DEGs (adjusted P value cut-off :0.05; logFC 

≥1.0). We performed gene set enrichment analysis (GSEA) on the 61 DEGs to find 

out the biological functions or pathways associated with the genes by using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database that annotates genes to 

pathway level. The KEGG pathway analysis revealed that the 61 DEGs were 

significantly enriched in immune related pathways (Herpes simplex infection, 

Epstein-Barr virus infection, Influenza A, Antigen processing and presentation, 

Allograft rejection, Toxoplasmosis, Graft-versus-host disease, Type I diabetes 

mellitus, Autoimmune thyroid disease) and metabolic pathways. Figure 5.4B shows 

the top 10 KEGG pathways.  
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Figure 5.4 RNA sequencing analysis on ileal samples (n=5 per group) from chow, LS, LS+In and 
LS+Comb fed mice. RNA sequencing analysis revealed 45, 9, and 58 differentially expressed genes 
when chow, LS+In and LS+Comb were compared against LS diet group (A). KEGG pathway analysis 
of differentially expressed genes revealed significant enrichment of genes related to immune and 
metabolic pathways (B). Differential analysis was performed by EdgeR method, FDR adjusted P value 
cut-off of 0.05; logFC ≥1.0).  LF: Low-fat diet, LS: Low sucrose version of LF diet, LS+In: LS diet enriched 
with inulin, LS+Comb: LS diet enriched with a combination of fibres. 
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Figure 5.5A shows the immune related genes that were altered between the diets. 

Interferon induced oligoadenylate synthetases (Oas1g, Oas3 and Osal2), interferon 

induced protein with tetratricopeptide repeats 1(Ifit1) were shown to be upregulated 

in chow and LS+Comb diet groups. Adaptive immune response, major 

histocompatibility complex class II genes (H2-aa, H2-ab1, and H2-dmb1) were 

increased in fibre rich groups, however the significance was limited to LS+Comb 

group. Other genes related to immunity such as lipopolysaccharide (LPS) induced 

ubiquitin D (Ubd), gene involved in transport of antigens, T cell specific gene, 

granzyme B (Gzmb) and Z DNA binding protein, a cytosolic bacterial DNA sensor 

and activator of interferon (IFN)-regulatory factors (Zbp1) were also increased in 

chow and LS+Comb groups, however significantly in the latter. Gene coding for 

interferons such as Ifn-α, Ifn-γ and interferon alpha and beta receptor subunit 1 Ifnar1 

were not altered between the diets (Shulzhenko et al., 2011).  

The changes in the expression levels of genes involved in carbohydrate digestion and 

absorption in the ileum are shown in Figure 5.5B. Similar to our results from the 

qPCR gene expression analysis, significant upregulation in the expression levels of 

carbohydrate metabolism genes, Mgam, Sis and Khk was observed after 10 weeks of 

LS diet feeding. While, the addition of fibre groups (LS+In and LS+Comb), further 

enhanced the gene expression of Mgam, Sis, Khk (only in LS+In), aldolase B 

(Aldob), and fructose-bisphosphatase 1 (Fbp1) compared to chow and LS diet 

groups. The absorption of the resultant glucose in the small intestine is primarily 

driven by two separate transport proteins, sodium-dependent glucose cotransporter 

(SGLT1) and glucose transporter 2 (GLUT2). The expression levels of Sglt1 and 

Glut2 gene in the ileum were significantly increased in mice fed the LS and LS+In 

compared to chow diet group. The gene expression levels of Sglt1 and Glut2 were 

decreased in the LS+Comb when compared to LS and LS+In groups. We have 

previously shown that LF and LS induced the expression of Fgf15 in the ileum. 

While, the addition of fibres blunted the LS induced expression of Fgf15 (Fig. 5.5B) 

(Summary of statistics in supplementary table 4.2).  
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Figure 5.5 Ileal expression profiles of immune related genes in response to the different diets. 
Significance was tested using 1-way ANOVA with Tukey’s multiple comparison test (*** = p<0.001, 
**= p<0.01, *= p<0.05). Values are the means ± SEM of n=5 mice in each group. LF: Low-fat diet, LS: 
Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with a 
combination of fibres. 
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Figure 5.5 (Cont.) Ileal expression profiles of carbohydrate related genes in response to the different 
diets. Significance was tested using 1-way ANOVA with Tukey’s multiple comparison test (*** = 
p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=5 mice in each group. LF: Low-fat 
diet, LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched 
with a combination of fibres. 
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5.2.4 DF differentially impact the composition of ileal microbiota 

Considering the differential impacts of DF on ileal gene expression, we next 

investigated the changes in ileal microbiota composition via 16S rRNA sequencing. 

The alpha diversity measured by Shannon index was significantly decreased in LS 

based diets (30 ± 0.2% LS, 26 ± 0.2% LS+In and 43 ± 0.2% LS+Comb, P<0.01) 

compared to chow diet. While, the observed species was significantly increased in 

the LS compared to LS+fibre groups (16 ±9% P<0.001 LS+In and 13±10% P=0.02) 

(Fig. 5.6A)  At the phylum level, we observed a significant decrease in the relative 

abundance of Bacteroidetes (by 55± 0.02%, P<0.0001) and a significant increase (by 

33± 0.02%, P<0.0001) in the relative abundance of Firmicutes in the LS fed mice. 

Whereas, the addition of inulin to the LS diet resulted in increased relative 

abundance of Bacteroidetes (34 ± 0.02%, P<0.001) and a decreased relative 

abundance of Firmicutes (28.5± 0.02%, P<0.0001) compared to LS fed mice. The 

LS+Comb diet also decreased the relative abundance of Firmicutes (10± 0.02%, 

P=0.04), however, the combination of fibres did not influence the Bacteroidetes 

levels compared to LS group. Notably, the addition of inulin and fibre combination 

suggested enhanced levels of Actinobacteria by 74± 0.02% P <0.001 and 64± 0.02%, 

P=0.06 respectively compared to LS fed mice (Fig. 5.6B).  

Within the Firmicutes phylum, we observed increasing trend in the levels of 

Lactobacillus in the chow compared to LS and significantly increased levels 

compared to other groups (32% P=0.1 LS, 90% and 91% P<0.0001 LS+In and 

LS+Comb) (Fig. 5.6C and 5.7A). While, the levels of Faecalibaculum from the 

Erysipelotrichidae family were significantly increased in the LS, LS+In and 

LS+Comb compared to chow (52%, 43% and 56% respectively, P<0.01) (Fig. 5.6C 

and 5.7B). Levels of genus Bacteroidales S24-7 group from the Bacteroidetes 

phylum were increased (57%, P=0.01) in the chow compared to LS fed mice. 

Furthermore, the levels of the Bacteroidales S24-7 group suggested an increase by 

33%, P=0.1 in the LS+In compared to LS diet group. The levels of Bacteroidales 

S24-7 group were not affected by LS+Comb feeding (Fig. 5.6C and 5.7C). The genus 

Akkermansia from the Verrucomicrobia phylum was significantly increased in 

LS+Comb compared to chow (84%, P=0.04) and LS diet groups (90%, P=0.006). 

Although the mean levels of Akkermansia in LS+In group suggested an increase 

compared to chow and LS fed mice, the difference did not reach significance (58% 

compared to chow, 65% compared to LS, P>0.1, due to large interindividual 

variation). The levels of Akkermansia were significantly different between the LS+In 

and LS+Comb diet groups (70%, P=0.03) (Fig. 5.6C and 5.7D).  The addition of DF 

to the LS diet resulted in significantly increased levels of Bifidobacteria (98% in 

LS+In and 97% in LS+Comb, P<0.001) compared to the LS diet (Fig. 5.6C and 

5.7E). Altogether, our results show modified profiles of the ileal microbiota in 

response to addition of DF. We also show fibre specific differences in the ileal 

microbiota, especially the levels of Akkermansia were found to be different between 

LS+In and LS+Comb diet groups.  
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Figure 5.6 Altered profiles of the ileal microbiota in response to addition of dietary fibres (DF). Alpha 
diversity (Shannon index) was decreased in LS and LS+DF compared to chow fed mice (A). 
Summarization of the changes in bacteria at the phylum level between the different diet groups (B). 
Bar graph displays the relative abundance of bacteria at the genus level in the individual mice in the 
four diet groups (D). Significance for α diversity was tested using a Kruskal–Wallis non-parametric 
test (*** = p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=4-5 mice in each group. 
LF: Low-fat diet, LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS 
diet enriched with a combination of fibres. 
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Figure 5.7 Ileal microbiota composition at the genus level that was significantly altered between the 
diet groups. Significance was tested using 1-way ANOVA with Tukey’s multiple comparison test (*** 
= p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=4-5 mice in each group. LF: Low-
fat diet, LS: Low sucrose version of LF diet, LS+In: LS diet enriched with inulin, LS+Comb: LS diet 
enriched with a combination of fibres. 
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5.3 Discussion 

In the first part of this chapter we compared chow, LF (high sucrose), LS (LF diet 

with low sucrose), LS enriched with inulin and LS enriched with a combination of 

inulin, pectin and psyllium to investigate the effects of these diets on the liver 

phenotype of mice. In the second part, we compared the effects of the fibre groups on 

the ileal gene expression and microbiota composition to show differential effects of 

the fibres. 

We observed a decrease of body weight gain in LS fibre enriched groups compared 

to the LF group. The decreased weight gain in these groups may be a result of 

reduced sucrose as well as high fibre intake compared to the LF group. The presence 

of soluble fibres as in the LS+In and LS+Comb groups, has been known to increase 

food viscosity and decrease appetite in mice, which may result in weight loss (Muller 

et al., 2018). We did not observe a difference in the calorie intake of mice in different 

diet groups, which may be due to the lack of sensitive methods used to measure food 

intake in this study. The mice were not housed individually therefore, food 

consumption was calculated as average intake per mouse. Moreover, a large amount 

of food crumbs often gets mixed with bedding in the cage, which makes food intake 

difficult to be measured accurately (Ellacott et al., 2010). It is worth noting that we 

have not observed difference in weight gain between chow and LF feeding 

experiments performed for 4 and 8 weeks. The difference in weight gain (although 

did not reach significance) between chow and LF groups in this study, may have 

been affected by the source of the mice (Charles River UK) used in this experiment, 

as previously our studies have been conducted on mice sourced from inhouse Disease 

Modelling Unit (DMU) facility. This has been further discussed in Chapter 6.  

We observed an increase in the small intestinal length in response to the fibre 

enriched LS diets. Several studies have found inulin supplementation to increase the 

small intestine length in poultry animals (Bucław et al., 2016). Further morphological 

analysis on the villi length can provide information on this adaptive response of the 

small intestine.  

The liver triglyceride levels were found to be increased in LF and LS groups 

compared to the high fibre group, chow, LS+In and LS+Comb. Our results showed 

that reduction of sucrose content of the LF diet did not improve the liver triglyceride 

levels in the LS group (possibly due to high levels of refined starch present in the LS 

diet). Whereas, the addition of fibres to the LS diet prevented lipid accumulation in 

the liver, and matched liver triglyceride levels to that of the chow fed mice. We were 

able to confirm these results by quantifying Srebp1, Acaca gene expression and 

haematoxylin and eosin (H&E) stained histology of liver samples. Our results 

suggest a protective role of soluble fibres to early signs of liver steatosis observed in 

purified LS diet feeding. Soluble DF are able to form gels in the presence of water 

which may impact intestinal motility and absorption rates of glucose and fructose 

(breakdown products of sucrose and starch) from the LS diet leading to reduced de 

novo lipogenesis in the liver (Muller et al., 2018).  

We observed increased gene expression of the brush border enzymes responsible for 

hydrolysis of dietary carbohydrates, Mgam and Sis and glucose uptake transporter 
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Glut2 in LS+In and LS+Comb compared to the LF and LS diet fed mice. Neyrinck et 

al (2016) has demonstrated an inhibitory action on the intestinal sucrase activity for 

the inulin extract from chicory root in vitro and proposed a mixed non-competitive 

inhibitory mode for inulin. This may be an inulin or purified fibres specific effect, 

since the gene expression of Sis and Mgam was not upregulated by the grain-based 

crude fibres in the chow diet. In line with the glucosidase inhibitory effect of refined 

fibres, we observed a significant decrease in the Fgf15 gene expression in the fibre 

rich diets compared to the LF and LS diet. Our results are in agreement with findings 

from Blokker et al. (2019, PhD thesis) that suggested high intracellular glucose 

concentration in the epithelial cells to induce Fgf15 expression in the ileum. We did 

not observe a difference between the ileal gene expression levels of Fgf15 between 

LF (high sucrose) and LS (low sucrose) fed mice, which fits with Blokker et al.’s 

hypothesis that Fgf15 induction is due to increased glucose concentration from starch 

in the ileum of LF fed mice. The Fgf15 ileal expression is decreased in the added 

fibre diets possibly due to inhibition of MGAM, thereby, reducing the glucose 

absorption from starch in the LS diet. Altogether, the decreased absorption of glucose 

in the ileum may be the reason for reduced triglycerides levels and lipogenic gene 

expression in the liver of LS+fibre groups. 

The gene expression of Cldn3 and Ocln was decreased in response to the LF as well 

as the LS diet compared to chow, which suggests that the reduced sucrose content of 

the LS did not improve the barrier function in mice. Although, we observed some 

improvement in the gene expression of Cldn3 and Ocln with the addition of fibres to 

the LS diet, the increase did not reach significance. These results indicate that there 

may be other components lacking in the LS+In and LS+Comb, compared to the chow 

diet. Postal et al. (2020) showed that aryl hydrocarbon receptor (AHR) activation 

protected barrier integrity in the intestinal epithelium of diet induced obesity (DIO) 

mice models. Thus, the absence of AHR ligands in the purified diets compared to 

chow may be one of the factors for reduced expression of barrier function genes. We 

observed significantly decreased expression of duodenal cytochrome P450, family 1, 

subfamily A, polypeptide 1 (Cyp1a1 target gene for AHR), in the LF, LS and 

LS+fibre groups compared to chow (Supplementary Fig. 3.5).  

RNA sequencing analysis of ileum samples suggested an increase in the interferon 

induced genes (Oas1g, Oas3 and Osal2, Ifit1, Zbp1) and immune related genes (H2-

aa, H2-ab1, H2-dmb1, Ubd, Gzmb) in mice fed with chow and LS+Comb diet. The 

MHC class II molecules, H2-AA, H2-AB1, H2-DMB1 are distinctive markers for 

ILC3e (Type III Innate lymphoid cells) (Hepworth et al., 2015). Activation of 

antigen-presenting ILC3e subset have been shown to inhibit commensal bacteria 

associated T cell responses rather than inducing T-cell proliferation (Hepworth et al., 

2015). These findings are indicative of the role of ILCs in maintaining intestinal 

homeostasis through MHC II-dependent interactions with T cells to inhibit 

pathological adaptive immune responses to gut microbiota. Our data suggests that the 

activity of ILCs might be influenced by complex fibres present in LS+Comb and 

chow diet. Recent research has shown that that in addition to the fibre’s effect on the 

gut microbiota composition, fibres can also directly impact signalling in the intestinal 

mucosa (Wu et al., 2017). Chow and the LS+Comb group contains a variety of 
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complex structured soluble fibres with increased branching, whereas the LS+In diet 

solely contains chicory inulin, a long-chain linear fructan. The presence of the variety 

of polysaccharides in the chow and LS+Comb diet may differentially interact with 

the intestinal epithelial cells (IECs) compared to LS+In and thus causing the 

differential expression of immune related genes (Tiwari et al., 2020).   

Similar to our Q-PCR results, RNA sequencing analysis of the ileal samples showed 

increase in the gene expression Mgam and Sis, in the LS group compared to chow. 

The gene expression of Mgam Sis, Khk Aldob and Fbp1 was further increased in the 

added fibre groups compared to LS. The structure of inulin is made up of a chain of 

fructose monomers, which may bind to enzymes involved in fructose metabolism 

(KHK, ALDOB, FBP) and thus affect their activity. Further experiments are required 

to measure the activity of enzymes involved in carbohydrate metabolism to draw 

firm conclusions on their interaction with different fibres.  

We have previously reported differences in the ileal microbiota composition of mice 

fed with chow and purified LF diet. In the current chapter, we described the effects of 

purified LS and LS diet supplemented with different soluble fibres on the ileal 

microbial composition. We observed a decrease in the Shannon α diversity index in 

the LS group compared to chow. In contrast to literature, the addition of fibres did 

not increase the microbiota α diversity in the LS+In and LS+Comb fed mice (Deehan 

et al., 2017). Further, we found increased observed species (another measure of α 

diversity) in the LS compared to other groups. The observed species represent the 

amount of unique OTUs present in a sample (Novogene, 2020). The increased 

observed species may be due to increased abundance of various sugar degrading 

microbes (Faecalibaculum and Romboutsia species) present in the ileum of LS fed 

mice. Therefore, we counter the notion that gut microbiota with lower diversity is 

less resilient to environmental challenges, and is less beneficial for the host, as the 

unique OTUs present within a sample may not always have beneficial effects for the 

host (Canfora et al., 2019). At the phylum level, we observed a decreased 

Bacteroidetes: Firmicutes ratio in the LS diet. While, LS+In decreased the levels of 

Firmicutes and increased the levels of Bacteroidetes, LS+Comb did not have a 

significant effect on the levels of Bacteroidetes compared to the LS diet. We noticed 

an increase in the abundance of Actinobacteria in both LS+In and LS+Comb group. 

The beneficial genus Bifidobacterium belongs to the Actinobacteria phylum and the 

levels of Bifidobacteria were significantly increased in the mice fed with LS+In and 

LS+Comb diet fed mice. Furthermore, we also observed increased levels of 

Akkermansia in the LS+Comb fed mice. Although, Akkermansia has been 

investigated for its effects on host metabolism, Ansaldo et al. (2019) has recently 

reported Akkermansia to induce adaptive immune and antigen specific T cell 

responses in mice during homeostasis. The study supports the hypothesis that T 

follicular helper (TfH) cell responses against physiological microbiota can be 

context-dependent, and not just in the setting of gastrointestinal infection by 

pathogens or inflammation. Melo-Gonzalex et al. (2019) demonstrated interactions of 

multiple immune cell types within the interfollicular niche of the intestinal 

mesenteric lymph nodes including TfH, B cells, and ILC3 that may regulate IgA 

responses and mutualism with the commensal microbiota to maintain intestinal 
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health. Accordingly, the upregulation of MHC II molecules (ILC3e markers) may be 

associated with the increased abundance of Akkermansia in the LS+Comb group. 

Similar to Akkermansia, Ansaldo et al also reported Bacteroidales S24-7 to induce T 

cell-dependent IgA response in mice, however this response was not further 

characterised. The genus Bacteroidales S24-7 was significantly increased in chow 

compared to other groups. The functionality of Bacteroidales S24-7 has been 

associated with degrading complex dietary carbohydrates. Similarly, reports have 

shown decreased abundance of this genus in the rodent feeding trials using high 

refined carbohydrate diets (Lagkouvardos et al., 2019).  

Taken together we report prevention of a pathophysiological liver phenotype as a 

result of addition of fibres to the purified LS diet. We propose that DF cause slow 

uptake of simple carbohydrates and regulate the glucose that enters the liver via the 

portal vein and hence prevent steatosis in liver. Moreover, we report increased 

expression of ileal immune related genes in chow and LS+Comb groups which may 

be linked to microbiota composition or the direct effect of complex fibres present in 

the chow and fibre combination diet. Further experiments are required to determine 

which variable, structure or the amount of fibre is more important in context of liver 

disease. Our results support the notion that immune responses against microbial and 

environmental (such as dietary) signal can be context-dependent and does not 

necessary translate to gastrointestinal abnormality. The differential effect of fibre rich 

diets on the ileal immune response highlight that consideration should be given to the 

composition of fibre diets when consumed as therapeutics.   
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Chapter 6: Differential effect of sourcing locations on the gut-liver 

axis of C57BL/6J mice  
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6.1 Introduction 

Inbred mice strains such as C57BL/6J and controlled environments are often applied 

to minimize inter-individual differences in phenotypes. However, recent data 

questions whether inbred mice have lower inter-individual differences compared to 

outbred mice, and traits previously thought to be caused by genetics have been 

reported to be also partly related to the gut microbiota composition (Franklin and 

Ericsson 2017). It is well known that the genetic background of mice has a 

considerable impact on the composition of the gut microbiota (Hufeldt et al., 2010; 

Tran et al., 2019). In the recent years, studies have shown that the composition of gut 

microbiota can vary between the same mice strain obtained from different vendors, 

which may directly influence the mouse phenotype (Hansen et al., 2014; Hilbert et 

al., 2017; Sadler et al., 2017). Differences in the colonising gut microbiota can lead 

to variation in not only the phenotype but also, susceptibility to disease, and 

responsiveness to drug therapy (Alegre et al., 2019). For example, presence of 

segmented filamentous bacteria (SFB) in mice from some vendors was reported to 

stimulate T-helper 17 (Th17) cells in the small intestine (Ivanov et al., 2008). 

Presence of SFB has been suggested to provide protection against the development of 

autoimmune type 1 diabetes (T1D) in SFB-positive female non-obese diabetic 

(NOD) mice (Kriegel et al., 2011). Therefore, such differences of individual 

commensal bacteria can influence results for labs that use NOD mice for diabetes 

research, as reported in a preclinical immunotherapy study by Gill et al. 2016. 

The research on the influence of environmental variables on the composition of the 

gut microbiota and their functionality remains incomplete. Studies have suggested 

the potential of husbandry-induced changes in the gut microbiota that could 

contribute to a lack of reproducibility between mice models from different research 

institutes. The gut microbiota of a mouse has been shown to be influenced by various 

factors; place of birth, (Korte et al., 2020), shipping and acclimatisation (Montonye 

et al., 2018), differences in bedding (compressed paper and aspen chips) and caging 

ventilation (static microisolators or individually ventilated caging) (Ericsson et al., 

2018).  

In the current study, we aimed to characterise the differences in the gut-liver axis of 

mice sourced from different locations. We performed 16S rRNA sequencing analysis 

on ileal content of mice from external vendor Charles River, UK (CRUK) and 

inhouse animal facility, Disease Modelling Unit (DMU) at University of East Anglia 

(UEA) fed with chow and/or LF diet. We also aimed to study the ileal gene 

expression and bile acid profile of mice. We hypothesised that mice from different 

locations may contain distinct ileal microbiota composition, which may result in 

differential response of the gut-liver axis to the chow and LF diets.  
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6.2 Results 

6.2.1 Physiological changes in CRUK and DMU mice in response to different diets 

Body weight analysis at the end of the experiment revealed significantly increased 

weight gain in CRUK LF compared to CRUK chow fed mice (weight difference: 

2.7g, 212±0.8%, P=0.01) (Fig. 6.1A and B). The mice from CRUK and DMU were 

fed the same LF diet, however, the CRUK LF mice gained more weight compared to 

DMU LF (weight difference 2.4g, 155±0.9%, P=0.03) (Fig. 6.1B). The average 

starting weight of CRUK LF group was slightly lower than the DMU LF group, 

29.53g and 30.78g respectively (Mean difference -1.25g SE of diff. ±0.9), however, 

this difference was not statistically significant. We did not observe any statistical 

difference in food intake between the groups (P=0.5).  

There was no statistical difference observed in the liver weight to body weight ratio 

of mice between the groups (P> 0.9) (Fig. 6.1D). As observed in the previous 

experiments, the mice fed with the LF diet had increased levels of liver triglyceride 

content (CRUK: 81±238%, P=0.009; DMU: 60±189%, P=0.004) compared to chow 

fed mice, regardless of the vendor (Fig. 6.1E). 
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Figure 6.1 Comparison of physiological changes in mice from different vendors. C57BL/6J mice from 
CRUK and DMU were fed with chow and LF diet for 4 weeks. Weekly body weight of mice during the 
4 weeks experiment (A), body weight gain of individual mice in different groups (B), calorie intake 
per mouse per day (C), liver weight (g) relative to body weight (g) ratio (D), and levels of liver 
triglycerides (E). Significance was tested by using 2-way ANOVA with Tukey’s multiple comparison 
test (***=p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=6 mice in each group. 
Mice per group were divided into two cages (as 3 mice per cage), calorie intake was measured per 
cage and divided by 3 to calculate the intake of one mouse. LF: Low-fat diet, Charles River 
Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU). 

 

 

 

 

 

 

 

 

 



117 
 

 

6.2.2 Differential gut microbiota composition of C57BL/6J mice from two vendors  

To assess the effect of vendors and dietary intervention, we generated amplicon 

libraries from V3-V4 region of 16S rRNA gene in bacterial DNA from ileal content 

of mice. Each group contained sample size of n=6. The microbial DNA from mouse 

3 in CRUK LF group was excluded from the analysis due to low DNA yield and 

integrity quantified on Nanodrop. Sequencing data processed resulted in total read 

counts of 1,474,281 and average counts per sample of 64,099.  

Alpha diversity of the ileal bacterial communities did not differ between the diet 

groups in CRUK and DMU mice (Shannon diversity index, P=0.4, Fig. 6.2A). 

Further, the bacterial richness (number of observed species) was found to be similar 

between the two diet treatments in CRUK mice (P= 0.9) (Fig. 6.2B). Whereas, the 

observed species were significantly increased in ileal gut microbiota of DMU LF 

compared to DMU chow mice (17±11%, P= 0.04).  Principal coordinate of analysis 

(PCoA) plot of the bacterial community structure based on Bray–Curtis distances at 

the genus level showed distinct separation between CRUK and DMU chow groups, 

whereas the LF fed mice from both vendors are clustered closer together. In 

agreement with our previous report we found distinct separation between chow and 

LF fed microbiota profile in DMU mice, whereas the distance between CRUK chow 

and LF microbiota was not as pronounced (Permutational multivariate analysis of 

variance, PERMANOVA, R Squared:0.47, P <0.001).    

In all groups, bacterial communities at the phylum level were predominantly 

composed of Bacteroidetes and Firmicutes (Fig. 6.3A and Table 6.1). Analysis of the 

phyla shows increased abundance of Firmicutes (68±7.7% and 102±4% CRUK and 

DMU respectively) and decreased abundance of Bacteroidetes (percentage decrease 

by 68.5±5% and 82.7±5% CRUK and DMU respectively) in the ileum of LF fed 

mice from both vendors. Comparison of ileal microbial profiles between the mice 

from the different groups suggested increased levels of Verrucomicrobia in the 

CRUK chow mice compared to other groups (6.2 mean relative abundance in CRUK 

chow compared to relative abundance of approximately 1.5 in other groups) (Fig. 

6.3A and summary of statistics in Table 6.1).  

We analysed raw OTU counts per samples to gain a deeper knowledge of the 

microbiota composition and their abundance among different samples. Within the 

Firmicutes phylum (Fig. 6.4A) average levels of genus Faecalibaculum were higher 

in DMU LF mice compared to CRUK LF, although the increase was not significant 

due to high interindividual differences (P=0.1).  Similarly, levels of Lactobacillus 

showed high heterogeneity between the samples within the LF groups. Overall, 

analysis of ileal microbiota from CRUK mice suggested increased levels of 

Lactobacillus compared to DMU mice (Difference between CRUK chow and DMU 

chow Lactobacillus levels: 37±4773% P= 0.1, and difference between CRUK LF and 

DMU LF: 48±9975%, P=0.2). Levels of Lactococcus were increased in LF compared 

to chow fed mice in both vendors (P value for difference between chow and LF; 

CRUK: P=0.05 and DMU: P= 0.003). Levels of Turicibacter were similar in all 

groups (around 1000 counts per OTU), except that the microbiota composition of 2 

out of 6 mice in CRUK LF group contained very high levels of Turicibacter (15,000 
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and 16,000 counts). Two genera from the Lachnospiraceae family, 

Lachnoclostridium and Lachnospiraceae NK4A136 group were observed to be 

present at high levels in CRUK chow compared to CRUK LF group (P value for 

Lachnoclostridium and Lachnospiraceae NK4A136 group: P=0.04 and P=0.002 

respectively). The levels of Lachnospiraceae NK4A136 group were significantly 

higher in CRUK chow and LF fed mice compared to their DMU counterparts (P 

value CRUK chow Vs DMU chow: P=0.0006 and CRUK LF Vs DMU LF: P=0.01). 

The levels of an unknown genus from Peptostreptococcaceae family were increased 

in CRUK LF compared to CRUK chow (P=0.004) and DMU LF mice (P=0.04). The 

levels of Romboutsia, also from the Peptostreptococcaceae family were increased in 

LF compared to chow fed mice in both vendors (P value for chow Vs LF in CRUK: 

P=0.04 and DMU: P=0.01).  

The unknown genus from the Bacteroidales S24-7 family within the Bacteroidetes 

phylum was found to be highly abundant in chow compared to LF fed mice, 

regardless of the vendors (P value for chow Vs LF in CRUK: P=0.0002 and DMU: 

P<0.0001) (Fig. 6.4B). We did not observe a difference in the levels of genus from 

Bacteroidales S24-7 family between CRUK and DMU chow fed mice (P=0.3). 

Whereas, the levels of Bacteroidales S24-7 were found to be significantly increased 

in the CRUK LF compared to DMU LF mice (P=0.02). Within the Verrucomicrobia 

phylum, the levels of Akkermansia showed an increasing trend in the CRUK chow 

and LF groups compared to its DMU counterparts (P value for CRUK chow Vs 

DMU chow: P=0.07 and CRUK LF Vs DMU LF: P=0.008) (Fig. 6.4C). The mean 

value of Akkermansia levels in CRUK chow mice was higher compared to CRUK LF 

group, 3938 and 944.8 counts respectively, however the difference did not reach 

significance. The mean value of Akkermansia counts in DMU chow and LF mice was 

found to be below 60 counts and the levels of Akkermansia between the two diet 

groups were not found to be significantly different (P= 0.2). We did not observe a 

difference in the levels of genus Pseudomonas and Enterobacteriaceae from the 

Proteobacteria phylum between chow and LF diet groups in both CRUK and DMU 

mice. However, the DMU LF mice showed increased levels of these genera 

compared to CRUK LF mice (P= 0.01 and 0.03 for Pseudomonas and 

Enterobacteriaceae respectively). The CRUK chow group suggested decreased 

levels of Pseudomonas and Enterobacteriaceae compared to DMU chow, however, 

the difference did not reach significance (P=0.2 and 0.07 respectively) (Fig. 6.4D).  

Altogether, we observed distinct differences in the microbiota composition between 

the mice from the two sources: CRUK and DMU. We also demonstrate that while 

there were no clear patterns of variation in the Firmicutes between the vendors, there 

appeared to be OTUs that differed in abundance between CRUK chow compared to 

DMU chow, and CRUK LF compared to DMU LF.  
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Figure 6.2 Diversity and richness of gut microbiota. Alpha diversity was measured via Shannon index 
(A) and observed species (B) and Principal coordinate analysis of the ileal microbiota in chow and LF 
fed C57BL/6J mice purchased from CRUK and DMU facility. Data points are coloured to indicate 
vendor and diet: CRUK chow: blue, CRUK LF: red, DMU chow: green and DMU LF: purple (C). 
Significance was determined by Kruskal-Wallis test for Shannon index and observed species. 
PERMANOVA statistical method with Bray-Curtis index for distance was used for PCoA. 
(***=p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=5-6 mice in each group. 
Mouse 3 from CRUK LF group was excluded due to low DNA yield. LF: Low-fat diet, Charles River 
Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU).  
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Figure 6.3 Composition of the ileal microbiota at phylum and genus levels (n=5-6 per group). Relative 
abundance at taxonomic level of phylum (A) and genus (B) in the ileum content of chow and LF fed 
mice from two vendors (CRUK and DMU). Mouse 3 from CRUK LF group was excluded due to low 
DNA yield. LF: Low-fat diet, Charles River Laboratories (CRUK) and inhouse Disease Modelling Unit 
(DMU). 

 

Table 6.1 Summary of phyla that were significantly different between the four groups. Significance 
was tested by using 2-way ANOVA with Tukey’s multiple comparison test (***=p<0.001, **= 

p<0.01, *= p<0.05). Values are the means of n=5-6 mice in each group. Mouse 3 from CRUK LF 
group was excluded due to low DNA yield. LF: Low-fat diet, Charles River Laboratories (CRUK) and 

inhouse Disease Modelling Unit (DMU). 

Phyla Mean 1 Mean 2 SE of diff. Summary P value 

Bacteroidetes 
     

CRUK chow vs. CRUK LF 41.6 13.1 2.0 **** 0.0001 

CRUK chow vs. DMU chow 41.6 48.1 1.9 ** 0.004 

CRUK LF vs. DMU LF 13.1 8.3 2.0 ns 0.08 

DMU chow vs. DMU LF 48.1 8.3 1.9 **** 0.0001 

Firmicutes 
     

CRUK chow vs. CRUK LF 49.2 82.6 2.0 **** 0.0001 

CRUK chow vs. DMU chow 49.2 42.7 1.9 ** 0.004 

CRUK LF vs. DMU LF 82.6 86.1 2.0 ns 0.3 

DMU chow vs. DMU LF 42.7 86.1 1.9 **** 0.0001 

Verrucomicrobia 
     

CRUK chow vs. CRUK LF 6.2 1.5 2.0 ns 0.09 

CRUK chow vs. DMU chow 6.2 0.0 1.9 ** 0.008 

CRUK LF vs. DMU LF 1.5 0.1 2.0 ns 0.9 

DMU chow vs. DMU LF 0.0 0.1 1.9 ns 1.0 
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Figure 6.4 Differences in the composition of the gut microbiota at the genus level between diet and 
vendor. Significance was tested by using 2-way ANOVA with Tukey’s multiple comparison test 
(***=p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=5-6 mice in each group. 
Mouse 3 from CRUK LF group was excluded due to low DNA yield. LF: Low-fat diet, Charles River 
Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU). 

 

  



122 
 

 

6.2.3 Differential expression of ileal barrier function and inflammation related genes 

in response to diet and vendor 

Expression of barrier function genes mucin 2 (Muc2), claudin 3 (Cldn3) and zonula 

occludens-1 (Zo-1) was suggested to be downregulated in response to LF feeding in 

mice from both vendors, (Muc2: 32±0.1%, P=0.05; Cldn3: 43±0.1, P=0.02; Zo-1: 

39±0.1%, P=0.01) (Fig. 6.5A). The gene expression of Muc2 and Cldn3 was 

observed to be significantly decreased in DMU LF compared to CRUK LF mice 

28±0.1%, P=0.02 and 25±0.1%, P=0.03 respectively. Inflammation related genes in 

the ileum were not changed between the diets or vendors, although a trend towards 

increased Serum Amyloid A1 (Saa1) gene expression was observed in LF fed mice 

independent of the vendors (Fig. 6.5B). 

 

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0.0

0.5

1.0

1.5

2.0

Muc2

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

✱

✱

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0.0

0.5

1.0

1.5

Cldn3

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

✱

✱

✱

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0.0

0.5

1.0

1.5

2.0

Zo-1

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

✱

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0.0

0.5

1.0

1.5

2.0

Tnf

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0

1

2

3

Nos2

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

C
R
U
K
 C

ho
w

C
R
U
K
 L

F

D
M

U
 C

ho
w

D
M

U
 L

F

0

1

2

3

4

5

Saa1

R
e

la
ti

v
e

 g
e

n
e

 e
x

p
re

s
s

io
n

:T
b

p

(A)

(B)

 

Figure 6.5 Ileal gene expression in response to the different diet and vendors. Barrier function (A) 
and inflammation related (B) gene expression in the ileum of mice from CRUK and DMU. Significance 
was tested by using 2-way ANOVA with Tukey’s multiple comparison test (***=p<0.001, **= p<0.01, 
*= p<0.05). Values are the means ± SEM of n=5-6 mice in each group. LF: Low-fat diet, Charles River 
Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU).  
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6.2.4 Bile acid metabolism in the ileum reveals vendor-associated differences 

The gene expression analysis revealed significantly increased fibroblast growth 

factor 15 (Fgf15) expression in the CRUK LF compared to CRUK chow group 

(84±0.3%, P=0.02), whereas the increase in Fgf15 expression did not reach 

significance in the DMU LF compared to DMU chow fed mice (54±0.3%, P= 0.1) 

(Fig 6.6A). We did not observe a difference in the expression of ileal basolateral 

transporter, organic solute transporter alpha (Ostα) between the diet and vendor 

groups. In line with the increase in ileal Fgf15 expression, we observed a significant 

decrease in the expression of cytochrome P450 7A1 (Cyp7a1) in the livers of CRUK 

LF compared to CRUK chow fed mice (66±0.2%, P=0.01). The hepatic expression of 

Cyp7a1 was not changed between chow and LF fed DMU mice (20±0.3%, P= 0.5) 

(Fig. 6.6C). 

We observed increasing trends in the levels of total bile acids in the ileum of CRUK 

LF (by 21.5±7185%, P=0.4) and significant increased bile acid levels in the DMU LF 

(by 41.7±851%, P=0.03) compared to chow fed CRUK and DMU mice respectively 

(Fig. 6.6B). We also observed a trend towards increased bile acid levels in CRUK 

chow compared to DMU chow mice (29.5±662%, P=0.09), whereas no vendor 

difference was observed between the CRUK and DMU mice fed with LF diet 

(P=0.7).  

Further examination of the individual bile acids revealed differential bile acids 

profile between mice from different groups (Fig. 6.7A, B, C, and D). In the ileum of 

CRUK mice, we observed significantly increased levels of primary unconjugated bile 

acids αMCA (by 240±52%, P=0.01), βMCA (by 179±119%, P=0.007) in the CRUK 

LF compared to CRUK chow mice (Fig. 6.7A). Interestingly, the levels of secondary 

bile acid, DCA were found to have an increasing trend in DMU chow compared to 

CRUK chow (207±10%, P= 0.06). The difference in the DCA levels between LF fed 

CRUK and DMU mice did not reach significance (P= 0.2) despite the mean of DMU 

LF (22µmol/g) being higher than CRUK LF group (11µmol/g) (Fig. 6.7B).  

The levels of taurine conjugated bile acids TαMCA, TβMCA, TCA, TCDCA, and 

TUDCA were significantly increased in CRUK chow compared to DMU chow 

(115±111%, 108±207%, 72±215%, 165±5% and 177±% respectively, P <0.05) (Fig. 

6.7C and D).  

Although the levels of TβMCA showed an increasing trend in CRUK LF compared 

to CRUK chow, this increase did not reach significance (40±296%, P= 0.1). Whereas 

the levels of TβMCA were observed to be significantly higher in DMU LF compared 

to DMU chow (196±338%, P= 0.003). The subtle difference observed in the levels of 

TβMCA between diets in CRUK group is possibly due to already high levels of 

TβMCA levels found in the CRUK chow fed mice. Lastly, we observed increased 

levels of TUDCA in LF fed mice from both vendors (386±45%, P=0.02 and 

991±48%, P=0.03, in CRUK and DMU respectively) compared to chow fed mice 

(Fig. 6.7C).  
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Figure 6.6 Bile acid metabolism in CRUK and DMU diet groups. Expression of genes involved in bile 
acids signalling in ileum (A), total bile acids in the ileum (B), gene expression of Cyp7a1 in the liver 
(C). Significance was tested by using 2-way ANOVA with Tukey’s multiple comparison test 
(***=p<0.001, **= p<0.01, *= p<0.05). Values are the means ± SEM of n=5-6 mice in each group. LF: 
Low-fat diet, Charles River Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU). 
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Figure 6.7 Ileal composition of individual bile acids. Primary unconjugated bile acids αMCA, βMCA, 
CA, CDCA (A), secondary unconjugated bile acid DCA (B), Taurine conjugated primary bile acids 
TαMCA, TβMCA, TA, TCDCA (C) and secondary taurine conjugated bile acid TUDCA (D). Significance 
was tested by using 2-way ANOVA with Tukey’s multiple comparison test (***=p<0.001, **= p<0.01, 
*= p<0.05). Values are the means ± SEM of n=5-6 mice in each group. LF: Low-fat diet, Charles River 
Laboratories (CRUK) and inhouse Disease Modelling Unit (DMU). 
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6.3 Discussion 

The reproducibility of preclinical biomedical research using mice models is currently 

being scrutinised by the National Institutes of Health (NIH). Several possibilities for 

lack of reproducibility have been discussed including randomisation, sex differences, 

poor experimental power, and environmental differences between animal facilities 

(Ericsson, 2015). In the previous chapters of this thesis, we have investigated the 

effects of commonly used control diets (chow and purified LF diet) which may be a 

major factor for lack of reproducibility in preclinical research, and highlighted some 

major differences of these diets on the gut-liver axis.  

In the current chapter, we investigated the variation in the gut microbiota and 

consequently the gut-liver axis of mice from an external vendor CRUK and inhouse 

animal facility, DMU. We propose that the differences observed in the gut 

microbiota of mice between animal facilities may be one of the environmental factors 

contributing to poor reproducibility of research using mice models. 

Four weeks feeding of the LF diet resulted in increased weight gain compared to 

chow fed mice in the CRUK group. Whereas, no difference in weight gain was 

observed in the DMU mice between the two diet groups. We did not observe a 

difference between the average calorie intake in the LF fed mice from CRUK and 

DMU. We were unable to access metabolic chambers to measure precise daily 

calorie intake and energy expenditure in mice; therefore, we cannot assess the direct 

calorimetry for metabolic rate of the CRUK LF mice which may provide the 

reasoning for weight gain.  

Previous literature has highlighted substantial differences between the gut microbiota 

of mice purchased from different vendors (Ericsson et al., 2015; Franklin and 

Ericsson, 2017). In the current study, PCoA plot revealed two distinct vendor specific 

microbiota clusters in the chow fed mice. The DMU LF microbiota cluster was 

distinctly separate from DMU chow cluster with no overlap between the groups. 

Whereas, CRUK LF cluster had some overlapping microbiota composition with 

CRUK chow. These data show that there was complete division of the composition 

of microbiota between samples at the diet level in DMU mice. However, the effect of 

diet on cluster separation did not seem as distinct as in the CRUK mice. Further 

analysis at the genus level showed mice from CRUK LF group harboured increased 

levels of Unknown genus S24-7 from Bacteroidales family and Lactobacillus 

compared to the DMU LF mice. Both these genera are highly prevalent in 

homeothermic animals; however, their differential abundance suggests the ability of 

the surrounding microbial milieu and other environmental factors that may affect the 

gut microbiota (Ng et al., 2019). 

The level of Firmicutes did not differ between the CRUK and DMU LF fed mice. 

However, the analysis of the genera within the Firmicutes phylum revealed increased 

Faecalibaculum and Romboutsia in the DMU LF, while, increased levels of 

Lactobacillus and Peptostreptococcus were found in the CRUK LF group. The high 

abundance of Lactobacillus in the CRUK mice may provide resistance to 

colonization by Faecalibaculum and Romboutsia in response to LF diet. The genus 

Faecalibaculum is an obligate anaerobe that has been shown to replace Lactobacilli 
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from young to adult age (Ke et al., 2019). The CRUK mice were 10 weeks old when 

they arrived at the animal facility, after 2 weeks quarantine period, the feeding 

experiment was started at the age of 12 weeks for all mice from CRUK and DMU. 

Therefore, the increased levels of Lactobacillus and decreased levels of 

Faecalibaculum found in the CRUK mice is not due to the age differences and may 

be due to the stronger vendor effect than diet.  

We observed increased levels of Enterobacteriaceae and Pseudomonas from the 

Gamma Proteobacteria group in DMU LF mice. The average of Enterobacteriaceae 

and Pseudomonas in DMU chow mice was also observed to be higher than CRUK 

chow and CRUK LF group. Our results suggest that the abundance of these 

pathogenic bacteria is higher in DMU mice compared to CRUK mice and the 

exposure of the DMU mice to a low fibre and high refined carbohydrate (LF) diet 

promoted the abundance of these pathogenic bacteria. Under high fibre chow diet 

conditions, this effect may be supressed by the increased levels of SCFAs (butyrate) 

that promote consumption of oxygen in the intestine, leading to anaerobic milieu 

which prevents the growth of facultative anaerobe and optimises conditions for 

anaerobic commensal strains. Whereas, under the decreased SCFAs conditions with 

LF diet, anaerobic glycolysis in the intestine leads to increased oxygen levels in the 

gut lumen that promote the growth of facultative anaerobes such as 

Enterobacteriaceae and Pseudomonas (Byndloss et al., 2017). Tennoune et al. 

(2014) identified Clp heat-shock disaggregation chaperone protein in the 

Enterobacteriaceae strain to decrease body weight in mice via production of anti-Clp 

immunoglobulins (Igs). Both Enterobacteriaceae and Pseudomonas express Clp (Lee 

et al., 2018), which may be associated with reduced weight gain observed in the 

DMU LF fed mice.  

We observed decreased ileal expression levels of barrier function genes Cldn3, Zo-1 

and Muc2 in response to the LF diet in both vendors. In addition, the ileal gene 

expression levels of Cldn3 and Muc2 in DMU LF fed mice were significantly 

decreased compared to CRUK LF group. The ileal expression of inflammation 

related genes such as Tumour necrosis factor alpha (Tnfα), Serum amyloid A1 (Saa1) 

and Nitric oxide synthase (Nos2) did not differ between groups, which suggests that 

the colonisation of the gut with Enterobacteriaceae and Pseudomonas did not induce 

an inflammatory response. Low levels of Enterobacteriaceae have been known to 

inhabit healthy murine gut (Velazquez et al., 2019), however, further studies are 

required to ascertain whether increased colonisation of these strains in the gut of 

DMU mice, make the gut-liver more susceptible to an inflammatory challenge (as 

shown in Chapter 3) compared to CRUK mice.  

We observed an increase in the genera Lachnoclostridium and Lachnospiraceae 

NK4A136 group (Phylum: Firmicutes) and Akkermansia from phylum 

Verrucomicrobia in the CRUK chow compared to other groups. A possible 

explanation for differences in microbiota could be the maintenance diet used in the 

CRUK facility before their arrival at the DMU. The mice at CRUK were fed VRF1 

chow diet (SDS diets,UK), whereas the maintenance diet used at the DMU is RM3-P 
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(SDS diets, UK). The summary composition of the diets is shown in the Table 6.2 

below. 

 

Table 6.2 Summary composition of RM3 diet fed to mice at the DMU and VRF1 diet fed to mice at 
the CRUK facility. RM3: Rat and mouse number 3, VRF1: Very high nutrient rodent diet. 

 
RM3 (DMU) VRF1 (CRUK) 

Fat (kcal%) 11.5 13 

Protein (kcal%) 26.9 22 

Carbohydrate (kcal%) 61.2 65 

Total Dietary Fibre(g/Kg) 161.5 151.4 

Pectin(g/Kg) 15.3 13.7 

Hemicellulose(g/Kg) 96.1 87.6 

Cellulose(g/Kg) 41.3 39.5 

Lignin(g/Kg) 15.4 10.6 

Starch(g/Kg) 338.8 354.1 

Sugar(g/Kg) 43.7 46.4 

Ingredients Wheat, Wheatfeed, De-hulled 
Extracted Toasted Soya, Barley, 
Macro Minerals, Yeast, Potato 

Protein, Hydrolised Wheat Gluten, 
Full Fat Soya, Soya Oil, Maize 

Gluten Meal, Dextrose 
Monohydrate, Vitamins, Micro 

Minerals, Amino Acids. 

Wheat, Dehulled Extracted Toasted 
Soya, Wheatfeed, Barley, Dehulled 
Cooked Soya, Soya Oil, Vitamins, 

Micro Minerals 

 

Although, the RM3 and VRF1 diets vary slightly in terms of level of energy from 

macronutrients, the amount and source of dietary fibre (DF) in both diets is very 

similar. One of the major differences between the diets is the source of protein. 

Dietary protein in the RM3 diet is sourced from soya, potato protein, wheat and 

maize gluten meal, whereas, the VRF1 dietary protein source is derived solely from 

soya. The same amount of protein but different digestibility may lead differential gut 

microbiota. Further, the microbes in the gut have been shown to synthesise proteases 

and are also known to catabolise amino acids (Zhao et al., 2020; Gentile and Weir, 

2018). Kar et al. (2017) investigated the effects of different dietary protein sources on 

the ileal microbiota composition to show increased levels of Erysipelotrichaceae 

family (genus Faecalibaculum) and decreased levels of Lactobacillaceae (genus 

Lactobacillus) in mice fed a diet enriched with wheat gluten meal compared to 

soybean meal. These results agree with the differential genera profile observed in the 

DMU and CRUK mice and suggest that early life dietary composition may be the 

reason for these differences.  

Analysis of ileal bile acids showed differential profiles between the mice from 

different vendors and diet groups. In CRUK mice, we observed significant increased 

levels of αMCA and βMCA in response to LF feeding. Whereas, in agreement with 

our previous experiments (Chapter 3 and 4), TβMCA was significantly increased in 
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the LF fed DMU mice. While, CRUK chow fed mice displayed increased levels of 

taurine conjugated bile acids such as, TαMCA, TβMCA, TCA, TCDCA, and 

TUDCA compared to DMU chow fed mice. The significant increase in taurine 

conjugated bile acids suggests decreased bile salt hydrolases (BSH: involved in 

removal of amino acid group from bile acids) activity within the gut microbiota of 

the CRUK chow mice. Although, Lactobacillus species have been shown to express 

increased BSH enzymes (Song et al., 2019), the increase in taurine conjugated bile 

acids did not correlate with increased abundance of Lactobacillus in the CRUK chow 

group. We also observed increased levels of secondary bile acid DCA in the ileum of 

DMU mice, whereas its primary bile acid CA was generally unaffected between the 

groups. Certain species of Clostridium can carry out 7α-dehydroxylation of cholic 

acid to produce DCA which has potential pro-carcinogenic and pro-inflammatory 

actions (Xu et al., 2020). However, deeper analysis at the species level with shotgun 

metagenomic techniques are required to identify the species responsible for CA 

modifications to DCA by 7α‐dehydroxylation reactions. Metagenomics analysis can 

also identify the Lactobacillus species present in the CRUK mice and the abundance 

of BSH encoding genes expressed in these species. Different species of Lactobacilli 

have been reported to contain varying number of BSH genes that may affect their 

enzyme activity (Horackova et al., 2020).   

The gene expression of organic solute transporters, Ostβ and Ostα and intestinal bile 

acid transporter of apical sodium bile acid transporter, Asbt did not show any 

significant alterations between the groups. However, we found ileal Fgf15 expression 

to be significantly increased in the CRUK LF compared to CRUK chow mice. In 

agreement with literature, the upregulation of Fgf15 gene expression suppressed the 

hepatic Cyp7a1 gene expression which leads to decrease de novo bile acid synthesis 

in the liver (Sayin et al., 2013). In the DMU group, we observed a slight increase in 

the ileal Fgf15 expression (not significant) in the LF fed mice while, the gene 

expression of liver Cyp7a1 remained unchanged between the diets. The sustained 

expression of Cyp7a1 in the liver suggests maintained synthesis of bile acids in 

DMU LF compared to CRUK LF fed mice. These results are in line with 

significantly reduced serum cholesterol observed in the DMU LF compared to 

CRUK LF group (Supplementary Fig. 3.6). 

Our results highlight the need to acknowledge vendor associated differences in the 

gut microbiota composition and their effects on the gut-liver axis. Further studies that 

utilise metagenomics can enhance our knowledge on species differences which may 

be involved in modulating the metabolic health. To the best of our knowledge, this is 

the first study to investigate the differential effect of diets in mice from different 

vendors, on the composition of gut microbiota and subsequent gut-liver axis of 

C57BL/6J mice.  

 

 

 



130 
 

 

Chapter 7: General discussion  
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7.1 Discussion 

The interactions within the gut-liver axis play a crucial role in regulating the host 

response to diet. The diet-gut-liver axis in the context of microbiota has been shown 

to be involved in the development of type II diabetes (Qin et al., 2012), liver 

cholestasis (Isaacs-Ten et al., 2020) and more recently several studies have explored 

the contribution of the gut microbiome to the pathophysiology of non-alcoholic fatty 

liver disease (NAFLD) (Roychowdhury et al., 2018; Aron-Wisnewsky, 2020). Most 

of the studies investigating the diet-gut-liver axis during NAFLD have focused on the 

colon due to its highest microbiota density. Although, the ileum has the second 

largest microbiota population to colon, and it provides a direct link to the liver via the 

enterohepatic circulation of bile acids (Ticho et al., 2019), it has not been well 

studied in the context of diet-gut-liver axis. The scarce literature on the effects of diet 

on the ileum-liver axis prompted us to explore this part of the gastrointestinal (GI) 

tract to investigate its role on metabolic health and prevention of disease.  

Our results have highlighted the negative effects of a high refined carbohydrate, low 

fibre diet on the liver compared to a high fibre grain-based diet. We used two control 

diets, chow and LF to investigate the effects of 1) increased easily metabolisable 

carbohydrates, and 2) the lack of fermentable soluble fibres in the LF diet. We 

showed that mice fed with LF diet for as short as 4 weeks exhibited early 

development of hepatic steatosis, a precursor of non-alcoholic steatohepatitis 

(NASH), compositional changes in the ileal microbiota, an increase in the gut 

permeability and changes in the bile acid metabolism. We also showed that LF fed 

mice exposed to low dose lipopolysaccharide (LPS) had increased sensitivity to this 

proinflammatory challenge. This was reflected by increased caspase 3 activity in the 

liver and upregulation of inflammatory related genes in the ileum compared to their 

chow counterparts. Reduced consumption of the LF diet in a calorie restricted model, 

protected the liver from LF induced hepatic triglycerides accumulation in short and 

long-term dietary intervention study. We further examined the effects of addition of 

soluble fibres to counteract the detrimental effects of the LF diet and revealed that 

the liver phenotype of LF induced early steatosis was successfully prevented, despite 

the same quantity of refined carbohydrates present.  

7.1.1 Increased levels of easily accessible carbohydrates in LF diet drive hepatic de 

novo lipogenesis in mice 

The easily accessible carbohydrates present in the LF diet are refined starch and 

sucrose. Sucrose is a disaccharide formed of glucose and fructose, whereas starch 

(amylose) is formed of a long chain of glucose monomers linked through α-(1-4) 

glycosidic bonds (Goodman, 2010). Under physiological conditions, glucose and 

fructose only reach the ileum when the small intestine is overloaded with 

carbohydrates (Jang et al., 2018). We found increased ileal gene expression of 

disaccharidases maltase-glucoamylase and sucrase-isomaltase (Mgam and Sis) and 

glucose transporters (Sglt1 and Glut2) in response to the 4, 8 and 10 weeks feeding of 

the LF diet, indicating overloading of the capacity of duodenum and jejunum to 

digest the carbohydrates in the LF diet and leading to ileal starch/fructose exposure. 

The increased levels of lipogenic gene expression and levels of triglycerides 
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observed in response to the LF diet may be explained by the following potential 

mechanisms: 

Under LF conditions, glucose from starch and sucrose is rapidly absorbed in the 

small intestine, however, some fructose may reach the liver due to either, overloading 

the capacity of the small intestine, or by increased gut permeability observed in LF 

fed mice.  

LF diet contains 17% sucrose compared to experimental high sucrose (>50%) diets 

used to induce NAFLD in mice. However, our results show that the 17% sucrose was 

sufficient to induce an increased gene expression of hepatic fructokinase Khk, 

suggesting exposure of the liver to fructose. Furthermore, the increased Glut2 

expression observed in response to the LF diet suggested increased absorption of 

glucose in the ileal enterocytes, which may lead to high glucose concentrations in the 

portal circulation. We propose that increased glucose as well as fructose exposure of 

the liver under LF conditions contributes to de novo lipogenesis. As suggested by 

increased gene expression of Srebp1, that plays a major role in driving the 

transcription of lipogenic genes Fasn and Acaca indicating increased lipogenesis in 

response to the LF feeding.  

Another way fructose may reach portal circulation could be through the increased gut 

permeability observed in the LF diet as indicated by increased serum fluorescein 

isothiocyanate dextran (FITC-dextran) in (Chapter 3) and consistently decreased ileal 

expression of barrier function genes like claudin 3 (Cldn3), and zonula occluden 1 

(Zo-1) in response to LF diet feeding of mice. Exposure of the liver to unmetabolised 

fructose can lead to production of fructose metabolism intermediate glycerol-3-

phosphate (G3P) which can directly enter the lipogenesis pathway (Macdonald et al., 

2016). 

Exposure of intestinal microbiota to refined carbohydrates can lead to production of 

hepatotoxic metabolites. Although, most of the refined carbohydrates are mainly 

taken up by the proximal small intestine, excess unabsorbed starch and sucrose may 

reach the distal part of the intestine and interact with the microbiota (Howe et al., 

2016; Jang et al., 2018). In line with this, we observed an increased relative 

abundance of Romboutsia and Lactococcus in the ileum of LF fed mice. These 

bacteria have been shown to encode genes related to carbohydrate transport and 

metabolism. Romboutsia can utilise a wide variety of simple carbohydrates and have 

good growth in high sucrose conditions to produce end products of fermentation such 

as, acetate, lactate and formate (Gerritsen et al., 2017). In the context of high sucrose 

conditions, microbial metabolism of simple carbohydrates has been shown to 

promote de novo lipogenesis in the liver by providing acetate for production of 

hepatic acetyl-CoA and fatty acids (Zhao et al., 2020). Although, the authors also 

showed that acetate is insufficient to trigger an increase in lipogenesis in the absence 

of the sugar-derived lipogenic transcriptional signal. In addition to acetate, dominant 

SCFAs from Faecalibaculum, butyrate has also been suggested to contribute to liver 

lipogenesis depending on the metabolic state of the cells. Donohoe et al. (2012) 

showed that butyrate can serve as a carbon source for β-oxidation and the TCA cycle 

and therefore increase the production of acetyl-CoA and lipid biosynthesis. 
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Therefore, it is possible that in the context of high carbohydrate conditions, LF diet 

may promote lipogenic gene expression in the liver and microbial metabolisation of 

starch and sucrose produce microbial metabolites such as acetate, which can act 

together to support de novo lipogenesis in the liver of LF fed mice. SCFAs have been 

considered beneficial for human health, however, it is becoming increasingly 

accepted that their precise mechanisms can differ between tissues and metabolic 

conditions (Koh et al., 2016).  

 

Figure 7.1 High starch and sucrose in the low-fat (LF) diet leads to a pathophysiological liver 
phenotype in mice.  

 

7.1.2 Composition and amount of dietary fibres have differential ileal 

immunomodulatory properties 

Soluble dietary fibres (DF) are a major component lacking in the LF diet, therefore, 

in chapter 5, we enriched the LF diet with various DF to investigate their role on the 

gut-liver axis. We showed that addition of the DF protected the livers from the LF 

induced lipid accumulation as demonstrated by lower hepatic triglyceride levels and 

liver histology. The amelioration of the liver phenotype may be due to fibre impacted 

slower starch and sucrose hydrolysis by MGAM and SIS, hence, reduced 

glucose/fructose passage into the intestine resulting in efficient intestinal clearance. 

We observed increased ileal gene expression of carbohydrate digestion enzymes (α 

glucosidases) Sis, Mgam, and glucose and fructose transporters Sglt1, Glut2, and 

Glut5 in the fibre groups, that indicates increased delivery of nutrients to the ileum. 

Another reason for the increased expression of the α glucosidases and 

glucose/fructose transporters could be due to the inhibitory effect of fibres by direct 
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binding to digestive enzymes and transporters, thereby, delaying the digestion and 

uptake of carbohydrates (Grundy et al., 2016; Neyrinck et al., 2016).  

The LF diet was enriched with either 6.8% inulin alone (LS+In) or a combination of 

2.3% inulin, pectin and psyllium each (LS+Comb). We performed RNA sequencing 

on the ileal samples from this study to show differential effects of fibre enriched 

groups on the ileal immune related genes; interferon induced and major 

histocompatibility complex (MHC) class II genes were most upregulated in the fibre 

combination group compared to inulin alone. Our results highlight that not all DF 

provide similar effects on host GI health. We did not find major differences in the 

ileal microbial composition between the groups. However, the heterogeneity in the 

structures of inulin, pectin and psyllium can influence the rate of fermentation of 

these fibres by the microbiota and hence, lead to different concentration ratios of 

SCFAs; acetate, propionate and butyrate, and consequent physiological effects 

(Singh and Vijay-Kumar, 2020). Time-of-flight mass-spectrometry based 

metabolomics analysis of the caecal content from mice in this experiment can reflect 

the changes of the metabolome in response to the different diets. We hypothesise 

varying concentrations of SCFAs in the caecal content in response to the distinct 

fibres in our diets, may influence the gut immune response (Singh et al., 2018).  

Shotgun metagenomic assessment of ileal content samples from the different diet 

groups can provide us with a taxonomic resolution down to the species level and 

identify the variety of host undigestible carbohydrate-active enzymes present in the 

gut microbiota of each group. The metagenomics approach can not only give us a 

comprehensive description of the gut microbiota, but also characterise the viruses 

present in the gut virome, which is highly important for the regulation of the host 

immunophenotype (Rampelli, et al., 2016). However, shotgun metagenomics 

techniques are far more expensive than the 16S rRNA analysis and were not in the 

scope of this PhD thesis.  

Many DF can also directly interact with the gut immune cells, such as macrophages 

or dendritic cells independent of the microbiota (Beukema et al., 2020). Mouse 

studies have shown that DF are transported into the Peyer’s patches through 

microfold (M) cells and can activate immune cells (Suh et al., 2013; De Jesus et al., 

2014). Moreover, the structural characteristics such as degree of polymerisation 

(complexity of the structure) of the fibres also play a role in the host immune 

response (Beukema et al., 2020; Vogt et al., 2016). Therefore, the heterogeneity in 

the structure of pectin, inulin and psyllium may explain the varied immune response 

in the groups. This effect may be due to the complexity of these fibres which is in the 

order inulin < pectin < psyllium (Alexander et al., 2019). Further research on germ 

free mice needs to be carried out to understand the precise mechanisms through 

which DF affect immune response in the gut independent of the microbiota.  

We performed bulk RNA sequencing on the ileum samples which reflects the 

average gene expression across thousands of cells. In the future, single cell RNA 

sequencing can allow us to identify the immune cells that are expressing genes 

related to interferon induction and MHC Class II molecules (Zhao et al., 2020). For 

instance, ILC3 (Innate lymphoid cells subset 3) are known to express MHCII and 
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play a critical role in maintaining gut homeostasis by supporting the mutualism with 

commensal bacteria  (Melo-Gonzalez et al., 2019), therefore, by measuring the gene 

expression of H2-aa, H2-ab1, and H2-dmb1 in sort-purified ILC3, we may be able to 

confirm if the gene signal is indeed coming from ILC3 to maintain tissue 

homeostasis. 

7.1.3 Calorie restriction (CR) improves the LF induced phenotype in mice 

In collaboration with Dr Steegenga (Wageningen University and Research), we 

analysed the ileal samples from the IDEAL study to describe the long-term effects of 

the LF diet on ileal gene expression and microbiota composition. We also used this 

opportunity to investigate if CR intervention can reverse these LF induced effects. 

Long-term (24 months) feeding of the LF diet led to increased liver triglycerides 

(Rusli et al., 2017), decreased Paneth cells and cell cycle related genes and altered 

microbiota composition in the ileum, whereas CR intervention prevented this age-

related effect of purified diets fed ad libitum.   

Various intracellular mechanisms have been proposed by which CR can reduce the 

age-related cell and DNA damage including decreased oxidative stress and enhanced 

DNA repair (Heydari et al., 2007; Bruens et al., 2020). The stable expression of 

genes related to Paneth cells and cell cycle regulation suggests that 1) CR provides 

protection against age associated dysregulation of antimicrobial peptides 

secretion/production in the ileum (Tremblay et al., 2017), 2) CR maintains 

regeneration of the intestinal tissue which can eliminate age-related mutations of 

weak and damaged cells through niche competition, thereby contributing to the 

beneficial healthy ageing effect of CR (Bruens et al., 2020).   

Studies on CR have been performed on chow (Guijas et al., 2020) as well as purified 

diet background (Green et al., 2018). We anticipated that the difference in the 

composition of the background diet may have an effect on the gut-liver axis in 

response to CR. We showed that 8 weeks CR on the LF background successfully 

reduced hepatic lipid accumulation in mice, whereas no difference in hepatic 

triglycerides was observed between chow control and its CR counterpart. In 

agreement with previous CR studies (Green et al., 2018; Guijas et al., 2020), we 

observed upregulation of peroxisome proliferator-activated receptor alpha (Pparα) in 

the liver of chowCR and LFCR mice, which is involved in the regulation of lipid β 

oxidation to provide energy (Zheng et al., 2018). However, the differential 

expression of hepatic lipogenic genes between chowCR and LFCR requires further 

investigation. 

Moving forward with this study, it will be important to perform longer CR 

experiments with controlled variables to investigate if the diets affect the circulatory 

and intestinal luminal metabolites (e.g. free fatty acids) profile differently. Another 

important factor that may contribute to the differences observed between chow and 

LF, is the involvement of the gut microbiota and SCFAs that may affect the host’s 

response to CR. Determining these gut-liver related changes that take place during 

CR can provide us with fundamental information to develop CR mimetics to promote 

health span in humans. 
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7.1.4 Challenges of using mice as research models 

In chapter 6, we compared mice that were bred in different locations to show 

differential effects of the chow versus LF intervention on the microbiota composition 

and bile acid metabolism. In brief, we found increased abundance of Proteobacteria 

in the inhouse disease modelling unit (DMU) mice, which is further enhanced when 

these mice were exposed to the LF diet. Furthermore, we also show differential 

profiles of ileal bile acids, specifically increased levels of taurine conjugated bile 

acids in the externally sourced CRUK mice which indicates decreased bile salt 

hydrolase (BSH, involved in deconjugation of bile acids) activity in the ileal 

microbiota of these mice. Our results did not correlate with the abundance of genus 

Lactobacillus in this group, which is known to contain high amount of BSH enzymes 

(Song et al., 2019). Therefore, chemoproteomic approaches for interrogating the 

metabolic activities of the gut microbiota may shed some light on the measure of 

activity of the BSH present in gut of CRUK and DMU mice.  

A limitation of this study was that due to cost and time restrictions, we were unable 

to sequence the gut microbiota of CRUK mice before they arrived at the University 

of East Anglia (UEA) facility. In the future, a baseline measure of ileal microbiota of 

mice from different locations at timepoint zero would give us further information on 

the original microbiota of these mice and how the microbiota has shifted over the 

course of the experiment (week 1, 2, 3 and 4) under chow and LF dietary conditions. 

Our results highlight that despite the mice being genetically identical and exposed to 

the same dietary conditions, heterogeneity in the gut microbiota composition in mice 

due to their source can have profound implications in the field of biomedical 

research. The ever-increasing research on disease mechanisms and host processes 

that are impacted by gut microbiota make it abundantly clear that properly 

controlling for gut microbiota variation is critical for reproducibility. The scientific 

community and commercial vendors need to work together in order to address these 

realities. Scientists could help facilitate clear and consistent publishing of mouse 

husbandry details by providing information on the vendor name, mouse strain, barrier 

room, and inhouse husbandry conditions such as type of water, dietary compositional 

details, bedding, type of cages and light cycle. Smith et al. (2017) published the 

PREPARE guidelines: Planning Research and Experimental Procedures on Animals: 

Recommendations for Excellence to address the widespread concerns about 

reproducing and translating animal research.  

Another challenge that we faced during our mouse studies was the presence of inter-

individual variation in phenotype and microbiota results between the mice from the 

same group or cage dependent effects. For example, in chapter 6, we found presence 

of the genus Akkermansia in all mice from cage number 2 (that contained m4, m5, 

m6) within the CRUK chow group. The increased abundance of this mucus 

degrading genus Akkermansia is associated with the health status of mice and a 

reduced body weight (Depommier et al., 2020). However, presence of Akkermansia 

within these mice lacked correlation with factors such as body weight, Muc2 or 

inflammation related gene expression. We also noticed low and high body weight 

gainers within the same group which could be attributable to various factors such as 
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dominance status, social interaction and stress. Moreover, some of these 

environmental factors may favour inter-individual differences via early life 

programming of the individual mouse dependent on litter size, and induction of 

epigenetic modifications of the genome (such as, DNA methylation, histone 

acetylation, or microRNA modifications) which can have major effects on the 

microbiome of the mouse (De Francesco et al., 2019).  

Although, we did not observe strong correlations for abundance of Akkermansia with 

other phenotype or gene expression data for the mice. It would be interesting to see 

whether these inter-individual variations have long-term effects, such as healthy 

ageing or protection against diet induced metabolic syndrome (Biagi et al., 2016).  

Recently, human intestinal organoids or organ on a chip technology have been 

demonstrated as powerful tools to understand unresolved mechanisms underlying 

physiology and disease progression. For example, De Gregorio et al. (2020) utilised 

integrated microfluid intestine-liver device as a tool to reproduce the first-pass 

metabolism of ethanol. Given the rapid technological advancement in the field, the 

variety of organoid models and organ on a chip options available will provide a 

powerful platform to research host-microbiota-gut-liver interactions for preclinical 

studies, and help scientists produce reproducible and translatable data in the field of 

metabolic research. 

7.2 Human relevance 

The consumption of ultra-processed foods, which are high in added starch and 

sucrose, and low in DF, are strongly linked with a 62% increased hazard for mortality 

(Rico-Campà et al., 2019). Detrimental effects have also been shown in this thesis 

with the development of early signs of NASH when the mice were exposed to the 

highly refined LF diet, that resembles a high refined carbohydrate, and low-fat 

Western style diet. Our studies further confirm the emerging epidemiological 

consensus that reduced fat processed foods such as low-fat desserts, fruit juices that 

were once viewed as healthy because of their low-fat content, can have dangerous 

outcomes in the liver because of the easily accessible carbohydrates present in these 

foods.  

To avoid these detrimental effects, recently food manufacturers have started to fortify 

processed foods with refined DF such as inulin and pectin in various products (baked 

goods, fruit yoghurts) to promote them as health foods and increase the public’s fibre 

intake. Indeed, high intake of fibres can provide many health benefits, such as 

improved barrier function (as shown in Chapter 3) and abundance of beneficial 

Bifidobacterium as reported in Chapter 5 of this thesis. Moreover, we also observed 

increased immune response in chow and fibre combination diet, but not in solely 

inulin enriched LF fed mice, which suggests that not all DF effect the GI health 

equally. The activation of an immune response to DF may be beneficial to the host 

under different circumstances. During physiological conditions, mild activation of 

immune responses by a high fibre intake can be beneficial because it promotes 

intestinal immunity. However, under gut inflammatory conditions (Irritable bowel 

disease, IBD), the activation of the immune response may add to the injury in the gut 

resulting in exacerbation of the disease. Therefore, further research is required to 
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understand whether the different fibre products provide similar health benefits in all 

human population.  

Numerous studies have demonstrated various benefits of microbial metabolites such 

as SCFAs, from serving as fuel for colonocytes to improving intestinal inflammation. 

However, several studies have also shown that persistent elevation of SCFAs in the 

gut could prove harmful to gut and metabolic health (Singh and Vijay-Kumar, 2020). 

An intriguing study by Zhang et al. (2016) demonstrated aggravated colitis in DSS 

treated mice that received butyrate producing bacteria, while no detrimental effect 

was observed in healthy controls. Therefore, the differential impact of fibres on the 

gut immune response supports the paradigm that fibres are a ‘double edged sword’ 

that could promote or deter health depending on the health status of the host. 

Moreover, our research also highlights the need for careful consideration when 

selecting prebiotic interventions to alter levels of SCFAs. As dysregulated levels of 

SCFAs may promote or dampen inflammation depending on the microbiota 

composition (healthy or dysbiotic) and level of gut inflammation in humans.  

7.3 Future perspectives 

7.3.1 Susceptibility of LF mice to infection 

In Chapter 3, we demonstrated that the gut and liver of LF fed mice were more 

sensitive to the LPS challenge compared to chow fed mice. In order to confirm this 

hypothesis future mouse studies with Clostridium difficile infection can further 

explain health effects of the two control diets. C. difficile is known to cause 

gastrointestinal infections, with symptoms ranging from diarrhoea in mild infections 

to ulcerative colitis in severe cases (Magill et al., 2014). The infection model rather 

than dextran sulfate sodium (DSS) colitis or LPS model, will allow us to study the 

normal host immune and gut microbiota response to the pathogen. 

Four weeks chow and LF fed mice can be challenged with C. difficile strain such as 

R20291 (known to be enhanced in conditions of high simple sugars) and monitored 

daily for a further 4 weeks for signs of C. difficile infection (such as weight loss, 

temperature). Mice will be sacrificed at the end of the experiment, or if the infection 

symptoms reached a severity endpoint as described by Chrisabelle et al. (2020), so 

that no mice experienced severe distress. After sacrifice, the effect of diet on the 

outcome of C. difficile infections would be assessed by analysing changes in gut 

permeability by FITC-dextran in the serum, microbiota composition by shotgun 

metagenomics, metabolomics of luminal content and portal vein, caspase 3 activity in 

the liver, and gene expression analysis in the liver and gut for inflammatory markers.  

7.3.2 The impact of dietary fibres on the gut-liver axis 

Based on the results presented in chapter 5 of this thesis, the addition of DF inulin, 

and a combination of inulin, pectin and psyllium improves the lipid accumulation in 

the liver induced by the LF diet. In order to understand the 1) microbiota independent 

and 2) microbiota dependent mechanisms by which fibres have these beneficial 

effects we propose the following experiments; 
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1. To elucidate microbiota independent mechanisms 

Firstly, we could assess how glucose/fructose under the LF diet reaches the 

liver, and the possible mechanisms by which addition of inulin and fibre 

combination could prevent it. We could utilise isotope tracer experiments and 

administer mice with a solution of 1g sucrose (comprised of 1:1 mixture of 

labelled [U-13C] glucose and [U-13C] fructose) via oral gavage and quantify 

the levels of labelled sugars in the portal circulation at different time points 

(30 and 60 minutes) in mice. The mice will be fed a variant of the LF diet 

with 0g of sucrose. The amount of 1g per mouse is similar to the amount 

consumed on the LF diet per mouse per day. Additional groups with labelled 

sucrose solution with supplementation of inulin and/or combination fibres can 

demonstrate whether the fibres aid slower fructose/glucose uptake in the liver 

by measuring the levels of labelled glucose and fructose in the portal blood. 

 

2. To elucidate microbiota dependent mechanisms  

Feeding experiments with the LF and LF + Fibre diets to mice with depleted 

gut microbiota (by using antibiotics treatment or germ-free mice) can give us 

further information about the role of microbiota in the development of the 

detriment liver phenotype in LF fed mice. 

 

Furthermore, lifelong studies of feeding with the LF diet, and LF diet 

enriched with different fibres will give us deeper knowledge on the long-term 

effect of these diets. Liver phenotype via histology, intestinal permeability 

measurements via FITC-dextran, bile acids in the ileum and serum, 

metabolomics in the portal vein blood, serum and the intestine, microbiota 

composition analysis via shot gun metagenomics sequencing and 

transcriptomics in both the intestine and liver could give us comprehensive 

data to form robust conclusions on the role of DF in the gut-liver axis. 

Within this experiment, time point analysis of all the above measures at 6, 12 

and 24 months can also provide us information on the effects of different 

fibres during ageing and if some fibre via microbiota mechanisms are better 

than others in increasing health in aged mice (or life expectancy). 

 

FMT techniques can be used to inoculate mice with faecal human microbiota 

from healthy adults to assess the effects of different DF in improving diet 

induced NASH phenotype. Furthermore, inoculation of mice with faecal 

microbiota from NASH patients, could provide us with information on the 

role that the original (preintervention) microbiota may play in the 

effectiveness of DF in improving NASH phenotype. These strategies can help 

explain why some adults respond more positively to a dietary intervention 

than others and pave the way towards personalised dietary strategies 

(personalised fibre products) to tackle NASH and various metabolic diseases. 
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7.4 Further Limitations 

Chow and LF diet have major differences in their carbohydrate composition. Another 

difference between the diets is in terms of their protein content and source. Chow diet 

contains slightly more protein (26.9 kcal%) compared to the LF diet (20 kcal%). 

Protein in the chow diet comes from a plant-based source (soya, potato protein, 

hydrolysed wheat gluten and maize gluten meal) and the protein in the LF diet comes 

from casein alone, which is mainly sourced from dairy. Protein source and amino 

acid balance has been known to influence gut microbiota and its metabolites. For 

example, plant proteins such as soy protein has been linked to a greater abundance of 

Bacteroidetes, and decreased circulating LPS levels compared to meat, dairy, and 

casein-protein consumption (Prokopidis et al., 2020). Furthermore, chow diet 

contains dietary aryl hydrocarbon receptor (AhR) ligands from phytochemicals 

(daidzein and genistein) in grains and soya oil, whereas the LF diet lacks such 

phytochemicals. Schanz et al. (2020) has demonstrated that dietary AhR ligands have 

a profound influence on intestinal immune cells as well as gut microbiota 

composition. Therefore, the lack of DF as well as AhR ligands in the LF diet may be 

one of the reasons underlying the ‘unhealthy’ phenotype caused by the LF diet. The 

target gene of AhR, cytochrome P450, family 1, subfamily A, polypeptide 1 

(Cyp1a1) is highest in the proximal parts of the small intestine and almost none in the 

ileum. We have analysed gene expression of Cyp1a1 in the duodenum of chow vs LF 

study to show downregulation of Cyp1a1 in the LF groups (Supplementary Fig. 3.5). 

Therefore, the quality of the diet is just as important as the quantity, in order to 

achieve metabolic health.   
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Supplementary data 1 
 

Supplementary Table 1.1 Composition of LF diet (D17060802) and LFCR (D17060803). 
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Supplementary Table 1.2 Composition of LS (LF Low sucrose, D12450J), LS+Inulin (D18012101), 
LS+Inulin, pectin and psyllium (Comb: D19051003) diets. 
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Supplementary Table 1.3 Composition of chow diet RM3-P 
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Supplementary data 2 

Bile acid (BA) method and conditions 

Each sample (5µl) was analysed using an Agilent 1260 binary HPLC couples to an 

AB sciex 4000 QTrap triple quadrupole mass spectrometer. HPLC was achieved 

using a binary gradient of solvent A (Water + 5mM Ammonium Ac + 0.012% 

Formic Acid) and solvent B (Methanol + 5 mM Ammonium Ac + 0.012% Formic 

Acid) at a constant flow rate of 600µl/min. Separation was made using a Supelco 

Ascentis Express C18 150 x 4.6, 2.7µm column maintained at 40˚C. Injection was 

made at 50% B and held for 2 min, ramped to 95%B at 20 min and held until 24 

minutes. The column equilibrated to initial conditions for 5 minutes. The mass 

spectrometer was operated in electrospray negative mode with capillary voltage of -

4500V at 550˚C. Instrument specific gas flow rates were 25ml/min curtain gas, GS1: 

40ml/min and GS2: 50ml/min.  

BA standards: d4 Internal standards: Each d4 internal standard is prepared at 1 

mg/ml in methanol. Prepare 5 solutions of these all at 40µg/ml by taking 400µl of 

each stock standard to 10ml in 70% methanol. 

INT Std # Int Std(s) 

1 d4-GCA + d4 LCA 

2 d4-CA 

3 d4-CDCA 

4 d4-DCA 

5 d4-DCA/CDCA/CA/GCA/LCA 

 

Calibration standards 

Each BA is prepared at 1mg/ml in methanol and stored refrigerated. 

A 10µg mix of the BAs is prepared in 70% methanol by taking 100µl of each 

individual BA (at 1mg/ml) into a pooled vial and making to 10ml total volume. Make 

all to total volume of 500µl with methanol. 

Std (ng/ml) Vol (µl) Of what std Make up vol (µl) 
Methanol 

Notes 

4000 200 10µg/ml mix 300  

2000 100 10µg/ml mix 400  

1000 50 10µg/ml mix 450 Prep x 2 

500 25 10µg/ml mix 475  

200 10 10µg/ml mix 490  

100 50 1000ng/ml mix 450 Prep x 2 

25 12.5 1000ng/ml mix 487.5  

15 75 100ng/ml mix 425  

10 50 100ng/ml mix 450  

5 25 100ng/ml mix 475  

0 0 - 500  
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Then to each of these, add 25µl of d4-Int Std mix #5 (40µg/ml) to give 2000 ng/ml 

each. 

LC-MS 

Conditions 

Column: Supelco Ascentis Express C18 150 x 4.6, 2.7µm 

Flow: 600µl/min 

Mobile phase A: Water + 5mM Amm. Ac + 0.012% Formic acid 

Mobile Phase B: Methanol + 5mM Amm. Ac + 0.012% Formic acid 

Inj: 5µl 

Column: 40°C 

Mobile phase preparation 

In one litre of methanol or Water: 

5 mM Ammonium Acetate = 0.385g 

0.012% formic acid = 120µl 

LC Gradient 

Time %B 
0 50 
2 50 

20 95 
24 95 
25 50 
29 50 

 

Source Conditions (negative mode) 

SOURCE 
 

CUR:  25 
TEM:  550 
GS1:  40 
GS2:  50 
ihe:  ON 
CAD:  -2 
IS:  -4500 
EP -10 
CXP -9 

 

 

 



170 
 

 

Multiple reaction monitoring (MRM) settings 

ID Q1 Q3 Dwell DP CE RT 

LCA 375.3 375.3 20 -90 -
10 

22.70 

CDCA 391.3 391.3 20 -
120 

-
10 

20.85 

DCA 391.3 391.31 20 -
120 

-
10 

21.17 

HDCA 391.3 391.32 20 -
120 

-
10 

18.29 

MCA 391.3 391.33 20 -
120 

-
10 

16.57 

UDCA 391.3 391.34 20 -
120 

-
10 

17.52 

a-MCA 407.3 407.3 20 -
120 

-
10 

15.93 

b-MCA 407.3 407.31 20 -
120 

-
10 

16.29 

CA 407.3 407.32 20 -
120 

-
10 

18.89 

GLCA 432.3 432.3 20 -80 -
10 

19.77 

GCDCA 448.3 448.31 20 -80 -
10 

17.72 

GDCA 448.3 448.32 20 -80 -
10 

18.28 

GCA 464.3 464.3 20 -80 -
10 

15.70 

TLCA 482.2 482.2 20 -
130 

-
10 

19.19 

TCDCA 498.3 498.3 20 -
130 

-
10 

17.10 

TDCA 498.3 498.31 20 -
130 

-
10 

17.64 

T-a-
MCA 

514.3 514.3 20 -
130 

-
10 

10.81 

T-b-

MCA 

514.3 514.31 20 -

130 

-

10 

11.06 

TCA 514.3 514.32 20 -
130 

-
10 

15.08 

       

d4-LCA 379.3 379.3 20 -90 -
10 

22.70 

d4-
CDCA 

395.3 395.31 20 -
120 

-
10 

20.83 

d4-DCA 395.3 395.3 20 -
120 

-
10 

21.13 

d4-CA 411.3 411.3 20 -
120 

-
10 

18.86 

d4-GCA 468.4 74 20 -80 -
40 

15.71 

       

P lipid 
query 

153 153 20 -
130 

-
10 
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Qualifiers 

ID Q1 Q3 Dwell DP CE RT 

GLCA 432.3 74 20 -80 -

40 

20.59 

GCDCA 448.3 74.11 20 -80 -

40 

18.31 

GDCA 448.3 74.12 20 -80 -

40 

18.93 

GCA 464.3 74 20 -80 -

40 

16.03 

TCDCA 498.3 80.1 20 -

130 

-

60 

17.33 

TDCA 498.3 80.11 20 -

130 

-

60 

17.87 

T-a-

MCA 

514.3 80.1 20 -

130 

-

60 

10.68 

T-b-

MCA 

514.3 80.11 20 -

130 

-

60 

11.02 

TCA 514.3 80.12 20 -

130 

-

60 

15.12 

TLCA 482.2 80 20 -

130 

-

60 

19.57 

 

QTrap method file: Bile salts (MP).dam 
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Microbiota analysis at Novogene                                                                       

Microbial DNA was isolated from approximately 50mg ileal luminal content with the 

Qiagen DNA mini kit. Additional steps were added to the DNA mini kit protocol to 

ensure breakage of all bacterial samples. Briefly, the samples were homogenised 

using silica glass beads for 4x 30 seconds at 6000 rpm in a Precellys®24 (Bertin 

Technologies, France) and heated to 95°C for 5 minutes. Additionally, samples were 

incubated with a lysis buffer containing 20mg/ml lysozyme (Lysozyme from chicken 

egg white, Sigma-Aldrich) after which the homogenising was repeated. The 

lysozyme was used to help effectively capture usually difficult to lyse taxa, such as 

gram-positive bacteria. Consequently, DNA was isolated using the Qiagen DNA 

mini kit following instructions from the manufacturer. DNA quantity was assessed 

using a Nanodrop 2000 Spectrophotometer (Fisher Scientific, UK). 

A minimum of 50ng of DNA was sent to Novogene (Cambridge, UK). Quality 

assessment was performed by agarose gel electrophoresis to detect DNA integrity, 

purity, fragment size and concentration. The 16S rRNA amplicon sequencing of the 

V4 region was performed with an Illumina MiSeq (paired-end 250 bp; San Diego, 

CA). Paired-end reads was assigned to samples based on their unique barcodes and 

trimmed by cutting off the barcode and primer sequences. Paired-end reads were 

merged using FLASH (V1.2.7). Quality filtering on the raw tags were performed 

using specific filtering conditions to obtain the high-quality clean tags according to 

the Quantitative Insights into Microbial Ecology (QIIME) (version 1.7.0) quality-

controlled process (Caporaso et al., 2011). The tags were compared with the 

reference database (Gold database) using UCHIME algorithm to detect chimera 

sequences and then the chimera sequences were removed, and Effective Tags were 

obtained. Sequences analysis were performed by Uparse software (Uparse v7.0.1001) 

(Edgar, 2013) using all the effective tags. OTUs were picked with 97% sequence 

similarity. For each representative sequence, Mothur software was performed against 

SSUrRNA database of SILVA database. Alpha and beta diversity were calculated by 

QIIME and displayed with R software (Novogene, Cambridge). Comprehensive 

statistical and meta-analysis including differential analysis of taxa abundance was 

completed with the online tool Microbiome Analyst 5.0 (Chong et al., 2020). 
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Supplementary data 3 
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Supplementary figure 3.1 Differences in the abundance of Enterobacteriaceae family from the 
Gammaproteobacteria group. Significance was tested by using unpaired T test (***=p<0.001, **= 
p<0.01, *= p<0.05). LF: Low-fat diet.  
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Supplementary figure 3.2 Differential metabolite profiles in the ileal content after 2 weeks feeding 
with chow and LF diet. Significance was tested by using unpaired T test (***=p<0.001, **= p<0.01, 
*= p<0.05). LF: Low-fat diet, SCFAs: Short chain fatty acids.  
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Supplementary figure 3.3 Gene expression of Tlr4 in response to chow and LF fed mice treated with 
LPS. LPS: Lipopolysaccharide.  
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Supplementary figure 3.4 Liver gene expression analysis from adult (6 months) and old mice (24 
months) mice exposed to lifelong CR diet.  Significance was tested using a 2-way ANOVA with 
Bonferroni post-hoc test for both diet and time (**= p<0.01, *= p<0.05).  
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Supplementary figure 3.5 Gene expression of Cyp1a1 in the duodenum in response to different diets. 
Significance was tested by using unpaired T test (A) and 1-way ANOVA (B) (***=p<0.001, **= p<0.01, 
*= p<0.05. LF: Low-fat diet, LS: low sucrose version of the LF diet, LS+In: LS diet enriched with inulin, 
LS+Comb: LS diet enriched with a combination of inulin, pectin and psyllium.  
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Supplementary figure 3.6 Comparison of serum cholesterol levels in response to the LF diet in mice 
from different sources; CRUK and DMU. Significance was tested by using 1-way ANOVA and unpaired 
t test (***=p<0.001, **= p<0.01, *= p<0.05. CRUK: Charles River, UK. DMU: Disease modelling unit 
at UEA.  
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Supplementary data 4 
 

Supplement 4.1 Ileal gene expression regulated between LF and LFCR at adult and old age. 
Significance was tested using a 2-way ANOVA with Bonferroni post-hoc test for both diet and time 

(**= p<0.01, *= p<0.05). 

  
 mean 
diff. 

95.00% CI of diff. P Value 

Mptx2 6m:LF vs. 6m:LFCR 41.66 -1154 to 1238 1.00 
 

6m:LF vs. 24m:LF 1614 322.1 to 2906 0.01 
 

6m:LFCR vs. 24m:LFCR 336.7 -859.4 to 1533 0.95 
 

24m:LF vs. 24m:LFCR -1236 -2527 to 56.21 0.04 
     

Defa-rs1 6m:LF vs. 6m:LFCR -30.85 -847.0 to 785.3 1.00 
 

6m:LF vs. 24m:LF 1100 218.8 to 1982 0.01 
 

6m:LFCR vs. 24m:LFCR 337.7 -478.4 to 1154 0.61 
 

24m:LF vs. 24m:LFCR -793.5 -1675 to 88.04 0.04 
     

Defa3 6m:LF vs. 6m:LFCR 307.7 -864.7 to 1480 0.86 
 

6m:LF vs. 24m:LF 1908 641.9 to 3175 0.00 
 

6m:LFCR vs. 24m:LFCR 580.9 -591.5 to 1753 0.47 
 

24m:LF vs. 24m:LFCR -1020 -2286 to 246.7 0.05 
     

     

Dmbt1 6m:LF vs. 6m:LFCR 2.475 -426.7 to 431.6 1.00 
 

6m:LF vs. 24m:LF 465.3 1.746 to 928.9 0.05 
 

6m:LFCR vs. 24m:LFCR 122.4 -306.8 to 551.6 0.94 
 

24m:LF vs. 24m:LFCR -340.4 -804.0 to 123.1 0.05 
     

Cdca3 6m:LF vs. 6m:LFCR -0.4258 -39.83 to 38.97 1.00 
 

6m:LF vs. 24m:LF 52.3 9.746 to 94.86 0.02 
 

6m:LFCR vs. 24m:LFCR -11.04 -50.44 to 28.36 0.83 
 

24m:LF vs. 24m:LFCR -63.77 -106.3 to -21.22 0.00 
     

Cdca8 6m:LF vs. 6m:LFCR 6.973 -13.78 to 27.72 0.75 
 

6m:LF vs. 24m:LF 30.51 8.101 to 52.92 0.01 
 

6m:LFCR vs. 24m:LFCR -0.9638 -21.71 to 19.78 1.00 
 

24m:LF vs. 24m:LFCR -24.5 -46.91 to -2.092 0.03 
     

Cenpe 6m:LF vs. 6m:LFCR 10.46 -21.21 to 42.13 0.76 
 

6m:LF vs. 24m:LF 28.05 -6.162 to 62.25 0.05 
 

6m:LFCR vs. 24m:LFCR -11.97 -43.64 to 19.70 0.68 
 

24m:LF vs. 24m:LFCR -29.56 -63.77 to 4.649 0.05 
     

Prr1 6m:LF vs. 6m:LFCR -2.566 -24.87 to 19.74 0.99 
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6m:LF vs. 24m:LF 23.7 -0.3931 to 47.79 0.04 

 
6m:LFCR vs. 24m:LFCR 0.6571 -21.65 to 22.96 1.00 

 
24m:LF vs. 24m:LFCR -25.61 -49.70 to -1.516 0.04 

     

Acsl3 6m:LF vs. 6m:LFCR -176.2 -375.8 to 23.30 0.05 
 

6m:LF vs. 24m:LF -0.8748 -216.4 to 214.6 1.00 
 

6m:LFCR vs. 24m:LFCR -23.32 -222.9 to 176.2 0.98 
 

24m:LF vs. 24m:LFCR -198.7 -414.2 to 16.84 0.05 
     

Scd2 6m:LF vs. 6m:LFCR -951.6 -1810 to -93.23 0.03 
 

6m:LF vs. 24m:LF 262.2 -664.9 to 1189 0.95 
 

6m:LFCR vs. 24m:LFCR 632.9 -225.4 to 1491 0.21 
 

24m:LF vs. 24m:LFCR -580.9 -1508 to 346.2 0.16 
     

Lpcat4 6m:LF vs. 6m:LFCR -251.1 -404.0 to -98.26 0.00 
 

6m:LF vs. 24m:LF 142.4 -22.67 to 307.5 0.06 
 

6m:LFCR vs. 24m:LFCR 273.6 120.7 to 426.4 0.00 
 

24m:LF vs. 24m:LFCR -120 -285.1 to 45.15 0.06 
     

Elovl6 6m:LF vs. 6m:LFCR -321.8 -810.3 to 166.6 0.05 
 

6m:LF vs. 24m:LF -78.98 -606.6 to 448.6 0.97 
 

6m:LFCR vs. 24m:LFCR 26.56 -461.9 to 515.0 1.00 
 

24m:LF vs. 24m:LFCR -216.3 -743.9 to 311.3 0.62 
     

Chrebp 6m:LF vs. 6m:LFCR 61.02 -180.8 to 302.8 0.87 
 

6m:LF vs. 24m:LF -144.3 -405.5 to 116.9 0.39 
 

6m:LFCR vs. 24m:LFCR -253.7 -495.5 to -11.84 0.04 
 

24m:LF vs. 24m:LFCR -48.33 -309.5 to 212.9 0.94 
     

Mgam 6m:LF vs. 6m:LFCR -182.5 -1158 to 792.9 0.94 
 

6m:LF vs. 24m:LF 286.6 -688.8 to 1262 0.82 
 

6m:LFCR vs. 24m:LFCR -199.5 -1175 to 775.9 0.93 
 

24m:LF vs. 24m:LFCR -668.6 -1644 to 306.8 0.23 
     

Sis 6m:LF vs. 6m:LFCR -312.8 -969.1 to 343.5 0.51 
 

6m:LF vs. 24m:LF 212.4 -496.5 to 921.3 0.80 
 

6m:LFCR vs. 24m:LFCR -214.4 -870.8 to 441.9 0.76 
 

24m:LF vs. 24m:LFCR -739.6 -1449 to -30.73 0.04 
     

Khk 6m:LF vs. 6m:LFCR 11.63 -373.9 to 397.2 1.00 
 

6m:LF vs. 24m:LF -413.2 -829.6 to 3.282 0.05 
 

6m:LFCR vs. 24m:LFCR -515.9 -901.5 to -130.4 0.01 
 

24m:LF vs. 24m:LFCR -91.13 -507.6 to 325.3 0.91 
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Fbp1 6m:LF vs. 6m:LFCR -8.73 -89.66 to 72.20 0.99 
 

6m:LF vs. 24m:LF -56.57 -144.0 to 30.85 0.26 
 

6m:LFCR vs. 24m:LFCR -86.26 -167.2 to -5.331 0.04 
 

24m:LF vs. 24m:LFCR -38.43 -125.8 to 48.99 0.57 
     

Sglt1 6m:LF vs. 6m:LFCR -126.9 -1099 to 844.7 0.98 
 

6m:LF vs. 24m:LF -562.5 -1612 to 487.0 0.41 
 

6m:LFCR vs. 24m:LFCR -918.1 -1890 to 53.52 0.05 
 

24m:LF vs. 24m:LFCR -482.5 -1532 to 566.9 0.53 
     

Glut2 6m:LF vs. 6m:LFCR -183.9 -1111 to 743.5 0.93 
 

6m:LF vs. 24m:LF -860.7 -1862 to 141.0 0.10 
 

6m:LFCR vs. 24m:LFCR -1060 -1988 to -132.9 0.02 
 

24m:LF vs. 24m:LFCR -383.5 -1385 to 618.2 0.67 
     

Glut5 6m:LF vs. 6m:LFCR 333.7 -184.6 to 852.0 0.27 
 

6m:LF vs. 24m:LF 92.19 -426.1 to 610.5 0.95 
 

6m:LFCR vs. 24m:LFCR -497.5 -1016 to 20.81 0.04 
 

24m:LF vs. 24m:LFCR -256 -774.3 to 262.3 0.49 
     

Fgf15 6m:LF vs. 6m:LFCR -149.6 -473.8 to 174.7 0.53 
 

6m:LF vs. 24m:LF -118.7 -468.9 to 231.5 0.74 
 

6m:LFCR vs. 24m:LFCR 217.6 -106.7 to 541.8 0.24 
 

24m:LF vs. 24m:LFCR 186.7 -163.5 to 536.9 0.12 
     

Fxr 6m:LF vs. 6m:LFCR 73.58 -295.1 to 442.3 0.93 
 

6m:LF vs. 24m:LF 267.2 -131.0 to 665.5 0.24 
 

6m:LFCR vs. 24m:LFCR 193.6 -175.1 to 562.3 0.43 
 

24m:LF vs. 24m:LFCR -0.02196 -398.3 to 398.2 1.00 
     

Asbt 6m:LF vs. 6m:LFCR -400.1 -1282 to 481.5 0.54 
 

6m:LF vs. 24m:LF 552 -400.3 to 1504 0.35 
 

6m:LFCR vs. 24m:LFCR 1116 234.2 to 1997 0.01 
 

24m:LF vs. 24m:LFCR 163.7 -788.5 to 1116 0.95 
     

Osta 6m:LF vs. 6m:LFCR -47.55 -703.8 to 608.8 1.00 
 

6m:LF vs. 24m:LF 656.5 -52.38 to 1365 0.05 
 

6m:LFCR vs. 24m:LFCR 615.4 -40.91 to 1272 0.06 
 

24m:LF vs. 24m:LFCR -88.67 -797.6 to 620.2 0.98 
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Supplement 4.2 Ileal expression profiles of immune and carbohydrate related genes in mice fed 
with chow, LS, LS+In and LS+Comb. Significance was tested using a 1-way ANOVA with Tukey’s 
multiple comparison test. LS+In: LS diet enriched with inulin, LS+Comb: LS diet enriched with a 

combination of fibres. LS: Low sucrose version of the LF diet.  

 
 

Mean Diff. 95.00% CI of diff. P Value 

Oas1g 
    

 Chow vs. LS 13.9 2.825 to 24.91 0.01 

 Chow vs. LS+In 9.7 -1.322 to 20.77 0.09 

 Chow vs. LS+Combination -1.0 -12.07 to 10.02 0.99 

 LS vs. LS+In -4.1 -15.19 to 6.896 0.71 

 LS vs. LS+Combination -14.9 -25.94 to -3.850 0.01 

 LS+In vs. LS+Combination -10.8 -21.79 to 0.2978 0.06 

 
    

Oas3 
    

 Chow vs. LS 26.6 6.019 to 47.16 0.01 

 Chow vs. LS+In 22.1 1.496 to 42.64 0.03 

 Chow vs. LS+Combination 10.8 -9.731 to 31.41 0.46 

 LS vs. LS+In -4.5 -25.10 to 16.05 0.92 

 LS vs. LS+Combination -15.8 -36.32 to 4.822 0.17 

 LS+In vs. LS+Combination -11.2 -31.80 to 9.346 0.43 

 
    

Oasl2 
    

 Chow vs. LS 75.6 -14.79 to 166.0 0.12 

 Chow vs. LS+In 66.2 -24.23 to 156.5 0.20 

 Chow vs. LS+Combination 0.8 -89.59 to 91.18 1.00 

 LS vs. LS+In -9.4 -99.82 to 80.94 0.99 

 LS vs. LS+Combination -74.8 -165.2 to 15.58 0.04 

 LS+In vs. LS+Combination -65.4 -155.7 to 25.02 0.21 

 
    

H2-aa 
    

 Chow vs. LS 866.3 -95.74 to 1828 0.09 

 Chow vs. LS+In 456.4 -505.6 to 1418 0.54 

 Chow vs. LS+Combination -254.6 -1217 to 707.4 0.87 

 LS vs. LS+In -409.8 -1372 to 552.2 0.62 

 LS vs. LS+Combination -1121.0 -2083 to -158.9 0.02 

 LS+In vs. LS+Combination -711.1 -1673 to 250.9 0.19 

 
    

H2-ab1 
    

 Chow vs. LS 806.7 -132.5 to 1746 0.11 

 Chow vs. LS+In 406.7 -532.5 to 1346 0.61 

 Chow vs. LS+Combination -303.1 -1242 to 636.2 0.79 

 LS vs. LS+In -400.0 -1339 to 539.3 0.62 

 LS vs. LS+Combination -1110.0 -2049 to -170.5 0.02 

 LS+In vs. LS+Combination -709.8 -1649 to 229.4 0.18 
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H2-dmb1 
    

 Chow vs. LS 45.8 -26.03 to 117.5 0.30 

 Chow vs. LS+In 7.8 -63.94 to 79.62 0.99 

 Chow vs. LS+Combination -39.8 -111.6 to 31.97 0.41 

 LS vs. LS+In -37.9 -109.7 to 33.88 0.45 

 LS vs. LS+Combination -85.6 -157.3 to -13.78 0.02 

 LS+In vs. LS+Combination -47.7 -119.4 to 24.13 0.27 

 
    

Ifit 
    

 Chow vs. LS 18.0 -2.943 to 38.88 0.11 

 Chow vs. LS+In 14.5 -6.460 to 35.36 0.24 

 Chow vs. LS+Combination -3.2 -24.08 to 17.75 0.97 

 LS vs. LS+In -3.5 -24.43 to 17.39 0.96 

 LS vs. LS+Combination -21.1 -42.04 to -0.2224 0.05 

 LS+In vs. LS+Combination -17.6 -38.53 to 3.294 0.12 

 
    

Ubd 
    

 Chow vs. LS 88.6 -51.11 to 228.3 0.30 

 Chow vs. LS+In 88.6 -51.11 to 228.3 0.30 

 Chow vs. LS+Combination -61.6 -201.3 to 78.10 0.60 

 LS vs. LS+In 0.0 -139.7 to 139.7 1.00 

 LS vs. LS+Combination -150.2 -290.0 to -10.51 0.03 

 LS+In vs. LS+Combination -150.2 -290.0 to -10.51 0.03 

 
    

Tap1 
    

 Chow vs. LS 27.2 -13.04 to 67.52 0.25 

 Chow vs. LS+In 22.2 -18.04 to 62.52 0.42 

 Chow vs. LS+Combination -14.9 -55.18 to 25.38 0.72 

 LS vs. LS+In -5.0 -45.29 to 35.28 0.98 

 LS vs. LS+Combination -42.1 -82.42 to -1.862 0.04 

 LS+In vs. LS+Combination -37.1 -77.42 to 3.143 0.08 

 
    

Gzmb 
    

 Chow vs. LS 20.5 0.9119 to 40.04 0.04 

 Chow vs. LS+In 17.4 -2.158 to 36.97 0.09 

 Chow vs. LS+Combination 6.2 -13.38 to 25.75 0.80 

 LS vs. LS+In -3.1 -22.64 to 16.50 0.97 

 LS vs. LS+Combination -14.3 -33.86 to 5.275 0.20 

 LS+In vs. LS+Combination -11.2 -30.79 to 8.345 0.39 

 
    

Zbp1 
    

 Chow vs. LS 28.1 -11.46 to 67.74 0.22 

 Chow vs. LS+In 24.8 -14.82 to 64.39 0.31 
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 Chow vs. LS+Combination -13.9 -53.46 to 25.74 0.75 

 LS vs. LS+In -3.4 -42.96 to 36.25 0.99 

 LS vs. LS+Combination -42.0 -81.60 to -2.396 0.04 

 LS+In vs. LS+Combination -38.6 -78.25 to 0.9606 0.06 

 
    

Mgam 
    

 Chow vs. LS -520.4 -765.8 to -275.0 0.0001 

 Chow vs. LS+In -1188.0 -1433 to -942.6 0.0001 

 Chow vs. LS+Combination -1197.0 -1442 to -951.4 0.0001 

 LS vs. LS+In -667.5 -912.9 to -422.2 0.0001 

 LS vs. LS+Combination -676.3 -921.7 to -431.0 0.0001 

 LS+In vs. LS+Combination -8.8 -254.2 to 236.6 1.00 

 
    

Sis 
    

 Chow vs. LS -412.4 -836.6 to 11.83 0.05 

 Chow vs. LS+In -1089.0 -1513 to -664.3 0.0001 

 Chow vs. LS+Combination -1103.0 -1528 to -679.3 0.0001 

 LS vs. LS+In -676.2 -1100 to -252.0 0.002 

 LS vs. LS+Combination -691.1 -1115 to -266.9 0.001 

 LS+In vs. LS+Combination -14.9 -439.1 to 409.3 1.00 

 
    

Khk 
    

 Chow vs. LS -216.5 -365.0 to -67.97 0.004 

 Chow vs. LS+In -185.6 -334.1 to -37.10 0.01 

 Chow vs. LS+Combination -102.9 -251.4 to 45.57 0.24 

 LS vs. LS+In 30.9 -117.6 to 179.4 0.93 

 LS vs. LS+Combination 113.5 -34.95 to 262.0 0.17 

 LS+In vs. LS+Combination 82.7 -65.82 to 231.2 0.41 

 
    

Aldob 
    

 Chow vs. LS -232.5 -1020 to 555.6 0.83 

 Chow vs. LS+In -828.5 -1617 to -40.44 0.04 

 Chow vs. LS+Combination -1050.0 -1838 to -262.0 0.01 

 LS vs. LS+In -596.0 -1384 to 192.0 0.18 

 LS vs. LS+Combination -817.6 -1606 to -29.55 0.04 

 LS+In vs. LS+Combination -221.6 -1010 to 566.5 0.85 

 
    

Fbp1 
    

 Chow vs. LS -14.8 -41.93 to 12.43 0.43 

 Chow vs. LS+In -41.9 -69.09 to -14.74 0.002 

 Chow vs. LS+Combination -36.7 -63.86 to -9.501 0.007 

 LS vs. LS+In -27.2 -54.34 to 0.01358 0.05 

 LS vs. LS+Combination -21.9 -49.11 to 5.249 0.14 

 LS+In vs. LS+Combination 5.2 -21.94 to 32.41 0.94 



183 
 

 

 
    

Sglt1 
    

 Chow vs. LS -601.9 -876.8 to -327.0 0.0001 

 Chow vs. LS+In -542.8 -817.7 to -267.9 0.0002 

 Chow vs. LS+Combination -226.5 -501.4 to 48.38 0.13 

 LS vs. LS+In 59.14 -215.8 to 334.0 0.93 

 LS vs. LS+Combination 375.4 100.5 to 650.3 0.0062 

 LS+In vs. LS+Combination 316.3 41.35 to 591.2 0.02 

 
    

Glut2  
    

 Chow vs. LS -64.0 -114.0 to -13.96 0.010 

 Chow vs. LS+In -75.1 -125.1 to -25.08 0.003 

 Chow vs. LS+Combination -34.5 -84.49 to 15.55 0.24 

 LS vs. LS+In -11.1 -61.14 to 38.91 0.92 

 LS vs. LS+Combination 29.5 -20.51 to 79.53 0.36 

 LS+In vs. LS+Combination 40.6 -9.396 to 90.65 0.13 

 
    

Fgf15 
    

 Chow vs. LS -52.6 -74.77 to -30.39 0.0001 

 Chow vs. LS+In 9.2 -13.02 to 31.36 0.65 

 Chow vs. LS+Combination 10.6 -11.55 to 32.83 0.53 

 LS vs. LS+In 61.8 39.56 to 83.94 0.0001 

 LS vs. LS+Combination 63.2 41.04 to 85.42 0.0001 

 LS+In vs. LS+Combination 1.5 -20.71 to 23.67 1.00 
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The End 


