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Circular dichroism is the differential rate of absorption of right- and left-handed circularly polarized 
light by chiral particles. Optical vortices which convey orbital angular momentum (OAM) possess a 
chirality associated with the clockwise or anti-clockwise twisting of their wavefront. Here it is 
highlighted that both oriented and randomly oriented chiral particles absorb photons from twisted beams 
at different rates depending on whether the vortex twists to the right or the left through a dipole coupling 
scheme. This is in contrast to previous studies that investigated dipole couplings with vortex modes in 
the paraxial approximation and showed no such chiral sensitivity to the vortex handedness: only in 
oriented media where electric quadrupole coupling contributes to optical activity effects due to 
absorption does such a mechanism exist for paraxial vortices. The distinct difference in the scheme 
highlighted in this work is that longitudinal fields are taken account of. Due to the vortex dichroism 
persisting in randomly oriented collections of chiral particles, the mechanism has a distinct advantage 
in its potential applicability in chemical and biochemical applications where the systems under study 
are invariably in the liquid phase. Additionally, the result is put into context in terms of the quantifiable 
optical chirality, highlighting that optical OAM can in fact increase the optical chirality density of an 
electromagnetic field. 

 

I. INTRODUCTION  
 

Natural optical activity is the differential interaction of a chiral particle - a chiral molecule for 
example - to the handedness of circularly-polarized light (CPL) [1]. Circular dichroism (CD) 
is a type of natural optical activity that specifically relates to a differential rate of absorption of 
CPL. Fundamentally all natural optical activity effects are due to the chiroptical interplay 

between the left- and right-handed nature of chiral particles    L ξ /R ξ  and the left- and right-

handed rotations of the electromagnetic field vectors in CPL    L /R   (see FIG. 1), this 

optical helicity is denoted by 1   , respectively, and stems from the intrinsic spin angular 
momentum (SAM)   of photons.  

Biomolecules are invariably chiral and therefore optically active, and the importance of 
chiroptical spectroscopies are at the forefront in determing these structures and their 
functionalities [2]. Indeed, CD methods have been well utilized in determing the secondary 
structure of proteins [3,4]. Raman optical activity (ROA) is a widely used technique in 
determining the chiral molecular structures and motions of  viruses, carbohydrates, proteins, 
and structures even as large as insulin [5–7]. Beyond natural materials, chiroptical 
spectroscopies of fabricated nanostructures are an important facet of the fields of plasmonics 
and metamaterials  [8–10]. 
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FIG. 1 Chirality of light: the chirality of circular-polarization stems from the electromagnetic field vectors 
tracing out a helix as the light propagates; the chirality of an optical vortex stems from the helical structure that 

the wavefront traces out as the beam propagates. The optical helicity or chirality associated with lights 
polarization is an intrinsic property stemming from SAM; the vortex chirality is a spatial property of the beam 

stemming from its OAM (Figure reproduced with permission from  [11]). 

 

Optical vortices (or twisted light) are well-known and well-utilized in the physics community, 
particularly in optical manipulation; communication and information transfer; and imaging, to 
name a few  [12]. The most common vortex mode implemented is the Laguerre-Gaussian (LG), 
a solution to the paraxial wave equation in cylindrical coordinates. The key property of optical 
vortices is their ability to convey orbital angular momentum (OAM) – this stems from the fact 
they propagate with a helical phase e i , where    is known as the topological charge and   

is the azimuthal angle; optical vortices with    are left-handed, those with    are right-

handed (See FIG.1). For beams propagating paraxially (that is, the wave vector makes a small 
inclination to the optical axis), the spin (polarization) and orbital (spatial) degrees of freedom 
are legitamately seperable, and individual photons may posess discrete   units of OAM and 
  units of SAM  [13,14]. The application of optical vortices in spectroscopic situations is a 
relatively new but rapidly growing research area, particularly in atomic optics [15] and chiral 
spectroscopies [11]. Interest in the latter is due to the fact optical vortices are chiral, in an 
analogous fashion to CPL (see FIG. 1), and so it is natural to ask whether (non-mechanical) 
light-matter interactions can be sensitive to the whether a vortex twists to the left or to the right. 
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At this point it is worth briefly mentioning an emerging application of the chirality of optical 
vortices to fabricate chiral micro- and nanostructures through purely mechanical means [16].  

A comprehensive review of the field of chirality, optical activity and vortex light can be found 
in Ref [11]. The first study to address whether chiral molecules would respond differently to 
the handedness of an optical vortex considered paraxial LG vortex beams interacting in the 
dipole approximation (both electric and magnetic), concluding that neither oriented or 

randomly-oriented chiral molecules would show differential absorption of    and    

photons [17]. More recent studies however highlighted how chiral molecules can in fact show 
differential interactions with paraxial vortices, but only through electric quadrupole (and higher 
multipole) interactions with the field [18,19], and in the specific case of absorption the 
individual material components have to be oriented with respect to the optical axis of the input 
beam. What all these studies have in common however is that they assume the input beam is 
well-described as a paraxial vortex mode and fully transverse with respect to the direction of 
propagation. Under specific situations, however, longitudinal (in the direction of beam 
propagation) fields can become highly important, such as when the fields are strongly-
focused [20] or when specific angular momentum combinations are employed [21,22]. By 
accounting for longitudinal fields we highlight here a vortex dichroism (VD) which persists 
even for isotropic chiral particles in the dipole approximation. Compared to schemes where the 
chiral particles must exhibit a degree of orientational order, the VD mechanism outlined in this 
work that persists in orientationally averaged chiral particles has a much larger scope of 
potential applicability in chemical and biochemical chiral spectroscopies as the systems under 
study are invariably in solution and liquid phases.  

 

II. ABSORPTION OF TWISTED LIGHT BY CHIRAL PARTICLES 
 

In the theory of quantum electrodynamics (QED)  [23–25] the coupling of light and matter is 
represented by the interaction Hamiltonian 

in tH , which in the Power-Zienau-Woolley (PZW) 

formulation is given in a multipolar expansion form for a particle  positioned at 
R   [26]: 

 

              1 1
int 0 ξ ξ 0 ξξ ξ ξ ξ ...H.O.T,d          R R Ri i i i ij i jH d m b Q  (1) 

 

where  ξ  is the electric dipole transition moment operator,  ξm  the magnetic dipole, and 

 ξijQ  electric quadrupole;  ξ
d R  and  ξb R  are the electric displacement field and magnetic 

field operators, respectively (both are transverse to the Poynting vector); H.O.T. stands for 
higher-order terms in the multipole expansion; we use standard suffix notation for tensor 
quantities and imply the Einstein summation convention for repeated indices throughout (i.e. 

 a bi ia b ).  

The electric displacement field mode expansion for circularly-polarized Laguerre-Gaussian 
(LG) beams in the long Rayleigh range is given by [22]: 
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where  1 22
0 ,2   pi ck A V  is the normalization constant for LG modes, with V   the 

quantization volume;    ,
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 pa kz is the annihilation operator; the exponential terms eikz , e i , and 

e i   are phase factors; H.c. stands for Hermitian conjugate; and  , pf r is a radial distribution 

function given as 
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where the normalization constant is given by  2 ! !   
 pC p p   and  

pL  is the generalised 

Laguerre polynomial of order p. The magnetic field CPL LG mode operator in the long Rayleigh 
range is  
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In Eq. (2) and Eq. (4), the part of the total fields that depend on the transverse coordinates x̂  
and ŷ  are known in terminology originating from Lax et al.  [27] as the zeroth-order transverse 

fields, the terms dependent on ẑ are the first-order longitudinal fields, generally neglected for 
paraxial vortex modes such as LG. The relative magnitude of the longitudinal field compared 

to the transverse fields is weighted by the paraxial paramter   1

0


kw , where 

0w  is the beam waist 

at 0z . For general non-OAM posessing laser modes (e.g. a Gaussian mode) longitudinal 
fields only become important for very highly-focused non-paraxial laser fields and can be 
safely neglected for paraxial modes [20]. However, this is not the case for OAM-possessing 
paraxial optical vortex light, and in general first-order longitudinal fields of optical vortices 
should be included for beams with larger values of 

0k w  than would be necessary for non-OAM 

paraxial posessing modes [21,22].  

Most optical interactions with matter can be solely described by E1 couplings (the first term 
on the right-hand side of Eq. (1)): the electic dipole approximation. However, the origin of 
natural optical activity stems from the interferences between electric dipole couplings (E1) 
with both magnetic dipole (M1) and electric quadrupole (E2) couplings: E1M1 and E1E2  [28]. 
For CD in particular, isotropic collections of chiral particles (e.g. those randomly oriented such 
as in a liquid) only produce optical activity through the E1M1 mechanism: E1E2 contributes 
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to oriented systems of molecules but averages to zero for tumbling systems [29] (see Appendix 
C). 

As mentioned in Sec I., the first study in the field of optical activity and twisted light predicted, 
via theoretical calculations, that chiral molecules (both oriented and randomly-oriented) 
subjected to an optical vortex would show no differential rate of absorption with respect to the 
vortex handedness [17]. However, that study only included the purely zeroth-order transverse 

fields of the Laguerre-Gaussian modes Eq. (2) and Eq. (4), i.e. those dependent on x̂  and ŷ . 

In this study we highlight how inclusion of the longitudinal fields does in fact allow for a vortex 
dichroism of twisted photons for both ordered and isotropic chiral molecules through the E1M1 
mechanism.  

For CD the initial and final states of the total light-matter system are given by the following 
kets, respectively:  0 , , , I E n k p  and  1 , , ,   F E n k p . That is, a chiral particle in 

the initial state 0E  absorbs a photon from a single mode  , , , k p  input laser with occupation 

number n, reducing the occupaton of the mode to 1n and resulting in the particle being in the 

excited state E . CD involves the absorption of a single photon, and so first-order time-

dependent pertubation theory  int ξFIM F H I  yields the matrix element (or quantum 

amplitude) for the process:  
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(5)

 

 

where for notational brevity we drop the dependencies of the radial function f . To calculate 

the rate   of photon absorption we require Fermi’s rate rule: 212    FIM  where   is the 

density of final states. When taking the modulus square of Eq. (5) as required by the Fermi rule 
it is evident that three distinct terms will be produced: , mm and m , the latter of these are 

the interference terms between electric and magnetic transition dipole moments (E1M1) and 
these are what are responsible for the differential effects observed in optical activity [1,23]. 
The pure electric dipole E1E1 and pure magnetic dipole terms M1M1 are equivalent for either 
enantiomer – this is clearly obvious from parity considerations alone  [28] – and therefore are 
neglected from now on apart form when discussing Kuhn’s dissymmetry factor.  

In the fields of chemistry, biochemistry, and molecular spectroscopy the particles under study 
are often in the condensed liquid phase and exhibit no correlations between one another. Chiral 
molecules in fluids are generally randomly oriented with respect to the laboratory frame of 
reference, and to account for this isotropic system we must carry out an orientational average 
of the molecules (see Appendix A for the result that pertains to oriented chiral systems). The 
second-rank molecular tensor average is easily carried out using standard techniques [30], 
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namely 13  a bi j ija b , where angular brackets denote a rotationally averaged quantity. Taking 

all of the above into account, the rate is given by   
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where 
rN  is the number of chiral particles at a position r , the beam irradiance is given by 

2 2
,  pI n c k A V   and 0 0  i i

 is pure a real polar vector, but 0 0  i im m and 0 0  i im m  is a 

purely imaginary axial vector.  

 

III.  CIRCULAR DICHROISM WITH OPTICAL VORTICES 
 

The circular rate differential for CD, i.e. the difference of absorption between left  1    and 

right  1    handed circular polarization is easily derived from Eq. (6): 
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where we now make use of the optical rotatory tensor defined as usual by  [31,32] 

 

 0 0 0
0 0Im Im ,  

   ij i j i jR E E E m E m  (8) 

 

which in its rotationally averaged form is the pseudoscalar optical rotatory strength 0R . 
Importantly Eq. (7) can easily be shown to give the well-known Kuhn’s dissymmetry factor 
for randomly-oriented chiral molecules:  
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The dissymmetry factor Eq. (9) is clearly position-independent even for a structured beam. The 

rate differential Eq. (7) for 1,2; 0  p  is plotted in FIG. 2. The figures are normalized to the 

maximum intensity.  

 

 

FIG. 2 Circular dichroism (CD) Eq. (7). (a) 1 , 
0 w  (b) 1  for values of 

02 8  kw  (c) 2 , 

0 w  (d) 2  for values of 
02 8  kw . 0p in (a) to (d).  

 

Firstly we must make clear that this CD does not depend on the sign of , i.e. it is not sensitive 
to the handedness of the input vortex. The peak signal intensity at any given location is larger 
for smaller values of 

0k w  for a given input beam power, this simply indicates the energy of the 

beam being spread into a smaller area. However, we also see that for a small range of 
0k w  the 

circular vortex differential in the core of an 1  mode is not actually zero as would be 

expected for a doughnut-shaped vortex mode: for FIG. 2a the value is 0.14. This stems from 
the decreasing value of 

0k w leading to larger longitudinal field components, contributions of 

which yield an on-axis intensity for 1 . For values of 
0 2kw  the on-axis intensity of the 

1  continues to increase and can even become larger than the transverse components of the 
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field; for such values of 
0k w  there can even exist an on-axis intensity for 2 . However, such 

extreme focusing scenarios are beyond the validity of the paraxial wave equation – see Sec. V. 
for further discussion.  

The magnitude of the CD differential is highly-dependent on the location of the chiral particle 
in the beam; note that all values of the CD differential are of the same sign for any given r  and 
so all signals effectively positively contribute to the total differential rate. Note that it is not the 
wavelength that necessarily dictates the distributions in FIG 2. but rather the value of 

0k w .   

 

IV. VORTEX DICHROISM 
 

Bearing in mind the two different forms of optical handedness (FIG. 1), the CPL handedness 

exhibited via 1    and the optical vortex handedness exhibited via   , clearly there are a 

number of distinct scenarios of where this chirality can engage in chiroptical effects. For a 
thorough discussion we again refer the reader to Ref. [11], however for our purposes here we 
note that in theory chiroptical effects may depend on the CPL handedness as in CD, the vortex 
handedness through the sign of , or both forms of handedness through the product  . The 
latter of these lead to so-called circular-vortex differential effects, whilst those solely dependent 
on the vortex handedness would be vortex differential effects, and in specific case of absorption 
it may be termed vortex dichroism (VD).  

Inspecting Eq. (6) it can be seen that the last term in rounded brackets which is linearly 
dependent on  can also produce a differential rate, but in contrast to CD this one manifests for 

     . This VD differential is obtained as 
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2 2
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Importantly the VD differential Eq. (10) is independent of the handedness of the input circular 
polarization. Throughout the derivation so far we have assumed the input beam to be circularly 
polarized for the sake of generality – we now therefore set 0   and see that we still produce 
a VD differential for linearly polarized beams (see Appendix B), namely  

 

 0 0    
            (11) 

 

The VD differential rate Eq. (10) is plotted in FIG. 3 for 1,2; 0  p . Although the strength 

of the CD signal varies with the radial position of the chiral particle in the beam in FIG. 2, the 
magnitude is always the same sign, positive in this case (negative if taking    R L   ). 

However, as FIG. 3 highlights, the VD signal is likewise highly-position dependent, but can 
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take on negative as well as positive values. Consequently the following figures are 
normalised to the maximum absolute value of the intensity.  

 

 

 

 

FIG. 3 Vortex dichroism (VD) Eq. (10).  0, 1   a) 1 , 
0 w  b) 1  for values of 

02 8  kw  c) 

2 , 
0 w  d) 2  for values of 

02 8  kw . 0p in (a)-(d).  

 

The integrated signals of FIG. 3 are highly dependent on the size and number (
rN ) of the 

individual chiral particles under study (See Sec. V for further discussion). The VD effect does 
not give the standard Kuhn’s dissymmetry factor for isotropic chiral particles either and is 

plotted in FIG. 4 for 1,2; 0  p :  
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FIG. 4 Kuhn’s dissymmetry factor Eq. (12). a) 1 , 
0 w  b) 1  for values of 

02 8  kw  c) 2 , 

0 w  d) 2  for values of 
02 8  kw . Compared to previous figures, the ones here are plotted with a 

wider range of X and Y values to show the positive portion of g. 0p in (a)-(d). 

 

There are also an additional two distinct non-zero differentials that could be studied: 
subtracting the two antiparallel sgn sgn     combinations of AM; or subtracting the two 

parallel sgn sgn    combinations of AM:  
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The rate (13) for the antiparallel combination of AM is plotted in FIG.5 for 1,2; 0  p  and 

the rate (13) for parallel combination of AM is plotted FIG.6 for 1,2; 0  p .  
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FIG. 5 Antiparallel combination of SAM and OAM dichroism Eq.(13) where the upper sign is employed. 

 1   a) 1 , 
0 w  b) 1  for values of 

02 8  kw  c) 2 , 
0 w  d) 2  for values of 

02 8  kw 0p in (a)-(d). 
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FIG. 6 Parallel combination of SAM and OAM dichroism Eq.(13) where the lower sign is employed.  1   a) 

1 , 
0 w  b) 1  for values of 

02 8  kw  c) 2 , 
0 w  d) 2  for values of 

02 8  kw

0p in (a)-(d). 

 

 

 

V. ANALYSIS AND DISCUSSION 
 

The initial theoretical study we have mentioned previously that looked at E1M1 interactions 
with twisted light used only the zeroth-order transverse parts of  Eq. (2) and Eq. (4), concluding 
that chiral molecules do not interact with the sign of  in a chiroptical fashion [17]. This study 
was followed up by experimental work that seemingly vindicated this theoretical 
prediction [33,34]. Whilst Araoka et al. studied their chiral material system under the influence 
of a weakly-focused LG vortex, Löffler et al. used both weakly- and strongly focused LG 
modes. The experimental result that the sign of  plays no role in CD under weak-focusing can 
be explained by the initial theory of Andrews et al. [17] or that in Sec. III and Sec. IV of this 
work, namely that under such conditions the CD differential has no dependence on  and that 
the longitudinal fields responsible for VD are insignificant as 

0 w . 
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We believe a potential reason the Löffler et al strongly-focused beam experiment failed to 
observe differential effects dependent on  is due to the dissymmetry factor they used to 
measure an influence of OAM on CD. Their definition is 

 

 
   
   OAM .

   

   

   
   

   
   

     


      

   

   

g   (14) 

 

Inserting our Eq. (6) into this definition automatically leads to a null result for any dependence 
on  and also for each individual differential measurement in Eq. (14). The necessary 
observable should use a fixed value for   or alternatively 0   , (as well as the anti-parallel 
VD differential) as highlighted in Sec. IV, one such example being:   

 

 OAM ,

 

 

 

 

 

 

 

 

g   (15) 

 

which is essentially the dissymmetry factor plotted in FIG. 4.   

Looking at FIG. 3b and 3d it is clear the VD differential increases as the value of 
0k w  gets 

smaller. This is to be expected as the VD effect itself stems from longitudinal fields, which are 
correlated to the degree of focusing, though for vortices are also sensitive to input angular 
momenta configurations. For example, we have seen in Sec. IV that the on-axis differential is 
twice as large for anti-parallel combinations of SAM and OAM than if the input beam is 
linearly polarized or has the same state of circular polarization. 

Whilst higher-order transverse and longitudinal components to the mode expansions Eq. (2) 
and Eq. (4) can be derived using the Maxwell-Ampere and Faraday laws, LG modes are 
fundamentally solutions to the paraxial wave equation, and so are always bound to the well-
known approximations associated with it. As such, any contribution to Eq. (2) and Eq. (4) from 
these higher-order fields only become relevant in situations where 

0 w  and a paraxial wave 

solution (such as the LG mode) is not justifiable in this regime. Specifically, we can expect our 
theory to work well both qualitatively and quantitatively so long as 

0 w  [35,36], however 

using our theory to go below this lower bound will introduce quantitative errors. We can 
however predict with confidence that the VD signal will only get larger for sub-wavelength 
focusing where 

0 w , however a more refined theory which specifically accounts for non-

paraxial fields should be used to yield accurate results with respect to the quantitative 
magnitudes involved. Such methods could be those that explicitly account for high-NA 
focusing  [20,37], for example, or alternatively non-paraxial solutions to the full Helmholtz 
equation should be used, such as Bessel modes (or the non-paraxial form of LG modes) [38]. 
Further interesting properties may arise if the field is highly non-paraxial, as it is known that 

an on axis intensity can exist in even the 2  case for such strongly-focused scenarios when 

second-order transverse components of the field can produce observable effects [39].  
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Another important issue we draw attention to is the unique scale-dependent nature of VD. 
Because the VD signal can take on both positive and negative signals, the size and number of 
any chiral particles within the interaction volume is important. One can imagine scenarios with 
specifically sized particles where the signal is essentially zero; alternatively, increasing the 

value of   could lead to enhanced signals as a larger number of particles of a given size could 

fit in the high signal intensity region compared to a lower value of  . Because the CD signal 

is always of the same sign, such a scheme is not possible. This difference in behaviour between 
CD and VD is another classic motif of chiroptical effects with optical vortices [11]. CD stems 
from the intrinsic property of circular polarization; VD stems from the OAM of a vortex which 
is a spatial property of the beam, and thus any measurement of the chirality associated to it is 
likewise scale dependent. This is no different to the geometrical chirality of molecules; a small 
chiral molecule is no less chiral than a large one; both their chiral nature is exhibited to varying 
degrees depending on what they are specifically interacting with. It should therefore be of no 
surprise that the ability to exhibit a chiroptical effect in small chiral particles using an optical 
vortex like we have shown here with VD requires small values of 

0w  on the order  . A similar 

logic of matching the size of an optical vortex to the material dimensions has recently 
highlighted a differential scattering effect for chiral microstructures which exhibit an acute 
sensitivity to the magnitude and sign of  [40].    

Finally, an important experimental technique of carrying out optical activity studies is the 
ability to modulate between left and right circular polarizations. With respect to experimentally 
observing the VD effect outlined here it is pertinent to note the timely technical breakthrough 
by J.-F. Bisson et al. of the ability to modulate between optical vortices with different signs of 
 [41].  

 

VI. OPTICAL CHIRALITY 
 

A different way of interpreting the results of Sec. III and Sec. IV is through the so-called optical 
chirality density  . Originally introduced by Lipkin  [42] and brought to prominence by Tang 

and Cohen [43], crudely put it quantifies how chiral an electromagnetic field is. The optical 
chirality density in free space for a monochromatic beam may be given by [44] 

 

  2 .     d bdt   (16) 

 

In their paper, Coles and Andrews [44] state that the optical chirality Eq. (16) is independent 
of any factors pertaining to the optical orbital angular momentum. Their analysis, fully correct 
when only zeroth-order transverse fields are accounted for, however, neglects the first-order 
longitudinal fields which we have seen lead to the VD chiroptical effect. Inserting Eq. (2) and 
Eq. (4), which include the longitudinal fields, into Eq. (16) we discover that the optical chirality 
density does in fact depend on optical OAM. Specifically 
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r rA V k r
 (17) 

 

This equation tell us is that there is a non-zero optical chirality density at 0z which is made 
up from contributions dependent on both  and  , these individual contributions are plotted 
in FIG. 7. In Eq. (17) the first term in square brackets on the right-hand side is the standard 
zeroth-order paraxial contribution to the optical chirality density; the remaining terms (in round 
brackets) all originate from the longitudinal contributions to the fields. It is clear that Eq. (17) 
and FIG. 7 mirror the physics of those in the previous sections which were calculated using 
standard perturbative QED methods. A more obvious consequence of Eq. (17) however is that 
optical orbital angular momentum can lead to an enhanced optical chirality density in 

comparison to non-OAM possessing  0  light, and this enhancement is proportional to the 

smallness of 
0k w .   
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FIG. 7 Optical chirality density Eq. (17) for 
0 2kw  and different combinations of OAM and SAM (a) 

0,1   1  (b) 0,1  , 2 . Note the existence of an optical chirality density for optical vortices even 

when 0  . 0p in (a) and (b). 

 

The on-axis optical chirality density in Eq. (17) (and FIG. 7a) present for 0, 1     stems 
purely from longitudinal fields and was first noted by Rosales-Guzmán et al. for linearly-
polarized Bessel beams [45], subsequently Woźniak et al.  [46] experimentally observed this 
on-axis optical chirality using focused 

0 8.7kw  linearly-polarized LG modes interacting with 

a chiral plasmonic helix. It is worthwhile to note that our analysis here indicates that if the input 
beam carried anti-parallel combinations of SAM and OAM then the effects in these two 
previous studies would be twice the size in magnitude.  Furthermore, our results also extend 

these studies to values of 1 . 

 

VII. CONCLUSION 
 

Here we have highlighted a vortex dichroism exhibited by chiral particles that are both oriented 
and randomly oriented which stems from longitudinal fields of optical vortices through an 
E1M1 mechanism. This contrasts to previous work restricted to the purely zeroth-order 
transverse fields of a paraxial vortex in which no such mechanism is viable through the E1M1 
route. Previously discovered mechanisms in the paraxial approximation required E2 couplings 
which vanish for randomly oriented chiral particles. It is important to note the underlying origin 
of both mechanisms is that the material is interacting with the transverse phase gradient of the 
input mode, i.e. the property responsible for the OAM. 

Whilst previous chiroptical absorption mechanisms have been discovered for vortex light in 
oriented media, the importance of the result here is that it persists in fluids consisting of chiral 
particles, which has an acute importance in the field of optical activity and spectroscopies 
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utilized in chemical and biochemical systems which are invariably in the liquid phase. There 
have been both a number of circular-vortex differential [19,47,48] and vortex 
differential [40,46,49–51] effects reported, though no vortex dichroism (absorption) effects in 
isotropic chiral molecular matter of the nature here has been reported thus far to the best of our 
knowledge. The underlying principles of this work can easily be extended to other types of 
optical activity, such as optical rotation or Rayleigh and Raman optical activity (scattering 
effects). Interestingly our theory indicates that a previous experiment which failed to observe 
the optical rotation of linearly-polarized 1   LG modes in a chiral medium [52] should be 
revisited using a higher N.A. lens.   

To experimentally observe VD in small chiral particles the input optical vortex must be 
moderately to strongly-focused

0 8kw , though may still be viable for larger values, and the 

differential under study should be of the form Eq. (15). Whilst the accuracy of our analysis is 
quantitatively limited to values of 

0 w , in fields which are focused further, i.e. 
0 w , the 

VD differential should only increase in magnitude, and for when 2  the effect will even 

occur on-axis due to the on-axis intensity that is known in this scenario.  

Furthermore, we highlighted the agreement between our result derived using standard 
perturbative QED methods and that using the quantity known as optical chirality. This also 
allowed us to highlight that optical OAM can in fact increase the optical chirality density, 
contrary to earlier studies restricted to the paraxial regime.   
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APPENDIX A: DERIVATION OF THE RATES OF CIRCULAR DICHROISM WITH 
LAGUERRE-GAUSSIAN BEAMS 

 

The matrix element is calculated using standard perturbative QED techniques and is given by: 
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(A1)

 

 

The Fermi rule requires we take the square modulus of the matrix element (A1): 
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Collecting the pure E1 terms we get: 
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The pure M1 terms produce: 
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The cross terms are E1M1 and these are responsible for optical activity 
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Using the fact that    1
Re

2
 z z z  we can simplify some of these results: 
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and 
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and 
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The above result applies to oriented particles. Clearly the terms that depend on L/R ˆi je z  factors will be 

zero upon rotational averaging: L/R L/R ˆˆ 0   ij i je z e z , however they will exist and potentially 

contribute to the rate of absorption for oriented samples. Concentrating on these terms we yield for 
0p   
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Which after expanding the azimuthal phase can be written as 
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The real part of (A10) is: 
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For left-handed CPL 
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For right-handed CPL  
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Thus the circular polarization differential of this effect is: 
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Notice we could also have fixed the circular-polarization and taken the vortex differential. In either 
case, the effect depends on both the sign of   and . The dependence on the azimuthal angle   

highlights how integration over the transverse beam profile leads to these oriented effects vanishing, 
thus their observance relies on only probing part of the output signal or resolving contributions from 
individual chiral particles or sub domains.   

 

APPENDIX B: DERIVATION OF THE RATES OF VORTEX DICHROISM WITH 
LAGUERRE-GAUSSIAN BEAMS 

 

We now go back to the terms in (A8) which do not vanish upon averaging.  

Isolating these terms we get: 
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Averaging this rate gives: 
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Which can be re-written as 
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The rate (B3) for left CPL ( 1   ) is 
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And for right CPL 1    
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Therefore:  
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However we can fix 1   in (B3) and take the vortex differential      , i.e. a left-handed 

vortex minus a right-handed vortex: 
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We can also calculate VD differential for a linearly polarized input  , 0    
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Collecting E1M1 terms 
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Rotationally averaging 
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Giving 
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Thus we see that  
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            (B14) 

 

 

APPENDIX C: QUADRUPOLE CONTRIBUTIONS 

In order to be able to calculate the quadrupole contributions to circular dichroism and vortex 
dichroism we require the calculation of the correct interaction Hamiltonian term: 

 

     1
int 0 ξξ ξ .,    ij i jH Q d R  (C1) 

 

Specifically  
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This is best carried out in two parts: one the fully transverse part, and the other the fully longitudinal 
part: 
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For the longitudinal part 
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Therefore, the total is; 
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Including both the E1 and E2 couplings in the matrix element for single-photon absorption we obtain 
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And so the matrix element squared (proportional to the rate) is 
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Concentrating on the E1E2 terms which only chiral particles can support 
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From this result we can abstract well-known results such as CD by chiral molecules and CVD by 
chiral molecules. As in both of those cases, orientational averaging of (C8) leads to a null result and 
so the E1E2 terms cannot contribute to CD, CVD, or VD in randomly oriented isotropic chiral 
particles.  
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