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ABSTRACT   

In this study, interactions between optical vortex light and partially capped core-shell (PCCS) nanostructures simulated 

by a discrete dipole approximation (DDA) method are described. The plasmonic characteristics of the PCCS structure, in 

which a part of the surface of dielectric nanoparticles is covered with metal cap, can be tuned by the core-shell ratio and 

the coverage condition. It was found that the topological charge and the polarization degree indicating the state of the 

optical vortex determine the resonance order, peak wavelength, direction and magnitude of optical torque of the excited 

pseudo-plasmon resonance of PCCS structures. It was also found that under certain incident conditions, higher-order 

resonance modes, such as hexapole and octupole modes are excited. Likewise, distorted resonance modes due to the 

asymmetry of the structure are excited. These plasmonic characteristics cannot be realized by scalar beam excitation, it 

becomes possible by an asymmetrical PCCS structure with optical vortex excitation. 
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1. INTRODUCTION  

Recently, singular optical properties of metallic nanostructures derived from localized plasmon resonances (LPRs) have 

been gaining much attention. LPR is a resonant phenomenon that occurs between the light waves and plasma oscillations 

of electrons (plasmons), and can be induced by light irradiation without the need for optical elements such as optical 

prisms. At the resonant condition, optical electric fields near the surface of the nanostructure are greatly enhanced by 

confinement effect of the incident light wave in a region narrower than the diffraction limit and the optical absorption 

and scattering have maximum at the plasmon resonant frequency. The resonance condition depends on polarization 

degree of incident light, size, shape, and material of the structure, and refractive index of ambient medium. Further, 

unique optical properties due to multiple pole resonance modes, which are excited by complex nanostructures, and 

complex resonance modes excited by their mode interference (Fano resonance and plasmon hybridization) have also 

been reported [1, 2]. These multipole plasmon modes such as quadrupole typically show lower radiative losses and 

higher quality factors than the dipole plasmon resonance and are hence referred to as dark mode resonances. Most of the 

papers about LPRs have reported unique optical properties due to the complexity of nanostructures, and there are few 

papers, which have paid attention to the tuning of optical properties by controlling the excitation light [3]. In 2015, Sakai 

et al. reported the results of optical simulations by using commercial software COMSOL that showed the pseudo high-

order localized plasmon resonance can be excited by an optical vortex beam [4]. The paper described that the order of 

the resonance mode can be controlled by the condition of the incident optical vortex beam, and that the resonance mode 

rotates with time. An optical vortex is one of the vector beam different from general scalar beams. In an optical vortex, 

the phase plane is twisted around its axis when the beam is propagating in the space. We represented the orbital angular 

momentum, which corresponds to number of twists in one wavelength, by the topological charge l and the spin angular 

momentum, which corresponds to the direction of polarization (right circular polarization or left circular polarization), 

by σ. The number l is always an integer, and can be positive or negative, depending on the direction of the twist. Because 

of the twisting, the light waves at the axis itself cancel each other out. Therefore, when the incident light enters a flat 

surface, the intensity distribution of the optical vortex looks like a ring, with a dark hole in the center. A vector beam 



 

 
 

 

 

 

such as the optical vortex has some attractive elements as an orbital angular momentum or an electric field to the 

propagation direction. Therefore, LPR excitation by vector beams has a potential to pave the new way of the plasmonics. 

In this study, we investigated the optical characteristics when an optical vortex beam of RPC or LPC are incident to 

single partially capped core-shell (PCCS) structure in which a part of dielectric nanoparticles is covered with metal by 

the discrete dipole approximation (DDA) simulation. The plasmonic characteristics of the PCCS structure can be tuned 

by the core-shell ratio and the coverage condition. In addition, since a functional material such as luminescence material 

or non-linear optical material can be selected for the core, it can be said that the structure has high versatility. 

 

2. DDA SIMULATION AND CALCULATION MODEL 

The DDA method is a numerical simulation method that can calculate the light absorption, light scattering, and near 

field intensity, of the structure, which is regarded as an aggregate of electric dipoles, by assuming that the dipole at 

position ri has a moment pi, which is expressed the following equation (1), when the external electric field Eext is induced 

to the structure. 

                                                                                       ( )i loc ip =αE r                                                                            (1) 

Where, Eloc is the local electric field at ri, and α is the polarizability of the dipole. DDSCAT [5, 6] was used to simulate 

and rewrote the part of the calculation codes to set optical vortex beams as the incident light. DDSCAT describes the 

state of the polarization of the incident light by Jones calculus. Therefore, we can define the optical vortex beam as 

incident light by rewriting to the following equation (2). 
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Where φ is the azimuth angle of the electric field oscillating in the yz plane after passing through an axisymmetric 

polarizing element, and i is the imaginary unit in the case that the incident light propagates in the x direction. Equation 

(2) expresses the counterclockwise circularly polarized optical vortex, and it can be changed to clockwise circularly 

polarized light by changing the sign of z components. In this study, the vortex beam of  RCP or LCP is set as the incident 

light with l = −1, −2, −3, and −4.  

We observed the extinction spectra and the electric field distribution of PCCS particles at peak wavelengths under the 

following conditions.  The diameter of the core nanosphere and the thickness of the metal shell were fixed at 100 nm and 

10 nm, respectively. The metal thin film covered half of the nanospheres, and the film thickness was set to uniform 

everywhere. The surrounding medium was a vacuum, and core material and shell metal were chosen the silica and gold. 

The refractive index of silica was fixed to 1.45 without attenuation coefficient, ignoring the dispersion. The dielectric 

function of gold was referred from the study by Johnson and Christy [7], neglecting the size dependence of scattering 

electron. The dipole element spacing of the PCCS structure is fixed to 2 nm in all calculation models. 

 

3. RESULT AND DISCUSSION 

3.1 Extinction spectra and electric field distribution 

Figure 1 show the extinction spectra of single PCCS particle when the RCP optical vortex beam with each topological 

charge from −1 to −4. The direction of incidence was set to the wave vector k penetrates the metal nanocap, as shown in 

the inset. The insets in the graphs are the electric field distribution maps at each peak wavelength in the yz plane at the 

center of the nanoparticles. The extinction spectra has two peaks, one is the sharp peak at around 550-700 nm the other is 

the broad peak around 1600 nm. Focusing on the peak wavelengths at short range, the peak value of the extinction 

spectra decrease as the topological charge decreases, and the resonance wavelength shifts to the short wavelength side. 

On the contrary, the maximum value of the peak on the long wavelength side increases as the topological charge 

decreases, but the peak wavelength hardly moves. Looking at the electric field distribution map, the order of the 

resonance mode increases as l decreases. The electric field distribution maps at the wavelength with the maximum peak 

value are used as inserts, and the order of the resonance modes are the same at other peak wavelengths. It can be seen 



 

 
 

 

 

 

that the resonance mode at any peak wavelength shows the centrosymmetric multipole resonances, and the order depends 

on l. From the above, it was found that the excitation efficiency decreases as the order of the resonance mode increases 

on the short wavelength side, and the opposite occurs on the long wavelength side. 

 

 
Figure 1. Simulated extinction spectra and electric field distribution maps of single PCCS particle in the case that RCP (σ = −1) optical 

vortex beams with different l are incident with direction that the wave vector k penetrates the metal nanocap. 

 

Figure 2 shows the extinction spectra and the electric field distribution maps when the LCP optical vortex is incident. 

Other conditions are the same as in Figure 1. In this case as well, the order of the resonance mode increases 

monotonically as l decreases. When l = −1, a mode that can be expressed as non-polar resonance is excited. The 

excitation efficiency is maximum when the quadrupole is excited. This simulated results suggest that the non-pole and 

dipole type resonance have low excitation efficiency, and that the excitation efficiency decreases as the mode order 

increases in dark mode. If the right circular polarization is expressed by σ = −1, and the left circular polarization is 

expressed by σ = +1, the order of the resonance mode matches |l + σ|×2. These results indicate that the resonance 

wavelength and excitation efficiency can be controlled by the topological charge l and the direction of polarization. 

 

 
Figure 2. Simulated extinction spectra and electric field distribution maps of single PCCS particle in the case that LCP (σ = 1) optical 

vortex beams with different l are incident with direction that the wave vector k penetrates the metal nanocap. 

 

Figure 3 shows the phase dependence of the photoelectric field distribution at the resonant wavelength of the PCCS 

nanoparticle when the RCP (σ = −1) optical vortex with l = −1, −2, −3 are incident. Since the phase dependence can be 

considered by replacing the time dependence, it can be seen that the resonance mode is rotating over time. The intensity 

at the highest point is almost same in all cases. This distribution profiles cannot be seen in the case of excitation by a 

scholar beam. The resonance mode excited by a linear polarized light is dipole mode and the position of each poles is 

fixed in all time (not shown here). This tendency is similar to the case of gold nanodisk [4, 8]. While the phase of the 

light wave changes from 0 deg. to 180 deg., the resonance electric fields of l = −1 to −3 rotate 90 deg., 60 deg., and 45 

degree, respectively. The resonance field rotates by 180 deg./|l + σ|. For example, the angular frequency ω of the 

resonance mode is 1.18 × 1015 rad./sec. in the case that l = −1. 

Figure 4 shows the simulated extinction spectra when the direction of the wave number of the incident light and the 

edge of the gold nanocap are parallel. Fig.4 (a)-(d) are in the case of RCP, and (e)-(h) are in the case of LCP. When the 

incident angle on the PCCS structure changes by 90 degree, the point-symmetrical resonance modes shown in Fig. 1 and 

Fig. 2 are not excited. Therefore, prediction of the order of resonance modes from l and σ is difficult against the distorted 

resonance modes, tripole-like modes shown in (a) and (b) and the quadrupole-like modes shown in (c) and (d). However, 

it can be seen that the order of modes tends to increase as |l + σ| increases. In the case of RCP incident, the excitation 

efficiency is low on both the short wavelength side and the long wavelength side. In addition, as l decreases, the 

maximum peak value on the short wavelength side decreases, and the maximum peak on the long wavelength side 

increases. The tendency of the peak decrease on the short wavelength side and the peak increase on the long wavelength 



 

 
 

 

 

 

side is the same when LCP is incident as shown in (e)-(f). There are multiple peaks both when RCP is incident and when 

LCP is incident, and there are cases where five peaks appear as shown in (a) and (g). 

 
Figure 3. Transition of resonance modes with respect to the phase change of incident light. The l are (a) −1, (b) −2, and (c) −3 and σ is 

−1, respectively. The direction of the wave vector k is perpendicular to the edge of the nanocap of the PCCS nanoparticle. 

 

 
Figure 4. Simulated extinction spectra and electric field distribution maps of single PCCS particle in the case that (a)-(d) RCP (σ = −1) 

and (e)-(h) LCP (σ = 1) optical vortex beams with different l are incident with direction that the wave vector k and the edge of the 

nanocap are parallel. 

 

Figure 5 show the phase dependence of the photoelectric field distribution at 781 nm when the LCP (σ = 1) optical 

vortex beam with l = −2 is incident to the PCCS nanoparticle in parallel against the edge of the nanocap. In this case, the 

electric field intensity at the enhancement point changes according to the phase, and shows a tendency similar to the 

phase dependence when a scalar beam is incident. In other words, this result suggests that this excited mode is different 

from the resonance derived from the orbital angular momentum and spin angular momentum of the optical vortex. It can 

be seen that when the structure is asymmetric with respect to the electric field of the incident optical vortex, the pseudo 

LPR in which the angular momentum of the optical vortex transitions to the nanostructure is not excited. However, the 

excitation efficiency is not extremely low compared to the case where the structure is symmetric with respect to the 

incident electric field (see Fig. 4 (e)-(h)). For more detailed analysis, we decided to compare the three-dimensional 

electric field distribution maps for each incident direction. 

 



 

 
 

 

 

 

 
Figure. 5 Transition of resonance mode with respect to the phase change of incident light. The l and σ are −2 and 1, respectively. The 

wavelength is 781 nm. The direction of the wave vector k is parallel to the edge of the nanocap of the PCCS nanoparticle. 

 

 

3.2 Three dimensional maps of electric field distribution 

Figure 6 shows the shows a three-dimensional electric field distribution map observed to confirm the overall picture of 

the resonance field. Against the edge of the nanocap, the wave vector k is perpendicular in (a) and parallel in (b), 

respectively. Topological charge l and spin σ were set to −2 and 1 in (a), −4 and −1 in (b), respectively. In the incident 

condition (a), the resonance electric field is distributed in a ring shape at the boundary between the core and the cap, and 

this result is very similar to the case of the full-shell structure in which the core nanoparticle is fully covered with metal 

thin film (The result is omitted). In this case, the electric field is localized in a very narrow region, and the enhancement 

factor is very large, about 1000 times at the maximum. On the other hand, under the incident condition (b), the resonance 

field is distributed in a band shape on the surface of the metal cap, and it is difficult to determine the number of 

resonance order from the cross-sectional electric field distribution map. Rather than being localized at a specific position 

in the nanoparticles, the electric field is widely distributed throughout the nanoparticles, and the enhancement factor is 

not so large (about 10 times). 

 

Figure 6. 3D electric field distribution maps of single PCCS particle in the case that the optical vortex beam of (a) LCP with l = −2 and 

(b) RCP with l = −4 is incident with different directions, (a) parallel and (b) perpendicular to the edge of the nanocap. 

 

3.3 Temporal transition of order of LPR modes 

  Figure 7 show the resonance field distribution map of a PCCS nanoparticles when the optical vortex of l = −2 and σ = −
1 is incident parallel to the edge of the nanocap, and ,the phase of the light changes by 45 degree. The resonance mode 

expected from |l + σ| is hexapole, but when the phase is 0 deg., the quadrupole type resonance is excited. After that, it 

was found that the hexapole type is excited as the phase changes, but returns to the quadrupole type when the phase 

changes further. Fig. 7 shows the distribution map of the square of the real part of the electric field. When the real part is 

the hexapole type, the quadrupole type is excited in the imaginary part. If light emission using this mode transition is 

realized, femtosecond optical modulation will be possible without other optical tools.  

 

Figure 7. Transition of resonance mode with respect to the phase change of incident light. The l and σ are −2 and −1, respectively. The 

wavelength is 1610 nm. The direction of the wave vector k is parallel to the edge of the nanocap of the PCCS nanoparticle. 



 

 
 

 

 

 

3.4 Optical torque excited by the optical vortex beam 

 Since the orbital angular momentum l of the incident optical vortex has a great influence on the quasi plasmon 

resonance mode and the distribution of the resonance electric field, we considered that this orbital angular momentum 

may add optical torque to the PCCS nanoparticle. Figure 8 shows the radiation torque spectra when a linearly polarized 

light vortex with l = −2 is incident. Since the incident direction is set so that the k vector and the edge of the nanocap are 

parallel, the distorted resonance mode is excited. A linearly polarized optical vortex can be generated by adding right-

handed circularly polarized light and left-handed circularly polarized light, this incident condition corresponds to the 

simultaneous incidence of both RCP and LCP optical vortices. Here, the positive and negative torques represent whether 

the torque is clockwise or counterclockwise with respect to each axis. Focusing on the wavelengths of the blue line (690 

nm), pink line (775 nm), and green line (160 nm) inserted in the graph, it can be seen that the magnitude and the 

direction of the radiative torque for each axis are different at each wavelength.  

This simulation indicates that when a optical vortex of a specific wavelength is incident on a PCCS nanoparticle, the 

direction and magnitude of the generated torque can be selected by wavelength, and the photodynamic action with three-

degree-of-freedom depended on the incident light conditions. For example, when used this PCCS nanoparticle as a 

nanomotor, it is possible to realize a rotation with three-dimensional-degree-of-freedom. Nanomotors using plasmonic 

structures have been proposed [9, 10], but motors with three-dimensional-degrees-of-freedom have not been reported, 

and there is a possibility for new devices.  

 

 
Figure 8. Simulated torque spectra against the each axes. The l was set to −2, and the vortex beam was set to linear polarization. 

 

4. CONCLUSION 

We have simulated the optical properties of a PCCS nanoparticles by use of the modified DDSCAT, the LPRs was 

excited by RCP or LCP optical vortex beams with each topological charge. It was found that in the optical vortex 

excitation of the PCCS nanoparticle, the pea wavelength and shape of extinction spectra changes depending on the 

parameters l and σ, which corresponds to orbital angular momentum and spin angular momentum, and the incident 

direction of light. Similarly, it was confirmed that the resonance mode when light is incident so as to penetrate the 

nanocap depends on the l and σ of the incident optical vortex. On the other hand, it was also confirmed that it is difficult 

to expect the order of the resonance mode from the angular momentum because the resonance mode may or may not 

change depending on the angular momentum when it is incident from the direction perpendicular to the direction through 

the cap. In addition, we confirmed the difference in the distribution of the resonance field (distributed on the edge of the 

cap or the surface of the cap) and the difference in the temporal change of the resonance field (rotation or only the 

intensity changes) depending on the incident direction of light. Furthermore, it was revealed that the resonance mode 

changes with time under certain conditions. It was also confirmed that plasmon resonance by optical vortex excitation 

generates torque with three-dimensional degrees of freedom. This result is an interesting finding on higher-order beam-

excited plasmon resonance, which is useful for designing new plasmonic devices. 
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