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Abstract

Flavanols are important polyphenols of the human diet with extensive demonstrations of their
beneficial effects on cardiometabolic health. They contribute to preserve health acting on a
large range of cellular processes. The underlying mechanisms of action of flavanols are not
fully understood but involve a nutrigenomic regulation. To further capture how the intake of
dietary flavanols results in the modulation of gene expression, nutrigenomics data in response
to dietary flavanols obtained from animal models of cardiometabolic diseases have been
collected and submitted to a bioinformatics analysis. This systematic analysis shows that
dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty

acid metabolism, and inflammation. Several regulators of the gene expression have been
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predicted and include transcription factors, miRNAs and epigenetic factors. This review
highlights the complex and multilevel action of dietary flavanols contributing to their strong

potential to preserve cardiometabolic health.

1. Introduction

Polyphenols constitute a very large group of plant-derived bioactive compounds that include
multiple families structurally distinct, such as stilbenes, phenolic acids, lignans and
flavonoids. The flavonoid group can be further divided into six different subclasses based on
their chemical structure: flavones, isoflavones, flavanones, flavonols, anthocyanins and
flavanols (also known as flavan-3-ols), with these latter being present as both monomeric
(catechins) and polymeric (proanthocyanidins) compounds. The group of catechins includes
catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and
epigallocatechin gallate (EGCG). Overall, flavanols represent the most commonly consumed
flavonoids and are particularly abundant in (green) tea, cocoa, grapes, apples, red wine, and
also in many whole and processed foods and dietary supplements.

A wealth of epidemiological studies has documented an inverse correlation between the
intake of polyphenol-rich foods and the incidence of cardiometabolic diseases [1]. More
recently, strong meta-analyses of prospective cohort studies have established that high
consumption of flavonoids reduced the incidence of cardiovascular diseases (CVD) and type
2 diabetes (T2D), with associations remaining significant when considering individual classes
of flavonoids [2, 3]. Regarding flavanols intake and cardiometabolic health, a recent
systematic review and meta-analysis of randomized trials and prospective cohort studies
concluded on a beneficial effect of flavanols, irrespective of dietary source, on a range of
cardiometabolic outcomes [4]. However, this paper also underlined heterogeneity in the

meta-analysis leading to a variable strength of evidence for the different outcomes. More

This article is protected by copyright. All rights reserved.



Accepted Article

www.mnf-journal.com Page 4 Molecular Nutrition & Food Research

specifically the intake of flavanols can improve cardiometabolic health by increasing the
production of vasoprotective agents, especially nitric oxide (NO), by reducing circulating
lipids (triglycerides (TG), low-density lipoprotein (LDL)-cholesterol, free fatty acids (FFA))
and their accumulation in liver and adipose tissues, by preventing weight gain, improving
glucose homeostasis (i.e., blood glucose and insulin levels) and lowering blood pressure [5-
8]. These cardioprotective effects have been demonstrated to be linked to the activation of
several pro-survival cellular pathways that involve metabolic intermediates, microRNAs
(miRNAs), sirtuins and mediators of the reperfusion injury salvage kinases (RISK), and
survivor activating factor enhancement (SAFE) pathways [9]. Based on single dosing of
flavanols administered in animal models, it was shown that the enhancement of energy
expenditure induced by flavanols might represent a plausible explanation for their anti-
obesity effects [10], which appeared to be associated with increased catecholamine secretion
[11]. Of note, the flavanol-induced effects are dependent on the dose and the background diet
[12]. Grapes and grape juice (rich in catechin and epicatechin) seem capable of ameliorating
endothelial function and reducing LDL oxidation via an antioxidant activity [13, 14].
Flavanols were also shown to have mitochondrial biogenesis-inducing effects in skeletal
muscle [15], which might underlie part of their positive effects on glucose homeostasis
observed in both animal models and humans [16-18].

Cumulatively, it appears that a plethora of different mechanisms have been identified
underlying the flavanol-induced effects in vivo, urging us to review here those solely for the
flavanols-induced effects in relation to cardiometabolic risk improvement. The use of
preclinical animal studies is appropriate to investigate, under highly controlled conditions, the
physiological effects following specific dietary intakes. These studies are of particular
relevance as they allow to establish a causality relationship between flavanols consumption

and cardiometabolic outcomes and subsequently contribute to help elucidate tissue-specific
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cellular mechanisms. In particular, animal intervention studies offer a unique opportunity to
address the systemic interaction of the underlying transcriptional and cellular regulatory
networks. On this background, we decided to perform a systematic and integrative analysis of
the nutrigenomic effects exerted by flavanols in different animal models of cardiometabolic
disease (i.e., the effect of flavanols on gene expression) with the aim to identify the key
molecular determinants involved in the cardiometabolic protective effects of these dietary

components.

2. Methods

The present study complied with the Preferred Reporting Items for Systematic Reviews
statement [19].

2.1 Literature search strategy

A comprehensive search on PubMed and Web of Science was conducted in December 2019.
The search included keywords referring to bioactives (catechin, epicatechin, epigallocatechin
gallate, and proanthocyanidin), type of study and animal species (in vivo, animal
experimentation, animal model, mouse, mice, murine, musculus, rats, Rattus, rodent, rabbit,
Cuniculus, dog, Canis, Guinea Pig, cat, swine, pigs, porcus), nutrigenomic analysis (gene
expression, miRNA, transcripts, nutrigenomic, TagMan low density array (TLDA),
microarray, genomic, mRNA, western-blot), target tissues and cardiometabolic outcomes
(aorta, vessel, vascular, heart, fat, adipose tissue, liver, muscle, circulating cells, blood cells,
peripheral blood mononuclear cells (PBMC), blood pressure, hypertension, myogenic tone,
vascular tone, atherosclerosis, LDL-cholesterol, high-density lipoprotein (HDL)-cholesterol,
cholesterol, TG, body weight, inflammatory markers, insulin, Homesostatic Model
Assessment of Insulin Resistance (HOMA-IR), glucose, glycemia, adipokines, anti-oxidant,

homocysteinemia).
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2.2 Study Selection and Data Extraction

Studies included in this analysis were limited to animal interventions investigating the effects
of flavanols (pure compounds or extracts from tea, cocoa, grape or apple), which had a
control group receiving placebo or no treatment and demonstrated the improvement of one or
more of the predefined cardiometabolic outcomes. Two authors independently assessed all
full-text papers and in the case of disagreement, a third author was contacted. Manuscripts
written in any European language were included, whereas other manuscripts were excluded.
Data extraction was performed using a template. Extracted data included: publication details
(authors, year of publication, ID of the publication); animal model characteristics (species,
strain/model, age, gender); elements of study design (tested compound, dose used for the
supplementation, duration of the intervention); cardiometabolic outcomes (type and changes
in the outcome); and gene expression data (type of tissue, official gene name, official gene
symbol, modulation of gene expression). The final database was cross-checked by two

authors.

2.3 Bioinformatics analysis of gene expression data

Differentially expressed genes were submitted to Gene Set Enrichment Analysis (GSEA)
using EnrichR (https://amp.pharm.mssm.edu/Enrichr/) to identify significantly over-
represented signalling pathways (referred by the Kyoto Encyclopedia of Genes and Genomes,
KEGG) that can be modulated in response to flavanol intake. Fisher’s exact test with
Benjamini-Hochberg correction was used to determine the significance of the enrichment
results. Only pathways related to cardiometabolic health with an adjusted-p-value < 0.01
were considered. A rank score was also computed using a modification to Fisher's exact test

and used to build clustergram showing the association between the input genes and the

This article is protected by copyright. All rights reserved.



Accepted Article

www.mnf-journal.com Page 7 Molecular Nutrition & Food Research

overlapping genes of the enriched term [20]. Only pathways related to cardiometabolic health
with an adjusted-p-value < 0.01 were considered. A network analysis based on these enriched
terms has been rendered using Cytoscape software [21] with ClueGO associated application
[22]. Transcription Factor Enrichment Analysis (TFEA) was performed using
Hypergeometric Optimization of Motif EnRichment (HOMER) to identify the significant
transcription factors that may explain gene expression modulation in response to flavanols
[23]. TFEA was performed on down- and up-regulated gene sets separately for each tissue.
Gene sets were submitted to miRwalk 3.0 (http://mirwalk.umm.uni-heidelberg.de) for the
search of miRNA regulators using a random-forest-based statistical approach [24].
Visualization of the interactions between mRNAs, mRNA-TFs and miRNAs-targets was

performed in Cytoscape software (version 3.7.1; http://www.cytoscape.org/) [25].

3. Results

3.1. Description of the included studies

The process of selection applied in this systematic review is summarized in Figure 1. A total
of 785 papers were initially identified in PubMed and Web of Science databases using our
identified keywords. After the removal of duplicates and the first screening step by analysing
the title and abstract, we used criteria defined in our search strategy to retrieve studies for the
present analysis. As a consequence, 187 full-text papers were selected for data extraction. 27
papers were excluded during the detailed analysis of full text due to: the lack of relevant
cardiometabolic outcome(s), analysis of gene expression restricted to the protein level, non-
preclinical animal study, publication language, extracts from unexpected food source, use of
animal model not relevant to cardiometabolic investigation (e.g., hepatotoxicity and
surgically induced hepatic injury). Finally, significantly and differentially expressed genes at

the mRNA level in response to flavanol supplementation and associated with improvement of
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at least one of the predefined cardiometabolic outcomes, were extracted from 81 papers. 75
papers reported studies that had adopted a targeted approach to analyse the expression of
genes (i.e., using mostly quantitative RT-PCR for a specific set of genes) in rodent models
(37 in mouse, 38 in rat), whereas 6 had adopted a holistic approach using various whole
genome array assays. Gene expression data obtained using a targeted approach
(supplementary tables 1 and 2) have been consolidated, then submitted to bioinformatics
analyses to decipher the underlying mechanisms of action by which dietary flavanols may

impact on cardiometabolic health.

3.2. Overview of the beneficial effects of flavanols on cardiometabolic outcomes in
rodent models

Cardiometabolic outcomes assessed in the studies included in the present work are presented
in supplementary tables 1 and 2. Several well established rodent models of CMD, including
genetic (e.g. LDLr-/- or ApoE-/-mice, Zucker rats) and induced CMD (e.g. chemically
induced by NOS inhibitor, ouabain, angiotensin, or induced by cafeteria-, western-, high fat-
or high sucrose-diets) have been employed to evaluate the impact of dietary flavanol
supplementation on a large range of cardiometabolic outcomes. Acute supplementation with
250 mg/ kg BW / day (equivalent to a human equivalent dose (HED) of ~ 40 mg / kg / day in
a 60 kg human) of grape seed procyanidin extract (GSPE) in healthy rats and mice decreases
plasma triglycerides [26, 27], and hepatic triglycerides and cholesterol [26, 28]. Similarly, the
long-term intake (between 3 to 20 weeks) of grape seeds extracts (25-1,000 mg / kg / day;
HED: 4-160 mg / kg / day) [13, 29-36], tea (500-860 mg / kg / day) [13, 37-42], EGCG (50-
300 mg / kg / day) [43-51] or apple flavanols extracts (0.5 % diet) [52] improves
triglyceridemia [29, 32, 34, 39-41, 45, 46, 48-50], cholesterolemia [29, 32-34, 40, 46, 49, 50],

plasma free fatty acids (FFAs) levels [33, 49], glycemia [34, 36, 41, 45, 46, 48, 50, 52],
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insulinemia/HOMA-IR [30, 36, 40, 41, 43, 45, 46, 52], and circulating inflammatory markers
(e.g. C-reactive protein (CRP)) [31], reduces hepatic cholesterol [29, 43] and triglycerides
[29, 39, 43], and attenuates body weight gain [35-41, 43, 46, 48]. Similarly, procyanidin B2
at 50-150 mg / kg / day improves glucose homeostasis and decreases hepatic steatosis [53].
Catechin [54-56] and EGCG [57, 58] given at 30 mg / kg / day (HED: 2.5 mg / kg / day) and
25 mg / kg / day (HED: 2 mg / kg / day), respectively, present anti-inflammatory properties
as observed by a decreased plasma level of interleukin-6 (IL-6) or tumor necrosis factor
(TNF). These supplementations also preserve aorta relaxation and slow down the
development of atherosclerotic lesion. EGCG (25-50 mg/kg/day for a week) also decreased
systolic blood pressure and serum inflammation (CRP) in angiotensin II-induced
hypertensive rats [59]. In addition, the systemic inflammation in N(G)-Nitro-L-arginine-
methyl ester (L-NAME)-induced hypertensive rats is decreased by 4-week supplementation
with 2-10 mg / kg / day epicatechin (HED: 0.3-16 mg / kg /day) [60]. In T2D rat models, a
chronic intake of pure catechin (20 mg / kg / day; HED: 3.2 mg / kg / day) or EGCG (0.1 %
in diet, that is equivalent to ~20 mg / day for a rat) reduced blood glucose [61] and improved
plasma insulin level [62], respectively. All these aforementioned health effects were also
observed in a large range of studies investigating the effects of flavanols supplementation on
high fat diet (HFD)-induced cardiometabolic disorders [37-40, 42, 44, 46, 48, 49, 53, 63-92].
Taken together, these studies support that dietary flavanols contribute to improve
cardiometabolic health in animals by reducing circulating lipids (TG, LDL-cholesterol, FFA)
and their accumulation in the liver and adipose tissues, therefore preventing weight gain, and

by improving glucose homeostasis.
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3.3. Nutrigenomic impact of flavanols in cardiometabolic tissues in rodent models

A detailed analysis of studies using a targeted approach to assess the gene expression profiles
retrieved a set of 110 and 77 differentially expressed genes, in response to flavanol(s)
supplementation compared to the same un-supplemented diet, in cardiometabolic target
tissues (liver, adipose tissues, muscle, aorta and immune cells) from mice and rats,
respectively (Figure 2). Some genes were particularly investigated in identified studies (Table
1). The expression of the gene encoding the tumor necrosis factor (77f), the most investigated
gene with 28 reported hits, was assessed in response to pure compounds or flavanol extracts
reported here. Whatever flavanols given to animals and the target tissues assessed, 7nf
expression is always observed as significantly decreased in comparison to the non-
supplemented control [13, 37, 41, 46, 50, 52, 58, 63, 71, 72, 75, 81, 84, 92, 96, 100]. The
same effect was reported for the second inflammatory marker mostly investigated i.e.,
interleukin-6 (116) [52, 58, 62, 63, 71, 72, 74, 78, 84, 92, 96]. The expression of the gene
encoding the fatty acid synthase (Fasn), only measured in liver and adipose tissues, was
reported to a large extend as significantly decreased in flavanol-supplemented animals [26,
29, 42, 46, 47, 64, 65, 73, 77, 80, 81, 86, 88, 90, 95]. The genes encoding for the acetyl-
Coenzyme A carboxylase alpha, Acaca [13, 37, 46, 68, 71, 72, 77, 86] and for the
transcription factor Sterol regulatory element-binding transcription factor 1 (Srebf1) [32, 68,
70, 73, 75, 80, 86], both involved in lipid synthesis are also significantly repressed in liver
and adipose tissues. Conversely, flavanols supplementation enhance the expression of genes
involved in fatty acid beta-oxidation (Acox!) [39, 68, 81, 82, 87, 93, 94], mitochondrial
uncoupling protein 1 (Ucpl) [13, 39, 48, 72, 89] and the trans-membrane transport of proteins
(Abcal) [26, 29, 47, 64, 65, 73]. Flavanol supplementation has been reported to exhibit a
positive impact on the gene expression of metabolic regulators such as sirtuin 1 (Sirtl) [27,

46, 54, 55, 57, 71, 72] and peroxisome proliferator activated receptor (PPAR) members:
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PPAR alpha (Ppara) [28, 43, 68, 71, 72, 75, 80, 81, 83, 93]; gamma (Pparg) [31, 34, 44, 59,

71, 72, 80]; and PPARg coactivator 1 alpha (Ppargcla) [27, 44, 46, 48, 71, 72, 89].

3.4. Functional enrichment analysis of the modulated genes in response to flavanol
intake

To get a better understanding of the molecular mechanisms underlying the cardiometabolic
effects associated with the intake of flavanols, the differentially expressed genes (n=110
mouse genes, n=77 rat genes) were submitted to a Gene Set Enrichment Analysis (GSEA).
The enriched terms and the overlapping input genes assessed in liver and adipose tissues were
rendered in clustergrams presented in Figure 3. These clustergrams revealed that the
consumption of flavanols affects the expression of genes that can be clustered in four major
functional groups. The first group comprises about fifteen highly significant modulated genes
associated with endocrine functions (e.g. adipocytokine, glucagon and insulin signalling
pathways). A second group is linked to fatty acid metabolism (e.g., PPAR signalling pathway
and FFA oxidation). In the mouse liver, GSEA also revealed a third cluster related to the
absorption of fatty acids (e.g. TG digestion and absorption; bile secretion, bile acid
biosynthesis). The fourth group, detected in all tissues and species, comprises down-regulated
genes in response to flavanol intake which are involved in inflammatory pathways (e.g.,
TNF-, NF«B- and toll-like receptor- signalling pathways).

The expression of mouse and rat genes was next also investigated in muscles and aortas.
However, the low number of items in the gene inputs did not allow to build clustergrams
following GSEA (Figure 3E). Nevertheless, the analysis showed that PPAR signalling, FA
oxidation, thermogenesis, or non-alcoholic fatty liver disease (NAFLD) pathways were
significantly enriched as seen in liver and adipose tissues. In murine aorta, the main target

tissue in vascular diseases, the modulation of gene expression profiles affected by flavanol
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intake is related to inflammatory pathways (e.g., TNF-, IL-17-, and NF-xB-signalling
pathway), to pathways controlling endothelial activation (cell adhesion molecules and
leukocyte trans-endothelial migration), and vascular tone (metabolism of arginine, a
precursor for NO production).

As clustergrams further highlighted that some reported genes overlap in several enriched
terms, functionally organized networks were built to better capture and summarize the
relationship between genes modulated in response to flavanol intake and their enriched terms
(Figure 4). In mice, the consumed flavanols mainly modulate genes involved in the
interconnected pathways regulating fatty acids metabolism and glucose metabolism (insulin
and glucagon regulations). In cardiometabolic rat models, flavanols modulate the pathway

associated with insulin and fatty acids metabolism.

3.5. Putative regulators explaining the gene expression profiles in response to flavanols
The variation in gene expression in response to the intake of flavanols may result from their
action on the activity of transcription factors (TF), or an epigenetic regulation involving e.g.
miRNAs and DNA methylation/histone acetylation. To explore the capabilities of flavanols
to modulate transcriptional regulation, we first performed a transcription factor enrichment
analysis (TFEA) by submitting our gene set to the HOMER software (Figure 5A). Secondly,
we looked for miRNAs that may regulate the gene set (Figure 5B), and then searched for
other regulators of the transcriptional activity (e.g., chromatin regulators) using
RegulatorTrail.

TFEA aims at revealing transcription factors potentially modulated by flavanols that may
explain differential gene expression profiles observed in rodent tissues (Figure 5A). This
analysis was performed independently for each target tissue and rodent model. In mouse

liver, the bioinformatic analysis identified TF the most likely targeted by flavanols, such as
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the retinoic acid receptor (namely RXR), PPARg, transcription factor MafA, and activator
protein-1 (AP-1) regulating respectively 14, 13, 10 and 9 genes over the 67 genes identified
as differentially expressed by flavanols. In mouse adipose tissues, flavanols appears to
modulate the activity of the T-box transcription factor 5 (TBXS5), the homeobox protein TG-
interacting factor 1 (TGIF1) and the DNA-binding protein regulatory factor X, 6 (RFX6) that
controlled the expression of 39%, 34% and 28% of the input genes, respectively. The
transcription factor AP-1, the activating transcription factor 3 (ATF3) and the basic leucine
zipper transcriptional factor ATF-like (BATF) appeared as the main transcriptional regulators
modulated by flavanols in aorta of mice. In rat tissues, TFEA identified ATF3 and AP-1 in
the liver and muscle, RUNX1 (Runt-related transcription factor 1) and HOXD13 (Homeobox
protein Hox-D13) in the adipose tissue, and the transcription factor Sp5 and MAZ (Myc-
associated zinc finger protein) in aorta. Taken together, these results highlight that dietary
flavanols may affect the activity of a large range of TFs, and this with a tissue specificity as
suggested by the low overlap between tissues of enriched TFs.

The modulation of gene expression observed in tissues of animals fed with flavanols can also
be mediated by changes in miRNAs expression. From the dataset of modulated genes, the
bioinformatic prediction identified 41 mouse miRNAs and 45 rat miRNAs that can be
modulated in response to flavanols and affect the expression level of genes identified from
publications (Figure 5B). Among the mouse miRNAs, 15 candidates may participate in the
gene modulation observed in liver, 12 in adipose tissue, 9 in muscle and 12 in aorta. In rats,
22 miRNAs may modulate the gene expression profile observed in liver, 14 in adipose
tissues, 11 in muscle and 2 in aorta. A very low number of predicted miRNAs overlapped
between tissues, further demonstrating a tissue specific action of the flavanols.

By submitting the gene datasets to the RegulatorTrail software, some regulators other than

TFs and miRNAs were identified as potential mediators in the nutrigenomic effect of
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flavanols. This analysis shows that the activity of proteins altering the chromatin structure
such as the helicase SMARCA4 (p-value mouse liver: 1.12€-13; p-value mouse a: 3.96€-7; p-value
at: 0.57¢-14) and the histone deacetylase HDAC3 (p-value mouse liver: 4.56€-22) may also
contribute to the gene expression modulation in response to dietary flavanols. In addition, the
lysine methyltransferase KMT2D known to methylate the lysine 4 position of histone H3, has
been revealed as a potential epigenetic mediator of the effect of flavanols on gene expression.
Another potential regulator identified is the CWC1S5 protein, a component of the spliceosome
involved in pre-mRNA splicing (p-value mouse ar:1.0e-7, p-value o 6.07e-16). All these non-
transcriptional regulations may contribute to change the chromatin conformation and
consequently may alter the gene expression profiles observed in response to dietary flavanols.
We than performed integration of all genomic data by combined analysis of interactions
between mRNA, transcription factors and miRNA targets (Figure 6). This analysis showed an
inner core network, as present highest number of interactions within the mouse network, that
involves the nuclear receptor PPARG, 3 miRNAs namely miR-25, miR-32, miR-363 and the
protein coding gene PRDM16. In the network observed for rat data analysis, the transcription

factor AP-1, miR-25, miR-92a and miR-367 constitute the major nodes of interactions.

4. Discussion

The present systematic review of studies conducted in rodent models clearly
highlights that dietary flavanols exert nutrigenomic effects in several target tissues involved
in the development of cardiometabolic diseases. From the changes in gene expression
observed, these nutrigenomic effects could largely mediate the reported beneficial effects of
these compounds on a range of biomarkers associated with cardiometabolic risk. By
analysing data obtained from quantitative real-time PCR, considered as the ‘gold standard’

method to assess gene expression, we selected 155 rodent genes (mouse + rat) as significantly
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modulated in response to the consumption of dietary flavanols. The nutrigenomic response to
dietary flavanols may result from a multilevel regulation involving transcriptional and non-
transcriptional mediators.

The complexity of these nutrigenomic effects has been raised previously in a few
animal intervention studies that have used holistic approaches [101-106]. It results from these
studies that the hundreds of genes shown as modulated by dietary flavanols in several tissue
targets (liver, aorta and adipose tissue) were notably involved in fatty acid metabolism, cell
chemotaxis and accumulation of myeloid cells. Despite the high efficiency and performance
of these holistic approaches to discriminate gene expression variation in response to a dietary
intervention, the weak redundancy between these studies failed to provide enough robust and
consolidated data to support further investigation of the molecular mechanisms by which
dietary flavanols regulate gene expression. To overcome this limitation, we used the dataset
of 155 genes identified as modulated by dietary flavanols in our systematic analysis of PCR
data and submitted them to bioinformatics analyses. The functional enrichment analysis
based on this gene dataset highlights that hereafter exerting a nutrigenomic effect flavanols
may affect metabolism regulating several pathways involved in endocrine functions, in fatty
acid metabolism and in inflammation. This result fits with the improvement of
triglyceridemia, cholesterolemia, plasma FFA levels, glycemia, insulinemia and circulating
inflammatory markers observed in cardiometabolic rodent models supplemented with
flavanols. Several randomized controlled trials (RCT) support similar benefits of flavanols on
cardiometabolic health. A meta-analysis collecting the RCTs-based evidence of the effects of
flavanol-rich tea, cocoa, and apple products on biomarkers of cardiometabolic risk provides
robust evidence of significant reductions in total cholesterol and triglycerides [107]. The

nutrigenomic approach associated to enrichment analysis from animal studies give new
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insights to understand the underlying mechanism of action that can be triggered in human in
response to a nutritional intervention with flavanols.

Bioinformatic analysis (e.g., TFEA) predicts that dietary flavanols may affect the
activity of a wide range of transcription factors resulting in a modulated gene expression
profile. This direct transcriptional effect has been reported for different flavanol sources and
compounds on transcription factors involved in different signalling pathways [108].
According to our TFEA analysis, one of the major TFs modulated appeared to be AP-1 both
in rats and mice. AP-1 is made up of heterodimeric protein complexes of different protein
families, including the c-Jun, c-Fos, Maf families, and it is closely related to activation
transcription factor (ATF) subfamilies, some of which are defined in our study [109]. AP-1
plays a critical role in the progress of vascular dysfunction and atherogenesis [110].
Inhibition of AP-1 is one of the key targets to prevent atherosclerosis. Hexameric
procyanidins isolated from cocoa protected Caco-2 cells [111] and procyanidin B2 elicited an
anti-inflammatory effect in human umbilical endothelial cells through inhibition of AP-1
activation [112]. SREBP-1 is a major regulator of fatty acid synthesis, lipids, and
lipoproteins. SREBP-1 may be a target transcription factor for grape seed procyanidin extract
[113], EGCG [47, 114] to exert their anti-lipogenic, anti-inflammatory and
hypotriglyceridemic effects in mice. Nuclear factor erythroid-2-related factor (Nrf2) controls
genes encoding proteins that function in reactive oxygen species detoxification, cell survival,
metabolism, inflammation, cell growth, cell adhesion, and adipocyte differentiation [115]. In
cardiometabolic diseases NRF2 induces the expression of antioxidant genes, impairs
atherosclerosis, reduces inflammation, modulate migration and proliferation of vascular
smooth muscle cells [116]. In hepatic HepG2 cells, green tea EGCG upregulated Nrf2
dependent gene expressions of antioxidant and detoxification enzymes [115]. Similarly,

cocoa phenolic extract and epicatechin upregulated antioxidant gene expressions and proteins
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thus protected HepG2 cells against high glucose induced oxidative stress via Nrf2 pathway
[117]. Epicatechin increased Nrf2 and its target genes in aortas of hypertensive rats resulting
in lowered blood pressure, decreased oxidative stress and restored endothelial function [118].
In human aortic smooth muscle cells (HASMCs), EGCG dose dependently induced Nrf2 and
inhibited IL-15-induced HASMC proliferation and oxidative stress [119]. The human
forkhead box (FOX) TFs are involved in multiple cellular processes such as cellular
homeostasis, cell survival, cell proliferation, angiogenesis, immune regulation and cell death.
In our study FOXM1 was detected in the liver of mice. FOXM1 and FOXO3a are two TFs
that compete for binding to the same gene targets. FoxO3a is a major TF in cholesterol
homeostasis in hepatic cells. Overexpression of FoxO3a improves hypercholesterolemia.
FoxO3a deficiency leads to increased hepatic and plasma cholesterol levels. It has been
shown that EGCG lowered LDL levels of rats [120]. Liver X Receptor (LXR) is an important
regulator of cholesterol homeostasis and lipid metabolism. Besides it decreases the
transcription of pro-inflammatory genes. In rats epicatechin decreased LXR dose dependently
and improved blood lipid profile when fed high-fat diet [90]. In addition, EGCG upregulated
LXR in ApoE Knock-Out mice [47]. Next to regulating TFs, flavanols have been
demonstrated to modulate mRNA maturation acting on the spliceosome [121]. Thus, a large
body of evidence sustains a direct effect of flavanols on transcriptional activities that can
explain their nutrigenomic effects and their beneficial health effects.

Dietary polyphenols have been shown to modulate miRNAs profiles [122, 123].
miRNAs are small non-coding RNAs identified as a crucial regulatory layer in the control of
transcription. Bioinformatics analysis performed suggests that flavanols may also exert a
transcriptional regulation acting on the expression of miRNAs. Among the most scored
miRNA is miRNA-187 that in our analysis was identified using the list of differentially

expressed genes in mouse and rat models of disease in liver and adipose tissue. Interestingly,
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and in agreement with our research aim, miRNA-187 is overexpressed in human subjects
with T2D versus matched controls [124]. Our data reinforce the pathogenetic role for this
miRNA in metabolic disease and suggest for polyphenols a complementary way of action in
curbing glucose dysmetabolism. More and more data from the last years provide evidence
that miRNAs have a potential to be diagnostic as well as prognostic markers for several
cardiovascular diseases [125]. According to Wang et al. [126], miRNA-720, that was
identified by us as potential actor in the nutrigenomic effect of flavanols in both rat and
mouse, might be a useful and promising biomarker for the early detection of coronary artery
disease. The downregulation of miR-150-5p (defined in mouse) has been reported as a
prognostic marker for advanced heart failure [127]. In addition to regulate gene expression
through a potential action on circulating miRNAs, flavanols could counteract some key actors
in the onset of cardiovascular diseases.

Other molecular actors involved in the regulation of the epigenome can also
participate in the nutrigenomic effects of dietary flavanols. These are proteins in charge of the
modification of chromatin structure (e.g., HDAC, lysine methyltransferase, Helicase) [128].
Several studies report that an intervention with dietary flavanols modifies DNA methylation
[129-131]. In cancer, epigallocatechin gallate has been shown to inhibit methyltransferase
[132] and histone deacetylase activities [133] that participates to slow down cancer
progression. These scientific evidence support the hypothesis that flavanols can drive
transcriptional profiles through an epigenetic regulation and by consequence stress the need
of new investigations to explore this further.

To exert any beneficial effects including nutrigenomic effects, flavanols need to be
bioavailable. Several factors such as bioaccessibility, food matrix and also metabolizing
enzymes may affect flavanol bioavailability and as consequence the bioactivity of dietary

flavanols. After absorption, flavanol monomers undergo extensive phase II conjugation by
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the gut microbiota and are found in the circulation in the low umol/L range and as e.g., O-
methylated, sulphated and glucuronidated conjugates [134]. These compounds can also be
degraded into smaller phenolic compounds by the gut microbiota and thereafter absorbed
[135-138]. The demonstration that circulating metabolites are responsive to the health effects
of flavanols has been provided by in vitro studies. Claude et al. demonstrated that circulating
flavanol metabolites (e.g., methylepicatechin) used in nutritionally relevant conditions
preserve vascular endothelial function preventing monocyte adhesion to endothelial cells
[139]. The same research group showed that these flavanol metabolites also exert
nutri(epi)genomic changes in endothelial cells [140, 141] that contribute to regulate several
signalling pathways already reported, as an anti-atherosclerotic effect of a flavanol
supplementation [101]. These data further support that the mechanism of action of dietary
flavanol monomers may be mediated by the metabolite present in the systemic circulation
and that are likely to represent the physiological active forms. Moreover, our systematic
analysis and integrated bioinformatic analysis of the genomic data allowed us to obtain a
more precise and coherent molecular mechanisms of these molecules. In particular, we report
that the potential underlying impact of the flavanols on cardiometabolic health is multi-modal
and involves both transcriptional and post-transcriptional regulations

This review presents a potential complex multilevel action of dietary flavanols on
gene expression contributing to health benefits. Based on observed functional modulations,
flavanols are suspected to act as signal molecules, agonists or else antagonists interacting
directly with proteins. In 2018, Lacroix et al. identified the polyphenol interactome and
showed that polyphenols and their metabolites interact with over 5,500 proteins [142].
However, this interactome is partly built with data mining tools and only a small number of
crystal structures of polyphenol-protein complexes is currently available. Other research

groups used computational docking approaches to screen pertinent targets of polyphenols
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metabolites that are of major importance in mediating the health effects of polyphenols [140,
143].

An increasing number of controlled clinical trials have been conducted out over the
last decades to shed light on the effects of flavanol-containing products on cardiometabolic
health. However, factors intrinsic to the study (design, duration, dose or products) and factors
inherent to the individuals (epi-genetic, health status, age, ethnicity, gut microbiota) introduce
heterogenicity in the findings [107, 144, 145]. Similarly, the weak redundancy between the
animal studies does not provide us with sufficiently robust and consolidated data and
therefore does not allow us to estimate the most effective doses of dietary flavanols for a
giving health effect. However, the identification of the main determinants in the nutrigenomic
effects of the flavanols can be useful to understand the variability in response to the
consumption of dietary flavanols. To this end, this review supports that a posteriori
computational analyses of the nutrigenomic data can lend support on the identification of
potential molecular mediators responsive for the bioactivity of flavanols. One critical
question that still remains is related to the identification of the flavanol metabolites driving
the nutrigenomic response in the target organs. Answering these pending questions will

contribute to optimize the beneficial health effects of dietary bioactives.
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Figure and Table legends

Figure 1: Flow diagram of the study selection process.
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Figure 2: Differentially expressed genes in mice, rats and rodents after oral treatment with
flavanols — pure compounds or extracts from tea, cocoa, apple or grape seeds.

*The number of differentially expressed genes in rodent target tissues was obtained by
pooling together the differentially expressed genes in each specific tissue in mice and rats,
and subsequent removal of duplicate genes. SAll kinds of adipose tissues, including both

brown and white adipose tissues of visceral, subcutaneous, and epididymal origin.

Mice Rats
Immune Cells:
11 (-8 13)
Aorta: 19
Aorta: 11

(V17-12)
R (J-10- 11)

Total*: 138 (| 75 - 1 63) Total*: 66 ({41 - 125)

Figure 3: Functional enrichment analysis of the modulated genes in response to flavanol
intake in liver (A, C), adipose tissues (B, D), muscles and aortas (E) of rodents (A-B-E:
mouse; C-D-E: rat). Clustergrams were built on enriched pathways retrieved from KEGG
using Enrichr. Enriched pathways were ranked based on their enrichment score and gene
hierarchically clustered based on their association with the top enriched terms. Heatmap is
proportional to p-value of the enriched terms. Gene modulation was a posteriori added onto

the clustergram as well as gene coverage (expressed in percentage and ratio).
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GSEA in Muscles Mouse Rat

. Overlap Adjusted P- Overlap Adjusted P-
Enriched Terms value value
IAdipocytokine signaling pathway 85 7,17E-10
IAMPK signaling pathway 2,4 1,02E-03
Insulin resistance 7.3 5,72E-13
[Fatty acid degradation 4,0 2,01E-02
PPAR signaling pathway 3,5 1,60E-03 59 2,41E-07
MNon-alcoholic fatty liver disease (NAFLD) 2,0 6,69E-03 3,3 2,64E-06
IcAMP signaling pathway 1,4 1,44E-02
IThermogenesis 1,7 1,21E-03
ICardiac muscle contraction 2,6 4,18E-02
IC-type lectin receptor signaling pathway 27 7,51E-04
Fluid shear stress and atherosclerosis 21 1,33E-03
Hypertrophic cardiomyopathy (HCM) 3 4,81E-04
Hematopoietic cell lineage 3,2 5,62E-04
|Osteoclast differentiation 2,3 1,03E-03
Huntington disease 21 1,16E-03
Inflammatory bowel disease (IBD) 6,8 3,38E-06
Rheumatoid arthritis 3,6 4,76E-04
ITNF signaling pathway 27 7,43E-04
IToll-like receptor signaling pathway 3,0 6,24E-04
[Th17 cell differentiation 2,9 6,49E-04
[IL-17 signaling pathway 3,3 5,38E-04
IAGE-RAGE signaling pathway in diabetic complications 4,0 2,55E-05
FoxO signaling pathway 2.3 1,09E-03
GSEA in Aorta Mouse Rat

Adjusted P- Adjusted P-

Enriched Terms uciap Juafue Ovedan JIwmfuez'
lArginine biosynthesis 10,5 2,57E-03
Hematopoietic cell lineage 3,2 2,09E-03
HIF-1 signaling pathway 4,8 3,21E-06
IVEGF signaling pathway 34 3,30E-03
Fluid shear stress and atherosclerosis 7.0 2,31E-14 4,2 3,01E-09
Leukocyte transendothelial migration 4,3 4,72E-06 2,6 3,06E-04
ICell adhesion molecules (CAMS) 2,4 6,19E-04
IC-type lectin receptor signaling pathway 2.7 3,03E-04
ICytokine-cytokine receptor interaction 1,0 2,94E-03
IMAPK signaling pathway 1,0 2,88E-03
MicroRNAs in cancer 1,8 2,48E-04
|Graft-versus-host disease 31 3,74E-03
NOD-like receptor signaling pathway 24 6,78E-05 IS 1,17E-03
Insulin resistance 2,7 2,80E-03
Non-alcoholic fatty liver disease (NAFLD) 2,0 6,11E-04
IType | diabetes mellitus 2,9 4,20E-03
|Osteoclast differentiation 5 6,62E-06
Proteoglycans in cancer 1,5 1,19E-03
Relaxin signaling pathway 2,3 4,24E-04
Inflammatory bowel disease (IBD) 5,1 5,57E-05
Rheumatoid arthritis 4.8 6,06E-05 4,8 1,81E-06
[IL-17 signaling pathway 5,9 1,87E-06 4,4 2,15E-06
ITNF signaling pathway 7,3 1,47E-11 4,5 4,31E-08
NF-kappa B signaling pathway 39 1,10E-04 3,9 2,98E-06
JAGE-RAGE signaling pathway in diabetic complications 9,9 1,27E-15 4,9 3,72E-08

Figure 4: Global Enrichment analysis in response to flavanols (A: mice; B: Rats).
Functionally organized network connects the input genes modulated in response to flavanols

and the top enriched KEGG pathways that predict the main functions modulated by flavanols.
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Figure 5: Predicted regulators responsible to the observed gene modulation. Transcription
factors (A) and miRNA (B) were predicted submitting gene dataset to HOMER and miRwalk

respectively. For a tissue, scales are proportional to hits from each gene inputs.
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< ’ Figure 6: Global network of interactions between genes identified as modulated by flavanols
O with potential transcriptional regulators (i.e. transcription factors) and post-transcriptional
regulators (i.e. miRNAs). The total interactions between mRNAs (yellow nodes labelled with
< the protein coding gene name), transcription factors (red nodes) and miRNAs (blue nodes) in

mouse (A) and in rat (B) were built using the cytoscape software.
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Table 1: Genes mostly investigated in rodent studies using targeted approach for assessing

gene expression. The symbol size (=,®,4) is proportional to the number of repeats in

respective categories. Reported main effect of flavanols on the gene expression corresponds

to the effect observed in >80% of the studies.
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