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Abstract
Contemporary statistical publications rely on simulation to evaluate performance of new methods
and compare them with established methods. In the context of random-effects meta-analysis of log-
odds-ratios, we investigate how choices in generating data affect such conclusions. The choices we
study include the overall log-odds-ratio, the distribution of probabilities in the control arm, and the
distribution of study-level sample sizes. We retain the customary normal distribution of study-level
effects. To examine the impact of the components of simulations, we assess the performance of
the best available inverse-variance-weighted two-stage method, a two-stage method with constant
sample-size-based weights, and two generalized linear mixed models. The results show no important
differences between fixed and random sample sizes. In contrast, we found differences among data-
generation models in estimation of heterogeneity variance and overall log-odds-ratio. This sensitivity
to design poses challenges for use of simulation in choosing methods of meta-analysis.
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1 Introduction

Many methodological publications in applied statistics develop a new method, illustrate it in
examples, and evaluate its performance by simulation. Our interest lies in methods for meta-
analysis (MA). For meta-analysis of odds ratios, we demonstrate how researchers’ choices of
simulation design can affect conclusions on the comparative merits of various methods.

Presentations of meta-analysis methods usually include assumptions about the behavior of
the estimates from the individual studies. For example, a generic 2-stage random-effects model
relates the observed effect sizes yi (i = 1, . . . , K) to the overall effect µ in the model

yi = µ+ δi + εi, (1)

where the δi ∼ N(0, τ2) represent random variation in the underlying study-level effects, the εi ∼
N(0, σ2

i ) represent random variation within the studies, and the δi and the εi are independent.
From the yi and their estimated variances, s2i = σ̂2

i , the 2-stage method estimates µ and also τ2.
Such a model can serve as a basis for analysis and also as the basis for generating data as part of
a simulation study. The analysis model and the data-generation model may differ, however. For
example, when the measure of effect is the log-odds-ratio, the data-generation model produces
more-basic study-level data (such as numbers of events in the two arms, as shown in Section 2),
from which yi and s2i are calculated, and the popular inverse-variance-weighted methods build
on Equation (1). On the other hand, other methods, such as generalized linear models, build on
the likelihood for the distributions in the data-generation model. In order to study the impact
of choices among data-generation models — our primary interest — our simulations use several
analysis models and methods based on them.

For a particular method, one can regard a measure of performance, such as the bias of a point
estimator or the coverage of an interval estimator, as a function of variables that describe the
meta-analysis and its setting. By a combination of analysis and, mainly, simulation, one aims to
evaluate that function and describe its behavior. The variables include the number of studies,
the study-level sample sizes, the extent of imbalance of the arm-level sample sizes, the overall
effect, the between-study variance of the effect (for a random-effects method), and the arm-level
variances within the studies (if the effect is continuous); and the relation of the performance
measure to the variables usually involves nonlinearities and interactions. Thus, the design of a
simulation has important implications for accuracy in evaluating the function, for estimating
those relations, and, especially, for relevance of the results to practice.

The conventional meta-analysis of odds ratios from K studies involves 2K binomial variables,
Xij ∼ Bin(nij , pij) for i = 1, . . . ,K and j = C or T (for the Control or Treatment arm). The
random-effects model assumes that logit(pij) = αi + θizij for θi ∼ N(θ, τ2) and an indicator zij
taking on values 0 (for Control) and 1 (for Treatment). In this notation, αi = logit(piC) and
αi + θi = logit(piT ).

A design specifies a systematic collection of situations involving the number of studies, K; the
sample sizes, nij ; the control-arm probabilities, piC , or, equivalently, their logits, αi; the overall
log-odds-ratio, θ; and the between-study variance, τ2. For each situation the simulation uses M
replications, where M is typically large, say 10,000.

For simplicity, we consider equal arm-level sample sizes, niC = niT = ni; some studies use a
random allocation ratio centered at a given percentage, q. Studies vary in how they specify the
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ni. Choices include setting n1 = · · · = nK with the same value in all M replications, using a fixed
set of ni (not all equal), and using some distribution (typically normal or uniform) to generate
a new set of ni in each replication.

Similarly, the piC or their logits αi can be fixed or generated from some distribution. Again,
normal and uniform distributions are the typical choices.

For τ2 most studies use a few selected values or an equally spaced set, such as τ2 = 0, 0.1,
. . . , 1, though some generate τ2 randomly1. Some studies specify values of the heterogeneity
measure I2 and obtain values of τ2 indirectly.

In Section 2, we review approaches for generating log-odds-ratios and control-arm probabilities,
and consider their statistical consequences. For two-stage methods of meta-analysis, which
use the studies’ sample log-odds-ratios and their estimated variances, the relation between
the estimates and their inverse-variance weights can produce bias. Section 3 examines this
complication analytically, for fixed study-level sample sizes. Section 4 discusses approaches for
generating sample sizes randomly and analyzes their impact. In Section 5 we study, by simulation,
how various choices in generating data affect comparative merits of several established meta-
analytic methods in estimating the between-study variance τ2 and the overall log-odds-ratio
θ. The methods we study include the best available two-stage methods for MA: the Mandel-
Paule estimator of τ2 and the corresponding inverse-variance-weighted estimator of θ with a
confidence interval based on the normal distribution. We also consider the performance of two
GLMM methods and a two-stage estimator of θ with constant sample-size-based weights whose
confidence interval is based on the t distribution. Section 6 describes and summarizes the results.
Discussion, in Section 7, offers concluding remarks. Appendices A and B provide technical details
for Section 3. Additional figures are provided in online Supplemental material.

2 Generation of log-odds-ratios and control-arm probabilities

Consider K studies that used a particular individual-level binary outcome. Each study reports
XiT and XiC , the numbers of events in the niT subjects in the Treatment arm and the
niC subjects in the Control arm, for i = 1, . . . ,K. It is customary to treat XiT and XiC as
independent binomial variables:

XiT ∼ Bin(niT , piT ) and XiC ∼ Bin(niC , piC). (2)

The log-odds-ratio for Study i is

θi = loge

(
piT (1− piC)

piC(1− piT )

)
estimated by θ̂i = loge

(
p̂iT (1− p̂iC)

p̂iC(1− p̂iT )

)
. (3)

The (conditional, given pij and nij) variance of θ̂i, derived by the delta method, is

v2i = Var(θ̂i) =
1

niT piT (1− piT )
+

1

niCpiC(1− piC)
, (4)

estimated by substituting p̂ij for pij . (In analyses, we follow the particular method’s procedure
for calculating p̂ij .)
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Under the binomial-normal random-effects model (REM), the true study-level effects, θi, follow
a normal distribution:

θi ∼ N(θ, τ2). (5)

For analysis, the resulting logistic mixed-effects model belongs to the class of generalized linear
mixed models (GLMMs)2,3. Kuss1, Jackson et al.4, and Bakbergenuly and Kulinskaya5 review
these GLMM methods.

In practice piC and piT vary among studies in a variety of ways, not necessarily described
by any particular distribution. Almost all analyses and simulations use the binomial-normal
REM for the relation between piT and piC . Simulations can treat the piC as constant (e.g., at a
sequence of values) or sample them from a distribution, either directly (usually from a uniform
distribution or a more general beta distribution; Section 2.2 discusses beta and beta-binomial
models) or indirectly, by generating logit(piC) (usually from a Gaussian distribution).

For reference, Table 1 lists the various data-generation models considered in more detail later.

Table 1. Summary of data-generation models for log-odds-ratio. In the fixed-intercept models,
log(piT /(1 − piT )) = αi + θ + (1 − c)bi and log(piC/(1 − piC)) = αi − cbi. In the random-intercept
models, log(piT /(1 − piT )) = α+ ui + θ + (1 − c)bi and log(piC/(1 − piC)) = α+ ui − cbi.

Data- Study-level Fraction of
generation Intercept random random effect
model αi or α+ ui effects bi in Control arm (c)
FIM1 fixed αi N(0, τ2) 0
FIM2 fixed αi N(0, τ2) 1/2
RIM1 ui ∼ N(0, σ2) N(0, τ2) 0
RIM2 ui ∼ N(0, σ2) N(0, τ2) 1/2
URIM1 piC uniform N(0, τ2) 0
FIM1F fixed αi τ2 = 0 N/A
RIM1F ui ∼ N(0, σ2) τ2 = 0 N/A
URIM1F piC uniform τ2 = 0 N/A

2.1 Models with fixed and random intercepts

We consider two fixed-intercepts random-effects models (FIM1 and FIM2, Section 2.1.1) and two
random-intercept random-effects models (RIM1 and RIM2, Section 2.1.2) as in Bakbergenuly
and Kulinskaya5. These models are equivalent to Models 2 and 4 (for FIM) and Models 3 and
5 (for RIM), respectively, of Jackson et al.4. Briefly, the FIMs include fixed control-arm effects
(log-odds of the control-arm probabilities), and the RIMs replace these fixed effects with random
effects.

Under the fixed-effect (common-effect) model, τ2 = 0 and θi ≡ θ. Still, the control-arm effects
can be either fixed or random, resulting in two fixed-effect models: the fixed-intercepts fixed-
effect model FIM1F, and the random-intercept fixed-effect model RIM1F. Random-intercept
fixed-effect models were considered by Kuss1 and Piaget-Rossel and Taffé6. However, GLMMs
with random θi are traditional in meta-analysis.
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2.1.1 Fixed-intercepts models (FIM1 and FIM2) The fixed-intercepts models assume fixed effects
for the studies’ control arms and allow heterogeneity in odds ratios among studies. (We follow
Rice et al.7 in using the plural form for fixed intercepts that differ among the
studies.) Given the binomial distributions in the two arms (Equation (2)), the model is
(i = 1, . . . ,K)

log
(

piT
1−piT

)
= αi + θ + (1− c)bi

log
(

piC
1−piC

)
= αi − cbi,

(6)

where the αi are the fixed control-arm effects, θ is the overall log-odds-ratio, and the bi ∼ N(0, τ2)
are random effects. Under FIM1, c = 0, resulting in higher variance in the treatment arm. Under
FIM2, c = 1/2, splitting the random effect bi equally between the two equations and yielding
equal variance in the two arms. When τ2 ≡ 0, these two models become a fixed-intercepts fixed-
effect model, FIM1F.

An analysis has to estimate the fixed study-specific intercepts αi (usually regarded as nuisance
parameters), along with θ and τ2. In a logistic mixed-effects regression, these K + 2 parameters
are estimated iteratively, using marginal quasi-likelihood, penalized quasi-likelihood, or a first- or
second-order-expansion approximation. Jackson et al.4 demonstrate that inference using FIM2
is preferable, even though they generate data from FIM1.

2.1.2 Random-intercept models (RIM1 and RIM2) As K becomes large, it may be inconvenient,
even problematic, for analysis to have a separate αi for each study. One can replace those fixed
intercepts with random intercepts α+ ui, centered at α:

log
(

piT
1−piT

)
= α+ ui + θ + (1− c)bi

log
(

piC
1−piC

)
= α+ ui − cbi.

(7)

As before, θ is the overall log-odds-ratio, and bi ∼ N(0, τ2). RIM1 and RIM2 correspond to c = 0
and 1/2, respectively. Now the ui ∼ N(0, σ2), and ui and bi can be correlated: Cov(ui, bi) = ρστ .
(If this bivariate normal distribution is not correct, however, estimates of θ will be biased8.)
Under RIM1, heterogeneity of log-odds is represented in the control arms by the variance σ2

and in the treatment arms by σ2 + 2ρστ + τ2. Typically, ρ is taken as zero in simulation. The
standard two-stage random-effects analysis model, which works with the sample log-odds-ratios,
involves only a single between-study variance, τ2. Turner et al.2 point out that ρ should be
estimated. Estimation of α, θ, σ2, τ2 and ρ is similar to estimation of the parameters in the
fixed-intercept model2. Again, RIM2 is preferable to RIM1 for inference.

When τ2 ≡ 0, these two models become a random-intercept fixed-effect model, denoted by
RIM1F.

The vast majority of simulation studies use FIM1 or RIM1 for data generation, both for
standard two-stage methods of MA and when studying performance of GLMMs, even when
they use FIM2 or RIM2 for inference. Examples include Sidik and Jonkman9, Platt et al.10,
Bakbergenuly and Kulinskaya5, and Cheng et al.11 for FIM, and Abo-Zaid et al.12 (σ = 0.25
and 1.5), Kosmidis et al.13 (σ2 = 0.1), and Jackson et al.4 (Settings 1 to 12) (σ = 0.3) for RIM.
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Langan et al.14 use a somewhat more complicated simulation scheme, which either fixes the
average within-study probabilities p̄i (at .5, .05, and .001) or generates them from U(.1, .5),
and then derives the values of piC and piT from the values of p̄i and θi, the latter normally
distributed as in Equation (5). Thus, piC satisfies the equation logit(piC) = logit(2p̄i − piC)− θi.
So logit(piC) has a share of the variance, making this a version of FIM2 or RIM2.

2.1.3 Moments of the control-arm probability under RIM The Gaussian random-intercept models
generate the control-arm probabilities, piC , indirectly: logit(piC) has a normal distribution
centered at α = logit(p0C). On the probability scale, where p0C = expit(α) = exp(α)/(1 + exp(α)),
the distribution is unimodal and skewed to the right when p0C < 0.5. Thus, simulations from RIM
involve, on average, higher control-arm probabilities than corresponding simulations from FIM,
though the median control-arm probability is the same. (In FIM1 the distribution has a single
value: piC = expit(αi).) To aid in comparing FIM and RIM, we evaluate the mean and variance
of this distribution; we use the standard delta method.

For a transformed random variable Y = h(X),

E(Y ) = h(E(X)) + h
′′
(E(X))Var(X)/2 and Var(Y ) = [h

′
(E(X))]2Var(X). (8)

For αi = E(logit(piC)) and p0C = expit(α), we have

p0C = h(α) =
exp(α)

1 + exp(α)
= 1− 1

1 + exp(α)
.

The derivatives of h(·) at α are

h
′
(α) =

exp(α)

(1 + exp(α))2
= p0C(1− p0C)

and

h
′′
(α) =

exp(α)(1− exp(α))

(1 + exp(α))3
= p0C(1− p0C)(1− 2p0C).

Hence
E(piC) = p0C + p0C(1− p0C)(1− 2p0C)σ2/2 and Var(piC) = [p0C(1− p0C)]2σ2.

The mean probability increases with the variance, σ2, of the normal distribution of ui. For
p0C = .1, say, the mean is .100 when σ2 = 0.01, but it increases to .109 for σ2 = 0.25 and to .136
for σ2 = 1. Therefore, simulations from FIM and RIM are not quite equivalent.

2.2 Non-Gaussian random-intercept models

Other distributions besides the Gaussian can serve as a mixing distribution for control-arm
probabilities.

In Bayesian analysis the beta distributions are conjugate priors for a binomial, so they are
a natural choice for a mixing distribution. The result is a marginal beta-binomial distribution
in the control arm. In meta-analysis a beta-binomial model1,15 usually assumes beta-binomial
distributions in both arms. However, Bakbergenuly and Kulinskaya15 showed that the standard
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RE method does not perform well when the data come from a beta-binomial model. Therefore,
we would not use a RIM with beta-generated probabilities.

We are not aware of any simulation studies that intentionally used a beta distribution for
control-arm probabilities. However, the Beta(1,1) distribution is the same as U(0, 1), and a
popular choice is a uniform distribution on an interval, (pl, pu) ⊂ [0, 1]. Viechtbauer16, Sidik and
Jonkman17, and Nagashima et al.18 (Set iii) generated the piC from U(.05, .65) in combination
with the Gaussian REM. Similarly, Jackson et al.4 (Setting 13) generated the piC from U(.1, .3).
All these studies add a uniform distribution of control-arm probabilities to the FIM1 setting,
producing a random-intercept model that we denote by URIM1. This model retains the normal
distribution of the θi.

Piaget-Rossel and Taffé6 used a fixed-effect model with piC ∼ U(p− p/5, p+ p/5), URIM1F
in our nomenclature, with p = .1, .007, .0035, .0015. Piaget-Rossel19 used the same distribution
for the piC and uniformly distributed log-odds-ratios, θi ∼ U(θ ±

√
3τ2).

If X ∼ Bin(n, p) and p ∼ U(0, 1), then X has the discrete uniform distribution U(0, 1, . . . , n).
More generally, when p ∼ U(pl, pu), the probabilities for the numbers of successes are

P (X = k) =
1

pu − pl

∫ pu

pl

(
n

k

)
uk(1− u)n−kdu

=
1

pu − pl
[B(pu; k + 1, n− k + 1)−B(pl; k + 1, n− k + 1)], (9)

where B(·; ·, ·) denotes the incomplete beta function. To examine the effects on the performance
of the MA methods, our simulations include uniform distributions of control-arm probabilities.

3 Variances and covariances of estimated log-odds-ratios and their weights

Traditional one-size-fits-all meta-analysis proceeds in two stages: obtain the study-level estimates
and their estimated variances (or standard errors) and then estimate the overall effect as
a weighted mean with inverse-variance weights. One of its main faults is that it ignores
the variability of the estimated variances. As a result, the variance of the overall effect is
underestimated20. Additionally, a relation between the estimated study-level effects and their
estimated variances may lead to bias in the estimate of the overall effect. In this section we
explore these relations for the log-odds-ratio and its variance and inverse-variance weight. We
also demonstrate that the relation varies with the data-generation mechanism. In particular, the
sample log-odds-ratio and its estimated variance can be almost independent under FIM2 and
RIM2 when θ = 0. Because the calculations are somewhat easier, we first examine the relation
to the estimated variance and then turn to the relation to the inverse-variance weight.

3.1 Relation of sample log-odds-ratio and its estimated variance

The data-generation mechanisms for the random-effects model generate the piC and piT and
then generate XiC and XiT , according to Equation (2). Thus, to obtain the covariance between

θ̂i and V̂ar(θ̂i), we apply the law of total covariance

Cov(θ̂i, V̂ar(θ̂i)) = E[Cov(θ̂i, V̂ar(θ̂i)|αi, θi)] + Cov(E(θ̂i|αi, θi),E(V̂ar(θ̂i)|αi, θi)). (10)
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In the process, to show the full effect of the data-generating mechanism, we also obtain Var(θ̂i),
using the more-familiar law of total variance:

Var(θ̂i) = E[Var(θ̂i|αi, θi)] + Var(E(θ̂i|αi, θi)) = E(v2i ) + τ2. (11)

In Equation (10) the covariance of the conditional expectations is just Cov(θi, v
2
i ) because

E(θ̂i|αi, θi) = θi = θ + bi and (to first order) E(V̂ar(θ̂i)|αi, θi) = v2i . Thus, we need to calculate

Cov(θ̂i, V̂ar(θ̂i)|αi, θi) and take its expectation. Conditioning on αi and θi, in Equation (6)
and Equation (7), is equivalent to conditioning on piC and piT . Therefore, we can rewrite

Equation (10) as (shortening V̂ar(θ̂i) to v̂2i )

Cov(θ̂i, v̂
2
i ) = E[Cov(θ̂i, v̂

2
i |piC , piT )] + Cov(θi, v

2
i ).

The first term in the above equation accounts for the binomial variation (of order 1/ni) in θ̂i and
in v̂2i , given piC and piT , whereas the second term accounts for the variation of its expected value
and variance from random effects, of order 1 in model (7). Therefore, the first, binomial term is
of smaller order (O(n−2i )) than the second term (the covariance of the expected moments) and
can be neglected in a calculation to order 1/ni.

To calculate the covariance of θi and v2i , we assume, for simplicity, that ui and bi are
independent. Then, defining pC = expit(α) and pT = expit(α+ θ), to order 1/ni,

Cov(θi, v
2
i ) =

cτ2

niC

[
1− 2pC

pC(1− pC)

]
− (1− c)τ2

niT

[
1− 2pT

pT (1− pT )

]
, (12)

In particular, when c = 1/2, θ = 0 and niT = niC , Cov(θi, v
2
i ) = 0.

After some algebra we also obtain, to order 1/ni,

Var(θ̂i) = [niT pT (1− pT )]−1 + [niCpC(1− pC)]−1 + τ2+(
σ2 + (1− c)2τ2 + 2(1− c)ρστ

)
[2niT ]−1

(
[pT (1− pT )]−1 − 2

)
+(

σ2 + c2τ2 − 2cρστ
)

[2niC ]−1
(
[pC(1− pC)]−1 − 2

)
.

(13)

The binomial variance component v2i is inflated by allowing random effects/random intercepts.
The extent of the inflation involves τ2, σ2, and c.

Appendix A shows derivations for Equations (12) and (13).

3.2 Relation of sample log-odds-ratio and its weight

We can write the IV weights as ŵi = v̂−2i /(Ŵ(i) + v̂−2i ) = [Ŵ(i)v̂
2
i + 1]−1, where Ŵ(i) =

∑
j 6=i v̂

−2
j

is independent of v̂2i and of θ̂i. Similarly, let W(i) =
∑
j 6=i v

−2
j . We are interested in Cov(θ̂i, ŵi).

Again using the law of total covariance,

Cov(θ̂i, ŵi) = E[Cov(θ̂i, ŵi|αi, θi)] + Cov(θi, w
0
i ),

where w0
i = E(ŵi|αi, θi) = [W(i)v

2
i + 1]−1 +O(1/ni). The first term of the covariance is of a

smaller order than the second, so to order 1/n, Cov(θ̂i, ŵi) = Cov(θi, [W(i)v
2
i + 1]−1).

Prepared using sagej.cls



Kulinskaya et al. 9

Expanding [W(i)v
2
i + 1]−1 and taking into account the independence of W(i) from θi and v2i ,

we have

Cov(θi, [W(i)v
2
i + 1]−1) = −

E(W(i))

(E(W(i))E(v2i ) + 1)2
Cov(θi, v

2
i ), (14)

where E(W(i)) =
∑
j 6=i E(v−2j ).

Equation (12) to Equation (14) show that the choice of θ, the choice of pC (through α), the
choice of FIM vs RIM (through σ2), the choice of fixed-effect vs random-effects model (through
τ2), and the choice of FIM1/RIM1 vs FIM2/RIM2 (through c) all affect the covariances between

the θ̂i and their estimated weights, and result in varying biases in the estimated overall effect.
In particular, when nT = nC , θ = 0, and c = 1/2, the covariance is zero, so the θ̂i and their
estimated weights are almost independent, making the standard IV estimate of the overall effect
unbiased when generated from FIM2/RIM2. On the other hand, the sign of the bias of the θ̂i
depends on the sign of 1− 2pT , and the bias increases with an increase in τ2 when generated
from FIM1/RIM1.

4 Generation of sample sizes

Several authors5,11 use constant study-level sample sizes, either equal or unequal, in all
replications. More often, however, authors generate sample sizes from a uniform or normal
distribution. Jackson et al.4 use (mostly with niC = niT ) sample sizes from discrete U(50, 500).
Langan et al.14 use either constant and equal sample sizes within and across studies, or
sample sizes from U(40, 400) and U(2000, 4000); Sidik and Jonkman17 use U(20, 200), and
Abo-Zaid et al.12 use U(30, 100) and U(30, 1000). Viechtbauer16 generates study-level sample
sizes (ni = niC = niT ) from N(n, n/4) (n/4 is the variance) with n = 10, 20, 40, 80, 160. In an
extensive simulation study for sparse data, Kuss1 uses FIM1F and FIM1 along with a large
number of fitting methods. He generates both the number of studies K and their sample sizes
n from log-normal distributions: with mean 0.65 and standard deviation 1.2 for rather small
K, with log-normal mean 3.05 and log-normal standard deviation 0.97 for larger K, and with
log-normal mean 4.615 and log-normal standard deviation 1.1 for sample sizes. He applies the
ceiling function to the generated number and adds 1, and he limits the number of studies to a
maximum of 100.

In general, if mutually independent random variables Yi have a common distribution F (·), and
N ∼ Gn(·) is independent of the Yi, the sum Y1 + · · ·+ YN has a compound distribution21. A
binomial distribution with probability p and a random number of trials is a compound Bernoulli
distribution. The first two moments of such a distribution are E(X) = pE(N) and Var(X) =
p(1− p)E(N) + p2Var(N). This variance is larger than the variance of the Bin(E(N), p)
distribution. Therefore, random generation of sample sizes produces an overdispersed binomial
(compound Bernoulli) distribution for the control arm, and may also inflate, though in a more
complicated way, the variance in the treatment arm.

In particular, when N ∼ N(E(N), σ2
n), the variance Var(X) = p(1− p)E(N) + p2σ2

n. And
when N ∼ U(nl, nu), Var(X) = p(1− p)E(N) + p2(nu − nl)2/12.
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4.1 Variances and covariances of estimated log-odds-ratios and their weights for
random sample sizes

To calculate the variance of θ̂ when sample sizes are random, we again use the law of total
variance:

Var(θ̂i) = E(Var(θ̂i|ni)) + Var(E(θ̂i|ni)).

The second term is Var(θ) = 0, and the first term is obtained by substituting E(n−1iC ) and E(n−1iT )
in Equation (13).

Using the delta method,

E(N−1) = (E(N))−1(1 + [CV(N)]2), (15)

where the coefficient of variation, CV, is the ratio of the standard deviation of N to its mean.
Therefore, to order 1/E(N), random generation of sample sizes inflates the variance of θ̂ if
and only if the coefficient of variation of the distribution of sample sizes is of order 1. In the
simulations of Viechtbauer16, where Var(N) = n/4, CV(N) = O(1/

√
n), so the variance is not

inflated. In contrast, generating sample sizes from N(n, n2/4) would result in CV = 1/2 and
would inflate variance. (Use of such a combination of mean and variance, however, is unlikely to
produce realistic sets of sample sizes, and the probability of generating a negative sample size
exceeds 2%.)

The variance of a uniform distribution on an interval of width ∆ centered at n0 is ∆2/12, and
its CV is ∆/(

√
12n0). Therefore, CV(N) is of order 1 whenever the width of the interval is of

the same order as its center. Hence, variance is inflated in the simulations by Jackson4, Langan
et al.14, Sidik and Jonkman17, and Abo-Zaid et al.12, who all use wide intervals for n.

Similarly, we use the law of total covariance to calculate the covariance between θ̂i and v̂2i :

Cov(θ̂i, v̂
2
i ) = E[Cov(θ̂i, v̂

2
i |ni)] + Cov(E(θ̂i), v

2
i |ni).

The second term is zero, as E(θ̂i|ni) = θ, which does not depend on ni. So Cov(θ̂i, v̂
2
i ) is obtained

by substituting E(n−1iC ) and E(n−1iT ) in Equation (12), and the covariances are affected only when
CV(N) is of order 1.

5 Design of simulations

Our simulations keep the arm-level sample sizes equal in the K (= 5, 10, 30) studies. The
control-arm probability piC = .1, .4. For the log-odds-ratios θi, we use Equation (5) with θ =
0, 0.5, 1, 1.5, and 2 and τ2 = 0, 0.1, . . . , 1. We vary two components of the data-generating
mechanism: the model (at five levels: FIM1, FIM2, RIM1, RIM2, and URIM1) and the arm-level
sample sizes, n, centered at 40, 100, 250, and 1000 (constant, normally distributed, or uniformly
distributed). We also vary the variance σ2 = 0.1, 0.4 for RIM.

We keep the control-arm probabilities piC and the log-odds-ratios θi independent (i.e., ρ = 0
in the RIMs).

To make the normal and uniform distributions of sample sizes comparable, we center them
at the same value n and equate their variances. If a normal distribution has variance σ2

n, a
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uniform distribution with the same variance has interval width ∆n =
√

12σ2
n. We set ∆n = 1.1n,

resulting in CV = ∆n/(
√

12n) = 0.318 and a squared CV of 0.101. Therefore, by Equation (15),
our simulations with random n inflate variances and covariances by 10% in comparison with
simulations with fixed n. Wider intervals of n would inflate variances more, but in generating
sample sizes from a corresponding normal distribution, we want negative sample sizes to have
reasonably small probability. For our choice of ∆n this probability is 0.0008. Unfortunately, we
were still getting a small number of values below zero out of thousands of simulated values, so
we additionally truncate the n values generated from a normal distribution at 10. Truncation
happens with probability 0.009.

Similarly, for control-arm probabilities, even though using a normal distribution on the logit
shifts the mean value of the control-arm probability, as discussed in Section 2.1.3, we can have

equal variances on the probability scale by taking ∆p =
√

12[p0C(1− p0C)]2σ2
p in comparator

simulations.

For each generated dataset, we use a number of the two-stage methods for log-odds-ratio,
including the best available method22,23: MP estimation of τ2 with corresponding inverse-
variance-weighted estimation of θ and a confidence interval based on the normal distribution. We
also consider the performance of the GLMM methods based on FIM2 and RIM2 as implemented
in metafor4,5,24. Finally, we include a weighted-average estimator of θ whose weights depend only
on the studies’ arm-level sample sizes: wi = niTniC/(niT + nic)

22. We refer to this sample-size-
weighted estimator as SSW. The accompanying confidence interval is based on the t distribution
with K − 1 degrees of freedom. Table 2 lists the analysis methods.

For each combination of the parameters and a data-generating mechanism, we generated data
for 1000 simulated meta-analyses.

Table 3 shows the components of the simulations. For completeness we included the
DerSimonian-Laird (DL), restricted maximum-likelihood (REML), MP, and Kulinskaya-
Dollinger (KD) estimators of τ2 with the corresponding inverse-variance-weighted estimators
of θ and confidence intervals with critical values from the normal distribution. Bakbergenuly
et al.22 studied those inverse-variance-weighted estimators in detail. The results for the other
IV-weighted estimators under the five data-generation mechanisms are similar to those for the
Mandel-Paule estimator, so we do not include them in Section 6. Our preprints25,26 give the
full details. Among the estimators, FIM2 and RIM2 denote the estimators in the corresponding
GLMMs.

6 Results of the simulations

In the figures that accompany the summaries of results, each plot shows a trace of a measure of the
performance of an estimator (bias or coverage) for each of the five data-generation mechanisms.
The horizontal variable is τ2 ∈ [0, 1]. A row corresponds to a value of n (usually 40 or 100) and
a combination of values of other parameters (e.g., pC and σ2 or θ). The figures illustrate the
important patterns in the full sets of figures25,26. These preprints contain full simulation results
for constant, normally distributed, and uniformly distributed sample sizes n.
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Table 2. Summary of methods for meta-analysis of log-odds-ratios in our simulations

Method Features
Two-stage methods

Inverse-variance-weighted average
DerSimonian-Laird (DL) estimate of τ2 All three assume v̂2i = v2i
REML and use
Mandel-Paule (MP) estimate of τ2 Normal-based CIs

Kulinskaya-Dollinger (KD) estimate of τ2 Normal-based CI
Sample-size-weighted estimator
SSW Constant weights

t-based CI
General linear mixed models

Binomial-normal random-effects model
FIM2 Fixed intercept
RIM2 Random intercept

Table 3. Components of the simulations

Parameter Values
K 5, 10, 30
n 40, 100, 250, 1000
θ 0, 0.5, 1, 1.5, 2
τ2 0, 0.1, . . . , 1
pC .1, .4
σ2 0.1, 0.4
Generation of n
Constant
Normal(n, 1.21n2/12)
Uniform(n± 0.55n)
Generation of logit(piC) and logit(piT )
FIM1 Section 2.1.1
FIM2 Section 2.1.1
RIM1 Section 2.1.2
RIM2 Section 2.1.2
URIM1 Section 2.2
Estimation targets Estimators
bias in estimating τ2 DL, REML, MP, KD, FIM2. RIM2
bias in estimating θ DL, REML, MP, KD, FIM2, RIM2, SSW
coverage of θ DL, REML, MP, KD, FIM2, RIM2,

SSW (with τ̂2KD and tK−1 critical values)

Prepared using sagej.cls



Kulinskaya et al. 13

As it turned out, the three methods of generating sample sizes produced essentially the same
results. For two illustrative examples, compare the third and fourth rows of Figures 1 and 2.
Thus, with those exceptions, the plots in the figures come from the results for constant n.

If the five data-generation mechanisms produce the same results, their traces in a plot coincide
(except for minor variation). We focus on systematic departures from this null pattern (e.g., the
traces separate into two groups). The specific performance measure may be important (e.g., an
estimator has substantially greater bias when the data are generated by a certain mechanism).
We generally give performance less emphasis, however, because our primary goal is to examine
the consequences for inference of the choice of a data-generating method. Bakbergenuly et al.22

have studied in detail the performance under FIM1 of the estimators other than the GLMM
estimators based on FIM2 and RIM2.

6.1 Bias of τ̂ 2MP (Figures 1 and 2)

The estimated bias of τ̂2MP often varies among the data-generation mechanisms. In the most
common single pattern the traces vs. τ2 form two clusters: one for FIM2 and RIM2 and another
for FIM1, RIM1, and URIM1, as in the first row of Figure 1. When σ2 = 0.1 and pC = .1,
separations tend to become clearer as K increases, and they are most evident when K = 30.
As n increases, the traces flatten and coalesce around 0 bias, becoming essentially flat when
n ≥ 250. As θ increases, the traces for FIM2 and RIM2 merge with the others and then emerge
below them, and the whole set of traces flattens toward 0.

Changing only pC , from .1 to .4 (Figure 2), produces traces that stay near 0. Groupings are
not consistently visible. As θ increases, the reversal observed when pC = .1 (particularly when
n = 40 and K = 30) does not occur. Instead, the separation between the traces for FIM2 and
RIM2 and those for FIM1, RIM1, and URIM1 increases because the latter mechanisms produce
larger negative bias as τ2 increases.

When the simulations use σ2 = 0.4 instead of σ2 = 0.1, the most noticeable differences (when
pC = .1 and n ≤ 100 and, especially, K = 30) are substantially larger negative bias under URIM1
(compare the first two rows of Figure 1) and greater separation among the traces for the other
mechanisms. The trace for URIM1 approaches the others as θ increases (compare the second
and third rows of Figure 1). This change in σ2 produces little change in the patterns for pC = .4.

Turning from the data-generation mechanisms to the bias, when pC = .1 and θ = 0, τ̂2MP has
positive bias for small to moderate values of τ2 and substantial negative bias when K ≥ 10,
increasing in τ2. FIM1/RIM1/URIM1 produce larger negative bias than FIM2/RIM2 when
n = 40. When sample sizes increase to n = 100, FIM2/RIM2 have positive bias for K ≤ 10,
whereas for K = 30, FIM2/RIM2 have almost no bias. Differences between data-generation
mechanisms disappear by n = 250.

Negative bias at large τ2 decreases with increasing θ. When θ ≥ 1, K = 5, and n = 40, τ̂2MP

has a small positive bias, especially under RIM1, decreasing in K. For K = 30, FIM1 produces
almost no bias, and other mechanisms result in small negative bias. Bias is almost absent when
n ≥ 100.

When pC = .4 and θ = 0, τ̂2MP has a small positive bias, somewhat increasing for larger
τ2. RIM2/FIM2 produce somewhat more bias than the other mechanisms. When pC = .4 and
θ = 1.5, FIM2/RIM2 produce almost no bias for K = 30, and the rest produce negative bias
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for large τ2. For K ≤ 10, FIM2/RIM2 produce positive bias, and FIM1/RIM1/URIM1 produce
positive bias for small to moderate values of τ2 and negative bias for large values.

6.2 Bias of the estimators of τ 2 in the FIM2 and RIM2 GLMMs (Figures 3 and 4)

Having used the FIM2 and RIM2 data-generation mechanisms, we examine the performance of
the estimators in those GLMMs (in this section and in Sections 6.4 and 6.7).

6.2.1 Bias of τ̂2FIM2 (Figure 3) For the bias of τ̂2FIM2, departures of the traces from the
null pattern generally occur when n = 40 and occasionally when n = 100. In the most common
departure, at larger τ2, the traces for FIM1, RIM1, and URIM1 form one group, and those for
FIM2 and RIM2 form another, closer to 0, as in the first row of Figure 3. This pattern tends to
become clearer as K increases; it occurs more often when K = 30 than when K = 10 or K = 5.

The separation between FIM2/RIM2 and FIM1/RIM1/URIM1 tends to be clearer when
pC = .4 than when pC = .1 (compare the third and fourth rows of Figure 3), and when σ2 = 0.4
than when σ2 = 0.1. When pC = .1, the traces tend to be closer together as θ increases, but
increasing θ has the opposite effect when pC = .4.

In some situations, particularly when pC = .1, n = 40, K = 5, and τ2 is larger, the trace for
URIM1 is visibly lower than the other traces (as in the third row of Figure 3).

The bias of τ̂2FIM2 under FIM2 and RIM2 relative to the other mechanisms (e.g., in the plot for
K = 30 in the fourth row of Figure 3) is consistent with fitting the same GLMM that generated
the data and with the fact that FIM2 is a submodel of RIM2.

Except at small τ2, τ̂2FIM2 has negative bias, increasing with τ2 (as in the first row of Figure 3,
where the bias exceeds −20% when τ2 = 1) but decreasing as K increases. The bias remains large
when θ is larger. It is worst when K = 5, even for n = 1000 (second row of Figure 3). When
n = 40 and K = 30 and pC = .4 (but not when pC = .1), τ̂2FIM2 is almost unbiased under FIM2
and RIM2 (compare the third and fourth rows of Figure 3).

6.2.2 Bias of τ̂2RIM2 (Figure 4) In summarizing the traces of the bias of τ̂2RIM2, pC and n play
a larger role than for τ̂2FIM2. The pattern in which FIM2 and RIM2 form a group, above the rest
(FIM1, RIM1, and URIM1), is readily evident whenever pC = .4, and it extends to smaller τ2

(as in the fourth row of Figure 4). In addition to n = 40 the pattern is generally present when
n = 100.

If pC = .1, the same pattern is visible when σ2 = 0.1, θ = 0, K = 30, and n is 100 and 250.
When θ is larger and n = 40, however, the traces follow a different, three-group pattern: FIM1
> RIM1/URIM1 > FIM2/RIM2 (as in the third row of Figure 4).

Contrary to what one might expect, the trace for RIM2 is not always closest to 0; indeed,
it is sometimes fairly far from 0, particularly when K < 30 (as in the third and fourth rows of
Figure 4).

Similar to τ̂2FIM2, τ̂2RIM2 has substantial negative bias when K = 5 or K = 10. When K = 30,
τ̂2RIM2 is nearly unbiased under RIM2 and FIM2, particularly when pC = .4.

6.3 Bias of θ̂MP (Figure 5)

The other IV-weighted estimators of θ have bias patterns similar to those of θ̂MP .
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In the traces for the bias of θ̂MP , the patterns divide most clearly on pC . When pC = .1, no
plot for n ≤ 250 shows the null pattern, whereas when pC = .4, departures from the null pattern
are rare, occurring mainly when n = 40 and K = 30.

The first three rows of Figure 5 illustrate the behavior when pC = .1. The traces for FIM2
and RIM2 form one group, in which the bias does not vary with τ2; and those for FIM1, RIM1,
and URIM1 form a second group, in which the bias increases with τ2. Under FIM2 and RIM2
θ̂MP is essentially unbiased when θ = 0 (as in the first row of Figure 5); but when θ > 0, its bias
is roughly −0.05 when n = 40 (as in the third row of Figure 5), decreasing to nearly 0 when
n = 100. As n increases, the traces for FIM1, RIM1, and URIM1 flatten and also approach 0.

The fourth row of Figure 5 illustrates a situation, when pC = .4, in which, for K = 30, θ̂MP

is nearly unbiased under FIM2 and RIM2 and has some negative bias under FIM1, RIM1, and
URIM1, particularly when τ2 is larger. Other such situations involve θ = 0 or, mainly, θ = 2.
Ordinarily, however, θ̂MP is essentially unbiased under all five data-generation mechanisms.

6.4 Bias of the estimators of θ in the FIM2 and RIM2 GLMMs (Figures 6 and 7 )

For the bias of θ̂FIM2 and θ̂RIM2 the patterns of the traces strongly resemble those for θ̂MP .
When pC = .1, both estimators are essentially unbiased under FIM2 and RIM2, except for bias
of +0.01 to +0.03 in θ̂FIM2 when θ ≥ 1 and n = 40. The behavior of the other group differs
more clearly between θ̂FIM2 and θ̂RIM2: when n = 40 and n = 100, θ̂RIM2 usually has greater
bias under FIM1 than under RIM1 or URIM1. (The plots for θ̂MP show a suggestion of this
behavior.)

When pC = .4, both θ̂FIM2 and θ̂RIM2 are usually unbiased under all five data-generation
mechanisms. The exceptions arise mainly when n = 40 (especially when K = 30). When θ = 0,
the traces for FIM1, RIM1, and URIM1 rise to around 0.02; when θ = 1.5 or θ = 2, those traces
drop to around −0.02 or lower.

6.5 Bias of the SSW estimator of θ (Figure 8)

Only a few situations show bias in θ̂SSW . Those involve pC = .1. When θ = 0, n = 40, and
K = 10 and 30, the traces for FIM1, RIM1, and URIM1 are positive, rising to around 0.05 as
τ2 increases to 1 (first row of Figure 8).

A different pattern arises when θ = 2 and σ2 = 0.4; the trace for URIM1 is low, around −0.05
when n = 40 (and K = 5, 10, and 30) and around −0.02 when n = 100 and K = 30, shown in
the third and fourth rows of Figure 8.

An explanation for this bias is that URIM1 may quite often produce extremely low or extremely
high probabilities, as shown in Table 4. These probabilities may be even more extreme when τ2

is large. Then the relevant binomial distributions produce more zero or n values. Adding 0.5 to
these data introduces the observed biases. This does not happen when σ2 = 0.1 because then
the probabilities are far enough from 0 and 1.

6.6 Coverage of the confidence interval for θ centered at θ̂MP (Figure S1)

The 95% confidence interval for θ centered at θ̂MP uses normal critical values. The coverage of
the confidence intervals based on the other IV-weighted estimators of θ has similar patterns.
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Table 4. Lower and upper bounds for piC (pCL and pCU ) and for piT (pTL and pTU ) values under URIM1.
Intervals of pT are given for b = 0 and θ = 2.

pC σ2 pCL pCU pTL pTU
.1 0.1 .0507 .1493 .2830 .5646
.1 0.4 .0014 .1986 .0103 .6468
.4 0.1 .2685 .5315 .7306 .8934
.4 0.4 .1371 .6629 .5400 .9356

With few exceptions the patterns of the traces for coverage of the confidence interval based
on θ̂MP are similar for pC = .1 and pC = .4. When K = 5, all five start together above .95 at
τ2 = 0. For τ2 ≥ 0.1 they decrease and then level off below .95 (as illustrated in Figure S1 in in
Supplementary Material). As K increases, that level approaches .95, but increasing n has the
opposite effect, producing coverage like that shown in the second row of Figure S1. Exceptions
occur when θ = 0 and 0.5, pC = .1, n = 40, and K = 10 and 30. Beyond a certain τ2 the traces
separate into two groups; FIM2/RIM2 levels off around .95, and FIM1/RIM1/URIM1 continues
to decrease. Other, similar exceptions occur when θ = 0, pC = .1, n = 100, and K = 30 and
perhaps when θ = 2, pC = .4, σ2 = 0.1, n = 40, and K = 30.

6.7 Coverage of the confidence intervals for θ from the FIM2 and RIM2 GLMMs
(Figures S2 and S3)

The coverage of the 95% confidence interval accompanying θ̂FIM2 generally resembles that of
the confidence interval based on θ̂MP (compare Figure S2 and Figure S1). The main difference
is that for all values of θ the traces in the plot for n = 40 and K = 30 separate into the two
groups (as illustrated in the first row of Figure S2).

The coverage of the confidence interval accompanying θ̂RIM2 has a surprising feature: When
pC = .1 and n = 40, the traces for the five data-generation mechanisms often differ substantially
(as in the first and third rows of Figure S3). Coverage may be close to .95 when τ2 = 0, but
it can decline to .60 and below when τ2 = 1. Coverage under FIM2 generally exceeds .90, and
it improves as θ increases. When pC = .4 or n ≥ 100, coverage of θ is similar to that from the
FIM2 GLMM.

6.8 Coverage of the confidence interval centered at the SSW estimator of θ
(Figure S4)

In all situations in our simulations, the traces for the coverage of the confidence interval centered
at θ̂SSW follow the null pattern. This favorable result makes it easy to summarize the coverage
itself.

Coverage of the SSW interval exceeds .95 for small values of τ2. When pC = .1, n = 40, and
K = 5, coverage is still too high at τ2 = 1 (first row of Figure S4); this excess decreases somewhat
when pC = .4 (third row of Figure S4). It decreases whenK = 10, and coverage is close to nominal
when K = 30. Coverage approaches nominal for lower values of τ2 as the sample size increases.
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For n = 1000, coverage is above nominal only at τ2 = 0 (second and fourth rows of Figure S4).
Coverage does not depend on σ2 or θ.

6.9 Summary

Our simulations explored two main components of design: the data-generation mechanism and
the distribution of study-level sample sizes. As we mentioned earlier, the second of these had
essentially no impact on bias of estimators of τ2, bias of estimators of θ, or coverage of confidence
intervals for θ.

The five data-generation mechanisms often produced different results for at least one of those
measures of performance. In the most frequent pattern FIM2 and RIM2 yield similar results, and
FIM1, RIM1, and URIM1 also yield results that are similar but different from those of FIM2 and
RIM2. In some situations URIM1 stands apart (e.g., for the bias of τ̂2MP and the bias of θ̂SSW ),

and so does FIM1 (for the bias of τ̂2RIM2 and the bias of θ̂RIM2). For K = 30 Figure ?? shows
a particularly unusual pattern, in which the traces for the five data-generation mechanisms are
mostly separate.

In summary, except for the coverage of the SSW confidence interval and, in most situations,
the bias of θ̂SSW , the choice of data-generation mechanism affects the results. These differences
can complicate the process of integrating results from separate simulation studies.

7 Discussion

With the advent of powerful computers, the typical methodology paper in applied statistics
has a standard structure. It proposes a new method, sometimes but not necessarily provides
a mathematical derivation of its properties, and then uses simulation to demonstrate, usually
successfully, that the new method is superior to previous methods.

Using methods for meta-analysis of odds ratios as an example, we aimed to compare various
ways of generating data in simulations. In the literature we identified five methods of generating
odds ratios. We combined them with three methods of generating sample sizes, and we derived
the statistical properties of inverse-variance-weighted estimators of the overall log-odds-ratio, θ,
under these methods of data generation. In particular, we derived, to order 1/n, the biases and
the variances of the inverse-variance-weighted estimators of θ.

We simulated data from the combinations of data-generation mechanism and sample-sizes
method, and we compared the resulting estimates of the performance in estimating τ2 and
θ of four methods of meta-analysis: inverse-variance weighting (represented by the Mandel-
Paule method), the FIM2 and RIM2 GLMMs, and SSW (for θ only). Our results show that
the properties of various methods and the recommendations on their use greatly depend on the
data-generation mechanism.

Our theoretical derivations showed that, under FIM1/RIM1/URIM1, the IV-weighted
estimators of θ should have positive bias for small values of pT < 1/2 and negative bias for
pT > 1/2. On the other hand, under FIM2/RIM2 these estimators should be approximately
unbiased when θ = 0. Our simulations (Figure 5) confirmed these findings.

Importantly, results of our simulations also show very similar behavior for the FIM2 and RIM2
GLMM estimators of θ (Figures 6 and 7). This finding is not very astonishing. Regardless of
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the hype that concerns use of GLMMs in meta-analysis, GLMs (and GLMMs) are asymptotic
methods. The maximum-likelihood equations used in GLMs for binary data (Section 4.4 in
McCullagh and Nelder27) are weighted-least-squares equations with inverse-variance weights.
For this reason the GLMMs result in quite considerable biases in meta-analysis of odds-ratios,
as demonstrated by our simulations and by Bakbergenuly and Kulinskaya5.

The SSW estimator of θ had considerably less bias, but even for this estimator the data-
generation mechanism mattered, as URIM1 produced more-biased results (Figure 8).

Differences in the behavior of moment-based estimators of τ2 such as τ̂2MP under various data-
generation mechanisms (Figures 1 and 2) have the same explanation as those for estimators of θ.
These estimators are derived from the Q statistic, which is affected by the correlation between
the effects and the weights.

Even though wider, t-based confidence intervals17,28,29 would somewhat improve
coverage of θ, differences in coverage are due perhaps more to the centering of the intervals
at very biased estimators. These biases are so large that they obscured the results of inflated
variance in RIM methods. We also did not observe differences associated with random generation
of sample sizes, perhaps because we used relatively tight intervals for them.

Finally, an interesting question is whether particular estimation methods work better when
the data are generated exactly from the assumed model. Counterintuitively, the answer is no. In
the majority of our simulations, generation under FIM2/RIM2 resulted in better estimation by
all methods. But the RIM2 GLMM produced confidence intervals for θ that had much better
coverage when the data were generated under FIM2, and really bad coverage otherwise.

What method(s) of meta-analysis should be used in practice, where we can never be certain
of the true data-generating mechanism? In estimating θ, SSW provides the lowest biases and
coverage that is correct but rather conservative and appears to be robust to the data-generation
mechanism. This advantage will be shared by other methods that use constant
weights.

As a more robust alternative in the two-stage random-effects model, Henmi and
Copas30 and, independently, Stanley and Doucouliagos31 use an inverse-variance-
weighted fixed-effect (FE) estimator as the center of the CI for θ. Our results show
that the FE estimator of θ is also biased and will be affected by the simulation
method.

Our findings are not surprising when put in a wider context. In pursuit of the effect of interest,
we often neglect nuisance parameters that are sometimes only implicitly present in our models.
However, when the sufficient statistics include these nuisance parameters, their distribution
matters. Different distribution assumptions for the nuisance parameters should and do result in
different properties of the estimators of interest. This influence directly parallels the effects
of choice of prior distribution on the properties of the increasingly common Bayesian
variants of the two-stage and GLM meta-analytic methods8,32,33. One solution may be
to try to develop minimax procedures that would minimize possible biases. Another solution is
the use of procedures that are robust to a wide class of distributions for nuisance parameters.

We demonstrated substantial effects of data-generating mechanisms on the inference in meta-
analysis of odds-ratios. These complications are not restricted to binary data, and they make
it difficult to rely on any single simulation in choosing methods. Careful, resourceful effort may
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lead to a battery of designs that, collectively, approximates the mechanisms underlying the data
in actual meta-analyses. In any event, simulations should be designed with the awareness of the
possible effects of design choices, and quite a few recommendations may need to be revised.
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32. Friede T, Röver C, Wandel S and Neuenschwander B. Meta-analysis of few small studies in orphan

diseases. Research Synthesis Methods 2017; 8(1):79–91.

33. Turner RM, Jackson D, Wei Y, Thompson SG and Higgins PT. Predictive distributions for between-

study heterogeneity and simple methods for their application in Bayesian meta-analysis. Statistics

in Medicine 2015; 34: 984—998.

Prepared using sagej.cls



22 Journal Title XX(X)

τ2

 B
ia

s 
of

 τ
2

●

●

●
●

●

●

●
●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 5 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 10 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

● ●

●
●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 30 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

●
●

●

●

●
●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 5 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 10 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

● ●

●
●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 0 , n = 40 , K = 30 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●
● ●

●
●

●

● ●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 1.5 , n = 40 , K = 5 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●
● ●

●

●

●
● ●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 1.5 , n = 40 , K = 10 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ●

●
●

● ●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
LOR = 1.5 , n = 40 , K = 30 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●
● ●

●

● ● ●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 1.5 , n=U(18,62) , K = 5 , pC = 0.1

τ2

 B
ia

s 
of

 τ
2

●

●

● ● ● ● ●

● ●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 1.5 , n=U(18,62) , K = 10 , pC = 0.1

● FIM1
FIM2
RIM1
RIM2
URIM1

τ2

 B
ia

s 
of

 τ
2

●

● ● ●
●

● ●
●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

LOR = 1.5 , n=U(18,62) , K = 30 , pC = 0.1

Figure 1. Bias in estimating the between-studies variance, τ2, by τ̂2MP for pC = .1, θ = 0, σ2 = 0.1 (top
row); θ = 0, σ2 = 0.4 (second row); θ = 1.5, σ2 = 0.4 (bottom two rows). Sample sizes are constant
n = 40 in the top three rows and uniformly distributed in the bottom row. The data-generation mechanisms
are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
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Figure 2. Bias in estimating the between-studies variance, τ2, by τ̂2MP for pC = .4, θ = 0, σ2 = 0.1 (top
row); θ = 0, σ2 = 0.4 (second row); θ = 1.5, σ2 = 0.4 (bottom two rows). Sample sizes are constant
n = 40 in the top three rows and uniformly distributed in the bottom row. The data-generation mechanisms
are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
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Figure 3. Bias of the estimator of the between-studies variance τ2 in the FIM2 GLMM for σ2 = 0.4,
pC = .1, θ = 0 (top two rows); pC = .1, θ = 1.5 (third row); pC = .4, θ = 1.5 (bottom row); constant
sample sizes n = 40 in rows 1, 3 and 4, and n = 1000 in row 2. The data-generation mechanisms are FIM1
(circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
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Figure 4. Bias of the estimator of the between-studies variance τ2 in the RIM2 GLMM for σ2 = 0.4,
pC = .1, θ = 0 (top two rows); pC = .1, θ = 1.5 (third row); pC = .4, θ = 1.5 (bottom row); constant
sample sizes n = 40 in rows 1, 3 and 4, and n = 1000 in row 2. The data-generation mechanisms are FIM1
(circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
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Figure 5. Bias in estimating the overall log-odds-ratio, θ, by θ̂MP for pC = .1,σ2 = 0.4 (top three rows);
pC = 0.4, σ2 = 0.4 (bottom row), and constant sample sizes n = 40; 100. The data-generation mechanisms
are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
Top two rows: θ = 0; bottom two rows: θ = 1.5
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Figure 6. Bias of the estimator of the overall log-odds-ratio, θ, in the FIM2 GLMM when σ2 = 0.4,
constant sample sizes n = 40; 100, and pC = .1 and θ = 0 (top two rows) or pC = .4 and θ = 2 (bottom
two rows). The data-generation mechanisms are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross),
and URIM1 (diamond). Light grey line at 0.
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Figure 7. Bias of the estimator of the overall log-odds-ratio, θ, in the RIM2 GLMM when σ2 = 0.4,
constant sample sizes n = 40; 100, and pC = .1 and θ = 0 (top two rows) or pC = .4 and θ = 2 (bottom
two rows). The data-generation mechanisms are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross),
and URIM1 (diamond). Light grey line at 0.
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Figure 8. Bias of the SSW estimator of the overall log-odds-ratio, θ, for pC = .1, σ2 = 0.4, and constant
sample sizes n = 40; 100. Top two rows, θ = 0; bottom two rows, θ = 2. The data-generation mechanisms
are FIM1 (circle), FIM2 (triangle), RIM1 (plus), RIM2 (cross), and URIM1 (diamond). Light grey line at 0.
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Appendix A. Derivations for Equation (12) and Equation (13)

This appendix gives derivations for Equation (12) and Equation (13). From Equation (3) and
Equation (4),

θ̂i = logit(p̂iT )− logit(p̂iC)

and

V̂ar(θ̂i) = v̂2i =
1

niT

(
1

p̂iT
+

1

1− p̂iT

)
+

1

niC

(
1

p̂iC
+

1

1− p̂iC

)
.

In Section 3.1 we rewrote Equation (10) as

Cov(θ̂i, v̂
2
i ) = E[Cov(θ̂i, v̂

2
i |piC , piT )] + Cov(θi, v

2
i ).

We first calculate Cov(θ̂i, v̂
2
i |piC , piT ). Since p̂iT and p̂iC are conditionally independent, we

expand their terms of θ̂i and v̂2i separately:

logit(p̂) = logit(p) + (p̂− p)
(

1

p
+

1

1− p

)
− (p̂− p)2

2

(
1

p2
− 1

(1− p)2

)
+ · · · .

and (omitting the 1/n)

1

p̂
+

1

1− p̂
=

1

p
+

1

1− p
+ (p̂− p)

(
1

(1− p)2
− 1

p2

)
+ (p̂− p)2

(
1

(1− p)3
+

1

p3

)
.

For each of T and C, the conditional covariance of these two terms has the form

Cov(a(p̂− p) + b(p̂− p)2, c(p̂− p) + d(p̂− p)2|p) = acVar(p̂|p) +O(1/n2),

because the variance of the binomial distribution is of order 1/n and the higher central
moments are at most O(1/n2). For a = [p(1− p)]−1 and c = (p2 − (1− p)2)/[p2(1− p)2] =
(2p− 1)/[p2(1− p)2],

Cov

(
logit(p̂),

1

p̂
+

1

1− p̂
|p
)

=
1

n

[
2p− 1

p2(1− p)2

]
.

Combining the results for T and C (and restoring the 1/n) yields

Cov
(
θ̂i, v̂

2
i |piC , piT

)
=

1

n2iT

[
2piT − 1

p2iT (1− piT )2

]
− 1

n2iC

[
2piC − 1

p2iC(1− piC)2

]
,

which is only O(1/n2), so we do not need to calculate its expectation.
Next we calculate the second term of Equation (10), Cov(θi, v

2
i ). Under the RIM, Equation (7),

p−1iT = 1 + exp(−(α+ ui + θ + (1− c)bi)),
(1− piT )−1 = 1 + exp(α+ ui + θ + (1− c)bi),
p−1iC = 1 + exp(−(α+ ui − cbi)),
(1− piC)−1 = 1 + exp(α+ ui − cbi).

(16)
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Substituting these expressions in Equation (4) yields

v2i = n−1iC

[
e−(α+ui−cbi) + 2 + eα+ui−cbi

]
+

n−1iT

[
e−(α+ui+θ+(1−c)bi) + 2 + eα+ui+θ+(1−c)bi

]
.

Because θi = θ + bi, to complete the calculation, we need covariances of the form Cov(b, edx).
As edx = edx0 + d(x− x0)edx0 + (x− x0)2d2edx0/2 + · · · , where x0 = E(x), we have

Cov(b, edx) = dCov(b, x)edx0 + Cov(b, (x− x0)2)d2edx0/2 + · · · . (17)

For simplicity, we assume that ui and bi are independent. Then, to order 1/n,

Cov(θi, v
2
i ) = n−1iC cτ

2[e−α − eα]− n−1iT (1− c)τ2[e−α−θ − eα+θ]. (18)

In particular, when c = 1/2, θ = 0 and niT = niC , Cov(θi, v
2
i ) = 0. Defining pC = expit(α) and

pT = expit(α+ θ) yields e−α − eα = p−1C − (1− pC)−1 and e−α−θ − eα+θ = p−1T − (1− pT )−1

and the equivalent expression, Equation (12):

Cov(θi, v
2
i ) =

cτ2

niC

[
1− 2pC

pC(1− pC)

]
− (1− c)τ2

niT

[
1− 2pT

pT (1− pT )

]
.

Similarly, from Equation (11), Var(θ̂i) = E(v2i ) + τ2. To calculate E(v2i ), we need expansions in
two variables, ui and bi. We omit the grubby details, observe that e−α + eα = [pC(1− pC)]−1 − 2

and e−α−θ + eα+θ = [pT (1− pT )]−1 − 2, and express the full variance of θ̂i in terms of pC and
pT :

Var(θ̂i) = [niT pT (1− pT )]−1 + [niCpC(1− pC)]−1 + τ2+(
σ2 + (1− c)2τ2 + 2(1− c)ρστ

)
[2niT ]−1

(
[pT (1− pT )]−1 − 2

)
+(

σ2 + c2τ2 − 2cρστ
)

[2niC ]−1
(
[pC(1− pC)]−1 − 2

)
.

(19)

This is Equation (13).

Appendix B. Arbitrary distribution for pC
To calculate Var(θ̂i) for an arbitrary distribution of piC but assuming that the piC and the
normal random effects bi are independent, we proceed as in Equation (19) to obtain (for c = 0
and substituting p0C = expit(E(logit(piC)), p0T = expit(E(logit(piC)) + θ) and Var(logit(piC)) for
pC , pT and σ2, respectively):

Var(θ̂i) = [niT p
0
T (1− p0T )]−1 + [niCp

0
C(1− p0C)]−1 + τ2+(

Var(logit(piC)) + τ2
)

[2niT ]−1
(
[p0T (1− p0T )]−1 − 2

)
+

(Var(logit(piC))) [2niC ]−1
(
[p0C(1− p0C)]−1 − 2

)
.

Cov(θi, v
2
i ) is the same as in Equation (12) with c = 0 and p0T = expit(E(logit(piC)) + θ); i.e.,

Cov(θi, v
2
i ) = − τ2

niT

[
1− 2p0T

p0T (1− p0T )

]
. (20)
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This should produce substantial positive bias in ŵiθ̂i for small p0T < 1/2, and negative bias for
p0T > 1/2.

To evaluate the first two moments of logit(piC), we use the standard delta method, as in
Equation (8). Let the mean and the variance of the distribution of piC be pC and σ2

C . For
h(x) = logit(x), the derivatives of h(·) at pC are

h
′
(pC) =

1

pC(1− pC)
and h

′′
(pC) = −

[
1

p2C
+

1

(1− pC)2

]
.

Hence

E(logit(piC)) = logit(pC)−
[

1

p2C
+

1

(1− pC)2

]
σ2
C/2

and

Var(logit(piC)) =
1

p2C(1− pC)2
σ2
C .

The expected value decreases, and the variance increases, with σ2
C , the variance of the distribution

of piC .
For a uniform distribution on an interval of width ∆ centered at pC , σ2

C = ∆2/12.
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