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Abstract

The conventional Q statistic, using estimated inverse-variance (IV) weights,

underlies a variety of problems in random-effects meta-analysis. In previous

work on standardized mean difference and log-odds-ratio, we found superior

performance with an estimator of the overall effect whose weights use only

group-level sample sizes. The Q statistic with those weights has the form pro-

posed by DerSimonian and Kacker. The distribution of this Q and the Q with

IV weights must generally be approximated. We investigate approximations

for those distributions, as a basis for testing and estimating the between-study

variance (τ2). A simulation study, with mean difference as the effect measure,

provides a framework for assessing accuracy of the approximations, level and

power of the tests, and bias in estimating τ2. Two examples illustrate estima-

tion of τ2 and the overall mean difference. Use of Q with sample-size-based

weights and its exact distribution (available for mean difference and evaluated

by Farebrother's algorithm) provides precise levels even for very small and

unbalanced sample sizes. The corresponding estimator of τ2 is almost unbiased

for 10 or more small studies. This performance compares favorably with the

extremely liberal behavior of the standard tests of heterogeneity and the largely

biased estimators based on inverse-variance weights.
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1 | INTRODUCTION

In meta-analysis, many shortcomings in assessing hetero-
geneity and estimating an overall effect arise from using
weights based on estimated variances without accounting
for sampling variation. Our studies of methods for ran-
dom-effects meta-analysis of standardized mean differ-
ence1 and log-odds-ratio2 included an estimator of the

overall effect that combines the studies' estimates with
weights based only on their groups' sample sizes. That
estimator, SSW, outperformed estimators that use (esti-
mated) inverse-variance-based (IV) weights. Those
weights use estimates of the between-study variance (τ2)
derived from the popular Q statistic discussed by
Cochran,3 which uses inverse-variance weights and
which we refer to as QIV. Thus, parallel to SSW, we
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investigate an alternative, QSW, in which the studies'
weights are their effective sample sizes. This QSW is an
instance of the generalized Q statistic QF introduced by
DerSimonian and Kacker,4 in which the weights are fixed
positive constants.

We consider the following random-effects model
(REM): For Study i (i = 1, …, K), with sample size
ni = niT+ niC, the estimate of the effect is θ̂i �G θi,v2i

� �
,

where the effect-measure-specific distribution G has
mean θi and variance v2i , and θi�N(θ, τ2). Thus, the θ̂i
are unbiased estimators of the true conditional effects θi,
and the v2i ¼Var θ̂ijθi

� �
are the true conditional variances.

The general Q statistic is a weighted sum of squared
deviations of the estimated effects θ̂i from their weighted
mean �θw ¼

P
wiθ̂i=

P
wi:

Q¼
X

wi θ̂i��θw
� �2

: ð1Þ

In Cochran3 wi is the reciprocal of the estimated variance of
θ̂i, resulting in QIV. In meta-analysis those wi come from
the fixed-effect model. In what follows, we discuss approx-
imations to the distribution of QF and estimation of τ2

when the wi are arbitrary positive constants. Because it is
most tractable, but still instructive, we focus on a single
measure of effect, the mean difference (MD). In this favor-
able situation, the cumulative distribution function of QF

can be evaluated by the algorithm of Farebrother.5 We
also consider approximations that match the first two or
the first three moments of QF. In simulations and exam-
ples, we concentrate on QSW. For comparison we also
include some of the popular inverse-variance-based
methods of estimating τ2, approximating the distribution
of QIV, and testing for the presence of heterogeneity. A
simulation study provides a framework for assessing accu-
racy of the approximations, level and power of the tests
based on QSW and QIV, and bias in estimating τ2.

2 | EXPECTED VALUE OF QF AND
ESTIMATION OF τ2

Define W =
P

wi, qi = wi/W, and Θi ¼ θ̂i�θ. In this
notation, and expanding �θw, Equation (1) can be writ-
ten as

Q¼W
X

qi 1�qið ÞΘ2
i �
X
i �¼j

qiqjΘiΘj

2
4

3
5: ð2Þ

Under the above REM, and assuming that the wi are arbi-
trary fixed constants, it is straightforward to obtain the
first moment of QF as

E QFð Þ¼W
X

qi 1�qið ÞVar Θið Þ
¼W

X
qi 1�qið Þ E v2i

� �þ τ2
� �

: ð3Þ

This expression is similar to Equation (4) in DerSimonian
and Kacker.4 Rearranging the terms gives the moment-
based estimator of τ2

What is already known?

1. The conventional Q statistic in meta-analysis
underlies the usual test for heterogeneity, but
that test produces p-values that are too high
for small to medium sample sizes.

2. The use of inverse-variance weights based on
estimated variances makes it very difficult to
approximate the distribution of Q, which
varies depending on an effect measure.

3. Related moment-based estimators of the
heterogeneity variance (τ2), such as the
DerSimonian-Laird estimator, have consider-
able bias.

What is new?

1. We introduce a new Q statistic with constant
weights based on studies' effective sample
sizes. Its null distribution is calculated exactly
by the Farebrother algorithm; alternatively, a
two-moment approximation can be used. Both
provide very precise control of the significance
level, even when sample sizes are small and
unbalanced.

2. The new Q statistic yields a new estimator of
the heterogeneity variance. This estimator,
SDL, is almost unbiased for 10 or more stud-
ies, even with extremely small sample sizes.

Potential impact for RSM readers outside
the authors' field

1. The usual chi-square test of heterogeneity
generally has level much greater than 0.05,
and its power is even lower than generally
believed, because it uses an incorrect null dis-
tribution for Q.

2. Our new Q statistic, with constant weights,
results in a very precise test, and the related
new estimate of τ2 is almost unbiased. We rec-
ommend its exclusive use in practice.
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τ̂2M ¼max
QF=W �Pqi 1�qið ÞÊ v2i

� �P
qi 1�qið Þ , 0

 !
: ð4Þ

This equation is similar to Equation (6) in DerSimonian
and Kacker4; they use the within-study (i.e., conditional)
estimate s2i instead of Ê v2i

� �
, an important distinction

because v2i is a random variable whose distribution
depends on that of θi.

3 | APPROXIMATIONS TO THE
DISTRIBUTION OF QF

For approximations to the distribution of QF, we draw on
results for quadratic forms, which generalize the sums of
squares that arise in analysis of variance. The Q statistic,
Equation (2), can be expressed as a quadratic form in the
random variables Θi. Appendix A.1 gives the details and
discusses approaches for evaluating and approximating
distributions of quadratic forms in normal variables. Con-
veniently, the variables Θi for the mean difference
(MD) are normal.

Two approaches are most suitable, especially for
obtaining upper-tail probabilities, P(QF> x). One matches
moments of QF, either the first two or the first three
moments; Appendix A.2 gives the details. The other uses
an algorithm developed by Farebrother.5

4 | SIMULATION STUDY FOR
MEAN DIFFERENCE

For MD as the effect measure, we use simulation of the dis-
tribution of Q with constant effective-sample-size weights
(SW) ~ni ¼niCniT= niCþniTð Þ to study three approxima-
tions: the Farebrother approximation (F SW), imple-
mented in the R package CompQuadForm6; the two-
moment Welch-Satterthwaite approximation (M2 SW);
and the three-moment chi-square approximation (M3
SW) by Solomon and Stephens.7 Details of these
two moment-based approximations are given in
Appendix A.2. We also study the bias of the moment esti-
mator τ̂2M in Equation (4), denoted by SDL, for this choice
of constant weights.

For comparison, we also simulate Q with IV weights,
and study three approximations to its distribution: the
standard chi-square approximation, the approximation
based on the Welch test to the null distribution of QIV,
and the “exact” distribution of Biggerstaff and Jackson
(BJ)8 when τ2 > 0. To compare the bias of SDL with that
of estimators of τ2 that use the IV weights, we also con-
sider DerSimonian and Laird (DL),9 Mandel and Paule

(MP),10 REML, and a corrected DL estimator (CDL),1

which uses an improved non-null first moment of QIV.
Table 1 lists abbreviations for all methods used in our
simulations.

We varied five parameters: the number of studies K,
the total (average) sample size of each study n (or �n), the
proportion of observations in the Control arm f, the
between-study variance τ2, and the within-study variance
σ2T (keeping σ2C ¼ 1). We set the overall true MD μ = 0
because the estimators of τ2 do not involve μ and the esti-
mators of μ are equivariant.

We generate the within-study sample variances s2ij
(j = T, C) from chi-square distributions σ2ijχ

2
nij�1= nij�1

� �
and the estimated mean differences yi from a normal
distribution with mean 0 and variance σ2iT=niT þσ2iC=
niCþ τ2. We obtain the estimated within-study variances
as v̂2i ¼ s2iT=niT þ s2iC=niC: As would be required in practice,
all approximations use these v̂2i , even though the
σ2iT=niT þσ2iC=niC are available in the simulation.

All simulations use the same numbers of studies
K = 5, 10, 30 and, for each combination of parameters,
the same vector of total sample sizes n = (n1,…,nK) and
the same proportions of observations in the Control arm
fi = .5, .75 for all i. The sample sizes in the Treatment
and Control arms are niT = d(1� fi)nie and niC = ni� niT,
i = 1, …, K. The values of f reflect two situations for the
two arms of each study: approximately equal (1:1) and
quite unbalanced (1:3).

We study equal and unequal study sizes. For equal
study sizes ni is as small as 20, and for unequal study

TABLE 1 Abbreviations

Weights IV Inverse-variance weights

wi ¼ 1=v2i

F arbitrary constant weights

SSW effective-sample-size weights
~n¼nCnT=n

Approximations
to distribution
of QSW

and QIV

F SW Farebrother approximation

M2 SW two-moment approximation

M3 SW three-moment approximation

BJ Biggerstaff and Jackson8

Estimators
of τ2

DL DerSimonian-Laird9

CDL Corrected DerSimonian-
Laird1

SDL new moment estimator based
on QSW

REML restricted maximum-
likelihood
estimator

MP Mandel-Paule10
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sizes average sample size �n is as small as 13 (individual ni
are as small as 4), in order to examine how the methods
perform for the extremely small sample sizes that arise in
some areas of application. In choosing unequal study
sizes, we follow a suggestion of S�anchez-Meca and
Marín-Martínez.11 Table 2 gives the details.

We use a total of 10,000 replications for each combi-
nation of parameters. Thus, the simulation standard error
for an empirical p-value p̂ under the null is roughlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= 12*10,000ð Þp ¼ 0:0029: The simulations were pro-
grammed in R version 3.6.2 using the University of East
Anglia 140-computer-node High Performance Computing
(HPC) Cluster, providing a total of 2560 CPU cores,
including parallel processing and large memory
resources. For each configuration, we divided the 10,000
replications into 10 parallel sets of 1000.

5 | RESULTS

For each configuration of parameters in the simulation
study and for each approximation, we calculated, for each
generated value of Q, the probability of a larger Q:
~p¼ 1� F̂ Qð Þ (F̂ denotes the distribution function of the
approximation). We recorded empirical p-values
p̂¼# ~p< pð Þ=10000 at p = 0.001, 0.0025, 0.005, 0.01,
0.025, 0.05, 0.1, 0.25, 0.5 and the complementary values
0.75,…, 0.999. The values of τ2 included both null (τ2 = 0)
and non-null (τ2 > 0) values (Table 2). The approximations
to the non-null distribution of Q were based on the value of
τ2 used in the simulation. These data provide the basis for
P–P plots (versus the true null distribution) for three
approximations to the distribution of Q with effective-
sample-size weights (F SW, M2 SW, and M3 SW) and two
approximations to the distribution of Q with IV weights
(chi-square/BJ and Welch) and for estimating their null
levels, non-null empirical tail areas, and (roughly) their
power. We also estimate the bias of five point estimators of

τ2 (SDL, DL, REML, MP, and CDL). In Figures 1–5, we pre-
sent configurations that illustrate the differences in
methods very clearly. The full results are presented, graphi-
cally, in Appendix B of Kulinskaya et al.12.

In some instances M3 SW produced anomalous
results or no results at all (because numerical problems
kept us from obtaining estimates of its parameters).

5.1 | P–P plots

To compare an approximation for a distribution function
of Q against the theoretical distribution function, with no
heterogeneity (τ2 = 0), we use probability–probability (P–
P) plots.13 Evaluating two distribution functions, F1 and
F2, at x yields p1 = F1(x) and p2 = F2(x). One varies x,
either continuously or at selected values, and plots the
points (p1(x), p2(x)) to produce the usual P–P plot of F2
versus F1. If F2 = F1, the points lie on the line from (0, 0)
to (1, 1). If smaller x are more likely under F2, the points
will lie above the line, and conversely. (Working with
upper tail areas reverses these interpretations.) If F2 is
similar to F1, the points will lie close to the line, and
departures will show areas of difference. To make these
more visible, we flatten the plot by subtracting the line;
that is, we plot p2� p1 versus p1.

The simulations offer a shortcut that does not require
evaluating the true distribution function of Q (which is
unknown for IV weights). If F is the distribution of the
random variable X, F(X) has the uniform distribution on
[0, 1], and so does 1�F(X). Thus, for the values of p
listed above, we plot p̂�p versus p.

Our P–P plots (illustrated by Figure 1) show no differ-
ences between the M3 and M2 approximations for Q with
constant weights. Very minor differences between the
Farebrother and the moment approximations are visible,
mainly at very small sample sizes. Other comparisons
show three distinct patterns.

TABLE 2 Data patterns in the simulations

Parameter Equal study sizes Unequal study sizes

K (number of studies)

n or �n (average size of individual study — total of the two arms)

For K = 10 and K = 30, the same set of unequal study sizes is used twice or six
times, respectively.

5, 10, 30

20, 40, 100, 250

5, 10, 30

13 (4, 6, 7, 8, 40),

15 (6, 8, 9, 10, 42),

30 (12, 16, 18, 20, 84),

60 (24, 32, 36, 40, 168)

f (proportion in the control arm) 1/2, 3/4 1/2, 3/4

μ 0 0

σ2C ,σ
2
T (within-study variances) (1,1), (1,2) (1,1), (1,2)

τ2 (variance of random effects) 0 (0.1)1 0 (0.1)1

4 KULINSKAYA ET AL.



FIGURE 1 P–P plots of the Farebrother, M2, and M3 approximations to the distribution of Q with sample-size-based weights, and of the

chi-square and Welch approximations to the distribution of Q with IV-based weights. First row: unequal sample sizes,
�n¼ 13, σ2C ¼ σ2T ¼ 1, f ¼ 0:5; second and subsequent rows: equal sample sizes, σ2C ¼ 1. Second row: n¼ 20, σ2T ¼ 1, f ¼ 0:5; third row:

n¼ 20, σ2T ¼ 1, f ¼ 0:75; fourth row: n¼ 40, σ2T ¼ 2, f ¼ 0:75. (The scale on the vertical axis varies among the rows) [Colour figure can be

viewed at wileyonlinelibrary.com]

KULINSKAYA ET AL. 5
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FIGURE 2 Empirical levels of approximations to the distribution of Q with IV or sample-size-based weights at nominal 0.05 level versus

sample size n. In all plots, τ2 = 0 and σ2C ¼ σ2T ¼ 1. Top two rows: equal sample sizes, f = 0.5 and f = 0.75. Bottom two rows: unequal sample

sizes, f = 0.5 and f = 0.75. (The vertical scale in the top two rows differs from that in the bottom two rows.) [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 3 Empirical p-values of approximations to the distribution of Q with IV or sample-size-based weights at the nominal 0.01 and

0.05 levels versus between-study variance τ2. In all plots, σ2C ¼ 1 and σ2T ¼ 2. Top two rows: equal sample sizes n = 20, f = 0.5 and f = 0.75.

Bottom two rows: unequal sample sizes, f = 0.5 and f = 0.75. First and third rows: 0.01. Second and fourth rows: 0.05 [Colour figure can be

viewed at wileyonlinelibrary.com]

KULINSKAYA ET AL. 7
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FIGURE 4 Power of tests of heterogeneity at 0.05 level for equal (n = 20) and unequal (�n¼ 30) sample sizes. In all plots, σ2C ¼ σ2T ¼ 1.

Top two rows: equal sample sizes, f = 0.5 and f = 0.75. Bottom two rows: unequal sample sizes, f = 0.5 and f = 0.75 [Colour figure can be

viewed at wileyonlinelibrary.com]

8 KULINSKAYA ET AL.
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FIGURE 5 Bias in estimation of between-study variance τ2 by five methods: SDL, DL, REML, MP, and CDL. First row: unequal sample

sizes, �n¼ 13, σ2C ¼ σ2T ¼ 1, f ¼ 0:5; second and subsequent rows: equal sample sizes, σ2C ¼ 1. Second row: n¼ 20, σ2T ¼ 1, f ¼ 0:5; third row:

n¼ 20, σ2T ¼ 1, f ¼ 0:75; fourth row: n¼ 40, σ2T ¼ 2, f ¼ 0:75. (The scale on the vertical axis varies among the rows.) [Colour figure can be

viewed at wileyonlinelibrary.com]

KULINSKAYA ET AL. 9
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The chi-square approximation has strikingly higher
empirical tail areas than the true distribution of Q with
IV weights over the whole domain. This pattern is espe-
cially noticeable for K = 30 and small unequal sample
sizes, though it persists for equal sample sizes as large as
100. It indicates that the approximating chi-square distri-
bution produces values that are systematically too large.

The Welch test provides a much better fit that is espe-
cially good for balanced sample sizes, equal variances,
and small K. When sample sizes are small and vary
among studies or are unbalanced between arms, how-
ever, its fit is worse. It produces values of Q that are sys-
tematically too small when K = 5; produces more small
values and, to a lesser extent, more large values when
K = 10; and produces more large values and, to a lesser
extent, more small values when K = 30.

The three approximations to Q with constant weights
provide reasonably good fits, which appear to be similar
to the fit of the Welch test to Q with IV weights.

5.2 | Empirical levels when τ2 = 0

To better visualize the quality of the approximations as
the basis for a test for heterogeneity at the 0.05 level, we
plot their empirical levels under the null τ2 = 0 versus
sample size. Figure 2 presents typical results for a range
of sample sizes at the 0.05 level.

For equal variances, the empirical levels depend on
the sample size. The chi-square test is very liberal up to
n = 100, especially for unbalanced arms, and the problem
becomes worse as K increases. The Welch test is consider-
ably better than the chi-square test, but is still noticeably
liberal when the arms are unbalanced. Tests based on Q
with constant weights are generally less liberal, though
they may have level up to 0.07 for n = 20, for unbalanced
arms and small K. The M3 approximation breaks down
and results in very liberal levels for unequal sample sizes
and unbalanced arms and large K. The Farebrother and
M2 approximations perform better for larger K, and over-
all are the best choice. They also hold the level well at
smaller nominal levels. The Welch test is rather unstable
for very low levels such as α = 0.001 (which corresponds,
in our simulations, to just 10 occurrences in 10,000 repli-
cations), but improves from α = 0.005.

5.3 | Empirical levels when τ2 > 0

To understand how the approximations behave as τ2

increases, we plot the empirical p-values (p̂) versus τ2 for
the nominal levels 0.05 and 0.01 (Figure 3). For unequal
sample sizes, the Farebrother and the 3-moment

approximations differ slightly at the 0.01 level, but those
differences disappear at the 0.05 level and for equal sam-
ple sizes. When K = 30, M3 sometimes fails; and when it
does not, it breaks down for small and large values of τ2.
The 2-moment approximation is almost indistinguishable
from the Farebrother approximation.

Overall, the Farebrother approximation performs
superbly across all τ2 values. This is as it should be, as it
is practically an exact distribution in the case of MD. The
M2 approximation is reasonably good at the 0.05 level.
The BJ approximation is much too liberal, especially at
smaller values of τ2 and for larger K. It is considerably
more liberal for very small sample sizes such as �n¼ 13;
but it improves when sample sizes increase, and it is rea-
sonable by n = 100 or �n¼ 60.

For larger values of n and �n (not shown in Figure 3),
the traces approach α as n or �n increases (they are farther
away from α when �n<30).

5.4 | Power of tests for heterogeneity

“Power” is a reasonable term as a heading, but not as an
accurate description for most of the results. Although dis-
cussions of simulation results in meta-analysis do not
always do this, comparisons of power among tests that
are intended to have a specified level (i.e., rate of Type I
error) are not valid unless the tests' estimated levels are
equal or nearly so. This complication is evident in Fig-
ure 4, which depicts the power of tests of heterogeneity at
the 0.05 level for n = 20 and equal and unequal sample
sizes.

The chi-square test appears to be more powerful, and
the Welch test slightly less powerful, than the tests based
on Q with constant weights. These differences are much
smaller when n = 40 (not shown) and disappear when n
is larger. But even for n = 20, these appearances are mis-
leading. For n = 20, Figure 2 shows that for balanced
arms, the level of the chi-square test is 0.08 for K = 5, 0.1
for K = 10, and considerably higher than 0.1 for K = 30.
For unbalanced arms, the level of the chi-square test sub-
stantially exceeds 0.1 for all K. This behavior is a conse-
quence of using an incorrect null distribution. Thus, our
results do not show that the chi-square test has higher
power, and its power may actually be lower. It is not clear
how to modify the chi-square test so that it has the cor-
rect level in a broad range of situations.

The Welch test has levels similar to those of the tests
based on Q with constant weights when K = 5 or 10. But
for K = 30 and f = 0.75, its level is approximately .09.
This may mean that it does have somewhat lower power.

When n = 40, the traces rise more steeply, and when
�n<30, they spread out and rise less steeply. When

10 KULINSKAYA ET AL.



n≥ 100 (or �n≥ 60 for unequal sample sizes), visible differ-
ences among the traces for the tests disappear. Given
higher levels of the chi-square test, this means that its
power is the same or even lower than that of the tests
based on Q with constant weights.

5.5 | Bias in estimation of τ2

Here we compare the SDL estimator of τ2 with the well-
known estimators DL, MP, and REML and the recently
suggested CDL. Figure 5 depicts the biases of the five esti-
mators for small sample sizes.

All five estimators have positive bias at τ2 = 0, because
of truncation at zero. The bias across all values of τ2 is
quite substantial, and it increases for unequal variances
and/or sample sizes. Among the standard estimators, DL
has the most bias and MP the least. SDL and CDL gener-
ally have similar bias, considerably less than the standard
estimators. The relation of their bias to K when �n¼ 13 is
interesting, but atypical. As K increases, the trace for SDL
flattens toward 0, demonstrating no bias at all for larger
values of τ2, whereas the trace for CDL rises toward the
other three. The traces flatten and approach 0 as �n
increases to 15 and 30. When n≥ 100 or �n≥ 60, the differ-
ences among the five estimators of τ2 are quite small.

6 | EXAMPLES

6.1 | Exercise training in people with
heart failure

The systematic review of Rees et al14 studied results of
short-term trials of exercise training in people with mild
to moderate heart failure. Exercise capacity was assessed
by the maximal oxygen uptake, VO2max; an increase
from baseline to follow-up indicates improvement with
exercise. However, for the pooled analysis, the authors
reversed the sign of the mean change in VO2max for both
the intervention and control groups, so the beneficial
effect is negative. We consider the results from Compari-
son 2.1.7, for the K = 15 studies with mean age above
55 years. Figure 6 shows the data and forest plot. The
sample sizes in these trials are rather small, varying from
7 to 48 per arm; the average sample size is 18.4 in the
treatment arm and 17.6 in the control arm. The trials are
mostly balanced, with only one trial having a 2:1 alloca-
tion ratio, and they have similar variances in the
two arms.

The review used a DL-based analysis and found sig-
nificant heterogeneity (p = 0.03), I2 = 45.73%, τ̂2 ¼ 0:79,
and a significant effect of exercise, with a mean differ-
ence in VO2max of �1.77 (�2.50, �1.03).

FIGURE 6 Data and forest plot for Rees et al14 meta-analysis on exercise-related changes in VO2max [Colour figure can be viewed at

wileyonlinelibrary.com]
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Table 3 brings together meta-analyses of these data by
seven methods. When testing heterogeneity, the standard
chi-square test gives p-value 0.027, and the Welch test
gives 0.030, indicating significant heterogeneity. These
differ substantially from the p-values for QSW with con-
stant weights, where all three approximations give 0.43
or 0.44. This agrees with our simulation results, illustrat-
ing how liberal the standard heterogeneity tests can be in
the case of small sample sizes and medium to large K.

Comparing the estimated τ2 values, the DL method
provides an estimate of 0.791. CDL is very similar at
0.783, the REML estimate is lower at 0.652, and the MP
estimate is considerably lower at 0.255. Unsurprisingly,
the SDL estimate is very close to zero, at 0.009. Because
the standard estimators are all positively biased in this
setting, we consider the SDL estimate to be the closest to
the true value of τ2.

These differences in the estimated heterogeneity vari-
ance have no substantial impact on the estimated overall
effect of exercise on VO2max. Table 3 includes IV esti-
mates of Δ with 95% confidence intervals. Because of IV
weighting, the smaller τ2 values result in stronger effects
of exercise. SDL results in the most pronounced effect,
�2.14 (�2.60, �1.68). However, we do not recommend
IV weights for pooling effects, and instead advocate
effective-sample-size-based methods.1 These weights are
denoted by SSW in Table 3, and the corresponding confi-
dence intervals are based on tK� 1 critical values. Ironi-
cally, for these data the result, �1.78 (�2.37, �1.18), is
very close to the original estimate reported in Rees
et al.14

The differences between SDL and other estimators of
τ2 are rather striking. However, they have a simple expla-
nation. The largest study, Belardinelli 1999, the first on
the forest plot in Figure 6, is a low outlier with
Δ̂1 ¼�3:4, and its inverse-variance weight, when τ2 = 0,
is 39.3%. This study is the major contributor to the high
value of QIV = 25.79 and the only reason for

the seemingly high heterogeneity. The SSW weight of this
study is less than half as large, at 17.5%, and the test
based on QSW does not find heterogeneity in the data. Set-
ting this study aside decreases the QIV statistic to 7.41 on
13 df; the p-values for all Q tests are very similar, at 0.88
for all IV tests and at 0.87 for the tests based on QSW; and
all estimators of τ2 agree on τ̂2 ¼ 0.

6.2 | Drugs for prevention of exercise-
induced asthma

The systematic review of Spooner et al15 compared sev-
eral types of drugs for prevention of exercise-induced
asthma attacks in asthma sufferers. We consider Compar-
ison 6.2.2, which compared inhaling a single dose of mast
cell stabilizer (MCS) prior to strenuous exercise with a
single dose of short-acting beta-agonists (SABA). The
measure of effect was the maximum percentage decrease
in pulmonary function (PFT). This meta-analysis pooled
results from seven high-quality clinical trials involving a
total of 187 patients. Figure 7 shows the data and forest
plot. The sample sizes in these perfectly balanced trials
vary from 8 to 20 per arm; the average sample size is 13.4
in each arm; the variances mostly differ in the two arms,
but without any clear pattern. The review used a DL-
based analysis and found that heterogeneity was not sig-
nificant, τ̂2DL ¼ 0:65 and I2 = 2.14%, and that SABA pro-
vided significantly lower PFT, Δ̂¼ 6:32 (2.47,10.18).

Table 4 shows the results of meta-analyses of these
data by seven methods. Heterogeneity is not significant
by any method: the p-values are 0.409 for the chi-square
and Welch tests and 0.799 to 0.812 for all three approxi-
mations to the distribution of QSW. However, the esti-
mated values of τ2 vary widely: 0 for SDL, 0.34 for MP,
0.66 and 0.67 for CDL and DL, and 9.82 for REML. These
results agree with the positive biases in estimation of τ2

at zero in our simulation results, though the result for
REML is quite aberrant. Its value is not so extreme, at
5.72, but the maximum-likelihood estimator of τ2 behaves
similarly. The presence of a study with a noticeably lower
Δ̂i whose estimated variance is substantially lower strains
the assumption that Δi�N(Δ, τ2).

These differences in the estimated values of τ2 are
reflected in the width of confidence intervals for the
pooled effect, but even more so, in the width of predic-
tion intervals.16 As SDL is zero, the prediction interval is
not different from the confidence interval, MP IV has a
95% prediction interval of (1.04, 11.47), DL IV a some-
what wider prediction interval of (0.85, 11.80), and
REML IV a much wider interval of (�2.80, 17.58). Thus,
REML IV analysis does not find SABA drugs to be more
beneficial than MCS. This conclusion does not change if

TABLE 3 Meta-analyses of the Rees et al14 data on exercise-

related changes in VO2max in people with mild to moderate heart

failure

Method τ̂2 Δ̂ Lower Upper

SDL SSW t 0.0088 �1.7761 �2.3703 �1.1820

SDL IV 0.0088 �2.1404 �2.6024 �1.6785

DL IV 0.7907 �1.7656 �2.4968 �1.0345

REML IV 0.6524 �1.7784 �2.4779 �1.0790

MP IV 0.2554 �1.8696 �2.4550 �1.2842

CDL SSW t 0.7826 �1.7761 �2.6039 �0.9484

CDL IV 0.7826 �1.7663 �2.4957 �1.0369
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REML IV is used in combination with the Hartung–
Knapp–Sidik–Johnson variance,17,18 as recommended in
Partlett and Riley,19 resulting in a slightly tighter predic-
tion interval of (�2.09, 16.87).

In the forest plot (Figure 7), the study by Vazquez
1984 has a considerably lower mean than the other stud-
ies; and, because of its lower variance, its weight varies
from 33.3% in the REML IV analysis to 45.5% in the DL
IV analysis, in comparison to 13% in SSW. As a result, all
the IV-weighted methods yield substantially lower esti-
mates of the pooled effect (6.19 to 7.39) than SSW (9.30).

Once more, for these data, the sample-size-based weights
provide more robust and more sensible inference than
the IV-weighted methods.

7 | DISCUSSION

As a way of avoiding the shortcomings associated
with the customary Q, which uses inverse-variance
weights based on estimated variances, we are involved
in studying a version of Q in which the weights are
fixed constants. Such weights simplify derivation of
higher moments of Q and facilitate approximation of
its distribution.

In a simulation study we compared the properties
of the test for heterogeneity for MD based on a Q statis-
tic that uses constant sample-size-based weights, QSW,
with its IV-weights-based counterparts. From QSW we
also derived an estimator (SDL) of the heterogeneity
variance τ2; the simulation yielded estimates of its bias
and comparisons with the bias of several other
estimators.

A large number of small studies is the worst-case sce-
nario for the statistical properties of meta-analysis.1 This
situation may not be very widespread in medical meta-
analyses, but it is very common in the social sciences and

FIGURE 7 Data and forest plot for Spooner et al15 meta-analysis on drugs for prevention of exercise-induced asthma attacks [Colour

figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Meta-analyses of the Spooner et al15 data on drugs

for prevention of exercise-induced asthma attacks

Method τ̂2 Δ̂ Lower Upper

SDL SSW t 0.0000 9.3002 3.1817 15.4187

SDL IV 0.0000 6.1874 2.4232 9.9516

DL IV 0.6684 6.3223 2.4673 10.1774

REML IV 9.8200 7.3904 2.6364 12.1444

MP IV 0.3386 6.2574 2.4464 10.0684

CDL SSW t 0.6576 9.3002 3.1332 15.4672

CDL IV 0.6576 6.3203 2.4666 10.1740
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in ecology.20,21 Thus, our simulations included additional
small sample sizes.

Overall, the proposed test for heterogeneity for MD,
combined with its exact distribution as obtained by the
Farebrother algorithm5 or, alternatively, with the two-
moment approximation, provides very precise control of the
significance level, even when sample sizes are small and
unbalanced, in contrast to the extremely liberal behavior of
the standard tests, especially for a large number of studies.
(These results suggest that the null distribution of QIV is
more difficult to approximate than the null distribution of
QF.) Similarly, the proposed SDL estimator is almost unbi-
ased for K≥ 10, even in the case of extremely small sample
sizes, and we recommend its exclusive use in practice.

Further, because it uses an incorrect null distribution
for QIV, the chi-square test generally has level much
greater than 0.05, so our simulations could give only sub-
stantially inflated estimates of its power. An important
conclusion of our work is that the power of the popular
Q test is even lower than generally believed. As another
consequence of the incorrect null distribution, we avoid
I2 and related measures of heterogeneity.

Our meta-analyses of the data from Rees et al14 dem-
onstrated just how liberal the standard tests for heteroge-
neity are. However, the substantial differences among the
estimates of τ2 produced only modest differences among
the estimates and confidence intervals for the overall
effect. On the other hand, the example illustrated how
easily a single discrepant study could distort the IV-
weighted estimates of τ2.

In a second example none of the methods found sig-
nificant heterogeneity. The SDL estimate was τ̂2 ¼ 0,
whereas the IV-weighted methods produced substantial
positive estimates, consistent with the biases that we
found in our simulations. In this instance the SSW esti-
mate of the overall effect was noticeably higher than the
IV-weighted estimates.

It is enlightening to observe that, for the non-null dis-
tribution of QIV, the approximation of Biggerstaff and Jack-
son8 (using Farebrother's algorithm) is no better than the
standard chi-square approximation to the null distribution.
The problem here evidently lies with the IV weights.

We found that, even though both moment approxi-
mations performed well overall, the three-moment
approximation sometimes fails, and it breaks down in the
case of very small and unbalanced sample sizes and a
large number of studies. Therefore, for MD we recom-
mend the Farebrother5 approximation to the distribution
of Q with constant weights.

In further work we intend to develop tests for heteroge-
neity in other effect measures based on Q with constant
weights. Even though we derived general expressions for
moments of Q, application of these expressions to such

effect measures as SMD and the log-odds-ratio involves a
lot of tedious algebra. The moment approximations are less
precise than the exact distribution or the approximation by
Farebrother5 for the case of normal variables in the qua-
dratic form, but they are much faster and may be a better
option when the distribution is only asymptotically normal.
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APPENDIX A

This appendix assembles the more-technical informa-
tion related to evaluating and approximating the dis-
tribution of Q. Appendix A.1 discusses approaches, in
the broader context of quadratic forms in normal ran-
dom variables. Appendix A.2 explains the form of the
two-moment and three-moment approximations. Then
Appendix A.3 presents derivations for the variance
and third moment of Q. The resulting expressions
involve the first six unconditional moments of Θi.
Appendix A.4 develops those moments for a general
effect measure, and Appendix A.5 applies and sim-
plifies them for the mean difference.

A.1 | Approximations to the distribution of
quadratic forms in normal variables

The Q statistic, Equation (2), is a quadratic form in the
random variables Θi. We can write Q = ΘTAΘ for a sym-
metric matrix A of rank K� 1 with the elements
aij = qiδij� qiqj, 1≤ i, j≤K, where δij is the Kronecker
delta. In this section we assume constant weights unless
stated otherwise. Unconditionally, the Θi are centered at
0, but they are not, in general, normally distributed.
However, for large sample sizes ni, their distributions are
approximately normal. Normality holds exactly for the
mean difference (MD). In this case the exact distribution
of the quadratic form is that of a weighted sum of central
chi-square variables. But the cumulative distribution
function of Q needs to be evaluated numerically. There-
fore, we consider suitable approximations.

Quadratic forms in normal variables have an exten-
sive literature. When the vector Θ has the multivariate
normal distribution N(μ,Σ), the exact distribution of Q isPm

r¼1λrχ
2
hr

δ2r
� �

, where the λr are the eigenvalues of AΣ,
the hr are their multiplicities, and the δ2r are the non-cen-
trality parameters for the independent chi-square vari-
ables χ2hr δ2r

� �
with hr degrees of freedom. (The δr are

linear combinations of μ1, …, μK.)
Interest typically centers on the upper-tail probabilities

P(Q> x). Moment-based approximations match a particular
distribution, often a gamma distribution or, equivalently, a
scaled chi-square distribution, to several moments of Q.
These methods include the well-known Welch-Satterthwaite
approximation, which uses cχ2p and matches the first two
moments.22,23 Imhof24 investigated an approximation to
the distribution of a quadratic form in noncentral normal
variables by matching a central chi-square distribution to
three moments (including the skewness). The approxima-
tion has the form Q� χ2h0 �h0

� �
2h0ð Þ�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Qð Þp þE Qð Þ:

Pearson25 first suggested this approach to approximate a
noncentral chi-square distribution. Liu et al26 proposed a
four-moment noncentral chi-square approximation. To
approximate the probability that a standardized Q
exceeds t*, they use the probability that a standardized
noncentral chi-square exceeds t*, equating the skewness
of the two distributions and matching the kurtosis as
closely as possible.

Yuan and Bentler27 studied, by simulation, the Type I
errors of a Q test with the critical values based on the
Welch-Satterthwaite approximation. They concluded that
this approximation is satisfactory when the eigenvalues
do not have too large a coefficient of variation, preferably
less than 1. For larger CV, the Type I errors may be larger
than nominal.

For the general case of a noncentral quadratic form,
the distribution of Q can be approximated by the distribu-
tion of cUr, where the distribution of U can depend on
one or two parameters. The choice of c, r, and the
parameters of U then permits matching the necessary
moments. Solomon and Stephens7 consider three
moment-based approximations: a four-moment approxi-
mation by a Type III Pearson curve and 2 three-moment
approximations, one with U�N(μ, σ2) and the other with
U � χ2p. They recommend the latter as fitting better in the
lower tail, partly because it necessarily starts at zero,
whereas the other approximations do not. This approxi-
mation matches the constants c, r, and p to the first three
moments of Q. For c χ2p

� �r
the moments about 0

are μ0k ¼ ck2krΓ krþp=2ð Þ=Γ p=2ð Þ.
Other, more-complicated methods include relying

on numerical inversion of the characteristic function24;
this can be made very accurate, with bounds on accu-
racy. The algorithm of Sheil and O'Muircheartaigh,28

improved by Farebrother,5 represents the value of the
c.d.f. for a noncentral quadratic form by an infinite
sum of central chi-square probabilities. Kuonen29 pro-
poses a saddlepoint approximation, and Zghoul30 and
Ha and Provost31 consider approximations by Hermite
and Laguerre polynomials. The first two methods are
nearly exact and perform better than Pearson's three-
moment approximation by a central chi-square distri-
bution or, in the noncentral case, the four-moment
approximation by a Type III Pearson curve.24,6

Bodenham and Adams32 and Chen and Lumley33 dis-
cuss the behavior of various approximations when K is
large.

We are aware of only one paper34 on the asymptotic
(K!∞) distribution of quadratic forms in non-normal
iid random variables with finite sixth moment. This dis-
tribution can be approximated by that of a second-order
polynomial in normal variables.
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In meta-analysis, approximations to the distribution
of Q have usually been sought only for the QIV version
with non-constant inverse-variance weights. Typically,
the chi-square distribution with K� 1 degrees of freedom
is used indiscriminately as the null distribution of QIV.
For MD, Kulinskaya et al35 introduced an improved two-
moment approximation to this version of Q based on the
Welch36 test in the heteroscedastic ANOVA. The distribu-
tion of this Welch test for MD is approximated under the
null by a rescaled F distribution, and under alternatives
by a shifted chi-square distribution. Kulinskaya et al also
explored improved moment-based approximations for
some other effect measures,37–39 using two-moment
approximations with a scaled chi-square distribution to
the null distribution of QIV. Biggerstaff and Jackson8 used
the Farebrother approximation to the distribution of a
quadratic form in normal variables as the “exact” distri-
bution of QIV. This is not correct when the weights are
the reciprocals of estimated variances, but with constant
weights it is correct for MD. When τ2 = 0, the Biggerstaff
and Jackson approximation to the distribution of QIV is
the χ2K�1 distribution.

A.2 | Two- and three-moment approximations to
the distribution of Q

The two- and three-moment approximations to the
distribution of Q use the distribution of a transformed
chi-square random variable c χ2p

� �r
. The parameters c,

r, and p are found by matching the first two or three
moments.

The kth moment about zero for c χ2p

� �r
is

μ0k ¼
ck2krΓ krþp=2ð Þ

Γ p=2ð Þ :

A.2.1 | Two-moment approximation

The two-moment approximation by Satterthwaite23 and
Welch22 sets r = 1, so Q� c χ2p

� �
. Matching the first

moment μ01 toE (Q), we obtain

2cΓ 1þp=2ð Þ
Γ p=2ð Þ ¼E Q½ �:

Since Γ(n+ 1) = nΓ(n), the above equation reduces to

cp¼E Q½ �: ðA:1Þ

For the second moment μ02,

4c2Γ 2þp=2ð Þ
Γ p=2ð Þ ¼E Q2

� �
,

which reduces to

c2p pþ2ð Þ¼E Q2
� �

: ðA:2Þ

Solving for c in Equation (A.1) and substituting the result
into Equation (A.2) yield

c¼E Q½ �=p, p¼ 2
E Q2
� �
E Q½ �2 �1

" #�1

:

A.2.2 | Three-moment approximation

For the three-moment approximations we have Q� c χ2p

� �r
.

Similar to the two-moment case, we set k = 1,2,3 to
obtain the following system of equations

μ01
� �

:
2rcΓ rþp=2ð Þ

Γ p=2ð Þ ¼E Q½ �;

μ02
� �

:
22rc2Γ 2rþp=2ð Þ

Γ p=2ð Þ ¼E Q2
� �

;

μ03
� �

:
23rc3Γ 3rþp=2ð Þ

Γ p=2ð Þ ¼E Q3
� �

:

Dividing μ02 by μ01, we obtain the following expression
for c:

c¼ E Q2
� �

Γ rþp=2ð Þ
2rE Q½ �Γ 2rþp=2ð Þ :

To eliminate c, define A¼ μ02= μ01
� �2

and B¼ μ03= μ01
� �3

.
Then we have the following two nonlinear equations:

A¼Γ 2rþp=2ð ÞΓ p=2ð Þ
Γ2 rþp=2ð Þ , B¼Γ 3rþp=2ð ÞΓ2 p=2ð Þ

Γ3 rþp=2ð Þ :

We solve this system for p and r by using the function “multi-
root” in the R package rootSolve40 with the starting values r= 1
and c and p from the two-moment approximation.
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A.3 | Variance and third moment of Q

For approximations based on the first two or three
moments, we need the second and the third moments of
Q under the REM introduced in Section 1.

We distinguish between the conditional distribution of
Q (given the θi) and the unconditional distribution, and the
respective moments of Θi. For instance, the conditional sec-
ond moment of Θi is Mc

2i ¼ v2i , and the unconditional sec-
ond moment is M2i ¼E Θ2

i

� �¼Var θ̂i
� �¼E v2i

� �þ τ2.
Similarly, M4i ¼E Θ4

i

� �
is the fourth (unconditional) cen-

tral moment of θ̂i. These two moments are required to
calculate the variance of Q, given by

W�2Var Qð Þ¼
X
i

q2i 1�qið Þ2 M4i�M2
2i

� �
þ2
X
i �¼j

q2i q
2
j M2iM2j: ðA:3Þ

Appendix A.3.1 gives the details. When the weights
are not related to the effect, these expressions for the
mean and variance of Q are the same as in Kulinskaya
et al.37

For (known) inverse-variance weights wi ¼ v�2
i , and

assuming that each θ̂i is normally distributed and
τ2 = 0, so that M2i ¼ v2i and M4i ¼ 3v4i , the first moment
of Q is K� 1, and the variance is 2(K� 1), as it should
be for a chi-square distribution with K� 1 degrees of
freedom.

In general, the unconditional moments M2i and M4i

depend on the effect measure (through its second and
fourth conditional moments) and on the REM that
defines the unconditional moments. Appendix A.4 gives
the details.

In the null distribution τ2 = 0, and the unconditional
moments of Q coincide with its conditional moments.

The derivation for the unconditional third moment of Q

W�3E Q3
� �¼E

X
qi 1�qið ÞΘ2

i �
XX

i≠ j

qiqjΘiΘj

" #3( )

parallels that for the second moment, starting from Equa-
tion (2). Appendix A.3.2 gives the details of the
derivation.

Importantly, M3i ¼E Θ3
i

� �
and M6i ¼E Θ6

i

� �
, the third

and the sixth unconditional central moments of θ̂i, are
required for this calculation, in addition to the second
and the fourth central moments used in calculating the
second moment of Q.

Unconditional central moments of θ̂i are linear com-
binations of expected values of conditional moments,

their cross-products, and powers of τ2. Appendix A.4 pro-
vides the requisite expressions for the first six uncondi-
tional central moments for a general effect measure.
Calculations of unconditional moments are much sim-
pler for the mean difference (MD), as we show in
Appendix A.5.

A.3.1 | Calculation of the second moment of Q

The second moment of Q (times W�2) is

W�2E Q2
� �¼E

X
qi 1�qið ÞΘ2

i

h i2
�2E

X
qk 1�qkð ÞΘ2

k

h i X
i≠ j

qiqjΘiΘj

" # !

þE
X
i≠ j

qiqjΘiΘj

" #2

¼A�2BþC:

The first term,

A¼E
X
i, j

qi 1�qið Þqj 1�qj
� �

Θ2
iΘ

2
j

 !

¼E
X
i

q2i 1�qið Þ2Θ4
i

 !
þE

X
i≠ j

qi 1�qið Þqj 1�qj
� �

Θ2
iΘ

2
j

 !

¼
X
i

q2i 1�qið Þ2 M4i�M2
2i

� �þ X
qi 1�qið ÞM2i

h i2
,

where M2i ¼E Θ2
i

� �¼Var Θið Þ¼E v2i
� �þ τ2 is the variance,

andM4i ¼E Θ4
i

� �
is the fourth central moment of θ̂i.

The second term, B = 0 because its terms E Θ2
kΘiΘj

� �
,

with i≠ j, always include a first-order moment of Θi for
some i.

In the third term, C¼E
P

i �¼j

P
k �¼lqiqjqkqlΘiΘjΘkΘl

h i
,

the only nonzero terms have i = k and j = l or i = l and
j = k, so C¼ 2

P
i �¼jq

2
i q

2
j M2iM2j.

To obtain W�2 times the variance of Q, we subtract
the square of its mean, given by Equation (3), which is
exactly the second term of A:

W�2Var Qð Þ¼
X
i

q2i 1�qið Þ2 M4i�M2
2i

� �
þ2
X
i �¼j

q2i q
2
j M2iM2j:

A.3.2 | Calculation of the third moment of Q

For the derivation of the third moment of Q, we record
selected steps. We have
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W�3E Q3
� �¼E

X
qi 1�qið ÞΘ2

i �
XX

i≠ j

qiqjΘiΘj

" #3( )

¼E
X

qi 1�qið ÞΘ2
i

h i3	 


�3E
X

qi 1�qið ÞΘ2
i

h i2 XX
i≠ j

qiqjΘiΘj

" #( )

þ3E
X

qi 1�qið ÞΘ2
i

h i XX
i≠ j

qiqjΘiΘj

" #2( )

�E
XX

i≠ j

qiqjΘiΘj

" #3( )

¼A�3Bþ3C�D

The terms A, B, C, and D are obtained below.

The first two summations are zero because E (Θj) = 0.
In the third summation, however, some terms have (for
example) i = k and j = l, yielding E Θ3

i

� �
E Θ3

j

� �
. It is

straightforward, but somewhat tedious, to identify those
terms. The result is

B¼ 2
XX

i≠ j

q2i 1�qið Þq2j 1�qj
� �

M3iM3j

C¼E
X
i

qi 1�qið ÞΘ2
i

" # XX
k ≠ j

XX
m≠ l

qjqkqlqmΘjΘkΘlΘm

" #( )

¼
X
i

XX
k ≠ j

XX
m≠ l

qi 1�qið ÞqjqkqlqmE Θ2
iΘjΘkΘlΘm

� �

As in B, this summation contains some terms that do not
vanish. Identifying those yields

A¼E
P

i

P
j

P
kqi 1�qið Þqj 1�qj

� �
qk 1�qkð ÞΘ2

iΘ
2
jΘ

2
k

h i
¼Pq3i 1�qið Þ3M6i

þ3
PP

i≠ jq
2
i 1�qið Þ2qj 1�qj

� �
M4iM2j

þPPPi≠ j≠ kqi 1�qið Þqj 1�qj
� �

qk 1�qkð ÞM2iM2jM2k

¼Pq3i 1�qið Þ3M6i

þ3
P

iq
2
i 1�qið Þ2M4i

� � P
jqj 1�qj
� �

M2j

h i
�Pq3i 1�qið Þ3M4iM2i

n o
þ P

iqi 1�qið ÞM2i
� �3�3

P
iq

2
i 1�qið Þ2M2

2i

� � P
jqj 1�qj
� �

M2j

h i
þ2
P

iq
3
i 1�qið Þ3M3

2i

n o
¼Pq3i 1�qið Þ3 M6i�3M4iM2iþ2M3

2i

� �
þ3

P
jqj 1�qj
� �

M2j

h i
½Piq

2
i 1�qið Þ2ðM4i�M2

2iÞ�

þ P
iqi 1�qið ÞM2i

� �3
B¼E

P
i

P
j
qi 1�qið Þqj 1�qj

� �
Θ2

iΘ
2
j

" # PP
i≠ j

qiqjΘiΘj

" #( )

¼E
P
i
q2i 1�qið Þ2Θ4

i þ
PP
i≠ j

qi 1�qið Þqj 1�qj
� �

Θ2
iΘ

2
j

" # PP
i≠ j

qiqjΘiΘj

" #( )

¼Ef2PP
i≠ j

q3i 1�qið Þ2qjΘ5
iΘjþ

PPP
i≠ j≠ k

q2i 1�qið Þ2qjqkΘ4
iΘjΘk

þPP
i≠ j

PP
l≠ k

qi 1�qið Þqj 1�qj
� �

qkqlΘ
2
iΘ

2
jΘkΘlg

¼ 2
PP
i≠ j

q3i 1�qið Þ2qjE Θ5
i

� �
E Θj
� �þPPP

i≠ j≠ k
q2i 1�qið Þ2qjqkE Θ4

i

� �
E Θj
� �

E Θkð Þ

þPP
i≠ j

PP
l≠ k

qi 1�qið Þqj 1�qj
� �

qkqlE Θ2
iΘ

2
jΘkΘl

� �

KULINSKAYA ET AL. 19



C¼ 4
XX

i≠ j

q3i 1�qið Þq2j M4iM2j

þ2
XXX

i≠ j≠ k

qi 1�qið Þq2j q2kM2iM2jM2k

D¼E
XX

i≠ j

XX
k ≠ l

XX
m≠ n

qiqjqkqlqmqnΘiΘjΘkΘlΘmΘn

" #

As above, removing the terms that vanish leaves

D¼ 4
XX

i≠ j

q3i q
3
j M3iM3j

þ8
XXX

i≠ j≠ k

q2i q
2
j q

2
kM2iM2jM2k:

Finally, assembling the four parts (with some simpli-
fication) yields

W�3E Q3
� �¼X

i
q3i 1�qið Þ3 M6i�3M4iM2iþ2M3

2i

� �
þ3

X
j
qj 1�qj
� �

M2j

h i X
i
q2i 1�qið Þ2 M4i�M2

2i

� �h i
þ
X

i
qi 1�qið ÞM2i

h i3
�6
XX

i≠ j
q2i 1�qið Þq2j 1�qj

� �
M3iM3j

þ12
XX

i≠ j
q3i 1�qið Þq2j M4iM2j

þ6
XXX

i≠ j≠ k
qi 1�qið Þq2j q2kM2iM2jM2k

�4
XX

i≠ j
q3i q

3
j M3iM3j

�8
XXX

i≠ j≠ k
q2i q

2
j q

2
kM2iM2jM2k:

A.4 | Unconditional moments of Θ

The unconditional moments of Θi for θi�N(θ, τ2) are
given by

Mri ¼E θ̂i�θ
� �rh i

¼
Xr
j¼0

r

j

� �
E θ̂i�θi
� �j

θi�θð Þr�j
h i

¼
Xr
j¼0

r

j

� �
E Mc

ji θi�θð Þr�j
h i

,

ðA:4Þ

for conditional central moments Mc
ji ¼E θ̂i�θi

� �jjθih i
with Mc

0i ¼ 1 and Mc
2i ¼ v2i . For unbiased estimators θ̂i,

M1i ¼Mc
1i ¼ 0,

M2i ¼E v2i
� �þ τ2,

M3i ¼E Mc
3i

� �þ3E v2i θi�θð Þ� �
,

M4i ¼E Mc
4i

� �þ4E Mc
3i θi�θð Þ� �þ6E v2i θi�θð Þ2� �þ3τ4,

M5i ¼E Mc
5i

� �þ5E Mc
4i θi�θð Þ� �þ10E Mc

3i θi�θð Þ2� �
þ10E v2i θi�θð Þ3� �

,

M6i ¼E Mc
6i

� �þ6E Mc
5i θi�θð Þ� �þ15E Mc

4i θi�θð Þ2� �
þ20E Mc

3i θi�θð Þ3� �þ15E v2i θi�θð Þ4� �þ15τ6:

A.5 | Unconditional central moments of θ̂ for
mean difference

Assume that each of K studies consists of two groups
whose data are normally distributed with sample sizes
niC and niT and means μiC and μiT = μiC+Δi, and possi-
bly different variances σ2iC and σ2iT . Then the mean differ-
ence Δi in Study i is estimated by

Δ̂i ¼ �XiT � �XiC, ðA:5Þ

and its (conditional) variance v2i ¼ σ2iT=niT þσ2iC=niC . The
conditional distribution of Δ̂i is N Δi,v2i

� �
, so its odd cen-

tral moments are zero, and its even moments are
Mc

i,2r ¼ 2rð Þ!= 2rr!ð Þ½ �v2ri . As the conditional moments do
not involve Δi, it is easy to write out the unconditional
moments:

M2i ¼ v2i þ τ2,

M4i ¼ 3v4i þ6v2i τ
2þ3τ4,

M6i ¼ 15v6i þ15*3v4i τ
2þ15v2i *3τ

4þ15τ6:

The first three moments of Q can be calculated by
substituting these moments into Equations (3) and (A.3),
and the expression for the third moment.
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